Science.gov

Sample records for inflammation resembling inflammatory

  1. Paralytic illness resembling inflammatory polyradiculoneuropathy in a chimpanzee.

    PubMed

    Alford, P L; Satterfield, W C

    1995-07-01

    An adult male chimpanzee housed in an outdoor corral with a group of other chimpanzees had an acute onset of ascending motor paresis that progressed to flaccid tetraplegia over 3 days. Tendon reflexes were weak, and CSF protein concentration was high. The chimpanzee regained normal mobility over several months. This chimpanzee's ascending, symmetrical, monophasic, flaccid paralytic illness, with albuminocytologic dissociation in CSF, and recovery following supportive treatment, was characteristic of inflammatory polyradiculoneuropathy, known as Guillain-Barré syndrome in human beings. Coonhound paralysis and experimentally induced allergic neuritis are the counterparts in dogs and laboratory animals, respectively, of the syndrome. In human beings, the syndrome is apparently immunologically mediated, as it is known to develop after bacterial and viral infections, vaccinations, and surgery or injury. The chimpanzee of this report had been given a rabies vaccination and had been treated for dental abscess 12 days prior to onset of signs, and had been inoculated with material containing neuronal antigens 20 years prior to onset of signs. PMID:7601702

  2. Aberrant Mucin Assembly in Mice Causes Endoplasmic Reticulum Stress and Spontaneous Inflammation Resembling Ulcerative Colitis

    PubMed Central

    Price, Gareth R; Tauro, Sharyn B; Taupin, Douglas; Thornton, David J; Png, Chin Wen; Crockford, Tanya L; Cornall, Richard J; Adams, Rachel; Kato, Masato; Nelms, Keats A; Hong, Nancy A; Florin, Timothy H. J; Goodnow, Christopher C; McGuckin, Michael A

    2008-01-01

    Background MUC2 mucin produced by intestinal goblet cells is the major component of the intestinal mucus barrier. The inflammatory bowel disease ulcerative colitis is characterized by depleted goblet cells and a reduced mucus layer, but the aetiology remains obscure. In this study we used random mutagenesis to produce two murine models of inflammatory bowel disease, characterised the basis and nature of the inflammation in these mice, and compared the pathology with human ulcerative colitis. Methods and Findings By murine N-ethyl-N-nitrosourea mutagenesis we identified two distinct noncomplementing missense mutations in Muc2 causing an ulcerative colitis-like phenotype. 100% of mice of both strains developed mild spontaneous distal intestinal inflammation by 6 wk (histological colitis scores versus wild-type mice, p < 0.01) and chronic diarrhoea. Monitoring over 300 mice of each strain demonstrated that 25% and 40% of each strain, respectively, developed severe clinical signs of colitis by age 1 y. Mutant mice showed aberrant Muc2 biosynthesis, less stored mucin in goblet cells, a diminished mucus barrier, and increased susceptibility to colitis induced by a luminal toxin. Enhanced local production of IL-1β, TNF-α, and IFN-γ was seen in the distal colon, and intestinal permeability increased 2-fold. The number of leukocytes within mesenteric lymph nodes increased 5-fold and leukocytes cultured in vitro produced more Th1 and Th2 cytokines (IFN-γ, TNF-α, and IL-13). This pathology was accompanied by accumulation of the Muc2 precursor and ultrastructural and biochemical evidence of endoplasmic reticulum (ER) stress in goblet cells, activation of the unfolded protein response, and altered intestinal expression of genes involved in ER stress, inflammation, apoptosis, and wound repair. Expression of mutated Muc2 oligomerisation domains in vitro demonstrated that aberrant Muc2 oligomerisation underlies the ER stress. In human ulcerative colitis we demonstrate similar

  3. Acute paretic syndrome in juvenile White Leghorn chickens resembles late stages of acute inflammatory demyelinating polyneuropathies in humans

    PubMed Central

    2010-01-01

    Background Sudden limb paresis is a common problem in White Leghorn flocks, affecting about 1% of the chicken population before achievement of sexual maturity. Previously, a similar clinical syndrome has been reported as being caused by inflammatory demyelination of peripheral nerve fibres. Here, we investigated in detail the immunopathology of this paretic syndrome and its possible resemblance to human neuropathies. Methods Neurologically affected chickens and control animals from one single flock underwent clinical and neuropathological examination. Peripheral nervous system (PNS) alterations were characterised using standard morphological techniques, including nerve fibre teasing and transmission electron microscopy. Infiltrating cells were phenotyped immunohistologically and quantified by flow cytometry. The cytokine expression pattern was assessed by quantitative real-time PCR (qRT-PCR). These investigations were accomplished by MHC genotyping and a PCR screen for Marek's disease virus (MDV). Results Spontaneous paresis of White Leghorns is caused by cell-mediated, inflammatory demyelination affecting multiple cranial and spinal nerves and nerve roots with a proximodistal tapering. Clinical manifestation coincides with the employment of humoral immune mechanisms, enrolling plasma cell recruitment, deposition of myelin-bound IgG and antibody-dependent macrophageal myelin-stripping. Disease development was significantly linked to a 539 bp microsatellite in MHC locus LEI0258. An aetiological role for MDV was excluded. Conclusions The paretic phase of avian inflammatory demyelinating polyradiculoneuritis immunobiologically resembles the late-acute disease stages of human acute inflammatory demyelinating polyneuropathy, and is characterised by a Th1-to-Th2 shift. PMID:20109187

  4. Oral Inflammatory Diseases and Systemic Inflammation: Role of the Macrophage

    PubMed Central

    Hasturk, Hatice; Kantarci, Alpdogan; Van Dyke, Thomas E.

    2012-01-01

    Inflammation is a complex reaction to injurious agents and includes vascular responses, migration, and activation of leukocytes. Inflammation starts with an acute reaction, which evolves into a chronic phase if allowed to persist unresolved. Acute inflammation is a rapid process characterized by fluid exudation and emigration of leukocytes, primarily neutrophils, whereas chronic inflammation extends over a longer time and is associated with lymphocyte and macrophage infiltration, blood vessel proliferation, and fibrosis. Inflammation is terminated when the invader is eliminated, and the secreted mediators are removed; however, many factors modify the course and morphologic appearance as well as the termination pattern and duration of inflammation. Chronic inflammatory illnesses such as diabetes, arthritis, and heart disease are now seen as problems that might have an impact on the periodontium. Reciprocal effects of periodontal diseases are potential factors modifying severity in the progression of systemic inflammatory diseases. Macrophages are key cells for the inflammatory processes as regulators directing inflammation to chronic pathological changes or resolution with no damage or scar tissue formation. As such, macrophages are involved in a remarkably diverse array of homeostatic processes of vital importance to the host. In addition to their critical role in immunity, macrophages are also widely recognized as ubiquitous mediators of cellular turnover and maintenance of extracellular matrix homeostasis. In this review, our objective is to identify macrophage-mediated events central to the inflammatory basis of chronic diseases, with an emphasis on how control of macrophage function can be used to prevent or treat harmful outcomes linked to uncontrolled inflammation. PMID:22623923

  5. Regulation of autoimmune inflammation by pro-inflammatory cytokines

    PubMed Central

    Kim, Eugene Y.; Moudgil, Kamal D.

    2008-01-01

    The pro-inflammatory cytokines play a critical role in the initiation and propagation of autoimmune arthritis and many other disorders resulting from a dysregulated self-directed immune response. These cytokines influence the interplay among the cellular, immunological and biochemical mediators of inflammation at multiple levels. Regulation of the pro-inflammatory activity of these cytokines is generally perceived to be mediated by the anti-inflammatory and immunosuppressive cytokines such as IL-4, IL-10, or TGF-β. However, increasing evidence is accumulating in support of the regulatory attributes of the pro-inflammatory cytokines themselves, in studies conducted in animal models of diabetes, multiple sclerosis, uveitis, and lupus. The results of our recent studies have shown that the pro-inflammatory cytokines, TNF-α and IFN-γ, can suppress arthritic inflammation in rats, and also contribute to resistance against arthritis. These results are of paramount significance not only in fully understanding the pathogenesis of autoimmune arthritis, but also in anticipating the full ramifications of the in vivo neutralization of the pro-inflammatory cytokines, including that for therapeutic purposes. PMID:18694783

  6. The Effect of Dietary Intake on Inflammation and Inflammatory Biomarkers

    NASA Technical Reports Server (NTRS)

    Cailliau, Allison

    2016-01-01

    Within the Human Health and Performance Directorate at the NASA Johnson Space Center, it is the responsibility of the Nutritional Biochemistry Laboratory to determine nutrient requirements and research the role of nutrition as a potential countermeasure to the negative effects of spaceflight on human physiology. As a part of the lab, the goal of my project was to determine if and how diet affects inflammation and immune system function during spaceflight. This project involved analysis of both dietary and biochemical data from 20 participants in a prior bed rest study as well as from 17 subjects' flight data. Specifically, I evaluated how the dietary inflammatory index (DII), a calculated estimate, compared to a set of immune and inflammatory blood and urine biomarkers. Comparing DII score and biomarkers helps to determine how intake of certain diet patterns influences inflammation in the body. My project will evaluate the effectiveness of this tool for use in the spaceflight analog bed rest.

  7. Essential nutrients suppress inflammation by modulating key inflammatory gene expression.

    PubMed

    Ivanov, V; Cha, J; Ivanova, S; Kalinovsky, T; Roomi, M W; Rath, M; Niedzwiecki, A

    2008-12-01

    We investigated the effects of a nutrient mixture (NM) consisting of ascorbic acid, quercetin, naringenin, hesperetin, tea catechins, lysine, proline, arginine and N-acetylcysteine on experimental in vivo and in vitro inflammation triggered by bacterial lipopolysaccharide (LPS). BALB/c mice (n=36) were administered NM (200 mg/kg BW) or ibuprofen (20 mg/kg BW) for two weeks. Blood plasma, collected three hours after a single intraperitoneal injection with LPS (1 mg/kg BW), was analyzed with 14 cytokine microarray. LPS inflammatory effects were analyzed in human U937 macrophages by cytokine release, cyclooxygenase (COX) enzymatic activity, COX protein expression (Western blot analysis), specific mRNA levels (RT-PCR), and nuclear factor kappabeta (NFkappabeta) activation (phosphorylated p65 immunoassay). Nutrient supplementation in mice altered the LPS-induced cytokine response in a manner similar to ibuprofen (r=0.4157, p=0.139). Cytokine response to LPS in cultured macrophages was similar to the in vivo study (r=0.718, p=0.023). NM inhibited COX-2 enzymatic activity, and COX-2 and pro-inflammatory cytokine protein expression levels were downregulated by NM at the transcription level complementing a blockade in NFkappabeta activation. NM demonstrated strong beneficial effects on the experimental inflammation by targeting multiple responsible mechanisms in the complex process involved in the inflammatory reaction to pathogens. PMID:19020770

  8. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis

    PubMed Central

    Adán, Norma; Guzmán-Morales, Jessica; Ledesma-Colunga, Maria G.; Perales-Canales, Sonia I.; Quintanar-Stéphano, Andrés; López-Barrera, Fernando; Méndez, Isabel; Moreno-Carranza, Bibiana; Triebel, Jakob; Binart, Nadine; Martínez de la Escalera, Gonzalo; Thebault, Stéphanie; Clapp, Carmen

    2013-01-01

    Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3–dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor–null (Prlr–/–) mice. Moreover, eliciting hyperprolactinemia in rats before or after inducing the adjuvant model of inflammatory arthritis reduced chondrocyte apoptosis, proinflammatory cytokine expression, pannus formation, bone erosion, joint swelling, and pain. These results reveal the protective effect of PRL against inflammation-induced chondrocyte apoptosis and the therapeutic potential of hyperprolactinemia to reduce permanent joint damage and inflammation in RA. PMID:23908112

  9. Mapping inflammation onto mood: Inflammatory mediators of anhedonia.

    PubMed

    Swardfager, Walter; Rosenblat, Joshua D; Benlamri, Meriem; McIntyre, Roger S

    2016-05-01

    Evidence supports inflammatory involvement in mood and cognitive symptoms across psychiatric, neurological and medical disorders; however, inflammation is not a sensitive or specific characteristic of these diagnoses. The National Institute of Mental Health Research Domain Criteria (RDoC) ask for a shift away from symptom-based diagnoses toward a transdiagnostic neurobiological focus in the study of brain illnesses. The RDoC matrix may provide a useful framework for integrating the effects of inflammation on brain function. Based on preclinical and clinical findings, relevant relationships span negative and positive valence systems, cognitive systems, systems for social processes and arousal/regulatory systems. As an exemplar, we consider the psychopathological domain of anhedonia, conceptualizing the relevance of inflammation (e.g., cellular immunity) and downstream processes (e.g., indoleamine 2,3-dioxygenase activation and oxidative inactivation of tetrahydrobiopterin) across RDoC units of analysis (e.g., catecholamine neurotransmitter molecules, nucleus accumbens medium spiny neuronal cells, dopaminergic mesolimbic and mesocortical reward circuits, animal paradigms, etc.). We discuss implications across illnesses affecting the brain, including infection, major depressive disorder, stroke, Alzheimer's disease and type 2 diabetes. PMID:26915929

  10. Placental inflammation is not increased in inflammatory bowel disease

    PubMed Central

    Taleban, Sasha; Gundogan, Fusun; Chien, Edward K.; Degli-Esposti, Silvia; Saha, Sumona

    2015-01-01

    Background Women with inflammatory bowel disease (IBD) are at increased risk for adverse birth outcomes such as preterm delivery and small for gestational age (SGA) infants. Most recognized cases of fetal growth restriction in singleton pregnancies have underlying placental causes. However, studies in IBD examining poor birth outcomes have focused on maternal factors. We examined whether women with IBD have a higher rate of placental inflammation than non-IBD controls. Methods Between 2008 and 2011, the placental tissue of 7 ulcerative colitis, 5 Crohn’s disease, and 2 IBD-unclassified subjects enrolled in the Pregnancy in Inflammatory Bowel Disease and Neonatal Outcome (PIANO) registry were evaluated for villitis, deciduitis, and chorioamnionitis with/without a fetal inflammatory response. The history and birth outcomes of all IBD subjects were reviewed and matched to 26 non-IBD controls by gestational age at delivery. Results Of women with IBD, 29% delivered preterm infants and 21% delivered SGA infants. Half of the IBD patients had mild-moderate disease flares during pregnancy. Five (36%) patients required corticosteroids, 2 (14%) were maintained on an immunomodulator, and 3 (21%) others received tumor necrosis factor-alpha inhibitors during their pregnancy. Chorioamnionitis was the only identified placental pathology present in the placentas reviewed, occurring less frequently in cases compared to controls (7% vs. 27%, P=0.32). Conclusions Placental inflammatory activation does not appear to be responsible for the increase in adverse birth outcome in women with IBD. Further studies are necessary to validate these findings in IBD to explain poor birth outcomes. PMID:26423206

  11. Anti-inflammatory effects of red pepper (Capsicum baccatum) on carrageenan- and antigen-induced inflammation.

    PubMed

    Spiller, Fernando; Alves, Márcia K; Vieira, Sílvio M; Carvalho, Toni A; Leite, Carlos E; Lunardelli, Adroaldo; Poloni, José A; Cunha, Fernando Q; de Oliveira, Jarbas R

    2008-04-01

    Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg(-1)) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-alpha and IL-1beta in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site. PMID:18380920

  12. Nonbilayer Phospholipid Arrangements Are Toll-Like Receptor-2/6 and TLR-4 Agonists and Trigger Inflammation in a Mouse Model Resembling Human Lupus

    PubMed Central

    Wong-Baeza, Carlos; Tescucano, Alonso; Astudillo, Horacio; Reséndiz, Albany; Landa, Carla; España, Luis; Serafín-López, Jeanet; Estrada-García, Iris; Estrada-Parra, Sergio; Flores-Romo, Leopoldo; Wong, Carlos; Baeza, Isabel

    2015-01-01

    Systemic lupus erythematosus is characterized by dysregulated activation of T and B cells and autoantibodies to nuclear antigens and, in some cases, lipid antigens. Liposomes with nonbilayer phospholipid arrangements induce a disease resembling human lupus in mice, including IgM and IgG antibodies against nonbilayer phospholipid arrangements. As the effect of these liposomes on the innate immune response is unknown and innate immune system activation is necessary for efficient antibody formation, we evaluated the effect of these liposomes on Toll-like receptor (TLR) signaling, cytokine production, proinflammatory gene expression, and T, NKT, dendritic, and B cells. Liposomes induce TLR-4- and, to a lesser extent, TLR-2/TLR-6-dependent signaling in TLR-expressing human embryonic kidney (HEK) cells and bone marrow-derived macrophages. Mice with the lupus-like disease had increased serum concentrations of proinflammatory cytokines, C3a and C5a; they also had more TLR-4-expressing splenocytes, a higher expression of genes associated with TRIF-dependent TLR-4-signaling and complement activation, and a lower expression of apoptosis-related genes, compared to healthy mice. The percentage of NKT and the percentage and activation of dendritic and B2 cells were also increased. Thus, TLR-4 and TLR-2/TLR-6 activation by nonbilayer phospholipid arrangements triggers an inflammatory response that could contribute to autoantibody production and the generation of a lupus-like disease in mice. PMID:26568960

  13. Update of fecal markers of inflammation in inflammatory bowel disease.

    PubMed

    Judd, Thomas A; Day, Andrew S; Lemberg, Daniel A; Turner, Dan; Leach, Steven T

    2011-10-01

    The diagnosis, prognosis, and assessment of disease activity of inflammatory bowel disease (IBD) require investigating clinical, radiological, and histological criteria, as well as serum inflammatory markers. However, a range of fecal inflammatory markers now appears to have the potential to greatly assist in these processes. Calprotectin, a prominent neutrophil protein, was identified two decades ago as a potentially revolutionary marker for IBD. Following this discovery, numerous additional markers, including S100A12, lactoferrin, and M2-pyruvate kinase, have also been suggested as novel markers of IBD. In the present study, we provide an up-to-date review of fecal markers of IBD, and further, provide a novel analysis of each of these fecal markers in severe ulcerative colitis and compare their expression pattern in contrast to calprotectin. PMID:21777275

  14. Therapeutics targeting inflammation in the immune reconstitution inflammatory syndrome.

    PubMed

    Shahani, Lokesh; Hamill, Richard J

    2016-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is characterized by improvement in a previously incompetent human immune system manifesting as worsening of clinical symptoms secondary to the ability of the immune system to now mount a vigorous inflammatory response. IRIS was first recognized in the setting of human immunodeficiency virus, and this clinical setting continues to be where it is most frequently encountered. Hallmarks of the pathogenesis of IRIS, independent of the clinical presentation and the underlying pathogen, include excessive activation of the immune system, with increased circulating effector memory T cells, and elevated levels of serum cytokines and inflammatory markers. Patients with undiagnosed opportunistic infections remain at risk for unmasking IRIS at the time of active antiretroviral therapy (ART) initiation. Systematic screening for opportunistic infections before starting ART is a key element to prevent this phenomenon. Appropriate management of IRIS requires prompt recognition of the syndrome and exclusion of alternative diagnoses, particularly underlying infections and drug resistance. Controlled studies supporting the use of pharmacologic interventions in IRIS are scare, and recommendations are based on case series and expert opinions. The only controlled trial published to date, showed reduction in morbidity in patients with paradoxical tuberculosis-related IRIS with the use of oral corticosteroids. There are currently limited data to recommend other anti-inflammatory or immunomodulatory therapies that are discussed in this review, and further research is needed. Ongoing research regarding the immune pathogenesis of IRIS will likely direct future rational therapeutic approaches and clinical trials. PMID:26303886

  15. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators

    PubMed Central

    Serhan, Charles N.; Chiang, Nan; Van Dyke, Thomas E.

    2009-01-01

    Preface Active resolution of acute inflammation is a previously unrecognized interface between innate and adaptive immunity. Once thought to be a passive process, the resolution of inflammation is now shown to involve active biochemical programmes that enable inflamed tissues to return to homeostasis. This Review presents newly uncovered cellular and molecular mechanisms for the resolution of inflammation, revealing key roles for eicosanoids, such as lipoxins, and new families of endogenous chemical mediators, termed resolvins and protectins. These mediators carry antiinflammatory and pro-resolution properties with leukocytes, protect organs and stimulate mucosal antimicrobial defence and clearance. Together, they control local inflammatory responses at multiple levels to stimulate resolution. PMID:18437155

  16. Inflammatory bowel disease: a paradigm for the link between coagulation and inflammation

    PubMed Central

    Yoshida, Hideo; Granger, D. Neil

    2009-01-01

    Inflammatory bowel diseases (IBD) are associated with platelet activation and an increased risk for thromboembolism. While the mechanisms that underlie the altered platelet function and hypercoagulable state in IBD remain poorly understood, emerging evidence indicates that inflammation and coagulation are inter-dependent processes that can initiate a vicious cycle wherein each process propagates and intensifies the other. This review addresses the mechanisms that may account for the mutual activation of coagulation and inflammation during inflammation and summarizes evidence that implicates a role for platelets and the coagulation system in the pathogenesis of human and experimental IBD. The proposed link between inflammation and coagulation raises the possibility of targeting the inflammation-coagulation interface to reduce the morbidity and mortality associated with IBD. PMID:19253306

  17. Thioredoxin Ameliorates Cutaneous Inflammation by Regulating the Epithelial Production and Release of Pro-Inflammatory Cytokines

    PubMed Central

    Tian, Hai; Matsuo, Yoshiyuki; Fukunaga, Atsushi; Ono, Ryusuke; Nishigori, Chikako; Yodoi, Junji

    2013-01-01

    Human thioredoxin-1 (TRX) is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-. It has been demonstrated that systemic administration and transgenic overexpression of TRX ameliorate inflammation in various animal models, but its anti-inflammatory mechanism is not well characterized. We investigated the anti-inflammatory effects of topically applied recombinant human TRX (rhTRX) in a murine irritant contact dermatitis (ICD) induced by croton oil. Topically applied rhTRX was distributed only in the skin tissues under both non-inflammatory and inflammatory conditions, and significantly suppressed the inflammatory response by inhibiting the production of cytokines and chemokines, such as TNF-α, Il-1β, IL-6, CXCL-1, and MCP-1. In an in vitro study, rhTRX also significantly inhibited the formation of cytokines and chemokines produced by keratinocytes after exposure to croton oil and phorbol 12-myristate 13-acetate. These results indicate that TRX prevents skin inflammation via the inhibition of local formation of inflammatory cytokines and chemokines. As a promising new approach, local application of TRX may be useful for the treatment of various skin and mucosal inflammatory disorders. PMID:24058364

  18. So depression is an inflammatory disease, but where does the inflammation come from?

    PubMed Central

    2013-01-01

    Background We now know that depression is associated with a chronic, low-grade inflammatory response and activation of cell-mediated immunity, as well as activation of the compensatory anti-inflammatory reflex system. It is similarly accompanied by increased oxidative and nitrosative stress (O&NS), which contribute to neuroprogression in the disorder. The obvious question this poses is ‘what is the source of this chronic low-grade inflammation?’ Discussion This review explores the role of inflammation and oxidative and nitrosative stress as possible mediators of known environmental risk factors in depression, and discusses potential implications of these findings. A range of factors appear to increase the risk for the development of depression, and seem to be associated with systemic inflammation; these include psychosocial stressors, poor diet, physical inactivity, obesity, smoking, altered gut permeability, atopy, dental cares, sleep and vitamin D deficiency. Summary The identification of known sources of inflammation provides support for inflammation as a mediating pathway to both risk and neuroprogression in depression. Critically, most of these factors are plastic, and potentially amenable to therapeutic and preventative interventions. Most, but not all, of the above mentioned sources of inflammation may play a role in other psychiatric disorders, such as bipolar disorder, schizophrenia, autism and post-traumatic stress disorder. PMID:24228900

  19. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  20. Inflammation and Inflammatory Cells in Myocardial Infarction and Reperfusion Injury: A Double-Edged Sword

    PubMed Central

    Liu, Jiaqi; Wang, Haijuan; Li, Jun

    2016-01-01

    Myocardial infarction (MI) is the most common cause of cardiac injury, and subsequent reperfusion further enhances the activation of innate and adaptive immune responses and cell death programs. Therefore, inflammation and inflammatory cell infiltration are the hallmarks of MI and reperfusion injury. Ischemic cardiac injury activates the innate immune response via toll-like receptors and upregulates chemokine and cytokine expressions in the infarcted heart. The recruitment of inflammatory cells is a dynamic and superbly orchestrated process. Sequential infiltration of the injured myocardium with neutrophils, monocytes and their descendant macrophages, dendritic cells, and lymphocytes contributes to the initiation and resolution of inflammation, infarct healing, angiogenesis, and ventricular remodeling. Both detrimental effects and a beneficial role in the pathophysiology of MI and reperfusion injury may be attributed to the subset heterogeneity and functional diversity of these inflammatory cells. PMID:27279755

  1. Administration of Reconstituted Polyphenol Oil Bodies Efficiently Suppresses Dendritic Cell Inflammatory Pathways and Acute Intestinal Inflammation

    PubMed Central

    Cavalcanti, Elisabetta; Vadrucci, Elisa; Delvecchio, Francesca Romana; Addabbo, Francesco; Bettini, Simona; Liou, Rachel; Monsurrò, Vladia; Huang, Alex Yee-Chen; Pizarro, Theresa Torres

    2014-01-01

    Polyphenols are natural compounds capable of interfering with the inflammatory pathways of several in vitro model systems. In this study, we developed a stable and effective strategy to administer polyphenols to treat in vivo models of acute intestinal inflammation. The in vitro suppressive properties of several polyphenols were first tested and compared for dendritic cells (DCs) production of inflammatory cytokines. A combination of the polyphenols, quercetin and piperine, were then encapsulated into reconstituted oil bodies (OBs) in order to increase their stability. Our results showed that administration of low dose reconstituted polyphenol OBs inhibited LPS-mediated inflammatory cytokine secretion, including IL-6, IL-23, and IL-12, while increasing IL-10 and IL-1Rα production. Mice treated with the polyphenol-containing reconstituted OBs (ROBs) were partially protected from dextran sodium sulfate (DSS)-induced colitis and associated weight loss, while mortality and inflammatory scores revealed an overall anti-inflammatory effect that was likely mediated by impaired DC immune responses. Our study indicates that the administration of reconstituted quercetin and piperine-containing OBs may represent an effective and potent anti-inflammatory strategy to treat acute intestinal inflammation. PMID:24558444

  2. Paeonol attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling.

    PubMed

    Liu, Meng-Han; Lin, An-Hsuan; Lee, Hung-Fu; Ko, Hsin-Kuo; Lee, Tzong-Shyuan; Kou, Yu Ru

    2014-01-01

    Cigarette smoking causes persistent lung inflammation that is mainly regulated by redox-sensitive pathways. We have previously reported that cigarette smoke (CS) activates reactive oxygen species- (ROS-) sensitive mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling leading to induction of lung inflammation. Paeonol, the main phenolic compound present in the Chinese herb Paeonia suffruticosa, has antioxidant and anti-inflammatory properties. However, whether paeonol has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model, we showed that chronic CS exposure for 4 weeks caused pulmonary inflammatory infiltration, increased lung vascular permeability, elevated lung levels of chemokines, cytokines, and 4-hydroxynonenal (an oxidative stress biomarker), and induced lung inflammation; all of these CS-induced events were suppressed by chronic treatment with paeonol. Using human bronchial epithelial cells (HBECs), we demonstrated that cigarette smoke extract (CSE) sequentially increased extracellular and intracellular levels of ROS, activated the MAPKs/NF-κB signaling, and induced interleukin-8 (IL-8); all these CSE-induced events were inhibited by paeonol pretreatment. Our findings suggest a novel role for paeonol in alleviating the oxidative stress and lung inflammation induced by chronic CS exposure in vivo and in suppressing CSE-induced IL-8 in vitro via its antioxidant function and an inhibition of the MAPKs/NF-κB signaling. PMID:25165413

  3. The resolution of inflammation: anti-inflammatory roles for NF-kappaB.

    PubMed

    Lawrence, Toby; Fong, Carol

    2010-04-01

    Inflammation is a salutary response to insult or injury that normally resolves with no detriment to the host. While the mechanisms and mediators that regulate the onset of inflammation have been well characterized we still know relatively little about the endogenous mechanisms that terminate the inflammatory response (Lawrence and Gilroy, 2007). Nuclear factor (NF)-kappaB is a generic term for a family of ubiquitous transcription factors with diverse physiological functions (Bonizzi and Karin, 2004; Caamano and Hunter, 2002). NF-kappaB transcription factors are formed by dimerisation of Rel proteins; RelA (p65), c-Rel, RelB, p50, p52. Various hetero or homodimers of Rel proteins can be formed in a tissue and stimulus specific manner, genetic evidence suggests these transcription factors have a critical role in cell survival and pro-inflammatory signalling pathways, which have been extensively reviewed elsewhere (Bonizzi and Karin, 2004; Caamano and Hunter, 2002). The critical role for NF-kappaB in pro-inflammatory gene expression has led to an enormous effort to develop inhibitors of this pathway for the treatment of chronic inflammation (Karin et al., 2004). However, recent research using modern molecular genetic approaches has revealed new anti-inflammatory roles for NF-kappaB that may have important implications for targeting this pathway in the treatment of inflammatory diseases. In this review we will discuss the emerging role of NF-kappaB in the resolution of inflammation and some of the potential mechanisms attributed to this function. PMID:20026420

  4. Acacia ferruginea inhibits inflammation by regulating inflammatory iNOS and COX-2.

    PubMed

    Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2016-01-01

    Inflammation is a local defensive reaction of a host to cellular injury or infection. Prolonged inflammation can contribute to pathogenesis of many disorders. Identification of naturally occurring phytoconstituents that can suppress inflammatory mediators can lead to the discovery of anti-inflammatory therapeutics. Acacia ferruginea is used traditionally to treat numerous ailments including hemorrhage, irritable bowel syndrome and leprosy. The present study evaluated the anti-inflammatory activity of A. ferruginea extract against acute (carrageenan) and chronic (formaldehyde) inflammation in Balb/c mice. Pre-treatment with A. ferruginea extract (10 mg/kg BW) for 5 consecutive days via intraperitonial (IP) administration significantly inhibited subsequent induction of paw edema in both models; the effects were comparable to that of the standard drug indomethacin. The results also showed the A. ferruginea extract significantly inhibited nitric oxide (NO) synthesis and iNOS expression (as measured in serum), diminished inflammation in - and neutrophil infiltration to - the paw tissues and led to a reduction in the number of COX-2(+) immunoreative cells (as evidenced by histologic and immunohistochemical analyses) in the paws relative to those in paws of mice that received the irritants only. Further, in vitro studies showed the extract could significantly scavenge free radicals generated as in DPPH and NO radical generating assays. Taken together, the results showed that A. ferruginea extract imparted potent anti-oxidant and -inflammatory effects, in part by maintaining oxidative homeostasis, inhibiting NO synthesis and suppressing iNOS and COX-2 expression and so could potentially be exploited as a potential plant-based medication against inflammatory disorders. PMID:25738525

  5. Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both.

    PubMed

    Koschmieder, S; Mughal, T I; Hasselbalch, H C; Barosi, G; Valent, P; Kiladjian, J-J; Jeryczynski, G; Gisslinger, H; Jutzi, J S; Pahl, H L; Hehlmann, R; Maria Vannucchi, A; Cervantes, F; Silver, R T; Barbui, T

    2016-05-01

    The Philadelphia-negative myeloproliferative neoplasms (MPNs) are clonal disorders involving hematopoietic stem and progenitor cells and are associated with myeloproliferation, splenomegaly and constitutional symptoms. Similar signs and symptoms can also be found in patients with chronic inflammatory diseases, and inflammatory processes have been found to play an important role in the pathogenesis and progression of MPNs. Signal transduction pathways involving JAK1, JAK2, STAT3 and STAT5 are causally involved in driving both the malignant cells and the inflammatory process. Moreover, anti-inflammatory and immune-modulating drugs have been used successfully in the treatment of MPNs. However, to date, many unresoved issues remain. These include the role of somatic mutations that are present in addition to JAK2V617F, CALR and MPL W515 mutations, the interdependency of malignant and nonmalignant cells and the means to eradicate MPN-initiating and -maintaining cells. It is imperative for successful therapeutic approaches to define whether the malignant clone or the inflammatory cells or both should be targeted. The present review will cover three aspects of the role of inflammation in MPNs: inflammatory states as important differential diagnoses in cases of suspected MPN (that is, in the absence of a clonal marker), the role of inflammation in MPN pathogenesis and progression and the use of anti-inflammatory drugs for MPNs. The findings emphasize the need to separate the inflammatory processes from the malignancy in order to improve our understanding of the pathogenesis, diagnosis and treatment of patients with Philadelphia-negative MPNs. PMID:26854026

  6. The Biochemical Origin of Pain: The origin of all Pain is Inflammation and the Inflammatory Response. PART 2 of 3 –Inflammatory Profile of Pain Syndromes

    PubMed Central

    2009-01-01

    Every pain syndrome has an inflammatory profile consisting of the inflammatory mediators that are present in the pain syndrome. The inflammatory profile may have variations from one person to another and may have variations in the same person at different times. The key to treatment of Pain Syndromes is an understanding of their inflammatory profile. Pain syndromes may be treated medically or surgically. The goal should be inhibition or suppression of production of the inflammatory mediators and inhibition, suppression or modulation of neuronal afferent and efferent (motor) transmission. A successful outcome is one that results in less inflammation and thus less pain. We hereby describe the inflammatory profile for several pain syndromes including arthritis, back pain, neck pain, fibromyalgia, interstitial cystitis, migraine, neuropathic pain, complex regional pain syndrome / reflex sympathetic dystrophy (CRPS/RSD), bursitis, shoulder pain and vulvodynia. These profiles are derived from basic science and clinical research performed in the past by numerous investigators and will be updated in the future by new technologies such as magnetic resonance spectroscopy. Our unifying theory or law of pain states: The origin of all pain is inflammation and the inflammatory response. The biochemical mediators of inflammation include cytokines, neuropeptides, growth factors and neurotransmitters. Irrespective of the type of pain whether it is acute or chronic pain, peripheral or central pain, nociceptive or neuropathic pain, the underlying origin is inflammation and the inflammatory response. Activation of pain receptors, transmission and modulation of pain signals, neuro plasticity and central sensitization are all one continuum of inflammation and the inflammatory response. Irrespective of the characteristic of the pain, whether it is sharp, dull, aching, burning, stabbing, numbing or tingling, all pain arise from inflammation and the inflammatory response. We are proposing

  7. Sleep and Inflammatory Bowel Disease: Exploring the Relationship Between Sleep Disturbances and Inflammation

    PubMed Central

    Kinnucan, Jami A.; Rubin, David T.

    2013-01-01

    Sleep disturbances are associated with a greater risk of serious adverse health events, economic consequences, and, most importantly, increased all-cause mortality. Several studies support the associations among sleep, immune function, and inflammation. The relationship between sleep disturbances and inflammatory conditions is complex and not completely understood. Sleep deprivation can lead to increased levels of inflammatory cytokines, including interleukin (IL)-1β IL-6, tumor necrosis factor-α and C-reactive protein, which can lead to further activation of the inflammatory cascade. The relevance of sleep in inflammatory bowel disease (IBD), a chronic immune-mediated inflammatory disease of the gastrointestinal tract, has recently received more attention. Several studies have shown that patients with both inactive and active IBD have self-reported sleep disturbances. Here, we present a concise review of sleep and its association with the immune system and the process of inflammation. We discuss the studies that have evaluated sleep in patients with IBD as well as possible treatment options for those patients with sleep disturbances. An algorithm for evaluating sleep disturbances in the IBD population is also proposed. Further research is still needed to better characterize sleep disturbances in the IBD population as well as to assess the effects of various therapeutic interventions to improve sleep quality. It is possible that the diagnosis and treatment of sleep disturbances in this population may provide an opportunity to alter disease outcomes. PMID:24764789

  8. Ultralow concentrations of bupivacaine exert anti-inflammatory effects on inflammation-reactive astrocytes

    PubMed Central

    Block, Linda; Jörneberg, Per; Björklund, Ulrika; Westerlund, Anna; Biber, Björn; Hansson, Elisabeth

    2013-01-01

    Bupivacaine is a widely used, local anesthetic agent that blocks voltage-gated Na+ channels when used for neuro-axial blockades. Much lower concentrations of bupivacaine than in normal clinical use, < 10−8 m, evoked Ca2+ transients in astrocytes from rat cerebral cortex, that were inositol trisphosphate receptor-dependent. We investigated whether bupivacaine exerts an influence on the Ca2+ signaling and interleukin-1β (IL-1β) secretion in inflammation-reactive astrocytes when used at ultralow concentrations, < 10−8 m. Furthermore, we wanted to determine if bupivacaine interacts with the opioid-, 5-hydroxytryptamine- (5-HT) and glutamate-receptor systems. With respect to the μ-opioid- and 5-HT-receptor systems, bupivacaine restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. With respect to the glutamate-receptor system, bupivacaine, in combination with an ultralow concentration of the μ-opioid receptor antagonist naloxone and μ-opioid receptor agonists, restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. Ultralow concentrations of bupivacaine attenuated the inflammation-induced upregulation of IL-1β secretion. The results indicate that bupivacaine interacts with the opioid-, 5-HT- and glutamate-receptor systems by affecting Ca2+ signaling and IL-1β release in inflammation-reactive astrocytes. These results suggest that bupivacaine may be used at ultralow concentrations as an anti-inflammatory drug, either alone or in combination with opioid agonists and ultralow concentrations of an opioid antagonist. PMID:24083665

  9. Cantharidin-induced inflammation in mouse ear model for translational research of novel anti-inflammatories.

    PubMed

    Ivetic Tkalcevic, Vanesa; Hrvacic, Boska; Bosnar, Martina; Cuzic, Snjezana; Bosnjak, Berislav; Erakovic Haber, Vesna; Glojnaric, Ines

    2012-08-01

    The murine model of cantharidin-induced ear inflammation was profiled in detail for its alignment with the human model and to explore the mechanism of anti-inflammatory activity of the macrolide antibiotics, clarithromycin and azithromycin. Ear swelling in CD1 mice persisted for 7 days, with peak intensity at 16 h after inflammation induction. As in humans, cantharidin (12.5 μg/ear) generated macrophage-inflammatory protein (MIP)-2, monocyte chemoattractant protein (MCP)-1, keratinocyte-derived chemokine (KC), interleukin (IL)-6, IL-1β, and myeloperoxidase (MPO) production, as well as neutrophil accumulation in mouse ear tissue. The tested macrolides, clarithromycin and azithromycin, administered orally (2 × 150 mg/kg) 0.5 h before and 5 h after cantharidin challenge, reduced MIP-2, MCP-1, KC, and MPO concentrations and thereby decreased ear swelling. Our results suggest that cantharidin-induced acute inflammation represents an excellent model for translational research of novel anti-inflammatories. PMID:22677362

  10. FoxO1 regulates allergic asthmatic inflammation through regulating polarization of the macrophage inflammatory phenotype

    PubMed Central

    Chung, Sangwoon; Lee, Tae Jin; Reader, Brenda F.; Kim, Ji Young; Lee, Yong Gyu; Park, Gye Young; Karpurapu, Manjula; Ballinger, Megan N.; Qian, Feng; Rusu, Luiza; Chung, Hae Young; Unterman, Terry G.; Croce, Carlo M.; Christman, John W.

    2016-01-01

    Inflammatory monocyte and tissue macrophages influence the initiation, progression, and resolution of type 2 immune responses, and alveolar macrophages are the most prevalent immune-effector cells in the lung. While we were characterizing the M1- or M2-like macrophages in type 2 allergic inflammation, we discovered that FoxO1 is highly expressed in alternatively activated macrophages. Although several studies have been focused on the fundamental role of FoxOs in hematopoietic and immune cells, the exact role that FoxO1 plays in allergic asthmatic inflammation in activated macrophages has not been investigated. Growing evidences indicate that FoxO1 acts as an upstream regulator of IRF4 and could have a role in a specific inflammatory phenotype of macrophages. Therefore, we hypothesized that IRF4 expression regulated by FoxO1 in alveolar macrophages is required for established type 2 immune mediates allergic lung inflammation. Our data indicate that targeted deletion of FoxO1 using FoxO1-selective inhibitor AS1842856 and genetic ablation of FoxO1 in macrophages significantly decreases IRF4 and various M2 macrophage-associated genes, suggesting a mechanism that involves FoxO1-IRF4 signaling in alveolar macrophages that works to polarize macrophages toward established type 2 immune responses. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, macrophage specific FoxO1 overexpression is associated with an accentuation of asthmatic lung inflammation, whereas pharmacologic inhibition of FoxO1 by AS1842856 attenuates the development of asthmatic lung inflammation. Thus, our study identifies a role for FoxO1-IRF4 signaling in the development of alternatively activated alveolar macrophages that contribute to type 2 allergic airway inflammation. PMID:27007158

  11. Effects of neonatal inflammation on the inflammatory and oxidative profile during experimental sepsis in adult life.

    PubMed

    Lunardelli, Adroaldo; Luft, Carolina; Pedrazza, Leonardo; Martha, Bianca Andrade; de Oliveira, Jarbas Rodrigues; Donadio, Márcio Vinícius Fagundes

    2015-11-01

    The present study aimed to evaluate the long-term effects of neonatal inflammation on the inflammatory and oxidative profile during experimental sepsis in adult life. Neonatal Balb/c mice received different treatments on day 10: LPS i.p. injection (100g/kg) (nLPS) or saline i.p. injection (nSal). As adults, fear/anxiety behavior was evaluated in the elevated plus maze. The following week, saline solution or LPS was administered and, after 12h, serum (inflammatory cytokines), liver (mitochondrial complexes and oxidative stress) and adrenal gland samples (angiotensin II type 1 and 2 receptors) were collected. There was an increase in the fear/anxiety behavior in the nLPS group. Neonatal administration of LPS increased the mRNA expression of the AT1 receptor and decreased the mRNA expression of the AT2 receptor in the adrenal glands of males. The complexes II and II-III increased in the nLPS saline male group when compared to control. The LPS administration in adult females, regardless of the neonatal treatment, induced a decrease of the glutathione enzyme activity. There were no differences in the inflammatory cytokines. The results showed that neonatal inflammation influenced mitochondrial respiratory chain metabolism and angiotensin II receptors in a sex-dependent manner. Balb/c mice fear and anxiety behaviors in adulthood were programmed by early life inflammatory stress. PMID:26314499

  12. IL-32: A Novel Pluripotent Inflammatory Interleukin, towards Gastric Inflammation, Gastric Cancer, and Chronic Rhino Sinusitis

    PubMed Central

    2016-01-01

    A vast variety of nonstructural proteins have been studied for their key roles and involvement in a number of biological phenomenona. Interleukin-32 is a novel cytokine whose presence has been confirmed in most of the mammals except rodents. The IL-32 gene was identified on human chromosome 16 p13.3. The gene has eight exons and nine splice variants, namely, IL-32α, IL-32β, IL-32γ, IL-32δ, IL-32ε, IL-32ζ, IL-32η, IL-32θ, and IL-32s. It was found to induce the expression of various inflammatory cytokines including TNF-α, IL-6, and IL-1β as well as macrophage inflammatory protein-2 (MIP-2) and has been reported previously to be involved in the pathogenesis and progression of a number of inflammatory disorders, namely, inflammatory bowel disease (IBD), gastric inflammation and cancer, rheumatoid arthritis, and chronic obstructive pulmonary disease (COPD). In the current review, we have highlighted the involvement of IL-32 in gastric cancer, gastric inflammation, and chronic rhinosinusitis. We have also tried to explore various mechanisms suspected to induce the expression of this extraordinary cytokine as well as various mechanisms of action employed by IL-32 during the mediation and progression of the above said problems. PMID:27143819

  13. Follistatin-like protein 1 and its role in inflammation and inflammatory diseases.

    PubMed

    Chaly, Yury; Hostager, Bruce; Smith, Sonja; Hirsch, Raphael

    2014-08-01

    Follistatin-like protein 1 (FSTL1) is a secreted glycoprotein produced mainly by cells of mesenchymal origin. FSTL1 has been shown to play an important role during embryogenesis; FSTL1-deficient mice die at birth from multiple developmental abnormalities. In the last decade, FSTL1 has been identified as a novel inflammatory protein, enhancing synthesis of proinflammatory cytokines and chemokines by immune cells in vitro and in vivo. FSTL1 mediates proinflammatory events in animal models of inflammatory diseases, particularly in collagen-induced arthritis in mice. FSTL1 is elevated in various inflammatory conditions and decreased during the course of treatment. FSTL1 may therefore be a valuable biomarker for such diseases. Moreover, a variety of experiments suggest that targeting of FSTL1 may be useful in the treatment of diseases in which inflammation plays a central role. PMID:24838142

  14. MODEL OF COLONIC INFLAMMATION: IMMUNE MODULATORY MECHANISMS IN INFLAMMATORY BOWEL DISEASE

    PubMed Central

    Wendelsdorf, Katherine; Bassaganya-Riera, Josep; Hontecillas, Raquel; Eubank, Stephen

    2010-01-01

    Inflammatory Bowel Disease (IBD) is an immunoinflammatory illness of the gut initiated by an immune response to bacteria in the microflora. The resulting immunopathogenesis leads to lesions in epithelial lining of the colon through which bacteria may infiltrate the tissue causing recurring bouts of diarrhea, rectal bleeding, and mal-nutrition. In healthy individuals such immunopathogenesis is avoided by the presence of regulatory cells that inhibit the inflammatory pathway. Highly relevant to the search for treatment strategies is the identification of components of the inflammatory pathway that allow regulatory mechanisms to be overridden and immunopathogenesis to proceed. In vitro techniques have identified cellular interactions involved in inflammation-regulation crosstalk. However, tracing immunological mechanisms discovered at the cellular level confidently back to an in vivo context of multiple, simultaneous interactions has met limited success. To explore the impact of specific interactions, we have constructed a system of 29 ordinary differential equations representing different phenotypes of T-cells, macrophages, dendritic cells, and epithelial cells as they move and interact with bacteria in the lumen, lamina propria, and lymphoid tissue of the colon. Simulations revealed the positive inflammatory feedback loop formed by inflammatory M1 macrophage activation of T-cells as a driving force underlying the immunopathology of IBD. Furthermore, strategies that remove M1 from the site of infection, by either i) increasing its potential to switch to a regulatory M2 phenotype or ii) increasing the rate of reversion (for M1 and M2 alike) to a resting state, cease immunopathogenesis even as bacteria are eliminated by other inflammatory cells. Based on these results, we identify macrophages and their mechanisms of plasticity as key targets for mucosal inflammation intervention strategies. In addition, we propose that the primary mechanism behind the association of

  15. Distinct Inflammatory Mediator Patterns Characterize Infectious and Sterile Systemic Inflammation in Febrile Neutropenic Hematology Patients

    PubMed Central

    Wennerås, Christine; Hagberg, Lars; Andersson, Rune; Hynsjö, Lars; Lindahl, Anders; Okroj, Marcin; Blom, Anna M.; Johansson, Peter; Andreasson, Björn; Gottfries, Johan; Wold, Agnes E.

    2014-01-01

    Background Invasive infections and sterile tissue damage can both give rise to systemic inflammation with fever and production of inflammatory mediators. This makes it difficult to diagnose infections in patients who are already inflamed, e.g. due to cell and tissue damage. For example, fever in patients with hematological malignancies may depend on infection, lysis of malignant cells, and/or chemotherapy-induced mucosal damage. We hypothesized that it would be possible to distinguish patterns of inflammatory mediators characterizing infectious and non-infectious causes of inflammation, respectively. Analysis of a broad range of parameters using a multivariate method of pattern recognition was done for this purpose. Methods In this prospective study, febrile (>38°C) neutropenic patients (n = 42) with hematologic malignancies were classified as having or not having a microbiologically defined infection by an infectious disease specialist. In parallel, blood was analyzed for 116 biomarkers, and 23 clinical variables were recorded for each patient. Using O-PLS (orthogonal projection to latent structures), a model was constructed based on these 139 variables that could separate the infected from the non-infected patients. Non-discriminatory variables were discarded until a final model was reached. Finally, the capacity of this model to accurately classify a validation set of febrile neutropenic patients (n = 10) as infected or non-infected was tested. Results A model that could segregate infected from non-infected patients was achieved based on discrete differences in the levels of 40 variables. These variables included acute phase proteins, cytokines, measures of coagulation, metabolism, organ stress and iron turn-over. The model correctly identified the infectious status of nine out of ten subsequently recruited febrile neutropenic hematology patients. Conclusions It is possible to separate patients with infectious inflammation from those with sterile

  16. Eicosapentaenoic acid attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling

    PubMed Central

    Liu, Meng-Han; Lin, An-Hsuan; Lu, Shing-Hwa; Peng, Ruo-Yun; Lee, Tzong-Shyuan; Kou, Yu Ru

    2014-01-01

    Cigarette smoking causes chronic lung inflammation that is mainly regulated by redox-sensitive pathways. Our previous studies have demonstrated that cigarette smoke (CS) activates reactive oxygen species (ROS)-sensitive mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling resulting in induction of lung inflammation. Eicosapentaenoic acid (EPA), a major type of omega-3 polyunsaturated fatty acid, is present in significant amounts in marine-based fish and fish oil. EPA has been shown to possess antioxidant and anti-inflammatory properties in vitro and in vivo. However, whether EPA has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model, we show that subchronic CS exposure for 4 weeks caused pulmonary inflammatory infiltration (total cell count in bronchoalveolar lavage fluid (BALF), 11.0-fold increase), increased lung vascular permeability (protein level in BALF, 3.1-fold increase), elevated levels of chemokines (11.4–38.2-fold increase) and malondialdehyde (an oxidative stress biomarker; 2.0-fold increase) in the lungs, as well as lung inflammation; all of these CS-induced events were suppressed by daily supplementation with EPA. Using human bronchial epithelial cells, we further show that CS extract (CSE) sequentially activated NADPH oxidase (NADPH oxidase activity, 1.9-fold increase), increased intracellular levels of ROS (3.0-fold increase), activated both MAPKs and NF-κB, and induced interleukin-8 (IL-8; 8.2-fold increase); all these CSE-induced events were inhibited by pretreatment with EPA. Our findings suggest a novel role for EPA in alleviating the oxidative stress and lung inflammation induced by subchronic CS exposure in vivo and in suppressing the CSE-induced IL-8 in vitro via its antioxidant function and by inhibiting MAPKs/NF-κB signaling. PMID:25452730

  17. OXYGEN MITIGATES THE INFLAMMATORY RESPONSE IN A MODEL OF HEMORRHAGE AND ZYMOSAN-INDUCED INFLAMMATION.

    PubMed

    Rahat, Michal A; Brod, Vera; Amit-Cohen, Bat-Chen; Henig, Oryan; Younis, Said; Bitterman, Haim

    2016-02-01

    Sequential insults (hits) may change the inflammatory reaction that develops in response to separate single hits (e.g., injury, infection); however, their effects on the long-term clinical outcome are still only partially elucidated. Double-hit models are typically severe and fatal. We characterized in C57BL/6 mice a moderate double-hit model of hemorrhage (35%-40% of total blood volume) and resuscitation, followed by peritoneal injection of zymosan A that induced local and systemic inflammation with 58% mortality. This model allowed exploration of the inflammatory response over time in the surviving mice. We show that after 2 days, mice subjected to the double-hit model had elevated proinflammatory systemic and local peritoneal cytokine response (interleukin [IL]-1β, tumor necrosis factor-α, IL-6) and moderately elevated anti-inflammatory cytokines (IL-10, transforming growth factor-β), compared with the single-hit and sham mice. However, this dynamically changed, and by day 7, proinflammatory cytokines were reduced, and anti-inflammatory cytokines were markedly (P < 0.05) elevated in the double-hit group. Mice in the double-hit group that inhaled 100% oxygen intermittently for 6 h every day exhibited markedly reduced serum proinflammatory cytokines as early as day 2 (P < 0.05), inhibited macrophage infiltration into the peritoneum (by 13-fold; P < 0.05), and substantially increased survival rates of 85% (P = 0.00144). Oxygen mitigates the inflammatory response and exerts a beneficial effect on survival in a double-hit model of hemorrhage and zymosan-induced inflammation. PMID:26771936

  18. Antioxidant modulation of skin inflammation: preventing inflammatory progression by inhibiting neutrophil influx

    PubMed Central

    McGilvray, Ian D.; Rotstein, Ori D.

    1999-01-01

    Objective To test the hypothesis that antioxidants might affect local inflammation by impairing inflammatory cell influx. Design A laboratory study using a Swiss–Webster mouse model of local inflammation. Setting A university-affiliated hospital. Methods Intradermal injection of 30 μg of S. minnesota endotoxin (LPS) to Swiss–Webster mice initiates a local inflammatory reaction characterized by an early rise in vascular permeability and a later influx of neutrophils. Animals were pretreated intraperitoneally with either pyrrolidine dithiocarbamate (PDTC, 2 mmol/kg), which inhibits free radical generation, or dimethylthiourea (DMTU, 450 mg/kg), a free radical scavenger. Main outcome measures Histologic findings of tissue samples taken at sites of injection; local changes in tissue vascular permeability (PI) determined by iodine-125 albumin injection before sacrifice; neutrophil accumulation quantified by tissue myeloperoxidase levels; tissue levels of the endothelial adhesion molecules intercellular adhesion molecule-1 protein (ICAM-1) and vascular cell adhesion molecule-1 protein (VCAM-1) assessed by immunohistochemistry and Western blot, respectively. Results Neither antioxidant had a significant effect on the early increase in PI, but both decreased the late rise in PI and reduced neutrophil influx. Both ICAM-1 and VCAM-1 were upregulated in response to LPS; however, only the increase in VCAM-1 was attenuated by antioxidant pretreatment. Conclusion These data suggest that antioxidants disrupt the propagation phase of an inflammatory response, possibly by altering neutrophil migration. PMID:10223071

  19. CD38 Is Expressed on Inflammatory Cells of the Intestine and Promotes Intestinal Inflammation

    PubMed Central

    Schneider, Michael; Schumacher, Valéa; Lischke, Timo; Lücke, Karsten; Meyer-Schwesinger, Catherine; Velden, Joachim; Koch-Nolte, Friedrich; Mittrücker, Hans-Willi

    2015-01-01

    The enzyme CD38 is expressed on a variety of hematopoietic and non-hematopoietic cells and is involved in diverse processes such as generation of calcium-mobilizing metabolites, cell activation, and chemotaxis. Here, we show that under homeostatic conditions CD38 is highly expressed on immune cells of the colon mucosa of C57BL/6 mice. Myeloid cells recruited to this tissue upon inflammation also express enhanced levels of CD38. To determine the role of CD38 in intestinal inflammation, we applied the dextran sulfate sodium (DSS) colitis model. Whereas wild-type mice developed severe colitis, CD38-/- mice had only mild disease following DSS-treatment. Histologic examination of the colon mucosa revealed pronounced inflammatory damage with dense infiltrates containing numerous granulocytes and macrophages in wild-type animals, while these findings were significantly attenuated in CD38-/- mice. Despite attenuated histological findings, the mRNA expression of inflammatory cytokines and chemokines was only marginally lower in the colons of CD38-/- mice as compared to wild-type mice. In conclusion, our results identify a function for CD38 in the control of inflammatory processes in the colon. PMID:25938500

  20. Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation.

    PubMed

    Gharib, B; Hanna, S; Abdallahi, O M; Lepidi, H; Gardette, B; De Reggi, M

    2001-08-01

    Molecular hydrogen reacts with the hydroxyl radical, a highly cytotoxic species produced in inflamed tissues. It has been suggested therefore to use gaseous hydrogen in a new anti-inflammatory strategy. We tested this idea, with the aid of the equipment and skills of COMEX SA in Marseille, a group who experiments with oxygen-hydrogen breathing mixtures for professional deep-sea diving. The model used was schistosomiasis-associated chronic liver inflammation. Infected animals stayed 2 weeks in an hyperbaric chamber in a normal atmosphere supplemented with 0.7 MPa hydrogen. The treatment had significant protective effects towards liver injury, namely decreased fibrosis, improvement of hemodynamics, increased NOSII activity, increased antioxidant enzyme activity, decreased lipid peroxide levels and decreased circulating TNF-alpha levels. Under the same conditions, helium exerted also some protective effects, indicating that hydroxyl radical scavenging is not the only protective mechanism. These findings indicate that the proposed anti-inflammatory strategy deserves further attention. PMID:11510417

  1. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation.

    PubMed

    Pedersen, Jannie; LaCasse, Eric C; Seidelin, Jakob B; Coskun, Mehmet; Nielsen, Ole H

    2014-11-01

    The inhibitor of apoptosis (IAP) family members, notably cIAP1, cIAP2, and XIAP, are critical and universal regulators of tumor necrosis factor (TNF) mediated survival, inflammatory, and death signaling pathways. Furthermore, IAPs mediate the signaling of nucleotide-binding oligomerization domain (NOD)1/NOD2 and other intracellular NOD-like receptors in response to bacterial pathogens. These pathways are important to the pathogenesis and treatment of inflammatory bowel disease (IBD). Inactivating mutations in the X-chromosome-linked IAP (XIAP) gene causes an immunodeficiency syndrome, X-linked lymphoproliferative disease type 2 (XLP2), in which 20% of patients develop severe intestinal inflammation. In addition, 4% of males with early-onset IBD also have inactivating mutations in XIAP. Therefore, the IAPs play a greater role in gut homeostasis, immunity and IBD development than previously suspected, and may have therapeutic potential. PMID:25282548

  2. Dietary inflammatory index is related to asthma risk, lung function and systemic inflammation in asthma

    PubMed Central

    Wood, Lisa G; Shivappa, Nitin; Berthon, Bronwyn S; Gibson, Peter G; Hebert, James R

    2014-01-01

    Background Asthma prevalence has increased in recent years and evidence suggests that diet may be a contributing factor. Increased use of processed foods has led to a decrease in diet quality, which may be creating a pro-inflammatory environment, thereby leading to the development and/or progression of various chronic inflammatory diseases and conditions. Recently, the Dietary Inflammatory Index (DII) has been developed and validated to assess the inflammatory potential of individual diets. Objective This study aimed to examine the DII in subjects with asthma compared to healthy controls and to relate the DII to asthma risk, lung function and systemic inflammation. Methods Subjects with asthma (n=99) and healthy controls (n=61) were recruited. Blood was collected and spirometry was performed. The DII was calculated from food frequency questionnaires administered to study subjects. Results The mean DII score for the asthmatics was higher than the DII score for healthy controls (−1.40 versus −1.86, p=0.04), indicating their diets were more pro-inflammatory. For every 1 unit increase in DII score the odds of having asthma increased by 70% (OR: 1.70, 95% CI: 1.03, 2.14; p=0.040). FEV1 was significantly associated with DII score (β=−3.44, 95% CI: −6.50,−0.39; p=0.020), indicating that for every 1 unit increase in DII score, FEV1 decreased by 3.44 times. Furthermore, plasma IL-6 concentrations were positively associated with DII score (β=0.13, 95% CI: 0.05, 0.21;p=0.002). Conclusion and clinical relevance As assessed using the DII score, the usual diet consumed by asthmatics in this study was pro-inflammatory relative to the diet consumed by the healthy controls. The DII score was associated with increased systemic inflammation and lower lung function. Hence, consumption of pro-inflammatory foods may contribute to worse asthma status and targeting an improvement in DII in asthmatics, as an indicator of suitable dietary intake, might be a useful strategy for

  3. 4-Methoxycarbonyl Curcumin: A Unique Inhibitor of Both Inflammatory Mediators and Periodontal Inflammation

    PubMed Central

    Gu, Ying; Lee, Hsi-Ming; Napolitano, Nicole; Clemens, McKenzie; Zhang, Yazhou; Sorsa, Timo; Zhang, Yu; Johnson, Francis; Golub, Lorne M.

    2013-01-01

    Chronic inflammatory diseases such as periodontitis have been associated with increased risk for various medical conditions including diabetes and cardiovascular disease. Endotoxin (lipopolysaccharide, LPS), derived from gram-negative periodonto-pathogens, can induce the local accumulation of mononuclear cells in the inflammatory lesion, increasing proinflammatory cytokines and matrix metalloproteinases (MMPs). This ultimately results in the destruction of periodontal connective tissues including alveolar bone. Curcumin is the principal dyestuff in the popular Indian spice turmeric and has significant regulatory effects on inflammatory mediators but is characterized by poor solubility and low bioactivity. Recently, we developed a series of chemically modified curcumins (CMCs) with increased solubility and zinc-binding activity, while retaining, or further enhancing, their therapeutic effects. In the current study, we demonstrate that a novel CMC (CMC 2.5: 4-methoxycarbonyl curcumin) has significant inhibitory effects, better than the parent compound curcumin, on proinflammatory cytokines and MMPs in in vitro, in cell culture, and in an animal model of periodontal inflammation. The therapeutic potential of CMC 2.5 and its congeners may help to prevent tissue damage during various chronic inflammatory diseases including periodontitis and may reduce the risks of systemic diseases associated with this local disorder. PMID:24453415

  4. 4-methoxycarbonyl curcumin: a unique inhibitor of both inflammatory mediators and periodontal inflammation.

    PubMed

    Gu, Ying; Lee, Hsi-Ming; Napolitano, Nicole; Clemens, McKenzie; Zhang, Yazhou; Sorsa, Timo; Zhang, Yu; Johnson, Francis; Golub, Lorne M

    2013-01-01

    Chronic inflammatory diseases such as periodontitis have been associated with increased risk for various medical conditions including diabetes and cardiovascular disease. Endotoxin (lipopolysaccharide, LPS), derived from gram-negative periodonto-pathogens, can induce the local accumulation of mononuclear cells in the inflammatory lesion, increasing proinflammatory cytokines and matrix metalloproteinases (MMPs). This ultimately results in the destruction of periodontal connective tissues including alveolar bone. Curcumin is the principal dyestuff in the popular Indian spice turmeric and has significant regulatory effects on inflammatory mediators but is characterized by poor solubility and low bioactivity. Recently, we developed a series of chemically modified curcumins (CMCs) with increased solubility and zinc-binding activity, while retaining, or further enhancing, their therapeutic effects. In the current study, we demonstrate that a novel CMC (CMC 2.5: 4-methoxycarbonyl curcumin) has significant inhibitory effects, better than the parent compound curcumin, on proinflammatory cytokines and MMPs in in vitro, in cell culture, and in an animal model of periodontal inflammation. The therapeutic potential of CMC 2.5 and its congeners may help to prevent tissue damage during various chronic inflammatory diseases including periodontitis and may reduce the risks of systemic diseases associated with this local disorder. PMID:24453415

  5. Markers of inflammation, activation of blood platelets and coagulation disorders in inflammatory bowel diseases.

    PubMed

    Matowicka-Karna, Joanna

    2016-01-01

    Inflammatory bowel disease (IBD) includes ulcerative colitis and Crohn's disease. It is a group of chronic disorders characterized by inflammation of the gastrointestinal track with unknown etiology. Currently applied biomarkers include CRP, ESR, pANCA, ASCA, and fecal calprotectin. The etiopathogenesis of IBD is multifactorial. In patients with IBD in inflamed alimentary tract mucosa the number of recruited monocytes and activated macrophages which are source of cytokines. In IBD, the exacerbation is accompanied by thrombocytosis. Platelets play a crucial role in the hemostasis and inflammatory response. Selectins, which regulates the hemostasis and inflammatory response, stimulates the secretion of many inflammatory mediators such as β-thromboglobuline, CD40L, fibrinogen, IL-1β, platelet factor-4. In the course of IBD the following changes are observed: an increase in the number of platelets (reactive thrombocytosis), PDW and PCT, reduction in MPV, increased production and excretion of granular content products (P-selectin, GP53, β-TG, PF-4, vWF, fibrinolytic inhibitors). PMID:27117106

  6. Coconut water of different maturity stages ameliorates inflammatory processes in model of inflammation

    PubMed Central

    Rao, Sadia Saleem; Najam, Rahila

    2016-01-01

    Aim: Coconut water is a natural beverage that is a part of daily diet of many people. This study was designed to explore the anti-inflammatory activity of coconut water of different maturation stages (young and mature) with rat paw edema model of inflammation using plethysmometer. Methodology: For this study, albino rats were selected and divided into four equal groups (10 rats in each group). Group 1 was set as control and administered distilled water 1 ml orally; Groups 2 and 3 were treated with young and mature coconut water, respectively, at 4 ml/100 g dose orally. Group 4 was treated with the standard drug (ibuprofen) at 400 mg/70 kg. 0.1 ml of 1% w/v acetic acid was administered in the subplantar tissue of rat paw 30 min after oral treatments of groups. Plethysmometer was used to measure rat paw edema. Results: Results revealed that both coconut water possess significant anti-inflammatory activity (P < 0.001). In comparison to control, percent inhibition by young coconut water was 20.22%, 35.13%, 42.52%, and 36% at 1, 2, 3, and 4 h of acetic acid administration, respectively. However, maximum percent inhibition (42.52%) was observed in the second phase of the inflammatory process. On the other hand, percent inhibition by mature coconut water was 18.80%, 25.94%, 24.13%, and 18.66% at 1, 2, 3, and 4 h of acetic acid administration, respectively. However, maximum percent inhibition (25.94%) was observed in the first phase of the inflammatory process. Conclusions: This study strongly suggests the use of young coconut water for potent anti-inflammatory effect and mature coconut water for moderate anti-inflammatory effect. PMID:27366350

  7. Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment.

    PubMed

    Axelrad, Jordan E; Lichtiger, Simon; Yajnik, Vijay

    2016-05-28

    In patients with inflammatory bowel disease (IBD), chronic inflammation is a major risk factor for the development of gastrointestinal malignancies. The pathogenesis of colitis-associated cancer is distinct from sporadic colorectal carcinoma and the critical molecular mechanisms underlying this process have yet to be elucidated. Patients with IBD have also been shown to be at increased risk of developing extra-intestinal malignancies. Medical therapies that diminish the mucosal inflammatory response represent the foundation of treatment in IBD, and recent evidence supports their introduction earlier in the disease course. However, therapies that alter the immune system, often used for long durations, may also promote carcinogenesis. As the population of patients with IBD grows older, with longer duration of chronic inflammation and longer exposure to immunosuppression, there is an increasing risk of cancer development. Many of these patients will require cancer treatment, including chemotherapy, radiation, hormonal therapy, and surgery. Many patients will require further treatment for their IBD. This review seeks to explore the characteristics and risks of cancer in patients with IBD, and to evaluate the limited data on patients with IBD and cancer, including management of IBD after a diagnosis of cancer, the effects of cancer treatment on IBD, and the effect of IBD and medications for IBD on cancer outcomes. PMID:27239106

  8. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease

    PubMed Central

    Zhang, Sufeng; Ermann, Joerg; Succi, Marc D.; Zhou, Allen; Hamilton, Matthew J.; Cao, Bonnie; Korzenik, Joshua R.; Glickman, Jonathan N.; Vemula, Praveen K.; Glimcher, Laurie H.; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M.

    2016-01-01

    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD. PMID:26268315

  9. Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment

    PubMed Central

    Axelrad, Jordan E; Lichtiger, Simon; Yajnik, Vijay

    2016-01-01

    In patients with inflammatory bowel disease (IBD), chronic inflammation is a major risk factor for the development of gastrointestinal malignancies. The pathogenesis of colitis-associated cancer is distinct from sporadic colorectal carcinoma and the critical molecular mechanisms underlying this process have yet to be elucidated. Patients with IBD have also been shown to be at increased risk of developing extra-intestinal malignancies. Medical therapies that diminish the mucosal inflammatory response represent the foundation of treatment in IBD, and recent evidence supports their introduction earlier in the disease course. However, therapies that alter the immune system, often used for long durations, may also promote carcinogenesis. As the population of patients with IBD grows older, with longer duration of chronic inflammation and longer exposure to immunosuppression, there is an increasing risk of cancer development. Many of these patients will require cancer treatment, including chemotherapy, radiation, hormonal therapy, and surgery. Many patients will require further treatment for their IBD. This review seeks to explore the characteristics and risks of cancer in patients with IBD, and to evaluate the limited data on patients with IBD and cancer, including management of IBD after a diagnosis of cancer, the effects of cancer treatment on IBD, and the effect of IBD and medications for IBD on cancer outcomes. PMID:27239106

  10. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease.

    PubMed

    Zhang, Sufeng; Ermann, Joerg; Succi, Marc D; Zhou, Allen; Hamilton, Matthew J; Cao, Bonnie; Korzenik, Joshua R; Glickman, Jonathan N; Vemula, Praveen K; Glimcher, Laurie H; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M

    2015-08-12

    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD. PMID:26268315

  11. Impact of anti-inflammatory nutrients on obesity-associated metabolic-inflammation from childhood through to adulthood.

    PubMed

    Connaughton, Ruth M; McMorrow, Aoibheann M; McGillicuddy, Fiona C; Lithander, Fiona E; Roche, Helen M

    2016-05-01

    Obesity-related metabolic conditions such as insulin resistance (IR), type 2 diabetes and CVD share a number of pathological features, one of which is metabolic-inflammation. Metabolic-inflammation results from the infiltration of immune cells into the adipose tissue, driving a pro-inflammatory environment, which can induce IR. Furthermore, resolution of inflammation, an active process wherein the immune system counteracts pro-inflammatory states, may be dysregulated in obesity. Anti-inflammatory nutritional interventions have focused on attenuating this pro-inflammatory environment. Furthermore, with inherent variability among individuals, establishing at-risk populations who respond favourably to nutritional intervention strategies is important. This review will focus on chronic low-grade metabolic-inflammation, resolution of inflammation and the putative role anti-inflammatory nutrients have as a potential therapy. Finally, in the context of personalised nutrition, the approaches used in defining individuals who respond favourably to nutritional interventions will be highlighted. With increasing prevalence of obesity in younger people, age-dependent biological processes, preventative strategies and therapeutic options are important to help protect against development of obesity-associated co-morbidities. PMID:26934951

  12. α-(-)-bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation.

    PubMed

    Maurya, Anil K; Singh, Monika; Dubey, Vijaya; Srivastava, Suchita; Luqman, Suaib; Bawankule, Dnyaneshwar U

    2014-01-01

    α-(-)-bisabolol is a natural monocyclic sesquiterpene present in the essential oil has generated considerable interest in the chemical and pharmaceutical industries and currently in use in various formulations, mainly in cosmetics. This study was undertaken to evaluate its therapeutic profile against skin inflammation using in-vitro, in-vivo and in-silico assays. Lipopolysachharide (LPS) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced production of proinflammatory cytokines (TNF-α and IL-6) in macrophage cells as well as in TPA-induced skin inflammation in mice was significantly inhibited by α-(-)-bisabolol. TPA-induced ear thickness, ear weight and lipid peroxidation and histopathological damage in the ear tissue were also significantly inhibited by topical application of α-(-)-bisabolol in a dose dependent manner. In-vitro and in-vivo toxicity profiles indicate that it is safe for topical application on skin. Molecular docking study also revealed its strong binding affinity to the active site of the pro-inflammatory proteins. These findings suggested that α-(-)-bisabolol may be a useful therapeutic candidate for the treatment of skin inflammation. PMID:24894548

  13. Pitavastatin is a potent anti-inflammatory agent in the rat paw model of acute inflammation.

    PubMed

    Qadir, Farida; Alam, Syed Mahboob; Siddiqi, Abeer Qamar; Kamran, Afshan

    2014-11-01

    Statins are used extensively as anti-hyperlipidemic agents. In addition to curtailing cholesterol synthesis they have been found to have multiple actions unrelated to cholesterol lowering "the pleiotropic effects," which includes inhibition of inflammation. We aimed at investigating the effect of pitavastatin a 3rd generation statin, in suppressing acute inflammation in rat paw edema model. Male Sprague-Dawley rats were randomly assigned to one of five groups (n=8): Control, indomethacin and pitavastatin (0.2mg/kg, 0.4mg/kg, 0.8mg/kg) treated. 1hour following treatment, inflammation was induced by sub-planter injection of egg albumin into the hind paw. Anti-inflammatory effect was evaluated by measurement of edema formation every half hour for three hours, assessment of polymorphonuclear leukocyte (PMNL) infiltration and measurement of tissue damage in skin biopsies. Ascending doses of pitavastatin were found to attenuate these parameters. The lowest dose of pitavastatin (0.2mg/kg) was found to significantly reduce edema volume, PMNL infiltration and tissue damage. The efficacy of the smallest dose was found comparable to indomethacin. PMID:26045381

  14. Loss of neutral ceramidase increases inflammation in a mouse model of inflammatory bowel disease

    PubMed Central

    Snider, Ashley J.; Wu, Bill X.; Jenkins, Russell W.; Sticca, Jonathan A.; Kawamori, Toshihiko; Hannun, Yusuf A.; Obeid, Lina M.

    2012-01-01

    Sphingolipids are emerging as important mediators of immune and inflammatory responses. We have previously demonstrated that sphingosine-1-phosphate (S1P) and its synthetic enzyme sphingosine kinase-1 (SK1) play an important role in inflammatory bowel disease. S1P generation is dependent on SK phosphorylation of sphingosine. Generation of sphingosine results only from the breakdown of ceramide by ceramidases (CDase). In this study, we set out to determine the role of neutral CDase (nCDase) in S1P generation and inflammatory bowel disease. To this end, we established nCDase expression is increased in patients with ulcerative colitis. Using the dextran sulfate sodium (DSS)-induced colitis model, we determined nCDase activity increased in colon epithelium, but not submucosa, in wild-type (WT) mice. Following DSS, ceramide levels were elevated in colon epithelium from WT and nCDase−/− mice, while S1P levels were significantly elevated only in the epithelium of nCDase−/− mice. Similarly, cyclooxygenase-2 (Cox-2) levels were significantly elevated only in the epithelium of nCDase−/− mice. Neutral CDase−/− mice also exhibited higher endotoxin levels in circulation, as well as higher circulating levels of S1P. This increase in S1P in nCDase−/− mice was accompanied by a marked leukocytosis, most notably circulating neutrophils and lymphocytes. Taken together these data demonstrate that loss of nCDase results in an unexpected increase in S1P generation in inflammation, and suggests that nCDase may actually protect against inflammation. PMID:22940715

  15. Bioelectrical Stimulation for the Reduction of Inflammation in Inflammatory Bowel Disease

    PubMed Central

    Marshall, Ryan; Taylor, Ian; Lahr, Christopher; Abell, Thomas L.; Espinoza, Ingrid; Gupta, Nitin K.; Gomez, Christian R.

    2015-01-01

    Crohn’s disease and ulcerative colitis are the primary inflammatory bowel diseases (IBDs) affecting the gastrointestinal tract. The current therapy aims at decreasing inflammation and reducing symptoms. This typically requires immune suppression by steroids, thiopurines, methotrexate, or tumor necrosis factor inhibitors. Patients may be unreceptive to medical therapy, and some may discontinue the treatment due to adverse effects. Noninvasive, transcutaneous vagus nerve stimulation (VNS) is currently used as a treatment for depression and epilepsy, and it is being investigated for the treatment of conditions such as multiple sclerosis, migraines, and Alzheimer’s disease. Recent studies have demonstrated the importance of splenic and vagus nerve functions in the inflammatory process through the production of certain cytokines. We hypothesize that using transcutaneous VNS via the auricular afferent branch could achieve a selective anti-inflammatory effect on the intestinal wall. This review examines the possibility of using vagal stimulators as a therapy for IBD. This could open the door to novel treatments for numerous vagally mediated diseases characterized by poor responses to current therapies. PMID:26692766

  16. Sulphonamides as anti-inflammatory agents: old drugs for new therapeutic strategies in neutrophilic inflammation?

    PubMed

    Ottonello, L; Dapino, P; Scirocco, M C; Balbi, A; Bevilacqua, M; Dallegri, F

    1995-03-01

    1. It is well known that neutrophils act as mediators of tissue injury in a variety of inflammatory diseases. Their histotoxic activity is presently thought to involve proteinases and oxidants, primarily hypochlorous acid (HOCl). This oxidant is also capable of inactivating the specific inhibitor of neutrophil elastase (alpha 1-antitrypsin), thereby favouring digestion of the connective matrix. 2. In the present work, we found that sulphanilamide and some sulphanilamide-related anti-inflammatory drugs such as dapsone, nimesulide and sulphapyridine reduce the availability of HOCl in the extracellular microenvironment of activated neutrophils and prevent the inactivation of alpha 1-antitrypsin by these cells in a dose-dependent manner. The ability of each drug to prevent alpha 1-antitrypsin from inactivation by neutrophils correlates significantly with its capacity to reduce the recovery of HOCl from neutrophils. Five other non-steroidal anti-inflammatory drugs were completely ineffective. 3. Therefore, sulphanilamide-related drugs, i.e. dapsone, nimesulide and sulphapyridine, have the potential to reduce the bioavailability of neutrophil-derived HOCl and, in turn, to favour the alpha 1-antitrypsin-dependent control of neutrophil elastolytic activity. These drugs appear as a well-defined group of agents which are particularly prone to attenuate neutrophil histotoxicity. They can also be viewed as a previously unrecognized starting point for the development of new compounds in order to plan rational therapeutic strategies for controlling tissue injury during neutrophilic inflammation. PMID:7736703

  17. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development.

    PubMed

    O'Connell, Ryan M; Kahn, Daniel; Gibson, William S J; Round, June L; Scholz, Rebecca L; Chaudhuri, Aadel A; Kahn, Melissa E; Rao, Dinesh S; Baltimore, David

    2010-10-29

    Mammalian noncoding microRNAs (miRNAs) are a class of gene regulators that have been linked to immune system function. Here, we have investigated the role of miR-155 during an autoimmune inflammatory disease. Consistent with a positive role for miR-155 in mediating inflammatory responses, Mir155(-/-) mice were highly resistant to experimental autoimmune encephalomyelitis (EAE). miR-155 functions in the hematopoietic compartment to promote the development of inflammatory T cells including the T helper 17 (Th17) cell and Th1 cell subsets. Furthermore, the major contribution of miR-155 to EAE was CD4(+) T cell intrinsic, whereas miR-155 was also required for optimum dendritic cell production of cytokines that promoted Th17 cell formation. Our study shows that one aspect of miR-155 function is the promotion of T cell-dependent tissue inflammation, suggesting that miR-155 might be a promising therapeutic target for the treatment of autoimmune disorders. PMID:20888269

  18. A functional variant of elafin with improved anti-inflammatory activity for pulmonary inflammation.

    PubMed

    Small, Donna M; Zani, Marie-Louise; Quinn, Derek J; Dallet-Choisy, Sandrine; Glasgow, Arlene M A; O'Kane, Cecilia; McAuley, Danny F; McNally, Paul; Weldon, Sinéad; Moreau, Thierry; Taggart, Clifford C

    2015-01-01

    Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden. PMID:25189740

  19. A sensitive and relevant model for evaluating anti-inflammatory activity-papaya latex-induced rat paw inflammation.

    PubMed

    Gupta, O P; Sharma, N; Chand, D

    1992-08-01

    A new model employing latex of papaya as an inflammagen has been developed for testing anti-inflammatory activity. The latex (exudate) was harvested from the unripe papaya fruit, which had been dried under vacuum. The latex was then suspended in 0.05 M sodium acetate buffer. This suspension when injected in rat hind paw produced concentration-dependent inflammation. Of the 0.25% of this suspension, 0.1 ml was found ideal for evaluating anti-inflammatory activity of test drugs. This concentration produced 70%-100% inflammation lasting for about 5 hr with a maximum effect at h 3. The test drugs employed were prednisolone, aspirin, indomethacin, phenylbutazone, ibuprofen, piroxicam, chloroquine, levamisole, and a mixture of boswellic acids. For comparison, these drugs were also tested against carrageenan-induced inflammation. All the test drugs--steroidal, aspirin, and non-aspirin-like--showed anti-inflammatory activity against latex-induced inflammation. The activity of chloroquine, levamisole, and boswellic acids was significantly more against latex as compared with that of the carrageenan model. The inflammation caused by latex may be attributed to both its hydrolytic enzymes--papain and chymopapain--and glutathione, the activator of these enzymes. These enzymes seem to act like lysosomal enzymes that are released in inflammatory disease processes which mediate inflammation by stimulating the synthesis of prostaglandins. The papaya latex-induced inflammation model appears to be a sensitive, broad-based, and relevant one likely to prove useful for discovering new and effective drugs against inflammation and rheumatoid arthritis. PMID:1392054

  20. Current concepts in chronic inflammatory diseases: Interactions between microbes, cellular metabolism, and inflammation.

    PubMed

    Garn, Holger; Bahn, Sabine; Baune, Bernhard T; Binder, Elisabeth B; Bisgaard, Hans; Chatila, Talal A; Chavakis, Triantafyllos; Culmsee, Carsten; Dannlowski, Udo; Gay, Steffen; Gern, James; Haahtela, Tari; Kircher, Tilo; Müller-Ladner, Ulf; Neurath, Markus F; Preissner, Klaus T; Reinhardt, Christoph; Rook, Graham; Russell, Shannon; Schmeck, Bernd; Stappenbeck, Thaddeus; Steinhoff, Ulrich; van Os, Jim; Weiss, Scott; Zemlin, Michael; Renz, Harald

    2016-07-01

    Recent research indicates that chronic inflammatory diseases, including allergies and autoimmune and neuropsychiatric diseases, share common pathways of cellular and molecular dysregulation. It was the aim of the International von-Behring-Röntgen Symposium (October 16-18, 2014, in Marburg, Germany) to discuss recent developments in this field. These include a concept of biodiversity; the contribution of urbanization, lifestyle factors, and nutrition (eg, vitamin D); and new mechanisms of metabolic and immune dysregulation, such as extracellular and intracellular RNAs and cellular and mitochondrial stress. Epigenetic mechanisms contribute further to altered gene expression and therefore to the development of chronic inflammation. These novel findings provide the foundation for further development of preventive and therapeutic strategies. PMID:27373325

  1. Antileukotriene Reverts the Early Effects of Inflammatory Response of Distal Parenchyma in Experimental Chronic Allergic Inflammation

    PubMed Central

    Gobbato, Nathália Brandão; de Souza, Flávia Castro Ribas; Fumagalli, Stella Bruna Napolitano; Lopes, Fernanda Degobbi Tenório Quirino dos Santos; Prado, Carla Máximo; Martins, Milton Arruda; Tibério, Iolanda de Fátima Lopes Calvo; Leick, Edna Aparecida

    2013-01-01

    Aims. Compare the effects of montelukast or dexamethasone in distal lung parenchyma and airway walls of guinea pigs (GP) with chronic allergic inflammation. Methods. GP have inhaled ovalbumin (OVA group-2x/week/4weeks). After the 4th inhalation, GP were treated with montelukast or dexamethasone. After 72 hours of the 7th inhalation, GP were anesthetised, and lungs were removed and submitted to histopathological evaluation. Results. Montelukast and dexamethasone treatments reduced the number of eosinophils in airway wall and distal lung parenchyma compared to OVA group (P < 0.05). On distal parenchyma, both treatments were effective in reducing RANTES, NF-κB, and fibronectin positive cells compared to OVA group (P < 0.001). Montelukast was more effective in reducing eotaxin positive cells on distal parenchyma compared to dexamethasone treatment (P < 0.001), while there was a more expressive reduction of IGF-I positive cells in OVA-D group (P < 0.001). On airway walls, montelukast and dexamethasone were effective in reducing IGF-I, RANTES, and fibronectin positive cells compared to OVA group (P < 0.05). Dexamethasone was more effective in reducing the number of eotaxin and NF-κB positive cells than Montelukast (P < 0.05). Conclusions. In this animal model, both treatments were effective in modulating allergic inflammation and remodeling distal lung parenchyma and airway wall, contributing to a better control of the inflammatory response. PMID:24151607

  2. Anti-inflammatory effect of topical administration of tofacitinib on corneal inflammation.

    PubMed

    Sakimoto, Tohru; Ishimori, Akiko

    2016-04-01

    We evaluated an anti-inflammatory effect of topical administration of tofacitinib, janus kinase (JAK) blocker, on corneal inflammation. Topical instillation of either tofacitinib or PBS was applied after wounding BALB/c mice corneas with alkali burn. Topical instillation was performed until day 14 after injury and injured eye was analyzed. The vascularized area in the alkali burned cornea was significantly reduced in the tofacitinib group compared with that in the PBS group. The immunoreactivity of Gr-1, F4/80, IFN-γ, and phosphorylated STAT(signal transducer and activator of transcription)1 in corneal stroma was diminished significantly in the tofacitinib group. Using laser capture microdissection system and quantitative PCR array analysis, the expression levels of CXCL9, CXCL5, CCL7, CCL2, MMP(matrix metalloproteinase)-9, and STAT1 in corneal stroma were down-regulated in the tofacitinib group. In in vitro study, human fibroblast pretreated by IFN-γ showed phosphorylation of STAT1, and this phosphorylation was down-regulated by adding tofacitinib to the culture medium. These results indicate the topical application of JAK inhibitor causes down-regulation of JAK- or IFN-γ-related molecules. Therefore, we deduce that application of JAK inhibitor for topical instillation may contribute to the treatment of corneal inflammation. PMID:26689752

  3. Adipocytokine Orosomucoid Integrates Inflammatory and Metabolic Signals to Preserve Energy Homeostasis by Resolving Immoderate Inflammation*

    PubMed Central

    Lee, Yun Sok; Choi, Jin Woo; Hwang, Injae; Lee, Joo Won; Lee, Jae Ho; Kim, A. Young; Huh, Jin Young; Koh, Young Jun; Koh, Gou Young; Son, Hee Jung; Masuzaki, Hiroaki; Hotta, Kikuko; Alfadda, Assim A.; Kim, Jae Bum

    2010-01-01

    Orosomucoid (ORM), also called α-1 acid glycoprotein, is an abundant plasma protein that is an immunomodulator induced by stressful conditions such as infections. In this study, we reveal that Orm is induced selectively in the adipose tissue of obese mice to suppress excess inflammation that otherwise disturbs energy homeostasis. Adipose Orm levels were elevated by metabolic signals, including insulin, high glucose, and free fatty acid, as well as by the proinflammatory cytokine tumor necrosis factor-α, which is found in increased levels in the adipose tissue of morbid obese subjects. In both adipocytes and macrophages, ORM suppressed proinflammatory gene expression and pathways such as NF-κB and mitogen-activated protein kinase signalings and reactive oxygen species generation. Concomitantly, ORM relieved hyperglycemia-induced insulin resistance as well as tumor necrosis factor-α-mediated lipolysis in adipocytes. Accordingly, ORM improved glucose and insulin tolerance in obese and diabetic db/db mice. Taken together, our results suggest that ORM integrates inflammatory and metabolic signals to modulate immune responses to protect adipose tissue from excessive inflammation and thereby from metabolic dysfunction. PMID:20442402

  4. Metabonomic analysis of the anti-inflammatory effects of volatile oils of Angelica sinensis on rat model of acute inflammation.

    PubMed

    Zhang, Wen-Quan; Hua, Yong-Li; Zhang, Man; Ji, Peng; Li, Jin-Xia; Zhang, Ling; Li, Peng-Ling; Wei, Yan-Ming

    2015-06-01

    Metabonomics based on GC-MS was used to study the possible anti-inflammatory mechanisms of volatile oils of Angelica sinensis (VOAS) in rats with acute inflammation. Acute inflammation was induced by subcutaneous injection of carrageenan in rats. The levels of prostaglandin E2 (PGE2 ), histamine (HIS) and 5-hydroxytryptamine (5-HT) in the inflammatory fluid were detected. Principal component analysis and orthogonal partial least squares-discriminant analysis models were performed for pattern recognition analysis. After the administration of VOAS, the levels of PGE2 , HIS, and 5-HT returned to levels observed in normal group. According to GC-MS analysis, the intervention of VOAS in rats with acute inflammation induced substantial and characteristic changes in their metabolic profiles. Fourteen metabolite biomarkers, namely, lactic acid, malic acid, citric acid, trans-dehydroandrosterone, aldosterone, linoleic acid, hexadecanoic acid, pregnenolone, octadecenoic acid, myristic acid, l-histidine, octadecanoic acid, arachidonic acid (AA) and l-tryptophan, were detected in the inflammatory fluid. The levels of all biomarkers either increased or decreased significantly in model groups. VOAS possibly intervened in the metabolic process of inflammation by altering histidine metabolism, tryptophan metabolism, AA metabolism, steroid hormone biosynthesis, fatty acid metabolism and energy metabolism. Metabonomics was used to reflect an organism's physiological and metabolic state comprehensively, and it is a potentially powerful tool that reveals the anti-acute-inflammatory mechanism of VOAS. PMID:25515821

  5. Docosahexaenoic Acid, Inflammation, and Bacterial Dysbiosis in Relation to Periodontal Disease, Inflammatory Bowel Disease, and the Metabolic Syndrome

    PubMed Central

    Tabbaa, Maria; Golubic, Mladen; Roizen, Michael F.; Bernstein, Adam M.

    2013-01-01

    Docosahexaenoic acid (DHA), a long-chain omega-3 polyunsaturated fatty acid, has been used to treat a range of different conditions, including periodontal disease (PD) and inflammatory bowel disease (IBD). That DHA helps with these oral and gastrointestinal diseases in which inflammation and bacterial dysbiosis play key roles, raises the question of whether DHA may assist in the prevention or treatment of other inflammatory conditions, such as the metabolic syndrome, which have also been linked with inflammation and alterations in normal host microbial populations. Here we review established and investigated associations between DHA, PD, and IBD. We conclude that by beneficially altering cytokine production and macrophage recruitment, the composition of intestinal microbiota and intestinal integrity, lipopolysaccharide- and adipose-induced inflammation, and insulin signaling, DHA may be a key tool in the prevention of metabolic syndrome. PMID:23966110

  6. Cycling Hypoxia Induces a Specific Amplified Inflammatory Phenotype in Endothelial Cells and Enhances Tumor-Promoting Inflammation In Vivo12

    PubMed Central

    Tellier, Céline; Desmet, Déborah; Petit, Laurenne; Finet, Laure; Graux, Carlos; Raes, Martine; Feron, Olivier; Michiels, Carine

    2015-01-01

    Abnormal architecture of the tumor blood network, as well as heterogeneous erythrocyte flow, leads to temporal fluctuations in tissue oxygen tension exposing tumor and stromal cells to cycling hypoxia. Inflammation is another feature of tumor microenvironment and is considered as a new enabling characteristic of tumor progression. As cycling hypoxia is known to participate in tumor aggressiveness, the purpose of this study was to evaluate its role in tumor-promoting inflammation. Firstly, we assessed the impact of cycling hypoxia in vitro on endothelial inflammatory response induced by tumor necrosis factor α. Results showed that endothelial cells exposed to cycling hypoxia displayed an amplified proinflammatory phenotype, characterized by an increased expression of inflammatory cytokines, namely, interleukin (IL)-6 and IL-8; by an increased expression of adhesion molecules, in particular intercellular adhesion molecule–1 (ICAM-1); and consequently by an increase in THP-1 monocyte adhesion. This exacerbation of endothelial inflammatory phenotype occurs through nuclear factor–κB overactivation. Secondly, the role of cycling hypoxia was studied on overall tumor inflammation in vivo in tumor-bearing mice. Results showed that cycling hypoxia led to an enhanced inflammation in tumors as prostaglandin-endoperoxide synthase 2 (PTGS2), IL-6, CXCL1 (C-X-C motif ligand 1), and macrophage inflammatory protein 2 (murine IL-8 functional homologs) mRNA expression was increased and as a higher leukocyte infiltration was evidenced. Furthermore, cycling hypoxia–specific inflammatory phenotype, characterized by a simultaneous (baculoviral inhibitor of apoptosis repeat-containing 5)low/PTGS2high/ICAM-1high/IL-6high/IL-8high expression, is associated with a poor prognosis in human colon cancer. This new phenotype could thus be used in clinic to more precisely define prognosis for colon cancer patients. In conclusion, our findings evidenced for the first time the involvement of

  7. Chorioamnionitis-induced fetal gut injury is mediated by direct gut exposure of inflammatory mediators or by lung inflammation

    PubMed Central

    Wolfs, Tim G. A. M.; Kramer, Boris W.; Thuijls, Geertje; Kemp, Matthew W.; Saito, Masatoshi; Willems, Monique G. M.; Senthamarai-Kannan, Paranthaman; Newnham, John P.; Jobe, Alan H.

    2014-01-01

    Intra-amniotic exposure to proinflammatory agonists causes chorioamnionitis and fetal gut inflammation. Fetal gut inflammation is associated with mucosal injury and impaired gut development. We tested whether this detrimental inflammatory response of the fetal gut results from a direct local (gut derived) or an indirect inflammatory response mediated by the chorioamnion/skin or lung, since these organs are also in direct contact with the amniotic fluid. The gastrointestinal tract was isolated from the respiratory tract and the amnion/skin epithelia by fetal surgery in time-mated ewes. Lipopolysaccharide (LPS) or saline (controls) was selectively infused in the gastrointestinal tract, trachea, or amniotic compartment at 2 or 6 days before preterm delivery at 124 days gestation (term 150 days). Gastrointestinal and intratracheal LPS exposure caused distinct inflammatory responses in the fetal gut. Inflammatory responses could be distinguished by the influx of leukocytes (MPO+, CD3+, and FoxP3+ cells), tumor necrosis factor-α, and interferon-γ expression and differential upregulation of mRNA levels for Toll-like receptor 1, 2, 4, and 6. Fetal gut inflammation after direct intestinal LPS exposure resulted in severe loss of the tight junctional protein zonula occludens protein 1 (ZO-1) and increased mitosis of intestinal epithelial cells. Inflammation of the fetal gut after selective LPS instillation in the lungs caused only mild disruption of ZO-1, loss in epithelial cell integrity, and impaired epithelial differentiation. LPS exposure of the amnion/skin epithelia did not result in gut inflammation or morphological, structural, and functional changes. Our results indicate that the detrimental consequences of chorioamnionitis on fetal gut development are the combined result of local gut and lung-mediated inflammatory responses. PMID:24458021

  8. Chorioamnionitis-induced fetal gut injury is mediated by direct gut exposure of inflammatory mediators or by lung inflammation.

    PubMed

    Wolfs, Tim G A M; Kramer, Boris W; Thuijls, Geertje; Kemp, Matthew W; Saito, Masatoshi; Willems, Monique G M; Senthamarai-Kannan, Paranthaman; Newnham, John P; Jobe, Alan H; Kallapur, Suhas G

    2014-03-01

    Intra-amniotic exposure to proinflammatory agonists causes chorioamnionitis and fetal gut inflammation. Fetal gut inflammation is associated with mucosal injury and impaired gut development. We tested whether this detrimental inflammatory response of the fetal gut results from a direct local (gut derived) or an indirect inflammatory response mediated by the chorioamnion/skin or lung, since these organs are also in direct contact with the amniotic fluid. The gastrointestinal tract was isolated from the respiratory tract and the amnion/skin epithelia by fetal surgery in time-mated ewes. Lipopolysaccharide (LPS) or saline (controls) was selectively infused in the gastrointestinal tract, trachea, or amniotic compartment at 2 or 6 days before preterm delivery at 124 days gestation (term 150 days). Gastrointestinal and intratracheal LPS exposure caused distinct inflammatory responses in the fetal gut. Inflammatory responses could be distinguished by the influx of leukocytes (MPO(+), CD3(+), and FoxP3(+) cells), tumor necrosis factor-α, and interferon-γ expression and differential upregulation of mRNA levels for Toll-like receptor 1, 2, 4, and 6. Fetal gut inflammation after direct intestinal LPS exposure resulted in severe loss of the tight junctional protein zonula occludens protein 1 (ZO-1) and increased mitosis of intestinal epithelial cells. Inflammation of the fetal gut after selective LPS instillation in the lungs caused only mild disruption of ZO-1, loss in epithelial cell integrity, and impaired epithelial differentiation. LPS exposure of the amnion/skin epithelia did not result in gut inflammation or morphological, structural, and functional changes. Our results indicate that the detrimental consequences of chorioamnionitis on fetal gut development are the combined result of local gut and lung-mediated inflammatory responses. PMID:24458021

  9. LPS-Induced Lung Inflammation in Marmoset Monkeys – An Acute Model for Anti-Inflammatory Drug Testing

    PubMed Central

    Seehase, Sophie; Lauenstein, Hans-Dieter; Schlumbohm, Christina; Switalla, Simone; Neuhaus, Vanessa; Förster, Christine; Fieguth, Hans-Gerd; Pfennig, Olaf; Fuchs, Eberhard; Kaup, Franz-Josef; Bleyer, Martina; Hohlfeld, Jens M.; Braun, Armin

    2012-01-01

    Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS)-induced inflammation model was established in marmoset monkeys (Callithrix jacchus) to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS) were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4) inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and macrophage inflammatory protein-1 beta (MIP-1β) were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL) was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC50). LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs. PMID:22952743

  10. Gene Delivery of a Viral Anti-Inflammatory Protein to Combat Ocular Inflammation

    PubMed Central

    Ildefonso, Cristhian J.; Jaime, Henrique; Rahman, Masmudur M.; Li, Qiuhong; Boye, Shannon E.; Hauswirth, William W.; Lucas, Alexandra R.; McFadden, Grant

    2015-01-01

    Abstract Inflammation of the retina is a contributing factor in ocular diseases such as uveitis, diabetic retinopathy, and age-related macular degeneration (AMD). The M013 immunomodulatory protein from myxoma virus has been shown to interfere with the proinflammatory signaling pathways involving both the NLRP3 inflammasome and NF-κB. We have developed and characterized an adeno-associated viral (AAV) vector that delivers a secretable and cell-penetrating form of the M013 protein (TatM013). The expressed TatM013 protein was secreted and blocked the endotoxin-induced secretion of interleukin (IL)-1β in monocyte-derived cells and the reactive aldehyde-induced secretion of IL-1β in retinal pigment epithelium cells. The local anti-inflammatory effects of AAV-delivered TatM013 were evaluated in an endotoxin-induced uveitis (EIU) mouse model after intravitreal injection of mice with an AAV2-based vector carrying either TatM013 fused to a secreted green fluorescent protein (GFP) tag (sGFP-TatM013) or GFP. Expression of the sGFP-TatM013 transgene was demonstrated by fluorescence funduscopy in living mice. In EIU, the number of infiltrating cells and the concentration of IL-1β in the vitreous body were significantly lower in the eyes injected with AAV-sGFP-TatM013 compared with the eyes injected with control AAV-GFP. These results suggest that a virus-derived inhibitor of the innate immune response, when delivered via AAV, could be a generalized therapy for various inflammatory diseases of the eye. PMID:25420215

  11. Dehydroepiandrosterone (DHEA) restrains intestinal inflammation by rendering leukocytes hyporesponsive and balancing colitogenic inflammatory responses.

    PubMed

    Alves, Vanessa Beatriz Freitas; Basso, Paulo José; Nardini, Viviani; Silva, Angélica; Chica, Javier Emílio Lazo; Cardoso, Cristina Ribeiro de Barros

    2016-09-01

    Dehydroepiandrosterone (DHEA) is a hormone that plays an important role in the modulation of inflammatory responses. However, the precise mechanisms that link the actions of this androgen with protection or susceptibility to inflammatory bowel diseases (IBD) remain uknown. Here we showed that low dose DHEA inhibited proliferation of spleen cells and IFN-у production. The hormone was not toxic to myeloid lineage cells, although it caused necrosis of spleen cells at the intermediate and highest doses in vitro (50 and 100μM). The treatment of C57BL/6 mice with DHEA during colitis induction by dextran sodium sulfate (DSS) led to a reduction in weight loss and clinical signs of disease. There were decreased peripheral blood monocytes on day 6 of DSS exposure and treatment, besides increase in circulating neutrophils in the tissue repair phase. DHEA also led to reduced lamina propria cellularity and restoration of normal colon length. These results were accompanied by decreased expression of IL-6 and TGF-β mRNA, while IL-13 was augmented in the colon on day 6, which was probably related to attenuation of inflammation. There was retention of CD4(+) cells in the spleen after use of DHEA, along with augmented frequency of CD4(+)IL-4(+) cells, decreased CD4(+)IFN-ɣ(+) in spleen and constrained CD4(+)IL-17(+) population in the mesenteric lymph nodes. Moreover, splenocytes of mice treated with DHEA became hyporesponsive, as observed by reduced proliferation after re-stimulation ex-vivo. In conclusion, DHEA modifyies leukocyte activity and balances the exacerbated immune responses which drive local and systemic damages in IBD. PMID:27263829

  12. Assessment of Inflammation in an Acute on Chronic Model of Inflammatory Bowel Disease with Ultrasound Molecular Imaging

    PubMed Central

    Machtaler, Steven; Knieling, Ferdinand; Luong, Richard; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Background: Ultrasound (US) molecular imaging has shown promise in assessing inflammation in preclinical, murine models of inflammatory bowel disease. These models, however, initiated acute inflammation on previously normal colons, in contrast to patients where acute exacerbations are often in chronically inflamed regions. In this study, we explored the potential of dual P- and E-selectin targeted US imaging for assessing acute inflammation on a murine quiescent chronic inflammatory background. Methods: Chronic colitis was induced using three cycles of 4% DSS in male FVB mice. Acute inflammation was initiated 2 weeks after the final DSS cycle through rectal administration of 1% TNBS. Mice at different stages of inflammation were imaged using a small animal ultrasound system following i.v. injection of microbubbles targeted to P- and E-selectin. In vivo imaging results were correlated with ex vivo immunofluorescence and histology. Results: Induction of acute inflammation resulted in an increase in the targeted US signal from 5.5 ± 5.1 arbitrary units (a.u.) at day 0 to 61.0 ± 45.2 a.u. (P < 0.0001) at day 1, 36.3 ± 33.1 a.u. at day 3, returning to levels similar to control at day 5. Immunofluorescence showed significant increase in the percentage of P- and E-selectin positive vessels at day 1 (P-selectin: 21.0 ± 7.1% of vessels; P < 0.05; E-selectin: 16.4 ±3.7%; P < 0.05) compared to day 0 (P-selectin: 10.3 ± 5.7%; E-selectin: 7.3 ± 7.0%). Conclusions: Acute inflammation can be accurately measured in a clinically relevant murine model of chronic IBD using ultrasound molecular imaging with a dual P- and E- selectin-targeted contrast agent. PMID:26379784

  13. Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway.

    PubMed

    Ramasamy, Selvi; Saez, Borja; Mukhopadhyay, Subhankar; Ding, Daching; Ahmed, Alwiya M; Chen, Xi; Pucci, Ferdinando; Yamin, Rae'e; Wang, Jianfeng; Pittet, Mikael J; Kelleher, Cassandra M; Scadden, David T; Sweetser, David A

    2016-02-16

    Tle1 (transducin-like enhancer of split 1) is a corepressor that interacts with a variety of DNA-binding transcription factors and has been implicated in many cellular functions; however, physiological studies are limited. Tle1-deficient (Tle1(Δ/Δ)) mice, although grossly normal at birth, exhibit skin defects, lung hypoplasia, severe runting, poor body condition, and early mortality. Tle1(Δ/Δ) mice display a chronic inflammatory phenotype with increased expression of inflammatory cytokines and chemokines in the skin, lung, and intestine and increased circulatory IL-6 and G-CSF, along with a hematopoietic shift toward granulocyte macrophage progenitor and myeloid cells. Tle1(Δ/Δ) macrophages produce increased inflammatory cytokines in response to Toll-like receptor (TLR) agonists and lipopolysaccharides (LPS), and Tle1(Δ/Δ) mice display an enhanced inflammatory response to ear skin 12-O-tetradecanoylphorbol-13-acetate treatment. Loss of Tle1 not only results in increased phosphorylation and activation of proinflammatory NF-κB but also results in decreased Hes1 (hairy and enhancer of split-1), a negative regulator of inflammation in macrophages. Furthermore, Tle1(Δ/Δ) mice exhibit accelerated growth of B6-F10 melanoma xenografts. Our work provides the first in vivo evidence, to our knowledge, that TLE1 is a major counterregulator of inflammation with potential roles in a variety of inflammatory diseases and in cancer progression. PMID:26831087

  14. Study on anti-inflammatory and immunomodulatory effects of clomipramine in carrageenan- and lipopolysaccharide-induced rat models of inflammation

    PubMed Central

    Kostadinov, Ilia; Delev, Delian; Petrova, Atanaska; Stanimirova, Irina; Draganova, Krassimira; Kostadinova, Ivanka; Murdjeva, Marianna

    2014-01-01

    The aim of the present study was to evaluate the anti-inflammatory effect of clomipramine in carrageenan- and lipopolysaccharide-induced (LPS-induced) models of inflammation by investigating the changes in serum levels of the pro-inflammatory cytokine TNF-α and the anti-inflammatory cytokines IL-10 and TGF-β after single and repeated administration of the drug. In order to study the effect of single and repeated doses of clomipramine on carrageenan-induced paw oedema, male Wistar rats were divided in five groups (n = 8): control, positive control group and three experimental groups treated with 5, 10 and 20 mg/kg bw clomipramine, respectively. The effect of single and repeated doses of clomipramine on serum cytokine levels was studied as animals were divided in four groups: two control groups treated with saline and two experimental groups treated with clomipramine 20 mg/kg bw. Carrageenan and LPS were injected immediately after clomipramine or saline injection. Serum cytokine concentrations were tested by enzyme immunoassay. Following acute administration only the highest dose that was used inhibited the carrageenan-induced inflammation. Oedema inhibition was observed with 5, 10 and 20 mg/kg bw clomipramine after repeated administration. Single and repeated administration of clomipramine at a dose of 20 mg/kg bw did not significantly change the serum levels of TGF-1β, IL-10 and TNF-α when compared to the controls in carrageenan-induced inflammation. Following LPS-induced inflammation clomipramine significantly increased the serum levels of TGF-1β after repeated administration and decreased TNF-α in rats after single-dose and repeated pretreatment with 20 mg/kg bw clomipramine. A significant increase in the levels of IL-10 in relation to this inflammatory model was observed only in single dose treated animals. Clomipramine possesses an anti-inflammatory effect in the carrageenan-induced model of exudative inflammation. In LPS-induced inflammation

  15. Absence of nicotinic acetylcholine receptor α7 subunit amplifies inflammation and accelerates onset of fibrosis: an inflammatory kidney model

    PubMed Central

    Truong, Luan D.; Trostel, Jessica; Garcia, Gabriela E.

    2015-01-01

    Inflammation is regulated by endogenous mechanisms, including anti-inflammatory cytokines, adenosine, and the nicotinic acetylcholine receptor α7 subunit (α7nAChR). We investigated the role of α7nAChR in protection against the progression of tissue injury in a model of severe, macrophage-mediated, cytokine-dependent anti-glomerular basement membrane (GBM) glomerulonephritis (GN), in α7nAChR-deficient (α7−/−) mice . At d 7 after the injection of anti-GBM antibody, kidneys from α7−/− mice displayed severe glomeruli (P < 0.0001) and tubulointerstitial lesions (P < 0.001) compared to kidneys from WT mice. An important finding was the presence of severe glomerulosclerosis in α7−/− mice in this early phase of the disease. Kidneys of α7−/− mice showed greater accumulation of inflammatory cells and higher expression of chemokines and cytokines than did those of WT mice. In addition, in α7−/− fibrotic kidneys, the expression of fibrin, collagen, TGF-β, and tissue inhibitor of metalloproteinase (TIMP)-2 increased, and the expression of TIMP3 declined. The increase in counterregulatory responses to inflammation in α7−/− nephritic kidneys did not compensate for the lack of α7nAChR. These findings indicate that α7nAChR plays a key role in regulating the inflammatory response in anti-GBM GN and that disruption of the endogenous protective α7nAChR amplifies inflammation to accelerate kidney damage and fibrosis.—Truong, L. D., Trostel. J., Garcia, G. E. Absence of nicotinic acetylcholine receptor α7 subunit amplifies inflammation and accelerates onset of fibrosis: an inflammatory kidney model. PMID:25985801

  16. 1,25(OH)2D3 Deficiency Induces Colon Inflammation via Secretion of Senescence-Associated Inflammatory Cytokines.

    PubMed

    Liu, Yun; Chen, Lulu; Zhi, Chunchun; Shen, Ming; Sun, Weiwei; Miao, Dengshun; Yuan, Xiaoqin

    2016-01-01

    Epidemiological studies showed that 1,25-Dihydroxyvitamin D[1,25(OH)2D3] insufficiency appears to be associated with aging and colon cancer while underlying biological mechanisms remain largely unknown. Inflammatory bowel disease is one of the risk factors for colon cancer. In this study, we investigated whether 1,25(OH)2D3 deficiency has an impact on the colon of 25-hydroxyvitamin D 1α-hydroxylase knockout [Cyp27b1(-/-)] mice fed on a rescue diet (high calcium, phosphate, and lactose) from weaning to 10 months of age. We found that 1,25(OH)2D3 deficient mice displayed significant colon inflammation phenotypes including shortened colon length, thinned and disordered mucosal structure, and inflammatory cell infiltration. DNA damage, cellular senescence and the production of senescence-associated inflammatory cytokines were also increased significantly in the colon of Cyp27b1(-/-)mice. Furthermore, the levels of ROS in the colon were increased significantly, whereas the expression levels of antioxidative genes were down-regulated dramatically in the colon of Cyp27b1(-/-)mice. Taken together, our results demonstrated that 1,25(OH)2D3 deficiency could induce colon inflammation, which may result from increased oxidative stress and DNA damage, subsequently, induced cell senescence and overproduction of senescence-associated secretory factors. Therefore, our findings suggest that 1,25(OH)2D3 may play an important role in preventing the development and progression of colon inflammation and colon cancer. PMID:26790152

  17. Lutein derived fragments exhibit higher antioxidant and anti-inflammatory properties than lutein in lipopolysaccharide induced inflammation in rats.

    PubMed

    Nidhi, Bhatiwada; Sharavana, Gurunathan; Ramaprasad, Talahalli R; Vallikannan, Baskaran

    2015-02-01

    In the present study, we appraise the anti-inflammatory efficacy of lutein oxidative degradation derivatives mediated through UV-irradiation over lutein in counteracting the inflammation induced by lipopolysaccharide (LPS) in rats (n = 5 per group). UV-irradiated lutein fragments were identified as anhydrolutein (B, C40H54O), 2,6,6-trimethylcyclohexa-1,4-dienylium (M1, C9H13), (2E,4E,6E,8E)-9-(4-hydroxy-2,6,6-trimethylcyclohex-1-1en-1-yl)-3,7-dimethylnona-2,4,6,8-tetraen-1-ylium (M2, C20H29O), 4-[(1E,3E,5E,7E)-3,7,-dimethyldeca-1,3,5,7-tetraen-1-yl]-3,5,5-methylcyclohex-3-en-1-ol (M3, C21H30O) and zeaxanthin (M4, C40H56O) and its isomers as 13'-Z zeaxanthin, 13'-Z lutein, all-trans zeaxanthin, and 9-Z lutein. Induction of inflammation by LPS significantly increased the production of nitrites (3.3 fold in the serum and 2.6 fold in the liver), prostaglandin E2 (26 fold in the serum), and pro-inflammatory cytokines like tumor necrosis factor-α (6.6 fold in the serum), and interleukin-6 (4.8 fold in the serum). Oxidative derivatives of lutein, especially M1, M2 and M3, ameliorated acute inflammation in rats by inhibiting the production of nitrites, malondialdehyde (MDA), PGE2, TNF-α, and IL-6 cytokines more efficiently than lutein in rats. The anti-inflammatory mechanism of derivatives might be related to the decrease of inflammatory cytokines and the increase of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione S transferase, glutathione reductase), which would result in the reduction of iNOS, COX-2 and MDA and subsequently inflammatory responses. PMID:25469663

  18. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1

    PubMed Central

    Vettorazzi, Sabine; Bode, Constantin; Dejager, Lien; Frappart, Lucien; Shelest, Ekaterina; Klaßen, Carina; Tasdogan, Alpaslan; Reichardt, Holger M.; Libert, Claude; Schneider, Marion; Weih, Falk; Henriette Uhlenhaut, N.; David, Jean-Pierre; Gräler, Markus; Kleiman, Anna; Tuckermann, Jan P.

    2015-01-01

    Acute lung injury (ALI) is a severe inflammatory disease for which no specific treatment exists. As glucocorticoids have potent immunosuppressive effects, their application in ALI is currently being tested in clinical trials. However, the benefits of this type of regimen remain unclear. Here we identify a mechanism of glucocorticoid action that challenges the long-standing dogma of cytokine repression by the glucocorticoid receptor. Contrarily, synergistic gene induction of sphingosine kinase 1 (SphK1) by glucocorticoids and pro-inflammatory stimuli via the glucocorticoid receptor in macrophages increases circulating sphingosine 1-phosphate levels, which proves essential for the inhibition of inflammation. Chemical or genetic inhibition of SphK1 abrogates the therapeutic effects of glucocorticoids. Inflammatory p38 MAPK- and mitogen- and stress-activated protein kinase 1 (MSK1)-dependent pathways cooperate with glucocorticoids to upregulate SphK1 expression. Our findings support a critical role for SphK1 induction in the suppression of lung inflammation by glucocorticoids, and therefore provide rationales for effective anti-inflammatory therapies. PMID:26183376

  19. Selenium Deficiency-Induced Inflammation and Increased Expression of Regulating Inflammatory Cytokines in the Chicken Gastrointestinal Tract.

    PubMed

    Gao, Xuejiao; Zhang, Ziwei; Xing, Houjuan; Yu, Jiao; Zhang, Naisheng; Xu, Shiwen

    2016-09-01

    Selenium (Se), a nutritionally essential trace element, plays an important role in various aspects of health for a wide range of species, including birds. Se deficiency inhibits the growth of immune organs and decreases immune function, leading to many inflammatory diseases. The present study determined the effects and mechanism of dietary Se deficiency on gastrointestinal tract tissue inflammation. The histopathological changes showed that Se deficiency induced inflammatory lesions in the gastrointestinal tract tissues (glandular stomach, gizzard, duodenum, small intestine, and rectum). The expression levels of PTGE (prostagland E synthase), COX-2 (cyclooxygenase-2), TNF-α (tumor necrosis factor α), and NF-κB (nuclear transfer factor κB) in the gastrointestinal tract tissues (glandular stomach, gizzard, duodenum, small intestine, and rectum) were determined by qPCR on days 15, 25, 35, 45, and 55, respectively. The results showed that Se deficiency induced high expression levels of PTGE, COX-2, TNF-α, and NF-κB in the gastrointestinal tract tissues. The effects were more obvious in the duodenum and small intestine than those in the glandular stomach, gizzard, and rectum. In addition, the expression levels of these proteins in the gastrointestinal tract tissue increased in a time-dependent manner with Se deficiency feeding time. Furthermore, Se deficiency induced the production of pro-inflammatory factors, thus aggravating inflammatory lesions in the gastrointestinal tract. The effect of Se deficiency on inflammation and other gastrointestinal tract diseases should be further studied. PMID:26899319

  20. The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease

    PubMed Central

    Ayyadurai, Saravanan; Charania, Moiz A.; Laroui, Hamed; Yan, Yutao; Merlin, Didier

    2012-01-01

    Intestinal inflammation is characterized by epithelial disruption, leading to loss of barrier function and the recruitment of immune cells, including neutrophils. Although the mechanisms are not yet completely understood, interactions between environmental and immunological factors are thought to be critical in the initiation and progression of intestinal inflammation. In recent years, it has become apparent that the di/tripeptide transporter PepT1 may play an important role in the pathogenesis of such inflammation. In healthy individuals, PepT1 is primarily expressed in the small intestine and transports di/tripeptides for metabolic purposes. However, during chronic inflammation such as that associated with inflammatory bowel disease, PepT1 expression is upregulated in the colon, wherein the protein is normally expressed either minimally or not at all. Several recent studies have shown that PepT1 binds to and transports various bacterial di/tripeptides into colon cells, leading to activation of downstream proinflammatory responses via peptide interactions with innate immune receptors. In the present review, we examine the relationship between colonic PepT1-mediated peptide transport in the colon and activation of innate immune responses during disease. It is important to understand the mechanisms of PepT1 action during chronic intestinal inflammation to develop future therapies addressing inappropriate immune activation in the colon. PMID:22194420

  1. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in posthemorrhagic shock acute lung inflammation.

    PubMed

    Wen, Zongmei; Fan, Liyan; Li, Yuehua; Zou, Zui; Scott, Melanie J; Xiao, Guozhi; Li, Song; Billiar, Timothy R; Wilson, Mark A; Shi, Xueyin; Fan, Jie

    2014-11-01

    Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome after hemorrhagic shock (HS) resulting from major surgery and trauma. The increased susceptibility in HS patients to the development of ALI suggests not yet fully elucidated mechanisms that enhance proinflammatory responses and/or suppress anti-inflammatory responses in the lung. Alveolar macrophages (AMϕ) are at the center of the pathogenesis of ALI after HS. We have previously reported that HS-activated polymorphonuclear neutrophils (PMNs) interact with macrophages to influence inflammation progress. In this study, we explore a novel function of PMNs regulating AMϕ anti-inflammatory mechanisms involving autophagy. Using a mouse "two-hit" model of HS/resuscitation followed by intratracheal injection of muramyl dipeptide, we demonstrate that HS initiates high mobility group box 1/TLR4 signaling, which upregulates NOD2 expression in AMϕ and sensitizes them to subsequent NOD2 ligand muramyl dipeptide to augment lung inflammation. In addition, upregulated NOD2 signaling induces autophagy in AMϕ, which negatively regulates lung inflammation through feedback suppression of NOD2-RIP2 signaling and inflammasome activation. Importantly, we further demonstrate that HS-activated PMNs that migrate in alveoli counteract the anti-inflammatory effect of autophagy in AMϕ, possibly through NAD(P)H oxidase-mediated signaling to enhance I-κB kinase γ phosphorylation, NF-κB activation, and nucleotide-binding oligomerization domain protein 3 inflammasome activation, and therefore augment post-HS lung inflammation. These findings explore a previously unidentified complexity in the mechanisms of ALI, which involves cell-cell interaction and receptor cross talk. PMID:25267975

  2. 1,25(OH)2D3 Deficiency Induces Colon Inflammation via Secretion of Senescence-Associated Inflammatory Cytokines

    PubMed Central

    Zhi, Chunchun; Shen, Ming; Sun, Weiwei; Miao, Dengshun; Yuan, Xiaoqin

    2016-01-01

    Epidemiological studies showed that 1,25-Dihydroxyvitamin D[1,25(OH)2D3] insufficiency appears to be associated with aging and colon cancer while underlying biological mechanisms remain largely unknown. Inflammatory bowel disease is one of the risk factors for colon cancer. In this study, we investigated whether 1,25(OH)2D3 deficiency has an impact on the colon of 25-hydroxyvitamin D 1α-hydroxylase knockout [Cyp27b1−/−] mice fed on a rescue diet (high calcium, phosphate, and lactose) from weaning to 10 months of age. We found that 1,25(OH)2D3 deficient mice displayed significant colon inflammation phenotypes including shortened colon length, thinned and disordered mucosal structure, and inflammatory cell infiltration. DNA damage, cellular senescence and the production of senescence-associated inflammatory cytokines were also increased significantly in the colon of Cyp27b1−/−mice. Furthermore, the levels of ROS in the colon were increased significantly, whereas the expression levels of antioxidative genes were down-regulated dramatically in the colon of Cyp27b1−/−mice. Taken together, our results demonstrated that 1,25(OH)2D3 deficiency could induce colon inflammation, which may result from increased oxidative stress and DNA damage, subsequently, induced cell senescence and overproduction of senescence-associated secretory factors. Therefore, our findings suggest that 1,25(OH)2D3 may play an important role in preventing the development and progression of colon inflammation and colon cancer. PMID:26790152

  3. Anti-inflammatory effects of Brazilian ginseng (Pfaffia paniculata) on TNBS-induced intestinal inflammation: Experimental evidence.

    PubMed

    Costa, C A R A; Tanimoto, A; Quaglio, A E V; Almeida, L D; Severi, J A; Di Stasi, L C

    2015-09-01

    Inflammatory bowel disease (IBD) is a chronic, relapsing, idiopathic inflammation of the gastrointestinal tract. Clinical studies suggest that the initiation of IBD is multifactorial, involving genetics, the immune system and environmental factors, such as diet, drugs and stress. Pfaffia paniculata is an adaptogenic medicinal plant used in Brazilian folk medicine as an "anti-stress" agent. Thus, we hypothesised that the P. paniculata enhances the response of animals subjected to colonic inflammation. Our aim was to investigate the intestinal anti-inflammatory activity of P. paniculata in rats before or after induction of intestinal inflammation using trinitrobenzenesulfonic acid (TNBS). The animals were divided into groups that received the vehicle, prednisolone or P. paniculata extract daily starting 14 days before or 7 days after TNBS induction. At the end of the procedure, the animals were killed and their colons were assessed for the macroscopic damage score (MDS), extent of the lesion (EL) and weight/length ratio, myeloperoxidase (MPO) activity and glutathione (GSH), cytokines and C-reactive protein (CRP) levels. Histological evaluation and ultrastructural analysis of the colonic samples were performed. Treatment with the 200mg/kg dose on the curative schedule was able to reduce the MDS and the EL. In addition, MPO activity was reduced, GSH levels were maintained, and the levels of pro-inflammatory cytokines and CRP were decreased. In conclusion, the protective effect of P. paniculata was related to reduced oxidative stress and CRP colonic levels, and due to immunomodulatory activity as evidenced by reduced levels of IL-1β, INF-γ, TNF-α and IL-6. PMID:26202807

  4. Neutrophilia and an Anti-Inflammatory Drug as Markers of Inflammation in Delayed Muscle Soreness.

    ERIC Educational Resources Information Center

    Smith, Lucille L.; And Others

    This study reexamined the concept that delayed muscle soreness (DMS) is a form of inflammatory pain. This was accomplished by having 32 male volunteers perform exercise known to induce DMS and then assess the total and differential white blood cell changes. In addition, an anti-inflammatory drug, idomethacin, was administered to determine whether…

  5. Paucity of Initial Cerebrospinal Fluid Inflammation in Cryptococcal Meningitis is associated with subsequent Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Boulware, David R.; Bonham, Shulamith C.; Meya, David B.; Wiesner, Darin L.; Park, Gregory S.; Kambugu, Andrew; Janoff, Edward N.; Bohjanen, Paul R

    2010-01-01

    Background Cryptococcal meningitis (CM)-related immune reconstitution inflammatory syndrome (IRIS) complicates antiretroviral therapy (ART) in 20–40% of ART-naïve persons with AIDS and prior CM. Pathogenesis is unknown. Methods We compared initial CSF cultures, inflammatory markers and cytokine profiles in ART-naïve AIDS patients who did or did not subsequently develop IRIS after starting ART. We also compared results obtained at IRIS events or CM-relapse. Results Of 85 subjects with CM, 33 (39%) developed CM-IRIS and 5 (6%) developed culture-positive CM-relapse. At CM diagnosis, subjects subsequently developing IRIS had less inflammation, with decreased CSF leukocytes, protein, interferon-gamma (IFN-g), interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha (TNF-a) compared with subjects not developing IRIS (P<.05). Initial CSF WBCs ≤25 cells/μL and protein ≤50 mg/dL were associated with development of IRIS (OR=7.2, 95%CI: 2.7 to 18.7, P<.001). Compared to baseline levels, we identified CSF elevations of IFN-g, TNF-a, G-CSF, VEGF, and eotaxin (CCL11) (P<.05) at IRIS but minimal inflammatory changes in those with CM relapse. Conclusions Patients who subsequently develop CM-IRIS exhibit less initial CSF inflammation at the time of CM diagnosis compared to those who do not develop IRIS. The inflammatory CSF cytokine profiles observed at time of IRIS can distinguish IRIS from CM-relapse. PMID:20677939

  6. Anti-Inflammatory and Antinociceptive Effects of Salbutamol on Acute and Chronic Models of Inflammation in Rats: Involvement of an Antioxidant Mechanism

    PubMed Central

    Uzkeser, Hulya; Cadirci, Elif; Halici, Zekai; Odabasoglu, Fehmi; Polat, Beyzagul; Yuksel, Tugba Nurcan; Ozaltin, Seda; Atalay, Fadime

    2012-01-01

    The possible role of β-2 adrenergic receptors in modulation of inflammatory and nociceptive conditions suggests that the β-2 adrenergic receptor agonist, salbutamol, may have beneficial anti-inflammatory and analgesic effects. Therefore, in this study, we induced inflammatory and nociceptive responses with carrageenan-induced paw edema or cotton-pellet-induced granuloma models, both of which result in oxidative stress. We hypothesized that salbutamol would prevent inflammatory and nociceptive responses by stimulating β-2 adrenergic receptors and the prevention of generation of ROS during the acute inflammation process in rats. Both doses of salbutamol used in the study (1 and 2 mg/kg) effectively blocked the acute inflammation and inflammatory nociception induced by carrageenan. In the cotton-pellet-induced granuloma test, both doses of salbutamol also significantly decreased the weight of granuloma tissue on the cotton pellets when compared to the control. Anti-inflammatory and analgesic effects of salbutamol were found to be comparable with those of indomethacin. Salbutamol decreased myeloperoxidase (MPO) activity and lipid peroxidation (LPO) level and increased the activity of superoxide dismutase (SOD) and level of glutathione (GSH) during the acute phase of inflammation. In conclusion, salbutamol can decrease acute and chronic inflammation, possibly through the stimulation of β-2 adrenergic receptors. This anti-inflammatory effect may be of significance in asthma treatment, where inflammation also takes part in the etiopathology. This study reveals that salbutamol has significant antioxidative effects, which at least partially explain its anti-inflammatory capabilities. These findings presented here may also shed light on the roles of β-2 adrenergic receptors in inflammatory and hyperalgesic conditions. PMID:22665951

  7. Preventive and therapeutic anti-inflammatory properties of the sesquiterpene α-humulene in experimental airways allergic inflammation

    PubMed Central

    Rogerio, Alexandre P; Andrade, Edinéia L; Leite, Daniela FP; Figueiredo, Cláudia P; Calixto, João B

    2009-01-01

    Background and purpose: α-Humulene and trans-caryophyllene are plant sesquiterpenes with pronounced anti-inflammatory properties. Here, we evaluated the effects of these compounds in an experimental model of airways allergic inflammation. Experimental approach: Female BALB/c mice, sensitized to and challenged with ovalbumin received daily α-humulene or trans-caryophyllene (50 mg·kg−1, orally) or α-humulene (1 mg·mL−1, by aerosol) as either a preventive (for 22 days) or therapeutic (from the 18th to the 22nd day) treatment. Dexamethasone or budesonide was used as a positive control drug. Inflammation was determined on day 22 post-immunization by leukocyte recruitment, interleukin-5 (IL-5), CCL11, interferon-γ (IFN-γ) and leukotriene (LT)B4 levels in bronchoalveolar lavage fluid (BALF). In addition, transcription factors [nuclear factor κB (NF-κB), activator protein 1 (AP-1)] and P-selectin in lung tissue were measured by immunohistochemistry and mucus secretion by histochemistry. Key results: Preventive or therapeutic treatments with α-humulene, but not with trans-caryophyllene, significantly reduced the eosinophil recruitment to the BALF. In addition, α-humulene recovery INF-γ and reduced the IL-5, CCL11 and LTB4 levels in BALF, as well as the IL-5 production in mediastinal lymph nodes (in vitro assay). Furthermore, α-humulene decreased the NF-kB and the AP-1 activation, the expression of P-selectin and the increased mucus secretion in the lung. Conclusions and implications: α-Humulene, given either orally or by aerosol, exhibited marked anti-inflammatory properties in a murine model of airways allergic inflammation, an effect that seemed to be mediated via reduction of inflammatory mediators, adhesion molecule expression and transcription factors activation. This article is part of a themed issue on Mediators and Receptors in the Resolution of Inflammation. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear

  8. The acute inflammatory response to intranigral α-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation

    PubMed Central

    2011-01-01

    Background Activated microglia are a feature of the host response to neurodegeneration in Parkinson's disease (PD) and are thought to contribute to disease progression. Recent evidence suggests that extracellular α-synuclein (eSNCA) may play an important role in the pathogenesis of PD and that this may be mediated by a microglial response. Methods We wished to discover whether the host response to eSNCA would be sufficient to induce significant cytokine production. In vitro cultured BV-2 microglia were used to determine the basic inflammatory response to eSNCA. In vivo, 8-week old Biozzi mice were subjected to a single intranigral injection of either 3 μg SNCA, lipopolysaccharide (LPS) or serum protein (BSA) and allowed to recover for 24 hours. A second cohort of animals were peripherally challenged with LPS (0.5 mg/kg) 6 hours prior to tissue collection. Inflammation was studied by quantitative real-time PCR for a number of pro-inflammatory genes and immunohistochemistry for microglial activation, endothelial activation and cell death. Results In vitro data showed a robust microglial response to SNCA, including a positive NFĸB response and the production of pro-inflammatory cytokines. Direct injection of SNCA into the substantia nigra resulted in the upregulation of mRNA expression of proinflammatory cytokines, the expression of endothelial markers of inflammation and microglial activation. However, these results were significantly different to those obtained after direct injection of LPS. By contrast, when the animals were injected intracerebrally with SNCA and subsequently challenged with systemic LPS, the level of production of IL-1β in the substantia nigra became comparable to that induced by the direct injection of LPS into the brain. The injection of albumin into the nigra with a peripheral LPS challenge did not provoke the production of a significant inflammatory response. Direct injection of LPS into the substantia nigra also induces cell death in a

  9. Expression and Sequence Variants of Inflammatory Genes; Effects on Plasma Inflammation Biomarkers Following a 6-Week Supplementation with Fish Oil

    PubMed Central

    Cormier, Hubert; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2016-01-01

    (1) Background: A growing body of literature suggest that polymorphisms (SNPs) from inflammation-related genes could possibly play a role in cytokine production and then interact with dietary n-3 fatty acids (FAs) to modulate inflammation. The aim of the present study was to test whether gene expression of selected inflammatory genes was altered following an n-3 PUFA supplementation and to test for gene–diet interactions modulating plasma inflammatory biomarker levels. (2) Methods: 191 subjects completed a 6-week n-3 FA supplementation with 5 g/day of fish oil. Gene expression of TNF-α and IL6 was assessed in peripheral blood mononuclear cells (PBMCs) using the TaqMan technology. Genotyping of 20 SNPs from the TNF-LTA gene cluster, IL1β, IL6 and CRP genes was performed. (3) Results: There was no significant reduction of plasma IL-6, TNF-α and C-reactive protein (CRP) levels after the 6-week fish oil supplementation. TNF-α and IL6 were slightly overexpressed in PBMCs after the supplementation (fold changes of 1.05 ± 0.38 and 1.18 ± 0.49, respectively (n = 191)), but relative quantification (RQ) within the −0.5 to 2.0 fold are considered as nonbiologically significant. In a MIXED model for repeated measures adjusted for the effects of age, sex and BMI, gene by supplementation interaction effects were observed for rs1143627, rs16944, rs1800797, and rs2069840 on IL6 levels, for rs2229094 on TNF-α levels and for rs1800629 on CRP levels (p < 0.05 for all). (4) Conclusions: This study shows that a 6-week n-3 FA supplementation with 5 g/day of fish oil did not alter gene expression levels of TNF-α and IL6 in PBMCs and did not have an impact on inflammatory biomarker levels. However, gene–diet interactions were observed between SNPs within inflammation-related genes modulating plasma inflammatory biomarker levels. PMID:26999109

  10. Fermented Brown Rice and Rice Bran with Aspergillus oryzae (FBRA) Prevents Inflammation-Related Carcinogenesis in Mice, through Inhibition of Inflammatory Cell Infiltration

    PubMed Central

    Onuma, Kunishige; Kanda, Yusuke; Suzuki Ikeda, Saori; Sakaki, Ryuta; Nonomura, Takuya; Kobayashi, Masanobu; Osaki, Mitsuhiko; Shikanai, Masataka; Kobayashi, Hiroshi; Okada, Futoshi

    2015-01-01

    We have established an inflammation-related carcinogenesis model in mouse, in which regressive QR-32 cells subcutaneously co-implanted with a foreign body—gelatin sponge—convert themselves into lethal tumors due to massive infiltration of inflammatory cells into the sponge. Animals were fed with a diet containing 5% or 10% fermented brown rice and rice bran with Aspergillus oryzae (FBRA). In 5% and 10% FBRA diet groups, tumor incidences were lower (35% and 20%, respectively) than in the non-treated group (70%). We found that FBRA reduced the number of inflammatory cells infiltrating into the sponge. FBRA administration did not cause myelosuppression, which indicated that the anti-inflammatory effects of FBRA took place at the inflammatory lesion. FBRA did not have antitumor effects on the implanted QRsP-11 tumor cells, which is a tumorigenic cell line established from a tumor arisen after co-implantation of QR-32 cells with sponge. FBRA did not reduce formation of 8-hydroxy-2′-deoxyguanine adducts, a marker of oxidative DNA damage in the inflammatory lesion; however, it reduced expression of inflammation-related genes such as TNF-α, Mac-1, CCL3 and CXCL2. These results suggest that FBRA will be an effective chemopreventive agent against inflammation-related carcinogenesis that acts by inhibiting inflammatory cell infiltration into inflammatory lesions. PMID:26670250

  11. Anti-inflammatory effects of Houttuynia cordata supercritical extract in carrageenan-air pouch inflammation model.

    PubMed

    Kim, Dajeong; Park, Dongsun; Kyung, Jangbeen; Yang, Yun-Hui; Choi, Ehn-Kyoung; Lee, Yoon-Bok; Kim, Hyun-Kyu; Hwang, Bang Yeon; Kim, Yun-Bae

    2012-06-01

    Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in rat carrageenan-air pouch model. Oral administration of HSE (50-200 mg/kg) suppressed carrageenan-induced exudation and albumin leakage, as well as inflammatory cell infiltration at a high dose (200 mg/kg). Intraperitoneal injection of dexamethasone (2 mg/kg) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content without influence on the cell number. HSE lowered tumor-necrosis factor-α (TNF-α) and nitric oxide (NO), as well as prostaglandin E(2) (PGE(2)). Dexamethasone only reduced TNF-α and NO, while indomethacin decreased PGE(2). The results indicate that HSE exhibits anti-inflammatory effects by inhibiting both TNF-α-NO and cyclooxygenase-2-PGE(2) pathways. PMID:22787488

  12. Analysis of local chronic inflammatory cell infiltrate combined with systemic inflammation improves prognostication in stage II colon cancer independent of standard clinicopathologic criteria.

    PubMed

    Turner, Natalie; Wong, Hui-Li; Templeton, Arnoud; Tripathy, Sagarika; Whiti Rogers, Te; Croxford, Matthew; Jones, Ian; Sinnathamby, Mathuranthakan; Desai, Jayesh; Tie, Jeanne; Bae, Susie; Christie, Michael; Gibbs, Peter; Tran, Ben

    2016-02-01

    In Stage II colon cancer, multiple independent studies have shown that a dense intratumoural immune infiltrate (local inflammation) is associated with improved outcomes, while systemic inflammation, measured by various markers, has been associated with poorer outcomes. However, previous studies have not considered the interaction between local and systemic inflammation, nor have they assessed the type of inflammatory response compared with standard clinicopathologic criteria. In order to evaluate the potential clinical utility of inflammatory markers in Stage II colon cancer, we examined local and systemic inflammation in a consecutive series of patients with resected Stage II colon cancer between 2000 and 2010 who were identified from a prospective clinical database. Increased intratumoural chronic inflammatory cell (CIC) density, as assessed by pathologist review of hematoxylin and eosin stained slides, was used to represent local inflammation. Neutrophil-to-lymphocyte ratio (NLR) >5, as calculated from pre-operative full blood counts, was used to represent systemic inflammation. In 396 eligible patients identified, there was a non-significant inverse relationship between local and systemic inflammation. Increased CIC density was significantly associated with improved overall (HR 0.45, p = 0.001) and recurrence-free survival (HR 0.37, p = 0.003). High NLR was significantly associated with poorer overall survival (HR 2.56, p < 0.001). The combination of these markers further stratified prognosis independent of standard high-risk criteria, with a dominant systemic inflammatory response (low CIC/high NLR) associated with the worst outcome (5-year overall survival 55.8%). With further validation this simple, inexpensive combined inflammatory biomarker might assist in patient selection for adjuvant chemotherapy in Stage II colon cancer. PMID:26270488

  13. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation.

    PubMed

    Rialdi, Alex; Campisi, Laura; Zhao, Nan; Lagda, Arvin Cesar; Pietzsch, Colette; Ho, Jessica Sook Yuin; Martinez-Gil, Luis; Fenouil, Romain; Chen, Xiaoting; Edwards, Megan; Metreveli, Giorgi; Jordan, Stefan; Peralta, Zuleyma; Munoz-Fontela, Cesar; Bouvier, Nicole; Merad, Miriam; Jin, Jian; Weirauch, Matthew; Heinz, Sven; Benner, Chris; van Bakel, Harm; Basler, Christopher; García-Sastre, Adolfo; Bukreyev, Alexander; Marazzi, Ivan

    2016-05-27

    The host innate immune response is the first line of defense against pathogens and is orchestrated by the concerted expression of genes induced by microbial stimuli. Deregulated expression of these genes is linked to the initiation and progression of diseases associated with exacerbated inflammation. We identified topoisomerase 1 (Top1) as a positive regulator of RNA polymerase II transcriptional activity at pathogen-induced genes. Depletion or chemical inhibition of Top1 suppresses the host response against influenza and Ebola viruses as well as bacterial products. Therapeutic pharmacological inhibition of Top1 protected mice from death in experimental models of lethal inflammation. Our results indicate that Top1 inhibition could be used as therapy against life-threatening infections characterized by an acutely exacerbated immune response. PMID:27127234

  14. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers

    PubMed Central

    Al-Ghoul, Walid M.; Kim, Margarita S.; Fazal, Nadeem; Azim, Anser C.; Ali, Ashraf

    2014-01-01

    Simvastatin (SMV) has been shown to exhibit promising anti-inflammatory properties alongside its classic cholesterol lowering action. We tested these emerging effects in a major thermal injury mouse model (3rd degree scald, ~20% TBSA) with previously documented, inflammation-mediated intestinal defects. Neutrophil extracellular traps (NETs) inflammation measurement methods were used alongside classic gut mucosa inflammation and leakiness measurements with exogenous melatonin treatment as a positive control. Our hypothesis is that simvastatin has protective therapeutic effects against early postburn gut mucosa inflammation and leakiness. To test this hypothesis, we compared untreated thermal injury (TI) adult male mice with TI littermates treated with simvastatin (0.2 mg/kg i.p., TI + SMV) immediately following burn injury and two hours before being sacrificed the day after; melatonin-treated (Mel) (1.86 mg/kg i.p., TI + Mel) mice were compared as a positive control. Mice were assessed for the following: (1) tissue oxidation and neutrophil infiltration in terminal ileum mucosa using classic carbonyl, Gr-1, and myeloperoxidase immunohistochemical or biochemical assays, (2) NETosis in terminal ileum and colon mucosa homogenates and peritoneal and fluid blood samples utilizing flow cytometric analyses of the surrogate NETosis biomarkers, picogreen and Gr-1, and (3) transepithelial gut leakiness as measured in terminal ileum and colon with FITC-dextran and transepithelial electrical resistance (TEER). Our results reveal that simvastatin and melatonin exhibit consistently comparable therapeutic protective effects against the following: (1) gut mucosa oxidative stress as revealed in the terminal ileum by markers of protein carbonylation as well as myeloperoxidase (MPO) and Gr-1 infiltration, (2) NETosis as revealed in the gut milieu, peritoneal lavage and plasma utilizing picogreen and Gr-1 flow cytometry and microscopy, and (3) transepithelial gut leakiness as

  15. Derivation and validation of murine histologic alterations resembling asthma, with two proposed histologic grade parameters

    PubMed Central

    Wachtel, Mitchell S; Shome, Goutam; Sutherland, Mhairi; McGlone, John J

    2009-01-01

    Background The objective was to define murine histologic alterations resembling asthma in a BALB/c OVA model and to suggest grading criteria. Identified were six salient histologic findings in lungs with putative allergic inflammation: 1) bronchoarterial space inflammation; 2) peri-venular inflammation; 3) inflammation about amuscular blood vessels; 4) inter-alveolar space inflammation, not about capillaries; 5) pleural inflammation; and 6) eosinophils within the inflammatory aggregates. An initial study comprised six groups of twelve mice each: 1) stressed, control; 2) stressed, sensitized; 3) stressed, challenged; 4) not physically stressed, control; 5) not physically stressed, sensitized; 6) not physically stressed, challenged. A second study comprised four experimental groups of twenty mice each: 1) stressed, control; 2) stressed, challenged; 3) not physically stressed, control; 4) not physically stressed, challenged. A third study evaluated two grading criteria, 1) the proportion of non-tracheal respiratory passages with inflammatory aggregates and 2) mitoses in the largest two non-tracheal respiratory passages, in five groups of five mice each, evaluated at different times after the last exposure. Results The first study suggested the six histological findings might reliably indicate the presence of alterations resembling asthma: whereas 82.4% of mice with a complete response had detectable interleukin (IL)-5, only 3.8% of mice without one did; whereas 77.8% of mice with a complete response were challenged mice, only 6.7% of mice without complete responses were. The second study revealed that the six histological findings provided a definition that was 97.4% sensitive and 100% specific. The third study found that the odds of a bronchial passage's having inflammation declined 1) when mitoses were present (OR = 0.73, 0.60 - 0.90), and 2) with one day increased time (OR = 0.75, 0.65 - 0.86). Conclusion A definition of murine histologic alterations resembling

  16. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor

    PubMed Central

    Agrawal, Varkha; Jaiswal, Mukesh K.; Mallers, Timothy; Katara, Gajendra K.; Gilman-Sachs, Alice; Beaman, Kenneth D.; Hirsch, Emmet

    2015-01-01

    Cellular organelles and proteins are degraded and recycled through autophagy, a process during which vesicles known as autophagosomes fuse with lysosomes. Altered autophagy occurs in various diseases, but its role in preterm labor (PTL) is unknown. We investigated the role of autophagic flux in two mouse models of PTL compared to controls: 1) inflammation-induced PTL (IPTL), induced by toll-like receptor agonists; and 2) non-inflammation (hormonally)-induced PTL (NIPTL). We demonstrate that the autophagy related genes Atg4c and Atg7 (involved in the lipidation of microtubule-associated protein 1 light chain 3 (LC3) B-I to the autophagosome-associated form, LC3B-II) decrease significantly in uterus and placenta during IPTL but not NIPTL. Autophagic flux is altered in IPTL, as shown by the accumulation of LC3B paralogues and diminishment of lysosome associated membrane protein (LAMP)-1, LAMP-2 and the a2 isoform of V-ATPase (a2V, an enzyme involved in lysosome acidification). These alterations in autophagy are associated with increased activation of NF-κB and proinflammatory cytokines/chemokines in both uterus and placenta. Similar changes are seen in macrophages exposed to TLR ligands and are enhanced with blockade of a2V. These novel findings represent the first evidence of an association between altered autophagic flux and hyper-inflammation and labor in IPTL. PMID:25797357

  17. Pycnogenol attenuates the inflammatory and nitrosative stress on joint inflammation induced by urate crystals.

    PubMed

    Peng, Yi-Jen; Lee, Chian-Her; Wang, Chih-Chien; Salter, Donald M; Lee, Herng-Sheng

    2012-02-15

    Acute gouty arthritis results from monosodium urate (MSU) crystal deposition in joint tissues. Deposited MSU crystals induce an acute inflammatory response which leads to damage of joint tissue. Pycnogenol (PYC), an extract from the bark of Pinus maritime, has documented antiinflammatory and antioxidant properties. The present study aimed to investigate whether PYC had protective effects on MSU-induced inflammatory and nitrosative stress in joint tissues both in vitro and in vivo. MSU crystals upregulated cyclooxygenase 2 (COX-2), interleukin 8 (IL-8) and inducible nitric oxide synthase (iNOS) gene expression in human articular chondrocytes, but only COX-2 and IL-8 in synovial fibroblasts. PYC inhibited the up-regulation of COX-2, and IL-8 in both articular chondrocytes and synovial fibroblasts. PYC attenuated MSU crystal induced iNOS gene expression and NO production in chondrocytes. Activation of NF-κB and SAPK/JNK, ERK1/2 and p38 MAP kinases by MSU crystals in articular chondrocytes and synovial fibroblasts in vitro was attenuated by treatment with PYC. The acute inflammatory cell infiltration and increased expression of COX-2 and iNOS in synovial tissue and articular cartilage following intra-articular injection of MSU crystals in a rat model was inhibited by coadministration of PYC. Collectively, this study demonstrates that PYC may be of value in treatment of MSU crystal-induced arthritis through its anti-inflammatory and anti-nitrosative activities. PMID:22198264

  18. Oxidized low density lipoprotein suppresses lipopolysaccharide-induced inflammatory responses in microglia: Oxidative stress acts through control of inflammation

    SciTech Connect

    Kim, Ohn Soon; Lee, Chang Seok; Joe, Eun-hye; Jou, Ilo . E-mail: jouilo@ajou.ac.kr

    2006-03-31

    Low density lipoprotein (LDL) is readily oxidized under certain conditions, resulting in the formation of oxidized LDL (oxLDL). Despite numerous in vitro reports that reveal the pathogenic role of oxidative stress, anti-oxidative strategies have underperformed in the clinic. In this study, we examine the role of oxLDL in brain inflammatory responses using cultured rat brain microglia. We demonstrate that oxLDL inhibits lipopolysaccharide (LPS)-induced inflammatory responses in these cells. It also decreases LPS-induced expression of inducible nitric oxide synthase and production of nitric oxide, and reduces LPS-induced secretion of tumor necrosis factor-{alpha} and monocyte chemoattractant protein-1. Oxysterols, known components of oxLDL and endogenous agonists of liver X receptor, can simulate the inhibitory effects of oxLDL in LPS-activated microglia. In addition, their inhibitory effects were mimicked by liver X receptor (LXR) agonists and potentiated by a retinoid X receptor agonist, suggesting these molecules heterodimerize to function as oxysterol receptors. Taken together, our results demonstrate that oxLDL inhibits LPS-induced inflammatory responses in brain microglia and that these inhibitory effects are mediated by oxysterols and, at least in part, by the nuclear receptor LXR. Our results suggest an additional mechanism of action for oxidative stress that acts indirectly via modulation of inflammatory responses. Although further studies are needed, these results answer in part the question of why anti-oxidative strategies have not been successful in clinical situations. Moreover, as brain inflammation participates in the initiation and progression of several neurodegenerative disorders, the present data provide information that should prove a useful guide for designing therapeutic strategies to combat oxidative brain diseases.

  19. Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation.

    PubMed

    Tsang, Miranda S M; Jiao, Delong; Chan, Ben C L; Hon, Kam-Lun; Leung, Ping C; Lau, Clara B S; Wong, Eric C W; Cheng, Ling; Chan, Carmen K M; Lam, Christopher W K; Wong, Chun K

    2016-01-01

    Atopic dermatitis (AD) is a common allergic skin disease, characterized by dryness, itchiness, thickening and inflammation of the skin. Infiltration of eosinophils into the dermal layer and presence of edema are typical characteristics in the skin biopsy of AD patients. Previous in vitro and clinical studies showed that the Pentaherbs formula (PHF) consisting of five traditional Chinese herbal medicines, Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis at w/w ratio of 2:1:2:2:2 exhibited therapeutic potential in treating AD. In this study, an in vivo murine model with oxazolone (OXA)-mediated dermatitis was used to elucidate the efficacy of PHF. Active ingredients of PHF water extract were also identified and quantified, and their in vitro anti-inflammatory activities on pruritogenic cytokine IL-31- and alarmin IL-33-activated human eosinophils and dermal fibroblasts were evaluated. Ear swelling, epidermis thickening and eosinophils infiltration in epidermal and dermal layers, and the release of serum IL-12 of the murine OXA-mediated dermatitis were significantly reduced upon oral or topical treatment with PHF (all p < 0.05). Gallic acid, chlorogenic acid and berberine contents (w/w) in PHF were found to be 0.479%, 1.201% and 0.022%, respectively. Gallic acid and chlorogenic acid could suppress the release of pro-inflammatory cytokine IL-6 and chemokine CCL7 and CXCL8, respectively, in IL-31- and IL-33-treated eosinophils-dermal fibroblasts co-culture; while berberine could suppress the release of IL-6, CXCL8, CCL2 and CCL7 in the eosinophil culture and eosinophils-dermal fibroblasts co-culture (all p < 0.05). These findings suggest that PHF can ameliorate allergic inflammation and attenuate the activation of eosinophils. PMID:27104513

  20. [Severe inflammation during recovery from neutropenia: the immune reconstitution inflammatory syndrome following chemotherapy].

    PubMed

    van Lier, Dirk P T; Janssen, Nico A F; Snoeren, Miranda M; Verweij, Paul E; Blijlevens, Nicole M A; van der Velden, Walter J F M

    2015-01-01

    Immune reconstitution inflammatory syndrome (IRIS) occurs when a patient is recovering from a transient immunodeficiency and results in an uncontrolled inflammatory response to infectious agents and tissue damage. Symptoms such as fever and radiological signs seem to paradoxically appear or worsen, unmasking a previously unrecognized infection. The patient's clinical condition may then deteriorate as a result of increasing tissue damage and this may even lead to death. IRIS was initially described in patients suffering from a HIV infection who experienced immune recovery following the initiation of antiretroviral therapy. Increasingly, however, the syndrome is being reported in patients who are recovering from an episode of neutropenia following chemotherapy, hypomethylating agent use or a stem cell transplantation for the treatment of a solid tumour or haematological cancers. We describe two cases of IRIS following an episode of neutropenia in patients with a haematological malignancy and elaborate on the pathogenesis, diagnosis and treatment of IRIS in cancer patients. PMID:26246060

  1. Adjuvant and anti-inflammatory properties of cigarette smoke in murine allergic airway inflammation.

    PubMed

    Trimble, Nancy J; Botelho, Fernando M; Bauer, Carla M T; Fattouh, Ramzi; Stämpfli, Martin R

    2009-01-01

    The impact of cigarette smoke on allergic asthma remains controversial both clinically and experimentally. The objective of this study was to investigate, in a murine model, how cigarette smoke affects immune inflammatory processes elicited by a surrogate allergen. In our experimental design, mice were concurrently exposed to cigarette smoke and ovalbumin (OVA), an innocuous antigen that, unless introduced in the context of an adjuvant, induces inhalation tolerance. We show that cigarette smoke exposure has adjuvant properties, allowing for allergic mucosal sensitization to OVA. Specifically, concurrent exposure to cigarette smoke and OVA for 2 weeks led to airway eosinophilia and goblet cell hyperplasia. In vivo OVA recall challenge 1 month after the last smoke exposure showed that concurrent exposure to OVA and cigarette smoke induced antigen-specific memory. Robust eosinophilia and OVA-specific IgG1 and IgE characterized the ensuing inflammatory response. Mechanistically, allergic sensitization was, in part, granulocyte macrophage colony-stimulating factor (GM-CSF) dependent, as a significant reduction in BAL eosinophilia was observed in mice treated with an anti-GM-CSF antibody. Of note, continuous smoke exposure attenuated the OVA recall response; decreased airway eosinophilia was observed in mice continuously exposed to cigarette smoke compared with mice that ceased the smoke exposure protocol. In conclusion, we demonstrate experimentally that while cigarette smoke acts as an adjuvant allowing for allergic sensitization, it also attenuates the ensuing eosinophilic inflammatory response. PMID:18635815

  2. Metronidazole reduces intestinal inflammation and blood loss in non-steroidal anti-inflammatory drug induced enteropathy.

    PubMed Central

    Bjarnason, I; Hayllar, J; Smethurst, P; Price, A; Gumpel, M J

    1992-01-01

    This study assessed the effect of metronidazole on the gastroduodenal mucosa, intestinal permeability, blood loss, and inflammation in patients on non-steroidal anti-inflammatory drugs (NSAIDs). Thirteen patients were studied before and after 2-12 weeks' treatment with metronidazole 800 mg/day, while maintaining an unchanged NSAID intake. Intestinal inflammation, as assessed by the faecal excretion of indium-111 labelled neutrophils, and blood loss, assessed with chromium-51 labelled red cells, were significantly reduced after treatment (mean (SD) 111In excretion 4.7 (4.7)% v 1.5 (1.3)% (N < 1.0%), p < 0.001, 51Cr red cells loss 2.6 (1.6) ml/day v 0.9 (0.5) ml/day (N < 1.0 ml/day), p < 0.01). Intestinal permeability assessed as the 5 hour urinary excretion ratio of 51CrEDTA/L-rhamnose did not change significantly (0.133 (0.046) v 0.154 (0.064), p > 0.1) and there were no significant changes in the endoscopic or microscopic appearances of the gastroduodenal mucosa. These results suggest that the neutrophil is the main damaging effector cell in NSAID induced enteropathy. The main neutrophil chemo-attractant in this enteropathy may be a metronidazole sensitive microbe. PMID:1427372

  3. Bronchodilator and Anti-Inflammatory Action of Theophylline in a Model of Ovalbumin-Induced Allergic Inflammation.

    PubMed

    Urbanova, A; Kertys, M; Simekova, M; Mikolka, P; Kosutova, P; Mokra, D; Mokry, J

    2016-01-01

    Phosphodiesterases (PDEs) represent a super-family of 11 enzymes hydrolyzing cyclic nucleotides into inactive 5' monophosphates. Inhibition of PDEs leads to a variety of cellular effects, including airway smooth muscle relaxation, inhibition of cellular inflammation, and immune responses. In this study we focused on theophylline, a known non-selective inhibitor of PDEs. Theophylline has been used for decades in the treatment of chronic inflammatory airway diseases. It has a narrow therapeutic window and belongs to the drugs whose plasma concentration should be monitored. Therefore, the main goal of this study was to evaluate the plasma theophylline concentration and to determine its relevance to pharmacological effects after single and longer term (7 days) administration of theophylline at different doses (5, 10, 20, and 50 mg/kg) in guinea pigs. Airway hyperresponsiveness was assessed by repeated exposure to ovalbumin. Theophylline reduced specific airway resistance in response to histamine nebulization, measured in a double chamber body plethysmograph. A decrease in tracheal smooth muscle contractility after cumulative doses of histamine and acetylcholine was confirmed in vitro. A greater efficacy of theophylline after seven days long treatment indicates the predominance of its anti-inflammatory activity, which may be involved in the bronchodilating action. PMID:27334733

  4. Telmisartan attenuates colon inflammation, oxidative perturbations and apoptosis in a rat model of experimental inflammatory bowel disease.

    PubMed

    Arab, Hany H; Al-Shorbagy, Muhammad Y; Abdallah, Dalaal M; Nassar, Noha N

    2014-01-01

    Accumulating evidence has indicated the implication of angiotensin II in the pathogenesis of inflammatory bowel diseases (IBD) via its proinflammatory features. Telmisartan (TLM) is an angiotensin II receptor antagonist with marked anti-inflammatory and antioxidant actions that mediated its cardio-, reno- and hepatoprotective actions. However, its impact on IBD has not been previously explored. Thus, we aimed to investigate the potential alleviating effects of TLM in tri-nitrobenezene sulphonic acid (TNBS)-induced colitis in rats. Pretreatment with TLM (10 mg/kg p.o.) attenuated the severity of colitis as evidenced by decrease of disease activity index (DAI), colon weight/length ratio, macroscopic damage, histopathological findings and leukocyte migration. TLM suppressed the inflammatory response via attenuation of tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2) and myeloperoxidase (MPO) activity as a marker of neutrophil infiltration besides restoration of interleukin-10 (IL-10). TLM also suppressed mRNA and protein expression of nuclear factor kappa B (NF-κB) p65 and mRNA of cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proinflammatory genes with concomitant upregulation of PPAR-γ. The alleviation of TLM to colon injury was also associated with inhibition of oxidative stress as evidenced by suppression of lipid peroxides and nitric oxide (NO) besides boosting glutathione (GSH), total anti-oxidant capacity (TAC) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). With respect to apoptosis, TLM downregulated the increased mRNA, protein expression and activity of caspase-3. It also suppressed the elevation of cytochrome c and Bax mRNA besides the upregulation of Bcl-2. Together, these findings highlight evidences for the beneficial effects of TLM in IBD which are mediated through modulation of colonic inflammation, oxidative stress and apoptosis. PMID:24831514

  5. Adoptive Transfer of Dendritic Cells Expressing Fas Ligand Modulates Intestinal Inflammation in a Model of Inflammatory Bowel Disease

    PubMed Central

    de Jesus, Edelmarie Rivera; Isidro, Raymond A; Cruz, Myrella L; Marty, Harry; Appleyard, Caroline B

    2016-01-01

    Background Inflammatory bowel diseases (IBD) are chronic relapsing inflammatory conditions of unknown cause and likely result from the loss of immunological tolerance, which leads to over-activation of the gut immune system. Gut macrophages and dendritic cells (DCs) are essential for maintaining tolerance, but can also contribute to the inflammatory response in conditions such as IBD. Current therapies for IBD are limited by high costs and unwanted toxicities and side effects. The possibility of reducing intestinal inflammation with DCs genetically engineered to over-express the apoptosis-inducing FasL (FasL-DCs) has not yet been explored. Objective Investigate the immunomodulatory effect of administering FasL-DCs in the rat trinitrobenzene sulfonic acid (TNBS) model of acute colitis. Methods Expression of FasL on DCs isolated from the mesenteric lymph nodes (MLNs) of normal and TNBS-colitis rats was determined by flow cytometry. Primary rat bone marrow DCs were transfected with rat FasL plasmid (FasL-DCs) or empty vector (EV-DCs). The effect of these DCs on T cell IFNγ secretion and apoptosis was determined by ELISPOT and flow cytometry for Annexin V, respectively. Rats received FasL-DCs or EV-DCs intraperitoneally 96 and 48 hours prior to colitis induction with TNBS. Colonic T cell and neutrophil infiltration was determined by immunohistochemistry for CD3 and myeloperoxidase activity assay, respectively. Macrophage number and phenotype was measured by double immunofluorescence for CD68 and inducible Nitric Oxide Synthase. Results MLN dendritic cells from normal rats expressed more FasL than those from colitic rats. Compared to EV-DCs, FasL-DCs reduced T cell IFNγ secretion and increased T cell apoptosis in vitro. Adoptive transfer of FasL-DCs decreased macroscopic and microscopic damage scores and reduced colonic T cells, neutrophils, and proinflammatory macrophages when compared to EV-DC adoptive transfer. Conclusion FasL-DCs are effective at treating colonic

  6. Liang-Ge-San, a classic traditional Chinese medicine formula, protects against lipopolysaccharide-induced inflammation through cholinergic anti-inflammatory pathway.

    PubMed

    Liu, Jun-Shan; Wei, Xi-Duan; Lu, Zi-Bin; Xie, Pei; Zhou, Hong-Ling; Chen, Yu-Yao; Ma, Jia-Mei; Yu, Lin-Zhong

    2016-04-19

    Liang-Ge-San (LGS) is a classic formula in traditional Chinese medicine, which is widely used to treat acute lung injury (ALI), pharyngitis and amygdalitis in clinic. However, the underlying mechanisms remain poorly defined. In this study, we discovered that LGS exerted potent anti-inflammatory effects in lipopolysaccharide (LPS)-induced inflammation. We found that LGS significantly depressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophage cells. The degradation and phosphorylation of IκBα and the nuclear translocation of NF-κB p65 were also inhibited. Moreover, LGS activated α7 nicotinic cholinergic receptor (α7nAchR). The blockage of α7nAchR by selective inhibitor methyllycaconitine (MLA) or α7nAchR siRNA attenuated the inhibitory effects of LGS on IκBα, NF-κB p65, IL-6 and TNF-α. Critically, LGS significantly inhibited inflammation in LPS-induced ALI rats through the activation of NF-κB signaling pathway. However, these protective effects could be counteracted by the treatment of MLA. Taken together, we first demonstrated anti-inflammatory effects of LGS both in vitro and in vivo through cholinergic anti-inflammatory pathway. The study provides a rationale for the clinical application of LGS as an anti-inflammatory agent and supports the critical role of cholinergic anti-inflammatory pathway in inflammation. PMID:27034013

  7. Liang-Ge-San, a classic traditional Chinese medicine formula, protects against lipopolysaccharide-induced inflammation through cholinergic anti-inflammatory pathway

    PubMed Central

    Xie, Pei; Zhou, Hong-Ling; Chen, Yu-Yao; Ma, Jia-Mei; Yu, Lin-Zhong

    2016-01-01

    Liang-Ge-San (LGS) is a classic formula in traditional Chinese medicine, which is widely used to treat acute lung injury (ALI), pharyngitis and amygdalitis in clinic. However, the underlying mechanisms remain poorly defined. In this study, we discovered that LGS exerted potent anti-inflammatory effects in lipopolysaccharide (LPS)-induced inflammation. We found that LGS significantly depressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophage cells. The degradation and phosphorylation of IκBα and the nuclear translocation of NF-κB p65 were also inhibited. Moreover, LGS activated α7 nicotinic cholinergic receptor (α7nAchR). The blockage of α7nAchR by selective inhibitor methyllycaconitine (MLA) or α7nAchR siRNA attenuated the inhibitory effects of LGS on IκBα, NF-κB p65, IL-6 and TNF-α. Critically, LGS significantly inhibited inflammation in LPS-induced ALI rats through the activation of NF-κB signaling pathway. However, these protective effects could be counteracted by the treatment of MLA. Taken together, we first demonstrated anti-inflammatory effects of LGS both in vitro and in vivo through cholinergic anti-inflammatory pathway. The study provides a rationale for the clinical application of LGS as an anti-inflammatory agent and supports the critical role of cholinergic anti-inflammatory pathway in inflammation. PMID:27034013

  8. A new hypothesis: some metastases are the result of inflammatory processes by adapted cells, especially adapted immune cells at sites of inflammation

    PubMed Central

    Shahriyari, Leili

    2016-01-01

    There is an old hypothesis that metastasis is the result of migration of tumor cells from the tumor to a distant site. In this article, we propose another mechanism for metastasis, for cancers that are initiated at the site of chronic inflammation. We suggest that cells at the site of chronic inflammation might become adapted to the inflammatory process, and these adaptations may lead to the initiation of an inflammatory tumor. For example, in an inflammatory tumor immune cells might be adapted to send signals of proliferation or angiogenesis, and epithelial cells might be adapted to proliferation (like inactivation of tumor suppressor genes). Therefore, we hypothesize that metastasis could be the result of an inflammatory process by adapted cells, especially adapted immune cells at the site of inflammation, as well as the migration of tumor cells with the help of activated platelets, which travel between sites of inflammation.  If this hypothesis is correct, then any treatment causing necrotic cell death may not be a good solution. Because necrotic cells in the tumor micro-environment or anywhere in the body activate the immune system to initiate the inflammatory process, and the involvement of adapted immune cells in the inflammatory processes leads to the formation and progression of tumors. Adapted activated immune cells send more signals of proliferation and/or angiogenesis than normal cells. Moreover, if there were adapted epithelial cells, they would divide at a much higher rate in response to the proliferation signals than normal cells. Thus, not only would the tumor come back after the treatment, but it would also grow more aggressively. PMID:27158448

  9. The proinflammatory function of lymphocytes in non-immune inflammation: effect of steroidal and non-steroidal anti-inflammatory agents.

    PubMed Central

    Leme, J. G.; Bechara, G. H.; Sudo, L. S.

    1977-01-01

    Leucopenia rendered rats unresponsive to various inflammatory stimuli. The intensity of the inflammatory response in such animals was restored by i.v. administration of suspensions of lymphocytes, but not of granulocytes. This restorative effect was blocked by both steroidal and non-steroidal anti-inflammatory drugs. Utilizing carrageenin to induce inflammatory responses in the rat's paw, the effect of these drugs on lymphocytes was observed in two circumstances. First, following incubation of the cells with the drugs in concentrations not exceeding the peak plasma levels estimated for these substances in man or laboratory animals; the effect of the drugs seemed selective, since anti-histamine and anti-serotonin agents, as well as amethopterin, were devoid of action. Second, when lymphocytes were collected from rats previously treated with the various anti-inflammatory agents, injected 6-hourly during periods of 18 and 36 h, respectively, for steroidal and non-steroidal anti-inflammatory substances. The total amounts given were lower than those required to produce consistent anti-inflammatory effects in normal animals, when the drug was given as a single dose before injection of the irritant. It is concluded that the pro-inflammatory function of lymphocytes in non-immune inflammation can be blocked by steroidal and non-steroidal anti-inflammatory agents. PMID:607989

  10. Hypothesis: Disseminated Intravascular Inflammation as the Inflammatory Counterpart to Disseminated Intravascular Coagulation

    NASA Astrophysics Data System (ADS)

    Bull, Brian S.; Bull, Maureen H.

    1994-08-01

    We have identified a leukocyte activation syndrome that is occasionally associated with the transfusion of intraoperatively recovered erythrocytes. This syndrome appears to result from intravascular damage caused by leukocytes activated during the erythrocyte salvage process. We hypothesize that this syndrome is part of a larger disease grouping: disseminated intravascular inflammation (DII). DII is the analog of the coagulation disorder disseminated intravascular coagulation. In disseminated intravascular coagulation, the organ damage results from uncontrolled activation of the clotting pathway; in DII the damage is caused by leukocytes that have become activated by direct contact with bacteria or in rare instances-such as erythrocyte salvage-in the absence of bacteria and bacterial products. Recent studies of the hazards associated with intraoperative blood salvage indicate that activation of leukocytes can be achieved by exposure to activated platelets alone. If such activated leukocytes are reinfused along with the washed erythrocytes, widespread organ damage may result. The lung is the organ most severely affected by activated leukocytes. Adult respiratory distress syndrome is one outcome. It is likely that DII is a presently unrecognized pathophysiological process that complicates a variety of primary disease states and increases their lethality.

  11. Hypothesis: disseminated intravascular inflammation as the inflammatory counterpart to disseminated intravascular coagulation.

    PubMed Central

    Bull, B S; Bull, M H

    1994-01-01

    We have identified a leukocyte activation syndrome that is occasionally associated with the transfusion of intraoperatively recovered erythrocytes. This syndrome appears to result from intravascular damage caused by leukocytes activated during the erythrocyte salvage process. We hypothesize that this syndrome is part of a larger disease grouping: disseminated intravascular inflammation (DII). DII is the analog of the coagulation disorder disseminated intravascular coagulation. In disseminated intravascular coagulation, the organ damage results from uncontrolled activation of the clotting pathway; in DII the damage is caused by leukocytes that have become activated by direct contact with bacteria or in rare instances--such as erythrocyte salvage--in the absence of bacteria and bacterial products. Recent studies of the hazards associated with intraoperative blood salvage indicate that activation of leukocytes can be achieved by exposure to activated platelets alone. If such activated leukocytes are reinfused along with the washed erythrocytes, widespread organ damage may result. The lung is the organ most severely affected by activated leukocytes. Adult respiratory distress syndrome is one outcome. It is likely that DII is a presently unrecognized pathophysiological process that complicates a variety of primary disease states and increases their lethality. Images PMID:8058778

  12. Does Facial Resemblance Enhance Cooperation?

    PubMed Central

    Giang, Trang; Bell, Raoul; Buchner, Axel

    2012-01-01

    Facial self-resemblance has been proposed to serve as a kinship cue that facilitates cooperation between kin. In the present study, facial resemblance was manipulated by morphing stimulus faces with the participants' own faces or control faces (resulting in self-resemblant or other-resemblant composite faces). A norming study showed that the perceived degree of kinship was higher for the participants and the self-resemblant composite faces than for actual first-degree relatives. Effects of facial self-resemblance on trust and cooperation were tested in a paradigm that has proven to be sensitive to facial trustworthiness, facial likability, and facial expression. First, participants played a cooperation game in which the composite faces were shown. Then, likability ratings were assessed. In a source memory test, participants were required to identify old and new faces, and were asked to remember whether the faces belonged to cooperators or cheaters in the cooperation game. Old-new recognition was enhanced for self-resemblant faces in comparison to other-resemblant faces. However, facial self-resemblance had no effects on the degree of cooperation in the cooperation game, on the emotional evaluation of the faces as reflected in the likability judgments, and on the expectation that a face belonged to a cooperator rather than to a cheater. Therefore, the present results are clearly inconsistent with the assumption of an evolved kin recognition module built into the human face recognition system. PMID:23094095

  13. Ursolic acid prevents augmented peripheral inflammation and inflammatory hyperalgesia in high-fat diet-induced obese rats by restoring downregulated spinal PPARα.

    PubMed

    Zhang, Yanan; Song, Chengwei; Li, Haiou; Hou, Jingdong; Li, Dongliang

    2016-06-01

    Obesity is a risk factor for several pain syndromes and is associated with increased pain sensitivity. Evidence suggests that obesity causes the downregulation of peroxisome proliferator‑activated receptor (PPAR)α in the spinal cord, contributing to augmented peripheral edema and inflammatory hyperalgesia. Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, has been shown to upregulate PPARα in the peripheral tissues of obese animals. The present study hypothesized that UA prevents augmented peripheral inflammation and inflammatory hyperalgesia in obesity by restoring downregulated spinal PPARα. The present study demonstrated that Sprague‑Dawley rats fed a high‑fat diet (HFD) for 12 weeks developed obesity and metabolic disorder. Following carrageenan injection, the HFD rats exhibited increased thermal hyperalgesia and paw edema, compared with the rats fed a low‑fat diet. Molecular investigations revealed that the HFD rats exhibited decreased PPARα activity, and exaggerated expression of inflammatory mediators and nuclear factor‑kB activity in the spinal cord in response to carrageenan. Oral administration of UA ameliorated obesity and metabolic disorder, and prevented increased thermal hyperalgesia and paw edema in the HFD rats. Additionally, UA normalized PPARα activity and inhibited the exaggerated spinal cord inflammatory response to carrageenan. Although the knockdown of spinal PPARα with small interfering RNA following the administration of UA did not alter obesity or metabolic parameters, it eradicated the beneficial effects of UA on thermal hyperalgesia and paw edema, and reversed the spinal cord inflammatory response. These results suggested that the systemic administration of UA inhibited the exaggerated spinal cord inflammatory response to peripheral inflammatory stimulation in HFD‑induced obesity by restoring downregulated spinal PPARα, preventing peripheral inflammation and inflammatory hyperalgesia. UA may be a

  14. The role of cholinergic anti-inflammatory pathway in acetic acid-induced colonic inflammation in the rat.

    PubMed

    Kolgazi, Meltem; Uslu, Unal; Yuksel, Meral; Velioglu-Ogunc, Ayliz; Ercan, Feriha; Alican, Inci

    2013-09-01

    The "cholinergic anti-inflammatory pathway" provides neurological modulation of cytokine synthesis to limit the magnitude of the immune response. This study aimed to evaluate the impact of the cholinergic anti-inflammatory pathway on the extent of tissue integrity, oxidant-antioxidant status and neutrophil infiltration to the inflamed organ in a rat model of acetic acid-induced colitis. Colitis was induced by intrarectal administration of 5% acetic acid (1ml) to Sprague-Dawley rats (200-250g; n=7-8 per group). Control group received an equal volume of saline intrarectally. The rats were treated with either nicotine (1mg/kg/day) or huperzine A (0.1mg/kg/day) intraperitoneally for 3 days. After decapitation, the distal colon was scored macroscopically and microscopically. Tissue samples were used for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity. Formation of reactive oxygen species was monitored by using chemiluminescence (CL). Nuclear factor (NF)-κB expression was evaluated in colonic samples via immunohistochemical analysis. Trunk blood was collected for the assessment of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-10, resistin and visfatin levels. Both nicotine and huperzine A reduced the extent of colonic lesions, increased colonic MDA level, high MPO activity and NF-κB expression in the colitis group. Elevation of serum IL-1β level due to colitis was also attenuated by both treatments. Additionally, huperzine A was effective to reverse colitis-induced high lucigenin-enhanced CL values and serum TNF-α levels. Colitis group revealed decreased serum visfatin levels compared to control group which was completely reversed by nicotine. In conclusion, modulation of the cholinergic system either by nicotine or ACh esterase inhibition improved acetic acid-induced colonic inflammation as confirmed by macroscopic and microscopic examination and biochemical assays. PMID:23810507

  15. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells

    PubMed Central

    Cohen, Evan N.; Gao, Hui; Anfossi, Simone; Mego, Michal; Reddy, Neelima G.; Debeb, Bisrat; Giordano, Antonio; Tin, Sanda; Wu, Qiong; Garza, Raul J.; Cristofanilli, Massimo; Mani, Sendurai A.; Croix, Denise A.; Ueno, Naoto T.; Woodward, Wendy A.; Luthra, Raja; Krishnamurthy, Savitri; Reuben, James M.

    2015-01-01

    Inflammatory breast cancer (IBC) is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT) in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1), a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction. PMID:26207636

  16. Garcinia gardneriana (Planchon & Triana) Zappi. (Clusiaceae) as a topical anti-inflammatory alternative for cutaneous inflammation.

    PubMed

    Otuki, Michel F; Bernardi, Camila A; Prudente, Arthur S; Laskoski, Kerly; Gomig, Franciane; Horinouchi, Cintia D S; Guimarães, Claudio L; Ferreira, Juliano; Delle-Monache, Franco; Cechinel-Filho, Valdir; Cabrini, Daniela A

    2011-07-01

    Garcinia gardneriana is popularly used in skin disorders; therefore, this article investigated the effect of G. gardneriana extracts from leaves, bark and seeds and two isolated compounds in ear oedema and leucocytes migration caused by croton oil. The topical application of the extract of G. gardneriana leaves was able to reduce (70 ± 3%, and ID(50) 0.33 mg/ear) ear oedema, while the seeds (51 ± 5%) and the wood (60 ± 12%) extracts were less effective. In a time-course evaluation, the leaf extract (1 mg/ear) was effective when applied 2 hr before and until 3 hr after the stimulation, presenting a higher effectiveness when applied right after croton oil (83 ± 7% inhibition). In addition, the leaf extract was able to diminish the myeloperoxidase (MPO) activity in 64 ± 13%, which suggests the inhibition of leucocyte infiltration that was confirmed by histological analysis. Also, both biflavonoids isolated from the leaves of G. gardneriana, fukugetin (or morelloflavone) and 13-naringenin-II 8-eriodictyol (GB-2a), were able to reduce ear oedema, with ID(50) values of 0.18 (0.10-0.28) and 0.22 (0.15-0.31) mg/ear, respectively, besides the inhibition of MPO activity of 52 ± 6% and 64 ± 5%, respectively. Using the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate, the leaf extract, fukugetin and GB-2a topically applied to the ear treated with croton oil reduced 52 ± 15%, 63 ± 17% and 83 ± 4%, respectively, the production of reactive oxygen species of the skin. Thus, these results reveal the anti-inflammatory effect of G. gardneriana leaves for topical usage, and both biflavonoids are responsible for this effect. PMID:21362142

  17. miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation

    PubMed Central

    Xu, Xiao-Min; Zhang, Hong-Jie

    2016-01-01

    Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammatory disorders of the gastrointestinal tract, and includes two major phenotypes: ulcerative colitis and Crohn’s disease. The pathogenesis of IBD is not fully understood as of yet. It is believed that IBD results from complicated interactions between environmental factors, genetic predisposition, and immune disorders. miRNAs are a class of small non-coding RNAs that can regulate gene expression by targeting the 3′-untranslated region of specific mRNAs for degradation or translational inhibition. miRNAs are considered to play crucial regulatory roles in many biologic processes, such as immune cellular differentiation, proliferation, and apoptosis, and maintenance of immune homeostasis. Recently, aberrant expression of miRNAs was revealed to play an important role in autoimmune diseases, including IBD. In this review, we discuss the current understanding of how miRNAs regulate autoimmunity and inflammation by affecting the differentiation, maturation, and function of various immune cells. In particular, we focus on describing specific miRNA expression profiles in tissues and peripheral blood that may be associated with the pathogenesis of IBD. In addition, we summarize the opportunities for utilizing miRNAs as new biomarkers and as potential therapeutic targets in IBD. PMID:26900285

  18. Promoting inflammatory lymphangiogenesis by vascular endothelial growth factor-C (VEGF-C) aggravated intestinal inflammation in mice with experimental acute colitis

    PubMed Central

    Wang, X.L.; Zhao, J.; Qin, L.; Qiao, M.

    2016-01-01

    Angiogenesis and lymphangiogenesis are thought to play a role in the pathogenesis of inflammatory bowel diseases (IBD). However, it is not understood if inflammatory lymphangiogenesis is a pathological consequence or a productive attempt to resolve the inflammation. This study investigated the effect of lymphangiogenesis on intestinal inflammation by overexpressing a lymphangiogenesis factor, vascular endothelial growth factor-C (VEGF-C), in a mouse model of acute colitis. Forty eight-week-old female C57BL/6 mice were treated with recombinant adenovirus overexpressing VEGF-C or with recombinant VEGF-C156S protein. Acute colitis was then established by exposing the mice to 5% dextran sodium sulfate (DSS) for 7 days. Mice were evaluated for disease activity index (DAI), colonic inflammatory changes, colon edema, microvessel density, lymphatic vessel density (LVD), and VEGFR-3mRNA expression in colon tissue. When acute colitis was induced in mice overexpressing VEGF-C, there was a significant increase in colonic epithelial damage, inflammatory edema, microvessel density, and neutrophil infiltration compared to control mice. These mice also exhibited increased lymphatic vessel density (73.0±3.9 vs 38.2±1.9, P<0.001) and lymphatic vessel size (1974.6±104.3 vs 1639.0±91.5, P<0.001) compared to control mice. Additionally, the expression of VEGFR-3 mRNA was significantly upregulated in VEGF-C156S mice compared to DSS-treated mice after induction of colitis (42.0±1.4 vs 3.5±0.4, P<0.001). Stimulation of lymphangiogenesis by VEGF-C during acute colitis promoted inflammatory lymphangiogenesis in the colon and aggravated intestinal inflammation. Inflammatory lymphangiogenesis may have pleiotropic effects at different stages of IBD. PMID:27074165

  19. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    SciTech Connect

    Colacino, Justin A.; Arthur, Anna E.; Ferguson, Kelly K.; Rozek, Laura S.

    2014-05-01

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet's role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet score (ADS) by ranking participants by quintile of intake across a panel of 19 nutrients. We identified associations and effect modification between ADS, urinary cadmium, and markers of oxidative stress and inflammation by multiple linear regression. An interquartile range increase in urinary cadmium was associated with a 47.5%, 8.8%, and 3.7% increase in C-reactive protein (CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), respectively. An interquartile range increase in ADS was associated with an 7.4%, 3.3%, 5.2%, and 2.5% decrease in CRP, GGT, ALP, and total white blood cell count respectively, and a 3.0% increase in serum bilirubin. ADS significantly attenuated the association between cadmium exposure, CRP and ALP. Dietary interventions may provide a route to reduce the impact of cadmium toxicity on the population level. - Highlights: • Cadmium may cause chronic disease through oxidative stress or inflammation. • We developed a score to quantify dietary antioxidant and anti-inflammatory intake. • Cadmium was associated with markers of oxidative stress and inflammation. • Antioxidant and anti-inflammatory intake mitigated the effects of cadmium exposure. • Dietary interventions may be effective against chronic cadmium toxicity.

  20. Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6.

    PubMed

    Alhouayek, Mireille; Masquelier, Julien; Cani, Patrice D; Lambert, Didier M; Muccioli, Giulio G

    2013-10-22

    Proinflammatory macrophages are key mediators in several pathologies; thus, controlling their activation is necessary. The endocannabinoid system is implicated in various inflammatory processes. Here we show that in macrophages, the newly characterized enzyme α/β-hydrolase domain 6 (ABHD6) controls 2-arachidonoylglycerol (2-AG) levels and thus its pharmacological effects. Furthermore, we characterize a unique pathway mediating the effects of 2-AG through its oxygenation by cyclooxygenase-2 to give rise to the anti-inflammatory prostaglandin D2-glycerol ester (PGD2-G). Pharmacological blockade of cyclooxygenase-2 or of prostaglandin D synthase prevented the effects of increasing 2-AG levels by ABHD6 inhibition in vitro, as well as the 2-AG-induced increase in PGD2-G levels. Together, our data demonstrate the physiological relevance of the interaction between the endocannabinoid and prostanoid systems. Moreover, we show that ABHD6 inhibition in vivo allows for fine-tuning of 2-AG levels in mice, therefore reducing lipopolysaccharide-induced inflammation, without the characteristic central side effects of strong increases in 2-AG levels obtained following monoacylglycerol lipase inhibition. In addition, administration of PGD2-G reduces lipopolysaccharide-induced inflammation in mice, thus confirming the biological relevance of this 2-AG metabolite. This points to ABHD6 as an interesting therapeutic target that should be relevant in treating inflammation-related conditions, and proposes PGD2-G as a bioactive lipid with potential anti-inflammatory properties in vivo. PMID:24101490

  1. The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases

    PubMed Central

    Oschman, James L; Chevalier, Gaétan; Brown, Richard

    2015-01-01

    Multi-disciplinary research has revealed that electrically conductive contact of the human body with the surface of the Earth (grounding or earthing) produces intriguing effects on physiology and health. Such effects relate to inflammation, immune responses, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. The purpose of this report is two-fold: to 1) inform researchers about what appears to be a new perspective to the study of inflammation, and 2) alert researchers that the length of time and degree (resistance to ground) of grounding of experimental animals is an important but usually overlooked factor that can influence outcomes of studies of inflammation, wound healing, and tumorigenesis. Specifically, grounding an organism produces measurable differences in the concentrations of white blood cells, cytokines, and other molecules involved in the inflammatory response. We present several hypotheses to explain observed effects, based on current research results and our understanding of the electronic aspects of cell and tissue physiology, cell biology, biophysics, and biochemistry. An experimental injury to muscles, known as delayed onset muscle soreness, has been used to monitor the immune response under grounded versus ungrounded conditions. Grounding reduces pain and alters the numbers of circulating neutrophils and lymphocytes, and also affects various circulating chemical factors related to inflammation. PMID:25848315

  2. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile.

    PubMed

    DeFuria, Jason; Belkina, Anna C; Jagannathan-Bogdan, Madhumita; Snyder-Cappione, Jennifer; Carr, Jordan David; Nersesova, Yanina R; Markham, Douglas; Strissel, Katherine J; Watkins, Amanda A; Zhu, Min; Allen, Jessica; Bouchard, Jacqueline; Toraldo, Gianluca; Jasuja, Ravi; Obin, Martin S; McDonnell, Marie E; Apovian, Caroline; Denis, Gerald V; Nikolajczyk, Barbara S

    2013-03-26

    Patients with type 2 diabetes (T2D) have disease-associated changes in B-cell function, but the role these changes play in disease pathogenesis is not well established. Data herein show B cells from obese mice produce a proinflammatory cytokine profile compared with B cells from lean mice. Complementary in vivo studies show that obese B cell-null mice have decreased systemic inflammation, inflammatory B- and T-cell cytokines, adipose tissue inflammation, and insulin resistance (IR) compared with obese WT mice. Reduced inflammation in obese/insulin resistant B cell-null mice associates with an increased percentage of anti-inflammatory regulatory T cells (Tregs). This increase contrasts with the sharply decreased percentage of Tregs in obese compared with lean WT mice and suggests that B cells may be critical regulators of T-cell functions previously shown to play important roles in IR. We demonstrate that B cells from T2D (but not non-T2D) subjects support proinflammatory T-cell function in obesity/T2D through contact-dependent mechanisms. In contrast, human monocytes increase proinflammatory T-cell cytokines in both T2D and non-T2D analyses. These data support the conclusion that B cells are critical regulators of inflammation in T2D due to their direct ability to promote proinflammatory T-cell function and secrete a proinflammatory cytokine profile. Thus, B cells are potential therapeutic targets for T2D. PMID:23479618

  3. Potentiation of indomethacin-induced anti-inflammatory response by pioglitazone in carrageenan-induced acute inflammation in rats: Role of PPARγ receptors.

    PubMed

    Houshmand, Gholamreza; Mansouri, Mohammad Taghi; Naghizadeh, Bahareh; Hemmati, Ali Asghar; Hashemitabar, Mahmoud

    2016-09-01

    This study aimed to assess the interaction between anti-inflammatory effects of pioglitazone (peroxysome proliferator activated receptor-gamma (PPARγ) agonist, PGL), and indomethacin (cyclooxygenase (COX) inhibitor, IND) and to evaluate the possible underlying mechanisms. Paw edema induced by carrageenan was used to induce inflammation. Different doses of IND (0.3-10mg/kg) and PGL (1-20mg/kg) alone or in combination were administered intraperitoneally to rats. Paw tissue levels of PPARγ, COX-2, and prostaglandin E2 and serum levels of TNF-α and IL-10 were also estimated. Doses of IND and PGL showed a statistically significant anti-inflammatory effect. Combination of a non-effective dose of IND (0.3mg/kg) with increasing doses of PGL (1-10mg/kg) resulted in potentiated anti-inflammation and vise versa. IND, PGL and the combination were able to reduce the COX-2, PGE2 contents and TNF-α level. Moreover, all these treatments caused elevation in PPARγ levels and IL-10 levels. However, when the rats were pre-treated with GW-9662 (a selective PPARγ antagonist), all the anti-inflammation and alterations in the biochemical factors were antagonized. These results showed that PGL markedly enhanced the anti-inflammatory activity of IND and this effect mediated partly at least, through PPARγ. Possible mechanisms of the interaction were that PGL stimulates the PPARγ and inhibits COX-2 by those cytokines that trigger the PPARγ and also inhibit COX-2. This study suggests that combination therapy with pioglitazone and indomethacin may provide an alternative for the clinical control of inflammation especially in patients with diabetes. PMID:27376854

  4. Resemblance and investment in children.

    PubMed

    Dolinska, Barbara

    2013-01-01

    According to evolutionary explanations men hardly ever are absolutely certain about their biological fatherhood therefore they must seek various sources of information to subjectively establish whether they are the genetic fathers of the children they raise. Apicella and Marlowe (2004) showed that fathers who perceived greater similarity between their children and themselves were willing to invest more resources (e.g., time, money, care) in their offspring presumably because the perceived resemblance indicated to the fathers their genetic relatedness with their children. The present study extended the design of Apicella and Marlowe's original study and included both fathers and mothers as participants. Parents were recruited by a female confederate at the airport and at the railway station in Wroclaw (Poland). Multiple regression analyses showed that perceived resemblance predicted parental investment in the child for both men and women. The fact that mothers' declarations of investment in their children also depended on the perceived resemblance factor is not consistent with evolutionary formulations delineated by Apicella and Marlowe (2004; 2007). Future studies must resolve the issue of whether the resemblance-investment relation in fathers results from men relaying on child's resemblance to themselves as an indicator of their own biological paternity, or whether it results from the more parsimonious phenomenon that people in general are attracted more to other people who are similar to them. PMID:22385106

  5. Study on SSAO enzyme activity and anti-inflammatory effect of SSAO inhibitors in animal model of inflammation.

    PubMed

    Tábi, Tamás; Szökő, Eva; Mérey, Anita; Tóth, Veronika; Mátyus, Péter; Gyires, Klára

    2013-06-01

    SSAO/VAP-1 participates in the accumulation of leukocytes at the site of inflammation. A new SSAO inhibitor, SzV-1287 was demonstrated to inhibit both acute and chronic inflammation in rats more effectively than the known enzyme inhibitor, LJP-1207. Surprisingly, the SSAO activity was not increased, but decreased both in acute and chronic inflammation. Though experiments are in progress to clarify these findings, the enzyme might play a role in the very early phase of inflammation and be inactivated during leukocyte extravasation. PMID:23263543

  6. Biochemical and histological evaluations of anti-inflammatory and antioxidant p-chloro-selenosteroid actions in acute murine models of inflammation.

    PubMed

    Marcondes Sari, Marcel Henrique; Souza, Ana Cristina Guerra; Rosa, Suzan Gonçalves; Chagas, Pietro Maria; da Luz, Sônia Cristina Almeida; Rodrigues, Oscar Endrigo Dorneles; Nogueira, Cristina Wayne

    2016-06-15

    This study investigated the potential p-chloro-selenosteroid (PCS) anti-inflammatory effect in different animal models of acute inflammation. In order to determine a time- and a dose-curve response of action, female adult Swiss mice (25-35g) were divided in different groups and pretreated by the intragastric route (i.g.) with PCS (5-10mg/kg) and after the specific times (5, 30 and 60min) the ear inflammation was induced with croton oil (2.5%, 20μl). The ear edema, myeloperoxidase (MPO) activity and histological analyses were performed. In a second experiment, the pleurisy model was used to determine the PCS protective effect (10mg/kg, i.g., 30min before induction) in the inflammatory and oxidative alterations induced by an intrapleural injection of a 1% carrageenan solution (0.1ml) in exudate and lung samples. Dexamethasone (1mg/kg, i.g.) was used as positive control for both models. Statistical analysis was performed through a One-Way ANOVA test followed by the Newman-Keuls' test. Pretreatment of 30min with PCS, only at a dose of 10mg/kg, decreased ear edema and the MPO activity as well as the histological alterations induced by croton oil. In the pleurisy model, PCS (10mg/kg, i.g.; 30min) reduced the leukocyte counts, histological alterations, MPO and adenosine deaminase activities, oxidative damage and the non-enzymatic antioxidant defense imbalance. PCS had a similar anti-inflammatory profile to dexamethasone; however, it showed a better antioxidant effect. PCS had anti-inflammatory and antioxidant actions in two well established inflammation models in mice. PMID:27102337

  7. Anti-nociceptive and anti-inflammatory effects of cyanocobalamin (vitamin B12) against acute and chronic pain and inflammation in mice.

    PubMed

    Hosseinzadeh, H; Moallem, S A; Moshiri, M; Sarnavazi, M S; Etemad, L

    2012-07-01

    In this study, the anti-nociceptive and anti-inflammatory effects of cyanocobalamin (Vit B12) against acute and chronic pain and inflammation were evaluated in mice. Vit B12 (0.87, 1 and 1.77 mg/kg) were injected intraperitoneally. The anti-nociceptive effects against acute pain were examined using hot-plate and writhing tests. The chronic pain was examined 14 days after sciatic nerve ligation using the hot-plate test. Morphine (10 mg/kg) was used as a positive control. Anti-inflammatory effects of Vit B12 against acute and chronic inflammation were assessed using xylene-induced edema in ears and granuloma caused by compressed cotton implantation, respectively. In these tests, sodium diclofenac (15 mg/kg) was used as a positive control. Vit B12 showed a dose related effect in acute anti-nociceptive test and increased the anti-nociceptive effect of morphine in chronic treatment. Vit B12 demonstrated an anti-nociceptive effect in chronic studies as single or continues daily treatment and increased significantly the anti-nociceptive effect of morphine. All doses of Vit B12 significantly decreased xylene-induced ear edema. Maximum anti-inflammatory effect (37.5%) was obtained at dose of 1 mg/kg. In chronic inflammation, Vit B12 significantly decreased granuloma formation in mice. In conclusion our work presents some experimental evidence supporting the administration of cyanocobalamin in controlling acute and chronic neuropathic pain. Cyanocobalamin may have anti-inflammatory effect. It may reduce tolerance to anti-nociceptive effect of morphine as well. PMID:22588629

  8. Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation

    PubMed Central

    2013-01-01

    Introduction Inflammation of the synovial membrane plays an important role in the pathophysiology of osteoarthritis (OA). The synovial tissue of patients with initial OA is characterized by infiltration of mononuclear cells and production of proinflammatory cytokines and other mediators of joint injury. The objective was to evaluate the effect of low-level laser therapy (LLLT) operating at 50 mW and 100 mW on joint inflammation in rats induced by papain, through histopathological analysis, differential counts of inflammatory cells (macrophages and neutrophils), as well as gene expression of interleukin 1-beta and 6 (IL-1β and IL-6), and protein expression of tumor necrosis factor alpha (TNFα). Methods Male Wistar rats (n = 60) were randomly divided into four groups of 15 animals, namely: a negative control group; an inflammation injury positive control group; a 50 mW LLLT group, subjected to injury and treated with 50 mW LLLT; and a 100 mW LLLT group, subjected to injury and treated with 100 mW LLLT. The animals were subject to joint inflammation (papain solution, 4%) and then treated with LLLT (808 nm, 4 J, 142.4 J/cm2, spot size 0.028 for both groups). On the day of euthanasia, articular lavage was collected and immediately centrifuged; the supernatant was saved for analysis of expression of TNFα protein by enzyme-linked immunosorbent assay and expression of IL-1β and IL-6 mRNA by real-time polymerase chain reaction. A histologic examination of joint tissue was also performed. For the statistical analysis, analysis of variance with Tukey's post-hoc test was used for comparisons between each group. All data are expressed as mean values and standard deviation, with P < 0.05. Results Laser treatment with 50 mW was more efficient than 100 mW in reducing cellular inflammation, and decreased the expression of IL-1β and IL-6. However, the 100 mW treatment led to a higher reduction of TNFα compared with the 50 mW treatment. Conclusions LLLT with 50 mW was more

  9. [Orbital inflammation].

    PubMed

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. PMID:25455557

  10. Children's Explanations of Family Resemblances.

    ERIC Educational Resources Information Center

    Horobin, Karen D.

    Four studies investigated children's explanations for family resemblance and species-typical characteristics, under different conditions of biological parentage and rearing environment. Participating were 226 children between 3 and 11 years. Children Children were presented with a number of different tasks, some involving people and some domestic…

  11. PKCα is required for inflammation-induced trafficking of extrasynaptic AMPA receptors in tonically firing lamina II dorsal horn neurons during the maintenance of persistent inflammatory pain

    PubMed Central

    Kopach, Olga; Viatchenko-Karpinski, Viacheslav; Atianjoh, Fidelis E.; Belan, Pavel; Tao, Yuan-Xiang; Voitenko, Nana

    2012-01-01

    Persistent inflammation promotes internalization of synaptic GluR2-containing Ca2+-impermeable AMPA receptors (AMPARs) and insertion of GluR1-containing Ca2+-permeable AMPARs at extrasynaptic sites in dorsal horn neurons. Previously we have shown that internalization of synaptic GluR2-containing AMPARs requires an activation of spinal cord protein kinase C alpha (PKCα), but molecular mechanisms that underlie altered trafficking of extrasynaptic AMPARs are still unclear. By utilizing the antisence oligodeoxynucleotides that specifically knockdown PKCα, we have found that a decrease in dorsal horn PKCα expression prevents complete Freund’s adjuvant (CFA)-induced increase in a functional expression of extrasynaptic Ca2+-permeable AMPARs in substantia gelatinosa (SG) neurons of the rat spinal cord. This was manifested as an abolishment of augmented AMPA-induced currents and associated [Ca2+]i transients, and as a reverse of the current rectification 1 d post-CFA. These changes were observed specifically in SG neurons characterized by intrinsic tonic firing properties, but not in those exhibiting strong adaptation. Finally, dorsal horn PKCα knockdown produced anti-nociceptive effect on CFA-induced thermal and mechanical hypersensitivity during the maintenance period of inflammatory pain, indicating a role for PKCα in persistent inflammatory pain maintenance. Altogether, our results indicate that inflammation-induced trafficking of extrasynaptic Ca2+-permeable AMPARs in tonically firing SG neurons depends on PKCα, and suggest that this PKCα-dependent trafficking may contribute to the persistent inflammatory pain maintenance. PMID:23374940

  12. The role of PKC/ERK1/2 signaling in the anti-inflammatory effect of tetracyclic triterpene euphol on TPA-induced skin inflammation in mice.

    PubMed

    Passos, Giselle F; Medeiros, Rodrigo; Marcon, Rodrigo; Nascimento, Andrey F Z; Calixto, João B; Pianowski, Luiz F

    2013-01-01

    Inflammation underlies the development and progression of a number of skin disorders including psoriasis, atopic dermatitis and cancer. Therefore, novel antiinflammatory agents are of great clinical interest for prevention and treatment of these conditions. Herein, we demonstrated the underlying molecular mechanisms of the antiinflammatory activity of euphol, a tetracyclic triterpene isolated from the sap of Euphorbia tirucalli, in skin inflammation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in mice. Topical application of euphol (100 μg/ear) significantly inhibited TPA-induced ear edema and leukocyte influx through the reduction of keratinocyte-derived chemokine (CXCL1/KC) and macrophage inflammatory protein (MIP)-2 levels. At the intracellular level, euphol reduced TPA-induced extracellular signal-regulated protein kinase (ERK) activation and cyclooxygenase-2 (COX-2) upregulation. These effects were associated with euphol's ability to prevent TPA-induced protein kinase C (PKC) activation, namely PKCα and PKCδ isozymes. Our data indicate that topical application of euphol markedly inhibits the inflammatory response induced by TPA. Thus, euphol represents a promising agent for the management of skin diseases with an inflammatory component. PMID:23099255

  13. The "window of susceptibility" for inflammation in the immature central nervous system is characterized by a leaky blood-brain barrier and the local expression of inflammatory chemokines.

    PubMed

    Schoderboeck, Lucia; Adzemovic, Milena; Nicolussi, Eva-Maria; Crupinschi, Claudia; Hochmeister, Sonja; Fischer, Marie-Therese; Lassmann, Hans; Bradl, Monika

    2009-09-01

    Early in postnatal development, the immature central nervous system (CNS) is more susceptible to inflammation than its adult counterpart. We show here that this "window of susceptibility" is characterized by the presence of leaky vessels in the CNS, and by a global chemokine expression profile which is clearly distinct from the one observed in the adult CNS and has three important characteristics. First, it contains chemokines with known roles in the differentiation and maturation of glia and neurons. Secondly, these chemokines have been described before in inflammatory lesions of the CNS, where they are important for the recruitment of monocytes and T cells. Lastly, the chemokine profile is shaped by pathological changes like oligodendrocyte stress and attempts of myelin repair. Changes in the chemokine expression profile along with a leaky blood-brain barrier pave the ground for an accelerated development of CNS inflammation. PMID:19520164

  14. Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti-inflammatory drug-dependent gastrointestinal damage

    PubMed Central

    Sasso, Oscar; Migliore, Marco; Habrant, Damien; Armirotti, Andrea; Albani, Clara; Summa, Maria; Moreno-Sanz, Guillermo; Scarpelli, Rita; Piomelli, Daniele

    2015-01-01

    The ability of nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit cyclooxygenase (Cox)-1 and Cox-2 underlies the therapeutic efficacy of these drugs, as well as their propensity to damage the gastrointestinal (GI) epithelium. This toxic action greatly limits the use of NSAIDs in inflammatory bowel disease (IBD) and other chronic pathologies. Fatty acid amide hydrolase (FAAH) degrades the endocannabinoid anandamide, which attenuates inflammation and promotes GI healing. Here, we describe the first class of systemically active agents that simultaneously inhibit FAAH, Cox-1, and Cox-2 with high potency and selectivity. The class prototype 4 (ARN2508) is potent at inhibiting FAAH, Cox-1, and Cox-2 (median inhibitory concentration: FAAH, 0.031 ± 0.002 µM; Cox-1, 0.012 ± 0.002 µM; and Cox-2, 0.43 ± 0.025 µM) but does not significantly interact with a panel of >100 off targets. After oral administration in mice, ARN2508 engages its intended targets and exerts profound therapeutic effects in models of intestinal inflammation. Unlike NSAIDs, ARN2508 causes no gastric damage and indeed protects the GI from NSAID-induced damage through a mechanism that requires FAAH inhibition. Multitarget FAAH/Cox blockade may provide a transformative approach to IBD and other pathologies in which FAAH and Cox are overactive.—Sasso, O., Migliore, M., Habrant, D., Armirotti, A., Albani, C., Summa, M., Moreno-Sanz, G., Scarpelli, R., Piomelli, D. Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti-inflammatory drug-dependent gastrointestinal damage. PMID:25757568

  15. Phosphorylation of Mitogen- and Stress-Activated Protein Kinase-1 in Astrocytic Inflammation: A Possible Role in Inhibiting Production of Inflammatory Cytokines

    PubMed Central

    Shi, Jinlong; Ni, Lanchun; Huang, Qingfeng; Xia, Liang; Nie, Dekang; Lu, Xiaojian; Chen, Jian; Shi, Wei

    2013-01-01

    Purpose It is generally accepted that inflammation has a role in the progression of many central nervous system (CNS) diseases, although the mechanisms through which this occurs remain unclear. Among mitogen-activated protein kinase (MAPK) targets, mitogen- and stress-activated protein kinase (MSK1) has been thought to be involved in the pathology of inflammatory gene expression. In this study, the roles of MSK1 activation in neuroinflammation were investigated. Methods The bacterial lipopolysaccharide (LPS)-induced brain injury model was performed on Sprague-Dawley rats. The dynamic expression changes and the cellular location of p-MSK1 in the brain cortex were detected by Western blot and immunofluorescence staining. The synthesis of inflammatory cytokines in astrocytes was detected by enzyme-linked immunosorbent assay (ELISA). Results Phosphorylated MSK1 (p-MSK1 Thr-581) was induced significantly after intracerebral injection of LPS into the lateral ventricles of the rat brain. Specific upregulation of p-MSK1 in astrocytes was also observed in inflamed cerebral cortex. At 1 day after LPS stimulation, iNOS, TNFα expression, and the astrocyte marker glial fibrillary acidic protein (GFAP) were increased significantly. Also, in vitro studies indicated that the upregulation of p-MSK1 (Thr-581) may be involved in the subsequent astrocyte inflammatory process, following LPS challenge. Using an enzyme-linked immunosorbent assay (ELISA), it was confirmed that treatment with LPS in primary astrocytes stimulated the synthesis of inflammatory cytokines, through MAPKs signaling pathways. In cultured primary astrocytes, both knock-down of total MSK1 by small interfering RNAs (siRNA) or specific mutation of Thr-581 resulted in higher production of certain cytokines, such as TNFα and IL-6. Conclusions Collectively, these results suggest that MSK1 phosphorylation is associated with the regulation of LPS-induced brain injury and possibly acts as a negative regulator of

  16. [Role of anti-inflammatory drugs in the treatment of acute coronary syndromes. From athero-inflammation to athero-thrombosis].

    PubMed

    Altman, Raúl; Scazziota, Alejandra

    2003-01-01

    Coronary thrombosis is the most important cause of morbidity and mortality and the most severe manifestation of atherosclerosis. Knowledge of the pathophysiology of atheroma formation and the causes of atheroma accidents have allowed the development of new therapeutic measures for reducing thrombotic events after a coronary episode. Treating the thrombosis after plaque rupture is useful, but a late measure once coronary flow is disturbed. Therefore, treatment at an earlier stage, which we call athero-inflammation, a central event in atheroma progression leading to atherothrombosis, seems wise. There is evidence of an inflammatory component in the pathogenesis of atheroma rupture in acute coronary events. Earlier studies of anti-inflammatory medication have not demonstrated a reduction in thrombotic complications after an acute coronary episode. However, there are pathophysiological arguments and clinical findings that suggest that it would be advisable to include anti-inflammatory medications, especially those that inhibit preferentially COX-2, in the therapeutic arsenal for this pathology. We postulated that blocking athero-inflammation could prevent thrombosis. A pilot study was carried out in 120 patients with acute coronary syndrome without ST-segment elevation in which 60 patients were treated with meloxicam, a preferential COX-2 inhibitor. All patients received heparin and aspirin. During the stay in the coronary care unit, as well as after 90 days, meloxicam lowered composite outcomes (myocardial infarction, death and revascularization procedures) compared with the control group. These results and available pathophysiological and clinical evidence support the hypothesis of potential benefits of non-steroidal anti-inflammatory drugs with preferential inhibitory activity on COX-2 in patients with acute coronary syndromes. More trials are needed to confirm their preventive effect. PMID:12549993

  17. Differential anti-inflammatory and anti-oxidative effects of dexamethasone and N-acetylcysteine in endotoxin-induced lung inflammation

    PubMed Central

    Rocksén, D; Lilliehöök, B; Larsson, R; Johansson, T; Bucht, A

    2000-01-01

    Inhalation of bacterial endotoxin induces an acute inflammation in the lower respiratory tract. In this study, the anti-inflammatory effects of the anti-oxidant N-acetylcysteine (NAC) and the glucocorticoid dexamethasone were investigated in mice exposed to aerosolized endotoxin (lipopolysaccharide (LPS)). Powerful reduction of neutrophils in bronchoalveolar lavage fluid (BALF) was obtained by a single i.p. injection of dexamethasone (10 mg/kg), whereas treatment with NAC only resulted in reduction of neutrophils when administered at a high dose (500 mg/kg). Measurement of cytokine and chemokine expression in lung tissue revealed a significant decrease of tumour necrosis factor-alpha, IL-1α, IL-1β, IL-6, IL-12p40, and MIP-1α mRNA when mice where treated with dexamethasone but not when treated with NAC. Analysis of oxidative burst demonstrated a remarkable reduction of oxygen radicals in BALF neutrophils after treatment with dexamethasone, whereas the effect of NAC was not significantly different from that in untreated animals. In conclusion, dexamethasone exerted both anti-inflammatory and anti-oxidative effects in acute airway inflammation, probably by blocking early events in the inflammatory cascade. In contrast, treatment with NAC resulted in a weak reduction of the inflammatory response but no inhibition of proinflammatory cytokines or reduction of oxidative burst in neutrophils. These results demonstrate dramatic differences in efficiency and also indicate that the two drugs have different actions. Combined treatment with NAC and dexamethasone revealed an additive action but no synergy was observed. PMID:11091282

  18. Establishment of an interleukin-1β-induced inflammation-activated endothelial cell-smooth muscle cell-mononuclear cell co-culture model and evaluation of the anti-inflammatory effects of tanshinone IIA on atherosclerosis.

    PubMed

    Li, Yujie; Guo, Yan; Chen, Ying; Wang, Yajie; You, Yun; Yang, Qing; Weng, Xiaogang; Li, Qi; Zhu, Xiaoxin; Zhou, Bingbing; Liu, Xucen; Gong, Zaipeng; Zhang, Ruijie

    2015-08-01

    Increasing evidence supports the hypothesis that inflammatory reactions serves an important function in the formation, progression and plaque rupture of atherosclerosis. Interleukin (IL)-1 primarily induces inflammation and is closely associated with the inflammatory environment and the formation of atherosclerosis. The present study aimed to establish an in vitro model for the evaluation of drug efficacy in the intervention of atherosclerosis from the inflammatory perspective, and to observe the anti-inflammatory effects of tanshinone IIA and andrographolide on atherosclerosis. The IL-1β-induced inflammation-activated endothelial cell (EC)-smooth muscle cell (SMC)-mononuclear cell (MC) co-culture model was established, based on the changes in a series of atherosclerosis-associated inflammatory markers secreted by ECs and SMCs. The expression of connexin in ECs, adhesion of MCs and changes in inflammatory signalling molecules were selected as evaluation indices for the inflammatory microenvironment of atherosclerosis. The use of this model revealed that tanshinone IIA exhibited significant efficacy against atherosclerosis and its inflammatory reactions. Inflammatory reactions were regarded as the primary mechanism underlying atherosclerosis. The established model simulated a series of relevant changes in the arterial wall under the inflammatory cytokines with oxidized low-density lipoprotein during the atherosclerotic process. The present study presented a reliable method for the identification of drugs with potential anti-inflammatory activity in atherosclerosis, for investigating the mechanisms of action, considering the improvement of the inflammatory state and the increase in plaque stability observed. PMID:25936371

  19. Depletion of macrophages in CD11b diphtheria toxin receptor mice induces brain inflammation and enhances inflammatory signaling during traumatic brain injury.

    PubMed

    Frieler, Ryan A; Nadimpalli, Sameera; Boland, Lauren K; Xie, Angela; Kooistra, Laura J; Song, Jianrui; Chung, Yutein; Cho, Kae W; Lumeng, Carey N; Wang, Michael M; Mortensen, Richard M

    2015-10-22

    Immune cells have important roles during disease and are known to contribute to secondary, inflammation-induced injury after traumatic brain injury. To delineate the functional role of macrophages during traumatic brain injury, we depleted macrophages using transgenic CD11b-DTR mice and subjected them to controlled cortical impact. We found that macrophage depletion had no effect on lesion size assessed by T2-weighted MRI scans 28 days after injury. Macrophage depletion resulted in a robust increase in proinflammatory gene expression in both the ipsilateral and contralateral hemispheres after controlled cortical impact. Interestingly, this sizeable increase in inflammation did not affect lesion development. We also showed that macrophage depletion resulted in increased proinflammatory gene expression in the brain and kidney in the absence of injury. These data demonstrate that depletion of macrophages in CD11b-DTR mice can significantly modulate the inflammatory response during brain injury without affecting lesion formation. These data also reveal a potentially confounding inflammatory effect in CD11b-DTR mice that must be considered when interpreting the effects of macrophage depletion in disease models. PMID:26208897

  20. Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment

    PubMed Central

    Beck, Kevin D.; Nguyen, Hal X.; Galvan, Manuel D.; Salazar, Desirée L.; Woodruff, Trent M.

    2010-01-01

    Traumatic injury to the central nervous system results in the disruption of the blood brain/spinal barrier, followed by the invasion of cells and other components of the immune system that can aggravate injury and affect subsequent repair and regeneration. Although studies of chronic neuroinflammation in the injured spinal cord of animals are clinically relevant to most patients living with traumatic injury to the brain or spinal cord, very little is known about chronic neuroinflammation, though several studies have tested the role of neuroinflammation in the acute period after injury. The present study characterizes a novel cell preparation method that assesses, quickly and effectively, the changes in the principal immune cell types by flow cytometry in the injured spinal cord, daily for the first 10 days and periodically up to 180 days after spinal cord injury. These data quantitatively demonstrate a novel time-dependent multiphasic response of cellular inflammation in the spinal cord after spinal cord injury and are verified by quantitative stereology of immunolabelled spinal cord sections at selected time points. The early phase of cellular inflammation is comprised principally of neutrophils (peaking 1 day post-injury), macrophages/microglia (peaking 7 days post-injury) and T cells (peaking 9 days post-injury). The late phase of cellular inflammation was detected after 14 days post-injury, peaked after 60 days post-injury and remained detectable throughout 180 days post-injury for all three cell types. Furthermore, the late phase of cellular inflammation (14–180 days post-injury) did not coincide with either further improvements, or new decrements, in open-field locomotor function after spinal cord injury. However, blockade of chemoattractant C5a-mediated inflammation after 14 days post-injury reduced locomotor recovery and myelination in the injured spinal cord, suggesting that the late inflammatory response serves a reparative function. Together, these

  1. Anti-inflammatory and anti-granuloma activity of Berberis aristata DC. in experimental models of inflammation

    PubMed Central

    Kumar, Rohit; Gupta, Yogendra Kumar; Singh, Surender

    2016-01-01

    Objective: Berberis aristata (Berberidaceae) is an important medicinal plant used in traditional system of medicine for the treatment of rheumatoid arthritis and other inflammatory disorders. The aim of the present study is to scientifically validate the traditional use of BA in the treatment of inflammatory disorders. Materials and Methods: Anti-inflammatory and anti-granuloma activity of BA hydroalcoholic extract (BAHE) were evaluated in experimental models, viz., carrageenan-induced paw edema, cotton pellet-induced granuloma formation, and complete Freund's adjuvant-induced stimulation of peritoneal macrophages in rats. Expression of inflammatory mediators, viz., tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, TNF-R1, and cyclooxygenase-2 (COX-2) was carried out in serum and peritoneal macrophages to derive the plausible mechanism of BAHE in activated peritoneal macrophages. Results: Pretreatment with BAHE produced a dose-dependent reduction (P < 0.01) in carrageenan-induced paw edema and cotton pellet-induced granuloma model. BAHE treatment produced significant (P < 0.01) reduction in serum inflammatory cytokine levels as compared to control. Protein expression of pro-inflammatory markers, IL-1β, IL-6, TNF-R1, and COX-2, was found to be reduced in stimulated macrophages whereas anti-inflammatory cytokine, IL-10, was upregulated in peritoneal macrophages. Conclusion: The result of the present study thus demonstrates the anti-inflammatory and anti-granuloma activity of BAHE which may be attributed to its inhibitory activity on macrophage-derived cytokine and mediators. PMID:27114638

  2. Glucocorticoids inhibit lipopolysaccharide-mediated inflammatory response by downregulating microRNA-155: a novel anti-inflammation mechanism.

    PubMed

    Zheng, Yijie; Xiong, Shudao; Jiang, Pei; Liu, Ronghua; Liu, Xiaoming; Qian, Jing; Zheng, Xiujuan; Chu, Yiwei

    2012-04-15

    Glucocorticoids (GCs) are among the most widely used and effective therapies for many chronic inflammatory diseases. Although attempts have been made to identify important protein-coding genes and pathways involved in the anti-inflammatory effect of GCs, knowledge of genomic aberrations associated with noncoding genes, such as micro-RNAs (miRNAs), and their contributions is relatively limited. In this study, a systematic screening of the miRNA expression profile by microarray showed that GCs inhibited the expression of miR-155 in lipopolysaccharide (LPS)-induced macrophage inflammatory responses. Overexpression of miR-155 markedly reversed the suppressive action of GCs, whereas inhibition of miR-155 exhibited an effect similar to that of GCs on LPS-treated RAW264.7 cells, indicating miR-155 to be a functional regulator in the anti-inflammatory effect of GCs. Furthermore, GCs inhibited miR-155 expression in a GC receptor- and NF-κB-dependent manner. Bioinformatics analysis and luciferase assay revealed that the NF-κB binding site located in the promoter region of the B-cell integration cluster was important in mediating the GC-driven suppression of miR-155 in response to LPS stimulation. In addition, the combination of treatment with GCs and inhibition of miR-155 enhanced the anti-inflammatory effect of GCs on LPS-stimulated RAW264.7 cells. Therefore, we identify miR-155 to be a novel target through which GCs exert their anti-inflammatory effect on the LPS-induced macrophage inflammatory response. These findings may provide a basic rationale for new approaches in the effort to develop anti-inflammatory therapeutics. PMID:22326887

  3. A combined omics approach to evaluate the effects of dietary curcumin on colon inflammation in the Mdr1a(-/-) mouse model of inflammatory bowel disease.

    PubMed

    Cooney, Janine M; Barnett, Matthew P G; Dommels, Yvonne E M; Brewster, Diane; Butts, Christine A; McNabb, Warren C; Laing, William A; Roy, Nicole C

    2016-01-01

    The aim of this study was to provide insight into how curcumin reduces colon inflammation in the Mdr1a(-/-) mouse model of human inflammatory bowel disease using a combined transcriptomics and proteomics approach. Mdr1a(-/-) and FVB control mice were randomly assigned to an AIN-76A (control) diet or AIN-76A+0.2% curcumin. At 21 or 24weeks of age, colonic histological injury score (HIS) was determined, colon mRNA transcript levels were assessed using microarrays and colon protein expression was measured using 2D gel electrophoresis and LCMS protein identification. Colonic HIS of Mdr1a(-/-) mice fed the AIN-76A diet was higher (P<.001) than FVB mice fed the same diet; the curcumin-supplemented diet reduced colonic HIS (P<.05) in Mdr1a(-/-) mice. Microarray and proteomics analyses combined with new data analysis tools, such as the Ingenuity Pathways Analysis regulator effects analysis, showed that curcumin's antiinflammatory activity in Mdr1a(-/-) mouse colon may be mediated by activation of α-catenin, which has not previously been reported. We also show evidence to support curcumin's action via multiple molecular pathways including reduced immune response, increased xenobiotic metabolism, resolution of inflammation through decreased neutrophil migration and increased barrier remodeling. Key transcription factors and other regulatory molecules (ERK, FN1, TNFSF12 and PI3K complex) activated in inflammation were down-regulated by dietary intervention with curcumin. PMID:26437580

  4. Vaccine against MUC1 antigen expressed in inflammatory bowel disease and cancer lessens colonic inflammation and prevents progression to colitis associated colon cancer

    PubMed Central

    Beatty, Pamela L.; Narayanan, Sowmya; Gariépy, Jean; Ranganathan, Sarangarajan; Finn, Olivera J.

    2009-01-01

    Association of chronic inflammation with an increased risk of cancer is well established but the contributions of innate versus adaptive immunity are not fully delineated. There has furthermore been little consideration of the role played by chronic inflammation-associated antigens, including cancer antigens, and the possibility to use them as vaccines to lower the cancer risk. We studied the human tumor antigen MUC1 that is abnormally expressed in colon cancers and also in inflammatory bowel disease (IBD) that gives rise to colitis associated colon cancer (CACC). Using our new mouse model of MUC1+ IBD that progresses to CACC, IL-10−/− mice crossed with MUC1 transgenic mice, we show that vaccination against MUC1 delays IBD and prevents progression to CAAC. One mechanism is the induction of MUC1-specific adaptive immunity (anti-MUC1 IgG, anti-MUC1 CTL) that appears to eliminate abnormal MUC1+ cells in IBD colons. The other mechanism is the change in the local and the systemic microenvironments. Compared to IBD in vaccinated mice, IBD in control mice is dominated by larger numbers of neutrophils in the colon and myeloid-derived suppressor cells (MDSC) in the spleen, which can compromise adaptive immunity and facilitate tumor growth. This suggests that the tumor-promoting microenvironment of chronic inflammation can be converted to a tumor-inhibiting environment by increasing adaptive immunity against a disease-associated antigen. PMID:20332301

  5. Identification of hemopexin as an anti-inflammatory factor that inhibits synergy of hemoglobin with HMGB1 in sterile and infectious inflammation

    PubMed Central

    Lin, Tian; Sammy, Fatima; Yang, Huan; Thundivalappil, Sujatha; Hellman, Judith; Tracey, Kevin J.; Warren, H. Shaw

    2012-01-01

    Hemoglobin is released from lysed red blood cells in numerous clinical settings. HMGB1 is a nuclear and cytosolic DNA-binding protein released from injured cells that has been shown to play an important role in inducing inflammation. Because both of these endogenous molecules are frequently present in sites of necrosis and inflammation, we studied their interaction on the activation of macrophages. We report here that hemoglobin and HMGB1 synergize to activate mouse macrophages to release significantly increased pro-inflammatory cytokines. Addition of microbial ligands that activate through TLR2 or TLR4 resulted in further significant increases, in a “3-way” synergy between endogenous and microbial ligands. The synergy was strongly suppressed by hemopexin, an endogenous heme-binding plasma protein. The findings suggest that hemoglobin may play an important role in sterile as well as infectious inflammation, and that endogenous hemopexin can modulate this response. Administration of hemopexin may be beneficial in clinical settings characterized by elevated extracellular hemoglobin and HMGB1. PMID:22772444

  6. Anti-inflammatory effects of essential oils extracted from Chamaecyparis obtusa on murine models of inflammation and RAW 264.7 cells.

    PubMed

    Park, Yujin; Yoo, Seung-Ah; Kim, Wan-Uk; Cho, Chul-Soo; Woo, Jong-Min; Yoon, Chong-Hyeon

    2016-04-01

    Antimicrobial, antifungal and anti-inflammatory effects of essential oils extracted from Chamaecyparis obtusa (EOCO) have previously been reported. In the present study, the anti-inflammatory effects of EOCO were investigated in two murine models of inflammation: Carrageenan-induced paw edema and thioglycollate-induced peritonitis, and in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The expression levels of proinflammatory cytokines were analyzed by ELISA, the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were determined by western blotting, and nitrite concentration was measured using Griess reagent. In mice with carrageenan-induced edema, paw thickness and the expression levels of interleukin (IL)‑1β and IL-6 in paw homogenates were significantly decreased in the EOCO (5 and 10 mg/kg) group, as compared with the control group. In mice with thioglycollate-induced peritonitis, treatment with EOCO (5 and 10 mg/kg) reduced the number of total cells and suppressed tumor necrosis factor‑α (TNF‑α), IL‑1β and IL‑6 levels in peritoneal fluid. In addition, EOCO reduced nitric oxide, TNF‑α and IL‑6 production, and suppressed iNOS and COX‑2 expression in LPS‑stimulated RAW 264.7 cells. These results suggest that EOCO may exert anti‑inflammatory effects in vivo and in vitro, and that these effects may be associated with the inhibition of inflammatory mediators. Therefore, EOCO may be considered an effective therapeutic agent for the treatment of inflammatory diseases. PMID:26936418

  7. The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells

    PubMed Central

    2012-01-01

    Carbon nanotubes (CNT) are high aspect ratio nanoparticles with diameters in the nanometre range but lengths extending up to hundreds of microns. The structural similarities between CNT and asbestos have raised concern that they may pose a similar inhalation hazard. Recently CNT have been shown to elicit a length-dependent, asbestos-like inflammatory response in the pleural cavity of mice, where long fibres caused inflammation but short fibres did not. However the cellular mechanisms governing this response have yet to be elucidated. This study examined the in vitro effects of a range of CNT for their ability to stimulate the release of the acute phase cytokines; IL-1β, TNFα, IL-6 and the chemokine, IL-8 from both Met5a mesothelial cells and THP-1 macrophages. Results showed that direct exposure to CNT resulted in significant cytokine release from the macrophages but not mesothelial cells. This pro-inflammatory response was length dependent but modest and was shown to be a result of frustrated phagocytosis. Furthermore the indirect actions of the CNT were examined by treating the mesothelial cells with conditioned media from CNT-treated macrophages. This resulted in a dramatic amplification of the cytokine release from the mesothelial cells, a response which could be attenuated by inhibition of phagocytosis during the initial macrophage CNT treatments. We therefore hypothesise that long fibres elicit an inflammatory response in the pleural cavity via frustrated phagocytosis in pleural macrophages. The activated macrophages then stimulate an amplified pro-inflammatory cytokine response from the adjacent pleural mesothelial cells. This mechanism for producing a pro-inflammatory environment in the pleural space exposed to long CNT has implications for the general understanding of fibre-related pleural disease and design of safe nanofibres. PMID:22472194

  8. The Biochemical Origin of Pain – Proposing a new law of Pain: The origin of all Pain is Inflammation and the Inflammatory Response PART 1 of 3 – A unifying law of pain

    PubMed Central

    2009-01-01

    We are proposing a unifying theory or law of pain, which states: The origin of all pain is inflammation and the inflammatory response. The biochemical mediators of inflammation include cytokines, neuropeptides, growth factors and neurotransmitters. Irrespective of the type of pain whether it is acute or chronic pain, peripheral or central pain, nociceptive or neuropathic pain, the underlying origin is inflammation and the inflammatory response. Activation of pain receptors, transmission and modulation of pain signals, neuro plasticity and central sensitization are all one continuum of inflammation and the inflammatory response. Irrespective of the characteristic of the pain, whether it is sharp, dull, aching, burning, stabbing, numbing or tingling, all pain arise from inflammation and the inflammatory response. We are proposing a re-classification and treatment of pain syndromes based upon their inflammatory profile. Treatment of pain syndromes should be based on these principles: Determination of the inflammatory profile of the pain syndromeInhibition or suppression of production of the appropriate inflammatory mediators e.g. with inflammatory mediator blockers or surgical intervention where appropriateInhibition or suppression of neuronal afferent and efferent (motor) transmission e.g. with anti-seizure drugs or local anesthetic blocksModulation of neuronal transmission e.g. with opioid medication At the L.A. Pain Clinic, we have successfully treated a variety of pain syndromes by utilizing these principles. This theory of the biochemical origin of pain is compatible with, inclusive of, and unifies existing theories and knowledge of the mechanism of pain including the gate control theory, and theories of pre-emptive analgesia, windup and central sensitization. PMID:17240081

  9. Heme oxygenase-1-mediated anti-inflammatory effects of tussilagonone on macrophages and 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation in mice.

    PubMed

    Lee, Joohee; Kang, Unwoo; Seo, Eun Kyoung; Kim, Yeong Shik

    2016-05-01

    The dried flower buds of Tussilago farfara L. have been used in traditional medicine, mainly as an antitussive in the treatment of cough and other respiratory problems. In the present study, we investigated the anti-inflammatory signaling pathway via the upregulation of heme oxygenase-1 (HO-1) in response to tussilagonone (TGN), a sesquiterpene compound isolated from T. farfara. TGN induced HO-1 expression and nuclear factor-E2-related factor 2 (Nrf2) activation in RAW 264.7 cells. Nuclear translocation of Nrf2 by TGN also increased in a time- and dose-dependent manner, indicating that TGN induced HO-1 via the Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, TGN suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and reduced the mRNA expression of proinflammatory cytokines, as well as nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. TGN inhibited the phosphorylation and degradation of inhibitory κB-α (IκB-α) and the nuclear translocation of nuclear factor (NF)-κB. However, a specific inhibitor of HO-1 reversed the TGN-mediated suppression of NO production and knockdown of HO-1 by small interfering RNA abrogated inhibitory effects of TGN on iNOS and COX-2 protein expression and NF-κB nuclear translocation. Furthermore, TGN reduced iNOS and COX-2 expression in a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation mouse model. Taken together, these findings suggest an important role for TGN-induced HO-1 activation in regulating inflammatory responses. Moreover, TGN is a potent therapeutic candidate for targeting the crosstalk between Nrf2/HO-1 and the NF-κB signaling pathway in the prevention or treatment of inflammation-associated diseases. PMID:26950613

  10. Analgesic effect of percutaneously absorbed non-steroidal anti-inflammatory drugs: an experimental study in a rat acute inflammation model

    PubMed Central

    Sekiguchi, Miho; Shirasaka, Masayoshi; Konno, Shin-ichi; Kikuchi, Shin-ichi

    2008-01-01

    Background External medication that is absorbed percutaneously may be used to reduce inflammation and relieve pain from acute injuries such as ankle sprains and bruises. The plaster method of percutaneous absorption for non-steroidal anti-inflammatory drugs (NSAIDs) was established in Japan in 1988. However, due to the possibility of a placebo effect, the efficacy of this method remains unclear. This experimental study was conducted to control for the placebo effect and to study the efficacy of the plaster method in relieving pain by using a rat model of inflammation. Methods Male Wistar-Imamichi rats were used. A yeast suspension was injected into the right hind paw to induce inflammation. A sheet (2.0 × 1.75 cm) containing the drug was adhered to the inflamed paw. Five treatment groups were used, and each sheet contained a single drug: loxoprofen sodium (loxoprofen-Na) (2.5 mg); felbinac (1.75 mg); indomethacin (1.75 mg); ketoprofen (0.75 mg); or base only (control, 0 mg). Mechanical pain threshold, expression of c-Fos in the dorsal horn, and amount of prostaglandin (PG) E2 in the inflamed paw were evaluated. Results Pain threshold increased after treatment, and was significantly increased in the loxoprofen-Na group compared with the control group (p < 0.05). Amounts of PGE2 were significantly decreased in the loxoprofen-Na and indomethacin groups compared with the control group (p < 0.05). Expression of c-Fos was significantly decreased in the loxoprofen-Na group compared with the control group (p < 0.05). Conclusion Percutaneously absorbed NSAIDs have an analgesic effect, inhibit expression of c-Fos in the dorsal horn, and reduce PGE2 in inflamed tissue, indicating the efficacy of this method of administration for acute inflammation and localized pain. PMID:18234123

  11. Molecular modeling of lectin-like protein from Acacia farnesiana reveals a possible anti-inflammatory mechanism in Carrageenan-induced inflammation.

    PubMed

    Abrantes, Vanessa Erika Ferreira; Matias da Rocha, Bruno Anderson; Batista da Nóbrega, Raphael; Silva-Filho, José Caetano; Teixeira, Claudener Souza; Cavada, Benildo Sousa; Gadelha, Carlos Alberto de Almeida; Ferreira, Sergio Henrique; Figueiredo, Jozi Godoy; Santi-Gadelha, Tatiane; Delatorre, Plinio

    2013-01-01

    Acacia farnesiana lectin-like protein (AFAL) is a chitin-binding protein and has been classified as phytohaemagglutinin from Phaseolus vulgaris (PHA). Legume lectins are examples for structural studies, and this family of proteins shows a remarkable conservation in primary, secondary, and tertiary structures. Lectins have ability to reduce the effects of inflammation caused by phlogistic agents, such as carrageenan (CGN). This paper explains the anti-inflammatory activity of AFAL through structural comparison with anti-inflammatory legume lectins. The AFAL model was obtained by molecular modeling and molecular docking with glycan and carrageenan were performed to explain the AFAL structural behavior and biological activity. Pisum sativum lectin was the best template for molecular modeling. The AFAL structure model is folded as a β sandwich. The model differs from template in loop regions, number of β strands and carbohydrate-binding site. Carrageenan and glycan bind to different sites on AFAL. The ability of AFAL binding to carrageenan can be explained by absence of the sixth β -strand (posterior β sheets) and two β strands in frontal region. AFAL can inhibit pathway inflammatory process by carrageenan injection by connecting to it and preventing its entry into the cell and triggers the reaction. PMID:24490151

  12. Molecular Modeling of Lectin-Like Protein from Acacia farnesiana Reveals a Possible Anti-Inflammatory Mechanism in Carrageenan-Induced Inflammation

    PubMed Central

    Abrantes, Vanessa Erika Ferreira; Matias da Rocha, Bruno Anderson; Batista da Nóbrega, Raphael; Silva-Filho, José Caetano; Teixeira, Claudener Souza; Cavada, Benildo Sousa; Gadelha, Carlos Alberto de Almeida; Ferreira, Sergio Henrique; Figueiredo, Jozi Godoy; Santi-Gadelha, Tatiane; Delatorre, Plinio

    2013-01-01

    Acacia farnesiana lectin-like protein (AFAL) is a chitin-binding protein and has been classified as phytohaemagglutinin from Phaseolus vulgaris (PHA). Legume lectins are examples for structural studies, and this family of proteins shows a remarkable conservation in primary, secondary, and tertiary structures. Lectins have ability to reduce the effects of inflammation caused by phlogistic agents, such as carrageenan (CGN). This paper explains the anti-inflammatory activity of AFAL through structural comparison with anti-inflammatory legume lectins. The AFAL model was obtained by molecular modeling and molecular docking with glycan and carrageenan were performed to explain the AFAL structural behavior and biological activity. Pisum sativum lectin was the best template for molecular modeling. The AFAL structure model is folded as a β sandwich. The model differs from template in loop regions, number of β strands and carbohydrate-binding site. Carrageenan and glycan bind to different sites on AFAL. The ability of AFAL binding to carrageenan can be explained by absence of the sixth β-strand (posterior β sheets) and two β strands in frontal region. AFAL can inhibit pathway inflammatory process by carrageenan injection by connecting to it and preventing its entry into the cell and triggers the reaction. PMID:24490151

  13. Inflammation and cancer: inhibiting the progression of residual hepatic VX2 carcinoma by anti-inflammatory drug after incomplete radiofrequency ablation

    PubMed Central

    Jiang, Tao; Zhang, Xianjie; Ding, Jing; Duan, Bingwei; Lu, Shichun

    2015-01-01

    Background: Accelerated progression of residual hepatocellular carcinoma (HCC) after incomplete radiofrequency ablation (RFA) has been reported more frequently. Recent data have redefined the concept of inflammation as a critical component of tumor progression. However, there has been little understanding regarding the relationship between progression of residual HCC and the inflammation induced by thermal destruction of the tumor after RFA. The present study was designed to determine whether inflammation facilitates rapid progression of residual hepatic VX2 carcinoma and to clarify the possible underlying mechanisms. Methods: Forty-eight rabbits were each implanted with two VX2 hepatic tumors via supraumbilical median laparotomy. One of the tumors in two different lobes was ablated by RFA. All the rabbits were then randomly divided into four groups (12 rabbits in each group) receiving anti-inflammatory treatment with different doses of aspirin: control group, AS-L group (aspirin, 5 mg/kg/d), AS-M group (aspirin, 20 mg/kg/d), and AS-H group (aspirin, 100 mg/kg/d). The levels of serum interleukin-6 (IL-6), high sensitivity C-reactive protein (hs-CRP), and tumor necrosis factor-α (TNF-α) were detected to evaluate the effect of the anti-inflammation. Tumor growth, lung and kidney metastasis, and survival were assessed. The expression of proliferating cell nuclear antigen (PCNA), matrix metalloproteinase 9 (MMP-9), vascular endothelial growth factor (VEGF), and cysteinyl aspartate specific proteinase 3 (caspase-3) in residual tumor was examined by immunohistochemistry and Western-blotting. Results: The levels of serum IL-6, hs-CRP, and TNF-α in the AS-H group decreased significantly in comparison with those of the control group (P<0.05). The focal tumor volume and lung and kidney metastases of rabbits in the AS-H group were less significant compared with those of the control group (P<0.05). The expression of PCNA, MMP-9, and VEGF in the AS-H group decreased

  14. Association of terpinolene and diclofenac presents antinociceptive and anti-inflammatory synergistic effects in a model of chronic inflammation

    PubMed Central

    Macedo, E.M.A.; Santos, W.C.; Sousa, B.P.; Lopes, E.M.; Piauilino, C.A.; Cunha, F.V.M.; Sousa, D.P.; Oliveira, F.A.; Almeida, F.R.C.

    2016-01-01

    Pharmacological treatment of inflammatory pain is usually done by administration of non-steroidal anti-inflammatory drugs (NSAIDs). These drugs present high efficacy, although side effects are common, especially gastrointestinal lesions. One of the pharmacological strategies to minimize such effects is the combination of drugs and natural products with synergistic analgesic effect. The monoterpene terpinolene (TPL) is a chemical constituent of essential oils present in many plant species, which have pharmacological activities, such as analgesic and anti-inflammatory. The association of ineffective doses of TPL and diclofenac (DCF) (3.125 and 1.25 mg/kg po, respectively) presented antinociceptive and anti-inflammatory effects in the acute (0, 1, 2, 3, 4, 5 and 6 h, after treatment) and chronic (10 days) inflammatory hyperalgesia induced by Freund's complete adjuvant (CFA) in the right hind paw of female Wistar rats (170-230 g, n=6-8). The mechanical hyperalgesia was assessed by the Randall Selitto paw pressure test, which determines the paw withdrawal thresholds. The development of edema was quantified by measuring the volume of the hind paw by plethismography. The TPL/DCF association reduced neutrophils, macrophages and lymphocytes in the histological analysis of the paw, following a standard staining protocol with hematoxylin and eosin and the counts were performed with the aid of optical microscopy after chronic oral administration of these drugs. Moreover, the TPL/DCF association did not induce macroscopic gastric lesions. A possible mechanism of action of the analgesic effect is the involvement of 5-HT2A serotonin receptors, because ketanserin completely reversed the antinociceptive effect of the TPL/DCF association. These results suggest that the TPL/DCF association had a synergistic anti-inflammatory and analgesic effect without causing apparent gastric injury, and that the serotonergic system may be involved in the antinociceptive effect of this association

  15. Archaic artifacts resembling celestial spheres

    NASA Astrophysics Data System (ADS)

    Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.

    We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.

  16. Anti-inflammatory Activity of Berry Fruits in Mice Model of Inflammation is Based on Oxidative Stress Modulation

    PubMed Central

    Nardi, Geisson Marcos; Farias Januario, Adriana Graziele; Freire, Cassio Geremia; Megiolaro, Fernanda; Schneider, Kétlin; Perazzoli, Marlene Raimunda Andreola; Do Nascimento, Scheley Raap; Gon, Ana Cristina; Mariano, Luísa Nathália Bolda; Wagner, Glauber; Niero, Rivaldo; Locatelli, Claudriana

    2016-01-01

    Background: Many fruits have been used as nutraceuticals because the presence of bioactive molecules that play biological activities. Objective: The present study was designed to compare the anti-inflammatory and antioxidant effects of methanolic extracts of Lycium barbarum (GOJI), Vaccinium macrocarpon (CRAN) and Vaccinium myrtillus (BLUE). Materials and Methods: Mices were treated with extracts (50 and 200 mg/kg, p.o.), twice a day through 10 days. Phytochemical analysis was performed by high-performance liquid chromatography. Antioxidant activity was determine by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, reducing power, lipid peroxidation thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and catalase (CAT) activity. Anti-inflammatory activity was evaluated by paw edema followed by determination of myeloperoxidase (MPO) and TBARS. Results: High amount of phenolic compounds, including rutin, were identified in all berries extracts. However, quercetin was observed only in BLUE and CRAN. GOJI presents higher scavenging activity of DPPH radical and reducing power than BLUE and CRAN. The extracts improved antioxidant status in liver; BLUE showed the largest reduction (75.3%) in TBARS when compared to CRAN (70.7%) and GOJI (65.3%). Nonetheless, CAT activity was lower in BLUE group. However, hepatic concentrations of GSH were higher in animals treated with GOJI rather than CRAN and BLUE. Despite all fruits caused a remarkable reduction in paw edema and TBARS, only BLUE and CRAN were able to reduce MPO. Conclusion: These results suggest that quercetin, rutin, or other phenolic compound found in these berry fruits extracts could produce an anti-inflammatory response based on modulation of oxidative stress in paw edema model. SUMMARY Within fruits broadly consumed because of its nutraceuticals properties include, Lycium barbarum (Goji berry), Vaccinium myrtillus (Blueberry or Bilberry) and Vaccinium macrocarpon (Cranberry)The objectives of this

  17. Anti-inflammatory effects of Tat-Annexin protein on ovalbumin-induced airway inflammation in a mouse model of asthma

    SciTech Connect

    Lee, Sun Hwa; Kim, Dae Won; Kim, Hye Ri; Woo, Su Jung; Kim, So Mi; Jo, Hyo Sang; Jeon, Seong Gyu; Cho, Sung-Woo; Park, Jong Hoon; Won, Moo Ho; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We construct a cell permeable Tat-ANX1 fusion protein. Black-Right-Pointing-Pointer We examined the protective effects of Tat-ANX1 protein on OVA-induced asthma in animal models. Black-Right-Pointing-Pointer Transduced Tat-ANX1 protein protects from the OVA-induced production of cytokines and eosinophils in BAL fluid. Black-Right-Pointing-Pointer Tat-ANX1 protein markedly reduced OVA-induced MAPK in lung tissues. Black-Right-Pointing-Pointer Tat-ANX1 protein could be useful as a therapeutic agent for lung disorders including asthma. -- Abstract: Chronic airway inflammation is a key feature of bronchial asthma. Annexin-1 (ANX1) is an anti-inflammatory protein that is an important modulator and plays a key role in inflammation. Although the precise action of ANX1 remains unclear, it has emerged as a potential drug target for inflammatory diseases such as asthma. To examine the protective effects of ANX1 protein on ovalbumin (OVA)-induced asthma in animal models, we used a cell-permeable Tat-ANX1 protein. Mice sensitized and challenged with OVA antigen had an increased amount of cytokines and eosinophils in their bronchoalveolar lavage (BAL) fluid. However, administration of Tat-ANX1 protein before OVA challenge significantly decreased the levels of cytokines (interleukin (IL)-4, IL-5, and IL-13) and BAL fluid in lung tissues. Furthermore, OVA significantly increased the activation of mitogen-activated protein kinase (MAPK) in lung tissues, whereas Tat-ANX1 protein markedly reduced phosphorylation of MAPKs such as extracellular signal-regulated protein kinase, p38, and stress-activated protein kinase/c-Jun N-terminal kinase. These results suggest that transduced Tat-ANX1 protein may be a potential protein therapeutic agent for the treatment of lung disorders including asthma.

  18. Transcriptional expression of inflammatory mediators in various somatosensory relay centers in the brain of rat models of peripheral mononeuropathy and local inflammation.

    PubMed

    Chamaa, Farah; Chebaro, Maya; Safieh-Garabedian, Bared; Saadeh, Ryan; Jabbur, Suhayl J; Saadé, Nayef E

    2016-08-15

    Contradictory results have been reported regarding the role of inflammatory mediators in the central nervous system in mediating neuropathic pain and inflammatory hyperalgesia following peripheral nerve injury or localized inflammation. The present study aims to correlate between the mRNA expression and protein secretion of proinflammatory cytokines and nerve growth factor (NGF), in the dorsal root ganglia (DRGs), spinal cord, brainstem and thalamus, and pain-related behavior in animal models of peripheral mononeuropathy and localized inflammation. Different groups of rats (n=8, each) were subjected to either lesion of the nerves of their hindpaws to induce mononeuropathy or intraplantar injection of endotoxin (ET) and were sacrificed at various time intervals. TNF-α, IL-1β and NGF mRNA expression and protein levels in the various centers involved in processing nociceptive information were determined, by RT-PCR and ELISA. Control groups were either subjected to sham surgery or to saline injection. Mononeuropathy and ET injection produced significant and sustained increases in the mRNA expression and protein levels of TNF-α, IL-1β and NGF in the ipsilateral and contralateral DRGs, spinal cord, and brainstem. No significant and consistent changes in the mRNA expression of cytokines were noticed in the thalamus, while a downregulation of the NGF-mRNA level was observed. The temporal and spatial patterns of the observed changes in mRNA expression of cytokines and NGF are not closely in phase with the observed allodynia and hyperalgesia in the different models, suggesting that the role of these mediators may not be reduced exclusively to the production and maintenance of pain. PMID:27397080

  19. The Protective Effect of Aged Garlic Extract on Nonsteroidal Anti-Inflammatory Drug-Induced Gastric Inflammations in Male Albino Rats

    PubMed Central

    Badr, Gehan Moustafa; AL-Mulhim, Jawaher Abdulaziz

    2014-01-01

    Natural products have long gained wide acceptance among the public and scientific community in the gastrointestinal ulcerative field. The present study explore the potential effects of aged garlic extract (AGE) on indomethacin-(IN-) induced gastric inflammation in male rats. Animals were divided into six groups (n = 8) control group, IN-induced gastric inflammation group via oral single dose (30 mg/kg to fasted rats) two AGE orally administered groups (100 and 200 mg/kg for 30 consecutive days) two AGE orally administered groups to rats pretreated with IN at the same aforementioned doses. The results declared the more potent effect of the higher AGE dose (200 mg/kg) as compared to that of the 100 mg/kg dose in the gastroprotective effects reflected by significant gastric mucosal healing of damage and reduction in the total microbial induced due to indomethacin administration. In addition to the significant effect to normalize the significant increase in malondialdehyde (MDA), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α) values, and the significant decrease in the total glutathione (tGSH), superoxide dismutase (SOD), and catalase (CAT) values induced by indomethacin. The results support AGE antioxidant, anti-inflammatory, and antimicrobial potency reflected by the healing of the gastric tissue damage induced by indomethacin. PMID:24876878

  20. The protective effect of aged garlic extract on nonsteroidal anti-inflammatory drug-induced gastric inflammations in male albino rats.

    PubMed

    Badr, Gehan Moustafa; Al-Mulhim, Jawaher Abdulaziz

    2014-01-01

    Natural products have long gained wide acceptance among the public and scientific community in the gastrointestinal ulcerative field. The present study explore the potential effects of aged garlic extract (AGE) on indomethacin-(IN-) induced gastric inflammation in male rats. Animals were divided into six groups (n = 8) control group, IN-induced gastric inflammation group via oral single dose (30 mg/kg to fasted rats) two AGE orally administered groups (100 and 200 mg/kg for 30 consecutive days) two AGE orally administered groups to rats pretreated with IN at the same aforementioned doses. The results declared the more potent effect of the higher AGE dose (200 mg/kg) as compared to that of the 100 mg/kg dose in the gastroprotective effects reflected by significant gastric mucosal healing of damage and reduction in the total microbial induced due to indomethacin administration. In addition to the significant effect to normalize the significant increase in malondialdehyde (MDA), myeloperoxidase (MPO), tumor necrosis factor- α (TNF- α ) values, and the significant decrease in the total glutathione (tGSH), superoxide dismutase (SOD), and catalase (CAT) values induced by indomethacin. The results support AGE antioxidant, anti-inflammatory, and antimicrobial potency reflected by the healing of the gastric tissue damage induced by indomethacin. PMID:24876878

  1. Suppression of Transglutaminase-2 is Involved in Anti-Inflammatory Actions of Glucosamine in 12-O-Tetradecanoylphorbol-13-Acetate-Induced Skin Inflammation

    PubMed Central

    Cho, Sun A; Lee, Hye Ja; Lee, Eun Ji; Kang, June Hee; Kim, You Lee; Kim, Hyun Ji; Oh, Seung Hyun; Choi, Changsun; Lee, Ho; Kim, Soo Youl

    2012-01-01

    Glucosamine (GS) is well known for the treatment of inflam-mation. However, the mechanism and efficacy of GS for skin inflammation are unclear. The aim of this study was to evaluate the effects and mechanism of GS in the mouse 12-O-tetradecanoyl 13-acetate (TPA)-induced ear edema model. TPA-induced ear edema was evoked in ICR or transglutaminase 2 (Tgase-2) (-/-) mice. GS was administered orally (10-100 mg/kg) or topically (0.5-2.0 w/v %) prior to TPA treatment. Orally administered GS at 10 mg/kg showed a 76 or 57% reduction in ear weight or myeloperoxidase, respectively, and a decreased expression of cyclooxy-genase-2 (COX-2), NF-κB and Tgase-2 in TPA-induced ear edema by western blot and immunohistochemistry. Role of Tgase-2 in TPA ear edema is examined using Tgase-2 (-/-) mice and TPA did not induce COX-2 expression in ear of Tgase-2 (-/-) mice. These observations suggested that Tgase-2 is involved in TPA-induced COX-2 expression in the inflamed ear of mice and anti-inflammatory effects of glucosamine is mediated through suppression of Tgase-2 in TPA ear edema. PMID:24009824

  2. Suppression of molecular inflammatory pathways by Toll-like receptor 7, 8, and 9 antagonists in a model of IL-23-induced skin inflammation.

    PubMed

    Suárez-Fariñas, Mayte; Arbeit, Robert; Jiang, Weiwen; Ortenzio, Francesca S; Sullivan, Tim; Krueger, James G

    2013-01-01

    Psoriasis is a complex inflammatory disease resulting from the activation of T helper (Th) 1 and Th17 cells. Recent evidence suggests that abnormal activation of Toll-like receptors (TLRs) 7, 8 and 9 contributes to the initiation and maintenance of psoriasis. We have evaluated the effects of TLR antagonists on the gene expression profile in an IL-23-induced skin inflammation model in mice. Psoriasis-like skin lesions were induced in C57BL/6 mice by intradermal injection of IL-23 in the dorsum. Two TLR antagonists were compared: IMO-3100, an antagonist of TLRs 7 and 9, and IMO-8400, an antagonist of TLRs 7, 8 and 9, both of which previously have been shown to reduce epidermal hyperplasia in this model. Skin gene expression profiles of IL-23-induced inflammation were compared with or without TLR antagonist treatment. IL-23 injection resulted in alteration of 5100 gene probes (fold change ≥ 2, FDR < 0.05) including IL-17 pathways that are up-regulated in psoriasis vulgaris. Targeting TLRs 7, 8 and 9 with IMO-8400 resulted in modulation of more than 2300 mRNAs while targeting TLRs 7 and 9 with IMO-3100 resulted in modulation of more than 1900 mRNAs. Both agents strongly decreased IL-17A expression (>12-fold reduction), normalized IL-17 induced genes such as beta-defensin and CXCL1, and normalized aberrant expression of keratin 16 (indicating epidermal hyperplasia). These results suggest that IL-23-driven inflammation in mouse skin may be dependent on signaling mediated by TLRs 7, 8, and 9 and that these receptors represent novel therapeutic targets in psoriasis vulgaris and other diseases with similar pathophysiology. PMID:24386404

  3. Suppression of Molecular Inflammatory Pathways by Toll-Like Receptor 7, 8, and 9 Antagonists in a Model of IL-23-Induced Skin Inflammation

    PubMed Central

    Suárez-Fariñas, Mayte; Arbeit, Robert; Jiang, Weiwen; Ortenzio, Francesca S.; Sullivan, Tim; Krueger, James G.

    2013-01-01

    Psoriasis is a complex inflammatory disease resulting from the activation of T helper (Th) 1 and Th17 cells. Recent evidence suggests that abnormal activation of Toll-like receptors (TLRs) 7, 8 and 9 contributes to the initiation and maintenance of psoriasis. We have evaluated the effects of TLR antagonists on the gene expression profile in an IL-23-induced skin inflammation model in mice. Psoriasis-like skin lesions were induced in C57BL/6 mice by intradermal injection of IL-23 in the dorsum. Two TLR antagonists were compared: IMO-3100, an antagonist of TLRs 7 and 9, and IMO-8400, an antagonist of TLRs 7, 8 and 9, both of which previously have been shown to reduce epidermal hyperplasia in this model. Skin gene expression profiles of IL-23-induced inflammation were compared with or without TLR antagonist treatment. IL-23 injection resulted in alteration of 5100 gene probes (fold change ≥ 2, FDR < 0.05) including IL-17 pathways that are up-regulated in psoriasis vulgaris. Targeting TLRs 7, 8 and 9 with IMO-8400 resulted in modulation of more than 2300 mRNAs while targeting TLRs 7 and 9 with IMO-3100 resulted in modulation of more than 1900 mRNAs. Both agents strongly decreased IL-17A expression (>12-fold reduction), normalized IL-17 induced genes such as beta-defensin and CXCL1, and normalized aberrant expression of keratin 16 (indicating epidermal hyperplasia). These results suggest that IL-23-driven inflammation in mouse skin may be dependent on signaling mediated by TLRs 7, 8, and 9 and that these receptors represent novel therapeutic targets in psoriasis vulgaris and other diseases with similar pathophysiology. PMID:24386404

  4. Does Inflammation Mediate the Obesity and BPH Relationship? An Epidemiologic Analysis of Body Composition and Inflammatory Markers in Blood, Urine, and Prostate Tissue, and the Relationship with Prostate Enlargement and Lower Urinary Tract Symptoms

    PubMed Central

    Fowke, Jay H.; Koyama, Tatsuki; Fadare, Oluwole; Clark, Peter E.

    2016-01-01

    Background BPH is a common disease associated with age and obesity. However, the biological pathways between obesity and BPH are unknown. Our objective was to investigate biomarkers of systemic and prostate tissue inflammation as potential mediators of the obesity and BPH association. Methods Participants included 191 men without prostate cancer at prostate biopsy. Trained staff measured weight, height, waist and hip circumferences, and body composition by bioelectric impedance analysis. Systemic inflammation was estimated by serum IL-6, IL-1β, IL-8, and TNF-α; and by urinary prostaglandin E2 metabolite (PGE-M), F2-isoprostane (F2iP), and F2-isoprostane metabolite (F2iP-M) levels. Prostate tissue was scored for grade, aggressiveness, extent, and location of inflammatory regions, and also stained for CD3 and CD20 positive lymphocytes. Analyses investigated the association between multiple body composition scales, systemic inflammation, and prostate tissue inflammation against BPH outcomes, including prostate size at ultrasound and LUTS severity by the AUA-symptom index (AUA-SI). Results Prostate size was significantly associated with all obesity measures. For example, prostate volume was 5.5 to 9.0 mls larger comparing men in the 25th vs. 75th percentile of % body fat, fat mass (kg) or lean mass (kg). However, prostate size was not associated with proinflammatory cytokines, PGE-M, F2iP, F2iP-M, prostate tissue inflammation scores or immune cell infiltration. In contrast, the severity of prostate tissue inflammation was significantly associated with LUTS, such that there was a 7 point difference in AUA-SI between men with mild vs. severe inflammation (p = 0.004). Additionally, men with a greater waist-hip ratio (WHR) were significantly more likely to have severe prostate tissue inflammation (p = 0.02), and a high WHR was significantly associated with moderate/severe LUTS (OR = 2.56, p = 0.03) among those participants with prostate tissue inflammation. Conclusion

  5. A supramolecular topical gel derived from a non-steroidal anti-inflammatory drug, fenoprofen, is capable of treating skin inflammation in mice.

    PubMed

    Majumder, Joydeb; Yedoti, Pavani; Dastidar, Parthasarathi

    2015-02-28

    A new series of bioconjugates derived from a non-steroidal anti-inflammatory drug (NSAID), namely fenoprofen, has been synthesised by amidation with various biogenic molecules such as β-alanine, aminocaproic acid and tyramine with the aim of converting the NSAID into a supramolecular gelator for plausible biomedical applications. One such bioconjugate (2) showed gelation ability with methylsalicylate (MS) and 1% menthol in methyl salicylate (MMS) solvents. These gels were characterized by table top rheology, high resolution-transmission electron microscopy (HR-TEM) and dynamic rheology. Gelator 2 was found to be biostable both in proteolytic enzymes and in blood serum of BALB/c mouse under physiological conditions. It was also found to be biocompatible, as revealed by the methyl thiazolyldiphenyl tetrazolium bromide (MTT) assay in mouse macrophage RAW 264.7 and mouse myoblast C2C12 cells. The anti-inflammatory response (prostaglandin E2 assay, denoted PGE2 assay) of 2 was comparable to that of the parent drug fenoprofen calcium salt. Finally, a topical gel formulation of 2 displayed in vivo self-delivery application in treating imiquimod (IMQ) induced skin inflammation in BALB/c mice. PMID:25554116

  6. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-01-01

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases. PMID:27589705

  7. Keratoconus: an inflammatory disorder?

    PubMed Central

    Galvis, V; Sherwin, T; Tello, A; Merayo, J; Barrera, R; Acera, A

    2015-01-01

    Keratoconus has been classically defined as a progressive, non-inflammatory condition, which produces a thinning and steepening of the cornea. Its pathophysiological mechanisms have been investigated for a long time. Both genetic and environmental factors have been associated with the disease. Recent studies have shown a significant role of proteolytic enzymes, cytokines, and free radicals; therefore, although keratoconus does not meet all the classic criteria for an inflammatory disease, the lack of inflammation has been questioned. The majority of studies in the tears of patients with keratoconus have found increased levels of interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), and matrix metalloproteinase (MMP)-9. Eye rubbing, a proven risk factor for keratoconus, has been also shown recently to increase the tear levels of MMP-13, IL-6, and TNF-α. In the tear fluid of patients with ocular rosacea, IL-1α and MMP-9 have been reported to be significantly elevated, and cases of inferior corneal thinning, resembling keratoconus, have been reported. We performed a literature review of published biochemical changes in keratoconus that would support that this could be, at least in part, an inflammatory condition. PMID:25931166

  8. Keratoconus: an inflammatory disorder?

    PubMed

    Galvis, V; Sherwin, T; Tello, A; Merayo, J; Barrera, R; Acera, A

    2015-07-01

    Keratoconus has been classically defined as a progressive, non-inflammatory condition, which produces a thinning and steepening of the cornea. Its pathophysiological mechanisms have been investigated for a long time. Both genetic and environmental factors have been associated with the disease. Recent studies have shown a significant role of proteolytic enzymes, cytokines, and free radicals; therefore, although keratoconus does not meet all the classic criteria for an inflammatory disease, the lack of inflammation has been questioned. The majority of studies in the tears of patients with keratoconus have found increased levels of interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), and matrix metalloproteinase (MMP)-9. Eye rubbing, a proven risk factor for keratoconus, has been also shown recently to increase the tear levels of MMP-13, IL-6, and TNF-α. In the tear fluid of patients with ocular rosacea, IL-1α and MMP-9 have been reported to be significantly elevated, and cases of inferior corneal thinning, resembling keratoconus, have been reported. We performed a literature review of published biochemical changes in keratoconus that would support that this could be, at least in part, an inflammatory condition. PMID:25931166

  9. Bioenergetic Dysfunction and Inflammation in Alzheimer’s Disease: A Possible Connection

    PubMed Central

    Wilkins, Heather M.; Carl, Steven M.; Greenlief, Alison C. S.; Festoff, Barry W.; Swerdlow, Russell H.

    2014-01-01

    Inflammation is observed in Alzheimer’s disease (AD) subject brains. Inflammation-relevant genes are increasingly implicated in AD genetic studies, and inflammatory cytokines to some extent even function as peripheral biomarkers. What underlies AD inflammation is unclear, but no “foreign” agent has been implicated. This suggests that internally produced damage-associated molecular pattern (DAMPs) molecules may drive inflammation in AD. A more complete characterization and understanding of AD-relevant DAMPs could advance our understanding of AD and suggest novel therapeutic strategies. In this review, we consider the possibility that mitochondria, intracellular organelles that resemble bacteria in many ways, trigger and maintain chronic inflammation in AD subjects. Data supporting the possible nexus between AD-associated bioenergetic dysfunction are discussed. PMID:25426068

  10. Strategies for managing periodontal inflammation.

    PubMed

    Schonfeld, Steven E

    2010-04-01

    Most of the tissue destruction in periodontal disease is caused by the patient's inflammatory response. Classical approaches to controlling inflammation rely on attempts to eliminate pathogenic bacteria that incite the inflammatory response through mechanical or chemical means. This approach still has a place in treating periodontal inflammation today. Emerging and future approaches will rely more on modifying the inflammatory response itself, by limiting the activity of proinflammatory pathways and by amplifying pathways that resolve inflammation. PMID:20509367

  11. Evaluation and Comparison of the Biopathology of Collagen and Inflammation in the Extracellular Matrix of Oral Epithelial Dysplasias and Inflammatory Fibrous Hyperplasia Using Picrosirius Red Stain and Polarising Microscopy: A Preliminary Study

    PubMed Central

    Varghese, Soma Susan; Sarojini, Sreenivasan Bargavan; George, Giju Baby; Vinod, Sankar; Mathew, Philips; Babu, Anulekh; Sebastian, Joseph

    2015-01-01

    Background: The role of tumour inflammation and the dysplastic epithelial-stromal interactions on the nature of collagen fibres in the extracellular matrix of dysplastic epithelium is not fully understood. The present study was aimed to evaluate and compare the inflammation and pathological stromal collagen (loosely packed thin disorganized collagen) present in mild, moderate and severe epithelial dysplasias with that of inflammatory fibrous hyperplasias. The basement membrane intactness of epithelial dysplasias was also evaluated to determine if dysplastic epithelial mesenchymal interaction has any role in the integrity of stromal collagen in epithelial dysplasia. Methods: Oral epithelial dysplasias, inflammatory fibrous hyperplasia and normal oral mucosal samples were used for the study. Packing, thickness and orientation of collagen fibres in mild, moderate and severe grades of oral epithelial dysplasias (n = 24), inflammatory fibrous hyperplasia (n = 8) and normal oral mucosal samples (n = 8) were analysed based on the polarisation of collagen fibres in picrosirius red polarising stain under polarising microscope. Results: All the grades of epithelial dysplasias showed greenish yellow birefringence confirming the presence of loosely arranged pathological collagen in the presence of moderate inflammation. All the cases of inflammatory fibrous hyperplasia showed red polarisation hue and moderate inflammation. A statistically significant difference was found in the packing and orientation of collagen when epithelial dysplasias and inflammatory fibrous hyperplasia were compared (P < 0.01). When the intactness of basement membrane integrity was compared in all the groups of epithelial dysplasia, a statistically significant result was obtained (P < 0.05). Conclusions: Presence of significant amount of loosely packed thin disoriented collagen even in mild epithelial dysplasia suggests that tumourigenic factors are released to connective tissue stroma much earlier than

  12. Inflammation and keratoconus.

    PubMed

    McMonnies, Charles W

    2015-02-01

    Keratoconus (KC) has been traditionally classified as a noninflammatory disease. Barring loss of function, the other classic signs of inflammation (heat, redness, swelling, pain) are not usually obvious or even apparent in KC. This clinical perspective examines the evidence and implications of numerous inflammatory processes that have been recognized in the tears of KC patients as well as some inflammation relevant differences found in the KC cornea. The roles of inflammation in corneal trauma attributed to eye rubbing and/or contact lens wear are examined as is the significance of atopy, allergic disease, dry eye disease, degradative enzyme activity, wound healing, reduced anti-inflammatory capacity, and ultraviolet irradiation. It is possible that any comorbidity that is inflammatory in nature may add synergistically to other forms of KC-related inflammation and exacerbate its pathogenetic processes. For example, some features of inflammation in ocular rosacea and associated corneal thinning and distortion could have some possible relevance to KC. An analogy is drawn with osteoarthritis, which also involves significant inflammatory processes but, like KC, does not meet all the classic criteria for an inflammatory disease. Classifying KC as quasi-inflammatory (inflammatory-related) rather than a noninflammatory disease appears to be more appropriate and may help focus attention on the possibility of developing effective anti-inflammatory therapies for its management. PMID:25397925

  13. Gut lavage IgG and interleukin 1 receptor antagonist:interleukin 1 beta ratio as markers of intestinal inflammation in children with inflammatory bowel disease.

    PubMed Central

    Troncone, R; Caputo, N; Campanozzi, A; Cucciardi, M; Esposito, V; Russo, R; De Vizia, B; Greco, L; Cucchiara, S

    1997-01-01

    BACKGROUND: Whole gut lavage is currently used as preparation before radiological or endoscopic examination of the large bowel. AIM: To validate the gut lavage technique for the assessment of mucosal inflammation, by measuring intestinal IgG and interleukin 1 beta (IL-1 beta) in the fluid obtained. PATIENTS: Sixteen children with Crohn's disease (CD), 14 with ulcerative colitis (UC), and 22 age matched controls. METHODS: Isotonic, non-absorbable polyethylene glycol based lavage solution was given orally or by nasogastric tube. Clear fluid was collected, filtered, and treated with protease inhibitors. IgG, IL-1 beta and IL-1-receptor antagonist (IL-1-ra) were measured by sandwich enzyme linked immunosorbent assay (ELISA). RESULTS: In patients with UC and CD, IgG and IL-1 beta levels were significantly (p < 0.001) higher than in controls. A positive correlation (p < 0.05) was found with disease activity scores. IL-1-ra levels were not significantly different in UC and CD, when compared with controls, but the IL-1-ra:IL-1 beta ratio was significantly (p < 0.01) lower in patients with UC and CD, and negatively (p < 0.001) correlated with IgG levels in lavage fluid. CONCLUSIONS: Gut lavage fluid IgG and IL-1 beta levels and IL-1-ra:IL-1 beta ratio may provide objective discrimination between active and inactive disease in children with inflammatory bowel disease. PMID:9274473

  14. Oral Delivery of Particulate Transforming Growth Factor Beta 1 and All-Trans Retinoic Acid Reduces Gut Inflammation in Murine Models of Inflammatory Bowel Disease

    PubMed Central

    Conway, Thomas F.; Hammer, Laura; Furtado, Stacia; Mathiowitz, Edith; Nicoletti, Ferdinando; Mangano, Katia; Auci, Dominick L.

    2015-01-01

    Background and aims: We investigated oral delivery of transforming growth factor beta 1 [TGFβ]- and all-trans retinoic acid [ATRA]-loaded microspheres as therapy for gut inflammation in murine models of inflammatory bowel disease [IBD]. Methods: ATRA and TGFβ were separately encapsulated in poly [lactic-co-glycolic] acid or polylactic acid microspheres [respectively]. TGFβ was encapsulated using proprietary phase-inversion nanoencapsulation [PIN®] technology. Results: PIN® particles provided sustained release of bioactive protein for at least 4 days and were stable for up to 52 weeks when stored at either 40C or -200C. In the SCID mouse CD4 + CD25- T cell transfer model of IBD, oral treatment starting at disease onset prevented weight loss, significantly reduced average disease score [~ 50%], serum amyloid A levels [~ 5-fold], colon weight-to-length ratio [~ 50%], and histological score [~ 5-fold]. Conclusions: Both agents given together outperformed either separately. Highest TGFβ doses and most frequent dose schedule were most effective. Activity was associated with a significant increase [45%] in Foxp3 expression by colonic lamina propria CD4+ CD25+ T-cells. Activity was also demonstrated in dextran sulphate sodium-induced colitis. The data support development of the combination product as a novel, targeted immune based therapy for treatment for IBD. PMID:25987350

  15. Distribution of interleukin-10 family cytokines in serum and synovial fluid of patients with inflammatory arthritis reveals different contribution to systemic and joint inflammation

    PubMed Central

    Scrivo, R; Conigliaro, P; Riccieri, V; Di Franco, M; Alessandri, C; Spadaro, A; Perricone, R; Valesini, G

    2015-01-01

    Evidence exists that interleukin (IL)-10 family cytokines may be involved in the pathogenesis of rheumatoid arthritis (RA). We sought to determine whether or not these cytokines are involved in psoriatic arthritis (PsA). We conducted a prospective study on patients with PsA, RA and osteoarthritis (OA); healthy controls (HC) were also included. We analysed IL-20, IL-24 and IL-19 serum and synovial fluid (SF) levels and change of serum levels following treatment with biological agents. IL-20 serum levels were increased in PsA and RA compared with OA patients and HC and with matched SF levels. IL-24 serum levels in PsA, RA and OA patients were higher than those in HC and also with respect to matched SF in PsA. IL-19 serum levels were higher in HC and OA compared with PsA and RA patients; IL-19 SF levels were higher in PsA and RA compared with OA patients, and in PsA compared with RA patients. PsA and RA patients showed a reduction of IL-19 serum levels after biological treatment. Therefore, IL-19 seems to be involved mainly in the joint inflammation, whereas IL-20 and IL-24 appear to participate mainly in the systemic responses. These findings may further the comprehension of the contribution of these cytokines to the inflammatory response involved in chronic arthritis, as well as to the development of novel therapeutic strategies. PMID:25178435

  16. Vitamin D and inflammation

    PubMed Central

    Cannell, John J; Grant, William B; Holick, Michael F

    2014-01-01

    Several studies found an inverse relationship between 25-hydroxyvitamin D [25(OH)D] and markers of inflammation. A controversy exists as to whether vitamin D lowers inflammation or whether inflammation lowers 25(OH)D concentrations. Certainly 25(OH)D concentrations fall after major surgery. However, is this due to inflammation lowering 25(OH)D or is 25(OH)D being metabolically cleared by the body to quell inflammation. We searched the literature and found 39 randomized controlled trials (RCT) of vitamin D and markers of inflammation. Seventeen found significantly reduced inflammatory markers, 19 did not, one was mixed and one showed adverse results. With few exceptions, studies in normal subjects, obesity, type 2 diabetics, and stable cardiovascular disease did not find significant beneficial effects. However, we found that 6 out of 7 RCTS of vitamin D3 in highly inflammatory conditions (acute infantile congestive heart failure, multiple sclerosis, inflammatory bowel disease, cystic fibrosis, SLE, active TB and evolving myocardial infarction) found significant reductions. We found baseline and final 25(OH)D predicted RCTs with significant reduction in inflammatory markers. Vitamin D tends to modestly lower markers of inflammation in highly inflammatory conditions, when baseline 25(OH)D levels were low and when achieved 25(OH)D levels were higher. Future inquiries should: recruit subjects with low baseline 25(OH)D levels, subjects with elevated markers of inflammation, subjects with inflammatory conditions, achieve adequate final 25(OH)D levels, and use physiological doses of vitamin D. We attempted to identify all extant randomized controlled trials (RCTs) of vitamin D that used inflammatory markers as primary or secondary endpoints. PMID:26413186

  17. PET Imaging of Inflammation Biomarkers

    PubMed Central

    Wu, Chenxi; Li, Fang; Niu, Gang; Chen, Xiaoyuan

    2013-01-01

    Inflammation plays a significant role in many disease processes. Development in molecular imaging in recent years provides new insight into the diagnosis and treatment evaluation of various inflammatory diseases and diseases involving inflammatory process. Positron emission tomography using 18F-FDG has been successfully applied in clinical oncology and neurology and in the inflammation realm. In addition to glucose metabolism, a variety of targets for inflammation imaging are being discovered and utilized, some of which are considered superior to FDG for imaging inflammation. This review summarizes the potential inflammation imaging targets and corresponding PET tracers, and the applications of PET in major inflammatory diseases and tumor associated inflammation. Also, the current attempt in differentiating inflammation from tumor using PET is also discussed. PMID:23843893

  18. Morin, a dietary bioflavonol suppresses monosodium urate crystal-induced inflammation in an animal model of acute gouty arthritis with reference to NLRP3 inflammasome, hypo-xanthine phospho-ribosyl transferase, and inflammatory mediators.

    PubMed

    Dhanasekar, Chitra; Rasool, Mahaboobkhan

    2016-09-01

    The anti-inflammatory effect of morin, a dietary bioflavanol was explored on monosodium urate (MSU) crystal-induced inflammation in rats, an experimental model for acute gouty arthritis. Morin treatment (30mg/kg b.wt) significantly attenuated the ankle swelling and the levels of lipid peroxidation, nitric oxide, serum pro-inflammatory cytokines (tumor necrosis factor (TNF) -α, interleukin (IL)-1β, and IL-6), monocyte chemoattractant protein (MCP)-1, vascular endothelial growth factor (VEGF), prostaglandin E2 (PGE2), and articular elastase along with an increased anti-oxidant status (catalase (CAT) and superoxide dismutase (SOD)) in the joint homogenate of MSU crystal-induced rats. Histological assessment revealed that morin limited the diffusion of joint space, synovial hyperplasia, and inflammatory cell infiltrations. The mRNA expression of NLRP3 (nucleotide oligomerization domain (NOD)-like receptor family, pyrin domain containing 3) inflammasome, caspase-1, pro-inflammatory cytokines, MCP-1, inflammatory enzymes (inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2)), and nuclear factor-kappa B (NF-κB) p65 was found downregulated and HPRT (hypo-xanthine phospho-ribosyl transferase) mRNA expression was upregulated in morin treated MSU crystal-induced rats. In addition, morin treatment reduced the protein expression of NF-κB p65, p-NF-κB p65, iNOS, COX-2, and TNF-α. The results clearly demonstrated that morin exert a potent anti-inflammatory effect on MSU crystal-induced inflammation in rats. PMID:27268719

  19. Anti-inflammatory actions of Chemoattractant Receptor-homologous molecule expressed on Th2 by the antagonist MK-7246 in a novel rat model of Alternaria alternata elicited pulmonary inflammation.

    PubMed

    Gil, Malgorzata A; Caniga, Michael; Woodhouse, Janice D; Eckman, Joseph; Lee, Hyun-Hee; Salmon, Michael; Naber, John; Hamilton, Valerie T; Sevilla, Raquel S; Bettano, Kimberly; Klappenbach, Joel; Moy, Lily; Correll, Craig C; Gervais, Francois G; Siliphaivanh, Phieng; Zhang, Weisheng; Zhang-Hoover, Jie; McLeod, Robbie L; Cicmil, Milenko

    2014-11-15

    Alternaria alternata is a fungal allergen linked to the development of severe asthma in humans. In view of the clinical relationship between A. alternata and asthma, we sought to investigate the allergic activity of this antigen after direct application to the lungs of Brown Norway rats. Here we demonstrate that a single intratracheal instillation of A. alternata induces dose and time dependent eosinophil influx, edema and Type 2 helper cell cytokine production in the lungs of BN rats. We established the temporal profile of eosinophilic infiltration and cytokine production, such as Interleukin-5 and Interleukin-13, following A. alternata challenge. These responses were comparable to Ovalbumin induced models of asthma and resulted in peak inflammatory responses 48h following a single challenge, eliminating the need for multiple sensitizations and challenges. The initial perivascular and peribronchiolar inflammation preceded alveolar inflammation, progressing to a more sub-acute inflammatory response with notable epithelial cell hypertrophy. To limit the effects of an A. alternata inflammatory response, MK-7246 was utilized as it is an antagonist for Chemoattractant Receptor-homologous molecule expressed in Th2 cells. In a dose-dependent manner, MK-7246 decreased eosinophil influx and Th2 cytokine production following the A. alternata challenge. Furthermore, therapeutic administration of corticosteroids resulted in a dose-dependent decrease in eosinophil influx and Th2 cytokine production. Reproducible asthma-related outcomes and amenability to pharmacological intervention by mechanisms relevant to asthma demonstrate that an A. alternata induced pulmonary inflammation in BN rats is a valuable preclinical pharmacodynamic in vivo model for evaluating the pharmacological inhibitors of allergic pulmonary inflammation. PMID:25261040

  20. Inflammation in Reproductive Disorders

    PubMed Central

    Weiss, Gerson; Goldsmith, Laura T.; Taylor, Robert N.; Bellet, Dominique; Taylor, Hugh S.

    2011-01-01

    Inflammatory disorders account for a significant percentage of gynecologic disease, particularly in reproductive age women. Inflammation is a basic method by which we respond to infection, irritation, or injury. Inflammation is now recognized as a type of nonspecific immune response, either acute or chronic. In gynecology, inflammation leads to anatomic disorders primarily as a result of infectious disease; however inflammation can affect ovulation and hormone production as well as be associated with endometriosis. Similarly, immune cell trafficking is an important component of cyclic endometrial development in each menstrual cycle. These immune cells are required for endometrial function, producing a vast array of inflammatory cytokines. Inflammation alters endometrial receptivity, however it may also play a role in tissue repair and remodeling. Finally, inflammation affects the trophoblast and trophoblast—endometrial interaction. Some components of the immune response are required for optimal fertility and normal tissue remodeling. A better understanding of the necessary role of inflammation in reproduction will allow more rational and targeted treatment of inflammatory disorders in reproductive medicine. PMID:19208790

  1. Laing distal myopathy pathologically resembling inclusion body myositis

    PubMed Central

    Roda, Ricardo H; Schindler, Alice B; Blackstone, Craig; Mammen, Andrew L; Corse, Andrea M; Lloyd, Thomas E

    2014-01-01

    Mutations in MYH7 cause autosomal dominant Laing distal myopathy. We present a family with a previously reported deletion (c.5186_5188delAGA, p.K1729del). Muscle pathology in one family member was characterized by an inflammatory myopathy with rimmed vacuoles, increased MHC Class I expression, and perivascular and endomysial muscle inflammation comprising CD3+, CD4+, CD8+, and CD68+ inflammatory cells. Interestingly, this biopsy specimen contained TDP-43, p62, and SMI-31-positive protein aggregates typical of inclusion body myositis. These findings should alert physicians to the possibility that patients with MYH7 mutations may have muscle biopsies showing pathologic findings similar to inclusion body myositis. PMID:25574480

  2. Neuroprotective effects of activated protein C on intrauterine inflammation-induced neonatal white matter injury are associated with the downregulation of fibrinogen-like protein 2/fibroleukin prothrombinase and the inhibition of pro-inflammatory cytokine expression

    PubMed Central

    JIN, SHENG-JUAN; LIU, YAN; DENG, SHI-HUA; LIAO, LI-HONG; LIN, TU-LIAN; NING, QIN; LUO, XIAO-PING

    2015-01-01

    Maternal intrauterine inflammation or infection is an important risk factor for neonatal cerebral white matter injury (WMI) and future neurological deficits. Activated protein C (APC), a natural anticoagulant, has been shown to exhibit anti-inflammatory, anti-apoptotic, profibrinolytic and cytoprotective activities. Recent studies have demonstrated that the novel prothrombinase, fibrinogen-like protein 2 (fgl2), contributes to the pathogenesis of a number of inflammatory diseases through the generation of fibrin. Thus, we hypothesized that APC may regulate coagulant and inflammatory processes and improve brain injury in an experimental rat model of intrauterine inflammation-induced WMI. The animal model was established by the administration of an intraperitoneal injection of lipopolysaccharide (LPS) to pregnant Sprague-Dawley rats on embryonic day (E)17 and E18. APC was administered intraperitoneally 30 min after the second LPS injection. The expression of fgl2 and the pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β expression in the placentas and fetal brains was determined on E19. Nerve cell death, the brain water content and protease-activated receptor 1 (PAR1) and nuclear factor κB (NF-κB) p65 expression was detected in the fetal brains. WMI in the neonatal rat brains was evaluated by hematoxylin and eosin (H&E) staining and immunohistochemistry for myelin basic protein (MBP). The results revealed that APC markedly reduced the LPS-induced increase in fgl2 expression and fibrin deposition, as well as the production of the pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β, in the placentas and fetal brains. In addition, APC attenuated cerebral apoptosis and brain edema, downregulated PAR1 and NF-κB p65 expression in the fetal brains, and improved hypomyelination and structural disturbances in the periventricular area of the neonatal rat brains. Our observations provide evidence that APC attenuates fetal

  3. Atrial fibrillation and inflammation

    PubMed Central

    Ozaydin, Mehmet

    2010-01-01

    Atrial fibrillation (AF) is the most common clinical arrhythmia. Recent investigations have suggested that inflammation might have a role in the pathophysiology of AF. In this review, the association between inflammation and AF, and the effects of several agents that have anti-inflammatory actions, such as statins, polyunsaturated fatty acids, corticosteroids and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, have been investigated. PMID:21160591

  4. Pelvic Inflammatory Disease

    MedlinePlus

    Pelvic inflammatory disease (PID) is an infection and inflammation of the uterus, ovaries, and other female reproductive organs. It causes scarring ... United States. Gonorrhea and chlamydia, two sexually transmitted diseases, are the most common causes of PID. Other ...

  5. Post-mating inflammatory responses of the uterus.

    PubMed

    Katila, T

    2012-08-01

    This review attempts to summarize the current knowledge on uterine inflammatory response after mating in horses, pigs and cattle. Post-mating endometritis has been extensively studied in horses as it has been considered to cause infertility. The inflammation is known to occur also in cattle, but it has not been investigated to a similar extent. There are a number of publications about mechanisms of post-mating uterine inflammation in pigs, which seem to resemble those in horses. The major focus of this review is the horse, but relevant literature is presented also on swine and cattle. Spermatozoa, seminal plasma and semen extenders play roles in the induction of inflammation. In addition, sperm numbers, concentration and viability, as well as the site of semen deposition may modulate the inflammatory response. Cytokines, polymorphonuclear leucocytes (PMN) and mononuclear cells represent the uterine inflammatory response to mating. Inflammation is the first line of defence against invasion and eliminates excess spermatozoa and bacteria. Semen deposition elicits a massive PMN invasion, followed by phagocytosis of sperm aided by the formation of neutrophil extracellular traps. Exposure of the female genital tract to semen is important also for endometrial receptivity and pre-implantation embryo development. Seminal plasma (SP) and inflammation elicit transient immune tolerance to antigens present in semen. SP contains immune-regulatory molecules that activate and control immune responses to antigens by stimulating expression of cytokines and growth factors and by initiating tissue remodelling. SP also regulates ovarian function. Effective elimination of excess sperm and inflammatory by-products and subsequent rapid return of the endometrium to the normal state is a prerequisite for pregnancy. Uterine backflow, driven by myometrial contractions and requiring a patent cervix, is an important physical tool in uterine drainage. PMID:22913558

  6. Social perception of facial resemblance in humans.

    PubMed

    DeBruine, Lisa M; Jones, Benedict C; Little, Anthony C; Perrett, David I

    2008-02-01

    Two lines of reasoning predict that highly social species will have mechanisms to influence behavior toward individuals depending on their degree of relatedness. First, inclusive fitness theory leads to the prediction that organisms will preferentially help closely related kin over more distantly related individuals. Second, evaluation of the relative costs and potential benefits of inbreeding suggests that the degree of kinship should also be considered when choosing a mate. In order to behaviorally discriminate between individuals with different levels of relatedness, organisms must be able to discriminate cues of kinship. Facial resemblance is one such potential cue in humans. Computer-graphic manipulation of face images has made it possible to experimentally test hypotheses about human kin recognition by facial phenotype matching. We review recent experimental evidence that humans respond to facial resemblance in ways consistent with inclusive fitness theory and considerations of the costs of inbreeding, namely by increasing prosocial behavior and positive attributions toward self-resembling images and selectively tempering attributions of attractiveness to other-sex faces in the context of a sexual relationship. PMID:18157627

  7. Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl β-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells

    PubMed Central

    Vo, Van Anh; Lee, Jae-Won; Kim, Ji-Young; Park, Jun-Ho; Lee, Hee Jae; Kim, Sung-Soo; Kwon, Yong-Soo

    2014-01-01

    Hydroxycinnamic acids have been reported to possess numerous pharmacological activities such as antioxidant, anti-inflammatory, and anti-tumor properties. However, the biological activity of 1-p-coumaroyl β-D-glucoside (CG), a glucose ester derivative of p-coumaric acid, has not been clearly examined. The objective of this study is to elucidate the anti-inflammatory action of CG in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. In the present study, CG significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the protein expression of iNOS and COX-2. CG also inhibited LPS-induced secretion of pro-inflammatory cytokines, IL-1β and TNF-α. In addition, CG significantly suppressed LPS-induced degradation of IκB. To elucidate the underlying mechanism by which CG exerts its anti-inflammatory action, involvement of various signaling pathways were examined. CG exhibited significantly increased Akt phosphorylation in a concentration-dependent manner, although MAPKs such as Erk, JNK, and p38 appeared not to be involved. Furthermore, inhibition of Akt/PI3K signaling pathway with wortmannin significantly, albeit not completely, abolished CG-induced Akt phosphorylation and anti-inflammatory actions. Taken together, the present study demonstrates that Akt signaling pathway might play a major role in CG-mediated anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells. PMID:24634601

  8. Familial resemblance for serum metabolite concentrations.

    PubMed

    Draisma, Harmen H M; Beekman, Marian; Pool, René; van Ommen, Gert-Jan B; Adamski, Jerzy; Prehn, Cornelia; Vaarhorst, Anika A M; de Craen, Anton J M; Willemsen, Gonneke; Slagboom, P Eline; Boomsma, Dorret I

    2013-10-01

    Metabolomics is the comprehensive study of metabolites, which are the substrates, intermediate, and end products of cellular metabolism. The heritability of the concentrations of circulating metabolites bears relevance for evaluating their suitability as biomarkers for disease. We report aspects of familial resemblance for the concentrations in human serum of more than 100 metabolites, measured using a targeted metabolomics platform. Age- and sex-corrected monozygotic twin correlations, midparent-offspring regression coefficients, and spouse correlations in subjects from two independent cohorts (Netherlands Twin Register and Leiden Longevity Study) were estimated for each metabolite. In the Netherlands Twin Register subjects, who were largely fasting, we found significant monozygotic twin correlations for 121 out of 123 metabolites. Heritability was confirmed by midparent-offspring regression. For most detected metabolites, the correlations between spouses were considerably lower than those between twins, indicating a contribution of genetic effects to familial resemblance. Remarkably high heritability was observed for free carnitine (monozygotic twin correlation 0.66), for the amino acids serine (monozygotic twin correlation 0.77) and threonine (monozygotic twin correlation 0.64), and for phosphatidylcholine acyl-alkyl C40:3 (monozygotic twin correlation 0.77). For octenoylcarnitine, a consistent point estimate of approximately 0.50 was found for the spouse correlations in the two cohorts as well as for the monozygotic twin correlation, suggesting that familiality for this metabolite is explained by shared environment. We conclude that for the majority of metabolites targeted by the used metabolomics platform, the familial resemblance of serum concentrations is largely genetic. Our results contribute to the knowledge of the heritability of fasting serum metabolite concentrations, which is relevant for biomarker research. PMID:23985338

  9. n-3 Polyunsaturated Fatty Acids and Mechanisms to Mitigate Inflammatory Paracrine Signaling in Obesity-Associated Breast Cancer

    PubMed Central

    Monk, Jennifer M.; Turk, Harmony F.; Liddle, Danyelle M.; De Boer, Anna A.; Power, Krista A.; Ma, David W.L.; Robinson, Lindsay E.

    2014-01-01

    Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue. Therefore, in obese women with breast cancer, increased inflammatory mediators both locally and systemically can perpetuate inflammation-associated pro-carcinogenic signaling pathways, thereby increasing disease severity. Herein, we discuss some of these inflammation-associated pro-carcinogenic mechanisms of the combined obese breast cancer phenotype and offer evidence that dietary long chain n-3 polyunsaturated fatty acids (PUFA) may have utility in mitigating the severity of obesity-associated inflammation and breast cancer. PMID:25360510

  10. A scarlet pimpernel for the resolution of inflammation? The role of supra-therapeutic doses of cobalamin, in the treatment of systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic or traumatic shock.

    PubMed

    Wheatley, Carmen

    2006-01-01

    Cobalamin carrier proteins,the Transcobalamins (TCS), are elevated during trauma, infections and chronic inflammatory conditions. This remains un-explained. It is proposed that such TC elevations signal a need for cobalamin central to the resolution of inflammation. Thus Cobalamin may regulate the transcription factor, NFkappaB, activation or suppression of which determines the inflammatory response and its resolution. Such regulation may involve at least 5 separate mechanisms: (i) hormone-like regulation of TNFalpha, through reduction of excess NO by cobalamin, as well as through the selective inhibition, in tandem with glutathione, of inducible nitric oxide synthase; (ii) quenching of nitric oxide radicals and reactive oxygen species, enhanced by cobalamin's glutathione sparing effect; (iii) the promotion of acetylcholine synthesis, central to the neuro-immune cholinergic anti-inflammatory pathway; (iv) the promotion of oxidative phosphorylation; (v) and a bacteriostatic role of the TCS released by neutrophil secondary granules during phagocytosis, which also appears to modulate the inflammatory response. TC elevations are dependent on NFkappaB activation, through crosstalk between NFkappaB and Sp1, another member of the helix-loop-helix protein family, which directly mediates transcription of the TCII gene. Sp1 also has binding sites on the TNFalpha and EGF gene promoters. NFkappaB may thus ensure sufficient cobalamin to determine its own eventual suppression. Cobalamin's established regulation of EGF may additionally preserve normal function of macrophages and the coagulation cascade in wound healing. By regulating NFkappaB, Cobalamin may also be the as yet unidentified mediator needed to potentiate the anti-inflammatory action of eicosanoids derived from omega-3 essential fatty acids. Moreover, animal and human clinical data suggests that high dose cobalamin may prove a promising approach to SIRS/sepsis/septic and traumatic shock. PMID:16545917

  11. Tricin, flavonoid from Njavara reduces inflammatory responses in hPBMCs by modulating the p38MAPK and PI3K/Akt pathways and prevents inflammation associated endothelial dysfunction in HUVECs.

    PubMed

    Shalini, V; Pushpan, Chithra K; G, Sindhu; A, Jayalekshmy; A, Helen

    2016-02-01

    Previous studies revealed the potent anti-inflammatory activity of tricin, the active component of Njavara rice bran. Here, we report the involvement of specific signaling pathways in the protective effect of tricin against LPS induced inflammation in hPBMCs and the role of tricin in modulating endothelial dysfunction in LPS induced HUVECs. Pretreatment with tricin (15μM) significantly inhibited the release of TNF-α and was comparable to the specific pathway blockers like ERK inhibitor (PD98059), JNK inhibitor (SP600125) and p38 inhibitor (SB203580), whereas an increased release of TNF-α was observed in PI3K/Akt inhibitor (LY294002) treated cells. Tricin alone and combination treatment of tricin and SB203580 showed more significant inhibition of activation of COX-2 and TNF-α than that of SB203580 alone treated group. Combination treatment of tricin and LY294002 showed increased activation of COX-2 and TNF-α, proved that PI3K activation is essential for the anti-inflammatory effect of tricin. Studies conducted on HUVECs revealed the protective effect of tricin against endothelial dysfunction associated with LPS induced inflammation by inhibiting the activation of proinflammatory mediators like TNF-α, IFN-γ, MCP 1 by modulating NF-κB and MAPK signaling pathways. ELISA and flow cytometric analysis again confirmed the protection of tricin against endothelial damage, especially from the decreased activation of cell adhesion molecules like ICAM-1, VCAM-1 and E-Selectin upon tricin treatment. This work establishes the mechanism behind the potent anti-inflammatory activity of the flavonoid tricin. PMID:26514297

  12. Myopia and Inflammation

    PubMed Central

    Herbort, Carl P.; Papadia, Marina; Neri, Piergiorgio

    2011-01-01

    The correlation between myopia and intraocular inflammation has rarely been explored. The aim of this article is to review myopic changes induced by inflammatory diseases and inflammatory diseases related to myopia, followed by a discussion on inflammatory choroidal neovascularization. Clinical cases are used to illustrate these conditions. The review does not include inflammatory conditions caused by surgical interventions employed for treatment of myopia. Uveitic conditions that can induce a myopic shift include sclero-choroidal inflammation, lens induced myopia due to steroid cataracts, juvenile idiopathic arthritis (JIA) induced myopia, and transient drug induced myopia due to sulfonamides and acetazolamide used for treatment of ocular toxoplasmosis and inflammatory cystoid macular edema, respectively. Most inflammatory conditions related to myopia are conditions involving the choriocapillaris. These include multifocal choroiditis and/or punctate inner choroiditis, multiple evanescent white dot syndrome and acute idiopathic blind spot enlargement. It can be hypothesized that fragility of the choriocapillaris due to particular anatomic changes due to myopia, together with unknown immunogenetic factors predispose myopic eyes to primary inflammatory choriocapillaropathies. PMID:22454750

  13. Myopia and inflammation.

    PubMed

    Herbort, Carl P; Papadia, Marina; Neri, Piergiorgio

    2011-10-01

    The correlation between myopia and intraocular inflammation has rarely been explored. The aim of this article is to review myopic changes induced by inflammatory diseases and inflammatory diseases related to myopia, followed by a discussion on inflammatory choroidal neovascularization. Clinical cases are used to illustrate these conditions. The review does not include inflammatory conditions caused by surgical interventions employed for treatment of myopia. Uveitic conditions that can induce a myopic shift include sclero-choroidal inflammation, lens induced myopia due to steroid cataracts, juvenile idiopathic arthritis (JIA) induced myopia, and transient drug induced myopia due to sulfonamides and acetazolamide used for treatment of ocular toxoplasmosis and inflammatory cystoid macular edema, respectively. Most inflammatory conditions related to myopia are conditions involving the choriocapillaris. These include multifocal choroiditis and/or punctate inner choroiditis, multiple evanescent white dot syndrome and acute idiopathic blind spot enlargement. It can be hypothesized that fragility of the choriocapillaris due to particular anatomic changes due to myopia, together with unknown immunogenetic factors predispose myopic eyes to primary inflammatory choriocapillaropathies. PMID:22454750

  14. Inflammation and Insulin Resistance

    PubMed Central

    de Luca, Carl; Olefsky, Jerrold M.

    2008-01-01

    Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and the Metabolic syndrome. In this review, we focus on the interconnection between obesity, inflammation and insulin resistance. Pro-inflammatory cytokines can cause insulin resistance in adipose tissue, skeletal muscle and liver by inhibiting insulin signal transduction. The sources of cytokines in insulin resistant states are the insulin target tissue themselves, primarily fat and liver, but to a larger extent the activated tissue resident macrophages. While the initiating factors of this inflammatory response remain to be fully determined, chronic inflammation in these tissues could cause localized insulin resistance via autocrine/paracrine cytokine signaling and systemic insulin resistance via endocrine cytokine signaling all of which contribute to the abnormal metabolic state. PMID:18053812

  15. Metabolomic analysis of glycerophospholipid signatures of inflammation treated with non-steroidal anti-inflammatory drugs-induced-RAW264.7 cells using (1)H NMR and U-HPLC/Q-TOF-MS.

    PubMed

    Wu, Xia; Cao, Han; Zhao, Lifang; Song, Jianao; She, Yuqi; Feng, Yifan

    2016-08-15

    Non-destructive proton nuclear magnetic resonance ((1)H NMR) spectroscopy and highly sensitive ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (U-HPLC/Q-TOF-MS) coupled to data processing methods were applied to analyze the metabolic profiling changes of glycerophospholipids (GPLs) in RAW264.7 cells from inflammation to prognosis. Analysis of (1)H NMR was shown that the models were grouped successfully, illustrating that all of them had significant differences. Based on the highly simple, accurate, non-targeted and non-destructively advantages of (1)H NMR, it could be used as a new screening tool of anti-inflammatory drugs in the metabolic profiling of GPLs. 58 GPLs were identified by U-HPLC/Q-TOF-MS, and 19 components were firstly identified in this study compared with our previous results. In addition, ten potential biomarkers were proved, of which phosphatidylcholine (PC) (16:0/18:1) and (18:0/18:1) changed consistently in three drug-induced groups and might be the important biomarkers. Compared with (1)H NMR, U-HPLC/Q-TOF-MS showed higher sensitivity and specificity and was more suitable for the determination of biomarkers apart from the deficiency of time-consuming sample preparation steps and unambiguous metabolite identification. Therefore, it is feasible to analyze the changes of GPLs during inflammation by combining (1)H NMR spectroscopy with U-HPLC/Q-TOF-MS. The metabolic profiling of GPLs provides valuable evidence for inflammation diagnosis and prognosis, and might unravel the mechanisms involved in inflammation progression. PMID:27371817

  16. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation

    PubMed Central

    Gonçalves-de-Albuquerque, Cassiano Felippe; Silva, Adriana Ribeiro; Burth, Patrícia; Castro-Faria, Mauro Velho; Castro-Faria-Neto, Hugo Caire

    2015-01-01

    Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation. PMID:26640323

  17. Evaluation of the Anti-Inflammatory, Antioxidant and Immunomodulatory Effects of the Organic Extract of the Red Sea Marine Sponge Xestospongia testudinaria against Carrageenan Induced Rat Paw Inflammation

    PubMed Central

    El-Shitany, Nagla A.; Abbas, Aymn T.; Abdel-dayem, Umama A.; Azhar, Esam I.; Ali, Soad S.; van Soest, Rob W. M.

    2015-01-01

    Marine sponges are found to be a rich source of bioactive compounds which show a wide range of biological activities including antiviral, antibacterial, and anti-inflammatory activities. This study aimed to investigate the possible anti-inflammatory, antioxidant and immunomodulator effects of the methanolic extract of the Red Sea marine sponge Xestospongia testudinaria. The chemical composition of the Xestospongia testudinaria methanolic extract was determined using Gas chromatography-mass spectroscopy (GC-MS) analysis. DPPH (2, 2-diphenyl-1-picryl-hydrazyl) was measured to assess the antioxidant activity of the sponge extract. Carrageenan-induced rat hind paw edema was adopted in this study. Six groups of rats were used: group1: Control, group 2: Carrageenan, group 3: indomethacin (10 mg/kg), group 4–6: Xestospongia testudinaria methanolic extract (25, 50, and 100 mg/kg). Evaluation of the anti-inflammatory activity was performed by both calculating the percentage increase in paw weight and hisopathologically. Assessment of the antioxidant and immunomodulatory activity was performed. GC-MS analysis revealed that there were 41 different compounds present in the methanolic extract. Sponge extract exhibited antioxidant activity against DPPH free radicals. Xestospongia testudinaria methanolic extract (100 mg/kg) significantly decreased % increase in paw weight measured at 1, 2, 3 and 4 h after carrageenan injection. Histopathologically, the extract caused a marked decrease in the capillary congestion and inflammatory cells infiltrate. The extract decreased paw malondialdehyde (MDA) and nitric oxide (NO) and increased the reduced glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT) activity. It also decreased the inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1 β(IL-1β) and IL-6. The results of this study demonstrated the anti-inflammatory, antioxidant, and immunomodulatory effects of the methanolic extract of the Red Sea

  18. Atherosclerosis - A matter of unresolved inflammation.

    PubMed

    Viola, Joana; Soehnlein, Oliver

    2015-05-01

    Atherosclerosis is commonly looked upon as a chronic inflammatory disease of the arterial wall arising from an unbalanced lipid metabolism and a maladaptive inflammatory response. However, atherosclerosis is not merely an inflammation of the vessel wall. In fact, the cardinal signs of unstable atherosclerotic lesions are primarily characteristics of failed resolution of a chronic inflammation. In contrast to acute inflammatory events which are typically self-limiting, atherosclerosis is an unresolved inflammatory condition, lacking the switch from the pro-inflammatory to the pro-resolving phase, the latter characterized by termination of inflammatory cell recruitment, removal of inflammatory cells from the site of inflammation by apoptosis and dead cell clearance, reprogramming of macrophages toward an anti-inflammatory, regenerative phenotype, and finally egress of effector cells and tissue regeneration. Here we present an overview on mechanisms of failed resolution contributing to atheroprogression and deliver a summary of novel therapeutic strategies to restore resolution in inflamed arteries. PMID:25865626

  19. Distinct Commensals Induce Interleukin-1β via NLRP3 Inflammasome in Inflammatory Monocytes to Promote Intestinal Inflammation in Response to Injury.

    PubMed

    Seo, Sang-Uk; Kamada, Nobuhiko; Muñoz-Planillo, Raúl; Kim, Yun-Gi; Kim, Donghyun; Koizumi, Yukiko; Hasegawa, Mizuho; Himpsl, Stephanie D; Browne, Hilary P; Lawley, Trevor D; Mobley, Harry L T; Inohara, Naohiro; Núñez, Gabriel

    2015-04-21

    The microbiota stimulates inflammation, but the signaling pathways and the members of the microbiota involved remain poorly understood. We found that the microbiota induces interleukin-1β (IL-1β) release upon intestinal injury and that this is mediated via the NLRP3 inflammasome. Enterobacteriaceae and in particular the pathobiont Proteus mirabilis, induced robust IL-1β release that was comparable to that induced by the pathogen Salmonella. Upon epithelial injury, production of IL-1β in the intestine was largely mediated by intestinal Ly6C(high) monocytes, required chemokine receptor CCR2 and was abolished by deletion of IL-1β in CCR2(+) blood monocytes. Furthermore, colonization with P. mirabilis promoted intestinal inflammation upon intestinal injury via the production of hemolysin, which required NLRP3 and IL-1 receptor signaling in vivo. Thus, upon intestinal injury, selective members of the microbiota stimulate newly recruited monocytes to induce NLRP3-dependent IL-1β release, which promotes inflammation in the intestine. PMID:25862092

  20. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury

    PubMed Central

    Seo, Sang-Uk; Kamada, Nobuhiko; Muñoz-Planillo, Raúl; Kim, Yun-Gi; Kim, Donghyun; Koizumi, Yukiko; Hasegawa, Mizuho; Himpsl, Stephanie D.; Browne, Hilary P.; Lawley, Trevor D.; Mobley, Harry L. T.; Inohara, Naohiro; Núñez, Gabriel

    2015-01-01

    SUMMARY The microbiota stimulate inflammation, but the signaling pathways and the members of the microbiota involved remain poorly understood. We found that the microbiota induce interleukin-1β (IL-1β) release upon intestinal injury and this is mediated via the NLRP3 inflammasome. Enterobacteriaceae and in particular the pathobiont Proteus mirabilis, induced robust IL-1β release that was comparable to that induced by the pathogen Salmonella. Upon epithelial injury, production of IL-1β in the intestine was largely mediated by intestinal Ly6Chigh monocytes, required chemokine receptor CCR2 and was abolished by deletion of IL-1β in CCR2+ blood monocytes. Furthermore, colonization with P. mirabilis promoted intestinal inflammation upon intestinal injury via the production of hemolysin which required NLRP3 and IL-1 receptor signaling in vivo. Thus, upon intestinal injury, selective members of the microbiota stimulate newly recruited monocytes to induce NLRP3-dependent IL-1β release which promotes inflammation in the intestine. PMID:25862092

  1. Points of control in inflammation

    NASA Astrophysics Data System (ADS)

    Nathan, Carl

    2002-12-01

    Inflammation is a complex set of interactions among soluble factors and cells that can arise in any tissue in response to traumatic, infectious, post-ischaemic, toxic or autoimmune injury. The process normally leads to recovery from infection and to healing, However, if targeted destruction and assisted repair are not properly phased, inflammation can lead to persistent tissue damage by leukocytes, lymphocytes or collagen. Inflammation may be considered in terms of its checkpoints, where binary or higher-order signals drive each commitment to escalate, go signals trigger stop signals, and molecules responsible for mediating the inflammatory response also suppress it, depending on timing and context. The non-inflammatory state does not arise passively from an absence of inflammatory stimuli; rather, maintenance of health requires the positive actions of specific gene products to suppress reactions to potentially inflammatory stimuli that do not warrant a full response.

  2. Regulation of CYP1A1 and Inflammatory Cytokine by NCOA7 Isoform 4 in Response to Dioxin Induced Airway Inflammation

    PubMed Central

    Cho, Sung-Hwan; Park, Shin Young; Lee, Eun Jeong; Cho, Yo Han; Park, Hyun Sun; Hong, Seok-Ho

    2015-01-01

    Background Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, binds to a wide variety of synthetic and naturally occurring compounds. AhR is involved in the regulation of inflammatory response during acute and chronic respiratory diseases. We investigated whether nuclear receptor coactivator 7 (NCOA7) could regulate transcriptional levels of AhR target genes and inflammatory cytokines in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated human bronchial epithelial cells. This study was based on our previous study that NCOA7 was differentially expressed between normal and chronic obstructive pulmonary disease lung tissues. Methods BEAS-2B and A549 cells grown under serum-free conditions were treated with or without TCDD (0.15 nM and 6.5 nM) for 24 hours after transfection of pCMV-NCOA7 isoform 4. Expression levels of cytochrome P4501A1 (CYP1A1), IL-6, and IL-8 were measured by quantitative real-time polymerase chain reaction. Results The transcriptional activities of CYP1A1 and inflammatory cytokines were strongly induced by TCDD treatment in both BEAS-2B and A549 cell lines. The NCOA7 isoform 4 oppositely regulated the transcriptional activities of CYP1A1 and inflammatory cytokines between BEAS-2B and A549 cell lines. Conclusion Our results suggest that NCOA7 could act as a regulator in the TCDD-AhR signaling pathway with dual roles in normal and abnormal physiological conditions. PMID:25861343

  3. Body elimination attitude family resemblance in Kuwait.

    PubMed

    Al-Fayez, Ghenaim; Awadalla, Abdelwahid; Arikawa, Hiroko; Templer, Donald I; Hutton, Shane

    2009-12-01

    The purpose of the present study was to determine the family resemblance of attitude toward body elimination in Kuwaiti participants. This study was conceptualized in the context of the theories of moral development, importance of cleanliness in the Muslim religion, cross-cultural differences in personal hygiene practices, previous research reporting an association between family attitudes and body elimination attitude, and health implications. The 24-item Likert-type format Body Elimination Attitude Scale-Revised was administered to 277 Kuwaiti high school students and 437 of their parents. Females scored higher, indicating greater disgust, than the males. Moreover, sons' body elimination attitude correlated more strongly with fathers' attitude (r = .85) than with that of the mothers (r = .64). Daughters' attitude was similarly associated with the fathers' (r = .89) and the mothers' attitude (r = .86). The high correlations were discussed within the context of Kuwait having a collectivistic culture with authoritarian parenting style. The higher adolescent correlations, and in particular the boys' correlation with fathers than with mothers, was explained in terms of the more dominant role of the Muslim father in the family. Public health and future research implications were suggested. A theoretical formulation was advanced in which "ideal" body elimination attitude is relative rather than absolute, and is a function of one's life circumstances, one's occupation, one's culture and subculture, and the society that one lives in. PMID:22029659

  4. Quercetin, Inflammation and Immunity

    PubMed Central

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-01-01

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity. PMID:26999194

  5. Crystal Formation in Inflammation.

    PubMed

    Franklin, Bernardo S; Mangan, Matthew S; Latz, Eicke

    2016-05-20

    The formation and accumulation of crystalline material in tissues is a hallmark of many metabolic and inflammatory conditions. The discovery that the phase transition of physiologically soluble substances to their crystalline forms can be detected by the immune system and activate innate immune pathways has revolutionized our understanding of how crystals cause inflammation. It is now appreciated that crystals are part of the pathogenesis of numerous diseases, including gout, silicosis, asbestosis, and atherosclerosis. In this review we discuss current knowledge of the complex mechanisms of crystal formation in diseased tissues and their interplay with the nutrients, metabolites, and immune cells that account for crystal-induced inflammation. PMID:26772211

  6. Natural resolution of inflammation.

    PubMed

    Freire, Marcelo O; Van Dyke, Thomas E

    2013-10-01

    Inflammation is a protective response essential for maintaining human health and for fighting disease. As an active innate immune reaction to challenge, inflammation gives rise to clinical cardinal signs: rubor, calor, dolor, tumor and functio laesa. Termination of acute inflammation was previously recognized as a passive process; a natural decay of pro-inflammatory signals. We now understand that the natural resolution of inflammation involves well-integrated, active, biochemical programs that return tissues to homeostasis. This review focuses on recent advances in the understanding of the role of endogenous lipid mediators that modulate cellular fate and inflammation. Biosynthesis of eicosanoids and other lipids in exudates coincides with changes in the types of inflammatory cells. Resolution of inflammation is initiated by an active class switch in lipid mediators, such as classic prostaglandins and leukotrienes, to the production of proresolution mediators. Endogenous pro-resolving lipid mediators, including arachidonic acid-derived lipoxins, aspirin-triggered lipoxins, ω3-eicosapentaenoic acid-derived resolvins of the E-series, docosahexaenoic acid-derived resolvins of the D-series, protectins and maresins, are biosynthesized during the resolution phase of acute inflammation. Depending on the type of injury and the type of tissue, the initial cells that respond are polymorphonuclear leukocytes, monocytes/macrophages, epithelial cells or endothelial cells. The selective interaction of specific lipid mediators with G protein-coupled receptors expressed on innate immune cells (e.g. G protein-coupled receptor 32, lipoxin A4 receptor/formyl peptide receptor2, chemokine-like receptor 1, leukotriene B4 receptor type 1 and cabannoid receptor 2) induces cessation of leukocyte infiltration; vascular permeability/edema returns to normal with polymorphonuclear neutrophil death (mostly via apoptosis), the nonphlogistic infiltration of monocyte/macrophages and the removal

  7. Quercetin, Inflammation and Immunity.

    PubMed

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-03-01

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity. PMID:26999194

  8. Retroperitoneal inflammation

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001255.htm Retroperitoneal inflammation To use the sharing features on this page, please enable JavaScript. Retroperitoneal inflammation is swelling that occurs in the retroperitoneal space. ...

  9. CAPing inflammation and acute kidney injury.

    PubMed

    Inoue, Tsuyoshi; Rosin, Diane L; Okusa, Mark D

    2016-09-01

    The cholinergic anti-inflammatory pathway has been shown to modulate inflammation in disease models such as rheumatoid arthritis and inflammatory bowel disease. A recent study demonstrated a protective effect of vagus nerve stimulation with activation of the cholinergic anti-inflammatory pathway in the ischemia reperfusion model of acute kidney injury. PMID:27521104

  10. Evolution of Inflammatory Diseases

    PubMed Central

    Okin, Daniel

    2013-01-01

    The association of inflammation with modern human diseases (e.g. obesity, cardiovascular disease, type 2 diabetes mellitus, cancer) remains an unsolved mystery of current biology and medicine. Inflammation is a protective response to noxious stimuli that unavoidably occurs at a cost to normal tissue function. This fundamental tradeoff between the cost and benefit of the inflammatory response has been optimized over evolutionary time for specific environmental conditions. Rapid change of the human environment due to niche construction outpaces genetic adaptation through natural selection, leading increasingly to a mismatch between the modern environment and selected traits. Consequently, multiple tradeoffs that affect human physiology are not optimized to the modern environment, leading to increased disease susceptibility. Here we examine the inflammatory response from an evolutionary perspective. We discuss unique aspects of the inflammatory response and its evolutionary history that can help explain the association between inflammation and modern human diseases. PMID:22975004

  11. Nitric oxide and inflammation.

    PubMed

    Cirino, Giuseppe; Distrutti, Eleonora; Wallace, John L

    2006-04-01

    There are several pre-clinical studies on the involvement of NO in inflammation. From this large amount of information it is clear that virtually every cell and many immunological parameters are modulated by NO. Thus, the final outcome is that NO cannot be rigidly classified as an anti-inflammatory or pro-inflammatory molecule. This peculiar aspect of the pathophysiology of NO has hampered the development of new drugs based on the concepts developed. Recent therapeutic approach are targeted to increase endogenous NO by activating the gene and some promising early data are available. At the present stage one of the most promising approach in the inflammation field is represented by a new class of NO-releasing compounds namely NO-NSAIDs that have recently enrolled in phase 2 clinical studies. PMID:16613570

  12. Thermography in ocular inflammation

    PubMed Central

    Kawali, Ankush A

    2013-01-01

    Background and Objectives: The purpose of this study was to evaluate ocular inflammatory and non-inflammatory conditions using commercially available thermal camera. Materials and Methods: A non-contact thermographic camera (FLIR P 620) was used to take thermal pictures of seven cases of ocular inflammation, two cases of non-inflammatory ocular pathology, and one healthy subject with mild refractive error only. Ocular inflammatory cases included five cases of scleritis, one case of postoperative anterior uveitis, and a case of meibomian gland dysfunction with keratitis (MGD-keratitis). Non-inflammatory conditions included a case of conjunctival benign reactive lymphoid hyperplasia (BRLH) and a case of central serous chorio-retinopathy. Thermal and non-thermal photographs were taken, and using analyzing software, the ocular surface temperature was calculated. Results: Patient with fresh episode of scleritis revealed high temperature. Eyes with MGD-keratitis depicted lower temperature in clinically more affected eye. Conjunctival BRLH showed a cold lesion on thermography at the site of involvement, in contrast to cases of scleritis with similar clinical presentation. Conclusion: Ocular thermal imaging is an underutilized diagnostic tool which can be used to distinguish inflammatory ocular conditions from non-inflammatory conditions. It can also be utilized in the evaluation of tear film in dry eye syndrome. Its applications should be further explored in uveitis and other ocular disorders. Dedicated “ocular thermographic” camera is today's need of the hour. PMID:24347863

  13. Parkinson's Disease and Systemic Inflammation

    PubMed Central

    Ferrari, Carina C.; Tarelli, Rodolfo

    2011-01-01

    Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the “primed” microglia into an “active” state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease. PMID:21403862

  14. Parkinson's disease and systemic inflammation.

    PubMed

    Ferrari, Carina C; Tarelli, Rodolfo

    2011-01-01

    Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the "primed" microglia into an "active" state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease. PMID:21403862

  15. Lamin in inflammation and aging.

    PubMed

    Tran, Joseph R; Chen, Haiyang; Zheng, Xiaobin; Zheng, Yixian

    2016-06-01

    Aging is characterized by a progressive loss of tissue function and an increased susceptibility to injury and disease. Many age-associated pathologies manifest an inflammatory component, and this has led to the speculation that aging is at least in part caused by some form of inflammation. However, whether or not inflammation is truly a cause of aging, or is a consequence of the aging process is unknown. Recent work using Drosophila has uncovered a mechanism where the progressive loss of lamin-B in the fat body upon aging triggers systemic inflammation. This inflammatory response perturbs the local immune response of the neighboring gut tissue and leads to hyperplasia. Here, we will discuss the literature connecting lamins to aging and inflammation. PMID:27023494

  16. Inflammation in diabetic kidney disease

    PubMed Central

    García-García, Patricia M; Getino-Melián, María A; Domínguez-Pimentel, Virginia; Navarro-González, Juan F

    2014-01-01

    Diabetes mellitus entails significant health problems worldwide. The pathogenesis of diabetes is multifactorial, resulting from interactions of both genetic and environmental factors that trigger a complex network of pathophysiological events, with metabolic and hemodynamic alterations. In this context, inflammation has emerged as a key pathophysiology mechanism. New pathogenic pathways will provide targets for prevention or future treatments. This review will focus on the implications of inflammation in diabetes mellitus, with special attention to inflammatory cytokines. PMID:25126391

  17. 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Immune therapies of type 1 diabetes: new opportunities based on the hygiene hypothesis

    PubMed Central

    Chatenoud, L; You, S; Okada, H; Kuhn, C; Michaud, B; Bach, J-F

    2010-01-01

    Insulin-dependent (type 1) diabetes is a prototypic organ-specific autoimmune disease resulting from the selective destruction of insulin-secreting β cells within pancreatic islets of Langerhans by an immune-mediated inflammation involving autoreactive CD4+ and CD8+ T lymphocytes which infiltrate pancreatic islets. Current treatment is substitutive, i.e. chronic use of exogenous insulin which, in spite of significant advances, is still associated with major constraints (multiple daily injections, risks of hypoglycaemia) and lack of effectiveness over the long term in preventing severe degenerative complications. Finding a cure for autoimmune diabetes by establishing effective immune-based therapies is a real medical health challenge, as the disease incidence increases steadily in industrialized countries. As the disease affects mainly children and young adults, any candidate immune therapy must therefore be safe and avoid a sustained depression of immune responses with the attendant problems of recurrent infection and drug toxicity. Thus, inducing or restoring immune tolerance to target autoantigens, controlling the pathogenic response while preserving the host reactivity to exogenous/unrelated antigens, appears to be the ideal approach. Our objective is to review the major progress accomplished over the last 20 years towards that aim. In addition, we would like to present another interesting possibility to access new preventive strategies based on the ‘hygiene hypothesis’, which proposes a causal link between the increasing incidence of autoimmune diseases, including diabetes, and the decrease of the infectious burden. The underlying rationale is to identify microbial-derived compounds mediating the protective activity of infections which could be developed therapeutically. PMID:20415859

  18. The anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats

    PubMed Central

    Mard, Seyyed Ali; Mojadami, Shahnaz; Farbood, Yaghoob; Gharib Naseri, Mohammad Kazem

    2015-01-01

    The present study aimed to evaluate the protective effect of gallic acid on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rat. Forty male rats were randomly divided into sham, control (I/R injury) and three gallic acid-pretreated groups. To induce I/R lesions, the celiac artery was clamped for 30 min and then the clamp was removed to allow reperfusion for 6 hr. Pretreated rats received gallic acid (15, 30 or 60 mg kg-1, intraperitoneally) 30 min prior to the induction of I/R injury. Macroscopic and microscopic evaluations of the areas of ulceration were compared. Samples of gastric mucosa were collected to evaluate the protein expression of pro-apoptotic factor, caspase-3, and pro-inflammatory enzyme, inducible nitric oxide synthase (iNOS) using western blot. Pretreatment with gallic acid decreased the total area of gastric lesions. Gallic acid at 30 mg kg-1 decreased the levels of protein expression of caspase-3 and iNOS induced by I/R injury. Our findings showed the protective effect of gallic acid on gastric mucosa against ischemia-reperfusion injury. This effect of gallic acid was mainly mediated by reducing protein expression of iNOS and caspase-3. PMID:26973766

  19. 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Host–microbe interactions in the gut: target for drug therapy, opportunity for drug discovery

    PubMed Central

    Shanahan, F

    2010-01-01

    The commensal microbiota, most of which resides in the gut, is an environmental regulator of mucosal and systemic immune maturation. Epidemiological studies suggest that changes in the microbiota may represent a link between a modern lifestyle and risk of certain immuno-allergic diseases. This suggests that the microbiota is an appropriate target for therapy or prophylaxis, the rationale for which is addressed here using inflammatory bowel disease as an example. It is also evident from comparative studies of germ-free and conventionally colonized animals that the microbiota is a source of regulatory signals for full development of the host. In some instances these signals have been defined molecularly, and may be suitable for exploitation in novel drug discovery. Most of the versatile drugs in common usage today were derived originally from living matter in the wider environment; could it be time to mine new drugs from microbial-derived signalling molecules in the inner environment of the gut? Several examples illustrate the potential of the gut microbiota as a rich repository from which bioactives with immunological impact can be mined, and translated to human health care or to animal husbandry. PMID:20415857

  20. Human adipose-derived stem cells attenuate inflammatory bowel disease in IL-10 knockout mice.

    PubMed

    Jung, Woo Yeun; Kang, Joo Hwan; Kim, Kyung Gon; Kim, Hee Snn; Jang, Byung Ik; Park, Yong Hoon; Song, In-Hwan

    2015-02-01

    Inflammatory bowel disease (IBD) is a complex immunological disorder characterized by chronic inflammation caused mainly by unknown factors. The interleukin-10 knockout (IL-10 KO) mouse is a well-established murine model of IBD which develops spontaneous intestinal inflammation that resembles Crohn's disease. In the present study, human adipose-derived mesenchymal stem cells (hAMSCs) were administrated to IL-10 KO mice to evaluate the anti-inflammatory effects of hAMSCs that may attenuate the progress of or treat IBD. After IBD was induced by feeding the IL-10 KO mouse a 125-250 ppm piroxicam mixed diet for 1 week, 2×10(6) hAMSCs were injected into the peritoneum and the mice were switched to a normal diet. After 1 week, the mice were sacrificed and tissue samples were harvested. Tissue scores for inflammation and inflammation-related genes expression were determined. The hAMSC-treated group showed significantly reduced inflammatory changes in histological analysis. Reverse transcription-PCR analysis showed that RANTES, Toll-like receptor 9, and IL-4 expression levels were not significantly different between the groups while IL-12, INF-γ, and TNF-α levels were significantly decreased in the hAMSC treated group. hAMSC attenuated IBD in the IL-10 KO mice by suppressing inflammatory cytokine expression, was mediated by the type 1 helper T cell pathway. Even though only a single injection of hAMSCs was delivered, the effect influenced chronic events associated with inflammatory changes and demonstrated that hAMSCs are a powerful candidate for IBD therapy. PMID:25544730

  1. Surgical inflammation: a pathophysiological rainbow

    PubMed Central

    Arias, Jose-Ignacio; Aller, María-Angeles; Arias, Jaime

    2009-01-01

    Tetrapyrrole molecules are distributed in virtually all living organisms on Earth. In mammals, tetrapyrrole end products are closely linked to oxygen metabolism. Since increasingly complex trophic functional systems for using oxygen are considered in the post-traumatic inflammatory response, it can be suggested that tetrapyrrole molecules and, particularly their derived pigments, play a key role in modulating inflammation. In this way, the diverse colorfulness that the inflammatory response triggers during its evolution would reflect the major pathophysiological importance of these pigments in each one of its phases. Therefore, the need of exploiting this color resource could be considered for both the diagnosis and treatment of the inflammation. PMID:19309494

  2. Curcumin in inflammatory diseases.

    PubMed

    Shehzad, Adeeb; Rehman, Gauhar; Lee, Young Sup

    2013-01-01

    Curcumin (diferuloylmethane), a yellow coloring agent extracted from turmeric is also used as a remedy for the treatment and prevention of inflammatory diseases. Acute and chronic inflammation is a major factor in the progression of obesity, type II diabetes, arthritis, pancreatitis, cardiovascular, neurodegenerative and metabolic diseases, as well as certain types of cancer. Turmeric has a long history of use in Ayurvedic medicine for the treatment of inflammatory disorders. Recent studies on the efficacy and therapeutic applicability of turmeric have suggested that the active ingredient of tumeric is curcumin. Further, compelling evidence has shown that curcumin has the ability to inhibit inflammatory cell proliferation, invasion, and angiogenesis through multiple molecular targets and mechanisms of action. Curcumin is safe, non-toxic, and mediates its anti-inflammatory effects through the down-regulation of inflammatory transcription factors, cytokines, redox status, protein kinases, and enzymes that all promote inflammation. In addition, curcumin induces apoptosis through mitochondrial and receptor-mediated pathways, as well as activation of caspase cascades. In the current study, the anti-inflammatory effects of curcumin were evaluated relative to various chronic inflammatory diseases. Based on the available pharmacological data obtained from in vitro and in vivo research, as well as clinical trials, an opportunity exists to translate curcumin into clinics for the prevention of inflammatory diseases in the near future. PMID:23281076

  3. Inflammation and Epilepsy

    PubMed Central

    Vezzani, Annamaria

    2005-01-01

    In recent years, increasing evidence has indicated that immune and inflammatory reactions occur in brain in various central nervous system (CNS) diseases. Furthermore, inflammatory processes, such as the production of proinflammatory cytokines and related molecules, have been described in brain after seizures induced in experimental models and in clinical cases of epilepsy. Although little is known about the role of inflammation in epilepsy, it has been hypothesized that activation of the innate immune system and associated inflammatory reactions in brain may mediate some of the molecular and structural changes occurring during and after seizure activity. Whether the innate immune response that takes place in epileptic tissue is beneficial or noxious to the CNS is still an open and intriguing question that should be addressed by further investigations. PMID:16059445

  4. Models of Inflammation: Carrageenan Air Pouch.

    PubMed

    Duarte, Djane B; Vasko, Michael R; Fehrenbacher, Jill C

    2016-01-01

    The subcutaneous air pouch is an in vivo model that can be used to study the components of acute and chronic inflammation, the resolution of the inflammatory response, the oxidative stress response, and potential therapeutic targets for treating inflammation. Injection of irritants into an air pouch in rats or mice induces an inflammatory response that can be quantified by the volume of exudate produced, the infiltration of cells, and the release of inflammatory mediators. The model presented in this unit has been extensively used to identify potential anti-inflammatory drugs. © 2016 by John Wiley & Sons, Inc. PMID:26995549

  5. Mechanisms Underlying Inflammation in Neurodegeneration

    PubMed Central

    Glass, Christopher K.; Saijo, Kaoru; Winner, Beate; Marchetto, Maria Carolina; Gage, Fred H.

    2010-01-01

    Inflammation is associated with many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. In this Review, we discuss inducers, sensors, transducers, and effectors of neuroinflammation that contribute to neuronal dysfunction and death. Although inducers of inflammation may be generated in a disease-specific manner, there is evidence for a remarkable convergence in the mechanisms responsible for the sensing, transduction, and amplification of inflammatory processes that result in the production of neurotoxic mediators. A major unanswered question is whether pharmacological inhibition of inflammation pathways will be able to safely reverse or slow the course of disease. PMID:20303880

  6. Urate Crystal Induced Inflammation and Joint Pain Are Reduced in Transient Receptor Potential Ankyrin 1 Deficient Mice – Potential Role for Transient Receptor Potential Ankyrin 1 in Gout

    PubMed Central

    Moilanen, Lauri J.; Hämäläinen, Mari; Lehtimäki, Lauri; Nieminen, Riina M.; Moilanen, Eeva

    2015-01-01

    Introduction In gout, monosodium urate (MSU) crystals deposit intra-articularly and cause painful arthritis. In the present study we tested the hypothesis that Transient Receptor Poten-tial Ankyrin 1 (TRPA1), an ion channel mediating nociceptive signals and neurogenic in-flammation, is involved in MSU crystal-induced responses in gout by utilizing three experi-mental murine models. Methods The effects of selective pharmacological inhibition (by HC-030031) and genetic depletion of TRPA1 were studied in MSU crystal-induced inflammation and pain by using 1) spontaneous weight-bearing test to assess MSU crystal-induced joint pain, 2) subcutaneous air-pouch model resembling joint inflammation to measure MSU crystal-induced cytokine production and inflammatory cell accumulation, and 3) MSU crystal-induced paw edema to assess acute vascular inflammatory responses and swelling. Results Intra-articularly injected MSU crystals provoked spontaneous weight shift off from the affected limb in wild type but not in TRPA1 knock-out mice referring alleviated joint pain in TRPA1 deficient animals. MSU crystal-induced inflammatory cell infiltration and accumulation of cytokines MCP-1, IL-6, IL-1beta, MPO, MIP-1alpha and MIP-2 into subcu-taneous air-pouch (resembling joint cavity) was attenuated in TRPA1 deficient mice and in mice treated with the selective TRPA1 inhibitor HC-030031 as compared to control animals. Further, HC-030031 treated and TRPA1 deficient mice developed tempered inflammatory edema when MSU crystals were injected into the paw. Conclusions TRPA1 mediates MSU crystal-induced inflammation and pain in experimental models supporting the role of TRPA1 as a potential mediator and a drug target in gout flare. PMID:25658427

  7. Inflammatory Bowel Disease.

    PubMed

    2016-01-01

    Inflammation response plays an important role in host survival, and it also leads to acute and chronic inflammatory diseases such as rheumatoid arthritis, bowel diseases, allergic rhinitis, asthma, atopic dermatitis and various neurodegenerative diseases. During the course of inflammation, the ROS level increases. In addition to ROS, several inflammatory mediators produced at the site lead to numerous cell-mediated damages. Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a chronic intestinal disorder resulting from a dysfunctional epithelial, innate and adaptive immune response to intestinal microorganisms. The methods involving indomethacin-induced enterocolitis in rats with macroscopic changes of IBD, myeloperoxidase assay, microscopic (histologic) characters and biochemical parameters are discussed. PMID:26939275

  8. Purinergic Receptors in Ocular Inflammation

    PubMed Central

    Guzman-Aranguez, Ana; Gasull, Xavier; Diebold, Yolanda; Pintor, Jesús

    2014-01-01

    Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A), and P1,P5-diadenosine pentaphosphate (Ap5A) are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine (CF101) have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases) can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation. PMID:25132732

  9. Transient infection of the zebrafish notochord with E. coli induces chronic inflammation

    PubMed Central

    Nguyen-Chi, Mai; Phan, Quang Tien; Gonzalez, Catherine; Dubremetz, Jean-François; Levraud, Jean-Pierre; Lutfalla, Georges

    2014-01-01

    Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils) during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation. PMID:24973754

  10. Infection, Inflammation, and Bone Regeneration

    PubMed Central

    Thomas, M.V.; Puleo, D.A.

    2011-01-01

    Various strategies have been developed to promote bone regeneration in the craniofacial region. Most of these interventions utilize implantable materials or devices. Infections resulting from colonization of these implants may result in local tissue destruction in a manner analogous to periodontitis. This destruction is mediated via the expression of various inflammatory mediators and tissue-destructive enzymes. Given the well-documented association among microbial biofilms, inflammatory mediators, and tissue destruction, it seems reasonable to assume that inflammation may interfere with bone healing and regeneration. Paradoxically, recent evidence also suggests that the presence of certain pro-inflammatory mediators is actually required for bone healing. Bone injury (e.g., subsequent to a fracture or surgical intervention) is followed by a choreographed cascade of events, some of which are dependent upon the presence of pro-inflammatory mediators. If inflammation resolves promptly, then proper bone healing may occur. However, if inflammation persists (which might occur in the presence of an infected implant or graft material), then the continued inflammatory response may result in suboptimal bone formation. Thus, the effect of a given mediator is dependent upon the temporal context in which it is expressed. Better understanding of this temporal sequence may be used to optimize regenerative outcomes. PMID:21248364

  11. Gut Microbiota and Inflammation

    PubMed Central

    Hakansson, Asa; Molin, Goran

    2011-01-01

    Systemic and local inflammation in relation to the resident microbiota of the human gastro-intestinal (GI) tract and administration of probiotics are the main themes of the present review. The dominating taxa of the human GI tract and their potential for aggravating or suppressing inflammation are described. The review focuses on human trials with probiotics and does not include in vitro studies and animal experimental models. The applications of probiotics considered are systemic immune-modulation, the metabolic syndrome, liver injury, inflammatory bowel disease, colorectal cancer and radiation-induced enteritis. When the major genomic differences between different types of probiotics are taken into account, it is to be expected that the human body can respond differently to the different species and strains of probiotics. This fact is often neglected in discussions of the outcome of clinical trials with probiotics. PMID:22254115

  12. Control of ocular inflammation.

    PubMed

    Wilkie, D A

    1990-05-01

    Although both topical and systemic anti-inflammatory agents have a place in veterinary ophthalmology, they play only a small role in overall patient management. They must be used appropriately to prevent ocular damage and loss of vision from inflammation and are not a replacement for a complete ophthalmic examination and specific treatment directed at the etiology of the problem. If used indiscriminately, they can result in local or systemic side effects or toxicities, many of which are worse than the initial problem for which they were selected. Just as topical corticosteroids are contraindicated with infectious keratitis, so are systemic corticosteroids contraindicated in patients with ocular inflammation resulting from a systemic infectious process. Anti-inflammatories must be used at the appropriate dosage and frequency. Use of corticosteroids that have low intraocular penetration for intraocular disease or corticosteroids with low potency is a waste of time and money. The most expensive medication is one that does not work. Avoid combination therapies when only a single medication is required. These do not save time or money and have the potential to result in the development of drug-related diseases. Diseases for which anti-inflammatory therapy has little or no indication include corneal scars, corneal edema, corneal pigmentation, corneal dystrophy, cataracts without inflammation, glaucoma, and retinal atrophy and degeneration. Last, remember that all commercially available ophthalmic medications are specifically formulated for use in the eye. Their pH, concentration, osmolality, and melting temperature all are designed to facilitate penetration. The use of dermal and otic preparations to treat ophthalmic problems is contraindicated. PMID:2194354

  13. Basophils in inflammation.

    PubMed

    Schwartz, Christian; Eberle, Joerg U; Voehringer, David

    2016-05-01

    Basophils are functionally closely related to mast cells. Both cell types express the high-affinity IgE receptor (FcεRI) and rapidly release preformed mediator from intracellular stores upon IgE-mediated activation. However, in contrast to mast cells basophils finish their maturation in the bone marrow and have a lifespan of only 2-3 days. Basophil numbers increase in response to IL-3 or TSLP and migrate into tissues to promote type 2 immune responses. Here we review recent advances regarding the pro- and anti-inflammatory functions of basophils in murine models and human allergic inflammation of the skin, lung and intestine. PMID:25959388

  14. TRPA1: A Gatekeeper for Inflammation

    PubMed Central

    Bautista, Diana M.; Pellegrino, Maurizio; Tsunozaki, Makoto

    2014-01-01

    Tissue damage evokes an inflammatory response that promotes the removal of harmful stimuli, tissue repair, and protective behaviors to prevent further damage and encourage healing. However, inflammation may outlive its usefulness and become chronic. Chronic inflammation can lead to a host of diseases, including asthma, itch, rheumatoid arthritis, and colitis. Primary afferent sensory neurons that innervate target organs release inflammatory neuropeptides in the local area of tissue damage to promote vascular leakage, the recruitment of immune cells, and hypersensitivity to mechanical and thermal stimuli. TRPA1 channels are required for neuronal excitation, the release of inflammatory neuropeptides, and subsequent pain hypersensitivity. TRPA1 is also activated by the release of inflammatory agents from nonneuronal cells in the area of tissue injury or disease. This dual function of TRPA1 as a detector and instigator of inflammatory agents makes TRPA1 a gatekeeper of chronic inflammatory disorders of the skin, airways, and gastrointestinal tract. PMID:23020579

  15. Sleep Loss and Inflammation

    PubMed Central

    Simpson, Norah S.; Meier-Ewert, Hans K.; Haack, Monika

    2012-01-01

    Controlled, experimental studies on the effects of acute sleep loss in humans have shown that mediators of inflammation are altered by sleep loss. Elevations in these mediators have been found to occur in healthy, rigorously screened individuals undergoing experimental vigils of more than 24 hours, and have also been seen in response to various durations of sleep restricted to between 25 and 50% of a normal 8 hour sleep amount. While these altered profiles represent small changes, such sub-clinical shifts in basal inflammatory cytokines are known to be associated with the future development of metabolic syndrome disease in healthy, asymptomatic individuals. Although the mechanism of this altered inflammatory status in humans undergoing experimental sleep loss is unknown, it is likely that autonomic activation and metabolic changes play key roles. PMID:21112025

  16. Frailty, Inflammation and Immunosenescence.

    PubMed

    Fulop, Tamas; McElhaney, Janet; Pawelec, Graham; Cohen, Alan A; Morais, José A; Dupuis, Gilles; Baehl, Sarra; Camous, Xavier; Witkowski, Jacek M; Larbi, Anis

    2015-01-01

    Frailty is a still-evolving concept of a complex phenomenon. There are several algorithms and strategies for assessing frailty syndrome, but currently, no universally accepted definition or measurement protocol has been determined. Consequently, the biological cause(s) of frailty are also poorly defined. Much circumstantial experimental data point to the dysregulation of several key physiological systems, including the neuroendocrine, musculoskeletal, metabolic and immune/inflammatory systems, resulting from alterations in functional reserves. Immune dysregulation and inflammation as causes of frailty have gained some support from the results of longitudinal studies, but a true causal relationship has not been established. This chapter will describe the immune/inflammatory alterations found in frailty and their putative causal relationships with this state. PMID:26301977

  17. Macrophages in Vascular Inflammation: Origins and Functions.

    PubMed

    Decano, Julius L; Mattson, Peter C; Aikawa, Masanori

    2016-06-01

    Macrophages influence various processes of cardiovascular inflammation. Whether they are of embryonic or post-natal hematopoietic origin, their balance in differential activation may direct the course of inflammation. Accelerated macrophage activation and accumulation through a pro-inflammatory signaling pathway may result in extensive tissue damage, adverse repair, and worsened clinical outcomes. Attenuation of such a mechanism and/or promotion of the anti-inflammatory macrophage activation may lead to early resolution of inflammation. Elucidating multiple novel mechanisms of monocyte and macrophage activation leads to a better understanding of their roles in vascular inflammation. In turn, this begets better therapeutic target identification and biomarker discovery. Combined with increasingly sensitive and specific imaging techniques, we continue to push back early detection and monitoring to provide us with a greater window for disease modification. The potential success of cytokine-targeted therapy will be solid proof of the inflammatory hypothesis of atherothrombosis. PMID:27125207

  18. Neurotrauma and Inflammation: CNS and PNS Responses

    PubMed Central

    Mietto, Bruno Siqueira; Mostacada, Klauss; Martinez, Ana Maria Blanco

    2015-01-01

    Traumatic injury to the central nervous system (CNS) or the peripheral nervous system (PNS) triggers a cascade of events which culminate in a robust inflammatory reaction. The role played by inflammation in the course of degeneration and regeneration is not completely elucidated. While, in peripheral nerves, the inflammatory response is assumed to be essential for normal progression of Wallerian degeneration and regeneration, CNS trauma inflammation is often associated with poor recovery. In this review, we discuss key mechanisms that trigger the inflammatory reaction after nervous system trauma, emphasizing how inflammations in both CNS and PNS differ from each other, in terms of magnitude, cell types involved, and effector molecules. Knowledge of the precise mechanisms that elicit and maintain inflammation after CNS and PNS tissue trauma and their effect on axon degeneration and regeneration is crucial for the identification of possible pharmacological drugs that can positively affect the tissue regenerative capacity. PMID:25918475

  19. Cancer Microenvironment and Inflammation: Role of Hyaluronan

    PubMed Central

    Nikitovic, Dragana; Tzardi, Maria; Berdiaki, Aikaterini; Tsatsakis, Aristidis; Tzanakakis, George N.

    2015-01-01

    The role of inflammation in the development of cancer was described as early as the nineteenth century. Abundant evidence supports the preposition that various cancers are triggered by infection and chronic inflammatory disease whereas, evading immune destruction has been proposed as one of the new “hallmarks of cancer.” Changes of the tumor microenvironment have been closely correlated to cancer-mediated inflammation. Hyaluronan (HA), an important extracellular matrices component, has become recognized as an active participant in inflammatory, angiogenic, fibrotic, and cancer promoting processes. This review discusses how HA and specific HA-binding proteins participate in and regulate cancer-related inflammatory processes. PMID:25926834

  20. Focus issue: understanding mechanisms of inflammation.

    PubMed

    Foley, John F

    2013-01-15

    This Focus Issue of Science Signaling, which complements the Science Special Issue on Inflammation, includes research that reveals regulators of a receptor implicated in an inflammatory bowel disease, as well as the contribution of a matrix metalloproteinase to skin inflammation. Perspectives discuss the role of proinflammatory cytokines in brain inflammatory disorders and the regulation of multiple types of cell death in tissues in response to proinflammatory factors. Together with content from the Science Signaling Archives, these articles underline the importance of understanding the basis of inflammatory responses that can both protect and harm the host. PMID:23322902

  1. Inflammation in chronic periodontitis and significant systemic diseases.

    PubMed

    Rethman, Michael P

    2010-04-01

    Endogenous chemical mediators play seminal roles in the initiation, persistence, and resolution of inflammation. Recent studies have revealed parallels between inflammatory mediators and mechanisms common to oral and systemic diseases. These relationships imply that novel therapeutics that profoundly modulate inflammatory mediators may improve clinical outcomes. Key source for this article is a 2008 conference reported in a Journal of Periodontology supplement titled Proceedings of the 2008 Workshop on Inflammation; Inflammation and Periodontal Diseases: A Reappraisal. PMID:20509364

  2. High-fat meal induced postprandial inflammation.

    PubMed

    Herieka, Mohammed; Erridge, Clett

    2014-01-01

    Raised levels of circulating inflammatory markers are associated with coronary artery disease, obesity and type II diabetes. It has been proposed that the ingestion of high-fat meals may serve as a stimulus to raise systemic inflammatory tone, although interventional studies have yielded conflicting results. We here review 57 studies of high-fat meal induced acute postprandial inflammation to identify the most frequently reported markers of postprandial inflammation and to compare these results with the highly consistent low-grade endotoxaemia model in man. Most plasma borne markers of inflammation, such as cytokines and soluble adhesion molecules, were not consistently raised after a high-fat meal. However, pro-inflammatory leukocyte surface markers, mRNA and proteins were elevated in almost all studies in which they were measured. These markers followed kinetics similar to those observed following intravenous injection of low doses of endotoxin in man, were positively associated with likelihood of contamination of test meals with pro-inflammatory bacterial molecules and were reduced in several studies examining parallel meals supplemented with foodstuffs containing anti-inflammatory phytochemicals. Future studies of postprandial inflammation may yield more consistent evidence by focusing on leukocyte, rather than plasma-borne, markers of inflammation and by considering the test meal content of pro- and anti-inflammatory dietary constituents. PMID:23847095

  3. Taurine and inflammatory diseases.

    PubMed

    Marcinkiewicz, Janusz; Kontny, Ewa

    2014-01-01

    Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in humans and plays an important role in several essential biological processes such as bile acid conjugation, maintenance of calcium homeostasis, osmoregulation and membrane stabilization. Moreover, attenuation of apoptosis and its antioxidant activity seem to be crucial for the cytoprotective effects of taurine. Although these properties are not tissue specific, taurine reaches particularly high concentrations in tissues exposed to elevated levels of oxidants (e.g., inflammatory cells). It suggests that taurine may play an important role in inflammation associated with oxidative stress. Indeed, at the site of inflammation, taurine is known to react with and detoxify hypochlorous acid generated by the neutrophil myeloperoxidase (MPO)-halide system. This reaction results in the formation of less toxic taurine chloramine (TauCl). Both haloamines, TauCl and taurine bromamine (TauBr), the product of taurine reaction with hypobromous acid (HOBr), exert antimicrobial and anti-inflammatory properties. In contrast to a well-documented regulatory role of taurine and taurine haloamines (TauCl, TauBr) in acute inflammation, their role in the pathogenesis of inflammatory diseases is not clear. This review summarizes our current knowledge concerning the role of taurine, TauCl and TauBr in the pathogenesis of inflammatory diseases initiated or propagated by MPO-derived oxidants. The aim of this paper is to show links between inflammation, neutrophils, MPO, oxidative stress and taurine. We will discuss the possible contribution of taurine and taurine haloamines to the pathogenesis of inflammatory diseases, especially in the best studied example of rheumatoid arthritis. PMID:22810731

  4. Early environments and the ecology of inflammation.

    PubMed

    McDade, Thomas W

    2012-10-16

    Recent research has implicated inflammatory processes in the pathophysiology of a wide range of chronic degenerative diseases, although inflammation has long been recognized as a critical line of defense against infectious disease. However, current scientific understandings of the links between chronic low-grade inflammation and diseases of aging are based primarily on research in high-income nations with low levels of infectious disease and high levels of overweight/obesity. From a comparative and historical point of view, this epidemiological situation is relatively unique, and it may not capture the full range of ecological variation necessary to understand the processes that shape the development of inflammatory phenotypes. The human immune system is characterized by substantial developmental plasticity, and a comparative, developmental, ecological framework is proposed to cast light on the complex associations among early environments, regulation of inflammation, and disease. Recent studies in the Philippines and lowland Ecuador reveal low levels of chronic inflammation, despite higher burdens of infectious disease, and point to nutritional and microbial exposures in infancy as important determinants of inflammation in adulthood. By shaping the regulation of inflammation, early environments moderate responses to inflammatory stimuli later in life, with implications for the association between inflammation and chronic diseases. Attention to the eco-logics of inflammation may point to promising directions for future research, enriching our understanding of this important physiological system and informing approaches to the prevention and treatment of disease. PMID:23045646

  5. Early environments and the ecology of inflammation

    PubMed Central

    McDade, Thomas W.

    2012-01-01

    Recent research has implicated inflammatory processes in the pathophysiology of a wide range of chronic degenerative diseases, although inflammation has long been recognized as a critical line of defense against infectious disease. However, current scientific understandings of the links between chronic low-grade inflammation and diseases of aging are based primarily on research in high-income nations with low levels of infectious disease and high levels of overweight/obesity. From a comparative and historical point of view, this epidemiological situation is relatively unique, and it may not capture the full range of ecological variation necessary to understand the processes that shape the development of inflammatory phenotypes. The human immune system is characterized by substantial developmental plasticity, and a comparative, developmental, ecological framework is proposed to cast light on the complex associations among early environments, regulation of inflammation, and disease. Recent studies in the Philippines and lowland Ecuador reveal low levels of chronic inflammation, despite higher burdens of infectious disease, and point to nutritional and microbial exposures in infancy as important determinants of inflammation in adulthood. By shaping the regulation of inflammation, early environments moderate responses to inflammatory stimuli later in life, with implications for the association between inflammation and chronic diseases. Attention to the eco-logics of inflammation may point to promising directions for future research, enriching our understanding of this important physiological system and informing approaches to the prevention and treatment of disease. PMID:23045646

  6. Anti-inflammatory Activity.

    PubMed

    2016-01-01

    Inflammation is the body's first response to infection or injury and is critical for both innate and adaptive immunity. It can be considered as part of the complex biological response of vascular tissues to harmful stimuli such as pathogens, damaged cells, or irritants. The search for natural compounds and phytoconstituents that are able to interfere with these mechanisms by preventing a prolonged inflammation could be useful for human health. Here, the anti-inflammatory properties of plant-based drugs are put together with both in vitro and acute (carrageenan, egg albumin and croton oil) and chronic (cotton pellet) in vivo models. PMID:26939273

  7. [Signaling mechanisms involved in resolution of inflammation].

    PubMed

    Cervantes-Villagrana, Rodolfo Daniel; Cervantes-Villagrana, Alberto Rafael; Presno-Bernal, José Miguel

    2014-01-01

    Inflammation is a physiological process, which eliminates pathogens and induces repair of damaged tissue. This process is controlled by negative feedback mechanisms, but if the inflammation persists, it generates a deleterious autoimmune process or can to contribute with diseases such as obesity or cancer. The inflammation resolution involves mechanisms such as decrease of proliferation and maturation of immune cells, phagocytosis and apoptosis of immune cells, and decrease of proinflammatory mediators. Therefore, is relevant to study the physiological effects of specific receptors that participate in inflammation resolution and the design of specific agonists as conventional anti-inflammatory therapeutics, without dramatic collateral effects. In this review, we study some mechanisms associated with inflammation inhibition, particularly the transduction of receptors for ligands with anti-inflammatory effects and that are relevant for their potential therapeutic. PMID:25275846

  8. Resolution of inflammation: a new therapeutic frontier.

    PubMed

    Fullerton, James N; Gilroy, Derek W

    2016-08-01

    Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes - a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field. PMID:27020098

  9. Vitamin D and inflammatory diseases

    PubMed Central

    Yin, Kai; Agrawal, Devendra K

    2014-01-01

    Beyond its critical function in calcium homeostasis, vitamin D has recently been found to play an important role in the modulation of the immune/inflammation system via regulating the production of inflammatory cytokines and inhibiting the proliferation of proinflammatory cells, both of which are crucial for the pathogenesis of inflammatory diseases. Several studies have associated lower vitamin D status with increased risk and unfavorable outcome of acute infections. Vitamin D supplementation bolsters clinical responses to acute infection. Moreover, chronic inflammatory diseases, such as atherosclerosis-related cardiovascular disease, asthma, inflammatory bowel disease, chronic kidney disease, nonalcoholic fatty liver disease, and others, tend to have lower vitamin D status, which may play a pleiotropic role in the pathogenesis of the diseases. In this article, we review recent epidemiological and interventional studies of vitamin D in various inflammatory diseases. The potential mechanisms of vitamin D in regulating immune/inflammatory responses in inflammatory diseases are also discussed. PMID:24971027

  10. Role of hypoxia-inducible factor 1{alpha} in modulating cobalt-induced lung inflammation.

    PubMed

    Saini, Yogesh; Kim, Kyung Y; Lewandowski, Ryan; Bramble, Lori A; Harkema, Jack R; Lapres, John J

    2010-02-01

    Hypoxia plays an important role in development, cellular homeostasis, and pathological conditions, such as cancer and stroke. There is also growing evidence that hypoxia is an important modulator of the inflammatory process. Hypoxia-inducible factors (HIFs) are a family of proteins that regulate the cellular response to oxygen deficit, and loss of HIFs impairs inflammatory cell function. There is little known, however, about the role of epithelial-derived HIF signaling in modulating inflammation. Cobalt is capable of eliciting an allergic response and promoting HIF signaling. To characterize the inflammatory function of epithelial-derived HIF in response to inhaled cobalt, a conditional lung-specific HIF1alpha, the most ubiquitously expressed HIF, deletion mouse, was created. Control mice showed classic signs of metal-induced injury following cobalt exposure, including fibrosis and neutrophil infiltration. In contrast, HIF1alpha-deficient mice displayed a Th2 response that resembled asthma, including increased eosinophilic infiltration, mucus cell metaplasia, and chitinase-like protein expression. The results suggest that epithelial-derived HIF signaling has a critical role in establishing a tissue's inflammatory response, and compromised HIF1alpha signaling biases the tissue towards a Th2-mediated reaction. PMID:19915160

  11. Sirtuins Link Inflammation and Metabolism

    PubMed Central

    Vachharajani, Vidula T.; Liu, Tiefu; Wang, Xianfeng; Hoth, Jason J.; Yoza, Barbara K.; McCall, Charles E.

    2016-01-01

    Sirtuins (SIRT), first discovered in yeast as NAD+ dependent epigenetic and metabolic regulators, have comparable activities in human physiology and disease. Mounting evidence supports that the seven-member mammalian sirtuin family (SIRT1–7) guard homeostasis by sensing bioenergy needs and responding by making alterations in the cell nutrients. Sirtuins play a critical role in restoring homeostasis during stress responses. Inflammation is designed to “defend and mend” against the invading organisms. Emerging evidence supports that metabolism and bioenergy reprogramming direct the sequential course of inflammation; failure of homeostasis retrieval results in many chronic and acute inflammatory diseases. Anabolic glycolysis quickly induced (compared to oxidative phosphorylation) for ROS and ATP generation is needed for immune activation to “defend” against invading microorganisms. Lipolysis/fatty acid oxidation, essential for cellular protection/hibernation and cell survival in order to “mend,” leads to immune repression. Acute/chronic inflammations are linked to altered glycolysis and fatty acid oxidation, at least in part, by NAD+ dependent function of sirtuins. Therapeutically targeting sirtuins may provide a new class of inflammation and immune regulators. This review discusses how sirtuins integrate metabolism, bioenergetics, and immunity during inflammation and how sirtuin-directed treatment improves outcome in chronic inflammatory diseases and in the extreme stress response of sepsis. PMID:26904696

  12. Sirtuins Link Inflammation and Metabolism.

    PubMed

    Vachharajani, Vidula T; Liu, Tiefu; Wang, Xianfeng; Hoth, Jason J; Yoza, Barbara K; McCall, Charles E

    2016-01-01

    Sirtuins (SIRT), first discovered in yeast as NAD+ dependent epigenetic and metabolic regulators, have comparable activities in human physiology and disease. Mounting evidence supports that the seven-member mammalian sirtuin family (SIRT1-7) guard homeostasis by sensing bioenergy needs and responding by making alterations in the cell nutrients. Sirtuins play a critical role in restoring homeostasis during stress responses. Inflammation is designed to "defend and mend" against the invading organisms. Emerging evidence supports that metabolism and bioenergy reprogramming direct the sequential course of inflammation; failure of homeostasis retrieval results in many chronic and acute inflammatory diseases. Anabolic glycolysis quickly induced (compared to oxidative phosphorylation) for ROS and ATP generation is needed for immune activation to "defend" against invading microorganisms. Lipolysis/fatty acid oxidation, essential for cellular protection/hibernation and cell survival in order to "mend," leads to immune repression. Acute/chronic inflammations are linked to altered glycolysis and fatty acid oxidation, at least in part, by NAD+ dependent function of sirtuins. Therapeutically targeting sirtuins may provide a new class of inflammation and immune regulators. This review discusses how sirtuins integrate metabolism, bioenergetics, and immunity during inflammation and how sirtuin-directed treatment improves outcome in chronic inflammatory diseases and in the extreme stress response of sepsis. PMID:26904696

  13. Bioactive Egg Components and Inflammation

    PubMed Central

    Andersen, Catherine J.

    2015-01-01

    Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk. PMID:26389951

  14. Key mechanisms governing resolution of lung inflammation.

    PubMed

    Robb, C T; Regan, K H; Dorward, D A; Rossi, A G

    2016-07-01

    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered. PMID:27116944

  15. Polyglycolic acid induced inflammation

    PubMed Central

    Ceonzo, Kathleen; Gaynor, Anne; Shaffer, Lisa; Kojima, Koji; Vacanti, Charles A.; Stahl, Gregory L.

    2005-01-01

    Tissue and organ replacement have quickly outpaced available supply. Tissue bioengineering holds the promise for additional tissue availability. Various scaffolds are currently used, whereas polyglycolic acid (PGA), which is currently used in absorbable sutures and orthopedic pins, provides an excellent support for tissue development. Unfortunately, PGA can induce a local inflammatory response following implantation, so we investigated the molecular mechanism of inflammation in vitro and in vivo. Degraded PGA induced an acute peritonitis, characterized by neutrophil (PMN) infiltration following intraperitoneal injection in mice. Similar observations were observed using the metabolite of PGA, glycolide. Dissolved PGA or glycolide, but not native PGA, activated the classical complement pathway in human sera, as determined by classical complement pathway hemolytic assays, C3a and C5a production, C3 and immunoglobulin deposition. To investigate whether these in vitro observations translated to in vivo findings, we used genetically engineered mice. Intraperitoneal administration of glycolide or dissolved PGA in mice deficient in C1q, factor D, C1q and factor D or C2 and factor B demonstrated significantly reduced PMN infiltration compared to congenic controls (WT). Mice deficient in C6 also demonstrated acute peritonitis. However, treatment of WT or C6 deficient mice with a monoclonal antibody against C5 prevented the inflammatory response. These data suggest that the hydrolysis of PGA to glycolide activates the classical complement pathway. Further, complement is amplified via the alternative pathway and inflammation is induced by C5a generation. Inhibition of C5a may provide a potential therapeutic approach to limit the inflammation associated with PGA derived materials following implantation. PMID:16548688

  16. Role of inflammation in the aging bones.

    PubMed

    Abdelmagid, Samir M; Barbe, Mary F; Safadi, Fayez F

    2015-02-15

    Chronic inflammation in aging is characterized by increased inflammatory cytokines, bone loss, decreased adaptation, and defective tissue repair in response to injury. Aging leads to inherent changes in mesenchymal stem cell (MSC) differentiation, resulting in impaired osteoblastogenesis. Also, the pro-inflammatory cytokines increase with aging, leading to enhanced myelopoiesis and osteoclastogenesis. Bone marrow macrophages (BMMs) play pivotal roles in osteoblast differentiation, the maintenance of hematopoietic stem cells (HSCs), and subsequent bone repair. However, during aging, little is known about the role of macrophages in the differentiation and function of MSC and HSC. Aged mammals have higher circulating pro-inflammatory cytokines than young adults, supporting the hypothesis of increased inflammation with aging. This review will aid in the understanding of the potential role(s) of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in differentiation and function of osteoblasts and osteoclasts in relation to aging. PMID:25510309

  17. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation" Always Inflammation?

    PubMed

    Kulkarni, Onkar P; Lichtnekert, Julia; Anders, Hans-Joachim; Mulay, Shrikant R

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of "proinflammatory" cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine "inflammation"? In this review, we discuss the functions of "inflammatory" mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury. PMID:27597803

  18. Dentigerous cyst of inflammatory origin.

    PubMed

    Santos, Bianca Zimmermann; Beltrame, Ana Paula; Bolan, Michele; Grando, Liliane Janete; Cordeiro, Mabel Mariela Rodríguez

    2014-01-01

    There is an association between persistent, prolonged inflammation of a primary tooth and the development of an inflammatory dentigerous cyst involving the succedaneous tooth. The purpose of this case report is to describe the management of an inflammatory dentigerous cyst of the permanent maxillary left central incisor in a nine-year-old boy caused by a long-term inflammation/infection of its predecessor. The treatment consisted of conservative decompression, which allowed for rapid healing and the eruption of the permanent tooth. The patient was followed up with periodic clinical and radiographic evaluations for several years. PMID:25198956

  19. Sphingolipid metabolites in inflammatory disease

    PubMed Central

    Maceyka, Michael; Spiegel, Sarah

    2015-01-01

    Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes. Progress in our understanding of sphingolipid metabolism, state-of-the-art sphingolipidomic approaches and animal models have generated a large body of evidence demonstrating that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate, are signalling molecules that regulate a diverse range of cellular processes that are important in immunity, inflammation and inflammatory disorders. Recent insights into the molecular mechanisms of action of sphingolipid metabolites and new perspectives on their roles in regulating chronic inflammation have been reported. The knowledge gained in this emerging field will aid in the development of new therapeutic options for inflammatory disorders. PMID:24899305

  20. Allergic Contact Dermatitis to Benzoyl Peroxide Resembling Impetigo.

    PubMed

    Kim, Changhyun; Craiglow, Brittany G; Watsky, Kalman L; Antaya, Richard J

    2015-01-01

    A 17-year-old boy presented with recurring severe dermatitis of the face of 5-months duration that resembled impetigo. He had been treated with several courses of antibiotics without improvement. Biopsy showed changes consistent with allergic contact dermatitis and patch testing later revealed sensitization to benzoyl peroxide, which the patient had been using for the treatment of acne vulgaris. PMID:25782705

  1. ASL Nominal Constructions Involving Signs That Resemble Pronouns

    ERIC Educational Resources Information Center

    Sloan, Vivion Smith

    2013-01-01

    This dissertation examines six different types of noun phrases that commonly occur in American Sign Language. These noun phrases all include at least a head noun and one of four signs resembling a pronoun. Videos of natural ASL discourses are gathered, multiple instances of the six types of noun phrases are identified, and their meanings are…

  2. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons

    NASA Astrophysics Data System (ADS)

    Neumann, Simona; Doubell, Tim P.; Leslie, Tabi; Woolf, Clifford J.

    1996-11-01

    PAIN is normally evoked only by stimuli that are sufficiently intense to activate high-threshold Aδ and C sensory fibres, which relay the signal to the spinal cord. Peripheral inflammation leads to profoundly increased pain sensitivity: noxious stimuli generate a greater response and stimuli that are normally innocuous elicit pain. Inflammation increases the sensitivity of the peripheral terminals of Aδ and C fibres at the site of inflammation1. It also increases the excitability of spinal cord neurons2,3, which now amplify all sensory inputs including the normally innocuous tactile stimuli that are conveyed by low-threshold Aβ fibres. This central sensitization has been attributed to the enhanced activity of C fibres4, which increase the excitability of their postsynaptic targets by releasing glutamate and the neuropeptide substance P5-7. Here we show that inflammation results in Aβ fibres also acquiring the capacity to increase the excitability of spinal cord neurons. This is due to a phenotypic switch in a subpopulation of these fibres so that they, like C-fibres, now express substance P. Aβ fibres thus appear to contribute to inflammatory hypersensitivity by switching their phenotype to one resembling pain fibres, thereby enhancing synaptic transmission in the spinal cord and exaggerating the central response to innocuous stimuli.

  3. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons.

    PubMed

    Neumann, S; Doubell, T P; Leslie, T; Woolf, C J

    1996-11-28

    Pain is normally evoked only by stimuli that are sufficiently intense to activate high-threshold A(delta) and C sensory fibres, which relay the signal to the spinal cord. Peripheral inflammation leads to profoundly increased pain sensitivity: noxious stimuli generate a greater response and stimuli that are normally innocuous elicit pain. Inflammation increases the sensitivity of the peripheral terminals of A(delta) and C fibres at the site of inflammation. It also increases the excitability of spinal cord neurons, which now amplify all sensory inputs including the normally innocuous tactile stimuli that are conveyed by low-threshold A(beta) fibres. This central sensitization has been attributed to the enhanced activity of C fibres, which increase the excitability of their postsynaptic targets by releasing glutamate and the neuropeptide substance P. Here we show that inflammation results in A(beta) fibres also acquiring the capacity to increase the excitability of spinal cord neurons. This is due to a phenotypic switch in a subpopulation of these fibres so that they, like C-fibres, now express substance P. A(beta) fibres thus appear to contribute to inflammatory hypersensitivity by switching their phenotype to one resembling pain fibres, thereby enhancing synaptic transmission in the spinal cord and exaggerating the central response to innocuous stimuli. PMID:8934522

  4. Mast cells and inflammation.

    PubMed

    Theoharides, Theoharis C; Alysandratos, Konstantinos-Dionysios; Angelidou, Asimenia; Delivanis, Danae-Anastasia; Sismanopoulos, Nikolaos; Zhang, Bodi; Asadi, Shahrzad; Vasiadi, Magdalini; Weng, Zuyi; Miniati, Alexandra; Kalogeromitros, Dimitrios

    2012-01-01

    Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation. PMID:21185371

  5. [Biomarkers for chronic inflammatory diseases].

    PubMed

    Holzinger, D; Föll, D

    2015-12-01

    Inflammatory disorders of childhood, such as juvenile idiopathic arthritis (JIA) and inflammatory bowel disease (IBD) are a challenge for laboratory diagnostics. Firstly, the classical inflammatory markers, such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) often inadequately reflect disease activity but on the other hand there are few specific biomarkers that can be helpful in managing these diseases. Acute phase proteins reflect the systemic inflammatory response insufficiently as their increase is only the indirect result of local inflammatory processes. Modern inflammation diagnostics aim to reflect these local processes and to allow precise monitoring of disease activity. Experimental biomarkers, such as S100 proteins can detect subclinical inflammatory activity. In addition, established laboratory parameters exist for JIA [antinuclear antibodies (ANA), rheumatoid factor (RF), antibodies against cyclic citrullinated peptide (anti-CCP)] and for chronic IBD (fecal calprotectin) that are useful in the treatment of these diseases. PMID:26608264

  6. Allergic inflammation--innately homeostatic.

    PubMed

    Cheng, Laurence E; Locksley, Richard M

    2015-03-01

    Allergic inflammation is associated closely with parasite infection but also asthma and other common allergic diseases. Despite the engagement of similar immunologic pathways, parasitized individuals often show no outward manifestations of allergic disease. In this perspective, we present the thesis that allergic inflammatory responses play a primary role in regulating circadian and environmental inputs involved with tissue homeostasis and metabolic needs. Parasites feed into these pathways and thus engage allergic inflammation to sustain aspects of the parasitic life cycle. In response to parasite infection, an adaptive and regulated immune response is layered on the host effector response, but in the setting of allergy, the effector response remains unregulated, thus leading to the cardinal features of disease. Further understanding of the homeostatic pressures driving allergic inflammation holds promise to further our understanding of human health and the treatment of these common afflictions. PMID:25414367

  7. Pain related inflammation analysis using infrared images

    NASA Astrophysics Data System (ADS)

    Bhowmik, Mrinal Kanti; Bardhan, Shawli; Das, Kakali; Bhattacharjee, Debotosh; Nath, Satyabrata

    2016-05-01

    Medical Infrared Thermography (MIT) offers a potential non-invasive, non-contact and radiation free imaging modality for assessment of abnormal inflammation having pain in the human body. The assessment of inflammation mainly depends on the emission of heat from the skin surface. Arthritis is a disease of joint damage that generates inflammation in one or more anatomical joints of the body. Osteoarthritis (OA) is the most frequent appearing form of arthritis, and rheumatoid arthritis (RA) is the most threatening form of them. In this study, the inflammatory analysis has been performed on the infrared images of patients suffering from RA and OA. For the analysis, a dataset of 30 bilateral knee thermograms has been captured from the patient of RA and OA by following a thermogram acquisition standard. The thermograms are pre-processed, and areas of interest are extracted for further processing. The investigation of the spread of inflammation is performed along with the statistical analysis of the pre-processed thermograms. The objectives of the study include: i) Generation of a novel thermogram acquisition standard for inflammatory pain disease ii) Analysis of the spread of the inflammation related to RA and OA using K-means clustering. iii) First and second order statistical analysis of pre-processed thermograms. The conclusion reflects that, in most of the cases, RA oriented inflammation affects bilateral knees whereas inflammation related to OA present in the unilateral knee. Also due to the spread of inflammation in OA, contralateral asymmetries are detected through the statistical analysis.

  8. Hormonal control of inflammatory responses

    PubMed Central

    Farsky, Sandra P.

    1993-01-01

    Almost any stage of inflammatory and immunological responses is affected by hormone actions. This provides the basis for the suggestion that hormones act as modulators of the host reaction against trauma and infection. Specific hormone receptors are detected in the reactive structures in inflamed areas and binding of hormone molecules to such receptors results in the generation of signals that influence cell functions relevant for the development of inflammatory responses. Diversity of hormonal functions accounts for recognized pro- and anti-inflammatory effects exerted by these substances. Most hormone systems are capable of influencing inflammatory events. Insulin and glucocorticoids, however, exert direct regulatory effects at concentrations usually found in plasma. Insulin is endowed with facilitatory actions on vascular reactivity to inflammatory mediators and inflammatory cell functions. Increased concentrations of circulating glucocorticoids at the early stages of inflammation results in downregulation of inflammatory responses. Oestrogens markedly reduce the response to injury in a variety of experimental models. Glucagon and thyroid hormones exert indirect anti-inflammatory effects mediated by the activity of the adrenal cortex. Accordingly, inflammation is not only merely a local response, but a hormone-controlled process. PMID:18475521

  9. Multiple Roles of Peroxiredoxins in Inflammation

    PubMed Central

    Knoops, Bernard; Argyropoulou, Vasiliki; Becker, Sarah; Ferté, Laura; Kuznetsova, Oksana

    2016-01-01

    Inflammation is a pathophysiological response to infection or tissue damage during which high levels of reactive oxygen and nitrogen species are produced by phagocytes to kill microorganisms. Reactive oxygen and nitrogen species serve also in the complex regulation of inflammatory processes. Recently, it has been proposed that peroxiredoxins may play key roles in innate immunity and inflammation. Indeed, peroxiredoxins are evolutionarily conserved peroxidases able to reduce, with high rate constants, hydrogen peroxide, alkyl hydroperoxides and peroxynitrite which are generated during inflammation. In this minireview, we point out different possible roles of peroxiredoxins during inflammatory processes such as cytoprotective enzymes against oxidative stress, modulators of redox signaling, and extracellular pathogen- or damage-associated molecular patterns. A better understanding of peroxiredoxin functions in inflammation could lead to the discovery of new therapeutic targets. PMID:26813661

  10. Gene expression profiling of inflammatory bladder disorders.

    PubMed

    Saban, Marcia R; Nguyen, Ngoc-Bich; Hurst, Robert E; Saban, Ricardo

    2003-03-01

    Inflammation underlies all major bladder pathologies including malignancy and represents a defense reaction to injury caused by physical damage, chemical substances, micro-organisms or other agents. During acute inflammation, activation of specific molecular pathways leads to an increased expression of selected genes whose products attack the insult, but ultimately should protect the tissue from the noxious stimulus. However, once the stimulus ceases, gene-expression should return to basal levels to avoid tissue damage, fibrosis, loss of function, and chronic inflammation. If this down-regulation does not occur, tissue fibrosis occurs as a serious complication of chronic inflammation. Although sensory nerve and most cells products are known to be key parts of the inflammatory puzzle, other key molecules are constantly being described that have a role in bladder inflammation. Therefore, as the database describing the repertoire of inflammatory mediators implicated in bladder inflammation increases, the central mechanisms by which injury can induce inflammation, cell damage, and repair often becomes less rather than more clear. To make sense of the vast knowledge of the genes involved in the inflammatory response may require analysis of the patterns of change and the elucidation of gene networks far more than definition of additional members of inflammatory cascades. This review discuss the appropriate use of microarray technology, which promises to solve both of these problems as well as identifying key molecules and mechanisms involved in the transition between acute and chronic inflammation. PMID:12647997

  11. Inflammation: a driving force speeds cancer metastasis

    PubMed Central

    Wu, Yadi; Zhou, Binhua P.

    2013-01-01

    It has been increasingly recognized that tumor microenvironment plays an important role in carcinogenesis. Inflammatory component is present and contributes to tumor proliferation, angiogenesis, metastasis, and resistance to hormonal and chemotherapy. This review highlights the role of inflammation in the tumor metastasis. We focus on the function of proinflammatory factors, particularly cytokines during tumor metastasis. Understanding of the mechanisms by which inflammation contributes to metastasis will lead to innovative approach for treating cancer. PMID:19770594

  12. Epilepsy and brain inflammation.

    PubMed

    Vezzani, Annamaria; Aronica, Eleonora; Mazarati, Andrey; Pittman, Quentin J

    2013-06-01

    During the last decade, experimental research has demonstrated a prominent role of glial cells, activated in brain by various injuries, in the mechanisms of seizure precipitation and recurrence. In particular, alterations in the phenotype and function of activated astrocytes and microglial cells have been described in experimental and human epileptic tissue, including modifications in potassium and water channels, alterations of glutamine/glutamate cycle, changes in glutamate receptor expression and transporters, release of neuromodulatory molecules (e.g. gliotransmitters, neurotrophic factors), and induction of molecules involved in inflammatory processes (e.g. cytokines, chemokines, prostaglandins, complement factors, cell adhesion molecules) (Seifert et al., 2006; Vezzani et al., 2011; Wetherington et al., 2008). In particular, brain injury or proconvulsant events can activate microglia and astrocytes to release a number of proinflammatory mediators, thus initiating a cascade of inflammatory processes in brain tissue. Proinflammatory molecules can alter neuronal excitability and affect the physiological functions of glia by paracrine or autocrine actions, thus perturbing the glioneuronal communications. In experimental models, these changes contribute to decreasing the threshold to seizures and may compromise neuronal survival (Riazi et al., 2010; Vezzani et al., 2008). In this context, understanding which are the soluble mediators and the molecular mechanisms crucially involved in glio-neuronal interactions is instrumental to shed light on how brain inflammation may contribute to neuronal hyperexcitability in epilepsy. This review will report the clinical observations in drug-resistant human epilepsies and the experimental findings in adult and immature rodents linking brain inflammation to the epileptic process in a causal and reciprocal manner. By confronting the clinical evidence with the experimental findings, we will discuss the role of specific soluble

  13. Carbonaceous objects resembling nannobacteria in the Allende meteorite

    NASA Astrophysics Data System (ADS)

    Folk, Robert L.; Lynch, F. Leo

    1998-07-01

    The carbon in Allende consists of balls ranging form 30 to 150 nm in diameter.Most are spheres, but some ovoid to worm- like forms occur. Grape-like clumps and rosary-like chains are the most dramatic mimics of terrestrial bacterial colonies. We propose that the carbon balls in Allende represent roasted corpses of nanobacteria because of their resemblance to nanobacteria on earth.

  14. Steroid Dermatitis Resembling Rosacea: A Clinical Evaluation of 75 Patients

    PubMed Central

    Hameed, Ammar F.

    2013-01-01

    Background. The use of topical steroids on the skin of the face should be carefully evaluated by the dermatologist; however, its misuse still occurs producing dermatological problem resembling rosacea. Objectives. To report the different clinical manifestations of steroid dermatitis resembling rosacea and to discover causes behind abusing topical steroids on the face. Methods. In this prospective observational study, 75 patients with steroid dermatitis resembling rosacea who had history of topical steroid use on their faces for at least 1–3 months were evaluated at the Department of Dermatology, Baghdad Teaching Hospital, between August 2010 and December 2012. Results. The majority of patients were young women who used a combinations of potent and very potent topical steroid for average period of 0.25–10 years. Facial redness and hotness, telangiectasia, and rebound phenomenon with papulopustular eruption were the main clinical presentations. The most common causes of using topical steroid on the face were pigmentary problems and acne through recommendations from nonmedical personnel. Conclusion. Topical steroid should not be used on the face unless it is under strict dermatological supervision. PMID:23691345

  15. Inflammation: a trigger for acute coronary syndrome.

    PubMed

    Sager, Hendrik B; Nahrendorf, Matthias

    2016-09-01

    Atherosclerosis is a chronic inflammatory disease of the vessel wall and a major cause of death worldwide. One of atherosclerosis' most dreadful complications are acute coronary syndromes that comprise ST-segment elevation myocardial infarction, non-ST-segment elevation myocardial infarction, and unstable angina. We now understand that inflammation substantially contributes to the initiation, progression, and destabilization of atherosclerosis. In this review, we will focus on the role of inflammatory leukocytes, which are the cellular protagonists of vascular inflammation, in triggering disease progression and, ultimately, the destabilization that causes acute coronary syndromes. PMID:27273431

  16. Matrix Metalloproteinases as Modulators of Inflammation

    PubMed Central

    Manicone, Anne M.; McGuire, John K.

    2008-01-01

    An increased expression of members of the matrix metalloproteinase (MMP) family of enzymes is seen in almost every human tissue in which inflammation is present. Through the use of models of human disease in mice with targeted deletions of individual MMPs, it has become clear that MMPs act broadly in inflammation to regulate barrier function, inflammatory cytokine and chemokine activity, and the generation of chemokine gradients. Individual MMPs regulate both normal and pathological inflammatory processes, and therefore, developing rational therapies requires further identification of specific MMP substrates and characterization of the downstream consequences of MMP proteolytic activity. PMID:17707664

  17. Resolution of Inflammation: What Controls Its Onset?

    PubMed Central

    Sugimoto, Michelle A.; Sousa, Lirlândia P.; Pinho, Vanessa; Perretti, Mauro; Teixeira, Mauro M.

    2016-01-01

    An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as “resolution pharmacology.” PMID:27199985

  18. Meibomian glands and ocular surface inflammation.

    PubMed

    Suzuki, Tomo; Teramukai, Satoshi; Kinoshita, Shigeru

    2015-04-01

    The purpose of this review was to systematically analyze publications related to the role of meibomian gland disease in ocular surface inflammation, with special reference to meibomitis as an inflammatory form of meibomian gland dysfunction (MGD). Meibomian gland inflammation is often present with the ocular surface inflammation in conditions such as blepharokeratoconjunctivitis, ocular rosacea, and phlyctenular keratitis, but its contribution is often overlooked, especially in younger subjects. This can result in misdiagnosis, mistreatment, and, sometimes, severe visual impairment. We identified a related disease entity, seen predominantly in young patients, of ocular surface inflammation associated with meibomitis, which we termed meibomitis-related keratoconjunctivitis. Its specific clinical features are similar to those observed in the above-mentioned diseases, and the inflammatory form of MGD was found to be closely involved in the ocular surface inflammation seen in those four diseases, based on our statistical evaluation. The diagnosis and management of meibomitis, an inflammatory form of MGD, is vital for the successful treatment of the induced ocular surface inflammation. We propose that the ocular surface and the adnexal meibomian glands should be considered as one unit, i.e., the "meibomian gland and ocular surface" (MOS), when encountered in the clinical setting. PMID:25881997

  19. The science of fatty acids and inflammation.

    PubMed

    Fritsche, Kevin L

    2015-05-01

    Inflammation is believed to play a central role in many of the chronic diseases that characterize modern society. In the past decade, our understanding of how dietary fats affect our immune system and subsequently our inflammatory status has grown considerably. There are compelling data showing that high-fat meals promote endotoxin [e.g., lipopolysaccharide (LPS)] translocation into the bloodstream, stimulating innate immune cells and leading to a transient postprandial inflammatory response. The nature of this effect is influenced by the amount and type of fat consumed. The role of various dietary constituents, including fats, on gut microflora and subsequent health outcomes in the host is another exciting and novel area of inquiry. The impact of specific fatty acids on inflammation may be central to how dietary fats affect health. Three key fatty acid-inflammation interactions are briefly described. First, the evidence suggests that saturated fatty acids induce inflammation in part by mimicking the actions of LPS. Second, the often-repeated claim that dietary linoleic acid promotes inflammation was not supported in a recent systematic review of the evidence. Third, an explanation is offered for why omega-3 (n-3) polyunsaturated fatty acids are so much less anti-inflammatory in humans than in mice. The article closes with a cautionary tale from the genomic literature that illustrates why extrapolating the results from inflammation studies in mice to humans is problematic. PMID:25979502

  20. Resolution of Inflammation: What Controls Its Onset?

    PubMed

    Sugimoto, Michelle A; Sousa, Lirlândia P; Pinho, Vanessa; Perretti, Mauro; Teixeira, Mauro M

    2016-01-01

    An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as "resolution pharmacology." PMID:27199985

  1. Inflammation and Alzheimer’s disease

    PubMed Central

    Akiyama, Haruhiko; Barger, Steven; Barnum, Scott; Bradt, Bonnie; Bauer, Joachim; Cole, Greg M.; Cooper, Neil R.; Eikelenboom, Piet; Emmerling, Mark; Fiebich, Berndt L.; Finch, Caleb E.; Frautschy, Sally; Griffin, W.S.T.; Hampel, Harald; Hull, Michael; Landreth, Gary; Lue, Lih–Fen; Mrak, Robert; Mackenzie, Ian R.; McGeer, Patrick L.; O’Banion, M. Kerry; Pachter, Joel; Pasinetti, Guilio; Plata–Salaman, Carlos; Rogers, Joseph; Rydel, Russell; Shen, Yong; Streit, Wolfgang; Strohmeyer, Ronald; Tooyoma, Ikuo; Van Muiswinkel, Freek L.; Veerhuis, Robert; Walker, Douglas; Webster, Scott; Wegrzyniak, Beatrice; Wenk, Gary; Wyss–Coray, Tony

    2013-01-01

    Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer’s disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid β peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder. PMID:10858586

  2. Insight in modulation of inflammation in response to diclofenac intervention: a human intervention study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Chronic systemic low-grade inflammation in obese subjects is associated with health complications including cardiovascular diseases, insulin resistance and diabetes. Reducing inflammatory responses may reduce these risks. However, available markers of inflammatory status inadequately des...

  3. Protective role of interleukin-10 in Ozone-induced pulmonary inflammation**

    EPA Science Inventory

    Background: The mechanisms underlying ozone (03)-induced pulmonary inflammation remain unclear. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. Objectives: We investigated the molecular mechanisms underlying interleuken-10...

  4. Pancreatic Cancer, Inflammation and Microbiome

    PubMed Central

    Zambirinis, Constantinos P.; Pushalkar, Smruti; Saxena, Deepak; Miller, George

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers worldwide. No effective screening methods exist and available treatment modalities do not effectively treat the disease. Inflammatory conditions such as pancreatitis represent a well-known risk for pancreatic cancer development. Yet only in the past two decades has pancreatic cancer been recognized as an inflammation-driven cancer, and the precise mechanisms underlying the pathogenic role of inflammation are beginning to be explored in detail. A substantial amount of preclinical and clinical evidence suggests that bacteria are likely to influence this process by activating immune receptors and perpetuating cancer-associated inflammation. The recent explosion of investigations into the human microbiome have highlighted how perturbations of commensal bacterial populations can promote inflammation and promote disease processes, including carcinogenesis. The elucidation of the interplay between inflammation and microbiome in the context of pancreatic carcinogenesis will provide novel targets for intervention in order to both prevent and treat pancreatic cancer more efficiently. Further studies towards this direction are urgently needed. PMID:24855007

  5. [Inflammation and obesity (lipoinflammation)].

    PubMed

    Izaola, Olatz; de Luis, Daniel; Sajoux, Ignacio; Domingo, Joan Carles; Vidal, Montse

    2015-01-01

    Obesity is a chronic disease with multiple origins. It is a widespread global phenomenon carrying potentially serious complications which requires a multidisciplinary approach due to the significant clinical repercussions and elevated health costs associated with the disease. The most recent evidence indicates that it shares a common characteristic with other prevalent, difficult-to-treat pathologies: chronic, low-grade inflammation which perpetuates the disease and is associated with multiple complications. The current interest in lipoinflammation or chronic inflammation associated with obesity derives from an understanding of the alterations and remodelling that occurs in the adipose tissue, with the participation of multiple factors and elements throughout the process. Recent research highlights the importance of some of these molecules, called pro-resolving mediators, as possible therapeutic targets in the treatment of obesity. This article reviews the evidence published on the mechanisms that regulate the adipose tissue remodelling process and lipoinflammation both in obesity and in the mediators that are directly involved in the appearance and resolution of the inflammatory process. PMID:26040339

  6. Inflammation and Vascular Injury

    PubMed Central

    Simon, Daniel I.

    2014-01-01

    The invited special lecture at the 76th Annual Scientific Meeting of the Japanese Circulation Society focused on the central role of inflammation in vascular injury and repair. Early studies pioneered the concept that mechanical injury, such as balloon angioplasty and endovascular stent deployment, elicits an inflammatory response from the vessel wall. This hypothesis was developed and substantiated at a time when the prevailing dogma viewed restenosis following angioplasty as a primarily proliferative smooth muscle cell disease. Antibody targeting of Mac-1 reduced leukocyte accumulation and limited neointimal formation following balloon injury or stent implantation. Genetic absence of Mac-1 resulted in diminished leukocyte accumulation and neointimal thickening after carotid artery injury in mice. In the course of those studies, our laboratory made fundamental discoveries regarding the mechanism of leukocyte recruitment at sites of vascular injury and identified platelet glycoprotein (GP) Ibα, a component of the GPIb-IX-V complex, as the previously unknown platelet counter-receptor for Mac-1. Follow-on studies have focused extensively on the structure, function, and signaling of the leukocyte integrin Mac-1. The binding site for GPIbα in Mac-1 has been mapped and subsequently showed that leukocyte engagement of platelet GPIbα via Mac-1 is critical not only for the biological response to vascular injury, but also for thrombosis, vasculitis, glomerulonephritis, and multiple sclerosis, thereby advancing the hypothesis that virtually all inflammation is platelet-dependent. Furthermore, ligand engagement of Mac-1 initiates a novel gene program that promotes inflammation by activating NFκB and downregulating the expression of the forkhead transcription factor Foxp1 that controls monocyte differentiation. Small molecule inhibitors of Mac-1 function have been pursued, including targeting of Mac-1-GPIbα binding or the downstream tyrosine kinase spleen tyrosine kinase

  7. History of Discovery: Inflammation in Atherosclerosis

    PubMed Central

    Libby, Peter

    2012-01-01

    Experimental work has elucidated molecular and cellular pathways of inflammation that promote atherosclerosis. Unraveling the roles of cytokines as inflammatory messengers provided a mechanism whereby risk factors for atherosclerosis can alter arterial biology, and produce a systemic milieu that favors atherothrombotic events. The discovery of the immune basis of allograft arteriosclerosis demonstrated that inflammation per se can drive arterial hyperplasia, even in the absence of traditional risk factors. Inflammation regulates aspects of plaque biology that trigger the thrombotic complications of atherosclerosis. Translation of these discoveries to humans has enabled both novel mechanistic insights and practical clinical advances. PMID:22895665

  8. Pathogenesis of tendinopathies: inflammation or degeneration?

    PubMed Central

    Abate, Michele; Gravare-Silbernagel, Karin; Siljeholm, Carl; Di Iorio, Angelo; De Amicis, Daniele; Salini, Vincenzo; Werner, Suzanne; Paganelli, Roberto

    2009-01-01

    The intrinsic pathogenetic mechanisms of tendinopathies are largely unknown and whether inflammation or degeneration has the prominent role is still a matter of debate. Assuming that there is a continuum from physiology to pathology, overuse may be considered as the initial disease factor; in this context, microruptures of tendon fibers occur and several molecules are expressed, some of which promote the healing process, while others, including inflammatory cytokines, act as disease mediators. Neural in-growth that accompanies the neovessels explains the occurrence of pain and triggers neurogenic-mediated inflammation. It is conceivable that inflammation and degeneration are not mutually exclusive, but work together in the pathogenesis of tendinopathies. PMID:19591655

  9. Resolution of Acute Inflammation In The Lung

    PubMed Central

    Levy, Bruce D.; Serhan, Charles N.

    2015-01-01

    Acute inflammation in the lung is essential to health. So too is its resolution. In response to invading microbes, noxious stimuli or tissue injury, an acute inflammatory response is mounted to protect the host. To limit inflammation and prevent collateral injury of healthy, uninvolved tissue, the lung orchestrates the formation of specialized pro-resolving mediators, specifically lipoxins, resolvins, protectins and maresins. These immunoresolvents are agonists for resolution that interact with specific receptors on leukocytes and structural cells to blunt further inflammation and promote catabasis. This process appears to be defective in several common lung diseases that are characterized by excess or chronic inflammation. Here, we review the molecular and cellular effectors of resolution of acute inflammation in the lung. PMID:24313723

  10. Resolution of acute inflammation in the lung.

    PubMed

    Levy, Bruce D; Serhan, Charles N

    2014-01-01

    Acute inflammation in the lung is essential to health. So too is its resolution. In response to invading microbes, noxious stimuli, or tissue injury, an acute inflammatory response is mounted to protect the host. To limit inflammation and prevent collateral injury of healthy, uninvolved tissue, the lung orchestrates the formation of specialized proresolving mediators, specifically lipoxins, resolvins, protectins, and maresins. These immunoresolvents are agonists for resolution that interact with specific receptors on leukocytes and structural cells to blunt further inflammation and promote catabasis. This process appears to be defective in several common lung diseases that are characterized by excess or chronic inflammation. Here, we review the molecular and cellular effectors of resolution of acute inflammation in the lung. PMID:24313723

  11. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions. PMID:26221780

  12. Psychotropic drugs attenuate lipopolysaccharide-induced hypothermia by altering hypothalamic levels of inflammatory mediators in rats.

    PubMed

    Nassar, Ahmad; Sharon-Granit, Yael; Azab, Abed N

    2016-07-28

    Recent evidence suggests that inflammation may contribute to the pathophysiology of mental disorders and that psychotropic drugs exert various effects on brain inflammation. The administration of bacterial endotoxin (lipopolysaccharide, LPS) to mammals is associated with robust production of inflammatory mediators and pathological changes in body temperature. The objective of the present study was to examine the effects of four different psychotropic drugs on LPS-induced hypothermia and production of prostaglandin (PG) E2, tumor necrosis factor (TNF)-α and phosphorylated-p65 (P-p65) levels in hypothalamus of LPS-treated rats. Rats were treated once daily with lithium (100mg/kg), carbamazepine (40mg/kg), haloperidol (2mg/kg), imipramine (20mg/kg) or vehicle (NaCl 0.9%) for 29 days. On day 29, rats were injected with LPS (1mg/kg) or saline. At 1.5h post LPS injection body temperature was measured, rats were sacrificed, blood was collected and their hypothalami were excised, homogenized and centrifuged. PGE2, TNF-α and nuclear P-p65 levels were determined by specific ELISA kits. We found that lithium, carbamazepine, haloperidol and imipramine significantly attenuated LPS-induced hypothermia, resembling the effect of classic anti-inflammatory drugs. Moreover, lithium, carbamazepine, haloperidol and imipramine differently but significantly affected the levels of PGE2, TNF-α and P-p65 in plasma and hypothalamus of LPS-treated rats. The results suggest that psychotropic drugs attenuate LPS-induced hypothermia by reducing hypothalamic production of inflammatory constituents, particularly PGE2. The effects of psychotropic drugs on brain inflammation may contribute to their therapeutic mechanism but also to their toxicological profile. PMID:27181513

  13. Inflammation as a Driver of Clonal Evolution in Myeloproliferative Neoplasm

    PubMed Central

    Fleischman, Angela G.

    2015-01-01

    Our understanding of inflammation's role in the pathogenesis of myeloproliferative neoplasm (MPN) is evolving. The impact of chronic inflammation, a characteristic feature of MPN, likely goes far beyond its role as a driver of constitutional symptoms. An inflammatory response to the neoplastic clone may be responsible for some pathologic aspects of MPN. Moreover, JAK2V617F mutated hematopoietic stem and progenitor cells are resistant to inflammation, and this gives the neoplastic clone a selective advantage allowing for its clonal expansion. Because inflammation plays a central role in MPN inflammation is a logical therapeutic target in MPN. PMID:26538830

  14. Carisoprodol withdrawal syndrome resembling neuroleptic malignant syndrome: Diagnostic dilemma

    PubMed Central

    Paul, Gunchan; Parshotam, Gautam L; Garg, Rajneesh

    2016-01-01

    Soma (Carisoprodol) is N-isopropyl-2 methyl-2-propyl-1,3-propanediol dicarbamate; a commonly prescribed, centrally acting skeletal muscle relaxant. Neuroleptic malignant syndrome (NMS) is a potentially life-threatening adverse effect of antipsychotic agents. Although diagnostic criteria for NMS have been established, it should be recognized that atypical presentations occur and more flexible diagnostic criteria than currently mandated, may be warranted. We wish to report a postoperative case of bilateral knee replacement who presented with carisoprodol (Soma) withdrawal resembling NMS that was a diagnostic dilemma. Subsequently, it was successfully treated with oral baclofen in absence of sodium dantrolene.

  15. Sequence of retrovirus provirus resembles that of bacterial transposable elements

    NASA Astrophysics Data System (ADS)

    Shimotohno, Kunitada; Mizutani, Satoshi; Temin, Howard M.

    1980-06-01

    The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified λ phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.

  16. Pulmonary Inflammation Triggered by Ricin Toxin Requires Macrophages and IL-1 Signaling1

    PubMed Central

    Lindauer, Meghan L.; Wong, John; Iwakura, Yoichiro; Magun, Bruce E.

    2015-01-01

    Ricin is a potent ribotoxin considered to be a potentially dangerous bioterrorist agent due to its wide availability and the possibility of aerosol delivery to human populations. Studies in rodents and nonhuman primates have demonstrated that ricin delivered to the pulmonary system leads to acute lung injury and symptoms resembling acute respiratory distress syndrome. Increasing evidence suggests that the inflammatory effects triggered by ricin are responsible for its lethality. We demonstrated previously that ricin administered to the lungs of mice causes death of pulmonary macrophages and the release of proinflammatory cytokines, suggesting macrophages may be a primary target of ricin. Here we examined the requirement for macrophages in the development of ricinmediated pulmonary inflammation by employing transgenic (MAFIA) mice that express an inducible gene driven by the c-fms promoter for Fas-mediated apoptosis of macrophages upon injection of a synthetic dimerizer, AP20187. Administration of aerosolized ricin to macrophage-depleted mice led to reduced inflammatory responses, including recruitment of neutrophils, expression of proinflammatory transcripts, and microvascular permeability. When compared with control mice treated with ricin, macrophage-depleted mice treated with ricin displayed a reduction in pulmonary IL-1/3. Employing mice deficient in IL-1, we found that ricin-induced inflammatory responses were suppressed, including neutrophilia. Neutrophilia could be restored by co-administering ricin and exogenous IL-1β to IL-1α/β−/− mice. Furthermore, IL1Ra/anakinra cotreatment inhibited ricin-mediated inflammatory responses, including recruitment of neutrophils, expression of proinflammatory genes, and histopathology. These data suggest a central role for macrophages and IL-1 signaling in the inflammatory process triggered by ricin. PMID:19561099

  17. Inflammation and endometrial bleeding.

    PubMed

    Berbic, M; Ng, C H M; Fraser, I S

    2014-12-01

    Most of the key physiological processes in the human reproductive tract involve a significant inflammatory component. These processes include follicle development, ovulation, implantation, pregnancy, labor, postpartum, remodeling and menstruation. In this context, the term 'inflammation' usually means an influx of leukocytes ('immune cells'), often of different types, into a reproductive tract tissue. These examples of inflammation are not overtly associated with any infective process. There may also be evidence that these invading leukocytes have altered their functions to take on specific and relevant local regulatory roles. Specific sequential changes in different leukocytes can be demonstrated within human endometrium during the different phases of the normal menstrual cycle. Leukocytes are fairly sparse in numbers through the proliferative phase, but increase substantially into and through the secretory phase, so much so that around 40% of all stromal cells in the premenstrual phase are leukocytes, mainly uterine natural killer cells, a large granulated lymphocyte. Other leukocytes which play key roles in menstruation appear to be macrophages, mast cells, dendritic cells, neutrophils, eosinophils and regulatory T cells. Premenstrual withdrawal of progesterone increases the endometrial expression of inflammatory mediators, including IL-8 and MCP-1, which are believed to drive endometrial leukocyte recruitment at this time. Macrophages and neutrophils are rich sources of defensins and whey acid protein motif proteins, which play important roles in ensuring microbial protection while the epithelial barrier is disrupted. Mast cells are increasingly activated as the menstrual phase approaches, and leukocyte proteases trigger a cascade of matrix metalloproteinases and degradation of extracellular matrix. Dendritic cells and other antigen-presenting cells (e.g. macrophages) almost certainly facilitate clearance of cellular debris from the uterine cavity, and reduce

  18. Soy protein inhibits inflammation-induced VCAM-1 and inflammatory cytokine induction by inhibiting the NF-kappaB and AKT signaling pathway in apolipoprotein E-deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Inflammation is a hallmark of many diseases, such as atherosclerosis, autoimmune diseases, obesity, and cancer. Isoflavone-free soy protein diet (SPI(-)) has been shown to reduce atherosclerotic lesions in a hyperlipidemic mouse model compared to casein (CAS)-fed mice, despite unchanged ser...

  19. Atherosclerosis is an inflammatory disorder after all.

    PubMed

    Meng, Charles Q

    2006-01-01

    Inflammation has been increasingly recognized as an important player in the pathophysiology of numerous human disorders. Accumulating evidence has led to the conclusion that atherosclerosis is an inflammatory disease, although it was believed to be a disorder of high cholesterol levels in the bloodstream for over a century. Cholesterol does contribute to the pathogenesis of atherosclerosis, but through inflammatory mechanisms. Statins lower cholesterol levels and hence reduce inflammation in the vasculature and prevent heart disease. Statins may also exert anti-inflammatory effects through mechanisms independent of cholesterol lowering. Adhesion molecules, cytokines, oxidative stress, etc. appear to contribute to the inflammatory state of atherosclerosis and therapeutic approaches directed toward these markers or targets have the potential to be effective in reducing inflammation and treating atherosclerosis. PMID:16454761

  20. Chronic Inflammation in Skin Malignancies

    PubMed Central

    Tang, Lihua

    2016-01-01

    Chronic inflammation is linked to the development and progression of multiple cancers, including those of the lung, stomach, liver, colon, breast and skin. Inflammation not only drives the oncogenic transformation of epithelial cells under the stress of chronic infection and autoimmune diseases, but also promotes the growth, progression and metastatic spread of cancers. Tumor-infiltrating inflammatory cells are comprised of a diverse population of myeloid and immune cell types, including monocytes, macrophages, dendritic cells, T and B cells, and others. Different myeloid and lymphoid cells within tumor microenvironment exert diverse, often contradicting, effects during skin cancer development and progression. The nature of tumor-immune interaction determines the rate of cancer progression and the outcome of cancer treatment. Inflammatory environment within skin tumor also inhibits naturally occurring anti-tumor immunity and limits the efficacy of cancer immunotherapy. In this article we aim to give an overview on the mechanism by which inflammation interferes with the development and therapeutic intervention of cancers, especially those of the skin.

  1. Reactive Oxygen Species in Inflammation and Tissue Injury

    PubMed Central

    Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167. PMID:23991888

  2. Deficiency of Schnurri-2, an MHC Enhancer Binding Protein, Induces Mild Chronic Inflammation in the Brain and Confers Molecular, Neuronal, and Behavioral Phenotypes Related to Schizophrenia

    PubMed Central

    Takao, Keizo; Kobayashi, Katsunori; Hagihara, Hideo; Ohira, Koji; Shoji, Hirotaka; Hattori, Satoko; Koshimizu, Hisatsugu; Umemori, Juzoh; Toyama, Keiko; Nakamura, Hironori K; Kuroiwa, Mahomi; Maeda, Jun; Atsuzawa, Kimie; Esaki, Kayoko; Yamaguchi, Shun; Furuya, Shigeki; Takagi, Tsuyoshi; Walton, Noah M; Hayashi, Nobuhiro; Suzuki, Hidenori; Higuchi, Makoto; Usuda, Nobuteru; Suhara, Tetsuya; Nishi, Akinori; Matsumoto, Mitsuyuki; Ishii, Shunsuke; Miyakawa, Tsuyoshi

    2013-01-01

    Schnurri-2 (Shn-2), an nuclear factor-κB site-binding protein, tightly binds to the enhancers of major histocompatibility complex class I genes and inflammatory cytokines, which have been shown to harbor common variant single-nucleotide polymorphisms associated with schizophrenia. Although genes related to immunity are implicated in schizophrenia, there has been no study showing that their mutation or knockout (KO) results in schizophrenia. Here, we show that Shn-2 KO mice have behavioral abnormalities that resemble those of schizophrenics. The mutant brain demonstrated multiple schizophrenia-related phenotypes, including transcriptome/proteome changes similar to those of postmortem schizophrenia patients, decreased parvalbumin and GAD67 levels, increased theta power on electroencephalograms, and a thinner cortex. Dentate gyrus granule cells failed to mature in mutants, a previously proposed endophenotype of schizophrenia. Shn-2 KO mice also exhibited mild chronic inflammation of the brain, as evidenced by increased inflammation markers (including GFAP and NADH/NADPH oxidase p22 phox), and genome-wide gene expression patterns similar to various inflammatory conditions. Chronic administration of anti-inflammatory drugs reduced hippocampal GFAP expression, and reversed deficits in working memory and nest-building behaviors in Shn-2 KO mice. These results suggest that genetically induced changes in immune system can be a predisposing factor in schizophrenia. PMID:23389689

  3. Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia.

    PubMed

    Takao, Keizo; Kobayashi, Katsunori; Hagihara, Hideo; Ohira, Koji; Shoji, Hirotaka; Hattori, Satoko; Koshimizu, Hisatsugu; Umemori, Juzoh; Toyama, Keiko; Nakamura, Hironori K; Kuroiwa, Mahomi; Maeda, Jun; Atsuzawa, Kimie; Esaki, Kayoko; Yamaguchi, Shun; Furuya, Shigeki; Takagi, Tsuyoshi; Walton, Noah M; Hayashi, Nobuhiro; Suzuki, Hidenori; Higuchi, Makoto; Usuda, Nobuteru; Suhara, Tetsuya; Nishi, Akinori; Matsumoto, Mitsuyuki; Ishii, Shunsuke; Miyakawa, Tsuyoshi

    2013-07-01

    Schnurri-2 (Shn-2), an nuclear factor-κB site-binding protein, tightly binds to the enhancers of major histocompatibility complex class I genes and inflammatory cytokines, which have been shown to harbor common variant single-nucleotide polymorphisms associated with schizophrenia. Although genes related to immunity are implicated in schizophrenia, there has been no study showing that their mutation or knockout (KO) results in schizophrenia. Here, we show that Shn-2 KO mice have behavioral abnormalities that resemble those of schizophrenics. The mutant brain demonstrated multiple schizophrenia-related phenotypes, including transcriptome/proteome changes similar to those of postmortem schizophrenia patients, decreased parvalbumin and GAD67 levels, increased theta power on electroencephalograms, and a thinner cortex. Dentate gyrus granule cells failed to mature in mutants, a previously proposed endophenotype of schizophrenia. Shn-2 KO mice also exhibited mild chronic inflammation of the brain, as evidenced by increased inflammation markers (including GFAP and NADH/NADPH oxidase p22 phox), and genome-wide gene expression patterns similar to various inflammatory conditions. Chronic administration of anti-inflammatory drugs reduced hippocampal GFAP expression, and reversed deficits in working memory and nest-building behaviors in Shn-2 KO mice. These results suggest that genetically induced changes in immune system can be a predisposing factor in schizophrenia. PMID:23389689

  4. Estrogen Signaling in Metabolic Inflammation

    PubMed Central

    Monteiro, Rosário; Teixeira, Diana; Calhau, Conceição

    2014-01-01

    There is extensive evidence supporting the interference of inflammatory activation with metabolism. Obesity, mainly visceral obesity, is associated with a low-grade inflammatory state, triggered by metabolic surplus where specialized metabolic cells such as adipocytes activate cellular stress initiating and sustaining the inflammatory program. The increasing prevalence of obesity, resulting in increased cardiometabolic risk and precipitating illness such as cardiovascular disease, type 2 diabetes, fatty liver, cirrhosis, and certain types of cancer, constitutes a good example of this association. The metabolic actions of estrogens have been studied extensively and there is also accumulating evidence that estrogens influence immune processes. However, the connection between these two fields of estrogen actions has been underacknowledged since little attention has been drawn towards the possible action of estrogens on the modulation of metabolism through their anti-inflammatory properties. In the present paper, we summarize knowledge on the modification inflammatory processes by estrogens with impact on metabolism and highlight major research questions on the field. Understanding the regulation of metabolic inflammation by estrogens may provide the basis for the development of therapeutic strategies to the management of metabolic dysfunctions. PMID:25400333

  5. Inflammation and oxidative stress in vertebrate host-parasite systems.

    PubMed

    Sorci, Gabriele; Faivre, Bruno

    2009-01-12

    Innate, inflammation-based immunity is the first line of vertebrate defence against micro-organisms. Inflammation relies on a number of cellular and molecular effectors that can strike invading pathogens very shortly after the encounter between inflammatory cells and the intruder, but in a non-specific way. Owing to this non-specific response, inflammation can generate substantial costs for the host if the inflammatory response, and the associated oxygen-based damage, get out of control. This imposes strong selection pressure that acts to optimize two key features of the inflammatory response: the timing of activation and resolution (the process of downregulation of the response). In this paper, we review the benefits and costs of inflammation-driven immunity. Our aim is to emphasize the importance of resolution of inflammation as a way of maintaining homeostasis against oxidative stress and to prevent the 'horror autotoxicus' of chronic inflammation. Nevertheless, host immune regulation also opens the way to pathogens to subvert host defences. Therefore, quantifying inflammatory costs requires assessing (i) short-term negative effects, (ii) delayed inflammation-driven diseases, and (iii) parasitic strategies to subvert inflammation. PMID:18930878

  6. Inflammation in atherosclerosis: new opportunities for drug discovery.

    PubMed

    Meng, Charles Q

    2005-01-01

    Many lines of evidence indicate that inflammation is the ultimate cause of atherosclerosis; high cholesterol levels cause atherosclerosis through mechanism of inflammation. Drugs designed to address inflammatory aspects of atherosclerosis will likely be more effective than current therapies in treating and preventing coronary artery disease. PMID:15638790

  7. Inflammation in depression: is adiposity a cause?

    PubMed Central

    C. Shelton, Richard; H. Miller, Andrew

    2011-01-01

    Mounting evidence indicates that inflammation may play a significant role in the development of depression. Patients with depression exhibit increased inflammatory markers, and administration of cytokines and other inflammatory stimuli can induce depressive symptoms. Mechanisms by which cytokines access the brain and influence neurotransmitter systems relevant to depression have also been described, as have preliminary findings indicating that antagonizing inflammatory pathways may improve depressive symptoms. One primary source of inflammation in depression appears to be adiposity. Adipose tissue is a rich source of inflammatory factors including adipokines, chemokines, and cytokines, and a bidirectional relationship between adiposity and depression has been revealed. Adiposity is associated with the development of depression, and depression is associated with adiposity, reflecting a potentional vicious cycle between these two conditions which appears to center around inflammation. Treatments targeting this vicious cycle may be especially relevant for the treatment and prevention of depression as well as its multiple comorbid disorders such as cardiovascular disease, diabetes, and cancer, all of which have also been associated with both depression and inflammation. PMID:21485745

  8. Infection, inflammation and exercise in cystic fibrosis

    PubMed Central

    2013-01-01

    Regular exercise is positively associated with health. It has also been suggested to exert anti-inflammatory effects. In healthy subjects, a single exercise session results in immune cell activation, which is characterized by production of immune modulatory peptides (e.g. IL-6, IL-8), a leukocytosis and enhanced immune cell functions. Upon cessation of exercise, immune activation is followed by a tolerizing phase, characterized by a reduced responsiveness of immune cells. Regular exercise of moderate intensity and duration has been shown to exert anti-inflammatory effects and is associated with a reduced disease incidence and viral infection susceptibility. Specific exercise programs may therefore be used to modify the course of chronic inflammatory and infectious diseases such as cystic fibrosis (CF). Patients with CF suffer from severe and chronic pulmonary infections and inflammation, leading to obstructive and restrictive pulmonary disease, exercise intolerance and muscle cachexia. Inflammation is characterized by a hyper-inflammatory phenotype. Patients are encouraged to engage in exercise programs to maintain physical fitness, quality of life, pulmonary function and health. In this review, we present an overview of available literature describing the association between regular exercise, inflammation and infection susceptibility and discuss the implications of these observations for prevention and treatment of inflammation and infection susceptibility in patients with CF. PMID:23497303

  9. The role of inflammation in epileptogenesis

    PubMed Central

    Vezzani, Annamaria; Friedman, Alon; Dingledine, Raymond J.

    2012-01-01

    Summary One compelling challenge in the therapy of epilepsy is to develop anti-epileptogenic drugs with an impact on the disease progression. The search for novel targets has focused recently on brain inflammation since this phenomenon appears to be an integral part of the diseased hyperexcitable brain tissue from which spontaneous and recurrent seizures originate. Although the contribution of specific proinflammatory pathways to the mechanism of ictogenesis in epileptic tissue has been demonstrated in experimental models, the role of these pathways in epileptogenesis is still under evaluation. We review the evidence conceptually supporting the involvement of brain inflammation and the associated blood-brain barrier damage in epileptogenesis, and describe the available pharmacological evidence where post-injury intervention with anti-inflammatory drugs has been attempted. Our review will focus on three main inflammatory pathways, namely the IL-1 receptor/Toll-like receptor signalling, COX-2 and the TGF-β signalling. The mechanisms underlying neuronal-glia network dysfunctions induced by brain inflammation are also discussed, highlighting novel neuromodulatory effects of classical inflammatory mediators such as cytokines and prostaglandins. The increase in knowledge about a role of inflammation in disease progression, may prompt the use of specific anti-inflammatory drugs for developing disease-modifying treatments. PMID:22521336

  10. Inflammation-inducing Factors of Mycoplasma pneumoniae

    PubMed Central

    Shimizu, Takashi

    2016-01-01

    Mycoplasma pneumoniae, which causes mycoplasmal pneumonia in human, mainly causes pneumonia in children, although it occasionally causes disease in infants and geriatrics. Some pathogenic factors produced by M. pneumoniae, such as hydrogen peroxide and Community-Acquired Respiratory Distress Syndrome (CARDS) toxin have been well studied. However, these factors alone cannot explain this predilection. The low incidence rate of mycoplasmal pneumonia in infants and geriatrics implies that the strong inflammatory responses induced by M. pneumoniae coordinate with the pathogenic factors to induce pneumonia. However, M. pneumoniae lacks a cell wall and does not possess an inflammation-inducing endotoxin, such as lipopolysaccharide (LPS). In M. pneumoniae, lipoproteins were identified as an inflammation-inducing factor. Lipoproteins induce inflammatory responses through Toll-like receptors (TLR) 2. Because Mycoplasma species lack a cell wall and lipoproteins anchored in the membrane are exposed, lipoproteins and TLR2 have been thought to be important for the pathogenesis of M. pneumoniae. However, recent reports suggest that M. pneumoniae also induces inflammatory responses also in a TLR2-independent manner. TLR4 and autophagy are involved in this TLR2-independent inflammation. In addition, the CARDS toxin or M. pneumoniae cytadherence induces inflammatory responses through an intracellular receptor protein complex called the inflammasome. In this review, the inflammation-inducing factors of M. pneumoniae are summarized. PMID:27065977

  11. Molecular cues guiding inflammatory responses.

    PubMed

    Barreiro, Olga; Martín, Pilar; González-Amaro, Roberto; Sánchez-Madrid, Francisco

    2010-05-01

    Alarm signals generated at inflammatory foci reach the vascular lumen to attract immune cells towards the affected tissue. Different leucocyte subsets decipher and integrate these complex signals in order to make adequate decisions for their migration towards the inflamed tissue. Soluble cues (cytokines and chemokines) and membrane receptors in both endothelium and leucocytes orchestrate the coordinated recruitment of specific inflammatory cell subsets. All these molecules are spatio-temporally organized in specialized structures at the luminal side of endothelium and the leucocyte membrane or are generated as chemical gradients in the damaged tissue. Thus, the repertoire of chemokines and their receptors as well as adhesion molecules expressed by each leucocyte subset determine their recruitment for participation in specific inflammatory pathologies. Whenever inflammatory signals are altered or misprocessed, inflammation can become chronic, causing extensive tissue damage. To combat chronic inflammation and autoimmune diseases, novel therapeutic strategies attempt to silence the predominant signals in each inflammatory scenario. In this review, we provide a general overview of all these aspects related to the molecular regulation of leucocyte guidance in inflammatory responses. PMID:20053659

  12. Monocyte-induced recovery of inflammation-associated hepatocellular dysfunction in a biochip-based human liver model

    PubMed Central

    Gröger, Marko; Rennert, Knut; Giszas, Benjamin; Weiß, Elisabeth; Dinger, Julia; Funke, Harald; Kiehntopf, Michael; Peters, Frank T.; Lupp, Amelie; Bauer, Michael; Claus, Ralf A.; Huber, Otmar; Mosig, Alexander S.

    2016-01-01

    Liver dysfunction is an early event in sepsis-related multi-organ failure. We here report the establishment and characterization of a microfluidically supported in vitro organoid model of the human liver sinusoid. The liver organoid is composed of vascular and hepatocyte cell layers integrating non-parenchymal cells closely reflecting tissue architecture and enables physiological cross-communication in a bio-inspired fashion. Inflammation-associated liver dysfunction was mimicked by stimulation with various agonists of toll-like receptors. TLR-stimulation induced the release of pro- and anti-inflammatory cytokines and diminished expression of endothelial VE-cadherin, hepatic MRP-2 transporter and apolipoprotein B (ApoB), resulting in an inflammation-related endothelial barrier disruption and hepatocellular dysfunction in the liver organoid. However, interaction of the liver organoid with human monocytes attenuated inflammation-related cell responses and restored MRP-2 transporter activity, ApoB expression and albumin/urea production. The cellular events observed in the liver organoid closely resembled pathophysiological responses in the well-established sepsis model of peritoneal contamination and infection (PCI) in mice and clinical observations in human sepsis. We therefore conclude that this human liver organoid model is a valuable tool to investigate sepsis-related liver dysfunction and subsequent immune cell-related tissue repair/remodeling processes. PMID:26902749

  13. Monocyte-induced recovery of inflammation-associated hepatocellular dysfunction in a biochip-based human liver model.

    PubMed

    Gröger, Marko; Rennert, Knut; Giszas, Benjamin; Weiß, Elisabeth; Dinger, Julia; Funke, Harald; Kiehntopf, Michael; Peters, Frank T; Lupp, Amelie; Bauer, Michael; Claus, Ralf A; Huber, Otmar; Mosig, Alexander S

    2016-01-01

    Liver dysfunction is an early event in sepsis-related multi-organ failure. We here report the establishment and characterization of a microfluidically supported in vitro organoid model of the human liver sinusoid. The liver organoid is composed of vascular and hepatocyte cell layers integrating non-parenchymal cells closely reflecting tissue architecture and enables physiological cross-communication in a bio-inspired fashion. Inflammation-associated liver dysfunction was mimicked by stimulation with various agonists of toll-like receptors. TLR-stimulation induced the release of pro- and anti-inflammatory cytokines and diminished expression of endothelial VE-cadherin, hepatic MRP-2 transporter and apolipoprotein B (ApoB), resulting in an inflammation-related endothelial barrier disruption and hepatocellular dysfunction in the liver organoid. However, interaction of the liver organoid with human monocytes attenuated inflammation-related cell responses and restored MRP-2 transporter activity, ApoB expression and albumin/urea production. The cellular events observed in the liver organoid closely resembled pathophysiological responses in the well-established sepsis model of peritoneal contamination and infection (PCI) in mice and clinical observations in human sepsis. We therefore conclude that this human liver organoid model is a valuable tool to investigate sepsis-related liver dysfunction and subsequent immune cell-related tissue repair/remodeling processes. PMID:26902749

  14. The family resemblance metaphor: some unfinished business of interpretive inquiry.

    PubMed

    Miller, S I; Fredericks, M

    2000-07-01

    The rapidly expanding discipline of interpretive inquiry, especially in its narrative analysis form, has not been fully cognizant of certain crucial epistemological and methodological assumptions that form the ultimate basis of its purpose. Even after abandoning traditional positivist views, the related disciplines within the human sciences that are engaged in interpretive inquiry have still not discovered the core implicit assumptions that militate against a full acceptance of this form of inquiry. This article outlines the locus of these implicit assumptions and then argues that the legitimacy of these enterprises must be grounded in a well-known but heretofore undiscovered perspective, namely, Wittgenstein's notion of a family resemblance. It is argued that this metaphoric phrase is the key to unlocking the real and unique nature of narrative analysis. PMID:11010071

  15. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  16. Selenium and inflammatory bowel disease.

    PubMed

    Kudva, Avinash K; Shay, Ashley E; Prabhu, K Sandeep

    2015-07-15

    Dietary intake of the micronutrient selenium is essential for normal immune functions. Selenium is cotranslationally incorporated as the 21st amino acid, selenocysteine, into selenoproteins that function to modulate pathways involved in inflammation. Epidemiological studies have suggested an inverse association between selenium levels and inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis that can potentially progress to colon cancer. However, the underlying mechanisms are not well understood. Here we summarize the current literature on the pathophysiology of IBD, which is multifactorial in origin with unknown etiology. We have focused on a few selenoproteins that mediate gastrointestinal inflammation and activate the host immune response, wherein macrophages play a pivotal role. Changes in cellular oxidative state coupled with altered expression of selenoproteins in macrophages drive the switch from a proinflammatory phenotype to an anti-inflammatory phenotype to efficiently resolve inflammation in the gut and restore epithelial barrier integrity. Such a phenotypic plasticity is accompanied by changes in cytokines, chemokines, and bioactive metabolites, including eicosanoids that not only mitigate inflammation but also partake in restoring gut homeostasis through diverse pathways involving differential regulation of transcription factors such as nuclear factor-κB and peroxisome proliferator-activated receptor-γ. The role of the intestinal microbiome in modulating inflammation and aiding in selenium-dependent resolution of gut injury is highlighted to provide novel insights into the beneficial effects of selenium in IBD. PMID:26045617

  17. Macrophage Inflammatory Assay

    PubMed Central

    Ylostalo, Joni H.

    2016-01-01

    Macrophages represent a widely distributed and functionally diverse population of innate myeloid cells involved in inflammatory response to pathogens, tissue homeostasis and tissue repair (Murray and Wynn, 2011). Macrophages can be broadly grouped into two subpopulations with opposing activites: M1 or pro-inflammatory macrophages that promote T-helper type 1 (Th1) cell immunity and tissue damage, and M2 or anti-inflammatory/alternatively activated macrophages implicated in Th2 response and resolution of inflammation. Here we describe a rapid assay we used previously to monitor changes in pro-inflammatory and anti-inflammatory cytokine production by lipopolysaccharide (LPS)-activated macrophages in response to therapeutic paracrine factors produced by adult stem cells (Bartosh et al., 2010; Ylostalo et al., 2012; Bartosh et al., 2013). The assay can be adapted appropriately to test macrophage response to other agents as well that will be referred to herein as ‘test reagents’ or ‘test compounds’. In this protocol, the mouse macrophage cell line J774A.1 is expanded as an adherent monolayer on petri dishes allowing for the cells to be harvested easily without enzymes or cell scrapers that can damage the cells. The macropahges are then stimulated in suspension with LPS and seeded into 12-well cell culture plates containing the test reagents. After 16–18 h, the medium conditioned by the macrophages is harvested and the cytokine profile in the medium determined with enzyme-linked immunosorbent assays (ELISA). We routinely measure levels of the pro-inflammtory cytokine TNF-alpha and the anti-inflammatory cytokine interleukin-10 (IL-10).

  18. Regulation of Inflammation in Cancer by Eicosanoids

    PubMed Central

    Greene, Emily R.; Huang, Sui; Serhan, Charles N.; Panigrahy, Dipak

    2011-01-01

    Inflammation in the tumour microenvironment is now recognized as one of the hallmarks of cancer. Endogenously produced lipid autacoids, locally acting small molecule lipid mediators, play a central role in inflammation and tissue homeostasis, and have recently been implicated in cancer. A well-studied group of autacoid mediators that are the products of arachidonic acid metabolism include: the prostaglandins, leukotrienes, lipoxins and cytochrome P450 (CYP) derived bioactive products. These lipid mediators are collectively referred to as eicosanoids and are generated by distinct enzymatic systems initiated by cyclooxygenase (COX 1 and 2), lipoxygenases (5-LOX, 12-LOX, 15-LOXa, 15-LOXb), and cytochrome P450s, respectively. These pathways are the target of approved drugs for the treatment of inflammation, pain, asthma, allergies, and cardiovascular disorders. Beyond their potent anti-inflammatory and anti-cancer effects, non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 specific inhibitors have been evaluated in both preclinical tumor models and clinical trials. Eicosanoid biosynthesis and actions can also be directly influenced by nutrients in the diet, as evidenced by the emerging role of omega-3 fatty acids in cancer prevention and treatment. Most research dedicated to using eicosanoids to inhibit tumor-associated inflammation has focused on the COX and LOX pathways. Novel experimental approaches that demonstrate the anti-tumor effects of inhibiting cancer-associated inflammation currently include: eicosanoid receptor antagonism, overexpression of eicosanoid metabolizing enzymes, and the use of endogenous anti-inflammatory lipid mediators. Here we review the actions of eicosanoids on inflammation in the context of tumorigenesis. Eicosanoids may represent a missing link between inflammation and cancer and thus could serve as therapeutic target(s) for inhibiting tumor growth. PMID:21864702

  19. Vitamin D in inflammatory diseases

    PubMed Central

    Wöbke, Thea K.; Sorg, Bernd L.; Steinhilber, Dieter

    2014-01-01

    Changes in vitamin D serum levels have been associated with inflammatory diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis (MS), atherosclerosis, or asthma. Genome- and transcriptome-wide studies indicate that vitamin D signaling modulates many inflammatory responses on several levels. This includes (i) the regulation of the expression of genes which generate pro-inflammatory mediators, such as cyclooxygenases or 5-lipoxygenase, (ii) the interference with transcription factors, such as NF-κB, which regulate the expression of inflammatory genes and (iii) the activation of signaling cascades, such as MAP kinases which mediate inflammatory responses. Vitamin D targets various tissues and cell types, a number of which belong to the immune system, such as monocytes/macrophages, dendritic cells (DCs) as well as B- and T cells, leading to individual responses of each cell type. One hallmark of these specific vitamin D effects is the cell-type specific regulation of genes involved in the regulation of inflammatory processes and the interplay between vitamin D signaling and other signaling cascades involved in inflammation. An important task in the near future will be the elucidation of the regulatory mechanisms that are involved in the regulation of inflammatory responses by vitamin D on the molecular level by the use of techniques such as chromatin immunoprecipitation (ChIP), ChIP-seq, and FAIRE-seq. PMID:25071589

  20. Transgenic Expression of the Chemokine Receptor Encoded by Human Herpesvirus 8 Induces an Angioproliferative Disease Resembling Kaposi's Sarcoma

    PubMed Central

    Yang, Tong-Yuan; Chen, Shu-Cheng; Leach, Michael W.; Manfra, Denise; Homey, Bernhard; Wiekowski, Maria; Sullivan, Lee; Jenh, Chung-Her; Narula, Satwant K.; Chensue, Stephen W.; Lira, Sergio A.

    2000-01-01

    Human herpesvirus 8 (HHV8, also known as Kaposi's sarcoma [KS]-associated herpesvirus) has been implicated as an etiologic agent for KS, an angiogenic tumor composed of endothelial, inflammatory, and spindle cells. Here, we report that transgenic mice expressing the HHV8-encoded chemokine receptor (viral G protein–coupled receptor) within hematopoietic cells develop angioproliferative lesions in multiple organs that morphologically resemble KS lesions. These lesions are characterized by a spectrum of changes ranging from erythematous maculae to vascular tumors, by the presence of spindle and inflammatory cells, and by expression of vGPCR, CD34, and vascular endothelial growth factor. We conclude that vGPCR contributes to the development of the angioproliferative lesions observed in these mice and suggest that this chemokine receptor may play a role in the pathogenesis of KS in humans. PMID:10662790

  1. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma.

    PubMed

    Yang, T Y; Chen, S C; Leach, M W; Manfra, D; Homey, B; Wiekowski, M; Sullivan, L; Jenh, C H; Narula, S K; Chensue, S W; Lira, S A

    2000-02-01

    Human herpesvirus 8 (HHV8, also known as Kaposi's sarcoma [KS]-associated herpesvirus) has been implicated as an etiologic agent for KS, an angiogenic tumor composed of endothelial, inflammatory, and spindle cells. Here, we report that transgenic mice expressing the HHV8-encoded chemokine receptor (viral G protein-coupled receptor) within hematopoietic cells develop angioproliferative lesions in multiple organs that morphologically resemble KS lesions. These lesions are characterized by a spectrum of changes ranging from erythematous maculae to vascular tumors, by the presence of spindle and inflammatory cells, and by expression of vGPCR, CD34, and vascular endothelial growth factor. We conclude that vGPCR contributes to the development of the angioproliferative lesions observed in these mice and suggest that this chemokine receptor may play a role in the pathogenesis of KS in humans. PMID:10662790

  2. Infections, inflammation and epilepsy.

    PubMed

    Vezzani, Annamaria; Fujinami, Robert S; White, H Steve; Preux, Pierre-Marie; Blümcke, Ingmar; Sander, Josemir W; Löscher, Wolfgang

    2016-02-01

    Epilepsy is the tendency to have unprovoked epileptic seizures. Anything causing structural or functional derangement of brain physiology may lead to seizures, and different conditions may express themselves solely by recurrent seizures and thus be labelled "epilepsy." Worldwide, epilepsy is the most common serious neurological condition. The range of risk factors for the development of epilepsy varies with age and geographic location. Congenital, developmental and genetic conditions are mostly associated with the development of epilepsy in childhood, adolescence and early adulthood. Head trauma, infections of the central nervous system (CNS) and tumours may occur at any age and may lead to the development of epilepsy. Infections of the CNS are a major risk factor for epilepsy. The reported risk of unprovoked seizures in population-based cohorts of survivors of CNS infections from developed countries is between 6.8 and 8.3 %, and is much higher in resource-poor countries. In this review, the various viral, bacterial, fungal and parasitic infectious diseases of the CNS which result in seizures and epilepsy are discussed. The pathogenesis of epilepsy due to brain infections, as well as the role of experimental models to study mechanisms of epileptogenesis induced by infectious agents, is reviewed. The sterile (non-infectious) inflammatory response that occurs following brain insults is also discussed, as well as its overlap with inflammation due to infections, and the potential role in epileptogenesis. Furthermore, autoimmune encephalitis as a cause of seizures is reviewed. Potential strategies to prevent epilepsy resulting from brain infections and non-infectious inflammation are also considered. PMID:26423537

  3. YKL-40/CHI3L1 drives inflammation on the road of tumor progression.

    PubMed

    Libreros, Stephania; Iragavarapu-Charyulu, Vijaya

    2015-12-01

    Inflammation plays a vital role at different stages of tumor progression. The development of tumors is affected by inflammatory mediators produced by the tumor and the host. YKL-40/chitinase-3-like-1 protein is often up-regulated in inflammation-associated diseases. With the use of chronic inflammatory disease systems, we describe the role of YKL-40/chitinase-3-like-1 protein in enhancing the inflammatory response and its implications in tumorigenesis. We also discuss how pre-existing inflammation enhances tumor growth and metastasis. In this mini-review, we highlight the effect of YKL-40/chitinase-3-like-1 protein-associated inflammation in promoting tumor progression. PMID:26310833

  4. Blood coagulation and fibrinolysis in aortic valve stenosis: links with inflammation and calcification.

    PubMed

    Natorska, J; Undas, A

    2015-08-01

    Aortic valve stenosis (AS) increasingly afflicts our aging population. However, the pathobiology of the disease is still poorly understood and there is no effective pharmacotherapy for treating those at risk for clinical progression. The progression of AS involves complex inflammatory and fibroproliferative processes that resemble to some extent atherosclerosis. Accumulating evidence indicates that several coagulation proteins and its inhibitors, including tissue factor, tissue factor pathway inhibitor, prothrombin, factor XIII, von Willebrand factor, display increased expression within aortic stenotic valves, predominantly on macrophages and myofibroblasts around calcified areas. Systemic impaired fibrinolysis, along with increased plasma and valvular expression of plasminogen activator inhibitor-1, has also been observed in patients with AS in association with the severity of the disease. There is an extensive cross-talk between inflammation and coagulation in stenotic valve tissue which contributes to the calcification and mineralisation of the aortic valve leaflets. This review summarises the available data on blood coagulation and fibrinolysis in AS with the emphasis on their interactions with inflammation and calcification. PMID:25809537

  5. Chemokines in cancer related inflammation

    SciTech Connect

    Allavena, Paola; Germano, Giovanni; Marchesi, Federica; Mantovani, Alberto

    2011-03-10

    Chemokines are key players of the cancer-related inflammation. Chemokine ligands and receptors are downstream of genetic events that cause neoplastic transformation and are abundantly expressed in chronic inflammatory conditions which predispose to cancer. Components of the chemokine system affect multiple pathways of tumor progression including: leukocyte recruitment, neo-angiogenesis, tumor cell proliferation and survival, invasion and metastasis. Evidence in pre-clinical and clinical settings suggests that the chemokine system represents a valuable target for the development of innovative therapeutic strategies.

  6. The evolution of inflammatory mediators

    PubMed Central

    Rowley, Andrew F.

    1996-01-01

    Invertebrates do not display the level of sophistication in immune reactivity characteristic of mammals and other ‘higher’ vertebrates. Their great number and diversity of forms, however, reflect their evolutionary success and hence they must have effective mechanisms of defence to deal with parasites and pathogens and altered self tissues. Inflammation appears to be an important first line defence in all invertebrates and vertebrates. This brief review deals with the inflammatory responses of invertebrates and fish concentrating on the cell types involved and the mediators of inflammation, in particular, eicosanoids, cytokines and adhesion molecules. PMID:18475690

  7. Harnessing and Modulating Inflammation in Strategies for Bone Regeneration

    PubMed Central

    Mountziaris, Paschalia M.; Spicer, Patrick P.; Kasper, F. Kurtis

    2011-01-01

    Inflammation is an immediate response that plays a critical role in healing after fracture or injury to bone. However, in certain clinical contexts, such as in inflammatory diseases or in response to the implantation of a biomedical device, the inflammatory response may become chronic and result in destructive catabolic effects on the bone tissue. Since our previous review 3 years ago, which identified inflammatory signals critical for bone regeneration and described the inhibitory effects of anti-inflammatory agents on bone healing, a multitude of studies have been published exploring various aspects of this emerging field. In this review, we distinguish between regenerative and damaging inflammatory processes in bone, update our discussion of the effects of anti-inflammatory agents on bone healing, summarize recent in vitro and in vivo studies demonstrating how inflammation can be modulated to stimulate bone regeneration, and identify key future directions in the field. PMID:21615330

  8. Is Depression an Inflammatory Disorder?

    PubMed Central

    Miller, Andrew H.

    2012-01-01

    Studies consistently report that groups of individuals with major depressive disorder (MDD) demonstrate increased levels of a variety of peripheral inflammatory biomarkers when compared with groups of nondepressed individuals. These findings are often interpreted as meaning that MDD, even in medically healthy individuals, may be an inflammatory condition. In this article, we examine evidence for and against this idea by looking more closely into what the actual patterns of inflammatory findings indicate in terms of the relationship between MDD and the immune system. Data are presented in support of the idea that inflammation only contributes to depression in a subset of patients versus the possibility that the depressogenic effect of inflammatory activation is more widespread and varies depending on the degree of vulnerability any given individual evinces in interconnected physiologic systems known to be implicated in the etiology of MDD. Finally, the treatment implications of these various possibilities are discussed. PMID:21927805

  9. Atrial fibrillation: inflammation in disguise?

    PubMed

    Lappegård, K T; Hovland, A; Pop, G A M; Mollnes, T E

    2013-08-01

    Atrial fibrillation is highly prevalent, and affected patients are at an increased risk of a number of complications, including heart failure and thrombo-embolism. Over the past years, there has been increasing interest in the role of inflammatory processes in atrial fibrillation, from the first occurrence of the arrhythmia to dreaded complications such as strokes or peripheral emboli. As the standard drug combination which aims at rate control and anticoagulation only offers partial protection against complications, newer agents are needed to optimize treatment. In this paper, we review recent knowledge regarding the impact of inflammation on the occurrence, recurrence, perpetuation and complications of the arrhythmia, as well as the role of anti-inflammatory therapies in the treatment for the disease. PMID:23672430

  10. Metabolic inflammation: connecting obesity and insulin resistance.

    PubMed

    Dali-Youcef, Nassim; Mecili, Mustapha; Ricci, Roméo; Andrès, Emmanuel

    2013-05-01

    Insulin resistance is a pathological condition that arises when insulin signaling is impaired, forcing β-cells to produce more insulin in order to cope with body demands and to maintain glucose homeostasis. When the pancreas is no more able to support an appropriate insulin secretion, insulin resistance becomes decompensated and hyperglycemia is detected. One of the mechanisms leading to insulin resistance is low-grade inflammation that involves a number of protagonists such as inflammatory cytokines, lipids and their metabolites, reactive oxygen species (ROS), hypoxia and endoplasmic reticulum stress, and changes in gut microbiota profiles. We review here the molecular aspects of metabolic inflammation converging to insulin resistance and secondarily to type 2 diabetes. We also discuss the place of high-sensitivity C-reactive protein (hsCRP) in the assessment of metabolic inflammation and potential therapeutic interventions aimed to impede inflammation and therefore prevent insulin resistance. PMID:22834949

  11. Divergent neuroendocrine responses to localised and systemic inflammation

    PubMed Central

    Lukewich, Mark K.; Rogers, Richard C.; Lomax, Alan E.

    2014-01-01

    The sympathetic nervous system (SNS) is part of an integrative network that functions to restore homeostasis following injury and infection. The SNS can provide negative feedback control over inflammation through the secretion of catecholamines from postganglionic sympathetic neurons and adrenal chromaffin cells (ACCs). Central autonomic structures receive information regarding the inflammatory status of the body and reflexively modulate SNS activity. However, inflammation and infection can also directly regulate SNS function by peripheral actions on postganglionic cells. The present review discusses how inflammation activates autonomic reflex pathways and compares the effect of localised and systemic inflammation on ACCs and postganglionic sympathetic neurons. Systemic inflammation significantly enhanced catecholamine secretion through an increase in Ca2+ release from the endoplasmic reticulum. In contrast, acute and chronic GI inflammation reduced voltage-gated Ca2+ current. Thus it appears that the mechanisms underlying the effects of peripheral and systemic inflammation neuroendocrine function converge on the modulation of intracellular Ca2+ signaling. PMID:24486057

  12. Role of inflammation in cardiopulmonary health effects of PM

    SciTech Connect

    Donaldson, Ken . E-mail: ken.donaldson@ed.ac.uk; Mills, Nicholas; MacNee, William; Robinson, Simon; Newby, David

    2005-09-01

    The relationship between increased exposure to PM and adverse cardiovascular effects is well documented in epidemiological studies. Inflammation in the lungs, caused by deposited particles, can be seen as a key process that could mediate adverse effects on the cardiovascular system. There are at least three potential pathways that could lead from pulmonary inflammation to adverse cardiovascular effects. Firstly, inflammation in the lung could lead to systemic inflammation, which is well known to be linked to sudden death from cardiovascular causes. Systemic inflammation can lead to destabilization by activation of inflammatory processes in atheromatous plaques. Secondly, inflammation can cause an imbalance in coagulation factors that favor propagation of thrombi if thrombosis is initiated. Thirdly, inflammation could affect the autonomic nervous system activity in ways that could lead to alterations in the control of heart rhythm which could culminate in fatal dysrhythmia.

  13. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  14. Prominent follicular mucinosis with diffuse scalp alopecia resembling alopecia areata.

    PubMed

    Missall, Tricia A; Hurley, M Yadira; Burkemper, Nicole M

    2013-10-01

    A 56-year-old Caucasian female presented with a 2-month history of alopecia. On examination, she had diffuse hair loss of her scalp with some discrete patches of nonscarring alopecia. Histopathology revealed an inflammatory nonscarring alopecia with prominent follicular mucinosis and findings suggestive of alopecia areata. The patient's alopecia completely resolved with oral prednisone. The histopathologic findings and clinical presentation are most consistent with a diagnosis of alopecia areata with follicular mucinosis, although the differential diagnosis is broad. As follicular mucinosis may be associated with both benign and malignant conditions, it is important to be cautious regarding the clinical diagnosis when this reaction pattern is observed histopathologically. PMID:23962142

  15. Hepatic Inflammation and Fibrosis: Functional Links and Key Pathways

    PubMed Central

    Seki, Ekihiro; Schwabe, Robert F.

    2014-01-01

    Inflammation is one of the most characteristic features of chronic liver disease of viral, alcoholic, fatty and autoimmune origin. Inflammation is typically present in all disease stages, and associated with the development of fibrosis, cirrhosis and hepatocellular carcinoma. In the past decade, numerous studies have contributed to improved understanding of the links between hepatic inflammation and fibrosis. Here, we review mechanisms that link inflammation with the development of liver fibrosis, focusing on the role of inflammatory mediators in hepatic stellate cell (HSC) activation and HSC survival during fibrogenesis and fibrosis regression. We will summarize the contributions of different inflammatory cells, including hepatic macrophages, T- and B-lymphocytes, NK cells and platelets, as well as key effectors such as cytokines, chemokines, and damage-associated molecular patterns. Furthermore, we will discuss the relevance of inflammatory signaling pathways for clinical liver disease and for the development of anti-fibrogenic strategies. PMID:25066777

  16. Mouse models of intestinal inflammation and cancer.

    PubMed

    Westbrook, Aya M; Szakmary, Akos; Schiestl, Robert H

    2016-09-01

    Chronic inflammation is strongly associated with approximately one-fifth of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here, we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With

  17. Inflammation and the Autodigestion Hypothesis

    PubMed Central

    Schmid-Schönbein, Geert W

    2009-01-01

    Although long recognized in microvascular research, an increasing body of evidence suggests that inflammatory markers are present in human diseases. Since the inflammatory cascade serves as a repair mechanism, the presence of inflammatory markers in patient groups has raised an important question about the mechanisms that initiate the inflammatory cascade, i.e. the mechanisms that cause tissue injury. Using a severe forms of inflammation, shock and multi-organ failure, for which there is no accepted injury mechanism, we summarize studies which suggest that the powerful pancreatic digestive enzymes play a central role in destruction of the intestine and other tissues if their compartmentalization in the lumen of the intestine and in the pancreas is compromised. Furthermore, we summarize evidence that uncontrolled degrading enzyme activity in plasma causes proteolytic cleavage of the extracellular domain of membrane receptors and loss of associated cell functions. For example, in a model of metabolic disease with Type II diabetes proteolytic cleavage of the insulin receptor causes the inability of insulin to signal glucose transport across membranes. The evidence suggests that uncontrolled proteolytic and lipolytic enzyme activity may trigger mechanism for tissue injury. The significance of such mechanisms remain to be explored in human diseases. PMID:19384726

  18. Musculoskeletal Hydatid Cysts Resembling Tumors: A Report of Five Cases.

    PubMed

    Toğral, Güray; Arıkan, Şefik M; Ekiz, Timur; Kekeç, Ahmet F; Ekşioğlu, Mehmet F

    2016-05-01

    Although challenges in treatment of musculoskeletal hydatid cysts (HC) lesions have been documented, data regarding the musculoskeletal HC lesions resembling tumor is scarce. This paper presented 5 patients (3 males, 2 females) with a mean age of 41.6 years with tumor-like lesions of HC. Three of them had left ilium and acetabulum involvement, one involved left femur, and one involved left thigh muscle compartments. Pain was the main symptom and was seen in all patients. Clinical examination, radiologic evaluation, and histologic analysis were performed for diagnosis. Patients were treated through different surgical options, including simple debridement, bone cement filling with or without internal fixation, hip arthrodesis, reconstruction using hemipelvic replantation with femoral prosthesis and distal femur endoprosthetic replacement. After surgery, the operation region was washed by 20% hypertonic saline, and debridement was performed carefully without contamination. All patients received albendazole treatment. Cases were followed up 1 to 9 years for the recurrence. Walking difficulty and pain were the main symptoms during the follow-up. One patient was symptom-free. A reoccurrence in the perioperative soft tissue was detected in only one patient and control visits with antihelmintic treatment were recommended. We would like to emphasize that HC should be kept in mind for the differential diagnosis of the cystic or tumoral lesions of the musculoskeletal system, particularly in the endemic regions. Prompt diagnosis is of paramount importance for preventing destruction and complications. PMID:27384735

  19. Islet1 deletion causes kidney agenesis and hydroureter resembling CAKUT.

    PubMed

    Kaku, Yusuke; Ohmori, Tomoko; Kudo, Kuniko; Fujimura, Sayoko; Suzuki, Kentaro; Evans, Sylvia M; Kawakami, Yasuhiko; Nishinakamura, Ryuichi

    2013-07-01

    Islet1 (Isl1) is a transcription factor transiently expressed in a subset of heart and limb progenitors. During studies of limb development, conditional Isl1 deletion produced unexpected kidney abnormalities. Here, we studied the renal expression of Isl1 and whether it has a role in kidney development. In situ hybridization revealed Isl1 expression in the mesenchymal cells surrounding the base of the ureteric bud in mice. Conditional deletion of Isl1 caused kidney agenesis or hypoplasia and hydroureter, a phenotype resembling human congenital anomalies of the kidney and urinary tract (CAKUT). The absence of Isl1 led to ectopic branching of the ureteric bud out from the nephric duct or to the formation of accessory buds, both of which could lead to obstruction of the ureter-bladder junction and consequent hydroureter. The abnormal elongation and poor branching of the ureteric buds were the likely causes of the kidney agenesis or hypoplasia. Furthermore, the lack of Isl1 reduced the expression of Bmp4, a gene implicated in the CAKUT-like phenotype, in the metanephric region before ureteric budding. In conclusion, Isl1 is essential for proper development of the kidney and ureter by repressing the aberrant formation of the ureteric bud. These observations call for further studies to investigate whether Isl1 may be a causative gene for human CAKUT. PMID:23641053

  20. A neural network dynamics that resembles protein evolution

    NASA Astrophysics Data System (ADS)

    Ferrán, Edgardo A.; Ferrara, Pascual

    1992-06-01

    We use neutral networks to classify proteins according to their sequence similarities. A network composed by 7 × 7 neurons, was trained with the Kohonen unsupervised learning algorithm using, as inputs, matrix patterns derived from the bipeptide composition of cytochrome c proteins belonging to 76 different species. As a result of the training, the network self-organized the activation of its neurons into topologically ordered maps, wherein phylogenetically related sequences were positioned close to each other. The evolution of the topological map during learning, in a representative computational experiment, roughly resembles the way in which one species evolves into several others. For instance, sequences corresponding to vertebrates, initially grouped together into one neuron, were placed in a contiguous zone of the final neural map, with sequences of fishes, amphibia, reptiles, birds and mammals associated to different neurons. Some apparent wrong classifications are due to the fact that some proteins have a greater degree of sequence identity than the one expected by phylogenetics. In the final neural map, each synaptic vector may be considered as the pattern corresponding to the ancestor of all the proteins that are attached to that neuron. Although it may be also tempting to link real time with learning epochs and to use this relationship to calibrate the molecular evolutionary clock, this is not correct because the evolutionary time schedule obtained with the neural network depends highly on the discrete way in which the winner neighborhood is decreased during learning.

  1. Inflammation (or synovitis)-driven osteoarthritis: an opportunity for personalizing prognosis and treatment?

    PubMed

    Siebuhr, A S; Bay-Jensen, A C; Jordan, J M; Kjelgaard-Petersen, C F; Christiansen, C; Abramson, S B; Attur, M; Berenbaum, F; Kraus, V; Karsdal, M A

    2016-03-01

    The disabling and painful disease osteoarthritis (OA) is the most common form of arthritis. Strong evidence suggests that a subpopulation of OA patients has a form of OA driven by inflammation. Consequently, understanding when inflammation is the driver of disease progression and which OA patients might benefit from anti-inflammatory treatment is a topic of intense research in the OA field. We have reviewed the current literature on OA, with an emphasis on inflammation in OA, biochemical markers of structural damage, and anti-inflammatory treatments for OA. The literature suggests that the OA patient population is diverse, consisting of several subpopulations, including one associated with inflammation. This inflammatory subpopulation may be identified by a combination of novel serological inflammatory biomarkers. Preliminary evidence from small clinical studies suggests that this subpopulation may benefit from anti-inflammatory treatment currently reserved for other inflammatory arthritides. PMID:26484849

  2. Roles for Inflammation and Regulatory T Cells in Colon Cancer

    PubMed Central

    Erdman, Susan E.; Poutahidis, Theofilos

    2014-01-01

    Risk for developing cancer rises substantially as a result of poorly regulated inflammatory responses to pathogenic bacterial infections. Anti-inflammatory CD4+ regulatory cells (TREG) function to restore immune homeostasis during chronic inflammatory disorders. It seems logical that TREG cells would function to reduce risk of inflammation-associated cancer in the bowel by down-regulating inflammation. It is widely believed, however, that TREG function in cancer mainly to suppress protective anticancer inflammatory responses. Thus roles for inflammation, TREG cells, and gut bacteria in cancer are paradoxical and are the subject of controversy. Our accumulated data build upon the “hygiene hypothesis” model in which gastrointestinal (GI) infections lead to changes in TREG that reduce inflammation-associated diseases. Ability of TREG to inhibit or suppress cancer depends upon gut bacteria and IL-10, which serve to maintain immune balance and a protective anti-inflammatory TREG phenotype. However, under poorly regulated pro-inflammatory conditions, TREG fail to inhibit and may instead contribute to a T helper (Th)-17-driven procarcinogenic process, a cancer state that is reversible by down-regulation of inflammation and interleukin (IL)-6. Consequently, hygienic individuals with a weakened IL-10– and TREG–mediated inhibitory loop are highly susceptible to the carcinogenic consequences of elevated inflammation and show more frequent inflammation-associated cancers. Taken together, these data help explain the paradox of inflammation and TREG in cancer and indicate that targeted stimulation of TREG may promote health and significantly reduce risk of cancer. PMID:20019355

  3. Mechanistic Differences Leading to Infectious and Sterile Inflammation.

    PubMed

    Behnia, Faranak; Sheller, Samantha; Menon, Ramkumar

    2016-05-01

    Inflammation is a physiologic component of pregnancy and parturition. Overwhelming intrauterine inflammatory load promotes quiescent feto-maternal tissues into a contractile phenotype. Like inflammation, oxidative stress is an inevitable component of both pregnancy and parturition. Pathologic activation of host innate immune response to adverse pregnancy conditions can lead to premature activation of inflammatory and oxidative stress. Inflammation and oxidative stress markers seen with both sterile and infectious inflammation are often similar; therefore, it is difficult to understand causality of conditions like spontaneous preterm birth. This review demonstrates potential mechanistic pathways of activation of sterile and infectious inflammation. We demonstrate the activation of two unique pathways of inflammation by factors that are well-documented proxies for oxidative stress (cigarette smoke extract) and infection (lipopolysaccharide). Sterile inflammation seen after exposure to an oxidative stress inducer is due to cellular elemental damage resulting in p38 mitogen-activated protein kinase (MAPK) induced cellular senescence. Infectious inflammation is through activation of transcription factor NF-κB and independent of oxidative stress-associated damages and p38 MAPK-induced senescence. Understanding the differences in the inflammatory pathway activation by various risk factors is important to design better screening, diagnostic and intervention strategies to reduce the risks of adverse pregnancy outcomes. PMID:26840942

  4. Roles of resolvins in the resolution of acute inflammation.

    PubMed

    Qu, Qing; Xuan, Wenjuan; Fan, Guo-Huang

    2015-01-01

    Resolution is an active process that terminates inflammatory response to maintain health. Acute inflammation and its timely resolution are important in host response to danger signals. Unresolved inflammation is associated with widely recurrent diseases. Resolvins, including the D and E series, are endogenous lipid mediators generated during the resolution phase of acute of inflammation from the ω-3 PUFAs, DHA, and EPA. They have anti-inflammatory and pro-resolving properties that have been determined in many inflammation studies in animal models. In this review, we provide an updated overview of biosynthesis, actions, and signaling pathways of resolvins, thereby underscoring their diverse protective roles and introducing novel therapeutic strategies for inflammation-associated diseases. PMID:25052386

  5. Inflammatory bowel disease: Pathogenesis

    PubMed Central

    Zhang, Yi-Zhen; Li, Yong-Yu

    2014-01-01

    Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is characterized by chronic relapsing intestinal inflammation. It has been a worldwide health-care problem with a continually increasing incidence. It is thought that IBD results from an aberrant and continuing immune response to the microbes in the gut, catalyzed by the genetic susceptibility of the individual. Although the etiology of IBD remains largely unknown, it involves a complex interaction between the genetic, environmental or microbial factors and the immune responses. Of the four components of IBD pathogenesis, most rapid progress has been made in the genetic study of gut inflammation. The latest internationally collaborative studies have ascertained 163 susceptibility gene loci for IBD. The genes implicated in childhood-onset and adult-onset IBD overlap, suggesting similar genetic predispositions. However, the fact that genetic factors account for only a portion of overall disease variance indicates that microbial and environmental factors may interact with genetic elements in the pathogenesis of IBD. Meanwhile, the adaptive immune response has been classically considered to play a major role in the pathogenesis of IBD, as new studies in immunology and genetics have clarified that the innate immune response maintains the same importance in inducing gut inflammation. Recent progress in understanding IBD pathogenesis sheds lights on relevant disease mechanisms, including the innate and adaptive immunity, and the interactions between genetic factors and microbial and environmental cues. In this review, we provide an update on the major advances that have occurred in above areas. PMID:24415861

  6. [Pathophysiology of inflammation].

    PubMed

    Sahlmann, C-O; Ströbel, P

    2016-02-15

    Inflammation results from activation of the immune system in response to a broad range of different stimuli. The immune system is a highly complex and evolutionary optimized defense system with cellular and humoral components. The course of an inflammatory response is influenced by the immune condition of the host, the virulence e. g. of an infectious agent, and the fine tuning of the local tissue reaction, which may be influenced by individual genetic factors. Immunity is a compromise between insufficient (immunodeficiency) or exaggerated (autoimmunity) immune reactions. The dynamic balance between these two extremes is achieved through stringent T- and B-cell selection in the bone marrow and thymus on the one hand and through "checkpoint control" in peripheral lymphatic tissues. Many tumors have ways to suppress local immune responses and to escape destruction through the immune system (one of the so-called "hallmarks of cancer"). In recent years, different approaches have successfully been able to reverse this local immunosuppression. First clinical trials using these strategies have shown highly promising results indicating that the therapeutic use of the immune system will be a very effective instrument in the arsenal of cancer treatment agents. PMID:26875429

  7. From Inflammation to Prostate Cancer: The Role of Inflammasomes

    PubMed Central

    Dubey, Seema

    2016-01-01

    Inflammation-associated studies entice specific attention due to inflammation's role in multiple stages of prostate cancer development. However, mechanistic regulation of inflammation inciting prostate cancer remains largely uncharacterized. A focused class of inflammatory regulators known as inflammasomes has recently gained attention in cancer development. Inflammasomes are a multiprotein complex that drives a cascade of proinflammatory cytokines regulating various cellular activities. Inflammasomes activation is linked with infection, stress, or danger signals, which are common events within the prostate gland. In this study, we review the potential of inflammasomes in understanding the role of inflammation in prostate cancer. PMID:27429614

  8. Growth promotion in pigs by oxytetracycline coincides with down regulation of serum inflammatory parameters and of hibernation-associated protein HP-27.

    PubMed

    Soler, Laura; Miller, Ingrid; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Jessen, Flemming; Escribano, Damian; Niewold, Theo

    2016-05-01

    The growth promoting effect of supplementing animal feed with antibiotics like tetracycline has traditionally been attributed to their antibiotic character. However, more evidence has been accumulated on their direct anti-inflammatory effect during the last two decades. Here we used a pig model to explore the systemic molecular effect of feed supplementation with sub therapeutic levels of oxytetracycline (OTC) by analysis of serum proteome changes. Results showed that OTC promoted growth, coinciding with a significant down regulation of different serum proteins related to inflammation, oxidation and lipid metabolism, confirming the anti-inflammatory mechanism of OTC. Interestingly, apart from the classic acute phase reactants also down regulation was seen of a hibernation associated plasma protein (HP-27), which is to our knowledge the first description in pigs. Although the exact function in non-hibernators is unclear, down regulation of HP-27 could be consistent with increased appetite, which is possibly linked to the anti-inflammatory action of OTC. Given that pigs are good models for human medicine due to their genetic and physiologic resemblance, the present results might also be used for rational intervention in human diseases in which inflammation plays an important role such as obesity, type 2 diabetes and cardiovascular diseases. PMID:26914286

  9. Radiation, Inflammation, and Immune Responses in Cancer

    PubMed Central

    Multhoff, Gabriele; Radons, Jürgen

    2012-01-01

    Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR. PMID:22675673

  10. Kaempferol and inflammation: From chemistry to medicine.

    PubMed

    Devi, Kasi Pandima; Malar, Dicson Sheeja; Nabavi, Seyed Fazel; Sureda, Antoni; Xiao, Jianbo; Nabavi, Seyed Mohammad; Daglia, Maria

    2015-09-01

    Inflammation is an important process of human healing response, wherein the tissues respond to injuries induced by many agents including pathogens. It is characterized by pain, redness and heat in the injured tissues. Chronic inflammation seems to be associated with different types of diseases such as arthritis, allergies, atherosclerosis, and even cancer. In recent years natural product based drugs are considered as the novel therapeutic strategy for prevention and treatment of inflammatory diseases. Among the different types of phyto-constituents present in natural products, flavonoids which occur in many vegetable foods and herbal medicines are considered as the most active constituent, which has the potency to ameliorate inflammation under both in vitro and in vivo conditions. Kaempferol is a natural flavonol present in different plant species, which has been described to possess potent anti-inflammatory properties. Despite the voluminous literature on the anti-inflammatory effects of kaempferol, only very limited review articles has been published on this topic. Hence the present review is aimed to provide a critical overview on the anti-inflammatory effects and the mechanisms of action of kaempferol, based on the current scientific literature. In addition, emphasis is also given on the chemistry, natural sources, bioavailability and toxicity of kaempferol. PMID:25982933

  11. Impact of Inflammation on Male Reproductive Tract

    PubMed Central

    Azenabor, Alfred; Ekun, Ayodele Oloruntoba; Akinloye, Oluyemi

    2015-01-01

    Fertility in the male is dependent on the proper production of sperm cells. This process, called spermatogenesis is very complex and involves the synchronization of numerous factors. The presence of pro–inflammatory cytokines, tumor necrosis factor-alpha (TNF–α), interleukin–1 alpha (IL–1 α) and interleukin 1 beta (IL–1 β) cytokines in the male reproductive tract (testis, epididymis and sperm) may have certain physiological functions. However, when the levels of these cytokines are higher than normal, as seen in conditions of inflammation, they become very harmful to sperm production. Moreover, inflammation is also associated with oxidative stress and the latter is well known to impair sperm function. Epidemiological studies regarding male infertility have revealed that more and more infertile men suffer from acute or chronic inflammation of the genitourinary tract, which often occurs without any symptoms. The inflammatory reactions within the male genital tract are inevitably connected with oxidative stress. Oxidative stress, especially in sperm, is harmful because it damages sperm DNA and causes apoptosis in sperm. This article reviewed the suggested mechanisms and contribution of inflammation to male infertility. In addition, the review was further strengthened by discussing how inflammation affects both fertility and assisted reproductive technologies (ART). PMID:26913230

  12. Understanding migraine: Potential role of neurogenic inflammation

    PubMed Central

    Malhotra, Rakesh

    2016-01-01

    Neurogenic inflammation, a well-defined pathophysiologial process is characterized by the release of potent vasoactive neuropeptides, predominantly calcitonin gene-related peptide (CGRP), substance P (SP), and neurokinin A from activated peripheral nociceptive sensory nerve terminals (usually C and A delta-fibers). These peptides lead to a cascade of inflammatory tissue responses including arteriolar vasodilation, plasma protein extravasation, and degranulation of mast cells in their peripheral target tissue. Neurogenic inflammatory processes have long been implicated as a possible mechanism involved in the pathophysiology of various human diseases of the nervous system, respiratory system, gastrointestinal tract, urogenital tract, and skin. The recent development of several innovative experimental migraine models has provided evidence suggestive of the involvement of neuropeptides (SP, neurokinin A, and CGRP) in migraine headache. Antidromic stimulation of nociceptive fibers of the trigeminal nerve resulted in a neurogenic inflammatory response with marked increase in plasma protein extravasation from dural blood vessels by the release of various sensory neuropeptides. Several clinically effective abortive antimigraine medications, such as ergots and triptans, have been shown to attenuate the release of neuropeptide and neurogenic plasma protein extravasation. These findings provide support for the validity of using animal models to investigate mechanisms of neurogenic inflammation in migraine. These also further strengthen the notion of migraine being a neuroinflammatory disease. In the clinical context, there is a paucity of knowledge and awareness among physicians regarding the role of neurogenic inflammation in migraine. Improved understanding of the molecular biology, pharmacology, and pathophysiology of neurogenic inflammation may provide the practitioner the context-specific feedback to identify the novel and most effective therapeutic approach to treatment

  13. Understanding migraine: Potential role of neurogenic inflammation.

    PubMed

    Malhotra, Rakesh

    2016-01-01

    Neurogenic inflammation, a well-defined pathophysiologial process is characterized by the release of potent vasoactive neuropeptides, predominantly calcitonin gene-related peptide (CGRP), substance P (SP), and neurokinin A from activated peripheral nociceptive sensory nerve terminals (usually C and A delta-fibers). These peptides lead to a cascade of inflammatory tissue responses including arteriolar vasodilation, plasma protein extravasation, and degranulation of mast cells in their peripheral target tissue. Neurogenic inflammatory processes have long been implicated as a possible mechanism involved in the pathophysiology of various human diseases of the nervous system, respiratory system, gastrointestinal tract, urogenital tract, and skin. The recent development of several innovative experimental migraine models has provided evidence suggestive of the involvement of neuropeptides (SP, neurokinin A, and CGRP) in migraine headache. Antidromic stimulation of nociceptive fibers of the trigeminal nerve resulted in a neurogenic inflammatory response with marked increase in plasma protein extravasation from dural blood vessels by the release of various sensory neuropeptides. Several clinically effective abortive antimigraine medications, such as ergots and triptans, have been shown to attenuate the release of neuropeptide and neurogenic plasma protein extravasation. These findings provide support for the validity of using animal models to investigate mechanisms of neurogenic inflammation in migraine. These also further strengthen the notion of migraine being a neuroinflammatory disease. In the clinical context, there is a paucity of knowledge and awareness among physicians regarding the role of neurogenic inflammation in migraine. Improved understanding of the molecular biology, pharmacology, and pathophysiology of neurogenic inflammation may provide the practitioner the context-specific feedback to identify the novel and most effective therapeutic approach to treatment

  14. Neutral endopeptidase modulates neurogenic inflammation.

    PubMed

    Nadel, J A

    1991-06-01

    A noncholinergic, nonadrenergic nervous system has been described, involving the sensory nerves in the airways. Chemicals, dusts and other irritants stimulate these sensory nerves to release substance P and related neuropeptides. These neuropeptides have the remarkable ability to affect multiple cells in the airways and to provoke many responses including cough, mucus secretion, smooth muscle contraction, plasma extravasation and neutrophil adhesion. This series of effects is termed "neurogenic inflammation." An enzyme exists on the surfaces of all lung cells that contain receptors for these neuropeptides. This enzyme, neutral endopeptidase (NEP), by cleaving and thus inactivating the neuropeptides, limits the concentration of the neuropeptide that reaches the receptor on the cell surface. Thus, neurogenic inflammatory responses are normally mild and presumably protective in nature. However, when NEP is inhibited pharmacologically (with NEP inhibitors) or by cigarette smoke, respiratory viral infection, or by inhalation of the industrial pollutant toluene diisocyanate, neurogenic inflammatory responses are exaggerated. Delivery of exogenous human recombinant NEP inhibits neurogenic inflammation. Finally, evidence is provided that corticosteroids suppress neurogenic plasma extravasation and that this drug can upregulate NEP in human airway tissue. Neutral endopeptidase cleaves multiple peptides. Thus, its selectivity resides, at least in part, on its fixed location on the surfaces of specific cells where it can modulate effects of peptides exposed to the cells' surfaces. PMID:1889501

  15. Angiogenesis in Inflammatory Bowel Disease

    PubMed Central

    Alkim, Canan; Alkim, Huseyin; Koksal, Ali Riza; Boga, Salih; Sen, Ilker

    2015-01-01

    Angiogenesis is an important component of pathogenesis of inflammatory bowel disease (IBD). Chronic inflammation and angiogenesis are two closely related processes. Chronic intestinal inflammation is dependent on angiogenesis and this angiogenesis is modulated by immune system in IBD. Angiogenesis is a very complex process which includes multiple cell types, growth factors, cytokines, adhesion molecules, and signal transduction. Lymphangiogenesis is a new research area in the pathogenesis of IBD. While angiogenesis supports inflammation via leukocyte migration, carrying oxygen and nutrients, on the other hand, it has a major role in wound healing. Angiogenic molecules look like perfect targets for the treatment of IBD, but they have risk for serious side effects because of their nature. PMID:26839731

  16. Reparative inflammation takes charge of tissue regeneration.

    PubMed

    Karin, Michael; Clevers, Hans

    2016-01-21

    Inflammation underlies many chronic and degenerative diseases, but it also mitigates infections, clears damaged cells and initiates tissue repair. Many of the mechanisms that link inflammation to damage repair and regeneration in mammals are conserved in lower organisms, indicating that it is an evolutionarily important process. Recent insights have shed light on the cellular and molecular processes through which conventional inflammatory cytokines and Wnt factors control mammalian tissue repair and regeneration. This is particularly important for regeneration in the gastrointestinal system, especially for intestine and liver tissues in which aberrant and deregulated repair results in severe pathologies. PMID:26791721

  17. Sleep and inflammation in resilient aging

    PubMed Central

    Irwin, Michael R.

    2014-01-01

    Sleep quality is important to health, and increasingly viewed as critical in promoting successful, resilient aging. In this review, the interplay between sleep and mental and physical health is considered with a focus on the role of inflammation as a biological pathway that translates the effects of sleep on risk of depression, pain and chronic disease risk in aging. Given that sleep regulates inflammatory biologic mechanisms with effects on mental and physical health outcomes, the potential of interventions that target sleep to reduce inflammation and promote health in aging is also discussed. PMID:25285197

  18. Earlobe Inflammation from a Palm Thorn Injury.

    PubMed

    Press, Yan; Peleg, Roni

    2016-05-01

    Injury from the thorn of a palm tree is characterized by a prolonged, painful inflammatory reaction. Even when the source of the inflammation is diagnosed, appropriate treatment is usually delayed because family doctors are not familiar with the entity. Penetration of a palm thorn into the earlobe is an unrecognized cause of local inflammation. We describe a case of injury from a palm tree thorn in this uncommon site. We present the technique of transillumination for the identification and removal of the palm thorn. PMID:26903615

  19. Inflammation: John Hunter's "A treatise on the blood, inflammation and gun-shot wounds".

    PubMed

    Turk, J L

    1994-12-01

    John Hunter's A Treatise on the Blood, Inflammation and Gunshot Wounds was published in 1794. Throughout the nineteenth century this was considered the most important study of inflammation and has been widely quoted since. After a section on the nature of blood and the circulatory system, in which he describes the vascular supply in detail, he passes on to an extensive survey of inflammation. This is based mainly on his wide clinical experience, including that as a military surgeon. He, however, supplements this with a number of experiments, some of which are classic. He bases his observations on the four cardinal signs of Celsus (redness, heat, swelling and pain). Inflammation is then divided into three main groups: adhesive, suppurative and ulcerative. He discusses the nature of pus and the formation and treatment of abscesses. He describes his experiments on the transplantation of tissues under the general heading of adhesive inflammation. This, he states, underlies the union of wounds and thus the union of tissues after transplantation. Although unaware of the role of infecting organisms as a cause of inflammation, he makes observations on inflammation in smallpox, venereal infections and tuberculosis. He relates these to his observations on inflammatory aspects of wound healing. Lister was particularly influenced by Hunter's observations in the development of antisepsis. As well as the local effect of inflammation, Hunter was concerned with the constitutional effects such as fever. PMID:7734328

  20. Surfactant and allergic airway inflammation.

    PubMed

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  1. Islet inflammation in plain sight

    PubMed Central

    Abdulreda, Midhat H.; Berggren, Per-Olof

    2013-01-01

    Although, diabetes is reaching pandemic proportions, the exact etiology of either type 1 (T1D) or type 2 diabetes (T2D) remains to be determined. Mounting evidence, however, suggests that islet inflammation is a likely common denominator during early development of either type of the disease. In this review, we highlight some of the inflammatory mechanisms that appear to be shared between T1D and T2D, and we explore the utility of intravital imaging in the study of islet inflammation. Intravital imaging has emerged as an indispensable tool in biomedical research and a variety of in vivo imaging approaches have been developed to study pancreatic islet physiology and pathophysiology in the native environment in health and disease. However, given the scattered distribution of the islets of Langerhans within the “sea” of the exocrine pancreas located deep within the body and the fact that the islets only constitute 1 – 2% of the total volume of pancreatic tissue, studying the pancreatic islet in situ has been challenging. Here, we focus on a new experimental approach that enables studying local islet inflammation with single cell-resolution in the relevant context of the in vivo environment non-invasively and longitudinally and, thereby improving our understanding of diabetes pathogenesis. PMID:24003927

  2. Anti-inflammatory iridoids of botanical origin.

    PubMed

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  3. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice

    PubMed Central

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-01-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1−/− and Mlh1+/+ mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1+/+ mice. Colon tumors developed after DSS treatment alone in Mlh1−/− mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. PMID:25529563

  4. The role of inflammation in schizophrenia

    PubMed Central

    Müller, Norbert; Weidinger, Elif; Leitner, Bianka; Schwarz, Markus J.

    2015-01-01

    High levels of pro-inflammatory substances such as cytokines have been described in the blood and cerebrospinal fluid of schizophrenia patients. Animal models of schizophrenia show that under certain conditions an immune disturbance during early life, such as an infection-triggered immune activation, might trigger lifelong increased immune reactivity. A large epidemiological study clearly demonstrated that severe infections and autoimmune disorders are risk factors for schizophrenia. Genetic studies have shown a strong signal for schizophrenia on chromosome 6p22.1, in a region related to the human leucocyte antigen (HLA) system and other immune functions. Another line of evidence demonstrates that chronic (dis)stress is associated with immune activation. The vulnerability-stress-inflammation model of schizophrenia includes the contribution of stress on the basis of increased genetic vulnerability for the pathogenesis of schizophrenia, because stress may increase pro-inflammatory cytokines and even contribute to a lasting pro-inflammatory state. Immune alterations influence the dopaminergic, serotonergic, noradrenergic, and glutamatergic neurotransmission. The activated immune system in turn activates the enzyme indoleamine 2,3-dioxygenase (IDO) of the tryptophan/kynurenine metabolism which influences the serotonergic and glutamatergic neurotransmission via neuroactive metabolites such as kynurenic acid. The described loss of central nervous system volume and the activation of microglia, both of which have been clearly demonstrated in neuroimaging studies of schizophrenia patients, match the assumption of a (low level) inflammatory neurotoxic process. Further support for the inflammatory hypothesis comes from the therapeutic benefit of anti-inflammatory medication. Metaanalyses have shown an advantageous effect of cyclo-oxygenase-2 inhibitors in early stages of schizophrenia. Moreover, intrinsic anti-inflammatory, and immunomodulatory effects of antipsychotic drugs

  5. Facial resemblance to emotions: group differences, impression effects, and race stereotypes.

    PubMed

    Zebrowitz, Leslie A; Kikuchi, Masako; Fellous, Jean-Marc

    2010-02-01

    The authors used connectionist modeling to extend previous research on emotion overgeneralization effects. Study 1 demonstrated that neutral expression male faces objectively resemble angry expressions more than female faces do, female faces objectively resemble surprise expressions more than male faces do, White faces objectively resemble angry expressions more than Black or Korean faces do, and Black faces objectively resemble happy and surprise expressions more than White faces do. Study 2 demonstrated that objective resemblance to emotion expressions influences trait impressions even when statistically controlling possible confounding influences of attractiveness and babyfaceness. It further demonstrated that emotion overgeneralization is moderated by face race and that racial differences in emotion resemblance contribute to White perceivers' stereotypes of Blacks and Asians. These results suggest that intergroup relations may be strained not only by cultural stereotypes but also by adaptive responses to emotion expressions that are overgeneralized to groups whose faces subtly resemble particular emotions. PMID:20085393

  6. Inflammation and sex hormone metabolism.

    PubMed

    Schmidt, Martin; Naumann, Heidrun; Weidler, Claudia; Schellenberg, Martina; Anders, Sven; Straub, Rainer H

    2006-06-01

    The incidence of autoimmune diseases is higher in females than in males. In both sexes, adrenal hormones, that is, glucocorticoids, dehydroepiandrosterone (DHEA), and androgens, are inadequately low in patients when compared to healthy controls. Hormonally active androgens are anti-inflammatory, whereas estrogens are pro-inflammatory. Therefore, the mechanisms responsible for the alterations of steroid profiles in inflammation are of major interest. The local metabolism of androgens and estrogens may determine whether a given steroid profile found in a subject's blood results in suppression or promotion of inflammation. The steroid metabolism in mixed synovial cells, fibroblasts, macrophages, and monocytes was assessed. Major focus was on cells from patients with rheumatoid arthritis (RA), while cells from patients with osteoarthritis served as controls. Enzymes directly or indirectly involved in local sex steroid metabolism in RA are: DHEA-sulfatase, 3beta-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydrogenase, and aromatase (CYP19), which are required for the synthesis of sex steroids from precursors, 5alpha-reductase and 16alpha-hydroxylase, which can be involved either in the generation of more active steroids or in the pathways leading to depletion of active hormones, and 3alpha-reductase and 7alpha-hydroxylase (CYP7B), which unidirectionally are involved in the depletion of active hormones. Androgens inhibit aromatization in synovial cells when their concentration is sufficiently high. As large amounts of estrogens are formed in synovial tissue, there may be a relative lack of androgens. Production of 5alpha-reduced androgens should increase the local anti-inflammatory activity; however, it also opens a pathway for the inactivation of androgens. The data discussed here suggest that therapy of RA patients may benefit from the use of nonaromatizable androgens and/or the use of aromatase inhibitors. PMID:16855150

  7. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking. PMID:27416522

  8. Metabolic Inflammation-Differential Modulation by Dietary Constituents.

    PubMed

    Lyons, Claire L; Kennedy, Elaine B; Roche, Helen M

    2016-01-01

    Obesity arises from a sustained positive energy balance which triggers a pro-inflammatory response, a key contributor to metabolic diseases such as T2D. Recent studies, focused on the emerging area of metabolic-inflammation, highlight that specific metabolites can modulate the functional nature and inflammatory phenotype of immune cells. In obesity, expanding adipose tissue attracts immune cells, creating an inflammatory environment within this fatty acid storage organ. Resident immune cells undergo both a pro-inflammatory and metabolic switch in their function. Inflammatory mediators, such as TNF-α and IL-1β, are induced by saturated fatty acids and disrupt insulin signaling. Conversely, monounsaturated and polyunsaturated fatty acids do not interrupt metabolism and inflammation to the same extent. AMPK links inflammation, metabolism and T2D, with roles to play in all and is influenced negatively by obesity. Lipid spillover results in hepatic lipotoxicity and steatosis. Also in skeletal muscle, excessive FFA can impede insulin's action and promote inflammation. Ectopic fat can also affect pancreatic β-cell function, thereby contributing to insulin resistance. Therapeutics, lifestyle changes, supplements and dietary manipulation are all possible avenues to combat metabolic inflammation and the subsequent insulin resistant state which will be explored in the current review. PMID:27128935

  9. Metabolic Inflammation-Differential Modulation by Dietary Constituents

    PubMed Central

    Lyons, Claire L.; Kennedy, Elaine B.; Roche, Helen M.

    2016-01-01

    Obesity arises from a sustained positive energy balance which triggers a pro-inflammatory response, a key contributor to metabolic diseases such as T2D. Recent studies, focused on the emerging area of metabolic-inflammation, highlight that specific metabolites can modulate the functional nature and inflammatory phenotype of immune cells. In obesity, expanding adipose tissue attracts immune cells, creating an inflammatory environment within this fatty acid storage organ. Resident immune cells undergo both a pro-inflammatory and metabolic switch in their function. Inflammatory mediators, such as TNF-α and IL-1β, are induced by saturated fatty acids and disrupt insulin signaling. Conversely, monounsaturated and polyunsaturated fatty acids do not interrupt metabolism and inflammation to the same extent. AMPK links inflammation, metabolism and T2D, with roles to play in all and is influenced negatively by obesity. Lipid spillover results in hepatic lipotoxicity and steatosis. Also in skeletal muscle, excessive FFA can impede insulin’s action and promote inflammation. Ectopic fat can also affect pancreatic β-cell function, thereby contributing to insulin resistance. Therapeutics, lifestyle changes, supplements and dietary manipulation are all possible avenues to combat metabolic inflammation and the subsequent insulin resistant state which will be explored in the current review. PMID:27128935

  10. Therapeutics targeting persistent inflammation in chronic kidney disease.

    PubMed

    Machowska, Anna; Carrero, Juan Jesus; Lindholm, Bengt; Stenvinkel, Peter

    2016-01-01

    Systemic inflammation is a condition intrinsically linked to chronic kidney disease (CKD) and its other typical sequelae, such as acquired immune dysfunction, protein-energy wasting (PEW), and accelerated vascular aging that promote premature cardiovascular disease (CVD) and infections, the two leading causes of death in CKD patients. Inflammation is a major contributor to complications in CKD, and inflammatory markers, such as C-reactive protein and pro- and anti-inflammatory cytokines, correlate with underlying causes and consequences of the inflamed uremic phenotype, such as oxidative stress, endothelial dysfunction, CVD, PEW, and infections, and are sensitive and independent predictors of outcome in CKD. Therefore, inflammation appears to be a logical target for potential preventive and therapeutic interventions in patients with CKD. Putative anti-inflammatory therapy strategies aiming at preventing complications and improving outcomes in CKD span over several areas: (1) dealing with the source of inflammation (such as cardiovascular, gastrointestinal or periodontal disease and depression); (2) providing nonspecific immune modulatory effects by promoting healthy dietary habits and other lifestyle changes; (3) promoting increased use of recognized pharmacologic interventions that have pleiotropic effects; and, (4) introducing novel targeted anticytokine interventions. This review provides a brief update on inflammatory biomarkers and possible therapeutic approaches targeting inflammation and the uremic inflammatory milieu in patients with CKD. PMID:26173187

  11. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    PubMed

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form

  12. Sphingolipid metabolism and obesity-induced inflammation.

    PubMed

    Kang, Se-Chan; Kim, Bo-Rahm; Lee, Su-Yeon; Park, Tae-Sik

    2013-01-01

    Obesity is a metabolic disorder developed by overnutrition and a major cause for insulin resistance and cardiovascular events. Since adipose tissue is one of the major sites for the synthesis and secretion of cytokines, enlarged adipose tissue in obese condition alters inflammatory state leading to pathophysiological conditions such as type 2 diabetes and increased cardiovascular risk. A plausible theory for development of metabolic dysregulation is that obesity increases secretion of inflammatory cytokines from adipose tissue and causes a chronic inflammation in the whole body. Additionally accumulation of lipids in non-adipose tissues elevates the cellular levels of bioactive lipids that inhibit the signaling pathways implicated in metabolic regulation together with activated inflammatory response. Recent findings suggest that obesity-induced inflammatory response leads to modulation of sphingolipid metabolism and these bioactive lipids may function as mediators for increased risk of metabolic dysfunction. Importantly, elucidation of mechanism regarding sphingolipid metabolism and inflammatory disease will provide crucial information to development of new therapeutic strategies for the treatment of obesity-induced pathological inflammation. PMID:23761785

  13. The role of hypoxia in intestinal inflammation.

    PubMed

    Shah, Yatrik M

    2016-12-01

    Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the intestine. IBD is a multifactorial disorder, and IBD-associated genes are critical in innate immune response, inflammatory response, autophagy, and epithelial barrier integrity. Moreover, epithelial oxygen tension plays a critical role in intestinal inflammation and resolution in IBD. The intestines have a dynamic and rapid fluctuation in cellular oxygen tension, which is dysregulated in IBD. Intestinal epithelial cells have a steep oxygen gradient where the tips of the villi are hypoxic and the oxygenation increases at the base of the villi. IBD results in heightened hypoxia throughout the mucosa. Hypoxia signals through a well-conserved family of transcription factors, where hypoxia-inducible factor (HIF)-1α and HIF-2α are essential in maintaining intestinal homeostasis. In inflamed mucosa, HIF-1α increases barrier protective genes, elicits protective innate immune responses, and activates an antimicrobial response through the increase in β-defensins. HIF-2α is essential in maintaining an epithelial-elicited inflammatory response and the regenerative and proliferative capacity of the intestine following an acute injury. HIF-1α activation in colitis leads to a protective response, whereas chronic activation of HIF-2α increases the pro-inflammatory response, intestinal injury, and cancer. In this mini-review, we detail the role of HIF-1α and HIF-2α in intestinal inflammation and injury and therapeutic implications of targeting HIF signaling in IBD. PMID:26812949

  14. Neutrophils come of age in chronic inflammation

    PubMed Central

    Caielli, Simone; Banchereau, Jacques; Pascual, Virginia

    2013-01-01

    Neutrophils have long been known to participate in acute inflammation, but a role in chronic inflammatory and autoimmune diseases is now emerging. These cells are key players in the recognition and elimination of pathogens, but they also sense self components, including nucleic acids and products of sterile tissue damage. While this normally contributes to tissue repair, it can also lead to the release of highly immunogenic products that can trigger and/or amplify autoimmune pathogenic loops. Understanding the mechanisms that underlie neutrophil activation, migration, survival and their various forms of death in health and disease might provide us with new approaches to treat chronic inflammatory conditions. PMID:23127555

  15. The blessings and curses of intestinal inflammation

    PubMed Central

    Winter, Sebastian E.; Keestra, A. Marijke; Tsolis, Renée M.; Bäumler, Andreas J.

    2010-01-01

    SUMMARY The intestinal immune system has to strike a delicate balance between initiating inflammatory responses against invading bacterial pathogens and avoiding their induction against microbiota colonizing the lumen. Adequate inflammatory responses against bacterial invasion result in the luminal secretion of antimicrobial peptides, as well as the release of cytokines in tissue that recruit and activate phagocytes. However, pathogens have evolved to utilize these environmental changes in the inflamed intestine to promote colonization. This review focuses on the costs and benefits of intestinal inflammation and the fine interplay between the host, its microbiota and enteric pathogens. PMID:20638640

  16. The blessings and curses of intestinal inflammation.

    PubMed

    Winter, Sebastian E; Keestra, A Marijke; Tsolis, Renée M; Bäumler, Andreas J

    2010-07-22

    The intestinal immune system has to strike a delicate balance between initiating inflammatory responses against invading bacterial pathogens and avoiding their induction against microbiota colonizing the lumen. Adequate inflammatory responses against bacterial invasion result in the lumenal secretion of antimicrobial peptides, as well as the release of cytokines in tissue that recruit and activate phagocytes. However, pathogens have evolved to utilize these environmental changes in the inflamed intestine to promote colonization. This review focuses on the costs and benefits of intestinal inflammation and the fine interplay between the host, its microbiota, and enteric pathogens. PMID:20638640

  17. Effects of inflammation on stem cells: together they strive?

    PubMed Central

    Kizil, Caghan; Kyritsis, Nikos; Brand, Michael

    2015-01-01

    Inflammation entails a complex set of defense mechanisms acting in concert to restore the homeostatic balance in organisms after damage or pathogen invasion. This immune response consists of the activity of various immune cells in a highly complex manner. Inflammation is a double-edged sword as it is reported to have both detrimental and beneficial consequences. In this review, we discuss the effects of inflammation on stem cell activity, focusing primarily on neural stem/progenitor cells in mammals and zebrafish. We also give a brief overview of the effects of inflammation on other stem cell compartments, exemplifying the positive and negative role of inflammation on stemness. The majority of the chronic diseases involve an unremitting phase of inflammation due to improper resolution of the initial pro-inflammatory response that impinges on the stem cell behavior. Thus, understanding the mechanisms of crosstalk between the inflammatory milieu and tissue-resident stem cells is an important basis for clinical efforts. Not only is it important to understand the effect of inflammation on stem cell activity for further defining the etiology of the diseases, but also better mechanistic understanding is essential to design regenerative therapies that aim at micromanipulating the inflammatory milieu to offset the negative effects and maximize the beneficial outcomes. PMID:25739812

  18. How corticosteroids control inflammation: Quintiles Prize Lecture 2005

    PubMed Central

    Barnes, Peter J

    2006-01-01

    Corticosteroids are the most effective anti-inflammatory therapy for many chronic inflammatory diseases, such as asthma but are relatively ineffective in other diseases such as chronic obstructive pulmonary disease (COPD). Chronic inflammation is characterised by the increased expression of multiple inflammatory genes that are regulated by proinflammatory transcription factors, such as nuclear factor-kappaB and activator protein-1, that bind to and activate coactivator molecules, which then acetylate core histones to switch on gene transcription. Corticosteroids suppress the multiple inflammatory genes that are activated in chronic inflammatory diseases, such as asthma, mainly by reversing histone acetylation of activated inflammatory genes through binding of liganded glucocorticoid receptors (GR) to coactivators and recruitment of histone deacetylase-2 (HDAC2) to the activated transcription complex. At higher concentrations of corticosteroids GR homodimers also interact with DNA recognition sites to active transcription of anti-inflammatory genes and to inhibit transcription of several genes linked to corticosteroid side effects. In patients with COPD and severe asthma and in asthmatic patients who smoke HDAC2 is markedly reduced in activity and expression as a result of oxidative/nitrative stress so that inflammation becomes resistant to the anti-inflammatory actions of corticosteroids. Theophylline, by activating HDAC, may reverse this corticosteroid resistance. This research may lead to the development of novel anti-inflammatory approaches to manage severe inflammatory diseases. PMID:16604091

  19. How corticosteroids control inflammation: Quintiles Prize Lecture 2005.

    PubMed

    Barnes, Peter J

    2006-06-01

    Corticosteroids are the most effective anti-inflammatory therapy for many chronic inflammatory diseases, such as asthma but are relatively ineffective in other diseases such as chronic obstructive pulmonary disease (COPD). Chronic inflammation is characterised by the increased expression of multiple inflammatory genes that are regulated by proinflammatory transcription factors, such as nuclear factor-kappaB and activator protein-1, that bind to and activate coactivator molecules, which then acetylate core histones to switch on gene transcription. Corticosteroids suppress the multiple inflammatory genes that are activated in chronic inflammatory diseases, such as asthma, mainly by reversing histone acetylation of activated inflammatory genes through binding of liganded glucocorticoid receptors (GR) to coactivators and recruitment of histone deacetylase-2 (HDAC2) to the activated transcription complex. At higher concentrations of corticosteroids GR homodimers also interact with DNA recognition sites to active transcription of anti-inflammatory genes and to inhibit transcription of several genes linked to corticosteroid side effects. In patients with COPD and severe asthma and in asthmatic patients who smoke HDAC2 is markedly reduced in activity and expression as a result of oxidative/nitrative stress so that inflammation becomes resistant to the anti-inflammatory actions of corticosteroids. Theophylline, by activating HDAC, may reverse this corticosteroid resistance. This research may lead to the development of novel anti-inflammatory approaches to manage severe inflammatory diseases. PMID:16604091

  20. Contribution of Ninjurin1 to Toll-like receptor 4 signaling and systemic inflammation.

    PubMed

    Jennewein, Carla; Sowa, Ralf; Faber, Anne C; Dildey, Madlen; von Knethen, Andreas; Meybohm, Patrick; Scheller, Bertram; Dröse, Stefan; Zacharowski, Kai

    2015-11-01

    Nerve injury-induced protein (Ninjurin [Ninj]) 1 is an adhesion molecule originally identified in Schwann cells after nerve injury, whereas it is also expressed in leukocytes, epithelium, endothelium, and various organs, and is induced under inflammatory conditions. Its contribution to inflammation was so far restricted to the nervous system and exclusively attributed to its role during leukocyte migration. We hypothesized a proinflammatory role for Ninj1 also outside the nervous system. To elucidate its impact during inflammation, we analyzed expression levels and its contribution to inflammation in septic mice and studied its effect on inflammatory signaling in vitro. The effect on inflammation was analyzed by genetic (only in vitro) and pharmacologic repression in septic mice (cecal ligation and puncture) and cell culture, respectively. Repression of Ninj1 by an inhibitory peptide or small interfering RNA attenuated LPS-triggered inflammation in macrophages and endothelial cells by modulating p38 phosphorylation and activator protein-1 activation. Inhibition of Ninj1 in septic mice reduced systemic and pulmonary inflammation as well as organ damage, and ameliorated survival after 24 hours. Ninj1 is elevated under inflammatory conditions and contributes to inflammation not only by mediating leukocyte migration, but also by modulating Toll-like receptor 4-dependent expression of inflammatory mediators. We assume that, owing to both mechanisms, inhibition reduces systemic inflammation and organ damage in septic mice. Our data contribute to a better understanding of the complex inflammatory mechanisms and add a novel therapeutic target for inflammatory conditions such as sepsis. PMID:25860173

  1. Stretching Impacts Inflammation Resolution in Connective Tissue.

    PubMed

    Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J; Colas, Romain A; Spite, Matthew; Serhan, Charles N; Langevin, Helene M

    2016-07-01

    Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 min twice daily reduced inflammation and improved pain, 2 weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch versus no stretch for 48 h, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184

  2. The potential of food protein-derived anti-inflammatory peptides against various chronic inflammatory diseases.

    PubMed

    Majumder, Kaustav; Mine, Yoshinori; Wu, Jianping

    2016-05-01

    Inflammation is considered as one of the major causes for the initiation of various chronic diseases such as asthma, cancer, cardiovascular disease, diabetes, obesity, inflammatory bowel disease, osteoporosis and neurological diseases like Parkinson's disease. Increasing scientific evidence has delineated that inflammatory markers such as TNF-α, IL-1, IL-6, IL-8 and CRP and different transcription factors such as NF-κB and STAT are the major key factors that regulate these inflammatory diseases. Food protein-derived bioactive peptides have been shown to exhibit anti-inflammatory activity by inhibiting or reducing the expression of these inflammatory biomarkers and/or by modulating the activity of these transcription factors. This review aims to discuss various molecular targets and underlying mechanisms of food protein-derived anti-inflammatory peptides and to explore their potential against various chronic inflammatory diseases. © 2015 Society of Chemical Industry. PMID:26711001

  3. Red cell DAMPs and inflammation.

    PubMed

    Mendonça, Rafaela; Silveira, Angélica A A; Conran, Nicola

    2016-09-01

    Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury. PMID:27251171

  4. [Ocular immune reconstitution inflammatory syndrome].

    PubMed

    Ma, N; Ye, J J

    2016-02-11

    Immune reconstitution inflammatory syndrome (IRIS) is a collection of inflammatory disorders associated with paradoxical worsening of preexisting infectious processes or emerging diseases or even dead after the initiation of highly active antiretroviral therapy (HAART) in human immunodeficiency virus (HIV) infected individuals in a period of recovery of immune function. Ocular immune reconstitution inflammatory syndrome is mainly caused by cytomegalovirus which performing a series of ocular inflammation accompanied with the increase of CD4+ T lymphocytes, such as cytomegalovirus retinitis, after HAART. With HAART widely used, the patients of IRIS gradually increased. But the clinical presentations of IRIS were various because of different pathogens. This review summarized the clinical manifestations, risk factors, diagnosis and treatment of ocular IRIS.(Chin J Ophthalmol, 2016, 51: 150-153). PMID:26906710

  5. Inhibition of BET bromodomains alleviates inflammation in human RPE cells.

    PubMed

    Hytti, M; Tokarz, P; Määttä, E; Piippo, N; Korhonen, E; Suuronen, T; Honkakoski, P; Kaarniranta, K; Lahtela-Kakkonen, M; Kauppinen, A

    2016-06-15

    Bromodomain-containing proteins are vital for controlling the expression of many pro-inflammatory genes. Consequently, compounds capable of inhibiting specific bromodomain-facilitated protein-protein interactions would be predicted to alleviate inflammation, making them valuable agents in the treatment of diseases caused by dysregulated inflammation, such as age-related macular degeneration. Here, we assessed the ability of known inhibitors JQ-1, PFI-1, and IBET-151 to protect from the inflammation and cell death caused by etoposide exposure in the human retinal pigment epithelial cell line, ARPE-19. The potential anti-inflammatory effects of the bromodomain inhibitors were assessed by ELISA (enzyme-linked immunosorbent assay) profiling. The involvement of NF-κB and SIRT1 in inflammatory signaling was monitored by ELISA and western blotting. Furthermore, SIRT1 was knocked down using a specific siRNA or inhibited by EX-527 to elucidate its role in the inflammatory reaction. The bromodomain inhibitors effectively decreased etoposide-induced release of IL-6 and IL-8. This anti-inflammatory effect was not related to SIRT1 activity, although all bromodomain inhibitors decreased the extent of acetylation of p53 at the SIRT1 deacetylation site. Overall, since bromodomain inhibitors display anti-inflammatory properties in human retinal pigment epithelial cells, these compounds may represent a new way of alleviating the inflammation underlying the onset of age-related macular degeneration. PMID:27106081

  6. Inflammation in intervertebral disc degeneration and regeneration

    PubMed Central

    Molinos, Maria; Almeida, Catarina R.; Caldeira, Joana; Cunha, Carla; Gonçalves, Raquel M.; Barbosa, Mário A.

    2015-01-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players. PMID:25673296

  7. DAMPening Inflammation by Modulating TLR Signalling

    PubMed Central

    Piccinini, A. M.; Midwood, K. S.

    2010-01-01

    Damage-associated molecular patterns (DAMPs) include endogenous intracellular molecules released by activated or necrotic cells and extracellular matrix (ECM) molecules that are upregulated upon injury or degraded following tissue damage. DAMPs are vital danger signals that alert our immune system to tissue damage upon both infectious and sterile insult. DAMP activation of Toll-like receptors (TLRs) induces inflammatory gene expression to mediate tissue repair. However, DAMPs have also been implicated in diseases where excessive inflammation plays a key role in pathogenesis, including rheumatoid arthritis (RA), cancer, and atherosclerosis. TLR activation by DAMPs may initiate positive feedback loops where increasing tissue damage perpetuates pro-inflammatory responses leading to chronic inflammation. Here we explore the current knowledge about distinct signalling cascades resulting from self TLR activation. We also discuss the involvement of endogenous TLR activators in disease and highlight how specifically targeting DAMPs may yield therapies that do not globally suppress the immune system. PMID:20706656

  8. Estrogen accelerates the resolution of inflammation in macrophagic cells.

    PubMed

    Villa, Alessandro; Rizzi, Nicoletta; Vegeto, Elisabetta; Ciana, Paolo; Maggi, Adriana

    2015-01-01

    Although 17β-estradiol (E2) anti-inflammatory activity has been well described, very little is known about the effects of this hormone on the resolution phase of the inflammatory process. Here, we identified a previously unreported ERα-mediated effect of E2 on the inflammatory machinery. The study showed that the activation of the intracellular estrogen receptor shortens the LPS-induced pro-inflammatory phase and, by influencing the intrinsic and extrinsic programs, triggers the resolution of inflammation in RAW 264.7 cells. Through the regulation of the SOCS3 and STAT3 signaling pathways, E2 facilitates the progression of the inflammatory process toward the IL10-dependent "acquired deactivation" phenotype, which is responsible for tissue remodeling and the restoration of homeostatic conditions. The present study may provide an explanation for increased susceptibility to chronic inflammatory diseases in women after menopause, and it suggests novel anti-inflammatory treatments for such disorders. PMID:26477569

  9. Estrogen accelerates the resolution of inflammation in macrophagic cells

    PubMed Central

    Villa, Alessandro; Rizzi, Nicoletta; Vegeto, Elisabetta; Ciana, Paolo; Maggi, Adriana

    2015-01-01

    Although 17β-estradiol (E2) anti-inflammatory activity has been well described, very little is known about the effects of this hormone on the resolution phase of the inflammatory process. Here, we identified a previously unreported ERα-mediated effect of E2 on the inflammatory machinery. The study showed that the activation of the intracellular estrogen receptor shortens the LPS-induced pro-inflammatory phase and, by influencing the intrinsic and extrinsic programs, triggers the resolution of inflammation in RAW 264.7 cells. Through the regulation of the SOCS3 and STAT3 signaling pathways, E2 facilitates the progression of the inflammatory process toward the IL10-dependent “acquired deactivation” phenotype, which is responsible for tissue remodeling and the restoration of homeostatic conditions. The present study may provide an explanation for increased susceptibility to chronic inflammatory diseases in women after menopause, and it suggests novel anti-inflammatory treatments for such disorders. PMID:26477569

  10. Preventative oral methylthioadenosine is anti-inflammatory and reduces DSS-induced colitis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylthioadenosine (MTA) is a precursor of the methionine salvage pathway and has been shown to have anti-inflammatory properties in various models of acute and chronic inflammation. However, the anti-inflammatory properties of MTA in models of intestinal inflammation are not defined. We hypothesiz...

  11. Chronic sub-clinical inflammation in the abdominal adipose tissue – Evaluation of inflammatory cytokines and their link with insulin resistance in metabolically obese South Indians: A cross-sectional observational study

    PubMed Central

    Premanath, M.; Basavanagowdappa, H.; Mahesh, M.; Babu, M. Suresh; Devananda, D.

    2016-01-01

    Objective: To measure the levels of proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6(IL-6), and high-sensitive C-reactive protein (hs-CRP) and the anti-inflammatory cytokine adiponectin (AN) in obese South Indian subjects and to ascertain whether or not a causal role could be ascribed to these cytokines in the development of insulin resistance (IR). Materials and Methods: Forty obese and forty nonobese volunteers of both genders were recruited. Parameters such as body mass index (BMI), waist circumference (WC), and blood pressure were evaluated. Fasting blood sugar (FBS), fasting insulin level, hemoglobin A1c (HbA1C), lipid profile, TNF-α, IL-6, hs-CRP, and AN levels were measured. IR was evaluated by homeostatic model assessment-IR method. Abdominal adiposity was measured by ultrasonography. The results were statistically evaluated by appropriate tests. Results: BMI, WC, and visceral fat were high in the obese group. Females had higher subcutaneous fat in both groups. HbA1C was marginally high in the obese group (P = 0.014). IR was high in all the groups, obese males showing higher values (not significant[NS]). Total cholesterol and low-density lipoprotein were high in the obese group (P = 0.028, P = 0.003). TNF-α was high in obese males (NS), IL-6 was high in both groups, higher in nonobese females (NS), hs-CRP was high in both groups, higher in females of both groups (NS). AN was high in females of both groups (P = 0.002). Conclusions: In this study on South Indian subjects, proinflammatory cytokines such as IL-6 and hs-CRP, despite being high, did not show any causal correlation either with abdominal obesity or with IR. TNF-α being normal showed some correlation which was inconsistent. Even the anti-inflammatory adipokine, AN did not show any correlation with IR. Cytokines had an inconsistent correlation with the components of metabolic syndrome hence were not useful. PMID:26904474

  12. NFAT Gene Family in Inflammation and Cancer

    PubMed Central

    Pan, M.-G.; Xiong, Y.; Chen, F.

    2013-01-01

    Calcineurin-NFAT signaling is critical for numerous aspects of vertebrate function during and after embryonic development. Initially discovered in T cells, the NFAT gene family, consisting of five members, regulates immune system, inflammatory response, angiogenesis, cardiac valve formation, myocardial development, axonal guidance, skeletal muscle development, bone homeostasis, development and metastasis of cancer, and many other biological processes. In this review we will focus on the NFAT literature relevant to the two closely related pathological systems: inflammation and cancer. PMID:22950383

  13. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli.

    PubMed

    Boncela, Joanna; Przygodzka, Patrycja; Wyroba, Elzbieta; Papiewska-Pajak, Izabela; Cierniewski, Czeslaw S

    2013-05-01

    Due to the lack of an N-terminal signal peptide, SerpinB2 (plasminogen activator inhibitor type 2) accumulates in cells and only a small percentage of it is secreted. The extracellular concentration of SerpinB2 significantly increases during inflammation. In the present study we investigated the mechanism with which SerpinB2 can be secreted from endothelial cells activated with LPS. We evaluated the intracellular distribution of SerpinB2 by double immunogold labeling followed by a high resolution electron microscopy analysis. We found that SerpinB2 gathers in the vesicular structures and in the endothelial cell periphery. These vesicles stained positive for the trans-Golgi network marker TGN46, which is consistent with their formation by the endoplasmatic reticulum (ER) and Golgi-dependent pathways. SerpinB2 was delivered to the plasma membrane, apparently together with TGN46 in the same vesicles, which after fusion with the membranes released cargo. Secretion of SerpinB2 was partially inhibited by brefeldin A. The secreted SerpinB2 was predominantly in its nonglycosylated 43kDa form as evaluated by Western immunoblotting. Our data suggest that increased expression of SerpinB2 by an inflammatory stimulus is sufficient to generate structures that resemble secretory vesicles. These vesicles may represent the mechanism by which high local concentrations of SerpinB2 are released at inflammation sites from endothelial cells. PMID:23474086

  14. Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation.

    PubMed

    Talbot, Sébastien; Abdulnour, Raja-Elie E; Burkett, Patrick R; Lee, Seungkyu; Cronin, Shane J F; Pascal, Maud A; Laedermann, Cedric; Foster, Simmie L; Tran, Johnathan V; Lai, Nicole; Chiu, Isaac M; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M; Kuchroo, Vijay K; Bean, Bruce P; Levy, Bruce D; Woolf, Clifford J

    2015-07-15

    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  15. Chemical basis of inflammation-induced carcinogenesis.

    PubMed

    Ohshima, Hiroshi; Tatemichi, Masayuki; Sawa, Tomohiro

    2003-09-01

    Chronic inflammation induced by biological, chemical, and physical factors has been associated with increased risk of human cancer at various sites. Inflammation activates a variety of inflammatory cells, which induce and activate several oxidant-generating enzymes such as NADPH oxidase, inducible nitric oxide synthase, myeloperoxidase, and eosinophil peroxidase. These enzymes produce high concentrations of diverse free radicals and oxidants including superoxide anion, nitric oxide, nitroxyl, nitrogen dioxide, hydrogen peroxide, hypochlorous acid, and hypobromous acid, which react with each other to generate other more potent reactive oxygen and nitrogen species such as peroxynitrite. These species can damage DNA, RNA, lipids, and proteins by nitration, oxidation, chlorination, and bromination reactions, leading to increased mutations and altered functions of enzymes and proteins (e.g., activation of oncogene products and/or inhibition of tumor-suppressor proteins) and thus contributing to the multistage carcinogenesis process. Appropriate treatment of inflammation should be explored further for chemoprevention of human cancers. PMID:12921773

  16. The role of histamine in neurogenic inflammation

    PubMed Central

    Rosa, A C; Fantozzi, R

    2013-01-01

    The term ‘neurogenic inflammation’ has been adopted to describe the local release of inflammatory mediators, such as substance P and calcitonin gene-related peptide, from neurons. Once released, these neuropeptides induce the release of histamine from adjacent mast cells. In turn, histamine evokes the release of substance P and calcitonin gene-related peptide; thus, a bidirectional link between histamine and neuropeptides in neurogenic inflammation is established. The aim of this review is to summarize the most recent findings on the role of histamine in neurogenic inflammation, with particular regard to nociceptive pain, as well as neurogenic inflammation in the skin, airways and bladder. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1 PMID:23734637

  17. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension.

    PubMed

    Stenmark, Kurt R; Tuder, Rubin M; El Kasmi, Karim C

    2015-11-15

    Pulmonary hypertension (PH) is a complex, multifactorial syndrome that remains poorly understood despite decades of research. PH is characterized by profound pulmonary artery (PA) remodeling that includes significant fibro-proliferative and inflammatory changes of the PA adventitia. In line with the emerging concept that PH shares key features with cancer, recent work centers on the idea that PH results from a multistep process driven by reprogramming of gene-expression patterns that govern changes in cell metabolism, inflammation, and proliferation. Data demonstrate that in addition to PA endothelial cells and smooth muscle cells, adventitial fibroblasts from animals with experimental hypoxic PH and from humans with PH (hereafter, termed PH-Fibs) exhibit proinflammatory activation, increased proliferation, and apoptosis resistance, all in the context of metabolic reprogramming to aerobic glycolysis. PH-Fibs can also recruit, retain, and activate naïve macrophages (Mϕ) toward a proinflammatory/proremodeling phenotype through secretion of chemokines, cytokines, and glycolytic metabolites, among which IL-6 and lactate play key roles. Furthermore, these fibroblast-activated Mϕ (hereafter, termed FAMϕ) exhibit aerobic glycolysis together with high expression of arginase 1, Vegfa, and I1lb, all of which require hypoxia-inducible factor 1α and STAT3 signaling. Strikingly, in situ, the adventitial Mϕ phenotype in the remodeled PA closely resembles the Mϕ phenotype induced by fibroblasts in vitro (FAMϕ), suggesting that FAMϕ crosstalk involving metabolic and inflammatory signals is a critical, pathogenetic component of vascular remodeling. This review discusses metabolic and inflammatory changes in fibroblasts and Mϕ in PH with the goal of raising ideas about new interventions to abrogate remodeling in hypoxic forms of PH. PMID:25930027

  18. Inflammatory Bowel Disease

    PubMed Central

    Kaser, Arthur; Zeissig, Sebastian; Blumberg, Richard S.

    2015-01-01

    Insights into inflammatory bowel disease (IBD) are advancing rapidly owing to immunologic investigations of a plethora of animal models of intestinal inflammation, ground-breaking advances in the interrogation of diseases that are inherited as complex genetic traits, and the development of culture-independent methods to define the composition of the intestinal microbiota. These advances are bringing a deeper understanding to the genetically determined interplay between the commensal microbiota, intestinal epithelial cells, and the immune system and the manner in which this interplay might be modified by relevant environmental factors in the pathogenesis of IBD. This review examines these interactions and, where possible, potential lessons from IBD-directed, biologic therapies that may allow for elucidation of pathways that are central to disease pathogenesis in humans. PMID:20192811

  19. THE INFLAMMATION HYPOTHESIS IN GERIATRIC DEPRESSION

    PubMed Central

    Alexopoulos, George S.; Morimoto, Sarah Shizuko

    2011-01-01

    Background A large body of research has focused on “mediating mechanisms” and predisposing brain abnormalities to geriatric depression, but little is known about its etiology. This paper examines whether age-related and comorbid disease-related immune deregulation is an etiologic contributor to geriatric depression. Methods This article reviews findings on neuroinflammation during the aging process and depression as well as studies of anti-inflammatory actions of classical antidepressants and antidepressant actions of anti-inflammatory agents. Results Aging results in increased peripheral immune responses, impaired peripheral-CNS immune communication, and a shift of the CNS into a pro-inflammatory state. These exaggerated and prolonged immune responses may lead to changes in the function of emotional and cognitive networks pertinent to geriatric depression and to behavioral changes reminiscent of the depressive and cognitive symptoms of geriatric depression. Some antidepressants may reduce the expression of inflammation markers. Limited data suggest that some anti-inflammatory agents may have antidepressant properties. Conclusions A synthesis of available findings suggests that aging-related and comorbid disease-related inflammatory processes may promote changes in the neural systems predisposing to geriatric depression or facilitating metabolic changes that mediate depressive syndromes. The “inflammation hypothesis” in geriatric depression cannot be tested in its entirety, but it can lead to testable hypotheses and data on mechanisms by which inflammatory processes promote geriatric depression. The significance of such an effort is that it may lead to a novel treatment development model bringing to bear recent advances of anti-inflammatory pharmacology to the treatment of depressed elderly patients. PMID:21370276

  20. A murine model of appendicitis and the impact of inflammation on appendiceal lymphocyte constituents

    PubMed Central

    Watson Ng, W S; Hampartzoumian, T; Lloyd, A R; Grimm, M C

    2007-01-01

    Data indicate that appendicectomy for intra-abdominal inflammation protects against inflammatory bowel disease (IBD). This suggests an important role for the appendix in mucosal immunity. There is no established model of appendicitis. We therefore developed a murine model of appendicitis and examined the effect of inflammation on appendiceal lymphocyte constituents. The caecal patch of specific pathogen-free (SPF)-Balb/c mice was transformed into an obstructed ‘appendiceal pouch’ by standardized suction and band ligation. Mice were killed and ‘pouches’ removed for histology and phenotypic analysis of leucocytes by flow cytometry. Serum C-reactive protein (CRP) was determined by enzyme-linked immunosorbent assay. All ‘pouches’ developed features resembling human appendicitis – mucosal ulceration, transmural inflammation with neutrophils, lymphocytes and occasional eosinophils, and serositis. These changes were most evident between days 7 and 10. There was significant elevation of serum CRP (8·0 ± 0·3 ng/ml to 40·0 ± 3·1 ng/ml; P < 0·01), indicating systemic inflammation. Following the initial neutrophil-predominant response, there was an increase in CD4− (15·3% ± 1·2% to 31·0 ± 2·0%; P < 0·01) and CD8− T lymphocytes (3·7% ± 0·6% to 9·2 ± 0·8%; P < 0·01). CD25− forkhead box P3 (FoxP3)− regulatory T lymphocytes were increased by 66% (P < 0·01). Furthermore, significant increases in CD8− FoxP3− regulatory T lymphocytes were restricted to younger mice (age < 10 weeks, P < 0·003). This is the first description of a murine model of appendicitis. Inflammation resulted in T lymphocyte accumulation associated with an increase in regulatory T lymphocytes, which might explain the age-dependent protective phenomenon. Further exploration will provide insights into the mechanisms of intestinal immune homeostasis and the immunopathogenesis of IBD. PMID:17680826

  1. The role of inflammation in suicidal behaviour

    PubMed Central

    Brundin, L; Erhardt, S; Bryleva, EY; Achtyes, ED; Postolache, TT

    2015-01-01

    Objective Over the past decade, clinical data have accumulated showing that inflammation might contribute to the pathophysiology of suicide. To evaluate the associations and to identify the support for pathways linking inflammatory processes with suicidal behaviour, a comprehensive review of the literature was undertaken. Method The search terms ‘cytokine’, ‘risk factors’, ‘kynurenine’, ‘asthma’, ‘allergy’, ‘autoimmunity’, ‘traumatic brain injury’, ‘infection’ along with the terms ‘inflammation’ and ‘suicide’ were entered into PubMed, and a thorough analysis of the publications and their reference lists was performed. Results The effects of inflammation on mood and behaviour could partially be mediated by kynurenine pathway metabolites, modulating neuroinflammation and glutamate neurotransmission. At the same time, the triggers of the inflammatory changes documented in suicidal patients may be attributed to diverse mechanisms such as autoimmunity, neurotropic pathogens, stress or traumatic brain injury. Conclusion Targeting the inflammatory system might provide novel therapeutic approaches as well as potential biomarkers to identify patients at increased risk. For the goal of improved detection and treatment of suicidal individuals to be achieved, we need to develop a detailed understanding of the origin, mechanisms and outcomes of inflammation in suicidal behaviour. PMID:26256862

  2. Congenital muscular dystrophy with inflammation: Diagnostic considerations

    PubMed Central

    Konkay, Kaumudi; Kannan, Meena Angamuthu; Lingappa, Lokesh; Uppin, Megha S.; Challa, Sundaram

    2016-01-01

    Background and Purpose: Muscle biopsy features of congenital muscular dystrophies (CMD) vary from usual dystrophic picture to normal or nonspecific myopathic picture or prominent fibrosis or striking inflammatory infiltrate, which may lead to diagnostic errors. A series of patients of CMD with significant inflammatory infiltrates on muscle biopsy were correlated with laminin α2 deficiency on immunohistochemistry (IHC). Material and Methods: Cryostat sections of muscle biopsies from the patients diagnosed as CMD on clinical and muscle biopsy features from 1996 to 2014 were reviewed with hematoxylin and eosin(H&E), enzyme and immunohistochemistry (IHC) with laminin α2. Muscle biopsies with inflammatory infiltrate were correlated with laminin α2 deficiency. Results: There were 65 patients of CMD, with inflammation on muscle biopsy in 16. IHC with laminin α2 was available in nine patients, of which six showed complete absence along sarcolemma (five presented with floppy infant syndrome and one with delayed motor milestones) and three showed discontinuous, and less intense staining. Conclusions: CMD show variable degrees of inflammation on muscle biopsy. A diagnosis of laminin α2 deficient CMD should be considered in patients of muscular dystrophy with inflammation, in children with hypotonia/delayed motor milestones. PMID:27570388

  3. Brain inflammation as a biomarker in epilepsy

    PubMed Central

    Vezzani, Annamaria; Friedman, Alon

    2013-01-01

    Experimental and clinical evidence have demonstrated the increased synthesis of specific inflammatory mediators, and the upregulation of their cognate receptors in the chronic epileptic brain, indicating that some proinflammatory pathways are activated in seizure foci. Inhibition of experimental seizures by pharmacological interference with specific proinflammatory signaling, together with evidence of changes in intrinsic susceptibility to seizures in transgenic mice with perturbed inflammatory pathways, was instrumental to establish the concept that brain inflammation has a role in the etiopathogenesis of seizures. Increasing evidence also highlights the possible involvement of inflammatory processes arising in the injured brain in the development of epilepsy (i.e., in epileptogenesis). Since brain inflammation in epilepsy is not a mere epiphenomenon of the pathology but is likely involved in the mechanisms underlying neuronal hyperexcitability, the onset of seizures and their recurrence, it might be considered as a biomarker of disease development and severity, and, as such, could be used for diagnostic, prognostic or therapeutic purposes, provided that adequate noninvasive methodologies are developed to detect and quantify brain inflammation in humans. PMID:22003909

  4. Inflammation in the pathogenesis of lyme neuroborreliosis.

    PubMed

    Ramesh, Geeta; Didier, Peter J; England, John D; Santana-Gould, Lenay; Doyle-Meyers, Lara A; Martin, Dale S; Jacobs, Mary B; Philipp, Mario T

    2015-05-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, affects both peripheral and central nervous systems. We assessed a causal role for inflammation in Lyme neuroborreliosis pathogenesis by evaluating the induced inflammatory changes in the central nervous system, spinal nerves, and dorsal root ganglia (DRG) of rhesus macaques that were inoculated intrathecally with live B. burgdorferi and either treated with dexamethasone or meloxicam (anti-inflammatory drugs) or left untreated. ELISA of cerebrospinal fluid showed significantly elevated levels of IL-6, IL-8, chemokine ligand 2, and CXCL13 and pleocytosis in all infected animals, except dexamethasone-treated animals. Cerebrospinal fluid and central nervous system tissues of infected animals were culture positive for B. burgdorferi regardless of treatment. B. burgdorferi antigen was detected in the DRG and dorsal roots by immunofluorescence staining and confocal microscopy. Histopathology revealed leptomeningitis, vasculitis, and focal inflammation in the central nervous system; necrotizing focal myelitis in the cervical spinal cord; radiculitis; neuritis and demyelination in the spinal roots; and inflammation with neurodegeneration in the DRG that was concomitant with significant neuronal and satellite glial cell apoptosis. These changes were absent in the dexamethasone-treated animals. Electromyography revealed persistent abnormalities in F-wave chronodispersion in nerve roots of a few infected animals; which were absent in dexamethasone-treated animals. These results suggest that inflammation has a causal role in the pathogenesis of acute Lyme neuroborreliosis. PMID:25892509

  5. Inflammation and cancer: advances and new agents.

    PubMed

    Crusz, Shanthini M; Balkwill, Frances R

    2015-10-01

    Tumour-promoting inflammation is considered one of the enabling characteristics of cancer development. Chronic inflammatory disease increases the risk of some cancers, and strong epidemiological evidence exists that NSAIDs, particularly aspirin, are powerful chemopreventive agents. Tumour microenvironments contain many different inflammatory cells and mediators; targeting these factors in genetic, transplantable and inducible murine models of cancer substantially reduces the development, growth and spread of disease. Thus, this complex network of inflammation offers targets for prevention and treatment of malignant disease. Much potential exists in this area for novel cancer prevention and treatment strategies, although clinical research to support targeting of cancer-related inflammation and innate immunity in patients with advanced-stage cancer remains in its infancy. Following the initial successes of immunotherapies that modulate the adaptive immune system, we assert that inflammation and innate immunity are important targets in patients with cancer on the basis of extensive preclinical and epidemiological data. The adaptive immune response is heavily dependent on innate immunity, therefore, inhibiting some of the tumour-promoting immunosuppressive actions of the innate immune system might enhance the potential of immunotherapies that activate a nascent antitumour response. PMID:26122183

  6. Inflammation in the Pathogenesis of Lyme Neuroborreliosis

    PubMed Central

    Ramesh, Geeta; Didier, Peter J.; England, John D.; Santana-Gould, Lenay; Doyle-Meyers, Lara A.; Martin, Dale S.; Jacobs, Mary B.; Philipp, Mario T.

    2016-01-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, affects both peripheral and central nervous systems. We assessed a causal role for inflammation in Lyme neuroborreliosis pathogenesis by evaluating the induced inflammatory changes in the central nervous system, spinal nerves, and dorsal root ganglia (DRG) of rhesus macaques that were inoculated intrathecally with live B. burgdorferi and either treated with dexamethasone or meloxicam (anti-inflammatory drugs) or left untreated. ELISA of cerebrospinal fluid showed significantly elevated levels of IL-6, IL-8, chemokine ligand 2, and CXCL13 and pleocytosis in all infected animals, except dexamethasone-treated animals. Cerebrospinal fluid and central nervous system tissues of infected animals were culture positive for B. burgdorferi regardless of treatment. B. burgdorferi antigen was detected in the DRG and dorsal roots by immunofluorescence staining and confocal microscopy. Histopathology revealed leptomeningitis, vasculitis, and focal inflammation in the central nervous system; necrotizing focal myelitis in the cervical spinal cord; radiculitis; neuritis and demyelination in the spinal roots; and inflammation with neurodegeneration in the DRG that was concomitant with significant neuronal and satellite glial cell apoptosis. These changes were absent in the dexamethasone-treated animals. Electromyography revealed persistent abnormalities in F-wave chronodispersion in nerve roots of a few infected animals; which were absent in dexamethasone-treated animals. These results suggest that inflammation has a causal role in the pathogenesis of acute Lyme neuroborreliosis. PMID:25892509

  7. Inflammation and its resolution as determinants of acute coronary syndromes

    PubMed Central

    Libby, Peter; Tabas, Ira; Fredman, Gabrielle; Fisher, Edward

    2014-01-01

    Inflammation contributes to many of the characteristics of plaques implicated in the pathogenesis of acute coronary syndromes (ACS). Moreover, inflammatory pathways not only regulate properties of plaques that precipitate ACS but also modulate the clinical consequences of the thrombotic complications of atherosclerosis. This synthesis will provide an update on the fundamental mechanisms of inflammatory responses that govern ACS, and also highlight the ongoing balance between pro-inflammatory mechanisms and endogenous pathways that can promote the resolution of inflammation. An appreciation of the countervailing mechanisms that modulate inflammation in relation to ACS enriches our fundamental understanding of the pathophysiology of this important manifestation of atherosclerosis. In addition, these insights furnish glimpses into potential novel therapeutic interventions to forestall this ultimate complication of the disease. PMID:24902971

  8. [Anti-inflammatory activity of benzo(c) phenanthridine derivatives and possible mechanisms of action (author's transl)].

    PubMed

    Iwata, H; Yamamoto, I; Masukawa, T; Komoriya, K; Iwaki, H

    1977-07-01

    Of five newly synthesized benzo[c]phenanthridine derivatives tested, the two compounds, BPD-I and BPD-II were found to have potent anti-edematous activity with intraperitoneal administration to S.D. rats. BPD-I showed a marked inhibitory effect against acute inflammation such as induced rat paw edema and leucocyte emigration and protein exudation by means of CMC pouch method and capillary permeability enhancement induced by various phlogists. This compound also inhibited subacute and chronic inflammatory responses such as granuloma formation induced by croton oil or cotton pellet. The anti-inflammatory activities of this compound resembled those of hydrocortisone. The inhibitory effects of carragenan edema and capillary permeability enhancement by ATP were strikingly reduced in adrenalectomized rats suggesting involvement of the hypophysis-adrenal systems. Rat serum corticosterone level and hepatic tyrosine aminotransferase activity (TAT) were then measured after BPD-I injection. The serum corticosterone level was increased and shortly after the elevation of corticosterone, hepatic TAT levels also increased. Thus it is concluded that the corticosterone release from adrenal gland plays a role in the anti-inflammatory action of BPD-I. PMID:21834

  9. Sex Differences in Depression: Does Inflammation Play a Role?

    PubMed Central

    Derry, Heather M.; Padin, Avelina C.; Kuo, Jennifer L.; Hughes, Spenser; Kiecolt-Glaser, Janice K.

    2016-01-01

    Women become depressed more frequently than men, a consistent pattern across cultures. Inflammation plays a key role in initiating depression among a subset of individuals, and depression also has inflammatory consequences. Notably, women experience higher levels of inflammation and greater autoimmune disease risk compared to men. In the current review, we explore the bidirectional relationship between inflammation and depression and describe how this link may be particularly relevant for women. Compared to men, women may be more vulnerable to inflammation-induced mood and behavior changes. For example, transient elevations in inflammation prompt greater feelings of loneliness and social disconnection for women than for men, which can contribute to the onset of depression. Women also appear to be disproportionately affected by several factors that elevate inflammation, including prior depression, somatic symptomatology, interpersonal stressors, childhood adversity, obesity, and physical inactivity. Relationship distress and obesity, both of which elevate depression risk, are also more strongly tied to inflammation for women than for men. Taken together, these findings suggest that women’s susceptibility to inflammation and its mood effects may contribute to sex differences in depression. Depression continues to be a leading cause of disability worldwide, with women experiencing greater risk than men. Due to the depression-inflammation connection, these patterns may promote additional health risks for women. Considering the impact of inflammation on women’s mental health may foster a better understanding of sex differences in depression, as well as the selection of effective depression treatments. PMID:26272539

  10. Sex Differences in Depression: Does Inflammation Play a Role?

    PubMed

    Derry, Heather M; Padin, Avelina C; Kuo, Jennifer L; Hughes, Spenser; Kiecolt-Glaser, Janice K

    2015-10-01

    Women become depressed more frequently than men, a consistent pattern across cultures. Inflammation plays a key role in initiating depression among a subset of individuals, and depression also has inflammatory consequences. Notably, women experience higher levels of inflammation and greater autoimmune disease risk compared to men. In the current review, we explore the bidirectional relationship between inflammation and depression and describe how this link may be particularly relevant for women. Compared to men, women may be more vulnerable to inflammation-induced mood and behavior changes. For example, transient elevations in inflammation prompt greater feelings of loneliness and social disconnection for women than for men, which can contribute to the onset of depression. Women also appear to be disproportionately affected by several factors that elevate inflammation, including prior depression, somatic symptomatology, interpersonal stressors, childhood adversity, obesity, and physical inactivity. Relationship distress and obesity, both of which elevate depression risk, are also more strongly tied to inflammation for women than for men. Taken together, these findings suggest that women's susceptibility to inflammation and its mood effects may contribute to sex differences in depression. Depression continues to be a leading cause of disability worldwide, with women experiencing greater risk than men. Due to the depression-inflammation connection, these patterns may promote additional health risks for women. Considering the impact of inflammation on women's mental health may foster a better understanding of sex differences in depression, as well as the selection of effective depression treatments. PMID:26272539

  11. Role of adenosine A2B receptors in inflammation

    PubMed Central

    Feoktistov, Igor; Biaggioni, Italo

    2013-01-01

    Recent progress in our understanding of the unique role of A2B receptors in the regulation of inflammation, immunity and tissue repair was considerably facilitated with the introduction of new pharmacological and genetic tools. However, it also led to seemingly conflicting conclusions on the role of A2B adenosine receptors in inflammation with some publications indicating pro-inflammatory effects and others suggesting the opposite. This chapter reviews the functions of A2B receptors in various cell types related to inflammation and integrated effects of A2B receptor modulation in several animal models of inflammation. It is argued that translation of current findings into novel therapies would require a better understanding of A2B receptors functions in diverse types of inflammatory responses in various tissues and at different points of their progression. PMID:21586358

  12. Basic concepts of inflammation and its role in carcinogenesis.

    PubMed

    Maher, Stephen G; Reynolds, John V

    2011-01-01

    While the normal inflammatory cascade is self-limiting and crucial for host protection against invading pathogens and in the repair of damaged tissue, a wealth of evidence suggests that chronic inflammation is the engine driving carcinogenesis. Over a period of almost 150 years the link between inflammation and cancer development has been well established. In this chapter we discuss the fundamental concepts and mechanisms behind normal inflammation as it pertains to wound healing. We further discuss the association of inflammation and its role in carcinogenesis, highlighting the different stages of cancer development, namely tumour initiation, promotion and progression. With both the innate and adaptive arms of the immune system being central to the inflammatory process, we examine the role of a number of immune effectors in contributing to the carcinogenic process. In addition, we highlight the influences of host genetics in altering cancer risk. PMID:21822817

  13. Topical Application of Fingolimod Perturbs Cutaneous Inflammation.

    PubMed

    Sun, Wai Y; Dimasi, David P; Pitman, Melissa R; Zhuang, YiZhong; Heddle, Robert; Pitson, Stuart M; Grimbaldeston, Michele A; Bonder, Claudine S

    2016-05-01

    The prevalence of allergies, including rhinitis, eczema, and anaphylaxis, is rising dramatically worldwide. This increase is especially problematic in children who bear the greatest burden of this rising trend. Increasing evidence identifies neutrophils as primary perpetrators of the more severe and difficult to manage forms of inflammation. A newly recognized mechanism by which neutrophils are recruited during the early phase of histamine-induced inflammation involves the sphingosine kinase (SK)/sphingosine-1-phosphate axis. This study examines whether topical application of fingolimod, an established SK/sphingosine-1-phosphate antagonist already in clinical use to treat multiple sclerosis, may be repurposed to treat cutaneous inflammation. Using two mouse models of ear skin inflammation (histamine- and IgE-mediated passive cutaneous anaphylaxis) we topically applied fingolimod prophylactically, as well as after establishment of the inflammatory response, and examined ear swelling, SK activity, vascular permeability, leukocyte recruitment, and production of proinflammatory mediators. The present study reveals that when applied topically, fingolimod attenuates both immediate and late-phase responses to histamine with reduced extravasation of fluid, SK-1 activity, proinflammatory cytokine and chemokine production, and neutrophil influx and prevents ear swelling. Intravital microscopy demonstrates that histamine-induced neutrophil rolling and adhesion to the postcapillary venules in the mouse ears is significantly attenuated even after 24 h. More importantly, these effects are achievable even once inflammation is established. Translation into humans was also accomplished with epicutaneous application of fingolimod resolving histamine-induced and allergen-induced inflammatory reactions in forearm skin. Overall, this study demonstrates, to our knowledge for the first time, that fingolimod may be repurposed to treat cutaneous inflammation. PMID:27001955

  14. Induction of Murine Intestinal Inflammation by Adoptive Transfer of Effector CD4+CD45RBhigh T Cells into Immunodeficient Mice

    PubMed Central

    Steinbach, Erin C.; Gipson, Gregory R.; Sheikh, Shehzad Z.

    2015-01-01

    There are many different animal models available for studying the pathogenesis of human inflammatory bowel diseases (IBD), each with its own advantages and disadvantages. We describe here an experimental colitis model that is initiated by adoptive transfer of syngeneic splenic CD4+CD45RBhigh T cells into T and B cell deficient recipient mice. The CD4+CD45RBhigh T cell population that largely consists of naïve effector cells is capable of inducing chronic intestinal inflammation, closely resembling key aspects of human IBD. This method can be manipulated to study aspects of disease onset and progression. Additionally it can be used to study the function of innate, adaptive, and regulatory immune cell populations, and the role of environmental exposures, i.e., the microbiota, in intestinal inflammation. In this article we illustrate the methodology for inducing colitis with a step-by-step protocol. This includes a video demonstration of key technical aspects required to successfully develop this murine model of experimental colitis for research purposes. PMID:25938395

  15. Adhesion molecules in cutaneous inflammation.

    PubMed

    Barker, J N

    1995-01-01

    As in other organs, leukocyte adhesion molecules and their ligands play a major role in cutaneous inflammatory events both by directing leukocyte trafficking and by their effects on antigen presentation. Skin biopsies of inflamed skin from patients with diseases such as as psoriasis or atopic dermatitis reveal up-regulation of endothelial cell expression of P- and E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Studies of evolving lesions following UVB irradiation, Mantoux reaction or application of contact allergen, demonstrate that expression of these adhesion molecules parallels leukocyte infiltration into skin. When cutaneous inflammation is widespread (e.g. in erythroderma), soluble forms of these molecules are detectable in serum. In vitro studies predict that peptide mediators are important regulatory factors for endothelial adhesion molecules. Intradermal injection of the cytokines interleukin 1, tumour necrosis factor alpha and interferon gamma into normal human skin leads to induction of endothelial adhesion molecules with concomitant infiltration of leukocytes. In addition, neuropeptides rapidly induce P-selectin translocation to the cell membrane and expression of E-selectin. Adhesion molecules also play a crucial role as accessory molecules in the presentation of antigen to T lymphocytes by Langerhans' cells. Expression of selectin ligands by Langerhans' cells is up-regulated by various inflammatory stimuli, suggesting that adhesion molecules may be important in Langerhans' cell migration. The skin, because of its accessibility, is an ideal organ in which to study expression of adhesion molecules and their relationship to inflammatory events. Inflammatory skin diseases are common and inhibition of lymphocyte accumulation in skin is likely to prove of great therapeutic benefit. PMID:7587640

  16. Resistin in idiopathic inflammatory myopathies

    PubMed Central

    2012-01-01

    Introduction The purpose of this study was to evaluate and compare the serum levels and local expression of resistin in patients with idiopathic inflammatory myopathies to controls, and to determine the relationship between resistin levels, inflammation and disease activity. Methods Serum resistin levels were determined in 42 patients with inflammatory myopathies and 27 healthy controls. The association among resistin levels, inflammation, global disease activity and muscle strength was examined. The expression of resistin in muscle tissues from patients with inflammatory myopathies and healthy controls was evaluated. Gene expression and protein release from resistin-stimulated muscle and mononuclear cells were assessed. Results In patients with inflammatory myopathies, the serum levels of resistin were significantly higher than those observed in controls (8.53 ± 6.84 vs. 4.54 ± 1.08 ng/ml, P < 0.0001) and correlated with C-reactive protein (CRP) levels (r = 0.328, P = 0.044) and myositis disease activity assessment visual analogue scales (MYOACT) (r = 0.382, P = 0.026). Stronger association was observed between the levels of serum resistin and CRP levels (r = 0.717, P = 0.037) as well as MYOACT (r = 0.798, P = 0.007), and there was a trend towards correlation between serum resistin and myoglobin levels (r = 0.650, P = 0.067) in anti-Jo-1 positive patients. Furthermore, in patients with dermatomyositis, serum resistin levels significantly correlated with MYOACT (r = 0.667, P = 0.001), creatine kinase (r = 0.739, P = 0.001) and myoglobin levels (r = 0.791, P = 0.0003) and showed a trend towards correlation with CRP levels (r = 0.447, P = 0.067). Resistin expression in muscle tissue was significantly higher in patients with inflammatory myopathies compared to controls, and resistin induced the expression of interleukins (IL)-1β and IL-6 and monocyte chemoattractant protein (MCP)-1 in mononuclear cells but not in myocytes. Conclusions The results of this study

  17. The inflammatory inception of gallbladder cancer.

    PubMed

    Espinoza, Jaime A; Bizama, Carolina; García, Patricia; Ferreccio, Catterina; Javle, Milind; Miquel, Juan F; Koshiol, Jill; Roa, Juan C

    2016-04-01

    Gallbladder cancer is a lethal disease with notable geographical variations worldwide and a predilection towards women. Its main risk factor is prolonged exposure to gallstones, although bacterial infections and other inflammatory conditions are also associated. The recurrent cycles of gallbladder epithelium damage and repair enable a chronic inflammatory environment that promotes progressive morphological impairment through a metaplasia-dysplasia-carcinoma, along with cumulative genome instability. Inactivation of TP53, which is mutated in over 50% of GBC cases, seems to be the earliest and one of the most important carcinogenic pathways involved. Increased cell turnover and oxidative stress promote early alteration of TP53, cell cycle deregulation, apoptosis and replicative senescence. In this review, we will discuss evidence for the role of inflammation in gallbladder carcinogenesis obtained through epidemiological studies, genome-wide association studies, experimental carcinogenesis, morphogenetic studies and comparative studies with other inflammation-driven malignancies. The evidence strongly supports chronic, unresolved inflammation as the main carcinogenic mechanism of gallbladder cancer, regardless of the initial etiologic trigger. Given this central role of inflammation, evaluation of the potential for GBC prevention removing causes of inflammation or using anti-inflammatory drugs in high-risk populations may be warranted. PMID:26980625

  18. Smoking, inflammatory patterns, and postprandial hypertriglyceridemia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Smoking is associated with increased postprandial hypertriglyceridemia (PPT). Inflammation and insulin resistance are potential "drivers" for this phenomenon. We tested whether inflammatory patterns and/or insulin resistance explain the effect of smoking on PPT. Methods: Men and women i...

  19. Pyknoachondrogenesis: an association of skeletal defects resembling achondrogenesis with generalized bone sclerosis. A new condition?

    PubMed

    Camera, G; Giordano, F; Mastroiacovo, P

    1986-10-01

    A stillborn male with skeletal anomalies resembling achondrogenesis with remarkably sclerotic bones is reported. The term "Pyknoachondrogenesis" is suggested for this hitherto undescribed condition. PMID:3791681

  20. Inflammation: depression fans the flames and feasts on the heat.

    PubMed

    Kiecolt-Glaser, Janice K; Derry, Heather M; Fagundes, Christopher P

    2015-11-01

    Depression and inflammation fuel one another. Inflammation plays a key role in depression's pathogenesis for a subset of depressed individuals; depression also primes larger cytokine responses to stressors and pathogens that do not appear to habituate. Accordingly, treatment decisions may be informed by attention to questions of how (pathways) and for whom (predispositions) these links exist, which are the focus of this article. When combined with predisposing factors (moderators such as childhood adversity and obesity), stressors and pathogens can lead to exaggerated or prolonged inflammatory responses. The resulting sickness behaviors (e.g., pain, disturbed sleep), depressive symptoms, and negative health behaviors (e.g., poor diet, a sedentary lifestyle) may act as mediating pathways that lead to further, unrestrained inflammation and depression. Depression, childhood adversity, stressors, and diet can all influence the gut microbiome and promote intestinal permeability, another pathway to enhanced inflammatory responses. Larger, more frequent, or more prolonged inflammatory responses could have negative mental and physical health consequences. In clinical practice, inflammation provides a guide to potential targets for symptom management by signaling responsiveness to certain therapeutic strategies. For example, a theme across research with cytokine antagonists, omega-3 fatty acids, celecoxib, and exercise is that anti-inflammatory interventions have a substantially greater impact on mood in individuals with heightened inflammation. Thus, when inflammation and depression co-occur, treating them in tandem may enhance recovery and reduce the risk of recurrence. The bidirectional links between depression, inflammation, and disease suggest that effective depression treatments could have a far-reaching impact on mood, inflammation, and health. PMID:26357876

  1. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells

    PubMed Central

    Jin, Rong; Yang, Guojun; Li, Guohong

    2010-01-01

    Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Experimentally and clinically, the brain responds to ischemic injury with an acute and prolonged inflammatory process, characterized by rapid activation of resident cells (mainly microglia), production of proinflammatory mediators, and infiltration of various types of inflammatory cells (including neutrophils, different subtypes of T cells, monocyte/macrophages, and other cells) into the ischemic brain tissue. These cellular events collaboratively contribute to ischemic brain injury. Despite intense investigation, there are still numerous controversies concerning the time course of the recruitment of inflammatory cells in the brain and their pathogenic roles in ischemic brain injury. In this review, we provide an overview of the time-dependent recruitment of different inflammatory cells following focal cerebral I/R. We discuss how these cells contribute to ischemic brain injury and highlight certain recent findings and currently unanswered questions about inflammatory cells in the pathophysiology of ischemic stroke. PMID:20130219

  2. Anti-Inflammatory Strategies in Cartilage Repair

    PubMed Central

    Zhang, Ying; Pizzute, Tyler

    2014-01-01

    Cartilage defects are normally concomitant with posttraumatic inflammation and pose a major challenge in cartilage repair. Due to the avascular nature of cartilage and its inability to surmount an inflammatory response, the cartilage is easily attacked by proinflammatory factors and oxidative stress; if left untreated, osteoarthritis may develop. Suppression of inflammation has always been a crux for cartilage repair. Pharmacological drugs have been successfully applied in cartilage repair; however, they cannot optimally work alone. This review article will summarize current pharmacological drugs and their application in cartilage repair. The development of extracellular matrix-based scaffolds and preconditioned tissue-specific stem cells will be emphasized because both of these tissue engineering components could contribute to an enhanced ability not only for cartilage regeneration but also for anti-inflammation. These strategies could be combined to boost cartilage repair under inflammatory conditions. PMID:24846478

  3. Inflammation and skin cancer: old pals telling new stories.

    PubMed

    Hensler, Sabine; Mueller, Margareta M

    2013-01-01

    Inflammation and the inflammatory infiltrate essentially contribute to tumor development and progression. For skin cancer, the observation that tumors arise in sites of chronic irritation and inflammation dates back to 1828 and has stimulated a whole field of research. Numerous animal models such as models of UV-induced or chemically induced skin carcinogenesis but also trangenic models support the role of a deregulated inflammation in the development of skin cancer. These models have greatly contributed to our understanding of the multistage process of carcinogenesis and have given important insights in the differences between physiological inflammation in a healing wound and the functional contribution of the deregulated tumor-associated inflammation to skin cancer growth and progression. Data from these models are supported by epidemiological studies that emphasize a connection of inflammatory conditions with the development of melanoma and epithelial skin cancer and give first indications for a beneficial effect of anti-inflammatory treatments in reducing the risk for skin cancer. Consequently, anti-inflammatory drugs might represent a highly interesting approach in the prevention and treatment of skin cancers. PMID:24270351

  4. Airway Inflammation and Hypersensitivity Induced by Chronic Smoking

    PubMed Central

    Kou, Yu Ru; Kwong, Kevin; Lee, Lu-Yuan

    2011-01-01

    Airway hypersensitivity, characterized by enhanced excitability of airway sensory nerves, is a prominent pathophysiological feature in patients with airway inflammatory diseases. Although the underlying pathogenic mechanism is not fully understood, chronic airway inflammation is believed to be primarily responsible. Cigarette smoking is known to cause chronic airway inflammation, accompanied by airway hyperresponsiveness. Experimental evidence indicates that enhanced excitability of vagal bronchopulmonary sensory nerves and increased tachykinin synthesis in these nerves resulting from chronic inflammation are important contributing factors to the airway hyperresponsiveness. Multiple inflammatory mediators released from various types of structural and inflammatory cells are involved in the smoking-induced airway inflammation, which is mainly regulated by redox-sensitive signaling pathways and transcription factors. Furthermore, recent studies have reported potent sensitizing and stimulatory effects of these inflammatory mediators such as prostanoids and reactive oxygen species on these sensory nerves. In summary, these studies using cigarette smoking as an experimental approach have identified certain potentially important cell signaling pathways and underlying mechanisms of the airway hypersensitivity induced by chronic airway inflammation. PMID:21397052

  5. Platelets in Inflammation and Atherogenesis

    PubMed Central

    Nording, Henry M.; Seizer, Peter; Langer, Harald F.

    2015-01-01

    Platelets contribute to processes beyond thrombus formation and may play a so far underestimated role as an immune cell in various circumstances. This review outlines immune functions of platelets in host defense, but also how they may contribute to mechanisms of infectious diseases. A particular emphasis is placed on the interaction of platelets with other immune cells. Furthermore, this article outlines the features of atherosclerosis as an inflammatory vascular disease highlighting the role of platelet crosstalk with cellular and soluble factors involved in atheroprogression. Understanding, how platelets influence these processes of vascular remodeling will shed light on their role for tissue homeostasis beyond intravascular thrombosis. Finally, translational implications of platelet-mediated inflammation in atherosclerosis are discussed. PMID:25798138

  6. "TRP inflammation" relationship in cardiovascular system.

    PubMed

    Numata, Tomohiro; Takahashi, Kiriko; Inoue, Ryuji

    2016-05-01

    Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies. PMID:26482920

  7. Acupuncture to Reduce HIV-Associated Inflammation

    PubMed Central

    Swanson, Barbara; Keithley, Joyce K.; Johnson, Angela; Fogg, Louis; Adeyemi, Oluwatoyin; Sha, Beverly E.; Snell, Kimberly A.

    2015-01-01

    Background. HIV infection is associated with systemic inflammation that can increase risk for cardiovascular events. Acupuncture has been shown to have immunomodulatory effects and to improve symptoms in persons with inflammatory conditions. Objective. To test the anti-inflammatory effects of an acupuncture protocol that targets the cholinergic anti-inflammatory pathway (CAIP), a neural mechanism whose activation has been shown to reduce the release of proinflammatory cytokines, in persons with HIV-associated inflammation. Design, Setting, Participants, and Interventions. Double-blind, placebo-controlled clinical trial conducted in an outpatient clinic located in a medically underserved urban neighborhood. Twenty-five clinically-stable HIV-infected persons on antiretroviral therapy were randomized to receive once weekly CAIP-based acupuncture or sham acupuncture. Main Outcome Measures. Outcomes included plasma concentrations of high sensitivity C-reactive protein and D-dimer and fasting lipids. Results. Twenty-five participants completed the protocol (treatment group n = 12, control group n = 13). No adverse events related to the acupuncture protocol were observed. Compared to baseline values, the two groups did not significantly differ in any outcome measures at the end of the acupuncture protocol. Conclusions. CAIP-based acupuncture did not favorably modulate inflammatory or lipid parameters. Additional studies are warranted of CAIP-based protocols of different frequencies/durations. PMID:25922615

  8. The Role of Chronic Inflammation in Obesity-Associated Cancers

    PubMed Central

    2013-01-01

    There is a strong relationship between metabolism and immunity, which can become deleterious under conditions of metabolic stress. Obesity, considered a chronic inflammatory disease, is one example of this link. Chronic inflammation is increasingly being recognized as an etiology in several cancers, particularly those of epithelial origin, and therefore a potential link between obesity and cancer. In this review, the connection between the different factors that can lead to the chronic inflammatory state in the obese individual, as well as their effect in tumorigenesis, is addressed. Furthermore, the association between obesity, inflammation, and esophageal, liver, colon, postmenopausal breast, and endometrial cancers is discussed. PMID:23819063

  9. Systemic inflammation and multiple organ injury in traumatic hemorrhagic shock.

    PubMed

    Liu, Huaizheng; Xiao, Xuefei; Sun, Chuanzheng; Sun, Dao; Li, Yayong; Yang, Mingshi

    2015-01-01

    Traumatic hemorrhagic shock (HS) is a severe outcome of traumatic injury that accounts for numerous traumatic deaths. In the process of traumatic HS, both hemorrhage and trauma can trigger a complex cascade of posttraumatic events that are related to inflammatory and immune responses, which may lead to multiple organ injury or even death. From a mechanistic perspective, systemic inflammation and organ injury are involved coagulation, the complement system, impaired microcirculation and inflammatory signaling pathways. In this review, we discuss the systemic inflammation and multiple organ injury in post-traumatic HS. PMID:25961533

  10. Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms.

    PubMed

    You, Tongjian; Arsenis, Nicole C; Disanzo, Beth L; Lamonte, Michael J

    2013-04-01

    Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals. PMID:23494259

  11. The Science of Fatty Acids and Inflammation123

    PubMed Central

    Fritsche, Kevin L

    2015-01-01

    Inflammation is believed to play a central role in many of the chronic diseases that characterize modern society. In the past decade, our understanding of how dietary fats affect our immune system and subsequently our inflammatory status has grown considerably. There are compelling data showing that high-fat meals promote endotoxin [e.g., lipopolysaccharide (LPS)] translocation into the bloodstream, stimulating innate immune cells and leading to a transient postprandial inflammatory response. The nature of this effect is influenced by the amount and type of fat consumed. The role of various dietary constituents, including fats, on gut microflora and subsequent health outcomes in the host is another exciting and novel area of inquiry. The impact of specific fatty acids on inflammation may be central to how dietary fats affect health. Three key fatty acid–inflammation interactions are briefly described. First, the evidence suggests that saturated fatty acids induce inflammation in part by mimicking the actions of LPS. Second, the often-repeated claim that dietary linoleic acid promotes inflammation was not supported in a recent systematic review of the evidence. Third, an explanation is offered for why omega-3 (n–3) polyunsaturated fatty acids are so much less anti-inflammatory in humans than in mice. The article closes with a cautionary tale from the genomic literature that illustrates why extrapolating the results from inflammation studies in mice to humans is problematic. PMID:25979502

  12. Microbiome, Inflammation and Cancer

    PubMed Central

    Francescone, Ralph; Hou, Vivianty; Grivennikov, Sergei I.

    2014-01-01

    Inflammation has long been suspected to play a major role in the pathogenesis of cancer. Only recently however, have some mechanisms of its tumor promoting effects come to light. Microbes, both commensal and pathogenic, are critical regulators of the host immune system, and ultimately, of inflammation. Consequently, microbes have the potential power to influence tumor progression as well, through a wide variety of routes, including chronic activation of inflammation, alteration of tumor microenvironment, induction of genotoxic responses, and metabolism. In this review, we will provide a general overview of commensal microbiota, inflammation and cancer, and how microbes fit into this emerging field. PMID:24855005

  13. Inflammation induced by Bothrops asper venom.

    PubMed

    Teixeira, Catarina; Cury, Yara; Moreira, Vanessa; Picolo, Gisele; Chaves, Fernando

    2009-07-01

    Inflammation is a major characteristic of envenomation by snakes from viperine and crotaline species. Bothrops asper snake venom elicits, among other alterations, a pronounced inflammatory response at the site of injection both in humans and experimental animals. This review describes the current status of our understanding of the inflammatory reaction, including pain, triggered by Bothrops asper venom. The experimental studies on the action of this venom as well as the complex network of chemical mediators involved are summarized. Moreover, aspects of the molecular mechanisms orchestrating this important response to envenomation by Bothrops asper are presented. Considering that isolated toxins are relevant tools for understanding the actions of the whole venom, studies dealing with the mechanisms of inflammatory and nociceptive properties of phospholipases A(2), a metalloproteinase and serine-proteases isolated from Bothrops asper venom are also described. PMID:19328821

  14. Inflammation induced by Bothrops asper venom.

    PubMed

    Teixeira, Catarina; Cury, Yara; Moreira, Vanessa; Picolob, Gisele; Chaves, Fernando

    2009-12-01

    Inflammation is a major characteristic of envenomation by snakes from viperine and crotaline species. Bothrops asper snake venom elicits, among other alterations, a pronounced inflammatory response at the site of injection both in humans and experimental animals. This review describes the current status of our understanding of the inflammatory reaction, including pain, triggered by B. asper venom. The experimental studies on the action of this venom as well as the complex network of chemical mediators involved are summarized. Moreover, aspects of the molecular mechanisms orchestrating this important response to envenomation by B. asper are presented. Considering that isolated toxins are relevant tools for understanding the actions of the whole venom, studies dealing with the mechanisms of inflammatory and nociceptive properties of phospholipases A2, a metalloproteinase and serine proteinases isolated from B. asper venom are also described. PMID:19774698

  15. Adipokines in inflammation and metabolic disease

    PubMed Central

    Ouchi, Noriyuki; Parker, Jennifer L.; Lugus, Jesse J.; Walsh, Kenneth

    2012-01-01

    The worldwide epidemic of obesity has brought cons iderable attention to research aimed at understanding the biology of adipocytes (fat cells) and the events occurring in adipose tissue (fat) and in the bodies of obese individuals. Accumulating evidence indicates that obesity causes chronic low-grade inflammation and that this contributes to systemic metabolic dysfunction that is associated with obesity-linked disorders. Adipose tissue functions as a key endocrine organ by releasing multiple bioactive substances, known as adipose-derived secreted factors or adipokines, that have pro-inflammatory or anti-inflammatory activities. Dysregulated production or secretion of these adipokines owing to adipose tissue dysfunction can contribute to the pathogenesis of obesity-linked complications. In this Review, we focus on the role of adipokines in inflammatory responses and discuss their potential as regulators of metabolic function. PMID:21252989

  16. Inflammation and its genesis in cystic fibrosis.

    PubMed

    Nichols, David P; Chmiel, James F

    2015-10-01

    The host inflammatory response in cystic fibrosis (CF) lung disease has long been recognized as a central pathological feature and an important therapeutic target. Indeed, many believe that bronchiectasis results largely from the oxidative and proteolytic damage comprised within an exuberant airway inflammatory response that is dominated by neutrophils. In this review, we address the longstanding argument of whether or not the inflammatory response is directly attributable to impairment of the cystic fibrosis transmembrane conductance regulator or only secondary to airway obstruction and chronic bacterial infection and challenge the importance of this distinction in the context of therapy. We also review the centrality of neutrophils in CF lung pathophysiology and highlight more recent data that suggest the importance of other cell types and signaling beyond NF-κB activation. We discuss how protease and redox imbalance are critical factors in CF airway inflammation and end by reviewing some of the more promising therapeutic approaches now under development. PMID:26335954

  17. The role of neutrophils in inflammation resolution.

    PubMed

    Jones, Hefin R; Robb, Calum T; Perretti, Mauro; Rossi, Adriano G

    2016-04-01

    The fundamental role played by neutrophils for an efficient, acute inflammatory response has long been appreciated, with the underlying molecular and cellular mechanisms largely elucidated over the past decades. However, more recent work suggests that the biological functions exerted by this fascinating leucocyte are somewhat more extensive than previously acknowledged. Here we discuss how extravasated neutrophils govern the initiation of the resolution phase of inflammation by enabling activation of pro-resolving circuits to ensure the safe conclusion of the inflammatory response. The neutrophil 'alarm bell' on resolution is effected through release of soluble mediators as well as apoptotic bodies and other vesicles, which, in turn, can inform and modify the microenvironment ultimately leading to termination of the inflammatory response coinciding with re-establishment of tissue homeostasis and functionality. PMID:27021499

  18. Ghrelin receptor regulates adipose tissue inflammation in aging

    PubMed Central

    Buras, Eric D.; Yu, Kaijiang; Wang, Ruitao; Smith, C. Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr−/− mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsr−/− mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsr−/− mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance. PMID:26837433

  19. [The role of inflammation in colon cancer pathogenesis].

    PubMed

    Francuz, Tomasz; Czajka-Francuz, Paulina; Cisoń-Jurek, Sylwia; Wojnar, Jerzy

    2016-01-01

    The results of the latest research more and more bind development of neoplasms with the chronic inflammation. Inflammatory process creates microenvironment promoting development of neoplasms; as a result, malignant process start to develop in places, where chronic inflammation proceeds or regeneration of tissues takes place. Inflammatory cells not only create suitable microenvironment for development of neoplasms, but also excrete number of cytokines and growth factors promoting survival of a neoplasmatic cell and avoiding its apoptosis, promoting neoangiogenesis and metastases formation. Moreover, cytokines and other pro-inflammatory factors modulate expression of genes important in cancerogenesis, they also activate NFκB-dependent signaling pathways, which favor neoplasmatic cells to avoid apoptosis. On the other hand, oxidative stress accompanying chronic inflammation may promote mutagenesis, enabling that way the neoplasm development. The same cells and metabolic pathways are engaged in inflammatory and neoplasmatic processes, and development of cancer may be a consequence of loss of control over tissue regeneration during resolution of chronic inflammation. The role of most important cells and metabolic pathways in inflammatory process, which may lead to colon cancer, was discussed in this paper. PMID:27117112

  20. Bioactive lipids as modulators of immunity, inflammation and emotions.

    PubMed

    Chiurchiù, Valerio; Maccarrone, Mauro

    2016-08-01

    Lipids are not only constituents of cellular membranes but also key signaling mediators, thus acting as 'bioactive lipids'. Among the prominent roles exerted by bioactive lipids are immune regulation, inflammation and maintenance of homeostasis. Accumulated evidence indicates the existence of a bidirectional relationship between immune and nervous systems, whereby inflammatory mediators can directly modulate emotions that, in turn, can strongly influence immune responses, thus affecting health. This review summarizes current knowledge on the ability of several families of bioactive lipids to regulate immunity and inflammation (through pro-inflammatory or anti-inflammatory effects), as well as to control emotions and mood-related manifestations, advocating these substances as an attractive interface between 'mind' and 'body', and as a potential target to treat inflammatory/immune-mediated mood disorders. PMID:27372887

  1. Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice

    PubMed Central

    Andoh, Tsugunobu; Ouchi, Kenji; Inatomi, Satoshi

    2014-01-01

    Pleurotus eryngii (P. eryngii) is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI). Intranasal instillation of lipopolysaccharide (LPS) (10 μg/site/mouse) induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid) as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3–1 g/kg, p.o. (HTPE)) 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection. PMID:24799939

  2. The Yin and Yang of Inflammation

    PubMed Central

    Blackman, Marcia A.; Yates, Jennifer L.; Spencer, Cody M.; Vomhof-DeKrey, Emilie E.; Cooper, Andrea M.; Leadbetter, Elizabeth A.

    2015-01-01

    Inflammation is an essential protective part of the body’s response to infection, yet many diseases are the product of inflammation. For example, inflammation can lead to autoimmune disease and tissue damage, and is a key element in chronic health conditions such as heart disease, diabetes, rheumatoid arthritis, and also drives changes associated with aging. Animal models of infectious and chronic disease are important tools with which to dissect the pathways whereby inflammatory responses are initiated and controlled. Animal models therefore provide a prism through which the role of inflammation in health and disease can be viewed, and are important means by which to dissect mechanisms and identify potential therapies to be tested in the clinic. A meeting, “The Yin and Yang of Inflammation” was organized by Trudeau Institute and was held April 4–6′ 2014. The main goal was to bring together experts from biotechnology and academic organizations to examine and describe critical pathways in inflammation and place these pathways within the context of human disease. A group of ~80 scientists met for three days of intense formal and informal exchanges. A key focus was to stimulate interactions between basic research and industry. PMID:25323997

  3. Medicinal plants used in treatment of inflammatory skin diseases

    PubMed Central

    2013-01-01

    Skin is an organ providing contact with the environment and protecting the human body from unfavourable external factors. Skin inflammation, reflected adversely in its functioning and appearance, also unfavourably affects the psyche, the condition of which is important during treatment of chronic skin diseases. The use of plants in treatment of inflammatory skin diseases results from their influence on different stages of inflammation. The paper presents results of the study regarding the anti-inflammatory activity of the plant raw material related to its influence on skin. The mechanism of action, therapeutic indications and side effects of medicinal plants used for treatment of inflammatory diseases of the skin are described. PMID:24278070

  4. Platelet activity in the pathophysiology of inflammatory bowel diseases.

    PubMed

    Chen, Chunqiu; Li, Yongyu; Yu, Zhen; Liu, Zhanju; Shi, Yanhong; Lewandowska, Urszula; Sobczak, Marta; Fichna, Jakub; Kreis, Martin

    2015-01-01

    Platelets play a crucial role in immune responses. Impaired platelet activation may cause persistent mucosal inflammation through P-selectin, CD40-CD40L and other systems influencing granulocytes, macrophages or endothelial cells. Pharmacological regulation of platelet activation may reduce thromboembolism and limit the interaction of platelets with endothelial and inflammatory cells, in turn weakening the inflammatory responses. In this review we focus on pathophysiological activities of platelets in inflammatory bowel diseases and discuss the studies on currently available anti-platelet therapies in the treatment of gastrointestinal inflammation. Finally, we provide a prospective view to new anti-platelet agents currently under development. PMID:25585124

  5. Resolvins and omega three polyunsaturated fatty acids: Clinical implications in inflammatory diseases and cancer

    PubMed Central

    Moro, Kazuki; Nagahashi, Masayuki; Ramanathan, Rajesh; Takabe, Kazuaki; Wakai, Toshifumi

    2016-01-01

    Inflammation is a central process in several disorders and contributes to cancer progression. Inflammation involves a complex cascade of pro-inflammatory and anti-inflammatory signaling events with protein and lipid mediators. Recent advances in lipid detection have revealed the importance of lipid mediators in inflammation. Omega three polyunsaturated fatty acids (ω-3 PUFA) are found naturally in fish oil and have been extensively studied in multiple inflammatory diseases with improved outcomes. Resolvins are thought to be the active metabolites of ω-3 PUFA, and are responsible for facilitating the resolving phase of acute inflammation. Clinically, resolvins have been associated with resolution of acute kidney injury and acute lung injury, micro and macro vascular response to injury, and inhibition of microglia-activated inflammation in neurodegenerative disorders. In addition to inflammatory diseases, ω-3 PUFA and resolvins appear to modulate cancer progression. ω-3 PUFA intake has been associated with reduced inflammation in colorectal cancer, and favorable phenotype in breast cancer. Resolvins offer promising therapeutic potential as they may modulate inflammation with minimal side-effects, in contrast to currently available anti-inflammatory medications. This review describes the roles of ω-3 PUFA and resolvins in the inflammatory cascade, various inflammatory diseases, and specific cancers. Additionally, it will discuss the clinical therapeutic potential of resolvins as targets in inflammatory diseases and cancers. PMID:27458590

  6. Inflammatory markers in coronary artery disease.

    PubMed

    Ikonomidis, Ignatios; Michalakeas, Christos A; Parissis, John; Paraskevaidis, Ioannis; Ntai, Konstantina; Papadakis, Ioannis; Anastasiou-Nana, Maria; Lekakis, John

    2012-01-01

    Coronary artery disease (CAD) is one of the most common manifestations of atherosclerosis. Inflammation is considered one of the major processes that contribute to atherogenesis. Inflammation plays an important role not only on the initiation and progression of atherosclerosis but also on plaque rupture, an event that leads to acute vascular events. Various biomarkers express different pathways and pathophysiologic mechanisms of cardiovascular disease, and inflammatory biomarkers express different parts of the atherogenic process, regarding the initiation and progression of atherosclerosis or the destabilization of the atherosclerotic plaque. Therefore, inflammatory biomarkers may prove to be useful in the detection, staging, and prognosis of patients with CAD. Furthermore, the fact that inflammatory processes are essential steps in the course of the disease offers future therapeutic targets for the interruption of the atherogenic process or for the management of acute events. PMID:22628054

  7. Polymicrobial synergy and dysbiosis in inflammatory disease

    PubMed Central

    Lamont, Richard J.; Hajishengallis, George

    2014-01-01

    Uncontrolled inflammation of the periodontal area may arise when complex microbial communities transition from a commensal to a pathogenic entity. Communication among constituent species leads to polymicrobial synergy among metabolically compatible organisms that acquire functional specialization within the developing community. Keystone pathogens, even at low abundance, elevate community virulence and the resulting dysbiotic community targets specific aspects of host immunity to further disable immune surveillance while promoting an overall inflammatory response. Inflammophilic organisms benefit from proteinaceous substrates derived from inflammatory tissue breakdown. Inflammation and dysbiosis reinforce each other and the escalating environmental changes further select for a pathobiotic community. We have synthesized the polymicrobial synergy and dysbiotic components of the process into a new model for inflammatory diseases. PMID:25498392

  8. Homeostasis, Inflammation, and Disease Susceptibility

    PubMed Central

    Kotas, Maya E.; Medzhitov, Ruslan

    2015-01-01

    While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation. PMID:25723161

  9. Chronic inflammatory systemic diseases

    PubMed Central

    Straub, Rainer H.; Schradin, Carsten

    2016-01-01

    It has been recognized that during chronic inflammatory systemic diseases (CIDs) maladaptations of the immune, nervous, endocrine and reproductive system occur. Maladaptation leads to disease sequelae in CIDs. The ultimate reason of disease sequelae in CIDs remained unclear because clinicians do not consider bodily energy trade-offs and evolutionary medicine. We review the evolution of physiological supersystems, fitness consequences of genes involved in CIDs during different life-history stages, environmental factors of CIDs, energy trade-offs during inflammatory episodes and the non-specificity of CIDs. Incorporating bodily energy regulation into evolutionary medicine builds a framework to better understand pathophysiology of CIDs by considering that genes and networks used are positively selected if they serve acute, highly energy-consuming inflammation. It is predicted that genes that protect energy stores are positively selected (as immune memory). This could explain why energy-demanding inflammatory episodes like infectious diseases must be terminated within 3–8 weeks to be adaptive, and otherwise become maladaptive. Considering energy regulation as an evolved adaptive trait explains why many known sequelae of different CIDs must be uniform. These are, e.g. sickness behavior/fatigue/depressive symptoms, sleep disturbance, anorexia, malnutrition, muscle wasting—cachexia, cachectic obesity, insulin resistance with hyperinsulinemia, dyslipidemia, alterations of steroid hormone axes, disturbances of the hypothalamic-pituitary-gonadal (HPG) axis, hypertension, bone loss and hypercoagulability. Considering evolved energy trade-offs helps us to understand how an energy imbalance can lead to the disease sequelae of CIDs. In the future, clinicians must translate this knowledge into early diagnosis and symptomatic treatment in CIDs. PMID:26817483

  10. Interaction between nutrition and inflammation in hemodialysis patients.

    PubMed

    Kuhlmann, Martin K; Levin, Nathan W

    2005-01-01

    The excessive cardiovascular mortality of dialysis patients is at least in part related to chronic inflammation, which is associated with the occurrence of malnutrition. The negative effects of chronic inflammation on nutritional status are mediated by proinflammatory cytokines leading to a reduction in appetite and increased muscle catabolism. However, dietary behavior itself may also independently affect inflammation. Reduced dietary supply of vitamins C, B6, B12 and folate, as well as regular coffee consumption and increased intake of dietary advanced glycation end products may trigger chronic inflammation. On the other hand, a Mediterranean dietary pattern and regular soy intake both have been shown to attenuate chronic inflammation. Dietary interventions aiming to attenuate the chronic inflammatory status in dialysis patients need further exploration. PMID:15876844

  11. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis.

    PubMed

    Cottle, Denny L; Ursino, Gloria M A; Ip, Sally Chi Ieng; Jones, Lynelle K; Ditommaso, Tia; Hacking, Douglas F; Mangan, Niamh E; Mellett, Natalie A; Henley, Katya J; Sviridov, Dmitri; Nold-Petry, Claudia A; Nold, Marcel F; Meikle, Peter J; Kile, Benjamin T; Smyth, Ian M

    2015-01-15

    Harlequin ichthyosis (HI) is a severe skin disease which leads to neonatal death in ∼50% of cases. It is the result of mutations in ABCA12, a protein that transports lipids required to establish the protective skin barrier needed after birth. To better understand the life-threatening newborn HI phenotype, we analysed the developing epidermis for consequences of lipid dysregulation in mouse models. We observed a pro-inflammatory signature which was characterized by chemokine upregulation in embryonic skin which is distinct from that seen in other types of ichthyosis. Inflammation also persisted in grafted HI skin. To examine the contribution of inflammation to disease development, we overexpressed interleukin-37b to globally suppress fetal inflammation, observing considerable improvements in keratinocyte differentiation. These studies highlight inflammation as an unexpected contributor to HI disease development in utero, and suggest that inhibiting inflammation may reduce disease severity. PMID:25209981

  12. Microvascular remodelling in chronic airway inflammation in mice.

    PubMed

    Thurston, G; Maas, K; Labarbara, A; Mclean, J W; McDonald, D M

    2000-10-01

    1. Chronic inflammation is associated with blood vessel remodelling, including vessel proliferation and enlargement, and changes in vessel phenotype. We sought to characterize these changes in chronic airway inflammation and to determine whether corticosteroids that inhibit inflammation, such as dexamethasone, can also reduce microvascular remodelling. 2. Chronic airway inflammation was induced in C3H mice by infection with Mycoplasmapulmonis and the tracheal vessels treatment also decreased the immunoreactivity for P-selectin and the number of adherent leucocytes (595 +/- 203 vs 2,024 +/- 393 cells/ mm2 in treated and non-treated infected mice, respectively). 6. We conclude that microvascular enlargement and changes in vessel phenotype are features of some types of chronic inflammation and, furthermore, that dexamethasone reverses the microvascular enlargement, changes in vessel phenotype and leucocyte influx associated with chronic inflammatory airway disease. PMID:11022979

  13. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling.

    PubMed

    Whiteford, J R; De Rossi, G; Woodfin, A

    2016-01-01

    Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders. PMID:27572130

  14. Anti-Inflammatory Activity of Chitooligosaccharides in Vivo

    PubMed Central

    Fernandes, João C.; Spindola, Humberto; de Sousa, Vanessa; Santos-Silva, Alice; Pintado, Manuela E.; Malcata, Francisco Xavier; Carvalho, João E.

    2010-01-01

    All the reports to date on the anti-inflammatory activity of chitooligosaccharides (COS) are mostly based on in vitro methods. In this work, the anti-inflammatory activity of two COS mixtures is characterized in vivo (using balb/c mice), following the carrageenan-induced paw edema method. This is a widely accepted animal model of acute inflammation to evaluate the anti-inflammatory effect of drugs. Our data suggest that COS possess anti-inflammatory activity, which is dependent on dose and, at higher doses, also on the molecular weight. A single dose of 500 mg/kg b.w. weight may be suitable to treat acute inflammation cases; however, further studies are needed to ascertain the effect upon longer inflammation periods as well as studies upon the bioavailability of these compounds. PMID:20631868

  15. Implicit trustworthiness ratings of self-resembling faces activate brain centers involved in reward.

    PubMed

    Platek, Steven M; Krill, Austen L; Wilson, Benjamin

    2009-01-01

    On the basis of Hamilton's (Hamilton, W. D. (1964). The genetical evolution of social behavior I, II. Journal of Theoretical Biology, 7, 17-52) theory of inclusive fitness, self-facial resemblance is hypothesized as a mechanism for self-referent phenotypic matching by which humans can detect kin. To understand the mechanisms underlying pro-sociality toward self-resembling faces, we investigated the neural correlates of implicit trustworthiness ratings for self-resembling faces. Here we show that idiosyncratic trustworthiness ratings of self-resembling faces predict brain activation in the ventral inferior, middle and medial frontal gyri, substrates involved in reward processing. These findings demonstrate that neural reward centers are implicated in evaluating implicit pro-social behaviors toward self-resembling faces. These findings suggest that humans have evolved to use neurocomputational architecture dedicated to face processing and reward evaluation for the differentiation of kin, which drives implicit idiosyncratic affectively regulated social interactions. PMID:18761362

  16. Parainflammation, chronic inflammation and age-related macular degeneration

    PubMed Central

    Chen, Mei; Xu, Heping

    2016-01-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune privileged tissue due to its unique anatomical and physiological properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate immune system, particularly microglia and the complement system, undergo low levels of activation (para-inflammation). In many cases, this para-inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration (AMD), this para-inflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal para-inflammation include genetic predisposition, environmental risk factors and old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the development of retinal lesions. This review discusses the basic principles of retinal innate immune responses to endogenous chronic insults in normal aging and in AMD, and explores the difference between beneficial para-inflammation and the detrimental chronic inflammation in the context of AMD. PMID:26292978

  17. Pain and Inflammatory Bowel Disease

    PubMed Central

    Bielefeldt, Klaus; Davis, Brian; Binion, David G.

    2010-01-01

    Abdominal pain is a common symptom of inflammatory bowel disease (IBD: Crohn’s disease, ulcerative colitis). Pain may arise from different mechanisms, which can include partial blockage and gut distention as well as severe intestinal inflammation. A majority of patients suffering from acute flares of IBD will experience pain, which will typically improve as disease activity decreases. However, a significant percentage of IBD patients continue experiencing symptoms of pain despite resolving inflammation and achieving what appears to be clinical remission. Current evidence suggests that sensory pathways sensitize during inflammation, leading to persistent changes in afferent neurons and central nervous system pain processing. Such persistent pain is not only a simple result of sensory input. Pain processing and even the activation of sensory pathways is modulated by arousal, emotion, and cognitive factors. Considering the high prevalence of iatrogenic as well as essential neuropsychiatric comorbidities including anxiety and depression in IBD patients, these central modulating factors may significantly contribute to the clinical manifestation of chronic pain. The improved understanding of peripheral and central pain mechanisms is leading to new treatment strategies that view pain as a biopsychosocial problem. Thus, improving the underlying inflammation, decreasing the excitability of sensitized afferent pathways, and altering emotional and/or cognitive functions may be required to more effectively address the difficult and disabling disease manifestations. PMID:19130619

  18. [Fecal Calprotectin in Inflammatory Bowel Disease].

    PubMed

    Lee, Jun

    2016-05-25

    Inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis comprise conditions characterized by chronic, relapsing immune activation and inflammation within the gastrointestinal tract. Objective estimation of intestinal inflammation is the mainstay in the diagnosis and observation of IBD, but is primarily dependent on expensive and invasive procedures such as endoscopy. Therefore, a simple, noninvasive, inexpensive, and accurate test would be extremely important in clinical practice. Fecal calprotectin is a calcium-containing protein released into the lumen that is excreted in feces during acute and chronic inflammation. It is well-researched, noninvasive, and has high sensitivity and specificity for identification of inflammation in IBD. This review will focus on the use of fecal calprotectin to help diagnose, monitor, and determine treatment in IBD. PMID:27206433

  19. Bowman lecture on the role of inflammation in degenerative disease of the eye

    PubMed Central

    Forrester, J V

    2013-01-01

    Inflammation, in the pathogenesis of many diseases previously thought to be strictly genetic, degenerative, metabolic, or endocrinologic in aetiology, has gradually entered the framework of a general mechanism of disease. This is exemplified by conditions such as Parkinson's disease, Alzheimer's disease, atherosclerosis, diabetes, and the more recently described Metabolic Syndrome. Chronic inflammatory processes have a significant, if not primary role, in ophthalmic diseases, particularly in retinal degenerative diseases. However, inflammation itself is not easy to define, and some aspects of inflammation may be beneficial, in a process described as ‘para-inflammation' by Medhzitov. In contrast, the damaging effects of inflammation, mediated by pro-inflammatory macrophages through activation of the intracellular protein-signalling complexes, termed inflammasomes, are well recognised and are important therapeutic targets. In this review, the range of inflammatory processes in the eye is evaluated in the context of how these processes impact upon retinal degenerative disease, particularly diabetic retinopathy and age-related macular degeneration. PMID:23288138

  20. Maternal adiponectin controls milk composition to prevent neonatal inflammation.

    PubMed

    Jin, Zixue; Du, Yang; Schwaid, Adam G; Asterholm, Ingrid W; Scherer, Philipp E; Saghatelian, Alan; Wan, Yihong

    2015-04-01

    Adiponectin is an important adipokine. Increasing evidence suggests that altered adiponectin levels are linked with metabolic and inflammatory disorders. Here we report an important yet previously unrecognized function of adiponectin in lactation by which maternal adiponectin determines the inflammatory status in the nursing neonates. Surprisingly, both maternal adiponectin overexpression in the transgenic mice and maternal adiponectin deletion in the knockout mice lead to systemic inflammation in the pups, manifested as transient hair loss. However, distinct mechanisms are involved. Adiponectin deficiency triggers leukocyte infiltration and production of inflammatory cytokines in the lactating mammary gland. In contrast, adiponectin overabundance increases lipid accumulation in the lactating mammary gland, resulting in excessive long-chain saturated fatty acids in milk. Interestingly, in both cases, the inflammation and alopecia in the pups can be rescued by Toll-like receptor (TLR)-2/4 deletion because TLR2/4 double-knockout pups are resistant. Mechanistically, long-chain saturated fatty acid activation of inflammatory genes is TLR2/4 dependent and can be potentiated by proinflammatory cytokines, indicating that the inflammatory stimuli in both scenarios functionally converge by activating the TLR2/4 signaling. Therefore, our findings reveal adiponectin as a dosage-dependent regulator of lactation homeostasis and milk quality that critically controls inflammation in the nursing neonates. Furthermore, these results suggest that inflammatory infantile disorders may result from maternal adiponectin dysregulation that can be treated by TLR2/4 inhibition. PMID:25590242

  1. Diabetes and ageing-induced vascular inflammation.

    PubMed

    Assar, Mariam El; Angulo, Javier; Rodríguez-Mañas, Leocadio

    2016-04-15

    Diabetes and the ageing process independently increase the risk for cardiovascular disease (CVD). Since incidence of diabetes increases as people get older, the diabetic older adults represent the largest population of diabetic subjects. This group of patients would potentially be threatened by the development of CVD related to both ageing and diabetes. The relationship between CVD, ageing and diabetes is explained by the negative impact of these conditions on vascular function. Functional and clinical evidence supports the role of vascular inflammation induced by the ageing process and by diabetes in vascular impairment and CVD. Inflammatory mechanisms in both aged and diabetic vasculature include pro-inflammatory cytokines, vascular hyperactivation of nuclear factor-кB, increased expression of cyclooxygenase and inducible nitric oxide synthase, imbalanced expression of pro/anti-inflammatory microRNAs, and dysfunctional stress-response systems (sirtuins, Nrf2). In contrast, there are scarce data regarding the interaction of these mechanisms when ageing and diabetes co-exist and its impact on vascular function. Older diabetic animals and humans display higher vascular impairment and CVD risk than those either aged or diabetic, suggesting that chronic low-grade inflammation in ageing creates a vascular environment favouring the mechanisms of vascular damage driven by diabetes. Further research is needed to determine the specific inflammatory mechanisms responsible for exacerbated vascular impairment in older diabetic subjects in order to design effective therapeutic interventions to minimize the impact of vascular inflammation. This would help to prevent or delay CVD and the specific clinical manifestations (cognitive decline, frailty and disability) promoted by diabetes-induced vascular impairment in the elderly. PMID:26435167

  2. Potential Mediator of Inflammation

    PubMed Central

    Carp, Harvey; Janoff, Aaron

    1980-01-01

    microenvironment of inflammatory cells, at sites of acute or chronic inflammation, may allow proteases released from these cells to damage adjacent connective tissue components more readily. Images PMID:6253528

  3. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation

    PubMed Central

    Saunders, Cecil J.; Christensen, Michael; Finger, Thomas E.; Tizzano, Marco

    2014-01-01

    Solitary chemosensory cells (SCCs) of the nasal cavity are specialized epithelial chemosensors that respond to irritants through the canonical taste transduction cascade involving Gα-gustducin and transient receptor potential melastatin 5. When stimulated, SCCs trigger peptidergic nociceptive (or pain) nerve fibers, causing an alteration of the respiratory rate indicative of trigeminal activation. Direct chemical excitation of trigeminal pain fibers by capsaicin evokes neurogenic inflammation in the surrounding epithelium. In the current study, we test whether activation of nasal SCCs can trigger similar local inflammatory responses, specifically mast cell degranulation and plasma leakage. The prototypical bitter compound, denatonium, a well-established activator of SCCs, caused significant inflammatory responses in WT mice but not mice with a genetic deletion of elements of the canonical taste transduction cascade, showing that activation of taste signaling components is sufficient to trigger local inflammation. Chemical ablation of peptidergic trigeminal fibers prevented the SCC-induced nasal inflammation, indicating that SCCs evoke inflammation only by neural activity and not by release of local inflammatory mediators. Additionally, blocking nicotinic, but not muscarinic, acetylcholine receptors prevents SCC-mediated neurogenic inflammation for both denatonium and the bacterial signaling molecule 3-oxo-C12-homoserine lactone, showing the necessity for cholinergic transmission. Finally, we show that the neurokinin 1 receptor for substance P is required for SCC-mediated inflammation, suggesting that release of substance P from nerve fibers triggers the inflammatory events. Taken together, these results show that SCCs use cholinergic neurotransmission to trigger peptidergic trigeminal nociceptors, which link SCCs to the neurogenic inflammatory pathway. PMID:24711432

  4. Repositioning drugs for inflammatory disease – fishing for new anti-inflammatory agents

    PubMed Central

    Hall, Christopher J.; Wicker, Sophie M.; Chien, An-Tzu; Tromp, Alisha; Lawrence, Lisa M.; Sun, Xueying; Krissansen, Geoffrey W.; Crosier, Kathryn E.; Crosier, Philip S.

    2014-01-01

    Inflammation is an important and appropriate host response to infection or injury. However, dysregulation of this response, with resulting persistent or inappropriate inflammation, underlies a broad range of pathological processes, from inflammatory dermatoses to type 2 diabetes and cancer. As such, identifying new drugs to suppress inflammation is an area of intense interest. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat inflammation. Traditional drug discovery, including structure-based drug design, have largely fallen short of satisfying this unmet need. With faster development times and reduced safety and pharmacokinetic uncertainty, drug repositioning – the process of finding new uses for existing drugs – is emerging as an alternative strategy to traditional drug design that promises an improved risk-reward trade-off. Using a zebrafish in vivo neutrophil migration assay, we undertook a drug repositioning screen to identify unknown anti-inflammatory activities for known drugs. By interrogating a library of 1280 approved drugs for their ability to suppress the recruitment of neutrophils to tail fin injury, we identified a number of drugs with significant anti-inflammatory activity that have not previously been characterized as general anti-inflammatories. Importantly, we reveal that the ten most potent repositioned drugs from our zebrafish screen displayed conserved anti-inflammatory activity in a mouse model of skin inflammation (atopic dermatitis). This study provides compelling evidence that exploiting the zebrafish as an in vivo drug repositioning platform holds promise as a strategy to reveal new anti-inflammatory activities for existing drugs. PMID:25038060

  5. Regulation of energy balance by inflammation: common theme in physiology and pathology.

    PubMed

    Wang, Hui; Ye, Jianping

    2015-03-01

    Inflammation regulates energy metabolism in both physiological and pathological conditions. Pro-inflammatory cytokines involves in energy regulation in several conditions, such as obesity, aging (calorie restriction), sports (exercise), and cancer (cachexia). Here, we introduce a view of integrative physiology to understand pro-inflammatory cytokines in the control of energy expenditure. In obesity, chronic inflammation is derived from energy surplus that induces adipose tissue expansion and adipose tissue hypoxia. In addition to the detrimental effect on insulin sensitivity, pro-inflammatory cytokines also stimulate energy expenditure and facilitate adipose tissue remodeling. In caloric restriction (CR), inflammatory status is decreased by low energy intake that results in less energy supply to immune cells to favor energy saving under caloric restriction. During physical exercise, inflammatory status is elevated due to muscle production of pro-inflammatory cytokines, which promote fatty acid mobilization from adipose tissue to meet the muscle energy demand. In cancer cachexia, chronic inflammation is elevated by the immune response in the fight against cancer. The energy expenditure from chronic inflammation contributes to weight loss. Immune tolerant cancer cells gains more nutrients during the inflammation. In these conditions, inflammation coordinates energy distribution and energy demand between tissues. If the body lacks response to the pro-inflammatory cytokines (Inflammation Resistance), the energy metabolism will be impaired leading to an increased risk for obesity. In contrast, super-induction of the inflammation activity leads to weight loss and malnutrition in cancer cachexia. In summary, inflammation is a critical component in the maintenance of energy balance in the body. Literature is reviewed in above fields to support this view. PMID:25526866

  6. ERK5 is a critical mediator of inflammation-driven cancer

    PubMed Central

    Finegan, Katherine G.; Perez-Madrigal, Diana; Hitchin, James R.; Davies, Clare; Jordan, Allan M.; Tournier, Cathy

    2014-01-01

    Chronic inflammation is a hallmark of many cancers, yet the pathogenic mechanisms that distinguish cancer-associated inflammation from benign persistent inflammation are still mainly unclear. Here we report that the protein kinase ERK5 controls the expression of a specific subset of inflammatory mediators in the mouse epidermis which triggers the recruitment of inflammatory cells needed to support skin carcinogenesis. Accordingly, inactivation of ERK5 in keratinocytes prevents inflammation-driven tumorigenesis in this model. Additionally, we found that anti-ERK5 therapy cooperates synergistically with existing anti-mitotic regimens, enabling efficacy of sub-therapeutic doses. Collectively, our findings identified ERK5 as a mediator of cancer-associated inflammation in the setting of epidermal carcinogenesis. Considering that ERK5 is expressed in almost all tumor types, our findings suggest that targeting tumor-associated inflammation via anti-ERK5 therapy may have broad implications for the treatment of human tumors. PMID:25649771

  7. Expression of Heat Shock Protein 27 in Benign Prostatic Hyperplasia with Chronic Inflammation

    PubMed Central

    Jiang, Yuqing; Wang, Xiuli; Guo, Yuexian; Li, Wenping; Yang, Shijie; Li, Wei; Cai, Wenqing

    2015-01-01

    Background Heat shock protein 27 (HSP 27) is known as a mediator in immune response and has been recently found to be expressed in prostate cancer. This study aimed to investigate the role of HSP27 in inflammatory BPH. Material/Methods Hospitalized BPH patients who received TURP were divided into 4 groups by the presence and degrees of chronic inflammation: non-inflammatory BPH (NI BPH), mild-inflammatory BPH (MI BPH), moderate-inflammatory BPH (MOI BPH), and severe-inflammatory BPH (SI BPH). Expressions of HSP 27, TNF-α, IL-6, and CD3 in prostate tissues and serum of patients were detected by immunohistochemistry and ELISA. Results Expression of HSP27 in BPH with histological inflammation was significantly higher than in non-inflammatory BPH. In inflammatory BPH groups, HSP27 expression gradually increased along with increasing inflammation. There was a significant correlation between the expression of TNF-α, IL-6, CD3 and HSP27 among different inflammatory BPH groups. Conclusions HSP27 expression level is associated with the degree of chronic inflammation in BPH and may participate in the pathological process in inflammatory BPH. PMID:26434601

  8. Probiotics and inflammatory bowel diseases

    PubMed Central

    Bai, A‐P; Ouyang, Q

    2006-01-01

    Enteric microflora profiles vary considerably between active inflammatory bowel diseases (IBD) and healthy conditions. Intestinal microflora may partake in the pathogenesis of IBD by one or some ways: specific pathogenic infection induces abnormal intestinal mucosal inflammation; aberrant microflora components trigger the onset of IBD; abnormal host immune response loses normal immune tolerance to luminal components; luminal antigens permeate through the defective mucosal barrier into mucosal lamina propria and induce abnormal inflammatory response. Preliminary studies suggest that administration of probiotics may be benefit for experimental colitis and clinical trials for IBD. Researches have been studying the function of probiotics. Introduction of probiotics can balance the aberrant enteric microflora in IBD patients, and reinforce the various lines of intestinal defence by inhibiting microbial pathogens growth, increasing intestinal epithelial tight junction and permeability, modulating immune response of intestinal epithelia and mucosal immune cells, secreting antimicrobial products, decomposing luminal pathogenic antigens. PMID:16754706

  9. Interactions between APP secretases and inflammatory mediators

    PubMed Central

    Sastre, Magdalena; Walter, Jochen; Gentleman, Steve M

    2008-01-01

    There is now a large body of evidence linking inflammation to Alzheimer's disease (AD). This association manifests itself neuropathologically in the presence of activated microglia and astrocytes around neuritic plaques and increased levels of inflammatory mediators in the brains of AD patients. It is considered that amyloid-β peptide (Aβ), which is derived from the processing of the longer amyloid precursor protein (APP), could be the most important stimulator of this response, and therefore determining the role of the different secretases involved in its generation is essential for a better understanding of the regulation of inflammation in AD. The finding that certain non-steroidal anti-inflammatory drugs (NSAIDs) can affect the processing of APP by inhibiting β- and γ-secretases, together with recent revelations that these enzymes may be regulated by inflammation, suggest that they could be an interesting target for anti-inflammatory drugs. In this review we will discuss some of these issues and the role of the secretases in inflammation, independent of their effect on Aβ formation. PMID:18564425

  10. Preterm Birth, Intrauterine Infection, and Fetal Inflammation

    PubMed Central

    Kemp, Matthew W.

    2014-01-01

    Preterm birth (PTB) (delivery before 37 weeks’ gestation) is a leading cause of neonatal death and disease in industrialized and developing countries alike. Infection (most notably in high-risk deliveries occurring before 28 weeks’ gestation) is hypothesized to initiate an intrauterine inflammatory response that plays a key role in the premature initiation of labor as well as a host of the pathologies associated with prematurity. As such, a better understanding of intrauterine inflammation in pregnancy is critical to our understanding of preterm labor and fetal injury, as well as on-going efforts to prevent PTB. Focusing on the fetal innate immune system responses to intrauterine infection, the present paper will review clinical and experimental studies to discuss the capacity for a fetal contribution to the intrauterine inflammation associated with PTB. Evidence from experimental studies to suggest that the fetus has the capacity to elicit a pro-inflammatory response to intrauterine infection is highlighted, with reference to the contribution of the lung, skin, and gastrointestinal tract. The paper will conclude that pathological intrauterine inflammation is a complex process that is modified by multiple factors including time, type of agonist, host genetics, and tissue. PMID:25520716

  11. Gut inflammation and microbiome in spondyloarthritis.

    PubMed

    Kabeerdoss, Jayakanthan; Sandhya, Pulukool; Danda, Debashish

    2016-04-01

    Spondyloarthritis (SpA) is chronic inflammatory disease involving joints and the spine. Bowel inflammation is common in SpA, which may be classified as acute or chronic. Chronic gut inflammation is most common in SpA patients with axial involvement as compared to those presenting with peripheral involvement alone. The pathogenesis of gut inflammation in SpA could be explained by two factors-over-activation of immunological cells and altered gut microbiome. This is exemplified by SpA animal models, namely HLA-B27-expressing transgenic animals and SKG mice models. Immunological mechanisms include homing of activated T cells from gut into synovium, excess pro-inflammatory cytokines secretion by immune cells such as IL-23 and genetic variations in immunological genes. The evidence for role of gut microbiome in SpA is gradually emerging. Recently, metagenomic study of gut microbiome by sequencing of microbial nucleic acids has enabled identification of new microbial taxa and their functions in gut of patients with SpA. In SpA, the gut microbiome could emerge as diagnostic and prognostic marker of disease. Modulation of gut microbiome is slated to have therapeutic potential as well. PMID:26719306

  12. Inflammation meets sensitization--an explanation for spontaneous nociceptor activity?

    PubMed

    Rukwied, Roman; Weinkauf, Benjamin; Main, Maurice; Obreja, Otilia; Schmelz, Martin

    2013-12-01

    Anti-nerve growth factor (anti-NGF) treatment is analgesic in chronic inflammatory pain conditions without reducing inflammation. Hypothesizing that ongoing pain induced by inflammatory mediators is increased by long term sensitization of nociceptors, we combined the non-inflammatory NGF-sensitization model with an inflammatory ultraviolet-B (UV-B) model in human volunteers. UV-B irradiation of the skin presensitized with NGF 3 weeks before intensified the pre-existing NGF hyperalgesia during the inflammatory phase of UV-B and caused spontaneous pain in about 70% of the subjects. Pain levels paralleled the intensity of UVB inflammation.