Science.gov

Sample records for inflammatory immune system

  1. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease

    PubMed Central

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD. PMID:26900473

  2. Central Nervous System Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Boulware, David R.; Marais, Suzaan; Scriven, James; Wilkinson, Robert J.; Meintjes, Graeme

    2013-01-01

    Central nervous system immune reconstitution inflammatory syndrome (CNS-IRIS) develops in 9 %–47 % of persons with HIV infection and a CNS opportunistic infection who start antiretroviral therapy and is associated with a mortality rate of 13 %–75 %. These rates vary according to the causative pathogen. Common CNS-IRIS events occur in relation to Cryptococcus, tuberculosis (TB), and JC virus, but several other mycobacteria, fungi, and viruses have been associated with IRIS. IRIS symptoms often mimic the original infection, and diagnosis necessitates consideration of treatment failure, microbial resistance, and an additional neurological infection. These diagnostic challenges often delay IRIS diagnosis and treatment. Corticosteroids have been used to treat CNS-IRIS, with variable responses; the best supportive evidence exists for the treatment of TB-IRIS. Pathogenic mechanisms vary: Cryptococcal IRIS is characterized by a paucity of cerebrospinal inflammation prior to antiretroviral therapy, whereas higher levels of inflammatory markers at baseline predispose to TB meningitis IRIS. This review focuses on advances in the understanding of CNS-IRIS over the past 2 years. PMID:24173584

  3. Associations of coffee drinking with systemic immune and inflammatory markers

    PubMed Central

    Loftfield, Erikka; Shiels, Meredith S.; Graubard, Barry I.; Katki, Hormuzd A.; Chaturvedi, Anil K.; Trabert, Britton; Pinto, Ligia A.; Kemp, Troy J.; Shebl, Fatma M.; Mayne, Susan T.; Wentzensen, Nicolas; Purdue, Mark P.; Hildesheim, Allan; Sinha, Rashmi; Freedman, Neal D.

    2015-01-01

    Background Coffee drinking has been inversely associated with mortality as well as cancers of the endometrium, colon, skin, prostate, and liver. Improved insulin sensitivity and reduced inflammation are among the hypothesized mechanisms by which coffee drinking may affect cancer risk; however, associations between coffee drinking and systemic levels of immune and inflammatory markers have not been well characterized. Methods We used Luminex bead-based assays to measure serum levels of 77 immune and inflammatory markers in 1,728 older non-Hispanic Whites. Usual coffee intake was self-reported using a food frequency questionnaire. We used weighted multivariable logistic regression models to examine associations between coffee and dichotomized marker levels. We conducted statistical trend tests by modeling the median value of each coffee category and applied a 20% false discovery rate criterion to P-values. Results Ten of the 77 markers were nominally associated (P-value for trend<0.05) with coffee drinking. Five markers withstood correction for multiple comparisons and included aspects of the host response namely chemotaxis of monocytes/macrophages (IFNγ, CX3CL1/fractalkine, CCL4/MIP-1β), pro-inflammatory cytokines (sTNFRII) and regulators of cell growth (FGF-2). Heavy coffee drinkers had lower circulating levels of IFNγ (OR=0.35; 95% CI 0.16–0.75), CX3CL1/fractalkine (OR=0.25; 95% CI 0.10–0.64), CCL4/MIP-1β (OR=0.48; 95% CI 0.24–0.99), FGF-2 (OR=0.62; 95% CI 0.28–1.38), and sTNFRII (OR=0.34; 95% CI 0.15–0.79) than non-coffee drinkers. Conclusions Lower circulating levels of inflammatory markers among coffee drinkers may partially mediate previously observed associations of coffee with cancer and other chronic diseases. Impact Validation studies, ideally controlled feeding trials, are needed to confirm these associations. PMID:25999212

  4. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases.

    PubMed

    Morris, Gerwyn; Berk, Michael; Galecki, Piotr; Walder, Ken; Maes, Michael

    2016-03-01

    Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways. PMID:25598355

  5. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease

    PubMed Central

    Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E.; Matteoli, Gianluca

    2015-01-01

    One of the main tasks of the immune system is to discriminate and appropriately react to “danger” or “non-danger” signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation. PMID:26635804

  6. Interactions Between the Host Innate Immune System and Microbes in Inflammatory Bowel Disease

    PubMed Central

    Abraham, Clara; Medzhitov, Ruslan

    2013-01-01

    The intestinal immune system defends against pathogens and entry of excessive intestinal microbes; simultaneously, a state of immune tolerance to resident intestinal microbes must be maintained. Perturbation of this balance is associated with intestinal inflammation in various mouse models and is thought to predispose humans to inflammatory bowel disease (IBD). The innate immune system senses microbes; dendritic cells, macrophages, and epithelial cells produce an initial, rapid response. The immune system continuously monitors resident microbiota and utilizes constitutive antimicrobial mechanisms to maintain immune homeostasis. associations between IBD and genes that regulate microbial recognition and innate immune pathways, such as nucleotide oligomerization domain 2 (Nod2), genes that control autophagy (eg, ATG16L1, IRGM), and genes in the interleukin-23–T helper cell 17 pathway indicate the important roles of host-microbe interactions in regulating intestinal immune homeostasis. There is increasing evidence that intestinal microbes influence host immune development, immune responses, and susceptibility to human diseases such as IBD, diabetes mellitus, and obesity. Conversely, host factors can affect microbes, which in turn modulate disease susceptibility. We review the cell populations and mechanisms that mediate interactions between host defense and tolerance and how the dysregulation of host-microbe interactions leads to intestinal inflammation and IBD. PMID:21530739

  7. Effects of Age and Oral Disease on Systemic Inflammatory and Immune Parameters in Nonhuman Primates▿

    PubMed Central

    Ebersole, J. L.; Steffen, M. J.; Gonzalez-Martinez, J.; Novak, M. J.

    2008-01-01

    This report evaluated systemic inflammatory and immune biomarkers in a cohort of Macaca mulatta (rhesus monkeys) maintained as a large family social unit, including an age range from <1 year to >24 years. We hypothesized that the systemic host responses would be affected by the age, gender, and clinical oral presentation of the population, each contributing to inflammatory and immune responses that would reflect chronic oral infections. The results demonstrated that the prevalence and severity of periodontitis, including missing teeth, increased significantly with age. Generally, minimal differences in clinical parameters were noted between the genders. Systemic inflammatory mediators, including acute-phase reactants, prostaglandin E2 (PGE2), cytokines/chemokines, and selected matrix metalloproteinases (MMP), demonstrated significant differences among the various age groups of animals. Levels of many of these were increased with age, although PGE2, RANTES, bactericidal permeability-inducing factor (BPI), MMP-1, and MMP-9 levels were significantly increased in the young group (∼1 to 3 years old) relative to those for the older animals. We observed that in the adult and aged animals, levels of the systemic inflammatory mediators related to gingival inflammation and periodontal tissue destruction were significantly elevated. Serum antibody levels in response to a battery of periodontal pathogens were generally lower in the young animals, <50% of those in the adults, and were significantly related to aging in the cohort. The levels of antibodies, particularly those to Porphorymonas gingivalis, Fusobacterium nucleatum, and Tannerella forsythia, were most significantly elevated in animals with periodontal disease, irrespective of the age of the animal. These results provide a broad description of oral health and host responses in a large cohort of nonhuman primates from very young animals to the aged of this species. The findings afford a base of data with which to

  8. The inflammatory function of renal glomerular mesangial cells and their interaction with the cellular immune system.

    PubMed

    Radeke, H H; Resch, K

    1992-09-01

    The autoimmune nature of chronic progredient glomerular diseases has been well established. Like in other chronic inflammatory diseases, the active role of organ-borne cells has become increasingly apparent--both for the inflammatory process and for the initiation and perpetuation of the immune reaction. In most forms of glomerulonephritis, intrinsic glomerular mesangial cells are likely candidates to come into intimate contact with immune cells such as monocytes or lymphocytes. On the basis of cell culture studies we would like to integrate the current knowledge available about the responsiveness of mesangial cells to inflammatory agents and the resulting secretory capacity and, moreover, their possible role in sustaining chronic inflammatory injury and autoimmune reactions through a direct interaction with lymphocytes. Apart from being responsive to physiological stimuli such as angiotensin II, glomerular mesangial cells are predominantly activated by agents related to inflammation. This includes exogenous substances such as the components of gram-negative bacteria and an array of highly potent immunological stimuli like antigen-antibody complexes, activated complement, or various cytokines. The transformation of resting mesangial cells to proliferating cells with an accompanying expansion of their secretory profile and responsiveness is due to mediators like platelet-derived growth factor, transforming growth factor, and others. Numerous low-molecular-weight substances (O2-, H2O2, NO, platelet-activating factor, eicosanoids), proteins (proteinases, matrix components, interleukins 1 and 6, colony-stimulating factors, growth factors), and cell-surface molecules released or expressed by mesangial cells participate in the inflammatory process. Among these products interleukin 1 and/or 6, class II major histocompatibility antigen and integrins also support an interaction with the cellular immune system. It has been well documented that mesangial cells induced in

  9. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases

    PubMed Central

    Montgomery, McKale R.; Leyva, Kathryn J.

    2016-01-01

    Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments. PMID:27556043

  10. Immune System

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immune System KidsHealth > For Teens > Immune System Print A A ... could put us out of commission. What the Immune System Does The immune (pronounced: ih-MYOON) system, which ...

  11. [Ocular immune reconstitution inflammatory syndrome].

    PubMed

    Ma, N; Ye, J J

    2016-02-11

    Immune reconstitution inflammatory syndrome (IRIS) is a collection of inflammatory disorders associated with paradoxical worsening of preexisting infectious processes or emerging diseases or even dead after the initiation of highly active antiretroviral therapy (HAART) in human immunodeficiency virus (HIV) infected individuals in a period of recovery of immune function. Ocular immune reconstitution inflammatory syndrome is mainly caused by cytomegalovirus which performing a series of ocular inflammation accompanied with the increase of CD4+ T lymphocytes, such as cytomegalovirus retinitis, after HAART. With HAART widely used, the patients of IRIS gradually increased. But the clinical presentations of IRIS were various because of different pathogens. This review summarized the clinical manifestations, risk factors, diagnosis and treatment of ocular IRIS.(Chin J Ophthalmol, 2016, 51: 150-153). PMID:26906710

  12. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease

    PubMed Central

    Worthington, John J

    2015-01-01

    The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies’ largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine. PMID:26551720

  13. Immune system structures (image)

    MedlinePlus

    The immune system protects the body from potentially harmful substances. The inflammatory response (inflammation) is part of innate immunity. It occurs when tissues are injured by bacteria, trauma, toxins, heat or any other cause.

  14. Immune system structures (image)

    MedlinePlus

    The immune system protects the body from potentially harmful substances. The inflammatory response (inflammation) is part of innate immunity. It occurs when tissues are injured by bacteria, trauma, toxins, heat, or any other cause.

  15. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases

    PubMed Central

    2014-01-01

    Insulin resistance (IR) is a general phenomenon of many physiological states, disease states, and diseases. IR has been described in diabetes mellitus, obesity, infection, sepsis, trauma, painful states such as postoperative pain and migraine, schizophrenia, major depression, chronic mental stress, and others. In arthritis, abnormalities of glucose homeostasis were described in 1920; and in 1950 combined glucose and insulin tests unmistakably demonstrated IR. The phenomenon is now described in rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, polymyalgia rheumatica, and others. In chronic inflammatory diseases, cytokine-neutralizing strategies normalize insulin sensitivity. This paper delineates that IR is either based on inflammatory factors (activation of the immune/ repair system) or on the brain (mental activation via stress axes). Due to the selfishness of the immune system and the selfishness of the brain, both can induce IR independent of each other. Consequently, the immune system can block the brain (for example, by sickness behavior) and the brain can block the immune system (for example, stress-induced immune system alterations). Based on considerations of evolutionary medicine, it is discussed that obesity per se is not a disease. Obesity-related IR depends on provoking factors from either the immune system or the brain. Chronic inflammation and/or stress axis activation are thus needed for obesity-related IR. Due to redundant pathways in stimulating IR, a simple one factor-neutralizing strategy might help in chronic inflammatory diseases (inflammation is the key), but not in obesity-related IR. The new considerations towards IR are interrelated to the published theories of IR (thrifty genotype, thrifty phenotype, and others). PMID:25608958

  16. Developmental origins of inflammatory and immune diseases.

    PubMed

    Chen, Ting; Liu, Han-Xiao; Yan, Hui-Yi; Wu, Dong-Mei; Ping, Jie

    2016-08-01

    Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention. PMID:27226490

  17. Anxiety, not anger, induces inflammatory activity: An avoidance/approach model of immune system activation.

    PubMed

    Moons, Wesley G; Shields, Grant S

    2015-08-01

    Psychological stressors reliably trigger systemic inflammatory activity as indexed by levels of proinflammatory cytokines. This experiment demonstrates that one's specific emotional reaction to a stressor may be a significant determinant of whether an inflammatory reaction occurs in response to that stressor. Based on extant correlational evidence and theory, a causal approach was used to determine whether an avoidant emotion (anxiety) triggers more inflammatory activity than an approach emotion (anger). In an experimental design (N = 40), a 3-way Emotion Condition × Time × Analyte interaction revealed that a writing-based anxiety induction, but not a writing-based anger induction, increased mean levels of interferon-γ (IFN- γ) and interleukin-1β (IL-1β), but not interleukin-6 (IL-6) in oral mucous, F(2, 54) = 4.64, p = .01, ηp(²) = .15. Further, self-reported state anxiety predicted elevated levels of proinflammatory cytokines, all ΔR(²) >.06, ps <.04, but self-reported state anger did not. These results constitute the first evidence to our knowledge that specific negative emotions can differentially cause inflammatory activity and support a theoretical model explaining these effects based on the avoidance or approach motivations associated with emotions. PMID:26053247

  18. Inflammatory bowel disease related innate immunity and adaptive immunity

    PubMed Central

    Huang, Yuan; Chen, Zhonge

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn’s disease (CD). Its pathogenesis remains not yet clear. Current researchers believe that after environmental factors act on individuals with genetic susceptibility, an abnormal intestinal immune response is launched under stimulation of intestinal flora. However, previous studies only focused on adaptive immunity in the pathogenesis of IBD. Currently, roles of innate immune response in the pathogenesis of intestinal inflammation have also drawn much attention. In this study, IBD related innate immunity and adaptive immunity were explained, especially the immune mechanisms in the pathogenesis of IBD. PMID:27398134

  19. Adenosine deaminase in the modulation of immune system and its potential as a novel target for treatment of inflammatory disorders.

    PubMed

    Antonioli, Luca; Colucci, Rocchina; La Motta, Concettina; Tuccori, Marco; Awwad, Oriana; Da Settimo, Federico; Blandizzi, Corrado; Fornai, Matteo

    2012-06-01

    The adenosine pathway is a powerful evolutionarily selected mechanism aimed at a fine modulation of inflammatory responses and protection of tissues from injuries. Adenosine exerts its modulatory effects via interaction with G protein-coupled receptors, designated as A(1), A(2A), A(2B) and A(3). In this regard, extracellular adenosine concentrations are critical in determining its ability of regulating several biological functions. The levels achieved by adenosine in close proximity of its receptors are strictly regulated by a variety of dynamic mechanisms, including intracellular and extracellular biosynthesis, transport and metabolism, based on tissue energy status. In this context, the catabolic enzyme adenosine deaminase (ADA) represents a critical checkpoint in the regulation of extracellular adenosine levels and, consequently, in the control of receptor stimulation, thus playing a pivotal role in the modulation of purinergic responses to several pathophysiological events, such as chronic pulmonary diseases, rheumatoid arthritis, inflammatory bowel diseases and sepsis. This article reviews current data on the role played by ADA in the regulation of immune system activity through its modulation of adenosine pathways. Particular attention has been paid to the involvement of ADA in the pathophysiology of relevant inflammatory diseases. In addition, the interest in designing and developing novel ADA inhibitors, as new tools potentially useful for the therapeutic management of inflammatory disorders, has been discussed. PMID:22250650

  20. How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome

    PubMed Central

    2012-01-01

    Systemic inflammation is very prevalent among critically ill patients, particularly those with extensive tissue injury. Although downstream mediators (cytokines) and effector cells (phagocytes) have been identified, proximal mediators originating from injured tissues remained elusive. Alarmins (“danger signals”) released by necrotic/injured cells have been identified recently and certainly play a role in triggering local and systemic inflammation in critically ill patients. The most promising alarmin candidates are of mitochondrial origin, i.e. mitochondrial DNA and the chemotactic factor fMet-Leu-Phe (fMLP). ATP also is released from necrotic tissues and stimulates the assembly of the inflammasome, leading to the production of proinflammatory cytokines, such as interleukin (IL)-1ß. The identification of novel alarmins opens new therapeutic avenues for the treatment of severe SIRS, and SIRS-dependent organ dysfunction. PMID:22788849

  1. Systemic inflammatory response reactivates immune-mediated lesions in rat brain.

    PubMed

    Serres, Sébastien; Anthony, Daniel C; Jiang, Yanyan; Broom, Kerry A; Campbell, Sandra J; Tyler, Damian J; van Kasteren, Sander I; Davis, Benjamin G; Sibson, Nicola R

    2009-04-15

    The potential association between microbial infection and reactivation of a multiple sclerosis (MS) lesion is an important issue that remains unresolved, primarily because of the absence of suitable animal models and imaging techniques. Here, we have evaluated this question in an empirical manner using immunohistochemistry and magnetic resonance imaging (MRI), before and after the induction of a systemic inflammatory response in two distinct models of MS. In a pattern-II-type focal myelin oligodendrocyte glycoprotein-experimental autoimmune encephalomyelitis model, systemic endotoxin injection caused an increase in regional cerebral blood volume (rCBV) around the lesion site after 6 h, together with a reduction in the magnetization transfer ratio of the lesioned corpus callosum. These changes were followed by an increase in the diffusion of tissue water within the lesion 24 h after endotoxin challenge and new leukocyte recruitment as revealed both immunohistochemically and by MRI tracking of ultrasmall superparamagnetic iron oxide-labeled macrophages. Importantly, we detected in vivo expression of E- and P-selectin in quiescent lesions by MRI-detectable glyconanoparticles conjugated to sialyl Lewis(X). This finding may explain, at least in part, the ability of quiescent MS lesions to rapidly reinitiate the cell recruitment processes. In a pattern-I-type delayed-type hypersensitivity response model, a similar effect of endotoxin challenge on rCBV was observed, together with delayed breakdown of the blood-brain barrier, showing that systemic infection can alter the pathogenesis of MS-like lesions regardless of lesion etiology. These findings will have important implications for the management and monitoring of individuals with MS. PMID:19369550

  2. Immune System

    EPA Science Inventory

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  3. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system

    PubMed Central

    Dilger, Ryan N.; Johnson, Rodney W.

    2008-01-01

    Recent studies suggest that activation of the peripheral immune system elicits a discordant central (i.e., in the brain) inflammatory response in aged but otherwise healthy subjects compared with younger cohorts. A fundamental difference in the reactive state of microglial cells in the aged brain has been suggested as the basis for this discordant inflammatory response. Thus, the aging process appears to serve as a “priming” stimulus for microglia, and upon secondary stimulation with a triggering stimulus (i.e., peripheral signals communicating infection), these primed microglia release excessive quantities of proinflammatory cytokines. Subsequently, this exaggerated cytokine release elicits exaggerated behavioral changes including anorexia, hypersomnia, lethargy, decreased social interaction, and deficits in cognitive and motor function (collectively known as the sickness behavior syndrome). Whereas this reorganization of host priorities is normally adaptive in young subjects, there is a propensity for this response to be maladaptive in aged subjects, resulting in greater severity and duration of the sickness behavior syndrome. Consequently, acute bouts of cognitive impairment in elderly subjects increase the likelihood of poor self-care behaviors (i.e., anorexia, weight loss, noncompliance), which ultimately leads to higher rates of hospitalization and mortality. PMID:18495785

  4. Differential Gender Effects of a Reduced Calorie Diet on Systemic Inflammatory and Immune Parameters in Nonhuman Primates

    PubMed Central

    Ebersole, J.L; Steffen, M.J; Reynolds, M.A.; Branch-Mays, G.L; Dawson, D.R; Novak, K.F; Gunsolley, J.C; Mattison, J.A.; Ingram, D.K.; Novak, M.J.

    2008-01-01

    Dietary manipulation, including caloric restriction, has been shown to significantly impact host response capabilities, particularly associated with aging. This investigation compared systemic inflammatory and immune response molecules in rhesus monkeys (Macaca mulatta) on continuous long term calorie-restricted (CR) diets with a matched group of animals on a control diet, examining the effects of both gender and aging. The results demonstrated that haptoglobin and α1anti-glycoprotein were elevated in serum of male monkeys. Serum IgG antibody responses to C. rectus, A. actinomycetemcomitans, and P. gingivalis were significantly elevated in female monkeys. While only the antibody to F. nucleatum was significantly affected by the calorie-restricted diet in females, antibody levels to P. intermedia, C. rectus and T. denticola demonstrated a similar trend. In this investigation, only selected serum antibody levels were influenced by the age in male animals, seemingly related to increasing clinical disease in this gender. More generally, analytes were modulated by gender and/or diet in this oral model system of mucosal microbial challenge. PMID:18565132

  5. Alcohol abuse and smoking alter inflammatory mediator production by pulmonary and systemic immune cells.

    PubMed

    Gaydos, Jeanette; McNally, Alicia; Guo, Ruixin; Vandivier, R William; Simonian, Philip L; Burnham, Ellen L

    2016-03-15

    Alcohol use disorders (AUDs) and tobacco smoking are associated with an increased predisposition for community-acquired pneumonia and the acute respiratory distress syndrome. Mechanisms are incompletely established but may include alterations in response to pathogens by immune cells, including alveolar macrophages (AMs) and peripheral blood mononuclear cells (PBMCs). We sought to determine the relationship of AUDs and smoking to expression of IFNγ, IL-1β, IL-6, and TNFα by AMs and PBMCs from human subjects after stimulation with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). AMs and PBMCs from healthy subjects with AUDs and controls, matched on smoking, were cultured with LPS (1 μg/ml) or LTA (5 μg/ml) in the presence and absence of the antioxidant precursor N-acetylcysteine (10 mM). Cytokines were measured in cell culture supernatants. Expression of IFNγ, IL-1β, IL-6, and TNFα in AMs and PBMCs was significantly increased in response to stimulation with LPS and LTA. AUDs were associated with augmented production of proinflammatory cytokines, particularly IFNγ and IL-1β, by AMs and PBMCs in response to LPS. Smoking diminished the impact of AUDs on AM cytokine expression. Expression of basal AM and PBMC Toll-like receptors-2 and -4 was not clearly related to differences in cytokine expression; however, addition of N-acetylcysteine with LPS or LTA led to diminished AM and PBMC cytokine secretion, especially among current smokers. Our findings suggest that AM and PBMC immune cell responses to LPS and LTA are influenced by AUDs and smoking through mechanisms that may include alterations in cellular oxidative stress. PMID:26747782

  6. Schistosome-Derived Molecules as Modulating Actors of the Immune System and Promising Candidates to Treat Autoimmune and Inflammatory Diseases

    PubMed Central

    Vieira, Anderson Rodrigues Araújo; de Campos, Tatiana Amabile

    2016-01-01

    It is long known that some parasite infections are able to modulate specific pathways of host's metabolism and immune responses. This modulation is not only important in order to understand the host-pathogen interactions and to develop treatments against the parasites themselves but also important in the development of treatments against autoimmune and inflammatory diseases. Throughout the life cycle of schistosomes the mammalian hosts are exposed to several biomolecules that are excreted/secreted from the parasite infective stage, named cercariae, from their tegument, present in adult and larval stages, and finally from their eggs. These molecules can induce the activation and modulation of innate and adaptive responses as well as enabling the evasion of the parasite from host defense mechanisms. Immunomodulatory effects of helminth infections and egg molecules are clear, as well as their ability to downregulate proinflammatory cytokines, upregulate anti-inflammatory cytokines, and drive a Th2 type of immune response. We believe that schistosomes can be used as a model to understand the potential applications of helminths and helminth-derived molecules against autoimmune and inflammatory diseases.

  7. Brain development and the immune system: an introduction to inflammatory and infectious diseases of the child's brain.

    PubMed

    Marc, Tardieu

    2013-01-01

    A short overview of the specificities of immune response within the brain is given as an introduction to subsequent chapters on infectious and inflammatory diseases of the child's brain. The blood-brain barrier starts developing during vascular proliferation of the developing brain during neurogenesis but maturation is not completed until several weeks after birth, and varies in different parts of the brain. The development of postcapillary venules in which cell recruitment occurs seems to be completed at birth. Brain macrophages are detected in brain tissue from the 8th to 12th week of gestation and then exert an important role during neuroblast selection and differentiation, as astrocytes and macrophages acquire the ability to secrete soluble substances. From the third trimester, the fetal brain is able to generate an inflammatory reaction and toll-like receptors can be detected on the surface of fetal neurons and glial cells. Innate immunity maturation occurs within weeks after birth. Although neonates lack preexisting immunological memory and have a small number of immune cells in peripheral lymphoid tissues, they are competent to develop a mature T-cell response, they have a strong CD8 cytotoxic function, and dendritic cells are fully competent. PMID:23622314

  8. Therapeutics targeting inflammation in the immune reconstitution inflammatory syndrome.

    PubMed

    Shahani, Lokesh; Hamill, Richard J

    2016-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is characterized by improvement in a previously incompetent human immune system manifesting as worsening of clinical symptoms secondary to the ability of the immune system to now mount a vigorous inflammatory response. IRIS was first recognized in the setting of human immunodeficiency virus, and this clinical setting continues to be where it is most frequently encountered. Hallmarks of the pathogenesis of IRIS, independent of the clinical presentation and the underlying pathogen, include excessive activation of the immune system, with increased circulating effector memory T cells, and elevated levels of serum cytokines and inflammatory markers. Patients with undiagnosed opportunistic infections remain at risk for unmasking IRIS at the time of active antiretroviral therapy (ART) initiation. Systematic screening for opportunistic infections before starting ART is a key element to prevent this phenomenon. Appropriate management of IRIS requires prompt recognition of the syndrome and exclusion of alternative diagnoses, particularly underlying infections and drug resistance. Controlled studies supporting the use of pharmacologic interventions in IRIS are scare, and recommendations are based on case series and expert opinions. The only controlled trial published to date, showed reduction in morbidity in patients with paradoxical tuberculosis-related IRIS with the use of oral corticosteroids. There are currently limited data to recommend other anti-inflammatory or immunomodulatory therapies that are discussed in this review, and further research is needed. Ongoing research regarding the immune pathogenesis of IRIS will likely direct future rational therapeutic approaches and clinical trials. PMID:26303886

  9. HIV-1 tuberculosis-associated immune reconstitution inflammatory syndrome.

    PubMed

    Lai, Rachel P J; Meintjes, Graeme; Wilkinson, Robert J

    2016-03-01

    Patients co-infected with HIV-1 and tuberculosis (TB) are at risk of developing TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) following commencement of antiretroviral therapy (ART). TB-IRIS is characterized by transient but severe localized or systemic inflammatory reactions against Mycobacterium tuberculosis antigens. Here, we review the risk factors and clinical management of TB-IRIS, as well as the roles played by different aspects of the immune response in contributing to TB-IRIS pathogenesis. PMID:26423994

  10. Chronic inflammatory systemic diseases

    PubMed Central

    Straub, Rainer H.; Schradin, Carsten

    2016-01-01

    It has been recognized that during chronic inflammatory systemic diseases (CIDs) maladaptations of the immune, nervous, endocrine and reproductive system occur. Maladaptation leads to disease sequelae in CIDs. The ultimate reason of disease sequelae in CIDs remained unclear because clinicians do not consider bodily energy trade-offs and evolutionary medicine. We review the evolution of physiological supersystems, fitness consequences of genes involved in CIDs during different life-history stages, environmental factors of CIDs, energy trade-offs during inflammatory episodes and the non-specificity of CIDs. Incorporating bodily energy regulation into evolutionary medicine builds a framework to better understand pathophysiology of CIDs by considering that genes and networks used are positively selected if they serve acute, highly energy-consuming inflammation. It is predicted that genes that protect energy stores are positively selected (as immune memory). This could explain why energy-demanding inflammatory episodes like infectious diseases must be terminated within 3–8 weeks to be adaptive, and otherwise become maladaptive. Considering energy regulation as an evolved adaptive trait explains why many known sequelae of different CIDs must be uniform. These are, e.g. sickness behavior/fatigue/depressive symptoms, sleep disturbance, anorexia, malnutrition, muscle wasting—cachexia, cachectic obesity, insulin resistance with hyperinsulinemia, dyslipidemia, alterations of steroid hormone axes, disturbances of the hypothalamic-pituitary-gonadal (HPG) axis, hypertension, bone loss and hypercoagulability. Considering evolved energy trade-offs helps us to understand how an energy imbalance can lead to the disease sequelae of CIDs. In the future, clinicians must translate this knowledge into early diagnosis and symptomatic treatment in CIDs. PMID:26817483

  11. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions

    PubMed Central

    Vindigni, Stephen M.; Zisman, Timothy L.; Suskind, David L.; Damman, Christopher J.

    2016-01-01

    We discuss the tripartite pathophysiological circuit of inflammatory bowel disease (IBD), involving the intestinal microbiota, barrier function, and immune system. Dysfunction in each of these physiological components (dysbiosis, leaky gut, and inflammation) contributes in a mutually interdependent manner to IBD onset and exacerbation. Genetic and environmental risk factors lead to disruption of gut homeostasis: genetic risks predominantly affect the immune system, environmental risks predominantly affect the microbiota, and both affect barrier function. Multiple genetic and environmental ‘hits’ are likely necessary to establish and exacerbate disease. Most conventional IBD therapies currently target only one component of the pathophysiological circuit, inflammation; however, many patients with IBD do not respond to immune-modulating therapies. Hope lies in new classes of therapies that target the microbiota and barrier function. PMID:27366227

  12. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases.

    PubMed

    Middleton, Elizabeth A; Weyrich, Andrew S; Zimmerman, Guy A

    2016-10-01

    Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury. PMID:27489307

  13. Psychological factors and DNA methylation of genes related to immune/inflammatory system markers: the VA Normative Aging Study

    PubMed Central

    Kim, Daniel; Kubzansky, Laura D; Baccarelli, Andrea; Sparrow, David; Spiro, Avron; Tarantini, Letizia; Cantone, Laura; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    Objectives Although psychological factors have been associated with chronic diseases such as coronary heart disease (CHD), the underlying pathways for these associations have yet to be elucidated. DNA methylation has been posited as a mechanism linking psychological factors to CHD risk. In a cohort of community-dwelling elderly men, we explored the associations between positive and negative psychological factors with DNA methylation in promoter regions of multiple genes involved in immune/inflammatory processes related to atherosclerosis. Design Prospective cohort study. Setting Greater Boston, Massachusetts area. Participants Samples of 538 to 669 men participating in the Normative Aging Study cohort with psychological measures and DNA methylation measures, collected on 1–4 visits between 1999 and 2006 (mean age=72.7 years at first visit). Outcome measures We examined anxiety, depression, hostility and life satisfaction as predictors of leucocyte gene-specific DNA methylation. We estimated repeated measures linear mixed models, controlling for age, smoking, education, history of heart disease, stroke or diabetes, % lymphocytes, % monocytes and plasma folate. Results Psychological distress measured by anxiety, depression and hostility was positively associated, and happiness and life satisfaction were inversely associated with average Intercellular Adhesion Molecule-1 (ICAM-1) and coagulation factor III (F3) promoter methylation levels. There was some evidence that hostility was positively associated with toll-like receptor 2 (TLR-2) promoter methylation, and that life satisfaction was inversely associated with TLR-2 and inducible nitric oxide synthase (iNOS) promoter methylation. We observed less consistent and significant associations between psychological factors and average methylation for promoters of the genes for glucocorticoid receptor (NR3C1), interferon-γ (IFN-γ) and interleukin 6 (IL-6). Conclusions These findings suggest that positive and negative

  14. Nucleosides Accelerate Inflammatory Osteolysis, Acting as Distinct Innate Immune Activators

    PubMed Central

    Pan, George; Zheng, Rui; Yang, Pingar; Li, Yao; Clancy, John P.; Liu, Jianzhong; Feng, Xu; Garber, David A; Spearman, Paul; McDonald, Jay M

    2015-01-01

    The innate immune system and its components play an important role in the pathogenesis of inflammatory bone destruction. Blockade of inflammatory cytokines does not completely arrest bone erosion, suggesting that other mediators also may be involved in osteolysis. Previously we showed that nucleosides promote osteoclastogenesis and bone-resorption activity in the presence of receptor activator for nuclear factor κB ligand (RANKL) in vitro. The studies described here further demonstrate that selected nucleosides and nucleoside analogues accelerate bone destruction in mice immunized with collagen II alone (CII) but also further enhance bone erosion in mice immunized by collagen II plus complete Freund's adjuvant (CII + CFA). Abundant osteoclasts are accumulated in destructive joints. These data indicate that nucleosides act as innate immune activators distinct from CFA, synergistically accelerating osteoclast formation and inflammatory osteolysis. The potential roles of the surface triggering receptor expressed on myeloid cells (TREM) and the intracellular inflammasome in nucleoside-enhanced osteoclastogenesis have been studied. These observations provide new insight into the pathogenesis and underlying mechanism of bone destruction in inflammatory autoimmune osteoarthritis. PMID:21472777

  15. The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis

    PubMed Central

    Waumans, Yannick; Baerts, Lesley; Kehoe, Kaat; Lambeir, Anne-Marie; De Meester, Ingrid

    2015-01-01

    Research from over the past 20 years has implicated dipeptidyl peptidase (DPP) IV and its family members in many processes and different pathologies of the immune system. Most research has been focused on either DPPIV or just a few of its family members. It is, however, essential to consider the entire DPP family when discussing any one of its members. There is a substantial overlap between family members in their substrate specificity, inhibitors, and functions. In this review, we provide a comprehensive discussion on the role of prolyl-specific peptidases DPPIV, FAP, DPP8, DPP9, dipeptidyl peptidase II, prolyl carboxypeptidase, and prolyl oligopeptidase in the immune system and its diseases. We highlight possible therapeutic targets for the prevention and treatment of atherosclerosis, a condition that lies at the frontier between inflammation and cardiovascular disease. PMID:26300881

  16. Immune reconstitution inflammatory syndrome involving the central nervous system in a patient with HIV infection: a case report and review of literature.

    PubMed

    Zaffiri, Lorenzo; Verma, Rajanshu; Struzzieri, Kevin; Monterroso, Joanne; Batts, Donald H; Loehrke, Mark E

    2013-01-01

    IRIS is described as a paradoxical deterioration of clinical status upon initiation of combined anti-retroviral therapy (cART) in patients with HIV infection. Immune reconstitution inflammatory syndrome (CNS-IRIS) involving the central nervous system is rarely reported. We describe the case of 57-year-old man who developed a fatal case of CNS- IRIS. A rapid deterioration of neurological status was associated with progression of patchy T2-weighted hyperintensities involving different vascular territories on brain MRI. Diagnosis of CNS-IRIS is based of laboratory and radiologic findings, however brain biopsy is supportive. Despite immune restoration being involved in clinical deterioration, discontinuation of cART is not recommended. The use of corticosteroids is highly controversial. Prompt recognition of CNS-IRIS is crucial for preventing neurological complications and ensuing sequelae. PMID:23435821

  17. Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems.

    PubMed

    Shakola, Felitsiya; Suri, Parul; Ruggiu, Matteo

    2015-01-01

    Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders. PMID:26371053

  18. Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems

    PubMed Central

    Shakola, Felitsiya; Suri, Parul; Ruggiu, Matteo

    2015-01-01

    Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders. PMID:26371053

  19. Immune System Involvement

    MedlinePlus

    ... Tips" to find out more! Email * Zipcode The Immune System and Psoriatic Disease What is an autoimmune disease? ... swollen and painful joints and tendons. Treating the immune system The immune system is not only the key ...

  20. Progressive multifocal leukoencephalopathy and immune reconstitution inflammatory syndrome (IRIS).

    PubMed

    Bauer, Jan; Gold, Ralf; Adams, Ortwin; Lassmann, Hans

    2015-12-01

    Progressive multifocal leukoencephalopathy is a viral encephalitis induced by the John Cunningham (JC) virus, an ubiquitous neurotropic papovavirus of the genus polyomavirus that in healthy people in latency resides in kidney and bone marrow cells. Activation and entry into the CNS were first seen in patients with malignancies of the hematopoietic system and an impaired immune system. During the 1980 and the 1990s with the appearance of human immunodeficiency virus infection in humans, PML was found to be the most important opportunistic infection of the central nervous system. As a result of highly efficient immunosuppressive and immunomodulatory treatments, in recent years, the number of PML cases again increased. PML is prevented by an intact cellular immune response and accordingly immune reconstitution can terminate established disease in the CNS. However, forced immune reconstitution can lead to massive destruction of virus-infected cells. This may result in clinical exacerbation associated with high morbidity and mortality and referred to as PML with immune reconstitution inflammatory syndrome (PML-IRIS). In the present review, we discuss virological properties and routes of infection in the CNS, but mostly focus on the pathology of PML and PML-IRIS and on the role of the immune system in these disorders. We show that PML and PML-IRIS result from predominant JC virus infection of oligodendrocytes and, to a lesser extent, of infected neurons. Inflammation in these encephalitides seems to be driven by a dominant cytotoxic T cell response which is massively exaggerated during IRIS. PMID:26323992

  1. Melatonin: Buffering the Immune System

    PubMed Central

    Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.

    2013-01-01

    Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496

  2. Immune System and Disorders

    MedlinePlus

    ... substances that are usually not harmful Immune deficiency diseases - disorders in which the immune system is missing one or more of its parts Autoimmune diseases - diseases causing your immune system to attack your ...

  3. The Immune System in Hypertension

    ERIC Educational Resources Information Center

    Trott, Daniel W.; Harrison, David G.

    2014-01-01

    While hypertension has predominantly been attributed to perturbations of the vasculature, kidney, and central nervous system, research for almost 50 yr has shown that the immune system also contributes to this disease. Inflammatory cells accumulate in the kidneys and vasculature of humans and experimental animals with hypertension and likely…

  4. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense system ...

  5. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes

    PubMed Central

    Gañán-Gómez, I; Wei, Y; Starczynowski, DT; Colla, S; Yang, H; Cabrero-Calvo, M; Bohannan, ZS; Verma, A; Steidl, U; Garcia-Manero, G

    2016-01-01

    Myelodysplastic syndromes (MDSs) are a group of heterogeneous clonal hematologic malignancies that are characterized by defective bone marrow (BM) hematopoiesis and by the occurrence of intramedullary apoptosis. During the past decade, the identification of key genetic and epigenetic alterations in patients has improved our understanding of the pathophysiology of this disease. However, the specific molecular mechanisms leading to the pathogenesis of MDS have largely remained obscure. Recently, essential evidence supporting the direct role of innate immune abnormalities in MDS has been obtained, including the identification of multiple key regulators that are overexpressed or constitutively activated in BM hematopoietic stem and progenitor cells. Mounting experimental results indicate that the dysregulation of these molecules leads to abnormal hematopoiesis, unbalanced cell death and proliferation in patients' BM, and has an important role in the pathogenesis of MDS. Furthermore, there is compelling evidence that the deregulation of innate immune and inflammatory signaling also affects other cells from the immune system and the BM microenvironment, which establish aberrant associations with hematopoietic precursors and contribute to the MDS phenotype. Therefore, the deregulation of innate immune and inflammatory signaling should be considered as one of the driving forces in the pathogenesis of MDS. In this article, we review and update the advances in this field, summarizing the results from the most recent studies and discussing their clinical implications. PMID:25761935

  6. Innate and adaptive immunity in inflammatory bowel disease.

    PubMed

    Geremia, Alessandra; Biancheri, Paolo; Allan, Philip; Corazza, Gino R; Di Sabatino, Antonio

    2014-01-01

    Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). The exact cause of IBD remains unknown. Available evidence suggests that an abnormal immune response against the microorganisms of the intestinal flora is responsible for the disease in genetically susceptible individuals. The adaptive immune response has classically been considered to play a major role in the pathogenesis of IBD. However, recent advances in immunology and genetics have clarified that the innate immune response is equally as important in inducing gut inflammation in these patients. In particular, an altered epithelial barrier function contributes to intestinal inflammation in patients with UC, while aberrant innate immune responses, such as antimicrobial peptide production, innate microbial sensing and autophagy are particularly associated to CD pathogenesis. On the other hand, besides T helper cell type (Th)1 and Th2 immune responses, other subsets of T cells, namely Th17 and regulatory T (Treg) cells, are likely to play a role in IBD. However, given the complexity and probably the redundancy of pathways leading to IBD lesions, and the fact that Th17 cells may also have protective functions, neutralization of IL-17A failed to induce any improvement in CD. Studying the interactions between various constituents of the innate and adaptive immune systems will certainly open new horizons in the knowledge about the immunologic mechanisms implicated in gut inflammation. PMID:23774107

  7. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses

    PubMed Central

    Mogensen, Trine H.

    2009-01-01

    Summary: The innate immune system constitutes the first line of defense against invading microbial pathogens and relies on a large family of pattern recognition receptors (PRRs), which detect distinct evolutionarily conserved structures on pathogens, termed pathogen-associated molecular patterns (PAMPs). Among the PRRs, the Toll-like receptors have been studied most extensively. Upon PAMP engagement, PRRs trigger intracellular signaling cascades ultimately culminating in the expression of a variety of proinflammatory molecules, which together orchestrate the early host response to infection, and also is a prerequisite for the subsequent activation and shaping of adaptive immunity. In order to avoid immunopathology, this system is tightly regulated by a number of endogenous molecules that limit the magnitude and duration of the inflammatory response. Moreover, pathogenic microbes have developed sophisticated molecular strategies to subvert host defenses by interfering with molecules involved in inflammatory signaling. This review presents current knowledge on pathogen recognition through different families of PRRs and the increasingly complex signaling pathways responsible for activation of an inflammatory and antimicrobial response. Moreover, medical implications are discussed, including the role of PRRs in primary immunodeficiencies and in the pathogenesis of infectious and autoimmune diseases, as well as the possibilities for translation into clinical and therapeutic applications. PMID:19366914

  8. Innate immune inflammatory response in the acutely ischemic myocardium.

    PubMed

    Deftereos, Spyridon; Angelidis, Christos; Bouras, Georgios; Raisakis, Konstantinos; Gerckens, Ulrich; Cleman, Michael W; Giannopoulos, Georgios

    2014-01-01

    The "holy grail" of modern interventional cardiology is the salvage of viable myocardial tissue in the distribution of an acutely occluded coronary artery. Thrombolysis and percutaneous coronary interventions, provided they can be delivered on time, can interrupt the occlusion and save tissue. At the same time restoring the patency of the coronary vessels and providing the ischemic myocardium with blood can cause additional tissue damage. A key element of ischemic and reperfusion injury and major determinant of the evolution of damage in the injured myocardium is the inflammatory response. The innate immune system initiates and directs this response which is a prerequisite for subsequent healing. The complement cascade is set in motion following the release of subcellular membrane constituents. Endogenous 'danger' signals known as danger-associated molecular patterns (DAMPs) released from ischemic and dying cells alert the innate immune system and activate several signal transduction pathways through interactions with the highly conserved Toll like receptors (TLRs). Reactive oxygen species (ROS) generation directly induces pro-inflammatory cascades and triggers formation of the inflammasome. The challenge lies into designing strategies that specifically block the inflammatory cascades responsible for tissue damage without affecting those concerned with tissue healing. PMID:25102201

  9. Our Immune System

    MedlinePlus

    Our Immune System A story for children with primary immunodeficiency diseases Written by Sara LeBien IMMUNE DEFICIENCY FOUNDATION A note ... who are immune deficient to better understand their immune system. What is a “ B-cell, ” a “ T-cell, ” ...

  10. Hansen's disease in association with immune reconstitution inflammatory syndrome

    PubMed Central

    George, Anju; Vidyadharan, Suja

    2016-01-01

    Immune reconstitution inflammatory syndrome is characterized by a paradoxical worsening of an existing infection or disease process, soon after initiation of highly active antiretroviral therapy. The first case of leprosy presenting as immune reconstitution inflammatory syndrome was published in 2003. Here we report a case of Hansen's disease borderline tuberculoid presenting with type 1 lepra reaction 5 months after initiation of highly active antiretroviral therapy. PMID:26955584

  11. Hansen's disease in association with immune reconstitution inflammatory syndrome.

    PubMed

    George, Anju; Vidyadharan, Suja

    2016-01-01

    Immune reconstitution inflammatory syndrome is characterized by a paradoxical worsening of an existing infection or disease process, soon after initiation of highly active antiretroviral therapy. The first case of leprosy presenting as immune reconstitution inflammatory syndrome was published in 2003. Here we report a case of Hansen's disease borderline tuberculoid presenting with type 1 lepra reaction 5 months after initiation of highly active antiretroviral therapy. PMID:26955584

  12. Immune System and Disorders

    MedlinePlus

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It ... t, to find and destroy them. If your immune system cannot do its job, the results can be ...

  13. Pneumonia - weakened immune system

    MedlinePlus

    ... medlineplus.gov/ency/article/000093.htm Pneumonia - weakened immune system To use the sharing features on this page, ... fighting off infection because of problems with the immune system. This type of disease is called "pneumonia in ...

  14. Immune System Quiz

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Quiz: Immune System KidsHealth > For Kids > Quiz: Immune System Print A A A Text Size How much do you know about your immune system? Find out by taking this quiz! View Survey ...

  15. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.

    PubMed

    Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R

    2013-11-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. PMID:23932846

  16. Ischemic heart disease in systemic inflammatory diseases. An appraisal.

    PubMed

    Gargiulo, Paola; Marsico, Fabio; Parente, Antonio; Paolillo, Stefania; Cecere, Milena; Casaretti, Laura; Pellegrino, Angela Maria; Formisano, Tiziana; Fabiani, Irma; Soricelli, Andrea; Trimarco, Bruno; Perrone-Filardi, Pasquale

    2014-01-01

    Systemic inflammatory diseases are inflammatory syndromes that are associated with increased cardiovascular morbidity and mortality. The link between inflammatory and cardiovascular diseases can be attributed to coexistence of classical risk factors and of inflammatory mechanisms activated in systemic inflammatory diseases and involving the immune system. Yet, clinical implications of these findings are not entirely clear and deeper knowledge and awareness of cardiac involvement in inflammatory diseases are necessary. The aims of this review are to summarize cardiac involvement in systemic inflammatory diseases and to identify areas where evidence is currently lacking that deserve further investigation in the future. PMID:24331863

  17. THE NEUROPEPTIDE VIP: DIRECT EFFECTS ON IMMUNE CELLS AND INVOLVEMENT IN INFLAMMATORY AND AUTOIMMUNE DISEASES

    PubMed Central

    Ganea, Doina; Hooper, Kirsten M.; Kong, Weimin

    2015-01-01

    Neuropeptides represent an important category of endogenous contributors to the establishment and maintenance of immune deviation in immune privileged organs such as the CNS, and in the control of acute inflammation in the peripheral immune organs. Vasoactive intestinal peptide (VIP) is a major immunoregulatory neuropeptide widely distributed in the central and peripheral nervous system. In addition to neurons, VIP is synthesized by immune cells which also express VIP receptors. Here we review the current information on VIP production and VIP receptor mediated effects in the immune system, the role of endogenous and exogenous VIP in inflammatory and autoimmune disorders, and present and future VIP therapeutic approaches. PMID:25422088

  18. The Immune System Game

    ERIC Educational Resources Information Center

    Work, Kirsten A.; Gibbs, Melissa A.; Friedman, Erich J.

    2015-01-01

    We describe a card game that helps introductory biology students understand the basics of the immune response to pathogens. Students simulate the steps of the immune response with cards that represent the pathogens and the cells and molecules mobilized by the immune system. In the process, they learn the similarities and differences between the…

  19. Acute microbiologically negative hypoxic interstitial pneumonia on HAART: Immune Reconstitution Inflammatory Syndrome unmasking Pneumocystis Jiroveci infection with an atypical presentation

    PubMed Central

    Sovaila, S; de Raigniac, A; Picard, C; Taulera, O; Lascoux-Combe, C; Sereni, D; Bourgarit, A

    2012-01-01

    Highly active antiretroviral therapy for AIDS sometimes engenders inflammatory manifestations resulting from an inappropriate and unbalanced immune-system restoration, called Immune Reconstitution inflammatory Syndrome, which, in turn, can unmask a subclinical infection/pathology. Despite our patient’s evident syndrome, the atypical clinical, microbiologic and radiologic feature of Pneumocystis pneumonia made its diagnosis difficult. PMID:22802889

  20. Immune reconstitution inflammatory syndrome: the trouble with immunity when you had none

    PubMed Central

    Barber, Daniel L.; Andrade, Bruno B.; Sereti, Irini; Sher, Alan

    2012-01-01

    Some individuals who are infected with HIV rapidly deteriorate shortly after starting antiretroviral therapy, despite effective viral suppression. This reaction, referred to as immune reconstitution inflammatory syndrome (IRIS), is characterized by tissue-destructive inflammation and arises as CD4+ T cells re-emerge. It has been proposed that IRIS is caused by a dysregulation of the expanding population of CD4+ T cells specific for a co-infecting opportunistic pathogen. Here, we argue that IRIS instead results from hyper-responsiveness of the innate immune system to T cell help, a mechanism that may be shared by the many manifestations of IRIS that occur following the reversal of other types of immunosuppression in pathogen-infected hosts. PMID:22230950

  1. Mainstream cigarette smoke exposure attenuates airway immune inflammatory responses to surrogate and common environmental allergens in mice, despite evidence of increased systemic sensitization.

    PubMed

    Robbins, Clinton S; Pouladi, Mahmoud A; Fattouh, Ramzi; Dawe, David E; Vujicic, Neda; Richards, Carl D; Jordana, Manel; Inman, Mark D; Stampfli, Martin R

    2005-09-01

    The purpose of this study was to investigate the impact of mainstream cigarette smoke exposure (MTS) on allergic sensitization and the development of allergic inflammatory processes. Using two different experimental murine models of allergic airways inflammation, we present evidence that MTS increased cytokine production by splenocytes in response to OVA and ragweed challenge. Paradoxically, MTS exposure resulted in an overall attenuation of the immune inflammatory response, including a dramatic reduction in the number of eosinophils and activated (CD69+) and Th2-associated (T1ST2+) CD4 T lymphocytes in the lung. Although MTS did not impact circulating levels of OVA-specific IgE and IgG1, we observed a striking reduction in OVA-specific IgG2a production and significantly diminished airway hyperresponsiveness. MTS, therefore, plays a disparate role in the development of allergic responses, inducing a heightened state of allergen-specific sensitization, but dampening local immune inflammatory processes in the lung. PMID:16116169

  2. Swine immune system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Probably no area of veterinary medicine has seen a greater explosion in knowledge then the immune system and its implications in disease and vaccination. In this chapter on the Swine Immune System for the 10th Edition of Diseases of Swine we expand on the information provided in past editions by in...

  3. Immune System and Schizophrenia

    PubMed Central

    Müller, Norbert; Schwarz, Markus J.

    2010-01-01

    Although an immune dysfunction and the involvement of infectious agents in the pathophysiology of schizophrenia are discussed since decades, the field never came into the mainstream of research. In schizophrenia a blunted type-1 immune response seems to be associated with a dysbalance in the activation of the enzyme indoleamine 2,3-dioxygenase (IDO) and in the tryptophan - kynurenine metabolism resulting in increased production of kynurenic acid in schizophrenia. This is associated with an imbalance in the glutamatergic neurotransmission, leading to an NMDA antagonism in schizophrenia. The immunological effects of antipsychotics rebalance partly the immune imbalance and the overweight of the production of the kynurenic acid. This immunological imbalance results in an inflammatory state combined with increased prostaglandin E2 (PGE2) production and increased cyclo-oxygenase-2 (COX-2) expression. COX-2 inhibitors have been tested in clinical trials, pointing to favourable effects in schizophrenia. PMID:21057585

  4. The Gut Microbiota in Immune-Mediated Inflammatory Diseases

    PubMed Central

    Forbes, Jessica D.; Van Domselaar, Gary; Bernstein, Charles N.

    2016-01-01

    The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID. PMID:27462309

  5. The Gut Microbiota in Immune-Mediated Inflammatory Diseases.

    PubMed

    Forbes, Jessica D; Van Domselaar, Gary; Bernstein, Charles N

    2016-01-01

    The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID. PMID:27462309

  6. Immune System (For Parents)

    MedlinePlus

    ... lock onto them. T cells are like the soldiers, destroying the invaders that the intelligence system has ... can't be prevented, you can help your child's immune system stay stronger and fight illnesses by ...

  7. Apoptosis in Hemocytes Induces a Shift in Effector Mechanisms in the Drosophila Immune System and Leads to a Pro-Inflammatory State

    PubMed Central

    Arefin, Badrul; Kucerova, Lucie; Krautz, Robert; Kranenburg, Holger; Parvin, Farjana; Theopold, Ulrich

    2015-01-01

    Apart from their role in cellular immunity via phagocytosis and encapsulation, Drosophila hemocytes release soluble factors such as antimicrobial peptides, and cytokines to induce humoral responses. In addition, they participate in coagulation and wounding, and in development. To assess their role during infection with entomopathogenic nematodes, we depleted plasmatocytes and crystal cells, the two classes of hemocytes present in naïve larvae by expressing proapoptotic proteins in order to produce hemocyte-free (Hml-apo, originally called Hemoless) larvae. Surprisingly, we found that Hml-apo larvae are still resistant to nematode infections. When further elucidating the immune status of Hml-apo larvae, we observe a shift in immune effector pathways including massive lamellocyte differentiation and induction of Toll- as well as repression of imd signaling. This leads to a pro-inflammatory state, characterized by the appearance of melanotic nodules in the hemolymph and to strong developmental defects including pupal lethality and leg defects in escapers. Further analysis suggests that most of the phenotypes we observe in Hml-apo larvae are alleviated by administration of antibiotics and by changing the food source indicating that they are mediated through the microbiota. Biochemical evidence identifies nitric oxide as a key phylogenetically conserved regulator in this process. Finally we show that the nitric oxide donor L-arginine similarly modifies the response against an early stage of tumor development in fly larvae. PMID:26322507

  8. Crusted scabies-associated immune reconstitution inflammatory syndrome

    PubMed Central

    2012-01-01

    Background Despite the widely accepted association between crusted scabies and human immunodeficiency virus (HIV)-infection, crusted scabies has not been included in the spectrum of infections associated with immune reconstitution inflammatory syndrome in HIV-infected patients initiating antiretroviral therapy. Case presentation We report a case of a 28-year-old Mexican individual with late HIV-infection, who had no apparent skin lesions but soon after initiation of antiretroviral therapy, he developed an aggressive form of crusted scabies with rapid progression of lesions. Severe infestation by Sarcoptes scabiei was confirmed by microscopic examination of the scale and skin biopsy. Due to the atypical presentation of scabies in a patient responding to antiretroviral therapy, preceded by no apparent skin lesions at initiation of antiretroviral therapy, the episode was interpreted for the first time as “unmasking crusted scabies-associated immune reconstitution inflammatory syndrome”. Conclusion This case illustrates that when crusted scabies is observed in HIV-infected patients responding to antiretroviral therapy, it might as well be considered as a possible manifestation of immune reconstitution inflammatory syndrome. Patient context should be considered for adequate diagnosis and treatment of conditions exacerbated by antiretroviral therapy-induced immune reconstitution. PMID:23181485

  9. Immune reconstitution inflammatory syndrome associated with biologic therapy.

    PubMed

    Gupta, Malika; Jafri, Kashif; Sharim, Rebecca; Silverman, Susanna; Sindher, Sayantani B; Shahane, Anupama; Kwan, Mildred

    2015-02-01

    The use of biologics in the treatment of autoimmune disease, cancer, and other immune conditions has revolutionized medical care in these areas. However, there are drawbacks to the use of these medications including increased susceptibility to opportunistic infections. One unforeseen risk once opportunistic infection has occurred with biologic use is the onset of immune reconstitution inflammatory syndrome (IRIS) upon drug withdrawal. Although originally described in human immunodeficiency virus (HIV) patients receiving highly active antiretroviral therapy, it has become clear that IRIS may occur when recovery of immune function follows opportunistic infection in the setting of previous immune compromise/suppression. In this review, we draw attention to this potential pitfall on the use of biologic drugs. PMID:25504263

  10. Immune System 101

    MedlinePlus

    ... your healthy cells. How HIV Affects This Complex Process HIV disrupts this process by directly infecting the helper T-cells. Your ... T-cells are destroyed in the HIV replication process. For more information, see NIAID's The Immune System . ...

  11. Immune reconstitution inflammatory syndrome unmasking erythema nodosum leprosum: a rare case report.

    PubMed

    Arakkal, Geeta Kiran; Damarla, Sudha Vani; Chanda, Geetha Madhuri

    2015-01-01

    Immune reconstitution inflammatory syndrome (IRIS) occurs as an acute symptomatic expression of a latent infection during the recovery of immune system in response to antiretroviral therapy in HIV patients. IRIS triggers both opportunistic and non-opportunistic infections. We report a case of IRIS in a patient with HIV, presenting as erythema nodosum leprosum (ENL), which led to unmasking of lepromatous leprosy following anti-retroviral therapy (ART). PMID:25657440

  12. Sexual dimorphism of stress response and immune/ inflammatory reaction: the corticotropin releasing hormone perspective

    PubMed Central

    Vamvakopoulos, Nicholas V.

    1995-01-01

    This review higlghts key aspects of corticotropin releasing hormone (CRH) biology of potential relevance to the sexual dimorphism of the stress response and immune/inflammatory reaction, and introduces two important new concepts based on the regulatory potential of the human (h) CRH gene: (1) a proposed mechanism to account for the tissue-specific antithetical responses of hCRH gene expression to glucocorticolds, that may also explain the frequently observed antithetical effects of chronic glucocorticoid administration in clinical practice and (2) a heuristic diagram to illustrate the proposed modulation of the stress response and immune/ inflammatory reaction by steroid hormones, from the perspective of the CRH system. PMID:18475634

  13. Immunization status in children with inflammatory bowel disease.

    PubMed

    Longuet, Romain; Willot, Stephanie; Giniès, Jean-Louis; Pélatan, Cecile; Breton, Estelle; Segura, Jean-François; Bridoux, Laure; Le Henaff, Gaelle; Cagnard, Benoit; Jobert, Agathe; Cardonna, Joël; Grimal, Isabelle; Balençon, Martine; Darviot, Estelle; Delaperrière, Nadège; Caldari, Dominique; Piloquet, Hugues; Dabadie, Alain

    2014-05-01

    Inflammatory bowel diseases have an increased risk of infections due to immunosuppressive therapies. To report the immunization status according to previous recommendations and the reasons explaining a delay, a questionnaire was filled in by the pediatric gastroenterologist, concerning outpatients, in six tertiary centers and five local hospitals, in a study, from May to November 2011. One hundred and sixty-five questionnaires were collected, of which 106 Crohn's diseases, 41 ulcerative colitis, and 17 indeterminate colitis. Sex ratio was 87:78 M/F. Median age was 14.4 years old (4.2-20.0). One hundred and nine patients (66 %) were receiving or had received an immunosuppressive therapy (azathioprine, infliximab, methotrexate, or prednisone). Vaccines were up to date according to the vaccine schedule of French recommendations in 24 % of cases and according to the recommendations for inflammatory bowel disease in 4 % of cases. Coverage by vaccine was the following: diphtheria-tetanus-poliomyelitis 87 %, hepatitis B 38 %, pneumococcus 32 %, and influenza 22 %. Immunization delay causes were as follows: absence of proposal 58 %, patient refusal 41 %, fear of side effects 33 %, and fear of disease activation 5 %. Therefore, immunization coverage is insufficient in children with inflammatory bowel disease, due to simple omission or to refusal. A collaboration with the attending physicians and a targeted information are necessary. PMID:24305728

  14. Immune reconstitution inflammatory syndrome during treatment of Whipple's disease.

    PubMed

    Vayssade, Marielle; Tournadre, Anne; D'Incan, Michel; Soubrier, Martin; Dubost, Jean-Jacques

    2015-03-01

    Immune reconstitution inflammatory syndrome is a rare complication of the treatment of Whipple's disease. Here, we report the case of a 65-year-old man treated for Whipple's disease affecting the joints, with positive Tropheryma whipplei PCR in CSF, who developed fever and nodular eruption on the trunk, arms and face in association with biological inflammatory syndrome 10 days after initiation of antimicrobial treatment. Skin manifestations and the patient's general condition improved on corticosteroids (0.5mg/kg prednisone), but as steroids were gradually tapered, new nodules appeared below a prednisone dose of 10-15mg. One year after starting treatment, lumbar puncture showed asymptomatic meningitis with negative T. whipplei PCR results which had regressed spontaneously. Two years after the diagnosis, on prednisone 5mg daily and antimicrobial treatment, the patient had only transient, episodic nodular rash without fever or inflammatory syndrome. PMID:25553832

  15. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under physiological conditions the gut-associated lymphoid tissues not only prevent the induction of a local inflammatory immune response, but also induce systemic tolerance to fed antigens. A notable exception is coeliac disease, where genetically susceptible individuals expressing human leukocyte...

  16. Prognostic Significance of the Systemic Inflammatory and Immune Balance in Alcoholic Liver Disease with a Focus on Gender-Related Differences

    PubMed Central

    Kasztelan-Szczerbińska, Beata; Surdacka, Agata; Celiński, Krzysztof; Roliński, Jacek; Zwolak, Agnieszka; Miącz, Sławomir; Szczerbiński, Mariusz

    2015-01-01

    Objectives Mechanisms of immune regulation in alcoholic liver disease (ALD) are still unclear. The aim of our study was to determine an impact of Th17 / regulatory T (Treg) cells balance and its corresponding cytokine profile on the ALD outcome. Possible gender-related differences in the alcohol-induced inflammatory response were also assessed. Materials and Methods 147 patients with ALD were prospectively recruited, assigned to subgroups based on their gender, severity of liver dysfunction and presence of ALD complications at admission, and followed for 90 days. Peripheral blood frequencies of Th17 and Treg cells together with IL-1beta, IL-6, IL-17A, IL-23, and TGF-beta1 levels were investigated. Flow cytometry was used to identify T cell phenotype and immunoenzymatic ELISAs for the corresponding cytokine concentrations assessment. Multivariable logistic regression was applied in order to select independent predictors of advanced liver dysfunction and the disease complications. Results IL-17A, IL-1beta, IL-6 levels were significantly increased, while TGF-beta1 decreased in ALD patients. The imbalance with significantly higher Th17 and lower Treg frequencies was observed in non-survivors. IL-6 and TGF-beta1 levels differed in relation to patient gender in ALD group. Concentrations of IL-6 were associated with the severity of liver dysfunction, development of ALD complications, and turned out to be the only independent immune predictor of 90-day survival in the study cohort. Conclusions We conclude that IL-6 revealed the highest diagnostic and prognostic potential among studied biomarkers and was related to the fatal ALD course. Gender-related differences in immune regulation might influence the susceptibility to alcohol-associated liver injury. PMID:26107937

  17. [Olive oil, immune system and infection].

    PubMed

    Puertollano, M A; Puertollano, E; Alvarez de Cienfuegos, G; de Pablo Martínez, Manuel Antonio

    2010-01-01

    Polyunsaturated fatty acids contribute to the suppression of immune system functions. For this reason, n-3 polyunsaturated fatty acids have been applied in the resolution of inflammatory disorders. Although the inhibition of several immune functions promotes beneficial effects on the human health, this state may lead to a significant reduction of immune protection against infectious microorganisms (viruses, bacteria, fungi and parasites). Nevertheless, less attention has been paid to the action of olive oil in immunonutrition. Olive oil, a main constituent of the Mediterranean diet, is capable of modulating several immune functions, but it does not reduce host immune resistance to infectious microorganisms. Based on these criteria, we corroborate that olive oil administration may exert beneficial effects on the human health and especially on immune system, because it contributes to the reduction of typical inflammatory activity observed in patients suffering from autoimmune disorders, but without exacerbating the susceptibility to pathogen agents. The administration of olive oil in lipid emulsions may exert beneficial effects on the health and particularly on the immune system of immunocompromised patients. Therefore, this fact acquires a crucial importance in clinical nutrition. This review contributes to clarify the interaction between the administration of diets containing olive oil and immune system, as well as to determine the effect promoted by this essential component of Mediterranean diet in the immunomodulation against an infectious agent. PMID:20204249

  18. Interactions between the immune and nervous systems in pain

    PubMed Central

    Ren, Ke; Dubner, Ronald

    2010-01-01

    Immune cells and glia interact with neurons to alter pain sensitivity and to mediate the transition from acute to chronic pain. In response to injury, resident immune cells are activated and blood-borne immune cells are recruited to the site of injury. Immune cells not only contribute to immune protection but also initiate the sensitization of peripheral nociceptors. Through the synthesis and release of inflammatory mediators and interactions with neurotransmitters and their receptors, the immune cells, glia and neurons form an integrated network that coordinates immune responses and modulates the excitability of pain pathways. The immune system also reduces sensitization by producing immune-derived analgesic and anti-inflammatory or proresolution agents. A greater understanding of the role of the immune system in pain processing and modulation reveals potential targets for analgesic drug development and new therapeutic opportunities for managing chronic pain. PMID:20948535

  19. The Innate Immune System in Transplantation

    PubMed Central

    Oberbarnscheidt, Martin H.; Zecher, Daniel; Lakkis, Fadi G.

    2012-01-01

    The vertebrate innate immune system consists of inflammatory cells and soluble mediators that comprise the first line of defense against microbial infection and, importantly, trigger antigen-specific T and B cell responses that lead to lasting immunity. The molecular mechanisms responsible for microbial non-self recognition by the innate immune system have been elucidated for a large number of pathogens. How the innate immune system recognizes non-microbial non-self, such as organ transplants, is less clear. In this review, we approach this question by describing the principal mechanisms of non-self, or ‘damaged’ self, recognition by the innate immune system (pattern recognition receptors, the missing self theory, and the danger hypothesis) and discussing whether and how these mechanisms apply to allograft rejection. PMID:21723740

  20. Interleukin-1 receptor associated kinase inhibitors: potential therapeutic agents for inflammatory- and immune-related disorders.

    PubMed

    Bahia, Malkeet Singh; Kaur, Maninder; Silakari, Pragati; Silakari, Om

    2015-06-01

    The various cells of innate immune system quickly counter-attack invading pathogens, and mount up "first line" defense through their trans-membrane receptors including Toll-like receptors (TLRs) and interleukin receptors (IL-Rs) that result in the secretion of pro-inflammatory cytokines. Albeit such inflammatory responses are beneficial in pathological conditions, their overstimulation may cause severe inflammatory damage; thus, make this defense system a "double edged sword". IRAK-4 has been evaluated as an indispensable element of IL-Rs and TLR pathways that can regulate the abnormal levels of cytokines, and therefore could be employed to manage immune- and inflammation-related disorders. Historically, the identification of selective and potent inhibitors has been challenging; thus, a limited number of small molecule IRAK-4 inhibitors are available in literature. Recently, IRAK-4 achieved great attention, when Ligand® pharmaceutical and Nimbus Discovery® reported the beneficial potentials of IRAK-4 inhibitors in the pre-clinical evaluation for various inflammatory- and immune-related disorders, but not limited to, such as rheumatoid arthritis, inflammatory bowel disease, psoriasis, gout, asthma and cancer. PMID:25728511

  1. Immune reconstitution inflammatory syndrome in association with HIV/AIDS and tuberculosis: Views over hidden possibilities

    PubMed Central

    Shankar, Esaki Muthu; Vignesh, Ramachandran; Murugavel, Kailapuri G; Balakrishnan, Pachamuthu; Sekar, Ramalingam; Lloyd, Charmaine AC; Solomon, Suniti; Kumarasamy, Nagalingeswaran

    2007-01-01

    Gut immune components are severely compromised among persons with AIDS, which allows increased translocation of bacterial lipopolysaccharides (LPS) into the systemic circulation. These microbial LPS are reportedly increased in chronically HIV-infected individuals and findings have correlated convincingly with measures of immune activation. Immune reconstitution inflammatory syndrome (IRIS) is an adverse consequence of the restoration of pathogen-specific immune responses in a subset of HIV-infected subjects with underlying latent infections during the initial months of highly active antiretroviral treatment (HAART). Whether IRIS is the result of a response to a high antigen burden, an excessive response by the recovering immune system, exacerbated production of pro-inflammatory cytokines or a lack of immune regulation due to inability to produce regulatory cytokines remains to be determined. We theorize that those who develop IRIS have a high burden of proinflammatory cytokines produced also in response to systemic bacterial LPS that nonspecifically act on latent mycobacterial antigens. We also hypothesize that subjects that do not develop IRIS could have developed either tolerance (anergy) to persistent LPS/tubercle antigens or could have normal FOXP3+ gene and that those with defective FOXP3+ gene or those with enormous plasma LPS could be vulnerable to IRIS. The measure of microbial LPS, anti-LPS antibodies and nonspecific plasma cytokines in subjects on HAART shall predict the role of these components in IRIS. PMID:18053126

  2. Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage.

    PubMed Central

    Hunninghake, G. W.; Gadek, J. E.; Kawanami, O.; Ferrans, V. J.; Crystal, R. G.

    1979-01-01

    Bronchoalveolar lavage is an invaluable means of accurately evaluating the inflammatory and immune processes of the human lung. Although lavage recovers only those cells and proteins present on the epithelial surface of the lower respiratory tract, comparison with open lung biopsies shows that these constituents are representative of the inflammatory and immune systems of the alveolar structures. With the use of these techniques, sufficient materials are obtained from normal individuals to allow characterization of not only the types of cells and proteins present but their functions as well. Such observations have been useful in defining the inflammatory and immune capabilities of the normal lung and provide a basis for the study of lung disease. Lavage methods have been used to characterize inflammatory and immune processes of the lower respiratory tract in destructive, infectious, neoplastic, and interstitial disorders. From the data already acquired, it is apparent that bronchoalveolar lavage will yield major insights into the pathogenesis, staging, and therapy decisions involved in these disorders. (Am J Pathol 97:149--206, 1979). Images Figure 9 Figure 1 Figure 2 Figure 10 Figure 7 Figure 8 Figure 4 Figure 5 Figure 6 Figure 3 PMID:495693

  3. Immune Mechanisms in Inflammatory and Degenerative Eye Disease

    PubMed Central

    Perez, Victor L.; Caspi, Rachel R.

    2015-01-01

    It has recently been recognized that pathology of age-associated degenerative eye diseases such as adult macular degeneration (AMD), glaucoma and diabetic retinopathy, have strong immunological underpinnings. Attempts have been made to extrapolate to age-related degenerative disease insights from inflammatory processes associated with non-infectious uveitis, but these have not yet been sufficiently informative. Here we review recent findings on the immune processes underlying uveitis and those that have been shown to contribute to AMD, discussing in this context parallels and differences between overt inflammation and para-inflammation in the eye. We propose that mechanisms associated with ocular immune privilege, in combination with paucity of age-related antigen(s) within the target tissue, dampen what could otherwise be overt inflammation and result in the para-inflammation that characterizes age-associated neurodegenerative disease. PMID:25981967

  4. Vaccinations in patients with immune-mediated inflammatory diseases

    PubMed Central

    Rahier, Jean-François; Moutschen, Michel; Van Gompel, Alfons; Van Ranst, Marc; Louis, Edouard; Segaert, Siegfried; Masson, Pierre

    2010-01-01

    Patients with immune-mediated inflammatory diseases (IMID) such as RA, IBD or psoriasis, are at increased risk of infection, partially because of the disease itself, but mostly because of treatment with immunomodulatory or immunosuppressive drugs. In spite of their elevated risk for vaccine-preventable disease, vaccination coverage in IMID patients is surprisingly low. This review summarizes current literature data on vaccine safety and efficacy in IMID patients treated with immunosuppressive or immunomodulatory drugs and formulates best-practice recommendations on vaccination in this population. Especially in the current era of biological therapies, including TNF-blocking agents, special consideration should be given to vaccination strategies in IMID patients. Clinical evidence indicates that immunization of IMID patients does not increase clinical or laboratory parameters of disease activity. Live vaccines are contraindicated in immunocompromized individuals, but non-live vaccines can safely be given. Although the reduced quality of the immune response in patients under immunotherapy may have a negative impact on vaccination efficacy in this population, adequate humoral response to vaccination in IMID patients has been demonstrated for hepatitis B, influenza and pneumococcal vaccination. Vaccination status is best checked and updated before the start of immunomodulatory therapy: live vaccines are not contraindicated at that time and inactivated vaccines elicit an optimal immune response in immunocompetent individuals. PMID:20591834

  5. Inflammatory networks and immune surveillance of pancreatic carcinoma

    PubMed Central

    Vonderheide, Robert H.; Bayne, Lauren J.

    2013-01-01

    Cancer-associated inflammation plays an important role in restraining anti-tumor immunity, particularly in pancreatic ductal adenocarcinoma (PDA) for which a massive infiltration of immunosuppressive leukocytes into the tumor stroma is an early and consistent event in oncogenesis. This pathophysiology is in contrast to many other solid tumors for which infiltration of effector T cells is often prominent, associated with improved clinical outcomes, and mechanistically contributes to tumor immunoediting that ultimately can mediate immune escape. In PDA, increasing evidence suggests that the ras oncogene drives an inflammatory program that establishes immune privilege in the tumor microenvironment. Indeed, PDA cells might remain intrinsically sensitive to T cell killing because they have never been exposed to T cell selective pressure in vivo. In support of this hypothesis, recent studies demonstrate that derailing immune suppressive pathways in the PDA microenvironment, such as tumor derived GM-CSF, facilitates T-cell mediated tumor rejection. These findings carry major implications for the development of novel, combination immunotherapies for pancreatic cancer. PMID:23422836

  6. Exploring the Homeostatic and Sensory Roles of the Immune System

    PubMed Central

    Marques, Rafael Elias; Marques, Pedro Elias; Guabiraba, Rodrigo; Teixeira, Mauro Martins

    2016-01-01

    Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection. PMID:27065209

  7. The cells that mediate innate immune memory and their functional significance in inflammatory and infectious diseases.

    PubMed

    Gardiner, Clair M; Mills, Kingston H G

    2016-08-01

    Immunological memory mediated by antigen-specific T and B cells is the foundation of adaptive immunity and is fundamental to the heightened and rapid protective immune response induced by vaccination or following re-infection with the same pathogen. While the innate immune system has classically been considered to be non-specific and devoid of memory, it now appears that it can be trained following exposure to microbes or their products and that this may confer a form of memory on innate immune cells. The evidence for immunological memory outside of T and B cells has been best established for natural killer (NK) cells, where it has been known for decades that NK cells have heighten responses following immunological re-challenge. Furthermore, recent studies have demonstrated that monocyte/macrophages, and probably dendritic cells, can be re-programmed through epigenetic modification, following exposure to pathogens or their products, resulting in heighted responses following a second stimulation. Unlike antigen-specific memory of the adaptive immune system, the second stimulation does not have to be with the same pathogen or antigen. Indirect evidence for this comes from reports on the non-specific beneficial effect of certain live vaccines, such as Bacillus Calmette Guerin (BCG) against unrelated childhood infectious diseases. It also appears that certain pathogen or pathogen-derived molecules can prime immune cells, especially macrophages, to secrete more anti-inflammatory and less pro-inflammatory cyokines, thus opening up the possibility of exploiting innate immune training as a new therapeutic approach for inflammatory diseases. PMID:26979658

  8. Technique Selectively Represses Immune System

    MedlinePlus

    ... Research Matters December 3, 2012 Technique Selectively Represses Immune System Myelin (green) encases and protects nerve fibers (brown). A new technique prevents the immune system from attacking myelin in a mouse model of ...

  9. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839

  10. Inflammatory and Immune Activation in Intestinal Myofibroblasts Is Developmentally Regulated.

    PubMed

    Zawahir, Sharmila; Li, Guanghui; Banerjee, Aditi; Shiu, Jessica; Blanchard, Thomas G; Okogbule-Wonodi, Adora C

    2015-08-01

    We previously demonstrated that intestinal myofibroblasts from immature tissue produce excessive IL-8 in response to Escherichia coli lipopolysaccharide (LPS) compared to cells from mature tissue. However, it is unknown whether other cytokines and TLR agonists contribute to this developmentally regulated response. The aim of this study was to further characterize differences in inflammatory signaling in human primary intestinal fibroblasts from fetal (FIF) and infant (IIF) tissue and examine their potential to activate the adaptive immune response in vitro. Cytokine profiles of LPS-stimulated FIF and IIF were assessed by cytokine profile array. IL-8, IL-6, and IL-10 production in response to TLR2, TLR2/6, TLR4, and TLR5 agonists was determined by quantitative ELISA. The potential of activated myofibroblasts to activate adaptive immunity was determined by measuring surface class II MHC expression using flow cytometry. LPS-stimulated FIF produced a distinct proinflammatory cytokine profile consisting of MCP-1, GRO-alpha, IL-6, and IL-8 expression. FIF produced significant IL-8 and IL-6 in response to TLR4 agonist. IIF produced significant levels of IL-8 and IL-6 in the presence of TLR5 and TLR2 agonists. IFN-γ-treated FIF expressed greater HLA-DR levels compared to unstimulated controls and IFN-γ- and LPS-treated IIF. Activated FIF produce a more diverse inflammatory cytokine profile and greater levels of IL-8 and IL-6 in response to TLR4 stimulation compared to IIF. FIF express class II MHC proteins associated with activation of the adaptive immune response. These data suggest that FIF may contribute to bacterial-associated gut inflammation in the immature intestine. PMID:26101946

  11. Inflammatory and Immune Activation in Intestinal Myofibroblasts Is Developmentally Regulated

    PubMed Central

    Zawahir, Sharmila; Li, Guanghui; Banerjee, Aditi; Shiu, Jessica; Blanchard, Thomas G.

    2015-01-01

    We previously demonstrated that intestinal myofibroblasts from immature tissue produce excessive IL-8 in response to Escherichia coli lipopolysaccharide (LPS) compared to cells from mature tissue. However, it is unknown whether other cytokines and TLR agonists contribute to this developmentally regulated response. The aim of this study was to further characterize differences in inflammatory signaling in human primary intestinal fibroblasts from fetal (FIF) and infant (IIF) tissue and examine their potential to activate the adaptive immune response in vitro. Cytokine profiles of LPS-stimulated FIF and IIF were assessed by cytokine profile array. IL-8, IL-6, and IL-10 production in response to TLR2, TLR2/6, TLR4, and TLR5 agonists was determined by quantitative ELISA. The potential of activated myofibroblasts to activate adaptive immunity was determined by measuring surface class II MHC expression using flow cytometry. LPS-stimulated FIF produced a distinct proinflammatory cytokine profile consisting of MCP-1, GRO-alpha, IL-6, and IL-8 expression. FIF produced significant IL-8 and IL-6 in response to TLR4 agonist. IIF produced significant levels of IL-8 and IL-6 in the presence of TLR5 and TLR2 agonists. IFN-γ-treated FIF expressed greater HLA-DR levels compared to unstimulated controls and IFN-γ- and LPS-treated IIF. Activated FIF produce a more diverse inflammatory cytokine profile and greater levels of IL-8 and IL-6 in response to TLR4 stimulation compared to IIF. FIF express class II MHC proteins associated with activation of the adaptive immune response. These data suggest that FIF may contribute to bacterial-associated gut inflammation in the immature intestine. PMID:26101946

  12. Inflammatory Bowel Disease: Autoimmune or Immune-mediated Pathogenesis?

    PubMed Central

    Wen, Zhonghui

    2004-01-01

    The pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC), the two main forms of inflammatory bowel disease (IBD), is still unclear, but both autoimmune and immune-mediated phenomena are involved. Autoimmune phenomena include the presence of serum and mucosal autoantibodies against intestinal epithelial cells in either form of IBD, and against human tropomyosin fraction five selectively in UC. In addition, perinuclear antineutrophil cytoplasmic antibodies (pANCA) are common in UC, whereas antibodies against Saccharomyces cerevisiae (ASCA) are frequently found in CD. Immune-mediate phenomena include a variety of abnormalities of humoral and cell-mediated immunity, and a generalized enhanced reactivity against intestinal bacterial antigens in both CD and UC. It is currently believed that loss of tolerance against the indigenous enteric flora is the central event in IBD pathogenesis. Various complementary factors probably contribute to the loss of tolerance to commensal bacteria in IBD. They include defects in regulatory T-cell function, excessive stimulation of mucosal dendritic cells, infections or variants of proteins critically involved in bacterial antigen recognition, such as the products of CD-associated NOD2/CARD15 mutations. PMID:15559364

  13. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus

    PubMed Central

    Beltrán, Luis M; Rubio-Navarro, Alfonso; Amaro-Villalobos, Juan Manuel; Egido, Jesús; García-Puig, Juan; Moreno, Juan Antonio

    2015-01-01

    Patients infected with the human immunodeficiency virus (HIV) have an increased cardiovascular risk. Although initially this increased risk was attributed to metabolic alterations associated with antiretroviral treatment, in recent years, the attention has been focused on the HIV disease itself. Inflammation, immune system activation, and endothelial dysfunction facilitated by HIV infection have been identified as key factors in the development and progression of atherosclerosis. In this review, we describe the epidemiology and pathogenesis of cardiovascular disease in patients with HIV infection and summarize the latest knowledge on the relationship between traditional and novel inflammatory, immune activation, and endothelial dysfunction biomarkers on the cardiovascular risk associated with HIV infection. PMID:25609975

  14. NLR proteins: integral members of innate immunity and mediators of inflammatory diseases

    PubMed Central

    Wilmanski, Jeanette M.; Petnicki-Ocwieja, Tanja; Kobayashi, Koichi S.

    2012-01-01

    The innate immune system is the first line of defense against microorganisms and is conserved in both plants and animals. The NLR protein family is a recent addition to the members of innate immunity effector molecules. These proteins are characterized by a central oligomerization domain termed NACHT (or NBD/NOD) and a protein interaction domain, LRRs (Leucine rich repeats) at the C-terminus. It has been shown that NLR proteins are localized to the cytoplasm and recognize microbial products. To date, it is known that Nod1 and Nod2 detect bacterial cell wall components, whereas IPAF and NAIP detect bacterial flagellin and NALP1 has been shown to detect anthrax lethal toxin. NLR proteins comprise a diverse protein family (over 20 in humans), indicating that NLRs have evolved to acquire specificity to various pathogenic microorganisms, thereby controlling host-pathogen interactions. Activation of NLR proteins results in inflammatory responses mediated either by NF-κB, MAPK or Caspase-1 activation, accompanied by subsequent secretion of pro-inflammatory cytokines. Mutations in several members of the NLR protein family have been linked to inflammatory diseases, suggesting these molecules play important roles in maintaining host-pathogen interaction and inflammatory responses. Therefore, understanding NLR signaling is important for the therapeutic intervention of various infectious and inflammatory diseases. PMID:17875812

  15. Preventing Heart Failure in Inflammatory and Immune Disorders

    PubMed Central

    Serhal, Maya; Longenecker, Chris T.

    2014-01-01

    Patients with chronic inflammatory diseases are at increased risk for heart failure due to ischemic heart disease and other causes including heart failure with preserved ejection fraction. Using rheumatoid arthritis and treated HIV infection as two prototypical examples, we review the epidemiology and potential therapies to prevent heart failure in these populations. Particular focus is given to anti-inflammatory therapies including statins and biologic disease modifying drugs. There is also limited evidence for lifestyle changes and blockade of the renin-angiotensin-aldosterone system. We conclude by proposing how a strategy for heart failure prevention, such as the model tested in the Screening To Prevent Heart Failure (STOP-HF) trial, may be adapted to chronic inflammatory disease. PMID:26316924

  16. Immune reconstitution inflammatory syndrome in HIV-infected patients

    PubMed Central

    Walker, Naomi F; Scriven, James; Meintjes, Graeme; Wilkinson, Robert J

    2015-01-01

    Access to antiretroviral therapy (ART) is improving worldwide. Immune reconstitution inflammatory syndrome (IRIS) is a common complication of ART initiation. In this review, we provide an overview of clinical and epidemiological features of HIV-associated IRIS, current understanding of pathophysiological mechanisms, available therapy, and preventive strategies. The spectrum of HIV-associated IRIS is described, with a particular focus on three important pathogen-associated forms: tuberculosis-associated IRIS, cryptococcal IRIS, and Kaposi’s sarcoma IRIS. While the clinical features and epidemiology are well described, there are major gaps in our understanding of pathophysiology and as a result therapeutic and preventative strategies are suboptimal. Timing of ART initiation is critical to reduce IRIS-associated morbidity. Improved understanding of the pathophysiology of IRIS will hopefully enable improved diagnostic modalities and better targeted treatments to be developed. PMID:25709503

  17. Vitamin D, immune regulation, the microbiota, and inflammatory bowel disease

    PubMed Central

    Cantorna, Margherita T.; McDaniel, Kaitlin; Bora, Stephanie; Chen, Jing; James, Jamaal

    2014-01-01

    The inflammatory bowel diseases (IBD) are complex diseases caused by environmental, immunological and genetic factors. Vitamin D status is low in patients with IBD and experimental IBD is more severe in vitamin D deficient or vitamin D receptor knockout animals. Vitamin D is beneficial in IBD because it regulates multiple checkpoints and processes essential for homeostasis in the gut. Vitamin D inhibits IFN-γ and IL-17 production while inducing regulatory T cells. In addition, vitamin D regulates epithelial cell integrity, innate immune responses, and the composition of the gut microbiota. Overall vitamin D regulates multiple pathways that maintain gastrointestinal homeostasis. The data support improving vitamin D status in patients with IBD. PMID:24668555

  18. Immune reconstitution inflammatory syndrome in HIV-infected patients.

    PubMed

    Walker, Naomi F; Scriven, James; Meintjes, Graeme; Wilkinson, Robert J

    2015-01-01

    Access to antiretroviral therapy (ART) is improving worldwide. Immune reconstitution inflammatory syndrome (IRIS) is a common complication of ART initiation. In this review, we provide an overview of clinical and epidemiological features of HIV-associated IRIS, current understanding of pathophysiological mechanisms, available therapy, and preventive strategies. The spectrum of HIV-associated IRIS is described, with a particular focus on three important pathogen-associated forms: tuberculosis-associated IRIS, cryptococcal IRIS, and Kaposi's sarcoma IRIS. While the clinical features and epidemiology are well described, there are major gaps in our understanding of pathophysiology and as a result therapeutic and preventative strategies are suboptimal. Timing of ART initiation is critical to reduce IRIS-associated morbidity. Improved understanding of the pathophysiology of IRIS will hopefully enable improved diagnostic modalities and better targeted treatments to be developed. PMID:25709503

  19. Surgical management of malignant cerebral edema secondary to immune reconstitution inflammatory syndrome from natalizumab-associated progressive multifocal encephalopathy.

    PubMed

    Tan, Lee A; Lopes, Demetrius K

    2015-10-01

    We report a rare multiple sclerosis (MS) patient who developed malignant cerebral edema related to progressive multifocal encephalopathy (PML) immune reconstitution inflammatory syndrome (IRIS) after natalizumab discontinuation. The patient subsequently required a decompressive hemicraniectomy to reduce intracranial pressure and to avoid uncal herniation. PML is a demyelinating disease of the central nervous system (CNS) which affects oligodendrocytes and is caused by reactivation of latent John Cunningham virus. Natalizumab is a known risk factor (1 in 1000) for MS patients treated with this drug. Discontinuation of natalizumab treatment decreases the risk of PML progression, but a massive inflammatory response can occur after cell-mediated immune surveillance is reestablished in the CNS, causing immune reconstitution inflammatory syndrome (IRIS). Treatment of IRIS usually consists of steroids and plasma exchange to lessen the immune response, however, mortality has been reported at up to 29.4%, despite aggressive medical treatment. We discuss our management strategy with a review of the pertinent literature. PMID:26115897

  20. Paradoxical reactions and immune reconstitution inflammatory syndrome in tuberculosis.

    PubMed

    Bell, Lucy C K; Breen, Ronan; Miller, Robert F; Noursadeghi, Mahdad; Lipman, Marc

    2015-03-01

    The coalescence of the HIV-1 and tuberculosis (TB) epidemics in Sub-Saharan Africa has had a significant and negative impact on global health. The availability of effective antimicrobial treatment for both HIV-1 (in the form of highly active antiretroviral therapy (HAART)) and TB (with antimycobacterial agents) has the potential to mitigate the associated morbidity and mortality. However, the use of both HAART and antimycobacterial therapy is associated with the development of inflammatory paradoxical syndromes after commencement of therapy. These include paradoxical reactions (PR) and immune reconstitution inflammatory syndromes (IRIS), conditions that complicate mycobacterial disease in HIV seronegative and seropositive individuals. Here, we discuss case definitions for PR and IRIS, and explore how advances in identifying the risk factors and immunopathogenesis of these conditions informs our understanding of their shared underlying pathogenesis. We propose that both PR and IRIS are characterized by the triggering of exaggerated inflammation in a setting of immunocompromise and antigen loading, via the reversal of immunosuppression by HAART and/or antimycobacterials. Further understanding of the molecular basis of this pathogenesis may pave the way for effective immunotherapies for the treatment of PR and IRIS. PMID:25809754

  1. Involvement of the peripheral sensory and sympathetic nervous system in the vascular endothelial expression of ICAM-1 and the recruitment of opioid-containing immune cells to inhibit inflammatory pain.

    PubMed

    Mousa, Shaaban A; Shaqura, Mohammed; Brendl, Ute; Al-Khrasani, Mahmoud; Fürst, Susanna; Schäfer, Michael

    2010-11-01

    promotes the endogenous opioid peptide-mediated inhibition of inflammatory pain. They support existing evidence about a close link between the nervous and the immune system. PMID:20600813

  2. Regulation of chronic inflammatory and immune processes by extracellular vesicles.

    PubMed

    Robbins, Paul D; Dorronsoro, Akaitz; Booker, Cori N

    2016-04-01

    Almost all cell types release extracellular vesicles (EVs), which are derived either from multivesicular bodies or from the plasma membrane. EVs contain a subset of proteins, lipids, and nucleic acids from the cell from which they are derived. EV factors, particularly small RNAs such as miRNAs, likely play important roles in cell-to-cell communication both locally and systemically. Most of the functions associated with EVs are in the regulation of immune responses to pathogens and cancer, as well as in regulating autoimmunity. This Review will focus on the different modes of immune regulation, both direct and indirect, by EVs. The therapeutic utility of EVs for the regulation of immune responses will also be discussed. PMID:27035808

  3. The Pathogenesis of ACLF: The Inflammatory Response and Immune Function.

    PubMed

    Moreau, Richard

    2016-05-01

    Although systemic inflammation is a hallmark of acute-on-chronic liver failure (ACLF), its role in the development of this syndrome is poorly understood. Here the author first summarizes the general principles of the inflammatory response. Inflammation can be triggered by exogenous or endogenous inducers. Important exogenous inducers include bacterial products such as pathogen-associated molecular patterns (PAMPs) and virulence factors. Pathogen-associated molecular patterns elicit inflammation through structural feature recognition (using innate pattern-recognition receptors [PRRs]), whereas virulence factors generally trigger inflammation via functional feature recognition. Endogenous inducers are called danger-associated molecular patterns (DAMPs) and include molecules released by necrotic cells and products of extracellular matrix breakdown. Danger-associated molecular patterns use different PRRs. The purpose of the inflammatory response may differ according to the type of stimulus: The aim of infection-induced inflammation is to decrease pathogen burden, whereas the DAMP-induced inflammation aims to promote tissue repair. An excessive inflammatory response can induce collateral tissue damage (a process called immunopathology). However immunopathology may not be the only mechanism of tissue damage; for example, organ failure can develop because of failed disease tolerance. In this review, the author also discusses how general principles of the inflammatory response can help us to understand the development of ACLF in different contexts: bacterial infection, severe alcoholic hepatitis, and cases in which there is no identifiable trigger. PMID:27172355

  4. Neuroendocrine Effects of Stress on Immunity in the Elderly: Implications for Inflammatory Disease

    PubMed Central

    Heffner, Kathi L.

    2010-01-01

    Synopsis Age-related changes in immune function leave older adults at risk for a host of inflammatory diseases. Immune-mediated inflammatory processes are regulated by neuroendocrine hormones, including glucocorticoids, dehydroepiandrosterone (DHEA), and the catecholamines, epinephrine and norepinephrine. This regulation, however, becomes impaired in older adults in light of age-related changes in endocrine function. Chronic stress shows similarly harmful effects on neuroendocrine and immune function and may, therefore, combine with age to further increase disease risk in older adults. This article highlights evidence for the impact of age and stress on neuroendocrine regulation of inflammatory processes that may substantially increase risk for inflammatory disease at older ages. PMID:21094926

  5. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  6. Differential functional genomic effects of anti-inflammatory phytocompounds on immune signaling

    PubMed Central

    2010-01-01

    Background Functional comparative genomic analysis of the cellular immunological effects of different anti-inflammatory phytocompounds is considered as a helpful approach to distinguish the complex and specific bioactivities of candidate phytomedicines. Using LPS-stimulated THP-1 monocytes, we characterize here the immunomodulatory activities of three single phytocompounds (emodin, shikonin, and cytopiloyne) and a defined phytocompound mixture extracted from Echinacea plant (BF/S+L/Ep) by focused DNA microarray analysis of selected immune-related genes. Results Shikonin and emodin significantly inhibited the early expression (within 0.5 h) of approximately 50 genes, notably cytokines TNF-α, IL-1β and IL-4, chemokines CCL4 and CCL8, and inflammatory modulators NFATC3 and PTGS2. In contrast, neither cytopiloyne nor BF/S+L/Ep inhibited the early expression of these 50 genes, but rather inhibited most late-stage expression (~12 h) of another immune gene subset. TRANSPATH database key node analysis identified the extracellular signal-regulated kinase (ERK) 1/2 activation pathway as the putative target of BF/S+L/Ep and cytopiloyne. Western blot confirmed that delayed inactivation of the ERK pathway was indeed demonstrable for these two preparations during the mid-stage (1 to 4 h) of LPS stimulation. We further identified ubiquitin pathway regulators, E6-AP and Rad23A, as possible key regulators for emodin and shikonin, respectively. Conclusion The current focused DNA microarray approach rapidly identified important subgenomic differences in the pattern of immune cell-related gene expression in response to specific anti-inflammatory phytocompounds. These molecular targets and deduced networks may be employed as a guide for classifying, monitoring and manipulating the molecular and immunological specificities of different anti-inflammatory phytocompounds in key immune cell systems and for potential pharmacological application. PMID:20868472

  7. Immunity to systemic Salmonella infections.

    PubMed

    Mastroeni, Pietro

    2002-06-01

    Salmonella infections are a serious public health problem in developing countries and represent a constant concern for the food industry. The severity and the outcome of a systemic Salmonella infection depends on the "virulence" of the bacteria, on the infectious dose as well as on the genetic makeup and immunological status of the host. The control of bacterial growth in the reticuloendothelial system (RES) in the early phases of a Salmonella infection relies on the NADPH oxidase-dependent anti-microbial functions of resident phagocytes and is controlled by the innate resistance gene Nramp1. This early phase is followed by the suppression of Salmonella growth in the RES due to the onset of an adaptive host response. This response relies on the concerted action of a number of cytokines (TNFalpha, IFNgamma, IL12, IL18, and IL15), on the recruitment of inflammatory phagocytes in the tissues and on the activation of the recruited cells. Phagocytes control bacterial growth in this phase of the infection by producing reactive nitrogen intermediates (RNI) generated via the inducible nitric oxide synthase (iNOS). Clearance of the bacteria from the RES at a later stage of the infection requires the CD28-dependent activation of CD4+ TCR-alphabeta T-cells and is controlled by MHC class II genes. Resistance to re-infection with virulent Salmonella micro-organisms requires the presence of Th1 type immunological memory and anti-Salmonella antibodies. Thus, the development of protective immunity to Salmonella infections relies on the cross-talk between the humoral and cellular branches of the immune system. PMID:12108950

  8. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome

    PubMed Central

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika PMID:27212842

  9. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome.

    PubMed

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika. PMID:27212842

  10. The immune system and aging: a review.

    PubMed

    Castelo-Branco, Camil; Soveral, Iris

    2014-01-01

    Abstract The concept of immunosenescence reflects age-related changes in immune responses, both cellular and serological, affecting the process of generating specific responses to foreign and self-antigens. The decline of the immune system with age is reflected in the increased susceptibility to infectious diseases, poorer response to vaccination, increased prevalence of cancer, autoimmune and other chronic diseases. Both innate and adaptive immune responses are affected by the aging process; however, the adaptive response seems to be more affected by the age-related changes in the immune system. Additionally, aged individuals tend to present a chronic low-grade inflammatory state that has been implicated in the pathogenesis of many age-related diseases (atherosclerosis, Alzheimer's disease, osteoporosis and diabetes). However, some individuals arrive to advanced ages without any major health problems, referred to as healthy aging. The immune system dysfunction seems to be somehow mitigated in this population, probably due to genetic and environmental factors yet to be described. In this review, an attempt is made to summarize the current knowledge on how the immune system is affected by the aging process. PMID:24219599

  11. Comparative immune systems in animals.

    PubMed

    Yuan, Shaochun; Tao, Xin; Huang, Shengfeng; Chen, Shangwu; Xu, Anlong

    2014-02-01

    Animal immune systems can be classified into those of innate immunity and those of adaptive immunity. It is generally thought that the former are universal for all animals and depend on germline-encoded receptors that recognize highly conserved pathogen-associated molecular patterns (PAMPs), whereas the latter are vertebrate specific and are mediated primarily by lymphocytes bearing a unique antigen receptor. However, novel adaptive or adaptive-like immunities have been found in invertebrates and jawless vertebrates, and extraordinarily complex innate immunities, created through huge expansions of many innate gene families, have recently been found in the cephalochordate amphioxus and the echinoderm sea urchin. These studies not only inspire immunologists to seek novel immune mechanisms in invertebrates but also raise questions about the origin and evolution of vertebrate immunities. PMID:25384142

  12. Immune System to Brain Signaling: Neuropsychopharmacological Implications

    PubMed Central

    Capuron, Lucile; Miller, Andrew H.

    2011-01-01

    There has been an explosion in our knowledge of the pathways and mechanisms by which the immune system can influence the brain and behavior. In the context of inflammation, pro-inflammatory cytokines can access the central nervous system and interact with a cytokine network in the brain to influence virtually every aspect of brain function relevant to behavior including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits that regulate mood, motor activity, motivation, anxiety and alarm. Behavioral consequences of these effects of the immune system on the brain include depression, anxiety, fatigue, psychomotor slowing, anorexia, cognitive dysfunction and sleep impairment; symptoms that overlap with those which characterize neuropsychiatric disorders, especially depression. Pathways that appear to be especially important in immune system effects on the brain include the cytokine signaling molecules, p38 mitogen activated protein kinase and nuclear factor kappa B; indoleamine 2,3 dioxygenase and its down stream metabolites, kynurenine, quinolinic acid and kynurenic acid; the neurotransmitters, serotonin, dopamine and glutamate; and neurocircuits involving the basal ganglia and anterior cingulate cortex. A series of vulnerability factors including aging and obesity as well as chronic stress also appear to interact with immune to brain signaling to exacerbate immunologic contributions to neuropsychiatric disease. The elucidation of the mechanisms by which the immune system influences behavior yields a host of targets for potential therapeutic development as well as informing strategies for the prevention of neuropsychiatric disease in at risk populations. PMID:21334376

  13. GABAergic signalling in the immune system.

    PubMed

    Barragan, A; Weidner, J M; Jin, Z; Korpi, E R; Birnir, B

    2015-04-01

    The GABAergic system is the main inhibitory neurotransmitter system in the central nervous system (CNS) of vertebrates. Signalling of the transmitter γ-aminobutyric acid (GABA) via GABA type A receptor channels or G-protein-coupled type B receptors is implicated in multiple CNS functions. Recent findings have implicated the GABAergic system in immune cell functions, inflammatory conditions and diseases in peripheral tissues. Interestingly, the specific effects may vary between immune cell types, with stage of activation and be altered by infectious agents. GABA/GABA-A receptor-mediated immunomodulatory functions have been unveiled in immune cells, being present in T lymphocytes and regulating the migration of Toxoplasma-infected dendritic cells. The GABAergic system may also play a role in the regulation of brain resident immune cells, the microglial cells. Activation of microglia appears to regulate the function of GABAergic neurotransmission in neighbouring neurones through changes induced by secretion of brain-derived neurotrophic factor. The neurotransmitter-driven immunomodulation is a new but rapidly growing field of science. Herein, we review the present knowledge of the GABA signalling in immune cells of the periphery and the CNS and raise questions for future research. PMID:25677654

  14. Utility of immune response-derived biomarkers in the differential diagnosis of inflammatory disorders.

    PubMed

    ten Oever, Jaap; Netea, Mihai G; Kullberg, Bart-Jan

    2016-01-01

    Differentiating between inflammatory disorders is difficult, but important for a rational use of antimicrobial agents. Biomarkers reflecting the host immune response may offer an attractive strategy to predict the etiology of an inflammatory process and can thus be of help in decision making. We performed a review of the literature to evaluate the diagnostic value of inflammatory biomarkers in adult patients admitted to the hospital with suspected systemic acute infections. Elevated procalcitonin (PCT) concentrations indicate a bacterial infection in febrile patients with an auto-immune disease, rather than a disease flare. CD64 expression on neutrophils can discriminate between non-infectious systemic inflammation and sepsis, and limited evidence suggests the same for decoy receptor 3. PCT is useful for both diagnosing bacterial infection complicating influenza and guiding antibiotic treatment in lower respiratory tract infections in general. In undifferentiated illnesses, increased CD35 expression on neutrophils distinguishes bacterial from viral infections. Compared to bacterial infections, invasive fungal infections are characterized by low concentrations of PCT. No biomarker predicting a specific infecting agent could be identified. PMID:26429736

  15. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS)

    PubMed Central

    Morris, Gerwyn; Maes, Michael

    2014-01-01

    Myalgic Encephalomyelitis (ME) / Chronic Fatigue Syndrome (CFS) has been classified as a disease of the central nervous system by the WHO since 1969. Many patients carrying this diagnosis do demonstrate an almost bewildering array of biological abnormalities particularly the presence of oxidative and nitrosative stress (O&NS) and a chronically activated innate immune system. The proposal made herein is that once generated chronically activated O&NS and immune-inflammatory pathways conspire to generate a multitude of self-sustaining and self-amplifying pathological processes which are associated with the onset of ME/CFS. Sources of continuous activation of O&NS and immune-inflammatory pathways in ME/CFS are chronic, intermittent and opportunistic infections, bacterial translocation, autoimmune responses, mitochondrial dysfunctions, activation of the Toll-Like Receptor Radical Cycle, and decreased antioxidant levels. Consequences of chronically activated O&NS and immune-inflammatory pathways in ME/CFS are brain disorders, including neuroinflammation and brain hypometabolism / hypoperfusion, toxic effects of nitric oxide and peroxynitrite, lipid peroxidation and oxidative damage to DNA, secondary autoimmune responses directed against disrupted lipid membrane components and proteins, mitochondrial dysfunctions with a disruption of energy metabolism (e.g. compromised ATP production) and dysfunctional intracellular signaling pathways. The interplay between all of these factors leads to self-amplifying feed forward loops causing a chronic state of activated O&NS, immune-inflammatory and autoimmune pathways which may sustain the disease. PMID:24669210

  16. Testicular defense systems: immune privilege and innate immunity.

    PubMed

    Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu

    2014-09-01

    The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation. PMID:24954222

  17. Dynamics of immune system vulnerabilities

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.

    The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.

  18. Innate immune cells in the pathogenesis of primary systemic vasculitis.

    PubMed

    Misra, Durga Prasanna; Agarwal, Vikas

    2016-02-01

    Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis. PMID:26403285

  19. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways

    EPA Science Inventory

    Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...

  20. Impact of nutrition on immune function and the inflammatory response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The review utilizes data on three micronutrients (vitamin A, zinc and iron), anthropometrically defined undernutrition (stunting, wasting and underweight) and obesity to evaluate the effect on immune function, recovery of immune function in response to nutritional interventions, related health outco...

  1. Triptolide in the treatment of psoriasis and other immune-mediated inflammatory diseases.

    PubMed

    Han, Rui; Rostami-Yazdi, Martin; Gerdes, Sascha; Mrowietz, Ulrich

    2012-09-01

    Apart from cancer chronic (auto)immune-mediated diseases are a major threat for patients and a challenge for physicians. These conditions include classic autoimmune diseases like systemic lupus erythematosus, systemic sclerosis and dermatomyositis and also immune-mediated inflammatory diseases such as rheumatoid arthritis and psoriasis. Traditional therapies for these conditions include unspecific immunosuppressants including steroids and cyclophosphamide, more specific compounds such as ciclosporin or other drugs which are thought to act as immunomodulators (fumarates and intravenous immunoglobulins). With increasing knowledge about the underlying pathomechanisms of the diseases, targeted biologic therapies mainly consisting of anti-cytokine or anti-cytokine receptor agents have been developed. The latter have led to a substantial improvement of the induction of long term remission but drug costs are high and are not affordable in all countries. In China an extract of the herb Tripterygium wilfordii Hook F. (TwHF) is frequently used to treat autoimmune and/or inflammatory diseases due to its favourable cost-benefit ratio. Triptolide has turned out to be the active substance of TwHF extracts and has been shown to exert potent anti-inflammatory and immunosuppressive effects in vitro and in vivo. There is increasing evidence for an immunomodulatory and partly immunosuppressive mechanism of action of triptolide. Thus, compounds such as triptolide or triptolide derivatives may have the potential to be developed as a new class of drugs for these diseases. In this review we summarize the published knowledge regarding clinical use, pharmacokinetics and the possible mode of action of triptolide in the treatment of inflammatory diseases with a particular focus on psoriasis. PMID:22348323

  2. The innate immune response in the central nervous system and its role in glioma immune surveillance.

    PubMed

    Friese, M A; Steinle, A; Weller, M

    2004-10-01

    The innate immune system encompasses natural killer (NK) cells, macrophages and granulocytes, the complement system and antimicrobial peptides. Recognition pathways of the innate immune system include microbial non-self recognition, missing-self recognition and induced- self recognition. The central nervous system (CNS) participates in responses of the innate immune system. However, immune inhibitory and anti-inflammatory mechanisms physiologically outbalance and counteract immune activity and thereby limit immune-mediated tissue damage in the brain. Human gliomas appear to take advantage of this immunosuppressive milieu. Moreover, glioma cells themselves interfere with anti-tumor immune responses by expressing immune inhibitory cell surface molecules, such as HLA-G, or by releasing soluble immunosuppressants such as transforming growth factor (TGF)-beta. Yet, although glioma cells exhibit all cellular features of malignancy, these tumors very rarely metastasize outside the brain, raising the possibility of immune-mediated control of these cells outside, but not inside, the brain. Accordingly, activating the innate immune system by forcing glioma cells to express danger signals such as NKG2D ligands is a promising strategy of immunotherapy for these tumors. PMID:15585981

  3. Erythema elevatum diutinum in acquired immune deficiency syndrome: Can it be an immune reconstitution inflammatory syndrome?

    PubMed Central

    Jose, Sheethal K; Marfatia, Yogesh S.

    2016-01-01

    A 47-year-old male with acquired immune deficiency syndrome (AIDS) presented with multiple hyperpigmented papules and nodules on both ankles, dorsum of bilateral feet and soles. It was associated with mild itching and pain. The patient was diagnosed with human immunodeficiency virus (HIV) in 2007. First-line antiretroviral therapy (ART) was started in 2009 to which he responded initially. He was shifted to second-line ART 11 months ago in March 2015 due to treatment failure as suggested by CD4 count of 50 cells/mm3. The present skin lesions started 2 months after the initiation of second-line ART. Differential diagnoses considered were Kaposi's sarcoma and immune reconstitution inflammatory syndrome (IRIS) related infections, but biopsy was suggestive of erythema elevatum diutinum (EED). Patient was started on oral dapsone 100 mg/day and increased to 200 mg/day to which he is responding gradually. In the present case, appearance of the lesions after initiation of second-line ART coupled with increase in CD4 count and decrease of viral load below undetectable level suggest that EED could be an IRIS. PMID:27190420

  4. Erythema elevatum diutinum in acquired immune deficiency syndrome: Can it be an immune reconstitution inflammatory syndrome?

    PubMed

    Jose, Sheethal K; Marfatia, Yogesh S

    2016-01-01

    A 47-year-old male with acquired immune deficiency syndrome (AIDS) presented with multiple hyperpigmented papules and nodules on both ankles, dorsum of bilateral feet and soles. It was associated with mild itching and pain. The patient was diagnosed with human immunodeficiency virus (HIV) in 2007. First-line antiretroviral therapy (ART) was started in 2009 to which he responded initially. He was shifted to second-line ART 11 months ago in March 2015 due to treatment failure as suggested by CD4 count of 50 cells/mm(3). The present skin lesions started 2 months after the initiation of second-line ART. Differential diagnoses considered were Kaposi's sarcoma and immune reconstitution inflammatory syndrome (IRIS) related infections, but biopsy was suggestive of erythema elevatum diutinum (EED). Patient was started on oral dapsone 100 mg/day and increased to 200 mg/day to which he is responding gradually. In the present case, appearance of the lesions after initiation of second-line ART coupled with increase in CD4 count and decrease of viral load below undetectable level suggest that EED could be an IRIS. PMID:27190420

  5. MODEL OF COLONIC INFLAMMATION: IMMUNE MODULATORY MECHANISMS IN INFLAMMATORY BOWEL DISEASE

    PubMed Central

    Wendelsdorf, Katherine; Bassaganya-Riera, Josep; Hontecillas, Raquel; Eubank, Stephen

    2010-01-01

    Inflammatory Bowel Disease (IBD) is an immunoinflammatory illness of the gut initiated by an immune response to bacteria in the microflora. The resulting immunopathogenesis leads to lesions in epithelial lining of the colon through which bacteria may infiltrate the tissue causing recurring bouts of diarrhea, rectal bleeding, and mal-nutrition. In healthy individuals such immunopathogenesis is avoided by the presence of regulatory cells that inhibit the inflammatory pathway. Highly relevant to the search for treatment strategies is the identification of components of the inflammatory pathway that allow regulatory mechanisms to be overridden and immunopathogenesis to proceed. In vitro techniques have identified cellular interactions involved in inflammation-regulation crosstalk. However, tracing immunological mechanisms discovered at the cellular level confidently back to an in vivo context of multiple, simultaneous interactions has met limited success. To explore the impact of specific interactions, we have constructed a system of 29 ordinary differential equations representing different phenotypes of T-cells, macrophages, dendritic cells, and epithelial cells as they move and interact with bacteria in the lumen, lamina propria, and lymphoid tissue of the colon. Simulations revealed the positive inflammatory feedback loop formed by inflammatory M1 macrophage activation of T-cells as a driving force underlying the immunopathology of IBD. Furthermore, strategies that remove M1 from the site of infection, by either i) increasing its potential to switch to a regulatory M2 phenotype or ii) increasing the rate of reversion (for M1 and M2 alike) to a resting state, cease immunopathogenesis even as bacteria are eliminated by other inflammatory cells. Based on these results, we identify macrophages and their mechanisms of plasticity as key targets for mucosal inflammation intervention strategies. In addition, we propose that the primary mechanism behind the association of

  6. Trauma equals danger—damage control by the immune system

    PubMed Central

    Stoecklein, Veit M.; Osuka, Akinori; Lederer, James A.

    2012-01-01

    Traumatic injuries induce a complex host response that disrupts immune system homeostasis and predisposes patients to opportunistic infections and inflammatory complications. The response to injuries varies considerably by type and severity, as well as by individual variables, such as age, sex, and genetics. These variables make studying the impact of trauma on the immune system challenging. Nevertheless, advances have been made in understanding how injuries influence immune system function as well as the immune cells and pathways involved in regulating the response to injuries. This review provides an overview of current knowledge about how traumatic injuries affect immune system phenotype and function. We discuss the current ideas that traumatic injuries induce a unique type of a response that may be triggered by a combination of endogenous danger signals, including alarmins, DAMPs, self-antigens, and cytokines. Additionally, we review and propose strategies for redirecting injury responses to help restore immune system homeostasis. PMID:22654121

  7. The role of histamine H4 receptor in immune and inflammatory disorders.

    PubMed

    Zampeli, E; Tiligada, E

    2009-05-01

    Since its discovery at the beginning of the 20th century, histamine has been established to play a pathophysiological regulatory role in cellular events through binding to four types of G-protein-coupled histamine receptors that are differentially expressed in various cell types. The discovery, at the turn of the millennium, that the histamine H4 receptor is largely expressed in haemopoietic cells as well as its chemotactic properties designate its regulatory role in the immune system. H4 receptors modulate eosinophil migration and selective recruitment of mast cells leading to amplification of histamine-mediated immune responses and eventually to chronic inflammation. H4 receptor involvement in dendritic cell activation and T cell differentiation documents its immunomodulatory function. The characterization of the H4 as the immune system histamine receptor directed growing attention towards its therapeutic exploitation in inflammatory disorders, such as allergy, asthma, chronic pruritus and autoimmune diseases. The efficacy of a number of H4 receptor ligands has been evaluated in in vivo and in vitro animal models of disease and in human biological samples. However, before reaching decisive conclusions on H4 receptor pathophysiological functions and therapeutic exploitation, identification of genetic polymorphisms and interspecies differences in its relative actions and pharmacological profile need to be addressed and taken into consideration. Despite certain variations in the reported findings, the available data strongly point to the H4 receptor as a novel target for the pharmacological modulation of histamine-transferred immune signals and offer an optimistic perspective for the therapeutic exploitation of this promising new drug target in inflammatory disorders. PMID:19309354

  8. Interventions to Improve Adherence in Patients with Immune-Mediated Inflammatory Disorders: A Systematic Review

    PubMed Central

    Depont, Fanny; Berenbaum, Francis; Filippi, Jérome; Le Maitre, Michel; Nataf, Henri; Paul, Carle; Peyrin-Biroulet, Laurent; Thibout, Emmanuel

    2015-01-01

    Background In patients with immune-mediated inflammatory disorders, poor adherence to medication is associated with increased healthcare costs, decreased patient satisfaction, reduced quality of life and unfavorable treatment outcomes. Objective To determine the impact of different interventions on medication adherence in patients with immune-mediated inflammatory disorders. Design Systematic review. Data sources MEDLINE, EMBASE and Cochrane Library. Study eligibility criteria for selecting studies Included studies were clinical trials and observational studies in adult outpatients treated for psoriasis, Crohn’s disease, ulcerative colitis, rheumatoid arthritis, spondyloarthritis, psoriatic arthritis or multiple sclerosis. Study appraisal and synthesis methods Intervention approaches were classified into four categories: educational, behavioral, cognitive behavioral, and multicomponent interventions. The risk of bias/study limitations of each study was assessed using the GRADE system. Results Fifteen studies (14 clinical trials and one observational study) met eligibility criteria and enrolled a total of 1958 patients. Forty percent of the studies (6/15) was conducted in patients with inflammatory bowel disease, half (7/15) in rheumatoid arthritis patients, one in psoriasis patients and one in multiple sclerosis patients. Seven out of 15 interventions were classified as multicomponent, four as educational, two as behavioral and two as cognitive behavioral. Nine studies, of which five were multicomponent interventions, had no serious limitations according to GRADE criteria. Nine out of 15 interventions showed an improvement of adherence: three multicomponent interventions in inflammatory bowel disease; one intervention of each category in rheumatoid arthritis; one multicomponent in psoriasis and one multicomponent in multiple sclerosis. Conclusion The assessment of interventions designed for increasing medication adherence in IMID is rare in the literature and

  9. Portable Immune-Assessment System

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.

    1995-01-01

    Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.

  10. Treatment guidelines and prognosis of immune reconstitution inflammatory syndrome patients: a review.

    PubMed

    Murthy, Anup R; Marulappa, Rekha; Hegde, Usha; Kappadi, Damodhar; Ambikathanaya, U K; Nair, Priyanka

    2015-04-01

    Immune reconstitution inflammatory syndrome (IRIS) is an "unmasking" or paradoxical worsening of a pre-existing infection after commencement of highly active antiretroviral therapy (HAART) in human immunodeficiency virus (HIV) - infected patients. The use of HAART in the management of HIV patients restores immune responses against pathogens however in few patients, the reconstituted immune system leads to IRIS. As the treatment protocols are not standardized for IRIS, this leads to short-term morbidity or in some cases also mortality. Therefore, treatment in these patients is a huge challenge and further more research regarding the immunopathogenesis, diagnosis and management of IRIS should be well thought-out. To understand the immunopathogenesis of IRIS it will be difficult to elucidate the intrinsic dynamics of immune cells after initiation of HAART but, there are few biomarkers which help to predict or diagnose IRIS and develop specific treatment, following initiation of HIV therapy. This review is an attempt to put light on those patients with IRIS with treatment guidelines for the management of the progression of it. PMID:25954081

  11. Immune reconstitution inflammatory syndrome: incidence and implications for mortality

    PubMed Central

    Novak, Richard M.; Richardson, James T.; Buchacz, Kate; Chmiel, Joan S.; Durham, Marcus D.; Palella, Frank J.; Wendrow, Andrea; Wood, Kathy; Young, Benjamin; Brooks, John T.

    2015-01-01

    Objective To describe incidence of immune reconstitution inflammatory syndrome (IRIS) and its association with mortality in a large multisite US HIV-infected cohort applying an objective, comprehensive definition. Design We studied 2 610 patients seen during 1996–2007 who initiated or resumed highly active combination antiretroviral therapy (cART) and, during the next 6 months, demonstrated a decline in plasma HIV-RNA viral load of at least 0.5 log10 copies/ml or an increase of at least 50% in CD4 cell count per microliter. We defined IRIS as the diagnosis of a type B or C condition [as per the Centers for Disease Control and Prevention (CDC) 1993 AIDS case definition] or any new mucocutaneous disorder during this same 6-month period. Methods We assessed the incidence of IRIS and evaluated risk factors for IRIS using conditional logistic regression and for all-cause mortality using proportional hazards models. Results We identified 370 cases of IRIS (in 276 patients). Median and nadir CD4 cell counts at cART initiation were 90 and 43 cells/μl, respectively; median viral load was 2.7 log10 copies/ml. The most common IRIS-defining diagnoses were candidiasis (all forms), cytomegalovirus infection, disseminated Mycobacterium avium intracellulare, Pneumocystis pneumonia, varicella zoster, Kaposi’s sarcoma and non-Hodgkin lymphoma. Only one case of Mycobacterium tuberculosis was observed. IRIS was independently associated with CD4 cell count less than 50 cells/μl vs. at least 200 cells/μl [odds ratio (OR) 5.0] and a viral load of at least 5.0 log10 copies vs. less than 4.0 log10 copies (OR 2.3). IRIS with a type B-defining or type C-defining diagnosis approximately doubled the risk for all-cause mortality. Conclusion In this large US-based HIV-infected cohort, IRIS occurred in 10.6% of patients who responded to effective ART and contributed to increased mortality. PMID:22233655

  12. Marine pharmacology in 2005–6: Marine Compounds with Anthelmintic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Rodriguez, Abimael D.; Berlinck, Roberto G. S.; Hamann, Mark T.

    2009-01-01

    BACKGROUND The review presents the 2005–2006 peer-reviewed marine pharmacology literature, and follows a similar format to the authors’ 1998–2004 reviews. The preclinical pharmacology of chemically characterized marine compounds isolated from marine animals, algae, fungi and bacteria is systematically presented. RESULTS Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 78 marine chemicals. Additionally 47 marine compounds were reported to affect the cardiovascular, immune and nervous system as well as possess anti-inflammatory effects. Finally, 58 marine compounds were shown to bind to a variety of molecular targets, and thus could potentially contribute to several pharmacological classes. CONCLUSIONS Marine pharmacology research during 2005–2006 was truly global in nature, involving investigators from 32 countries, and the United States, and contributed 183 marine chemical leads to the research pipeline aimed at the discovery of novel therapeutic agents. SIGNIFICANCE Continued preclinical and clinical research with marine natural products demonstrating a broad spectrum of pharmacological activity and will probably result in novel therapeutic agents for the treatment of multiple disease categories. PMID:19303911

  13. Marine pharmacology in 2003-4: Marine Compounds with Anthelminthic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M.S.; Rodriguez, Abimael D.; Berlinck, Roberto G.S.; Hamann, Mark T.

    2007-01-01

    The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity. PMID:17392033

  14. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    PubMed Central

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  15. Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action

    PubMed Central

    Mayer, Alejandro M.S.; Hamann, Mark T.

    2016-01-01

    During 2001–2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors’ 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001–2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories. PMID:15919242

  16. Inflammatory and immune markers associated with physical frailty syndrome: findings from Singapore longitudinal aging studies.

    PubMed

    Lu, Yanxia; Tan, Crystal Tze Ying; Nyunt, Ma Shwe Zin; Mok, Esther Wing Hei; Camous, Xavier; Kared, Hassen; Fulop, Tamas; Feng, Liang; Ng, Tze Pin; Larbi, Anis

    2016-05-17

    Chronic systematic inflammation and reduced immune system fitness are considered potential contributing factors to the development of age-related frailty, but the underlying mechanisms are poorly defined. This exploratory study aimed to identify frailty-related inflammatory markers and immunological phenotypes in a cohort of community-dwelling adults aged ≥ 55 years. Frailty was assessed using two models, a Frailty Index and a categorical phenotype, and correlated with levels of circulating immune biomarkers and markers of senescence in immune cell subsets. We identified eight serological biomarkers that were associated with frailty, including sgp130, IL-2Rα, I-309, MCP-1, BCA-1, RANTES, leptin, and IL-6R. Frailty Index was inversely predicted by the frequency of CD3+, CD45RA+, and central memory CD4 cells, and positively predicted by the loss of CD28 expression, especially in CD8+ T cells, while frailty status was predicted by the frequency of terminal effector CD8+ T cells. In γ/δ T cells, frailty was negatively associated with CD27, and positively associated with IFNγ+TNFα- secretion by γ/δ2+ cells and IFNγ-TNFα+ secretion by γ/δ2- cells. Increased numbers of exhausted and CD38+ B cells, as well as CD14+CD16+ inflammatory monocytes, were also identified as frailty-associated phenotypes. This pilot study supports an association between inflammation, cellular immunity, and the process of frailty. These findings have significance for the early identification of frailty using circulating biomarkers prior to clinical manifestations of severe functional decline in the elderly. PMID:27119508

  17. Innate immune sensors stimulate inflammatory and immunosuppressive responses to UVB radiation.

    PubMed

    Gallo, Richard L; Bernard, Jamie J

    2014-06-01

    Almost 40 years from when it was first reported that UVB radiation exposure would modulate immune signaling, the photoimmunology field is still trying to understand the mechanisms by which UVB initiates inflammatory responses and modulates immune recognition. This commentary focuses on the ability of Toll-like receptors (TLRs), specifically TLR4 (Ahmad et al., 2014) and ligands such as damage-associated molecular patterns (DAMPs) released from injured cells to stimulate innate immune signaling and inflammatory cytokine production following UVB irradiation. PMID:24825061

  18. Systems integration of innate and adaptive immunity.

    PubMed

    Zak, Daniel E; Aderem, Alan

    2015-09-29

    The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies. PMID:26102534

  19. Primer on the Immune System.

    PubMed

    Spiering, Martin J

    2015-01-01

    The human body regularly encounters and combats many pathogenic organisms and toxic molecules. Its ensuing responses to these disease-causing agents involve two interrelated systems: innate immunity and adaptive (or acquired) immunity. Innate immunity is active at several levels, both at potential points of entry and inside the body (see figure). For example, the skin represents a physical barrier preventing pathogens from invading internal tissues. Digestive enzymes destroy microbes that enter the stomach with food. Macrophages and lymphocytes, equipped with molecular detectors, such as Toll-like receptors (TLRs), which latch onto foreign structures and activate cellular defenses, patrol the inside of the body. These immune cells sense and devour microbes, damaged cells, and other foreign materials in the body. Certain proteins in the blood (such as proteins of the complement system and those released by natural killer cells, along with antimicrobial host-defense peptides) attach to foreign organisms and toxins to initiate their destruction. PMID:26695756

  20. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases.

    PubMed

    Casas, Rosa; Sacanella, Emilio; Estruch, Ramon

    2014-01-01

    Dietary patterns high in refined starches, sugar, and saturated and trans-fatty acids, poor in natural antioxidants and fiber from fruits, vegetables, and whole grains, and poor in omega-3 fatty acids may cause an activation of the innate immune system, most likely by excessive production of proinflammatory cytokines associated with a reduced production of anti-inflammatory cytokines. The Mediterranean Diet (MedDiet) is a nutritional model inspired by the traditional dietary pattern of some of the countries of the Mediterranean basin. This dietary pattern is characterized by the abundant consumption of olive oil, high consumption of plant foods (fruits, vegetables, pulses, cereals, nuts and seeds); frequent and moderate intake of wine (mainly with meals); moderate consumption of fish, seafood, yogurt, cheese, poultry and eggs; and low consumption of red meat, processed meat products and seeds. Several epidemiological studies have evaluated the effects of a Mediterranean pattern as protective against several diseases associated with chronic low-grade inflammation such as cancer, diabetes, obesity, atherosclerosis, metabolic syndrome and cognition disorders. The adoption of this dietary pattern could counter the effects of several inflammatory markers, decreasing, for example, the secretion of circulating and cellular biomarkers involved in the atherosclerotic process. Thus, the aim of this review was to consider the current evidence about the effectiveness of the MedDiet in these chronic inflammatory diseases due to its antioxidant and anti-inflammatory properties, which may not only act on classical risk factors but also on inflammatory biomarkers such as adhesion molecules, cytokines or molecules related to the stability of atheromatic plaque. PMID:25244229

  1. The Immune Protective Effect of the Mediterranean Diet against Chronic Low-grade Inflammatory Diseases

    PubMed Central

    Casas, Rosa; Sacanella, Emilio; Estruch, Ramon

    2014-01-01

    Dietary patterns high in refined starches, sugar, and saturated and trans-fatty acids, poor in natural antioxidants and fiber from fruits, vegetables, and whole grains, and poor in omega-3 fatty acids may cause an activation of the innate immune system, most likely by excessive production of proinflammatory cytokines associated with a reduced production of anti-inflammatory cytokines. The Mediterranean Diet (MedDiet) is a nutritional model inspired by the traditional dietary pattern of some of the countries of the Mediterranean basin. This dietary pattern is characterized by the abundant consumption of olive oil, high consumption of plant foods (fruits, vegetables, pulses, cereals, nuts and seeds); frequent and moderate intake of wine (mainly with meals); moderate consumption of fish, seafood, yogurt, cheese, poultry and eggs; and low consumption of red meat, processed meat products and seeds. Several epidemiological studies have evaluated the effects of a Mediterranean pattern as protective against several diseases associated with chronic low-grade inflammation such as cancer, diabetes, obesity, atherosclerosis, metabolic syndrome and cognition disorders. The adoption of this dietary pattern could counter the effects of several inflammatory markers, decreasing, for example, the secretion of circulating and cellular biomarkers involved in the atherosclerotic process. Thus, the aim of this review was to consider the current evidence about the effectiveness of the MedDiet in these chronic inflammatory diseases due to its antioxidant and anti-inflammatory properties, which may not only act on classical risk factors but also on inflammatory biomarkers such as adhesion molecules, cytokines or molecules related to the stability of atheromatic plaque. PMID:25244229

  2. [Novel autoantibodies in inflammatory myopathies and systemic sclerosis].

    PubMed

    Ribi, Camillo

    2015-01-14

    Acquired inflammatory myopathies and systemic sclerosis are chronic autoimmune conditions. These diseases arise from sustained activation of the innate and adaptive immune system, resulting in damage to blood vessels, muscles, connective tissues and internal organs. Auto-antibodies are found in a majority of cases, which makes the immune serology an important diagnostic tool. The immuno dot assays detect a variety of disease-specific-or-associated antibodies. A positive result should be correlated with the indirect immunofluorescence pattern of the antinuclear antibody screen. Some antibodies are associated with specific organ involvement, other may indicated an underlying neoplastic condition. The scope of this article is to review the diagnostic and prognostic value of antibodies in inflammatory myopathies and systemic sclerosis. PMID:25799647

  3. An Activated Immune and Inflammatory Response Targets the Pancreas of Newborn Pigs with Cystic Fibrosis

    PubMed Central

    Abu-El-Haija, Maisam; Sinkora, Marek; Meyerholz, David K.; Welsh, Michael J.; McCray, Jr., Paul B.; Butler, John; Uc, Aliye

    2011-01-01

    Background/Aims: In cystic fibrosis (CF), pancreatic disease begins in utero and progresses over time to complete destruction of the organ. Although inflammatory cells have been detected in the pancreas of humans and pigs with CF, their subtypes have not been characterized. Methods: Using four-color flow cytometry, we analyzed the surface antigens of leukocytes in pancreas, blood, and mesenteric lymph nodes (MLN) of newborn pigs with CF (CFTR–/– and CFTRΔF508/ΔF508) and in those without CF (CFTR+/–, CFTR+/ΔF508, CFTR+/+). Pancreatic histopathology was examined with HE stain. Results: CF pig pancreas had patchy distribution of inflammatory cells with neutrophils/macrophages in dilated acini, and lymphocytes in the interstitium compared to non-CF. B cells, effector (MHC-II+) and cytotoxic (CD2+CD8+) γδ T cells, activated (MHC-II+ and/or CD25+) and effector (CD4+CD8+) αβ T helper cells, effector natural killer cells (MHC-II+CD3−CD8+), and monocytes/macrophages and neutrophils were increased in the CF pig pancreas compared to pigs without CF. Blood and MLN leukocyte populations were not different between CF and non-CF pigs. Conclusions: We discovered an activated immune response that was specific to the pancreas of newborn CF pigs; inflammation was not systemic. The presence of both innate and adaptive immune cells suggests that the disease process is complex and extensive. PMID:22057257

  4. Immune reconstitution inflammatory syndrome in a patient with progressive multifocal leukoencephalopathy.

    PubMed

    Shahani, Lokesh; Shah, Minal; Tavakoli-Tabasi, Shahriar

    2015-01-01

    Progressive multifocal leukoencephalopathy (PML) is a severe opportunistic infection of the central nervous system. A 52-year-old man with HIV infection, recently started on antiretroviral therapy, presented with symptoms of mental cloudiness, blurry vision and ataxia. MRI of the brain showed nodular perivascular space enhancement with surrounding vasogenic oedema and midline shift. A lumbar puncture revealed non-inflammatory cerebrospinal fluid and was positive for JC virus. As the patient developed worsening symptoms in the setting of initiation of antiretroviral therapy with immune recovery, a diagnosis of JC virus-associated immune reconstitution inflammatory syndrome (IRIS) was made. With recent literature on the use of CCR5 antagonist maraviroc in PML, our patient was started on maraviroc and noted to have improvement in PML IRIS. This is the first case of an HIV-positive patient successfully treated for PML IRIS with maraviroc, as verified by our literature review; also, our case has clinical implications in improving outcome in PML IRIS. PMID:26063110

  5. Cellular Immune Activation in Cerebrospinal Fluid From Ugandans With Cryptococcal Meningitis and Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Meya, David B.; Okurut, Samuel; Zziwa, Godfrey; Rolfes, Melissa A.; Kelsey, Melander; Cose, Steve; Joloba, Moses; Naluyima, Prossy; Palmer, Brent E.; Kambugu, Andrew; Mayanja-Kizza, Harriet; Bohjanen, Paul R.; Eller, Michael A.; Wahl, Sharon M.; Boulware, David R.; Manabe, Yuka C.; Janoff, Edward N.

    2015-01-01

    Background. Human immunodeficiency virus (HIV)-associated cryptococcal meningitis (CM) is characterized by high fungal burden and limited leukocyte trafficking to cerebrospinal fluid (CSF). The immunopathogenesis of CM immune reconstitution inflammatory syndrome (IRIS) after initiation of antiretroviral therapy at the site of infection is poorly understood. Methods. We characterized the lineage and activation status of mononuclear cells in blood and CSF of HIV-infected patients with noncryptococcal meningitis (NCM) (n = 10), those with CM at day 0 (n = 40) or day 14 (n = 21) of antifungal therapy, and those with CM-IRIS (n = 10). Results. At diagnosis, highly activated CD8+ T cells predominated in CSF in both CM and NCM. CM-IRIS was associated with an increasing frequency of CSF CD4+ T cells (increased from 2.2% to 23%; P = .06), a shift in monocyte phenotype from classic to an intermediate/proinflammatory, and increased programmed death ligand 1 expression on natural killer cells (increased from 11.9% to 61.6%, P = .03). CSF cellular responses were distinct from responses in peripheral blood. Conclusions. After CM, T cells in CSF tend to evolve with the development of IRIS, with increasing proportions of activated CD4+ T cells, migration of intermediate monocytes to the CSF, and declining fungal burden. These changes provide insight into IRIS pathogenesis and could be exploited to more effectively treat CM and prevent CM-IRIS. PMID:25492918

  6. Acne: a new model of immune-mediated chronic inflammatory skin disease.

    PubMed

    Antiga, E; Verdelli, A; Bonciani, D; Bonciolini, V; Caproni, M; Fabbri, P

    2015-04-01

    Acne is a chronic inflammatory disease of the sebaceous-pilosebaceous unit. Interestingly, inflammation can be detected by histopathological examination and immuohistochemical analysis even in the apparently non-inflammatory acneic lesions, such as comedones. In the last years, it has been clearly demonstrated that acne development is linked to the combination of predisposing genetic factors and environmental triggers, among which a prominent role is played by the follicular colonization by Propionibacterium acnes (P. acnes). P. acnes displays several activities able to promote the development of acne skin lesions, including the promotion of follicular hyperkeratinisation, the induction of sebogenesis, and the stimulation of an inflammatory response by the secretion of proinflammatory molecules and by the activation of innate immunity, that is followed by a P. acnes-specific adaptive immune response. In addition, P. acnes-independent inflammation mediated by androgens or by a neurogenic activation, followed by the secretion in the skin of pro-inflammatory neuropeptides, can occur in acne lesions. In conclusion, acne can be considered as a model of immune-mediated chronic inflammatory skin disease, characterized by an innate immune response that is not able to control P. acnes followed by a Th1-mediated adaptive immune response, that becomes self-maintaining independently from P. acnes itself. PMID:25876146

  7. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus.

    PubMed Central

    Cahill, R J; Foltz, C J; Fox, J G; Dangler, C A; Powrie, F; Schauer, D B

    1997-01-01

    Inflammatory bowel disease (IBD) is thought to result from either an abnormal immunological response to enteric flora or a normal immunological response to a specific pathogen. No study to date has combined both factors. The present studies were carried out with an immunologically manipulated mouse model of IBD. Mice homozygous for the severe combined immunodeficiency (scid) mutation develop IBD with adoptive transfer of CD4+ T cells expressing high levels of CD45RB (CD45RB(high) CD4+ T cells). These mice do not develop IBD in germfree conditions, implicating undefined intestinal flora in the pathogenesis of lesions. In controlled duplicate studies, the influence of a single murine pathogen, Helicobacter hepaticus, in combination with the abnormal immunological response on the development of IBD was assessed. The combination of H. hepaticus infection and CD45RB(high) CD4+ T-cell reconstitution resulted in severe disease expression similar to that observed in human IBD. This study demonstrates that IBD develops in mice as a consequence of an abnormal immune response in the presence of a single murine pathogen, H. hepaticus. The interaction of host immunity and a single pathogen in this murine system provides a novel model of human IBD, an immunity-mediated condition triggered by bacterial infection. PMID:9234764

  8. Immune System Disturbances in Schizophrenia

    PubMed Central

    Horváth, Szatmár; Mirnics, Károly

    2013-01-01

    Epidemiological, genetic, transcriptome, postmortem, peripheral biomarker, and therapeutic studies of schizophrenia all point to a dysregulation of both innate and adaptive immune systems in the disease, and it is likely that these immune changes actively contribute to disease symptoms. Gene expression disturbances in the brain of subjects with schizophrenia show complex, region-specific changes with consistently replicated and potentially interdependent induction of serpin peptidase inhibitor, clade A member 3 (SERPINA3) and interferon inducible transmembrane protein (IFITM) family transcripts in the prefrontal cortex. Recent data suggest that IFITM3 expression is a critical mediator of maternal immune activation. As the IFITM gene family is primarily expressed in the endothelial cells and meninges, and as the meninges play a critical role in interneuron development, we suggest that these two non-neuronal cell populations might play an important role in the disease pathophysiology. Finally, we propose that IFITM3 in particular might be a novel, appealing, knowledge-based drug target for treatment of schizophrenia. Gene*environment interactions play a critical role in the emergence of schizophrenia pathophysiology. Epidemiological, genetic, transcriptome, postmortem, peripheral biomarker, and therapeutic studies of schizophrenia all point to a dysregulation of both innate and adaptive immune systems in the disease (1-3) and it is likely that these immune changes actively contribute to disease symptoms (1, 4, 5). Regardless of the abundance of data obtained to date, our understanding of the mechanism by which the immune system disturbances arise is limited: we do not have a good insight into the origin or sequence of events by which the immune dysregulation develops, and to date we have not taken full advantage of these changes as potential therapeutic targets. PMID:23890736

  9. Use of serum C-reactive protein as an early marker of inflammatory activity in canine type II immune-mediated polyarthritis: case report

    PubMed Central

    Kjelgaard-Hansen, Mads; Jensen, Asger Lundorff; Houser, Geoffrey A; Jessen, Lisbeth Rem; Kristensen, Annemarie T

    2006-01-01

    Background Monitoring systemic inflammatory activity during steroid therapy of canine immune-mediated polyarthritis (IMPA) is difficult and mainly relies on clinical signs. Case presentation Canine serum C-reactive protein (CRP) was measured serially and blinded during a 27-week follow-up period of a case of Anaplasma phagocytophilia induced type II immune-mediated polyarthritis. Conclusion WBC was, as expected, observed not to reflect the inflammatory activity during steroid treatment in a clinical useful manner, whereas, CRP is suggested a valuable unbiased marker of inflammatory activity during steroid treatment in this case. PMID:16987405

  10. Neurotrophins and the immune system

    PubMed Central

    Vega, José A; García-Suárez, Olivia; Hannestad, Jonas; Pérez-Pérez, Marta; Germanà, Antonino

    2003-01-01

    The neurotrophins are a family of polypeptide growth factors that are essential for the development and maintenance of the vertebrate nervous system. In recent years, data have emerged indicating that neurotrophins could have a broader role than their name might suggest. In particular, the putative role of NGF and its receptor TrkA in immune system homeostasis has become a much studied topic, whereas information on the other neurotrophins is scarce in this regard. This paper reviews what is known about the expression and possible functions of neurotrophins and their receptors in different immune tissues and cells, as well as recent data obtained from studies of transgenic mice in our laboratory. Results from studies to date support the idea that neurotrophins may regulate some immune functions. They also play an important role in the development of the thymus and in the survival of thymocytes. PMID:12892403

  11. The immune pathogenesis of immune reconstitution inflammatory syndrome associated with highly active antiretroviral therapy in AIDS.

    PubMed

    Zheng, Yuhuang; Zhou, Huaying; He, Yan; Chen, Zi; He, Bo; He, Mei

    2014-12-01

    The present study investigated the immunological pathogenesis of immune reconstitution inflammatory syndrome (IRIS) in acquired immunodeficiency syndrome (AIDS) patients undergoing highly active antiretroviral therapy (HAART). A total of 238 patients with AIDS who received initial HAART were included in this prospective cohort study. Blood samples were collected immediately, at baseline, at week 12, and at week 24 after initial HAART and at the onset of IRIS. Lymphocyte subsets, Th1 and Th2 cytokines, and interleukin (IL)-7 levels were measured by flow cytometry or ELISA. Among the 238 patients with AIDS who received HAART, 47 patients developed IRIS. The percentages of CD4(+) and CD8(+) naive, memory, and activated cells exhibited no significant differences between AIDS patients with and without IRIS 24 weeks after initial HAART. The percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells was lower in IRIS patients than in non-IRIS patients before HAART, 12 weeks after HAART, 24 weeks after HAART, and at the onset of IRIS. IL-2 and interferon (IFN)-γ levels were significantly higher at week 4 and at the onset of IRIS in IRIS patients than in non-IRIS patients. In contrast, IL-4 and IL-10 levels were significantly lower at week 4 and at the onset of IRIS in IRIS patients than in non-IRIS patients. Plasma IL-7 decreased gradually with the progression of HAART. The level of IL-7 was higher in IRIS patients than in non-IRIS patients at all follow-up time points. An imbalance of Th1/Th2 cytokines, a consistently low CD(+)CD25(+)Fox3(+) percentage, and a high IL-7 level may be crucial in the pathogenesis of IRIS in AIDS patients who had received HAART. PMID:25131160

  12. Axillary lymph node tuberculosis masquerading as inflammatory breast carcinoma in an immune-compromised patient.

    PubMed

    Chikkannaiah, Panduranga; Vani, B R; Benachinmardi, Kirtilaxmi; Murthy, V Srinivasa

    2016-02-01

    While tuberculosis is still the leading opportunistic infection among human immunodeficiency virus-seropositive patients, extra-pulmonary tuberculosis is more common than pulmonary tuberculosis, with lymph nodes being a common site. Axillary lymph node pathology such as tuberculosis and lymphoma rarely mimics inflammatory breast carcinoma by producing lymphatic obstruction. We report a case of axillary lymph node tuberculosis in a 40-year-old immune-compromised woman, clinically presenting as inflammatory breast carcinoma. PMID:25681261

  13. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics.

    PubMed

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-11-14

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms "probiotics" and "gene expression" combined with "intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins

  14. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics

    PubMed Central

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-01-01

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms “probiotics" and "gene expression" combined with “intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and

  15. The vagus nerve and the inflammatory reflex—linking immunity and metabolism

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.

    2014-01-01

    The vagus nerve has an important role in regulation of metabolic homeostasis, and efferent vagus nerve-mediated cholinergic signalling controls immune function and proinflammatory responses via the inflammatory reflex. Dysregulation of metabolism and immune function in obesity are associated with chronic inflammation, a critical step in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Cholinergic mechanisms within the inflammatory reflex have, in the past 2 years, been implicated in attenuating obesity-related inflammation and metabolic complications. This knowledge has led to the exploration of novel therapeutic approaches in the treatment of obesity-related disorders. PMID:23169440

  16. [Psychoneuroimmunology--regulation of immunity at the systemic level].

    PubMed

    Boranić, Milivoj; Sabioncello, Ante; Gabrilovac, Jelka

    2008-01-01

    Innate and acquired immune reactions are controlled by their intrinsic regulatory mechanisms, ie. by an array of cytokines that mediate communication among cells of the immune system itself and with other cells and tissues, e. g. in areas of inflammation. In addition, the immune system is also subjected to systemic regulation by the vegetative and endocrine systems since immune cells express receptors for neurotransmitters and hormones. Neuroendocrine signals may enhance or suppress the immune reaction, accelerate or slow it, but do not affect specificity. Various stressful factors, including the psychosocial ones, affect immunity. In turn, cytokines generated by the immune system influence hormonal secretion and central nervous system, producing specific behavioral changes (the "sickness behavior") accompanying infectious and inflammatory diseases. That includes somnolence, loss of apetite, depression or anxiety and decrease of cognitive abilities, attention and memory. Local immune systems in skin and mucosa are also subjected to systemic neuroendocrine regulation and possess intrinsic neuroregulatory networks as well. These mechanisms render skin and respiratory and digestive tracts responsive to various forms of stress. Examples are neurodermitis, asthma and ulcerative colitis. In children, the immune and the neuroendocrine systems are still developing, particularly in fetal, neonatal and early infant periods, and exposure to stressful experiences at that time may result in late consequences in the form of deficient immunity or greater risks for allergic or autoimmune reactions. Recognition of the participation of neuroendocrine mechanisms in regulation of immunity helps us understand alterations and disturbances of immune reactions under the influence of stressful factors but so far has not produced reliable therapeutic implications. Psychosocial interventions involving the child and its family may be useful. PMID:18592962

  17. Role of NF-κB in immune and inflammatory responses in the gut

    PubMed Central

    NEURATH, M; BECKER, C; BARBULESCU, K

    1998-01-01

    NF-κB is a pleiotropic transcription factor with key functions in the intestinal immune system. NF-κB family members control transcriptional activity of various promoters of proinflammatory cytokines, cell surface receptors, transcription factors, and adhesion molecules that are involved in intestinal inflammation. The perpetuated activation of NF-κB in patients with active inflammatory bowel disease suggests that regulation of NF-κB activity is a very attractive target for therapeutic intervention. Such strategies include antioxidants, proteasome inhibitors, inhibition of NF-κB by adenoviral IκBα expression vectors, and antisense DNA targeting of NF-κB. These approaches will hopefully permit the design of new treatment strategies for chronic intestinal inflammation. 

 PMID:9824616

  18. Effects of laparoscopic radical gastrectomy and the influence on immune function and inflammatory factors

    PubMed Central

    Ma, Zhao; Bao, Xuebin; Gu, Junbao

    2016-01-01

    , laparoscopic radical gastrectomy has better treatment effects, lower inflammatory response, less impact on the immune system and fewer complications, which is worth clinical consideration.

  19. Induction of mucosal immunity through systemic immunization: Phantom or reality?

    PubMed

    Su, Fei; Patel, Girishchandra B; Hu, Songhua; Chen, Wangxue

    2016-04-01

    Generation of protective immunity at mucosal surfaces can greatly assist the host defense against pathogens which either cause disease at the mucosal epithelial barriers or enter the host through these surfaces. Although mucosal routes of immunization, such as intranasal and oral, are being intensely explored and appear promising for eliciting protective mucosal immunity in mammals, their application in clinical practice has been limited due to technical and safety related challenges. Most of the currently approved human vaccines are administered via systemic (such as intramuscular and subcutaneous) routes. Whereas these routes are acknowledged as being capable to elicit antigen-specific systemic humoral and cell-mediated immune responses, they are generally perceived as incapable of generating IgA responses or protective mucosal immunity. Nevertheless, currently licensed systemic vaccines do provide effective protection against mucosal pathogens such as influenza viruses and Streptococcus pneumoniae. However, whether systemic immunization induces protective mucosal immunity remains a controversial topic. Here we reviewed the current literature and discussed the potential of systemic routes of immunization for the induction of mucosal immunity. PMID:26752023

  20. Immune System: Can Your Immune System Still Defend You As You Age?

    MedlinePlus

    ... Aging Heath and Aging Biology of Aging IMMUNE SYSTEM: Can Your Immune System Still Defend You As You Age? Elementary schools ... protection in older individuals. Organs of the Immune System Adapted from www.niaid.nih.gov The Future ...

  1. The Role of Innate Immunity Receptors in the Pathogenesis of Inflammatory Bowel Disease

    PubMed Central

    Elia, Paula Peruzzi; Tolentino, Yolanda Faia M.; de Souza, Heitor Siffert Pereira

    2015-01-01

    Innate immunity constitutes the first line of defense, fundamental for the recognition and the initiation of an inflammatory response against microorganisms. The innate immune response relies on the sensing of microbial-associated molecular patterns through specialized structures such as toll-like receptors (TLRs) and the nucleotide oligomerization domain- (NOD-) like receptors (NLRs). In the gut, these tasks are performed by the epithelial barrier and the presence of adaptive and innate immune mechanisms. TLRs and NLRs are distributed throughout the gastrointestinal mucosa, being more expressed in the epithelium, and in lamina propria immune and nonimmune cells. These innate immunity receptors exhibit complementary biological functions, with evidence for pathways overlapping. However, as tolerance is the predominant physiological response in the gastrointestinal mucosa, it appears that the TLRs are relatively downregulated, while NLRs play a critical role in mucosal defense in the gut. Over the past two decades, genetic polymorphisms have been associated with several diseases including inflammatory bowel disease. Special emphasis has been given to the susceptibility to Crohn's disease, in association with abnormalities in the NOD2 and in the NLRP3/inflammasome. Nevertheless, the mechanisms underlying innate immune receptors dysfunction that result in the persistent inflammation in inflammatory bowel disease remain to be clarified. PMID:25821356

  2. Priming in Systemic Plant Immunity

    SciTech Connect

    Jung, Ho Won; Tschaplinski, Timothy J; Wang, Lin; Glazebrook, Jane; Greenberg, Jean T.

    2009-01-01

    Upon local infection, plants possess inducible systemic defense responses against their natural enemies. Bacterial infection results in the accumulation to high levels of the mobile metabolite C9-dicarboxylic acid azelaic acid in the vascular sap of Arabidopsis. Azelaic acid confers local and systemic resistance against Pseudomonas syringae. The compound primes plants to strongly accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of a gene induced by azelaic acid (AZI1) results in the specific loss in plants of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction. AZI1, a predicted secreted protein, is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 comprise novel components of plant systemic immunity involved in priming defenses.

  3. Effect of lysophosphatidic acid on the immune inflammatory response and the connexin 43 protein in myocardial infarction

    PubMed Central

    ZHANG, DUODUO; ZHANG, YAN; ZHAO, CHUNYAN; ZHANG, WENJIE; SHAO, GUOGUANG; ZHANG, HONG

    2016-01-01

    Lysophosphatidic acid (LPA) is an intermediate product of membrane phospholipid metabolism. Recently, LPA has gained attention for its involvement in the pathological processes of certain cardiovascular diseases. The aim of the present study was to clarify the association between the effect of LPA and the immune inflammatory response, and to investigate the effects of LPA on the protein expression levels of connexin 43 during myocardial infarction. Surface electrocardiograms of myocardial infarction rats and isolated rat heart tissue samples were obtained in order to determine the effect of LPA on the incidence of arrhythmia in rats that exhibited changes in immune status. The results demonstrated that the incidence of arrhythmia decreased when the rat immune systems were suppressed, and the incidence of arrhythmia increased when the rat immune systems were enhanced. The concentration levels of tumor necrosis factor (TNF)-α were determined by ELISA, and the results demonstrated that LPA induced T lymphocyte synthesis and TNF-α release. Using a patch-clamp technique, LPA was shown to increase the current amplitude of the voltage-dependent potassium channels (Kv) and calcium-activated potassium channels (KCa) in Jurkat T cells. The protein expression of connexin 43 (Cx43) was determined by immunohistochemical staining. The results indicated that LPA caused the degradation of Cx43 and decreased the expression of Cx43. This effect was associated with the immune status of the rats. There was a further decrease in Cx43 expression in the rats of the immune-enhanced group. To the best of our knowledge, these results provide the first evidence that LPA causes arrhythmia through the regulation of immune inflammatory cells and the decrease of Cx43 protein expression. The present study provided an experimental basis for the treatment of arrhythmia and may guide clinical care. PMID:27168781

  4. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.

    PubMed

    Hartig, Ellen I; Zhu, Shusen; King, Benjamin L; Coffman, James A

    2016-01-01

    Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  5. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  6. How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases

    PubMed Central

    Pluchino, Stefano; Cossetti, Chiara

    2014-01-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288

  7. Balancing Innate Immunity and Inflammatory State via Modulation of Neutrophil Function: A Novel Strategy to Fight Sepsis

    PubMed Central

    Fang, Haoshu; Jiang, Wei; Cheng, Jin; Lu, Yan; Liu, Anding; Kan, Lixin; Dahmen, Uta

    2015-01-01

    Sepsis and SIRS (systemic inflammatory response syndrome) belong to a severe disease complex characterized by infection and/or a whole-body inflammatory state. There is a growing body of evidence that neutrophils are actively involved in sepsis and are responsible for both release of cytokines and phagocytosis of pathogens. The neutrophil level is mainly regulated by G-CSF, a cytokine and drug, which is widely used in the septic patient with neutropenia. This review will briefly summarize the role of neutrophils and the therapeutic effect of G-CSF in sepsis. We further suggest that targeting neutrophil function to modulate the balance between innate immunity and inflammatory injury could be a worthwhile therapeutic strategy for sepsis. PMID:26798659

  8. Acute Cryptococcal Immune Reconstitution Inflammatory Syndrome in a Patient on Natalizumab

    PubMed Central

    Gundacker, Nathan D.; Jordan, Stephen J.; Jones, Benjamin A.; Drwiega, Joseph C.; Pappas, Peter G.

    2016-01-01

    Presented is the first case of acute immune reconstitution inflammatory syndrome (IRIS)-associated cryptococcal meningoencephalitis in a patient on natalizumab for multiple sclerosis. The patient developed acute cerebral edema after initiation of amphotericin B. We propose several mechanisms that explain the acuity of IRIS in this specific patient population and suggest possible therapies. PMID:27006962

  9. Age-associated changes in immune and inflammatory response: role of nutritional intervention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with dysregulated immune and inflammatory responses. Declined T cell function is best characterized in immuno-senescence. Both intrinsic changes within T cells and extrinsic factors contribute to the age-associated decline in T cell function. T cell defect involves multiple stage...

  10. [Obesity and the immune system].

    PubMed

    Muñoz, M; Mazure, R A; Culebras, J M

    2004-01-01

    With an increased prevalence of obesity in developed countries, associated chronic diseases rise in a parallel way. Morbidity secondary to overweight and obesity include type 2 diabetes, dislipemia, hypertension, heart disease, cerebrovascular disease, cholelithiasis, osteoarthritis, heart insufficiency, sleep apnoea, menstrual changes, sterility and psychological alterations. There is also a greater susceptibility to suffer some types of cancer, infections, greater risk of bacteremia and a prolonged time of wound healing after surgical operations. All these factors indicate that obesity exerts negative effects upon the immune system. Immune changes found in obesity and their possible interrelations are described in this article. Changes produced during obesity affect both humoral and cellular immunity. It is known that adipose tissue, together with its role as energy reserve in form of triglycerides, has important endocrine functions, producing several hormones and other signal molecules. Immune response can be deeply affected by obesity, playing leptin an important role. Properties of leptin, alterations of leptin levels in different situations and its changes with different medical and surgical therapies for obesity are described in this article. PMID:15672646

  11. The Innate Immune System in Acute and Chronic Wounds

    PubMed Central

    MacLeod, Amanda S.; Mansbridge, Jonathan N.

    2016-01-01

    Significance: This review article provides an overview of the critical roles of the innate immune system to wound healing. It explores aspects of dysregulation of individual innate immune elements known to compromise wound repair and promote nonhealing wounds. Understanding the key mechanisms whereby wound healing fails will provide seed concepts for the development of new therapeutic approaches. Recent Advances: Our understanding of the complex interactions of the innate immune system in wound healing has significantly improved, particularly in our understanding of the role of antimicrobials and peptides and the nature of the switch from inflammatory to reparative processes. This takes place against an emerging understanding of the relationship between human cells and commensal bacteria in the skin. Critical Issues: It is well established and accepted that early local inflammatory mediators in the wound bed function as an immunological vehicle to facilitate immune cell infiltration and microbial clearance upon injury to the skin barrier. Both impaired and excessive innate immune responses can promote nonhealing wounds. It appears that the switch from the inflammatory to the proliferative phase is tightly regulated and mediated, at least in part, by a change in macrophages. Defining the factors that initiate the switch in such macrophage phenotypes and functions is the subject of multiple investigations. Future Directions: The review highlights processes that may be useful targets for further investigation, particularly the switch from M1 to M2 macrophages that appears to be critical as dysregulation of this switch occurs during defective wound healing. PMID:26862464

  12. [Signal systems of plant immunity].

    PubMed

    Dmitriev, A P

    2002-01-01

    Plants can recognise the penetrating pathogen and respond to the attack with an array of defense reactions. Signal transduction from receptor in plasma membrane to genome is necessary to activate these reactions. Plant cell signaling systems which take part in signal transduction were discovered and identified recently. The obtained results suggest that plant cells have complex and well coordinated signal network which regulates their immune potential. PMID:12187855

  13. Complement System Part II: Role in Immunity

    PubMed Central

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  14. Immune System Toxicity and Immunotoxicity Hazard Identification

    EPA Science Inventory

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  15. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases.

    PubMed

    Zhong, Zhenyu; Sanchez-Lopez, Elsa; Karin, Michael

    2016-01-01

    Loss of homeostasis, as a result of pathogen invasion or self imbalance, causes tissue damage and inflammation. In addition to its well-established role in promoting clearance of pathogens or cell corpses, inflammation is also key to drive tissue repair and regeneration. Conserved from flies to humans, a transient, well-balanced inflammatory response is critical for restoration of tissue homeostasis after damage. The absence of such a response can result in failure of tissue repair, leading to the development of devastating immunopathologies and degenerative diseases. Studies in the past decade collectively suggest that a malfunction of NLRP3 inflammasome, a key tissue damage sensor, is a dominant driver of various autoinflammatory and autoimmune diseases, including gout, rheumatoid arthritis, and lupus. It is therefore crucial to understand the biology and regulation of NLRP3 inflammasome and determine its affect in the context of various diseases. Of note, various studies suggest that autophagy, a cellular waste removal and rejuvenation process, serves an important role as a macrophage-intrinsic negative regulator of NLRP3 inflammasome. Here, we review recent advances in understanding how autophagy regulates NLRP3 inflammasome activity and discuss the implications of this regulation on the pathogenesis of autoinflammatory and autoimmune diseases. PMID:27586797

  16. Inflammatory caspases are innate immune receptors for intracellular LPS.

    PubMed

    Shi, Jianjin; Zhao, Yue; Wang, Yupeng; Gao, Wenqing; Ding, Jingjin; Li, Peng; Hu, Liyan; Shao, Feng

    2014-10-01

    The murine caspase-11 non-canonical inflammasome responds to various bacterial infections. Caspase-11 activation-induced pyroptosis, in response to cytoplasmic lipopolysaccharide (LPS), is critical for endotoxic shock in mice. The mechanism underlying cytosolic LPS sensing and the responsible pattern recognition receptor are unknown. Here we show that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS. LPS-induced cytotoxicity was mediated by human caspase-4 that could functionally complement murine caspase-11. Human caspase-4 and the mouse homologue caspase-11 (hereafter referred to as caspase-4/11) and also human caspase-5, directly bound to LPS and lipid A with high specificity and affinity. LPS associated with endogenous caspase-11 in pyroptotic cells. Insect-cell purified caspase-4/11 underwent oligomerization upon LPS binding, resulting in activation of the caspases. Underacylated lipid IVa and lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) could bind to caspase-4/11 but failed to induce their oligomerization and activation. LPS binding was mediated by the CARD domain of the caspase. Binding-deficient CARD-domain point mutants did not respond to LPS with oligomerization or activation and failed to induce pyroptosis upon LPS electroporation or bacterial infections. The function of caspase-4/5/11 represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation. PMID:25119034

  17. Powering the Immune System: Mitochondria in Immune Function and Deficiency

    PubMed Central

    Walker, Melissa A.; Sims, Katherine B.; Walter, Jolan E.; Traggiai, Elisabetta

    2014-01-01

    Mitochondria are critical subcellular organelles that are required for several metabolic processes, including oxidative phosphorylation, as well as signaling and tissue-specific processes. Current understanding of the role of mitochondria in both the innate and adaptive immune systems is expanding. Concurrently, immunodeficiencies arising from perturbation of mitochondrial elements are increasingly recognized. Recent observations of immune dysfunction and increased incidence of infection in patients with primary mitochondrial disorders further support an important role for mitochondria in the proper function of the immune system. Here we review current findings. PMID:25309931

  18. Androgens and estrogens modulate the immune and inflammatory responses in rheumatoid arthritis.

    PubMed

    Cutolo, Maurizio; Seriolo, Bruno; Villaggio, Barbara; Pizzorni, Carmen; Craviotto, Chiara; Sulli, Alberto

    2002-06-01

    Generally, androgens exert suppressive effects on both humoral and cellular immune responses and seem to represent natural anti-inflammatory hormones; in contrast, estrogens exert immunoenhancing activities, at least on humoral immune response. Low levels of gonadal androgens (testosterone/dihydrotestosterone) and adrenal androgens (dehydroepiandrosterone and its sulfate), as well as lower androgen/estrogen ratios, have been detected in body fluids (that is, blood, synovial fluid, smears, salivary) of both male and female rheumatoid arthritis patients, supporting the possibility of a pathogenic role for the decreased levels of the immune-suppressive androgens. Several physiological, pathological, and therapeutic conditions may change the sex hormone milieu and/or peripheral conversion, including the menstrual cycle, pregnancy, the postpartum period, menopause, chronic stress, and inflammatory cytokines, as well as use of corticosteroids, oral contraceptives, and steroid hormonal replacements, inducing altered androgen/estrogen ratios and related effects. Therefore, sex hormone balance is still a crucial factor in the regulation of immune and inflammatory responses, and the therapeutical modulation of this balance should represent part of advanced biological treatments for rheumatoid arthritis and other autoimmune rheumatic diseases. PMID:12114267

  19. Immunological memory within the innate immune system

    PubMed Central

    Sun, Joseph C; Ugolini, Sophie; Vivier, Eric

    2014-01-01

    Immune memory has traditionally been the domain of the adaptive immune system, present only in antigen-specific T and B cells. The purpose of this review is to summarize the evidence for immunological memory in lower organisms (which are not thought to possess adaptive immunity) and within specific cell subsets of the innate immune system. A special focus will be given to recent findings in both mouse and humans for specificity and memory in natural killer (NK) cells, which have resided under the umbrella of innate immunity for decades. The surprising longevity and enhanced responses of previously primed NK cells will be discussed in the context of several immunization settings. PMID:24674969

  20. GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro

    PubMed Central

    2010-01-01

    - and the PWM-induced expression of IL-10. Conclusion The data suggest that consumption of GanedenBC30TM may introduce both cell wall components and metabolites that modulate inflammatory processes in the gut. Both the cell wall and the supernatant possess strong immune modulating properties in vitro. The anti-inflammatory effects, combined with direct induction of IL-10, are of interest with respect to possible treatment of inflammatory bowel diseases as well as in support of a healthy immune system. PMID:20331905

  1. CNS Remyelination and the Innate Immune System

    PubMed Central

    McMurran, Christopher E.; Jones, Clare A.; Fitzgerald, Denise C.; Franklin, Robin J. M.

    2016-01-01

    A misguided inflammatory response is frequently implicated in myelin damage. Particularly prominent among myelin diseases, multiple sclerosis (MS) is an autoimmune condition, with immune–mediated damage central to its etiology. Nevertheless, a robust inflammatory response is also essential for the efficient regeneration of myelin sheaths after such injury. Here, we discuss the functions of inflammation that promote remyelination, and how these have been experimentally disentangled from the pathological facets of the immune response. We focus on the contributions that resident microglia and monocyte-derived macrophages make to remyelination and compare the roles of these two populations of innate immune cells. Finally, the current literature is framed in the context of developing therapies that manipulate the innate immune response to promote remyelination in clinical myelin disease. PMID:27200350

  2. Nutritionally Mediated Programming of the Developing Immune System12

    PubMed Central

    Palmer, Amanda C.

    2011-01-01

    A growing body of evidence highlights the importance of a mother’s nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a “layered” expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease. PMID:22332080

  3. Immune System and Its Link to Rheumatic Diseases

    MedlinePlus

    ... Immune System & Its Link to Rheumatic Disease The Immune System and Its Link to Rheumatic Disease Fast Facts ... of a vessel of the body). What’s the immune system? The immune system allows us to identify and ...

  4. Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells.

    PubMed

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-09-01

    Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules. PMID:27262513

  5. Possible Implication of Local Immune Response in Darier's Disease: An Immunohistochemical Characterization of Lesional Inflammatory Infiltrate

    PubMed Central

    Miracco, Clelia; Pietronudo, Francesco; Mourmouras, Vasileios; Pellegrino, Michele; Onorati, Monica; Mastrogiulio, Maria Grazia; Cantarini, Luca; Luzi, Pietro

    2010-01-01

    Cell-mediated immunity is considered to be normal in Darier's Disease (DD), an inherited skin disorder complicated by skin infections. To date, there are no investigations on the local inflammatory infiltrate in DD skin lesions. In this immunohistochemical study we characterized and quantified it, making comparisons with two other inflammatory skin disorders, that is, pemphigus vulgaris (PV) and lichen ruber planus (LRP), and with the normal skin (NSk). We found a significant (P < .05) decrease of CD1a+ Langerhans cells (LCs) in DD, compared to PV, LRP, and NSk, and of CD123+ plasmacytoid dendritic cells (pDCs), compared to PV and LRP. We hypothesize that the genetic damage of keratinocytes might result in a loss of some subsets of dendritic cells and, consequently, in an impaired local immune response, which might worsen the infections that inevitably occur in this disease. PMID:20671948

  6. [Severe inflammation during recovery from neutropenia: the immune reconstitution inflammatory syndrome following chemotherapy].

    PubMed

    van Lier, Dirk P T; Janssen, Nico A F; Snoeren, Miranda M; Verweij, Paul E; Blijlevens, Nicole M A; van der Velden, Walter J F M

    2015-01-01

    Immune reconstitution inflammatory syndrome (IRIS) occurs when a patient is recovering from a transient immunodeficiency and results in an uncontrolled inflammatory response to infectious agents and tissue damage. Symptoms such as fever and radiological signs seem to paradoxically appear or worsen, unmasking a previously unrecognized infection. The patient's clinical condition may then deteriorate as a result of increasing tissue damage and this may even lead to death. IRIS was initially described in patients suffering from a HIV infection who experienced immune recovery following the initiation of antiretroviral therapy. Increasingly, however, the syndrome is being reported in patients who are recovering from an episode of neutropenia following chemotherapy, hypomethylating agent use or a stem cell transplantation for the treatment of a solid tumour or haematological cancers. We describe two cases of IRIS following an episode of neutropenia in patients with a haematological malignancy and elaborate on the pathogenesis, diagnosis and treatment of IRIS in cancer patients. PMID:26246060

  7. The innate immune function of airway epithelial cells in inflammatory lung disease.

    PubMed

    Hiemstra, Pieter S; McCray, Paul B; Bals, Robert

    2015-04-01

    The airway epithelium is now considered to be central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as the first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. Herein, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, chronic obstructive pulmonary fibrosis and cystic fibrosis will be discussed. PMID:25700381

  8. The innate immune function of airway epithelial cells in inflammatory lung disease

    PubMed Central

    Hiemstra, Pieter S.; McCray, Paul B.; Bals, Robert

    2016-01-01

    The airway epithelium is now considered central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as a first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. In the review, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, COPD and cystic fibrosis, are discussed. PMID:25700381

  9. Programmed cell death in the plant immune system

    PubMed Central

    Coll, N S; Epple, P; Dangl, J L

    2011-01-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms. PMID:21475301

  10. The interplay between the gut microbiota and the immune system

    PubMed Central

    Geuking, Markus B; Köller, Yasmin; Rupp, Sandra; McCoy, Kathy D

    2014-01-01

    The impact of the gut microbiota on immune homeostasis within the gut and, importantly, also at systemic sites has gained tremendous research interest over the last few years. The intestinal microbiota is an integral component of a fascinating ecosystem that interacts with and benefits its host on several complex levels to achieve a mutualistic relationship. Host-microbial homeostasis involves appropriate immune regulation within the gut mucosa to maintain a healthy gut while preventing uncontrolled immune responses against the beneficial commensal microbiota potentially leading to chronic inflammatory bowel diseases (IBD). Furthermore, recent studies suggest that the microbiota composition might impact on the susceptibility to immune-mediated disorders such as autoimmunity and allergy. Understanding how the microbiota modulates susceptibility to these diseases is an important step toward better prevention or treatment options for such diseases. PMID:24922519

  11. [Sports and the immune system].

    PubMed

    Baum, M; Liesen, H

    1997-11-01

    Acute exercise is followed by a mobilization of white blood cells, mainly induced by increased levels of catecholamines and cortisol. NK-cells react the most intensive, they can increase fivefold after intensive exercise. Additionally a weak acute-phase reaction occurs. Most of these changes normalize during twenty-four hours. Parameters of the humoral immune system may be different from the pre-exercise levels up to seventy-two hours. Repeated physical exercise, which is typical for sports, is followed only by small changes of immunologic parameters under conditions of rest. Epidemiological studies give clues that the rate of upper respiratory tract infections in athletes can be described by a j-shaped curve. Moderately active subjects have the lowest rate of infection. For this influence of exercise on health mainly functional changes seem to be important. Especially after excentric exercise immunological cells can be seen in the muscle tissue, which remove destructed tissue. Not very much is known about the role of the immune system in the regeneration of tendons and other bradytrophic tissues. PMID:9490433

  12. The Mucosal Immune System and Its Regulation by Autophagy

    PubMed Central

    Kabat, Agnieszka M.; Pott, Johanna; Maloy, Kevin J.

    2016-01-01

    The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a “self-eating” survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders. PMID:27446072

  13. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis.

    PubMed

    Jarvis, Joseph N; Meintjes, Graeme; Bicanic, Tihana; Buffa, Viviana; Hogan, Louise; Mo, Stephanie; Tomlinson, Gillian; Kropf, Pascale; Noursadeghi, Mahdad; Harrison, Thomas S

    2015-04-01

    Understanding the host immune response during cryptococcal meningitis (CM) is of critical importance for the development of immunomodulatory therapies. We profiled the cerebrospinal fluid (CSF) immune-response in ninety patients with HIV-associated CM, and examined associations between immune phenotype and clinical outcome. CSF cytokine, chemokine, and macrophage activation marker concentrations were assayed at disease presentation, and associations between these parameters and microbiological and clinical outcomes were examined using principal component analysis (PCA). PCA demonstrated a co-correlated CSF cytokine and chemokine response consisting primarily of Th1, Th2, and Th17-type cytokines. The presence of this CSF cytokine response was associated with evidence of increased macrophage activation, more rapid clearance of Cryptococci from CSF, and survival at 2 weeks. The key components of this protective immune-response were interleukin (IL)-6 and interferon-γ, IL-4, IL-10 and IL-17 levels also made a modest positive contribution to the PC1 score. A second component of co-correlated chemokines was identified by PCA, consisting primarily of monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α). High CSF chemokine concentrations were associated with low peripheral CD4 cell counts and CSF lymphocyte counts and were predictive of immune reconstitution inflammatory syndrome (IRIS). In conclusion CSF cytokine and chemokine profiles predict risk of early mortality and IRIS in HIV-associated CM. We speculate that the presence of even minimal Cryptococcus-specific Th1-type CD4+ T-cell responses lead to increased recruitment of circulating lymphocytes and monocytes into the central nervous system (CNS), more effective activation of CNS macrophages and microglial cells, and faster organism clearance; while high CNS chemokine levels may predispose to over recruitment or inappropriate recruitment of immune cells to the CNS and IRIS

  14. The potent anti-inflammatory agent escin does not increase corticosterone secretion and immune cell apoptosis in mice.

    PubMed

    Zhang, Leiming; Wang, Hongsheng; Fan, Huaying; Wang, Tian; Jiang, Na; Yu, Pengfei; Fu, Fenghua

    2011-09-01

    Escin exerts potent glucocorticoid-like anti-inflammatory effects. The aim of this study was to investigate whether the anti-inflammatory effect of escin is through the up-regulation of glucocorticoids and if escin induces pathological changes in immune organs. Mice were administrated with escin intravenously for 7 days before observing the relevant parameters. The results showed that escin exhibits a potent anti-inflammatory effect, but does not increase corticosterone secretion in mice, and does not increase immune cell apoptosis in the spleen and thymus of mice. These findings suggest that the anti-inflammatory effect of escin is not dependent on the release of corticosterone. PMID:21596110

  15. DC-SIGN expression on podocytes and its role in inflammatory immune response of lupus nephritis.

    PubMed

    Cai, Minchao; Zhou, Tong; Wang, Xuan; Shang, Minghua; Zhang, Yueyue; Luo, Maocai; Xu, Chundi; Yuan, Weijie

    2016-03-01

    Podocytes, the main target of immune complex, participate actively in the development of glomerular injury as immune cells. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is an innate immune molecular that has an immune recognition function, and is involved in mediation of cell adhesion and immunoregulation. Here we explored the expression of DC-SIGN on podocytes and its role in immune and inflammatory responses in lupus nephritis (LN). Expression of DC-SIGN and immunoglobulin (Ig)G1 was observed in glomeruli of LN patients. DC-SIGN was co-expressed with nephrin on podocytes. Accompanied by increased proteinuria of LN mice, DC-SIGN and IgG1 expressions were observed in the glomeruli from 20 weeks, and the renal function deteriorated up to 24 weeks. Mice with anti-DC-SIGN antibody showed reduced proteinuria and remission of renal function. After the podocytes were stimulated by serum of LN mice in vitro, the expression of DC-SIGN, major histocompatibility complex (MHC) class II and CD80 was up-regulated, stimulation of T cell proliferation was enhanced and the interferon (IFN)-γ/interleukin (IL)-4 ratio increased. However, anti-DC-SIGN antibody treatment reversed these events. These results suggested that podocytes in LN can exert DC-like function through their expression of DC-SIGN, which may be involved in immune and inflammatory responses of renal tissues. However, blockage of DC-SIGN can inhibit immune functions of podocytes, which may have preventive and therapeutic effects. PMID:26440060

  16. Tomato Aqueous Extract Modulates the Inflammatory Profile of Immune Cells and Endothelial Cells.

    PubMed

    Schwager, Joseph; Richard, Nathalie; Mussler, Bernd; Raederstorff, Daniel

    2016-01-01

    Nutrients transiently or chronically modulate functional and biochemical characteristics of cells and tissues both in vivo and in vitro. The influence of tomato aqueous extract (TAE) on the in vitro inflammatory response of activated human peripheral blood leukocytes (PBLs) and macrophages was investigated. Its effect on endothelial dysfunction (ED) was analyzed in human umbilical vein endothelial cells (HUVECs). Murine macrophages (RAW264.7 cells), PBLs and HUVECs were incubated with TAE. They were activated with LPS or TNF-α in order to induce inflammatory processes and ED, respectively. Inflammatory mediators and adhesion molecules were measured by immune assay-based multiplex analysis. Gene expression was quantified by RT-PCR. TAE altered the production of interleukins (IL-1β, IL-6, IL-10, IL-12) and chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, CXCL8/IL-8, CXCL10/IP-10) in PBLs. TAE reduced ED-associated expression of adhesion molecules (ICAM-1, VCAM-1) in endothelial cell. In macrophages, the production of nitric oxide, PGE2, cytokines and ILs (TNF-α, IL-1β, IL-6, IL-12), which reflects chronic inflammatory processes, was reduced. Adenosine was identified as the main bioactive of TAE. Thus, TAE had cell-specific and context-dependent effects. We infer from these in vitro data, that during acute inflammation TAE enhances cellular alertness and therefore the sensing of disturbed immune homeostasis in the vascular-endothelial compartment. Conversely, it blunts inflammatory mediators in macrophages during chronic inflammation. A novel concept of immune regulation by this extract is proposed. PMID:26840280

  17. Dust events, pulmonary diseases and immune system

    PubMed Central

    Esmaeil, Nafiseh; Gharagozloo, Marjan; Rezaei, Abbas; Grunig, Gabriele

    2014-01-01

    Incidences of sand storms have increased in recent years and there is evidence that these dusts can move across long distances. Sand dusts have different adverse effects on health, but one of the most important of them is pulmonary disease. After inhalation of dust, many dust particles are moved to the airways. Dust particles can be sensed by airways epithelial cells, activate macrophages, dendritic cells and innate immune cells and then initiate responses in various populations of specific immune cells such as T helper cells subsets (Th1, Th2, Th17), T cytotoxic cells and B cells. Initiation of inflammatory immune responses, activation of immune cells and releases of many cytokines, chemokines and other inflammatory molecules, have variable pathologic affects on lung in different respiratory diseases. Unfortunately control of desert dusts is more difficult than control of air pollution. For prevention and treatment of respiratory diseases that are caused by desert dusts, researchers need well-designed epidemiological studies, combined with analysis of the precise composition of sand dusts, and the precise mechanisms of the immune responses. Recognizing the exact cellular and molecular immune mechanisms would be very useful to find new approaches for treatment of desert dust associated pulmonary diseases. PMID:24660118

  18. Deletion of macrophage migration inhibitory factor inhibits murine oral carcinogenesis: Potential role for chronic pro-inflammatory immune mediators.

    PubMed

    Oghumu, Steve; Knobloch, Thomas J; Terrazas, Cesar; Varikuti, Sanjay; Ahn-Jarvis, Jennifer; Bollinger, Claire E; Iwenofu, Hans; Weghorst, Christopher M; Satoskar, Abhay R

    2016-09-15

    Oral cancer kills about 1 person every hour each day in the United States and is the sixth most prevalent cancer worldwide. The pro-inflammatory cytokine 'macrophage migration inhibitory factor' (MIF) has been shown to be expressed in oral cancer patients, yet its precise role in oral carcinogenesis is not clear. In this study, we examined the impact of global Mif deletion on the cellular and molecular process occurring during oral carcinogenesis using a well-established mouse model of oral cancer with the carcinogen 4-nitroquinoline-1-oxide (4NQO). C57BL/6 Wild-type (WT) and Mif knock-out mice were administered with 4NQO in drinking water for 16 weeks, then regular drinking water for 8 weeks. Mif knock-out mice displayed fewer oral tumor incidence and multiplicity, accompanied by a significant reduction in the expression of pro-inflammatory cytokines Il-1β, Tnf-α, chemokines Cxcl1, Cxcl6 and Ccl3 and other molecular biomarkers of oral carcinogenesis Mmp1 and Ptgs2. Further, systemic accumulation of myeloid-derived tumor promoting immune cells was inhibited in Mif knock-out mice. Our results demonstrate that genetic Mif deletion reduces the incidence and severity of oral carcinogenesis, by inhibiting the expression of chronic pro-inflammatory immune mediators. Thus, targeting MIF is a promising strategy for the prevention or therapy of oral cancer. PMID:27164411

  19. Modulation of Immunity and the Inflammatory Response: A New Target for Treating Drug-resistant Epilepsy

    PubMed Central

    Yu, Nian; Liu, Hao; Di, Qing

    2013-01-01

    Until recently, epilepsy medical therapy is usually limited to anti-epileptic drugs (AEDs). However, approximately 1/3 of epilepsy patients, described as drug-resistant epilepsy (DRE) patients, still suffer from continuous frequent seizures despite receiving adequate AEDs treatment of sufficient duration. More recently, with the remarkable progress of immunology, immunity and inflammation are considered to be key elements of the pathobiology of epilepsy. Activation of inflammatory processes in brain tissue has been observed in both experimental seizure animal models and epilepsy patients. Anti-inflammatory and immunotherapies also showed significant anticonvulsant properties both in clinical and in experimental settings. The above emerging evidence indicates that modulation of immunity and inflammatory processes could serve as novel specific targets to achieve potential anticonvulsant effects for the patients with epilepsy, especially DRE. Herein we review the recent evidence supporting the role of inflammation in the development and perpetuation of seizures, and also discuss the recent achievements in modulation of inflammation and immunotherapy applied to the treatment of epilepsy. Apart from medical therapy, we also discuss the influences of surgery, ketogenic diet, and electroconvulsive therapy on immunity and inflammation in DRE patients. Taken together, a promising perspective is suggested for future immunomodulatory therapies in the treatment of patients with DRE. PMID:23814544

  20. Potential Use of Salivary Markers for Longitudinal Monitoring of Inflammatory Immune Responses to Vaccination

    PubMed Central

    Garssen, Johan; Sandalova, Elena

    2016-01-01

    Vaccination, designed to trigger a protective immune response against infection, is a trigger for mild inflammatory responses. Vaccination studies can address the question of inflammation initiation, levels, and resolution as well as its regulation for respective studied pathogens. Such studies largely based on analyzing the blood components including specific antibodies and cytokines were usually constrained by number of participants and volume of collected blood sample. Hence, blood-based studies may not be able to cover the full dynamic range of inflammation responses induced by vaccination. In this review, the potential of using saliva in addition to blood for studying the kinetics of inflammatory response studies was assessed. Saliva sampling is noninvasive and has a great potential to be used for studies aimed at analysing the magnitude, time course, and variance in immune responses, including inflammation after vaccination. Based on a literature survey of inflammatory biomarkers that can be determined in saliva and an analysis of how these biomarkers could help to understand the mechanisms and dynamics of immune reactivity and inflammation, we propose that the saliva-based approach might have potential to add substantial value to clinical studies, particularly in vulnerable populations such as infants, toddlers, and ill individuals. PMID:27022211

  1. Modulating the Innate Immune Response to Influenza A Virus: Potential Therapeutic Use of Anti-Inflammatory Drugs.

    PubMed

    Ramos, Irene; Fernandez-Sesma, Ana

    2015-01-01

    Infection by influenza A viruses (IAV) is frequently characterized by robust inflammation that is usually more pronounced in the case of avian influenza. It is becoming clearer that the morbidity and pathogenesis caused by IAV are consequences of this inflammatory response, with several components of the innate immune system acting as the main players. It has been postulated that using a therapeutic approach to limit the innate immune response in combination with antiviral drugs has the potential to diminish symptoms and tissue damage caused by IAV infection. Indeed, some anti-inflammatory agents have been shown to be effective in animal models in reducing IAV pathology as a proof of principle. The main challenge in developing such therapies is to selectively modulate signaling pathways that contribute to lung injury while maintaining the ability of the host cells to mount an antiviral response to control virus replication. However, the dissection of those pathways is very complex given the numerous components regulated by the same factors (i.e., NF kappa B transcription factors) and the large number of players involved in this regulation, some of which may be undescribed or unknown. This article provides a comprehensive review of the current knowledge regarding the innate immune responses associated with tissue damage by IAV infection, the understanding of which is essential for the development of effective immunomodulatory drugs. Furthermore, we summarize the recent advances on the development and evaluation of such drugs as well as the lessons learned from those studies. PMID:26257731

  2. Modulating the Innate Immune Response to Influenza A Virus: Potential Therapeutic Use of Anti-Inflammatory Drugs

    PubMed Central

    Ramos, Irene; Fernandez-Sesma, Ana

    2015-01-01

    Infection by influenza A viruses (IAV) is frequently characterized by robust inflammation that is usually more pronounced in the case of avian influenza. It is becoming clearer that the morbidity and pathogenesis caused by IAV are consequences of this inflammatory response, with several components of the innate immune system acting as the main players. It has been postulated that using a therapeutic approach to limit the innate immune response in combination with antiviral drugs has the potential to diminish symptoms and tissue damage caused by IAV infection. Indeed, some anti-inflammatory agents have been shown to be effective in animal models in reducing IAV pathology as a proof of principle. The main challenge in developing such therapies is to selectively modulate signaling pathways that contribute to lung injury while maintaining the ability of the host cells to mount an antiviral response to control virus replication. However, the dissection of those pathways is very complex given the numerous components regulated by the same factors (i.e., NF kappa B transcription factors) and the large number of players involved in this regulation, some of which may be undescribed or unknown. This article provides a comprehensive review of the current knowledge regarding the innate immune responses associated with tissue damage by IAV infection, the understanding of which is essential for the development of effective immunomodulatory drugs. Furthermore, we summarize the recent advances on the development and evaluation of such drugs as well as the lessons learned from those studies. PMID:26257731

  3. Interferon Signature in the Blood in Inflammatory Common Variable Immune Deficiency

    PubMed Central

    Park, Joon; Munagala, Indira; Xu, Hui; Blankenship, Derek; Maffucci, Patrick; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Cunningham-Rundles, Charlotte

    2013-01-01

    About half of all subjects with common variable immune deficiency (CVID) are afflicted with inflammatory complications including hematologic autoimmunity, granulomatous infiltrations, interstitial lung disease, lymphoid hyperplasia and/or gastrointestinal inflammatory disease. The pathogenesis of these conditions is poorly understood but singly and in aggregate, these lead to significantly increased (11 fold) morbidity and mortality, not experienced by CVID subjects without these complications. To explore the dysregulated networks in these subjects, we applied whole blood transcriptional profiling to 91 CVID subjects, 47 with inflammatory conditions and 44 without, in comparison to subjects with XLA and healthy controls. As compared to other CVID subjects, males with XLA or healthy controls, the signature of CVID subjects with inflammatory complications was distinguished by a marked up-regulation of IFN responsive genes. Chronic up-regulation of IFN pathways is known to occur in autoimmune disease due to activation of TLRs and other still unclarified cytoplasmic sensors. As subjects with inflammatory complications were also more likely to be lymphopenic, have reduced B cell numbers, and a greater reduction of B, T and plasma cell networks, we suggest that more impaired adaptive immunity in these subjects may lead to chronic activation of innate IFN pathways in response to environmental antigens. The unbiased use of whole blood transcriptome analysis may provides a tool for distinguishing CVID subjects who are at risk for increased morbidity and earlier mortality. As more effective therapeutic options are developed, whole blood transcriptome analyses could also provide an efficient means of monitoring the effects of treatment of the inflammatory phenotype. PMID:24069364

  4. Moderate alcohol consumption and the immune system: a review.

    PubMed

    Romeo, Javier; Wärnberg, Julia; Nova, Esther; Díaz, Ligia E; Gómez-Martinez, Sonia; Marcos, Ascensión

    2007-10-01

    Increasing evidence suggests that light to moderate amounts of polyphenol-rich alcoholic beverages like wine or beer could have health benefits. Scientists have long debated the effects of alcohol on immune function, showing on the one hand, that high doses of alcohol consumption can directly suppress a wide range of immune responses, and that alcohol abuse is associated with an increased incidence of a number of infectious diseases. On the other hand, moderate alcohol consumption seems to have a beneficial impact on the immune system compared to alcohol abuse or abstinence. Therefore, the link between alcohol consumption, immune response, as well as infectious and inflammatory processes remains not completely understood. With this in mind, it is important to realise that other factors, unrelated or indirectly related to immune function, like drinking patterns, beverage type, amount of alcohol, or gender differences, will affect the influence that alcohol consumption may have on the immune system. This review summarises published data describing the effects that light to moderate amounts of polyphenol-rich beverages like wine or beer seem to have on immunity in healthy adults. PMID:17922947

  5. Learning and Memory... and the Immune System

    ERIC Educational Resources Information Center

    Marin, Ioana; Kipnis, Jonathan

    2013-01-01

    The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…

  6. Interleukin-17 mediated inflammatory responses are required for ultraviolet radiation-induced immune suppression.

    PubMed

    Li, Hui; Prasad, Ram; Katiyar, Santosh K; Yusuf, Nabiha; Elmets, Craig A; Xu, Hui

    2015-01-01

    Ultraviolet radiation (UVR) induces immunosuppression and is a major factor for development of skin cancer. Numerous efforts have been made to determine mechanisms for UVR-induced immunosuppression and to develop strategies for prevention and treatment of UVR-induced cancers. In the current study, we use IL-17 receptor (IL-17R) deficient mice to examine whether IL-17 mediated responses have a role in UVB (290-320)-induced immunosuppression of contact hypersensitivity responses. Results demonstrate that IL-17 mediated responses are required for UVB-induced immunosuppression of contact hypersensitivity responses. The systemic immune suppression and development of regulatory T cells are inhibited in UVB-treated IL-17R deficient mice compared to wild-type animals. The deficiency in IL-17R inhibits the infiltration and development of a tolerogenic myeloid cell population in UVB-treated skin, which expresses CD11b and Gr-1 and produces reactive oxygen species. We speculate that the development of the tolerogenic myeloid cells is dependent on IL-17-induced chemokines and inflammatory mediators in UVB-treated skin. The inhibition of the tolerogenic myeloid cells may be attributed to the suppression of regulatory T cells in UVR-treated IL-17R(-/-) mice. The findings may be exploited to new strategies for prevention and treatment of UVR-induced skin diseases and cancers. PMID:25250896

  7. Purinergic regulation of the immune system.

    PubMed

    Cekic, Caglar; Linden, Joel

    2016-03-01

    Cellular stress or apoptosis triggers the release of ATP, ADP and other nucleotides into the extracellular space. Extracellular nucleotides function as autocrine and paracrine signalling molecules by activating cell-surface P2 purinergic receptors that elicit pro-inflammatory immune responses. Over time, extracellular nucleotides are metabolized to adenosine, leading to reduced P2 signalling and increased signalling through anti-inflammatory adenosine (P1 purinergic) receptors. Here, we review how local purinergic signalling changes over time during tissue responses to injury or disease, and we discuss the potential of targeting purinergic signalling pathways for the immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer. PMID:26922909

  8. β-arrestins in the Immune System

    PubMed Central

    Xie, Ting; Liang, Jiurong

    2015-01-01

    Summary β-arrestins regulate G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) through receptor desensitization while also acting as signaling scaffolds to facilitate numerous effector pathways. Recent studies have provided evidence that β-arrestins play a key role in inflammatory responses. We here summarize these advances on the roles of β-arrestins in immune regulation and inflammatory responses under physiological and pathological conditions, with an emphasis on translational implications of β-arrestins on human diseases. PMID:23764061

  9. Sex-dimorphic adverse drug reactions to immune suppressive agents in inflammatory bowel disease

    PubMed Central

    Zelinkova, Zuzana; Bultman, Evelien; Vogelaar, Lauran; Bouziane, Cheima; Kuipers, Ernst J; van der Woude, C Janneke

    2012-01-01

    AIM: To analyze sex differences in adverse drug reactions (ADR) to the immune suppressive medication in inflammatory bowel disease (IBD) patients. METHODS: All IBD patients attending the IBD outpatient clinic of a referral hospital were identified through the electronic diagnosis registration system. The electronic medical records of IBD patients were reviewed and the files of those patients who have used immune suppressive therapy for IBD, i.e., thiopurines, methotrexate, cyclosporine, tacrolimus and anti-tumor necrosis factor agents (anti-TNF); infliximab (IFX), adalimumab (ADA) and/or certolizumab, were further analyzed. The reported ADR to immune suppressive drugs were noted. The general definition of ADR used in clinical practice comprised the occurrence of the ADR in the temporal relationship with its disappearance upon discontinuation of the medication. Patients for whom the required information on drug use and ADR was not available in the electronic medical record and patients with only one registered contact and no further follow-up at the outpatient clinic were excluded. The difference in the incidence and type of ADR between male and female IBD patients were analyzed statistically by χ2 test. RESULTS: In total, 1009 IBD patients were identified in the electronic diagnosis registration system. Out of these 1009 patients, 843 patients were eligible for further analysis. There were 386 males (46%), mean age 42 years (range: 16-87 years) with a mean duration of the disease of 14 years (range: 0-54 years); 578 patients with Crohn’s disease, 244 with ulcerative colitis and 21 with unclassified colitis. Seventy percent (586 pts) of patients used any kind of immune suppressive agents at a certain point of the disease course, the majority of the patients (546 pts, 65%) used thiopurines, 176 pts (21%) methotrexate, 46 pts (5%) cyclosporine and one patient tacrolimus. One third (240 pts, 28%) of patients were treated with anti-TNF, the majority of patients (227

  10. CNS–Immune Reconstitution Inflammatory Syndrome in the Setting of HIV Infection, Part 2: Discussion of Neuro–Immune Reconstitution Inflammatory Syndrome with and without Other Pathogens

    PubMed Central

    Post, M.J.D.; Thurnher, M.M.; Clifford, D.B.; Nath, A.; Gonzalez, R.G.; Gupta, R.K.; Post, K.K.

    2016-01-01

    SUMMARY While the previous review of CNS-IRIS in the HIV-infected patient on highly active antiretroviral therapy (Part 1) dealt with an overview of the biology, pathology, and neurologic presentation of this condition and a discussion of the atypical imaging findings in PML-IRIS and cryptococcal meningitis–IRIS due to the robust inflammatory response, the current review (Part 2) discusses the imaging findings in other commonly encountered organisms seen in association with CNS-IRIS, namely, VZV, CMV, HIV, Candida organisms, Mycobacterium tuberculosis, and Toxoplasma gondii. Also described is the imaging appearance of CNS-IRIS when not associated with a particular organism. Recognition of these imaging findings will give credence to the diagnosis of CNS-IRIS and will allow the clinician to institute changes in medical management, if necessary, so that immune reconstitution and improved patient outcome can occur with time. PMID:22790252

  11. Curcumin and tumor immune-editing: resurrecting the immune system.

    PubMed

    Bose, Sayantan; Panda, Abir Kumar; Mukherjee, Shravanti; Sa, Gaurisankar

    2015-01-01

    Curcumin has long been known to posses medicinal properties and recent scientific studies have shown its efficacy in treating cancer. Curcumin is now considered to be a promising anti-cancer agent and studies continue on its molecular mechanism of action. Curcumin has been shown to act in a multi-faceted manner by targeting the classical hallmarks of cancer like sustained proliferation, evasion of apoptosis, sustained angiogenesis, insensitivity to growth inhibitors, tissue invasion and metastasis etc. However, one of the emerging hallmarks of cancer is the avoidance of immune system by tumors. Growing tumors adopt several strategies to escape immune surveillance and successfully develop in the body. In this review we highlight the recent studies that show that curcumin also targets this process and helps restore the immune activity against cancer. Curcumin mediates several processes like restoration of CD4(+)/CD8(+) T cell populations, reversal of type-2 cytokine bias, reduction of Treg cell population and suppression of T cell apoptosis; all these help to resurrect tumor immune surveillance that leads to tumor regression. Thus interaction of curcumin with the immune system is also an important feature of its multi-faceted modes of action against cancer. Finally, we also point out the drawbacks of and difficulties in curcumin administration and indicate the use of nano-formulations of curcumin for better therapeutic efficacy. PMID:26464579

  12. Innate immune system and tissue regeneration in Planarians: An area ripe for exploration

    PubMed Central

    Peiris, T. Harshani; Hoyer, Katrina K.; Oviedo, Néstor J.

    2014-01-01

    The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism. PMID:25082737

  13. The Microbiome, Systemic Immune Function, and Allotransplantation.

    PubMed

    Nellore, Anoma; Fishman, Jay A

    2016-01-01

    Diverse effects of the microbiome on solid organ transplantation are beginning to be recognized. In allograft recipients, microbial networks are disrupted by immunosuppression, nosocomial and community-based infectious exposures, antimicrobial therapies, surgery, and immune processes. Shifting microbial patterns, including acute infectious exposures, have dynamic and reciprocal interactions with local and systemic immune systems. Both individual microbial species and microbial networks have central roles in the induction and control of innate and adaptive immune responses, in graft rejection, and in ischemia-reperfusion injury. Understanding the diverse interactions between the microbiome and the immune system of allograft recipients may facilitate clinical management in the future. PMID:26656674

  14. A new hypothesis: some metastases are the result of inflammatory processes by adapted cells, especially adapted immune cells at sites of inflammation

    PubMed Central

    Shahriyari, Leili

    2016-01-01

    There is an old hypothesis that metastasis is the result of migration of tumor cells from the tumor to a distant site. In this article, we propose another mechanism for metastasis, for cancers that are initiated at the site of chronic inflammation. We suggest that cells at the site of chronic inflammation might become adapted to the inflammatory process, and these adaptations may lead to the initiation of an inflammatory tumor. For example, in an inflammatory tumor immune cells might be adapted to send signals of proliferation or angiogenesis, and epithelial cells might be adapted to proliferation (like inactivation of tumor suppressor genes). Therefore, we hypothesize that metastasis could be the result of an inflammatory process by adapted cells, especially adapted immune cells at the site of inflammation, as well as the migration of tumor cells with the help of activated platelets, which travel between sites of inflammation.  If this hypothesis is correct, then any treatment causing necrotic cell death may not be a good solution. Because necrotic cells in the tumor micro-environment or anywhere in the body activate the immune system to initiate the inflammatory process, and the involvement of adapted immune cells in the inflammatory processes leads to the formation and progression of tumors. Adapted activated immune cells send more signals of proliferation and/or angiogenesis than normal cells. Moreover, if there were adapted epithelial cells, they would divide at a much higher rate in response to the proliferation signals than normal cells. Thus, not only would the tumor come back after the treatment, but it would also grow more aggressively. PMID:27158448

  15. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome

    USGS Publications Warehouse

    Meteyer, Carol U.; Barber, Daniel; Mandl, Judith N.

    2012-01-01

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS), which was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.

  16. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome.

    PubMed

    Meteyer, Carol U; Barber, Daniel; Mandl, Judith N

    2012-11-15

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS). IRIS was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology. PMID:23154286

  17. Cryptococcus-Related Immune Reconstitution Inflammatory Syndrome(IRIS): Pathogenesis and Its Clinical Implications

    PubMed Central

    Wiesner, Darin L; Boulware, David R.

    2011-01-01

    This review provides an overview of Cryptococcus neoformans immunology and focuses on the pathogenesis of Cryptococcus-related paradoxical immune reconstitution inflammatory syndrome (IRIS). Cryptococcal IRIS has three phases: (1) before antiretroviral therapy (ART), with a paucity of cerebrospinal fluid (CSF) inflammation and defects in antigen clearance; (2) during initial ART immune recovery, with pro-inflammatory signaling by antigen-presenting cells without an effector response; and (3) at IRIS, a cytokine storm with a predominant type-1 helper T-cell (Th1) interferon-gamma (IFN-γ) response. Understanding IRIS pathogenesis allows for risk stratification and customization of HIV/AIDS care. In brief, persons at high IRIS risk may benefit from enhancing microbiologic clearance by use of adjunctive agents in combination with amphotericin, prolonging initial induction therapy, and/or increasing the initial consolidation antifungal therapy dose to at least 800 mg of fluconazole daily until the 2-week CSF culture is known to be sterile. Prophylactic anti-inflammatory therapies or undue delay of ART initiation in an attempt to prevent IRIS is unwarranted and may be dangerous. PMID:22389746

  18. Possible involvement of soluble B7-H4 in T cell-mediated inflammatory immune responses.

    PubMed

    Kamimura, Yosuke; Kobori, Hiroko; Piao, Jinhua; Hashiguchi, Masaaki; Matsumoto, Koichiro; Hirose, Sachiko; Azuma, Miyuki

    2009-11-13

    B7-H4, a newly identified B7 family molecule, is reported to regulate T cell activation. However, the expression and function of B7-H4 remain controversial. Here, we demonstrated that B7-H4 expression in immune cells was undetectable at both the transcription and cell-surface protein levels. B7-H4 transfectants augmented anti-CD3 mAb-induced re-directed cytotoxicity and this was inhibited by anti-B7-H4 mAb. In a hapten-induced contact hypersensitivity model, treatment with anti-B7-H4 mAb at sensitization, but not at challenge, efficiently suppressed the ear swelling and CD8(+) T cell activation assessed by CD25 expression and IFN-gamma production. We found that cells expressing B7-H4 secreted soluble B7-H4 and the serum B7-H4 level increased with disease progression in lupus-prone and collagen-induced arthritis autoimmune mice and after the antigen challenge in allergic inflammatory diseases. Our results suggest a different action of B7-H4 in T cell-mediated inflammatory responses and the possible involvement of soluble B7-H4 in inflammatory immune responses. PMID:19723502

  19. Study of Molecular Mechanisms Involved in the Pathogenesis of Immune-Mediated Inflammatory Diseases, using Psoriasis As a Model

    PubMed Central

    Sobolev, V.V.; Abdeev, R.M.; Zolotarenko, A.D.; Nikolaev, A.A.; Sarkisova, M.K.; Sautin, M.E.; Ishkin, A.A.; Piruzyan, An.L.; Ilyina, S.A.; Korsunskaya, I.M.; Rahimova, O.Y.; Bruskin, S.A.

    2009-01-01

    Psoriasis was used as a model to analyze the pathogenetic pathways of immune-mediated inflammatory diseases, and the results of bioinformatic, molecular-genetic and proteomic studies are provided. Cell mechanisms, common for the pathogenesis of psoriasis, as well as Crohn's disease, are identified. New approaches for immune-mediated diseases are discussed. PMID:22649625

  20. Ethyl pyruvate and ethyl lactate down-regulate the production of pro-inflammatory cytokines and modulate expression of immune receptors.

    PubMed

    Hollenbach, Marcus; Hintersdorf, Anja; Huse, Klaus; Sack, Ulrich; Bigl, Marina; Groth, Marco; Santel, Thore; Buchold, Martin; Lindner, Inge; Otto, Andreas; Sicker, Dieter; Schellenberger, Wolfgang; Almendinger, Johannes; Pustowoit, Barbara; Birkemeyer, Claudia; Platzer, Mathias; Oerlecke, Ilka; Hemdan, Nasr; Birkenmeier, Gerd

    2008-09-01

    Esters of alpha-oxo-carbonic acids such as ethyl pyruvate (EP) have been demonstrated to exert inhibitory effects on the production of anti-inflammatory cytokines. So far, there is no information about effects, if any, of ethyl lactate (EL), an obviously inactive analogue of EP, on inflammatory immune responses. In the present study, we provide evidence that the anti-inflammatory action of alpha-oxo-carbonic acid esters is mediated by inhibition of glyoxalases (Glo), cytosolic enzymes that catalyse the conversion of alpha-oxo-aldehydes such as methylglyoxal (MGO) into the corresponding alpha-hydroxy acids using glutathione as a cofactor. In vitro enzyme activity measurements revealed the inhibition of human Glo1 by alpha-oxo-carbonic acid esters, whilst alpha-hydroxy-carbonic acid esters such as EL were not inhibitory. In contrast, both EP and EL were shown to suppress the Lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6 and IL-8 from human immunocompetent cells, and modulated the expression of the immune receptors HLA-DR, CD14 and CD91 on human monocytes. Here, we show a crossing link between glyoxalases and the immune system. The results described herein introduce glyoxalases as a possible target for therapeutic approaches of immune suppression. PMID:18625205

  1. Immune system. Relationship to anxiety disorders.

    PubMed

    Stein, M; Keller, S E; Schleifer, S J

    1988-06-01

    The demonstration that behavioral states and CNS processes are associated with immune function suggests that there may be a relationship between anxiety and the immune system. Stress and immunity have been studied extensively, but there have been relatively few studies of anxiety and immunity. Many of the neurobiologic processes associated with stress and with depression have been observed in anxiety and are known to influence the immune system. A review of the immune response to stress and of immune alterations in depression has been presented in an effort to provide further understanding of the biology of anxiety. It appears that a variety of factors such as age; sex; nature, intensity, and chronicity of a stressful life events; and psychologic response to life stress need to be considered in the investigation of behavior and immunity. The biologic effects of stress on immunity are multifaceted, including complex neuroendocrine and neurotransmitter interactions. Further investigation is required of anxiety and immunity in clearly delineated and diagnosed anxiety states and disorders. Such studies may help to elucidate the pathophysiology of anxiety disorders. PMID:3047704

  2. Feeding Our Immune System: Impact on Metabolism

    PubMed Central

    Wolowczuk, Isabelle; Verwaerde, Claudie; Viltart, Odile; Delanoye, Anne; Delacre, Myriam; Pot, Bruno; Grangette, Corinne

    2008-01-01

    Endogenous intestinal microflora and environmental factors, such as diet, play a central role in immune homeostasis and reactivity. In addition, microflora and diet both influence body weight and insulin-resistance, notably through an action on adipose cells. Moreover, it is known since a long time that any disturbance in metabolism, like obesity, is associated with immune alteration, for example, inflammation. The purpose of this review is to provide an update on how nutrients-derived factors (mostly focusing on fatty acids and glucose) impact the innate and acquired immune systems, including the gut immune system and its associated bacterial flora. We will try to show the reader how the highly energy-demanding immune cells use glucose as a main source of fuel in a way similar to that of insulin-responsive adipose tissue and how Toll-like receptors (TLRs) of the innate immune system, which are found on immune cells, intestinal cells, and adipocytes, are presently viewed as essential actors in the complex balance ensuring bodily immune and metabolic health. Understanding more about these links will surely help to study and understand in a more fundamental way the common observation that eating healthy will keep you and your immune system healthy. PMID:18350123

  3. The WAP protein Trappin-2/Elafin: a handyman in the regulation of inflammatory and immune responses.

    PubMed

    Verrier, Thomas; Solhonne, Brigitte; Sallenave, Jean-Michel; Garcia-Verdugo, Ignacio

    2012-08-01

    Trappin-2/Elafin is a potent serine protease inhibitor which prevents excessive damage under inflammatory status. This "alarm-antiprotease" is locally expressed by epithelial cells and immune cells such as macrophages and γδ T cells. It has also been proven to modulate a wide range of parameters that are critical for the inflammation process like modulating the NFκB pathway, cytokine secretion and cell recruitment. In addition, Trappin-2/Elafin was shown to possess anti-microbial properties against different classes of pathogens including viruses, fungi and bacteria. Studies also linked Trappin-2/Elafin to either susceptibility or protection against inflammatory disease and infections, even though the mechanisms remains poorly understood. This review will discuss some of the pleiotropic effects displayed by Trappin-2/Elafin, and the properties that could be used to prevent infection or to protect against inflammation. PMID:22634606

  4. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation.

    PubMed

    Pedersen, Jannie; LaCasse, Eric C; Seidelin, Jakob B; Coskun, Mehmet; Nielsen, Ole H

    2014-11-01

    The inhibitor of apoptosis (IAP) family members, notably cIAP1, cIAP2, and XIAP, are critical and universal regulators of tumor necrosis factor (TNF) mediated survival, inflammatory, and death signaling pathways. Furthermore, IAPs mediate the signaling of nucleotide-binding oligomerization domain (NOD)1/NOD2 and other intracellular NOD-like receptors in response to bacterial pathogens. These pathways are important to the pathogenesis and treatment of inflammatory bowel disease (IBD). Inactivating mutations in the X-chromosome-linked IAP (XIAP) gene causes an immunodeficiency syndrome, X-linked lymphoproliferative disease type 2 (XLP2), in which 20% of patients develop severe intestinal inflammation. In addition, 4% of males with early-onset IBD also have inactivating mutations in XIAP. Therefore, the IAPs play a greater role in gut homeostasis, immunity and IBD development than previously suspected, and may have therapeutic potential. PMID:25282548

  5. Immune/Inflammatory Response and Hypocontractility of Rabbit Colonic Smooth Muscle After TNBS-Induced Colitis

    PubMed Central

    Zhang, Yonggang; Li, Fang; Wang, Hong; Yin, Chaoran; Huang, JieAn; Mahavadi, Sunila; Murthy, Karnam S.

    2016-01-01

    Background The contractility of colonic smooth muscle is dysregulated due to immune/inflammatory responses in inflammatory bowel diseases. Inflammation in vitro induces up-regulation of regulator of G-protein signaling 4 (RGS4) expression in colonic smooth muscle cells. Aims To characterize the immune/inflammatory responses and RGS4 expression pattern in colonic smooth muscle after induction of colitis. Methods Colitis was induced in rabbits by intrarectal instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Innate/adaptive immune response RT-qPCR array was performed using colonic circular muscle strips. At 1–9 weeks after colonic intramuscular microinjection of lentivirus, the distal and proximal colons were collected, and muscle strips and dispersed muscle cells were prepared from circular muscle layer. Expression levels of RGS4 and NFκB signaling components were determined by Western blot analysis. The biological consequences of RGS4 knockdown were assessed by measurement of muscle contraction and phospholipase C (PLC)-β activity in response to acetylcholine (ACh). Results Contraction in response to ACh was significantly inhibited in the inflamed colonic circular smooth muscle cells. RGS4, IL-1, IL-6, IL-8, CCL3, CD1D, and ITGB2 were significantly up-regulated, while IL-18, CXCR4, CD86, and C3 were significantly down-regulated in the inflamed muscle strips. RGS4 protein expression in the inflamed smooth muscles was dramatically increased. RGS4 stable knockdown in vivo augmented ACh-stimulated PLC-β activity and contraction in colonic smooth muscle cells. Conclusion Inflamed smooth muscle exhibits up-regulation of IL-1-related signaling components, Th1 cytokines and RGS4, and inhibition of contraction. Stable knockdown of endogenous RGS4 in colonic smooth muscle increases PLC-β activity and contractile responses. PMID:26879904

  6. Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD

    PubMed Central

    2013-01-01

    Background Rhinovirus (RV) is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations, and primarily infects bronchial epithelial cells. Immune responses from BECs to RV infection are critical in limiting viral replication, and remain unclear in COPD. The objective of this study is to investigate innate immune responses to RV infection in COPD primary BECs (pBECs) in comparison to healthy controls. Methods Primary bronchial epithelial cells (pBECs) from subjects with COPD and healthy controls were infected with RV-1B. Cells and cell supernatant were collected and analysed using gene expression microarray, qPCR, ELISA, flow cytometry and titration assay for viral replication. Results COPD pBECs responded to RV-1B infection with an increased expression of antiviral and pro-inflammatory genes compared to healthy pBECs, including cytokines, chemokines, RNA helicases, and interferons (IFNs). Similar levels of viral replication were observed in both disease groups; however COPD pBECs were highly susceptible to apoptosis. COPD pBECs differed at baseline in the expression of 9 genes, including calgranulins S100A8/A9, and 22 genes after RV-1B infection including the signalling proteins pellino-1 and interleukin-1 receptor associated kinase 2. In COPD, IFN-β/λ1 pre-treatment did not change MDA-5/RIG-I and IFN-β expression, but resulted in higher levels IFN-λ1, CXCL-10 and CCL-5. This led to reduced viral replication, but did not increase pro-inflammatory cytokines. Conclusions COPD pBECs elicit an exaggerated pro-inflammatory and antiviral response to RV-1B infection, without changing viral replication. IFN pre-treatment reduced viral replication. This study identified novel genes and pathways involved in potentiating the inflammatory response to RV in COPD. PMID:23384071

  7. Endogenous anti-inflammatory neuropeptides and pro-resolving lipid mediators: a new therapeutic approach for immune disorders

    PubMed Central

    Anderson, Per; Delgado, Mario

    2008-01-01

    Identification of the factors that regulate the immune tolerance and control the appearance of exacerbated inflammatory conditions is crucial for the development of new therapies of inflammatory and autoimmune diseases. Although much is known about the molecular basis of initiating signals and pro-inflammatory chemical mediators in inflammation, it has only recently become apparent that endogenous stop signals are critical at early checkpoints within the temporal events of inflammation. Some neuropeptides and lipid mediators that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that participate in the regulation of the processes that ensure self-tolerance and/or inflammation resolution. Here we examine the latest research findings, which indicate that neuropeptides participate in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors. On the other hand, we also focus on lipid mediators biosynthesized from ω-3 and ω-6 polyunsaturated fatty-acids in inflammatory exudates that promote the resolution phase of acute inflammation by regulating leucocyte influx to and efflux from local inflamed sites. Both anti-inflammatory neuropeptides and pro-resolving lipid mediators have shown therapeutic potential for a variety of inflammatory and autoimmune disorders and could be used as biotemplates for the development of novel pharmacologic agents. PMID:18554314

  8. Innate immunity and the role of the antimicrobial peptide cathelicidin in inflammatory skin disease

    PubMed Central

    Roby, Keith D; Nardo, Anna Di

    2013-01-01

    Cathelicidin antimicrobial peptide is an important mediator of the innate immune response. In addition to its potent antimicrobial activity, cathelicidin has been shown to have chemoattractant and angiogenic properties. Recent research has demonstrated that, in addition to its aforementioned functions, cathelicidin plays an important role in the complex pathogenesis of several chronic inflammatory skin diseases. This review will present a concise overview of the role of cathelicidin in infection and in the development of atopic dermatitis, psoriasis, and rosacea. This understanding will direct future research efforts to identify therapeutic approaches that use cathelicidin as a novel drug itself, or aim to modify its expression and regulation. PMID:24489580

  9. Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis

    PubMed Central

    Lu, Ching-Hua; Allen, Kezia; Oei, Felicia; Leoni, Emanuela; Kuhle, Jens; Tree, Timothy; Fratta, Pietro; Sharma, Nikhil; Sidle, Katie; Howard, Robin; Orrell, Richard; Fish, Mark; Greensmith, Linda; Pearce, Neil; Gallo, Valentina

    2016-01-01

    Objective: To evaluate the combined blood expression of neuromuscular and inflammatory biomarkers as predictors of disease progression and prognosis in amyotrophic lateral sclerosis (ALS). Methods: Logistic regression adjusted for markers of the systemic inflammatory state and principal component analysis were carried out on plasma levels of creatine kinase (CK), ferritin, and 11 cytokines measured in 95 patients with ALS and 88 healthy controls. Levels of circulating biomarkers were used to study survival by Cox regression analysis and correlated with disease progression and neurofilament light chain (NfL) levels available from a previous study. Cytokines expression was also tested in blood samples longitudinally collected for up to 4 years from 59 patients with ALS. Results: Significantly higher levels of CK, ferritin, tumor necrosis factor (TNF)–α, and interleukin (IL)–1β, IL-2, IL-8, IL-12p70, IL-4, IL-5, IL-10, and IL-13 and lower levels of interferon (IFN)–γ were found in plasma samples from patients with ALS compared to controls. IL-6, TNF-α, and IFN-γ were the most highly regulated markers when all explanatory variables were jointly analyzed. High ferritin and IL-2 levels were predictors of poor survival. IL-5 levels were positively correlated with CK, as was TNF-α with NfL. IL-6 was strongly associated with CRP levels and was the only marker showing increasing expression towards end-stage disease in the longitudinal analysis. Conclusions: Neuromuscular pathology in ALS involves the systemic regulation of inflammatory markers mostly active on T-cell immune responses. Disease stratification based on the prognostic value of circulating inflammatory markers could improve clinical trials design in ALS. PMID:27308305

  10. A novel experimental model of Cryptococcus neoformans-related immune reconstitution inflammatory syndrome (IRIS) provides insights into pathogenesis.

    PubMed

    Eschke, Maria; Piehler, Daniel; Schulze, Bianca; Richter, Tina; Grahnert, Andreas; Protschka, Martina; Müller, Uwe; Köhler, Gabriele; Höfling, Corinna; Rossner, Steffen; Alber, Gottfried

    2015-12-01

    Antiretroviral therapy (ART) has yielded major advances in fighting the HIV pandemic by restoring protective immunity. However, a significant proportion of HIV patients co-infected with the opportunistic fungal pathogen Cryptococcus neoformans paradoxically develops a life-threatening immune reconstitution inflammatory syndrome (IRIS) during antiretroviral therapy. Despite several clinical studies, the underlying pathomecha-nisms are poorly understood. Here, we present the first mouse model of cryptococcal IRIS that allows for a detailed analysis of disease development. Lymphocyte-deficient RAG-1(-/-) mice are infected with C. neoformans and 4 weeks later adoptively transferred with purified CD4(+) T cells. Reconstitution of CD4(+) T cells is sufficient to induce a severe inflammatory disease similar to clinical IRIS in C. neoformans-infected RAG-1(-/-) mice of different genetic backgrounds and immunological phenotypes (i.e. C57BL/6 and BALB/c). Multiorgan inflammation is accompanied by a systemic release of distinct proinflammatory cytokines, i.e. IFN-γ, IL-6, and TNF-α. IRIS development is characterized by infection-dependent activation of donor CD4(+) T cells, which are the source of IFN-γ. Interestingly, IFN-γ-mediated effects are not required for disease induction. Taken together, this novel mouse model of cryptococcal IRIS provides a useful tool to verify potential mechanisms of pathogenesis, revealing targets for diagnosis and therapeutic interventions. PMID:26381487

  11. The systemic inflammatory response in heart failure.

    PubMed

    Anderson

    2000-09-01

    The physiologic diagnosis of heart failure has changed very little over the past several decades: heart failure is the inability of the cardiac output to meet the metabolic demands of the organism. The clinical definition of heart failure (also relatively unchanged) describes it as ventricular dysfunction that is accompanied by reduced exercise tolerance. Our understanding of the true pathophysiologic processes involved in heart failure have, however, changed. We have moved from thinking of heart failure as primarily a circulatory phenomenon to seeing it as a pathophysiologic state under the control of multiple complex systems. Over the past several years the dramatic explosion of research in the fields of immunology and immunopathology have added an additional piece to the puzzle that defines heart failure and have lead to an understanding of heart failure, at least in some part, as an 'inflammatory disease'. In this review we will examine several of the key inflammatory mediators as they relate to heart failure while at the same time attempting to define the source(s) of these mediators. We will examine key elements of the inflammatory cascade as they relate to heart failure such as: cytokines, 'proximal mediators' (e.g. NF-kappaB), and distal mediators (e.g. nitric oxide). We will end with a discussion of the potential therapeutic role of anti-inflammatory strategies in the future treatment of heart failure. Also, throughout the review we will examine the potential pitfalls encountered in applying bench discoveries to the bedside as have been learned in the field of septic shock research. PMID:10978715

  12. Cutaneous antigen priming via gene gun leads to skin-selective Th2 immune-inflammatory responses.

    PubMed

    Alvarez, David; Harder, Greg; Fattouh, Ramzi; Sun, Jiangfeng; Goncharova, Susanna; Stämpfli, Martin R; Coyle, Anthony J; Bramson, Jonathan L; Jordana, Manel

    2005-02-01

    It is becoming increasingly evident that the compartmentalization of immune responses is governed, in part, by tissue-selective homing instructions imprinted during T cell differentiation. In the context of allergic diseases, the fact that "disease" primarily manifests in particular tissue sites, despite pervasive allergen exposure, supports this notion. However, whether the original site of Ag exposure distinctly privileges memory Th2 immune-inflammatory responses to the same site, while sparing remote tissue compartments, remains to be fully investigated. We examined whether skin-targeted delivery of plasmid DNA encoding OVA via gene-gun technology in mice could generate allergic sensitization and give rise to Th2 effector responses in the skin as well as in the lung upon subsequent Ag encounter. Our data show that cutaneous Ag priming induced OVA-specific serum IgE and IgG1, robust Th2-cytokine production, and late-phase cutaneous responses and systemic anaphylactic shock upon skin and systemic Ag recall, respectively. However, repeated respiratory exposure to aerosolized OVA failed to instigate airway inflammatory responses in cutaneous Ag-primed mice, but not in mice initially sensitized to OVA via the respiratory mucosa. Importantly, these contrasting airway memory responses correlated with the occurrence of Th2 differentiation events at anatomically separate sites: indeed cutaneous Ag priming resulted in Ag-specific proliferative responses and Th2 differentiation in skin-, but not thoracic-, draining lymph nodes. These data indicate that Ag exposure to the skin leads to Th2 differentiation within skin-draining lymph nodes and subsequent Th2 immunity that is selectively manifested in the skin. PMID:15661930

  13. Systems biology of circadian-immune interactions

    PubMed Central

    Mavroudis, P.D.; Scheff, J.D.; Calvano, S.E.; Androulakis, I.P.

    2013-01-01

    There is increasing evidence that immune system is regulated by circadian rhythms. A wide range of immune parameters, such as the number of red blood cells and peripheral blood mononuclear cells as well as the level of critical immune mediators such as cytokines, undergo daily fluctuations. Current experimental data indicates that circadian information reaches immune tissues mainly through diurnal patterns of autonomic and endocrine rhythms. In addition, immune factors such as cytokines can also influence the phase of the circadian clock, providing bidirectional flow of circadian information between the neuroendocrine and immune system. This network of neuroendocrine-immune interactions consists of complexly integrated molecular feedback and feedforward loops that function in synchrony in order to optimize immune response. Chronic stress can disrupt this intrinsic orchestration, as several endocrine signals of chronically stressed patients present blunted rhythmic characteristics. Reprogramming of biological rhythms has recently gained much attention as a potent method to leverage homeostatic circadian controls to ultimately improve clinical outcomes. Elucidation of the intrinsic properties of such complex systems and optimization of intervention strategies requires not only an accurate identification of the signaling pathways that mediate host’s response, but also a systems-level description and evaluation. PMID:23006670

  14. The Molecules of the Immune System.

    ERIC Educational Resources Information Center

    Tonegawa, Susumu

    1985-01-01

    The immune system includes the most diverse proteins known because they are encoded by hundreds of scattered gene fragments which can be combined in millions or billions of ways. Events of immune response, binding of antigens, antibody structure, T-cell receptors, and other immunologically-oriented topics are discussed. (DH)

  15. Physical Theory of the Immune System

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2012-10-01

    I will discuss to theories of the immune system and describe a theory of the immune response to vaccines. I will illustrate this theory by application to design of the annual influenza vaccine. I will use this theory to explain limitations in the vaccine for dengue fever and to suggest a transport-inspired amelioration of these limitations.

  16. Systems biology of circadian-immune interactions.

    PubMed

    Mavroudis, P D; Scheff, J D; Calvano, S E; Androulakis, I P

    2013-01-01

    There is increasing evidence that the immune system is regulated by circadian rhythms. A wide range of immune parameters, such as the number of red blood cells and peripheral blood mononuclear cells as well as the level of critical immune mediators, such as cytokines, undergo daily fluctuations. Current experimental data indicate that circadian information reaches immune tissues mainly through diurnal patterns of autonomic and endocrine rhythms. In addition, immune factors such as cytokines can also influence the phase of the circadian clock, providing bidirectional flow of circadian information between the neuroendocrine and immune systems. This network of neuroendocrine-immune interactions consists of complexly integrated molecular feedback and feedforward loops that function in synchrony in order to optimize immune response. Chronic stress can disrupt this intrinsic orchestration, as several endocrine signals of chronically stressed patients present blunted rhythmic characteristics. Reprogramming of biological rhythms has recently gained much attention as a potent method to leverage homeostatic circadian controls to ultimately improve clinical outcomes. Elucidation of the intrinsic properties of such complex systems and optimization of intervention strategies require not only an accurate identification of the signaling pathways that mediate host responses, but also a system-level description and evaluation. PMID:23006670

  17. Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases

    PubMed Central

    Correa, Ricardo G.; Milutinovic, Snezana; Reed, John C.

    2012-01-01

    NOD1 {nucleotide-binding oligomerization domain 1; NLRC [NOD-LRR (leucine-rich repeat) family with CARD (caspase recruitment domain) 1]} and NOD2 (NLRC2) are among the most prominent members of the NLR (NOD-LRR) family –proteins that contain nucleotide-binding NACHT domains and receptor-like LRR domains. With over 20 members identified in humans, NLRs represent important components of the mammalian innate immune system, serving as intracellular receptors for pathogens and for endogenous molecules elaborated by tissue injury. NOD1 and NOD2 proteins operate as microbial sensors through the recognition of specific PG (peptidoglycan) constituents of bacteria. Upon activation, these NLR family members initiate signal transduction mechanisms that include stimulation of NF-κB (nuclear factor-κB), stress kinases, IRFs (interferon regulatory factors) and autophagy. Hereditary polymorphisms in the genes encoding NOD1 and NOD2 have been associated with an increasing number of chronic inflammatory diseases. In fact, potential roles for NOD1 and NOD2 in inflammatory disorders have been revealed by investigations using a series of animal models. In the present review, we describe recent experimental findings associating NOD1 and NOD2 with various autoimmune and chronic inflammatory disorders, and we discuss prospects for development of novel therapeutics targeting these NLR family proteins. PMID:22908883

  18. Group B Streptococcus Engages an Inhibitory Siglec through Sialic Acid Mimicry to Blunt Innate Immune and Inflammatory Responses In Vivo

    PubMed Central

    Chang, Yung-Chi; Olson, Joshua; Beasley, Federico C.; Tung, Christine; Zhang, Jiquan; Crocker, Paul R.; Varki, Ajit; Nizet, Victor

    2014-01-01

    Group B Streptococcus (GBS) is a common agent of bacterial sepsis and meningitis in newborns. The GBS surface capsule contains sialic acids (Sia) that engage Sia-binding immunoglobulin-like lectins (Siglecs) on leukocytes. Here we use mice lacking Siglec-E, an inhibitory Siglec of myelomonocytic cells, to study the significance of GBS Siglec engagement during in vivo infection. We found GBS bound to Siglec-E in a Sia-specific fashion to blunt NF-κB and MAPK activation. As a consequence, Siglec-E-deficient macrophages had enhanced pro-inflammatory cytokine secretion, phagocytosis and bactericidal activity against the pathogen. Following pulmonary or low-dose intravenous GBS challenge, Siglec-E KO mice produced more pro-inflammatory cytokines and exhibited reduced GBS invasion of the central nervous system. In contrast, upon high dose lethal challenges, cytokine storm in Siglec-E KO mice was associated with accelerated mortality. We conclude that GBS Sia mimicry influences host innate immune and inflammatory responses in vivo through engagement of an inhibitory Siglec, with the ultimate outcome of the host response varying depending upon the site, stage and magnitude of infection. PMID:24391502

  19. Oral Inflammatory Diseases and Systemic Inflammation: Role of the Macrophage

    PubMed Central

    Hasturk, Hatice; Kantarci, Alpdogan; Van Dyke, Thomas E.

    2012-01-01

    Inflammation is a complex reaction to injurious agents and includes vascular responses, migration, and activation of leukocytes. Inflammation starts with an acute reaction, which evolves into a chronic phase if allowed to persist unresolved. Acute inflammation is a rapid process characterized by fluid exudation and emigration of leukocytes, primarily neutrophils, whereas chronic inflammation extends over a longer time and is associated with lymphocyte and macrophage infiltration, blood vessel proliferation, and fibrosis. Inflammation is terminated when the invader is eliminated, and the secreted mediators are removed; however, many factors modify the course and morphologic appearance as well as the termination pattern and duration of inflammation. Chronic inflammatory illnesses such as diabetes, arthritis, and heart disease are now seen as problems that might have an impact on the periodontium. Reciprocal effects of periodontal diseases are potential factors modifying severity in the progression of systemic inflammatory diseases. Macrophages are key cells for the inflammatory processes as regulators directing inflammation to chronic pathological changes or resolution with no damage or scar tissue formation. As such, macrophages are involved in a remarkably diverse array of homeostatic processes of vital importance to the host. In addition to their critical role in immunity, macrophages are also widely recognized as ubiquitous mediators of cellular turnover and maintenance of extracellular matrix homeostasis. In this review, our objective is to identify macrophage-mediated events central to the inflammatory basis of chronic diseases, with an emphasis on how control of macrophage function can be used to prevent or treat harmful outcomes linked to uncontrolled inflammation. PMID:22623923

  20. Immunization with recombinant Pb27 protein reduces the levels of pulmonary fibrosis caused by the inflammatory response against Paracoccidioides brasiliensis.

    PubMed

    Morais, Elis Araujo; Martins, Estefânia Mara do Nascimento; Boelone, Jankerle Neves; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2015-02-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis in which the host response to the infectious agent typically consists of a chronic granulomatous inflammatory process. This condition causes lesions that impair lung function and lead to chronic pulmonary insufficiency resulting from fibrosis development, which is a sequel and disabling feature of the disease. The rPb27 protein has been studied for prophylactic and therapeutic treatment against PCM. Previous studies from our laboratory have shown a protective effect of rPb27 against PCM. However, these studies have not determined whether rPb27 immunization prevents lung fibrosis. We therefore conducted this study to investigate fibrosis resulting from infection by Paracoccidioides brasiliensis in the lungs of animals immunized with rPb27. Animals were immunized with rPb27 and subsequently infected with a virulent strain of P. brasiliensis. Fungal load was evaluated by counting colony-forming units, and Masson's trichrome staining was performed to evaluate fibrosis at 30 and 90 days post-infection. The levels of CCR7, active caspase 3, collagen and cytokines were analyzed. At the two time intervals mentioned, the rPb27 group showed lower levels of fibrosis on histology and reduced levels of collagen and the chemokine receptor CCR7 in the lungs. CCR7 was detected at higher levels in the control groups that developed very high levels of pulmonary fibrosis. Additionally, the immunized groups showed high levels of active caspase 3, IFN-γ, TGF-β and IL-10 in the early phase of P. brasiliensis infection. Immunization with Pb27, in addition to its protective effect, was shown to prevent pulmonary fibrosis. PMID:25487973

  1. Artificial Immune System Approaches for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  2. Intranasal Immunization with a Colloid-Formulated Bacterial Extract Induces an Acute Inflammatory Response in the Lungs and Elicits Specific Immune Responses

    PubMed Central

    Rial, A.; Lens, D.; Betancor, L.; Benkiel, H.; Silva, J. S.; Chabalgoity, J. A.

    2004-01-01

    Nonspecific stimulation of lung defenses by repeated oral administration of immunomodulators, such as bacterial extracts, has shown potential for the prevention of respiratory tract infections. Here, we show that intranasal (i.n.) immunization with a bacterial extract formulated as a colloid induces an acute inflammatory response in the lungs characterized by increased production of CCL and CXCL chemokines and a major influx of dendritic cells (DCs) and neutrophils, with a higher proportion of DCs showing an activated phenotype (high CD80/CD86 expression). Cytokine levels measured in bronchoalveolar-lavage samples showed a small increase in the production of tumor necrosis factor alpha and similar levels of the other cytokines measured (interleukin 10 [IL-10], IL-12, and gamma interferon [IFN-γ]) in immunized mice compared with control mice. However, the recall response of primed animals after antigenic challenge induced increased expression of IL-12 and IFN-γ mRNAs in lung homogenates. Overall, all these effects were not due to the lipopolysaccharide content in the bacterial extract. Furthermore, we found that three i.n. doses administered 2 to 3 weeks apart were enough to elicit long-lasting specific serum immunoglobulin G (IgG) and secretory IgA antibody responses. Assessment of IgG subclasses showed a balanced pattern of IgG1-IgG2a responses. The serum total IgE concentrations were also elevated in immunized mice 2 weeks after the third dose, but they significantly decreased soon afterwards. Our results suggest that simple formulations of bacterial extracts administered i.n. are highly immunogenic, eliciting local and systemic immune responses, and may serve as the basis for cost-effective immunotherapies for the prevention and treatment of respiratory infections. PMID:15102776

  3. Intranasal immunization with a colloid-formulated bacterial extract induces an acute inflammatory response in the lungs and elicits specific immune responses.

    PubMed

    Rial, A; Lens, D; Betancor, L; Benkiel, H; Silva, J S; Chabalgoity, J A

    2004-05-01

    Nonspecific stimulation of lung defenses by repeated oral administration of immunomodulators, such as bacterial extracts, has shown potential for the prevention of respiratory tract infections. Here, we show that intranasal (i.n.) immunization with a bacterial extract formulated as a colloid induces an acute inflammatory response in the lungs characterized by increased production of CCL and CXCL chemokines and a major influx of dendritic cells (DCs) and neutrophils, with a higher proportion of DCs showing an activated phenotype (high CD80/CD86 expression). Cytokine levels measured in bronchoalveolar-lavage samples showed a small increase in the production of tumor necrosis factor alpha and similar levels of the other cytokines measured (interleukin 10 [IL-10], IL-12, and gamma interferon [IFN-gamma]) in immunized mice compared with control mice. However, the recall response of primed animals after antigenic challenge induced increased expression of IL-12 and IFN-gamma mRNAs in lung homogenates. Overall, all these effects were not due to the lipopolysaccharide content in the bacterial extract. Furthermore, we found that three i.n. doses administered 2 to 3 weeks apart were enough to elicit long-lasting specific serum immunoglobulin G (IgG) and secretory IgA antibody responses. Assessment of IgG subclasses showed a balanced pattern of IgG1-IgG2a responses. The serum total IgE concentrations were also elevated in immunized mice 2 weeks after the third dose, but they significantly decreased soon afterwards. Our results suggest that simple formulations of bacterial extracts administered i.n. are highly immunogenic, eliciting local and systemic immune responses, and may serve as the basis for cost-effective immunotherapies for the prevention and treatment of respiratory infections. PMID:15102776

  4. In vitro bioartificial skin culture model of tissue rejection and inflammatory/immune mechanisms.

    PubMed

    Strande, L F; Foley, S T; Doolin, E J; Hewitt, C W

    1997-06-01

    We hypothesized that an in vitro bioartificial skin rejection model using living LSEs grown in tissue culture could be developed for the study of autologous, allogenic, and/or xenogeneic inflammatory/immune mechanisms and topical immunosuppressive drugs. Human fibroblasts were mixed with type 1 rat-tail collagen to form a matrix (4 to 5 days), on which human keratinocytes were seeded. After a keratinocyte monolayer formed, CT cultures were raised to the air-liquid interface for continued growth. In the REJ LSE model, immunocytes isolated from human blood were seeded on top of the NHEK monolayer at the time of air-lifting. Thickness measurements of the acellular keratin and keratinocyte layers, and nuclear/cytoplasmic ratios, in both CT and REJ were made using digital image analysis. Immunostaining with anticytokeratin demonstrated a viable, keratin-producing epidermal layer; staining with anti-TGF-beta suggested a role for this cytokine in the rejection or wound-healing process. The LSE appeared histologically similar to normal human epidermis. Immunocytes added to the REJ cultures caused an obvious rejection response and were clearly identifiable in the gels as CD45+ staining cells. The LSE model appears promising for the study of immune/inflammatory mechanisms, thermal injury, screening antirejection agents that might be applied topically and as an in vitro replacement for skin graft studies in animals. PMID:9193551

  5. Galvanic zinc-copper microparticles produce electrical stimulation that reduces the inflammatory and immune responses in skin.

    PubMed

    Kaur, Simarna; Lyte, Peter; Garay, Michelle; Liebel, Frank; Sun, Ying; Liu, Jue-Chen; Southall, Michael D

    2011-10-01

    The human body has its own innate electrical system that regulates the body's functions via communications among organs through the well-known neural system. While the effect of low-level electrical stimulation on wound repair has been reported, few studies have examined the effect of electric potential on non-wounded, intact skin. A galvanic couple comprised of elemental zinc and copper was used to determine the effects of low-level electrical stimulation on intact skin physiology using a Dermacorder device. Zn-Cu induced the electrical potential recorded on intact skin, enhanced H(2)O(2) production and activated p38 MAPK and Hsp27 in primary keratinocytes. Treatment with Zn-Cu was also found to reduce pro-inflammatory cytokines, such as IL-1α, IL-2, NO and TNF-α in multiple cell types after stimulation with PHA or Propionibacterium acnes bacteria. The Zn-Cu complex led to a dose-dependent inhibition of TNF-α-induced NF-κB levels in keratinocytes as measured by a dual-luciferase promoter assay, and prevented p65 translocation to the nucleus observed via immunofluorescence. Suppression of NF-κB activity via crosstalk with p38 MAPK might be one of the potential pathways by which Zn-Cu exerted its inflammatory effects. Topical application of Zn-Cu successfully mitigated TPA-induced dermatitis and oxazolone-induced hypersensitivity in mice models of ear edema. Anti-inflammatory activity induced by the Zn-Cu galvanic couple appears to be mediated, at least in part, by production of low level of hydrogen peroxide since this activity is reversed by the addition of Catalase enzyme. Collectively, these results show that a galvanic couple containing Zn-Cu strongly reduces the inflammatory and immune responses in intact skin, providing evidence for the role of electric stimulation in non-wounded skin. PMID:21465312

  6. How phototherapy affects the immune system

    NASA Astrophysics Data System (ADS)

    Dyson, Mary

    2008-03-01

    The immune system is a complex group of cells, tissues and organs that recognize and attack foreign substances, pathogenic organisms and cancer cells. It also responds to injury by producing inflammation. The immune system has peripheral components that include skin-associated lymphoid tissues (SALT) and mucosa-associated lymphoid tissues (MALT), located where pathogens and other harmful substances gain access to the body. Phototherapy, delivered at appropriate treatment parameters, exerts direct actions on the cellular elements of the peripheral part of the immune system since it is readily accessible to photons.

  7. Neural control of the immune system

    PubMed Central

    Sundman, Eva

    2014-01-01

    Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have suggested that vagus nerve stimulation can improve symptoms in human rheumatoid arthritis. These discoveries have generated an increased interest in bioelectronic medicine, i.e., therapeutic delivery of electrical impulses that activate nerves to regulate immune system function. Here, we discuss the physiology and potential therapeutic implications of neural immune control. PMID:25039084

  8. Exploring effects of a natural combination medicine on exercise-induced inflammatory immune response: A double-blind RCT.

    PubMed

    Pilat, C; Frech, T; Wagner, A; Krüger, K; Hillebrecht, A; Pons-Kühnemann, J; Scheibelhut, C; Bödeker, R-H; Mooren, F-C

    2015-08-01

    Traumeel (Tr14) is a natural, combination drug, which has been shown to modulate inflammation at the cytokine level. This study aimed to investigate potential effects of Tr14 on the exercise-induced immune response. In a double-blind, randomized, controlled trial, healthy, untrained male subjects received either Tr14 (n = 40) or placebo (n = 40) for 24 h after a strenuous experimental exercise trial on a bicycle (60 min at 80%VO2 max). A range of antigen-stimulated cytokines (in vitro), white blood cell count, lymphocyte activation and apoptosis markers, and indicators of muscle damage were assessed up to 24 h following exercise. The area under the curve with respect to the increase (AUCI ) was compared between both groups. The Tr14 group showed a reduced exercise-induced leukocytosis and neutrocytosis (P < 0.01 for both), a higher AUCI score of antigen-stimulated IL-1β and IL-1α (absolute and per monocyte, all P < 0.05), a lower AUCI score of antigen-stimulated GM-CSF (P < 0.05) and by trend a lower AUCI score of antigen-stimulated IL-2 and IL-4 as well as a higher AUCI score of antigen-stimulated IL-6 (all P < 0.1). Tr14 might promote differentiated effects on the exercise-induced immune response by (a) decreasing the inflammatory response of the innate immune system; and (b) augmenting the pro-inflammatory cytokine response. PMID:24924232

  9. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells

    PubMed Central

    Cohen, Evan N.; Gao, Hui; Anfossi, Simone; Mego, Michal; Reddy, Neelima G.; Debeb, Bisrat; Giordano, Antonio; Tin, Sanda; Wu, Qiong; Garza, Raul J.; Cristofanilli, Massimo; Mani, Sendurai A.; Croix, Denise A.; Ueno, Naoto T.; Woodward, Wendy A.; Luthra, Raja; Krishnamurthy, Savitri; Reuben, James M.

    2015-01-01

    Inflammatory breast cancer (IBC) is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT) in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1), a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction. PMID:26207636

  10. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: innate immune responses in plants.

    PubMed

    Schulze-Lefert, P

    2010-04-01

    Plants rely exclusively upon mechanisms of innate immunity. Current concepts of the plant innate immune system are based largely on two forms of immunity that engage distinct classes of immune receptors. These receptors enable the recognition of non-self structures that are either conserved between members of a microbial class or specific to individual strains of a microbe. One type of receptor comprises membrane-resident pattern recognition receptors (PRRs) that detect widely conserved microbe-associated molecular patterns (MAMPs) on the cell surface. A second type of mainly intracellular immune sensors, designated resistance (R) proteins, recognizes either the structure or function of strain-specific pathogen effectors that are delivered inside host cells. Phytopathogenic microorganisms have evolved a repertoire of effectors, some of which are delivered into plant cells to sabotage MAMP-triggered immune responses. Plants appear to have also evolved receptors that sense cellular injury by the release and perception of endogenous damage-associated molecular patterns (DAMPs). It is possible that the integration of MAMP and DAMP responses is critical to mount robust MAMP-triggered immunity. This signal integration might help to explain why plants are colonized in nature by remarkably diverse and seemingly asymptomatic microbial communities. PMID:20415853

  11. A Brief Journey through the Immune System

    PubMed Central

    Yatim, Karim M.

    2015-01-01

    This review serves as an introduction to an Immunology Series for the Nephrologist published in CJASN. It provides a brief overview of the immune system, how it works, and why it matters to kidneys. This review describes in broad terms the main divisions of the immune system (innate and adaptive), their cellular and tissue components, and the ways by which they function and are regulated. The story is told through the prism of evolution in order to relay to the reader why the immune system does what it does and why imperfections in the system can lead to renal disease. Detailed descriptions of cell types, molecules, and other immunologic curiosities are avoided as much as possible in an effort to not detract from the importance of the broader concepts that define the immune system and its relationship to the kidney. PMID:25845377

  12. Hepatotoxicants induce cytokine imbalance in response to innate immune system.

    PubMed

    Goto, Shima; Deguchi, Jiro; Nishio, Naoki; Nomura, Naruaki; Funabashi, Hitoshi

    2015-06-01

    In recent years, attention has been paid to innate immune systems as mechanisms to initiate or promote drug-induced liver injury (DILI). Kupffer cells are hepatic resident macrophages and might be involved in the pathogenesis of DILI by release of pro- and anti-inflammatory mediators such as cytokines, chemokines, reactive oxygen species, and/or nitric oxides. The purpose of this study was to investigate alterations in mediator levels induced by hepatotoxic compounds in isolated Kupffer cells and discuss the relation between balance of each cytokine or chemokine and potential of innate immune-mediated DILI. Primary cultured rat Kupffer cells were treated with hepatotoxic (acetaminophen, troglitazone, trovafloxacin) or non-hepatotoxic (pioglitazone, levofloxacin) compounds with or without lipopolysaccharide (LPS). After 24 hr treatment, cell supernatants were collected and various levels of mediators released by Kupffer cells were examined. Although hepatotoxicants had no effect on the LPS-induced tumor necrosis factor-alpha (TNF-α) secretion, they enhanced the release of pro-inflammatory cytokine interleukin-1 beta (IL-1β) and suppressed the anti-inflammatory cytokines interleukin-6 (IL-6) and interleukin-10 (IL-10) induced by LPS. These cytokine shifts were not associated with switching the phenotypes of M1 and M2 macrophages in Kupffer cells. In conclusion, the present study suggested that the levels of some specific cytokines are affected by DILI-related drugs with LPS stimulation, and imbalance between pro- and anti-inflammatory cytokines, induced by the up-regulation of IL-1β and the down-regulation of IL-6 or IL-10, plays a key role in innate immune-mediated DILI. PMID:25972199

  13. P-selectin glycoprotein ligand-1 modulates immune inflammatory responses in the enteric lamina propria.

    PubMed

    Nuñez-Andrade, Norman; Lamana, Amalia; Sancho, David; Gisbert, Javier P; Gonzalez-Amaro, Roberto; Sanchez-Madrid, Francisco; Urzainqui, Ana

    2011-06-01

    P-selectin glycoprotein ligand-1 (PSGL-1), a leukocyte adhesion receptor that interacts with selectins, induces a tolerogenic programme in bone marrow-derived dendritic cells (DCs), which in turn promotes the generation of T regulatory (Treg) lymphocytes. In the present study, we have used a mouse model of dextran sulphate sodium (DSS)-induced colitis and studied the characteristics of the inflammatory cell infiltrate in the lamina propria (LP), mesenteric lymph nodes (mLNs) and Peyer's patches (PPs) to assess the possible role of PSGL-1 in the modulation of the enteric immune response. We have found that untreated PSGL-1-deficient mice showed an altered proportion of innate and adaptive immune cells in mLNs and PPs as well as an activated phenotype of macrophages and DCs in the colonic LP that mainly produced pro-inflammatory cytokines. Administration of an anti-PSGL-1 antibody also reduced the total numbers of macrophages, DCs and B cells in the colonic LP, and induced a lower expression of MHC-II by DCs and macrophages. After DSS treatment, PSGL-1(-/-) mice developed colitis earlier and with higher severity than wild-type (WT) mice. Accordingly, the colonic LP of these animals showed an enhanced number of Th1 and Th17 lymphocytes, with enhanced synthesis of IL-1α, IL-6 and IL-22, and increased activation of LP macrophages. Together, our data indicate that PSGL-1 has a relevant homeostatic role in the gut-associated lymphoid tissue under steady-state conditions, and that this adhesion receptor is able to down-regulate the inflammatory phenomenon in DSS-induced colitis. PMID:21432853

  14. Age-associated changes in immune and inflammatory responses: impact of vitamin E intervention

    PubMed Central

    Wu, Dayong; Meydani, Simin Nikbin

    2008-01-01

    Aging is associated with dysregulated immune and inflammatory responses. Declining T cell function is the most significant and best-characterized feature of immunosenescence. Intrinsic changes within T cells and extrinsic factors contribute to the age-associated decline in T cell function. T cell defect seen in aging involves multiple stages from early receptor activation events to clonal expansion. Among extrinsic factors, increased production of T cell-suppressive factor PGE2 by macrophages (Mφ) is most recognized. Vitamin E reverses an age-associated defect in T cells, particularly naïve T cells. This effect of vitamin E is also reflected in a reduced rate of upper respiratory tract infection in the elderly and enhanced clearance of influenza infection in a rodent model. The T cell-enhancing effect of vitamin E is accomplished via its direct effect on T cells and indirectly by inhibiting PGE2 production in Mφ. Up-regulated inflammation with aging has attracted increasing attention as a result of its implications in the pathogenesis of diseases. Increased PGE2 production in old Mφ is a result of increased cyclooxygenase 2 (COX-2) expression, leading to higher COX enzyme activity, which in turn, is associated with the ceramide-induced up-regulation of NF-κB. Similar to Mφ, adipocytes from old mice have a higher expression of COX-2 as well as inflammatory cytokines IL-1β, IL-6, and TNF-α, which might also be related to elevated levels of ceramide and NF-κB activation. This review will discuss the above age-related immune and inflammatory changes and the effect of vitamin E as nutritional intervention with a focus on the work conducted in our laboratory. PMID:18596135

  15. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury.

    PubMed

    Schwab, Jan M; Zhang, Yi; Kopp, Marcel A; Brommer, Benedikt; Popovich, Phillip G

    2014-08-01

    During the transition from acute to chronic stages of recovery after spinal cord injury (SCI), there is an evolving state of immunologic dysfunction that exacerbates the problems associated with the more clinically obvious neurologic deficits. Since injury directly affects cells embedded within the "immune privileged/specialized" milieu of the spinal cord, maladaptive or inefficient responses are likely to occur. Collectively, these responses qualify as part of the continuum of "SCI disease" and are important therapeutic targets to improve neural repair and neurological outcome. Generic immune suppressive therapies have been largely unsuccessful, mostly because inflammation and immunity exert both beneficial (plasticity enhancing) and detrimental (e.g. glia- and neurodegenerative; secondary damage) effects and these functions change over time. Moreover, "compartimentalized" investigations, limited to only intraspinal inflammation and associated cellular or molecular changes in the spinal cord, neglect the reality that the structure and function of the CNS are influenced by systemic immune challenges and that the immune system is 'hardwired' into the nervous system. Here, we consider this interplay during the progression from acute to chronic SCI. Specifically, we survey impaired/non-resolving intraspinal inflammation and the paradox of systemic inflammatory responses in the context of ongoing chronic immune suppression and autoimmunity. The concepts of systemic inflammatory response syndrome (SIRS), compensatory anti-inflammatory response syndrome (CARS) and "neurogenic" spinal cord injury-induced immune depression syndrome (SCI-IDS) are discussed as determinants of impaired "host-defense" and trauma-induced autoimmunity. PMID:25017893

  16. The nervous and the immune systems: conspicuous physiological analogies.

    PubMed

    Sotelo, Julio

    2015-02-01

    From all biological constituents of complex organisms, two are highly sophisticated: the nervous and the immune systems. Interestingly, their goals and processes appear to be distant from each other; however, their physiological mechanisms keep notorious similarities. Both construct intelligence, learn from experience, and keep memory. Their precise responses to innumerable stimuli are delicately modulated, and the exposure of the individual to thousands of potential challenges integrates their functionality; they use a large part of their constituents not in excitatory activities but in the maintenance of inhibitory mechanisms to keep silent vast intrinsic potentialities. The nervous and immune systems are integrated by a basic cell lineage (neurons and lymphocytes, respectively) but each embodies countless cell subgroups with different and specialized deeds which, in contrast with cells from other organs, labyrinthine molecular arrangements conduct to "one cell, one function". Also, nervous and immune actions confer identity that differentiates every individual from countless others in the same species. Both systems regulate and potentiate their responses aided by countless biological resources of variable intensity: hormones, peptides, cytokines, pro-inflammatory molecules, etc. How the immune and the nervous systems buildup memory, learning capability, and exquisite control of excitatory/inhibitory mechanisms constitute major intellectual challenges for contemporary research. PMID:25398574

  17. Marine Pharmacology in 2000: Marine Compounds with Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antituberculosis, and Antiviral Activities; Affecting the Cardiovascular, Immune, and Nervous Systems and Other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Hamann, Mark T.

    2016-01-01

    During 2000 research on the pharmacology of marine chemicals involved investigators from Australia, Brazil, Canada, Egypt, France, Germany, India, Indonesia, Israel, Italy, Japan, the Netherlands, New Zealand, Phillipines, Singapore, Slovenia, South Korea, Spain, Sweden, Switzerland, United Kingdom, and the United States. This current review, a sequel to the authors’ 1998 and 1999 reviews, classifies 68 peer-reviewed articles on the basis of the reported preclinical pharmacologic properties of marine chemicals derived from a diverse group of marine animals, algae, fungi, and bacteria. Antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antituberculosis, or antiviral activity was reported for 35 marine chemicals. An additional 20 marine compounds were shown to have significant effects on the cardiovascular and nervous system, and to possess anti-inflammatory or immunosuppressant properties. Finally, 23 marine compounds were reported to act on a variety of molecular targets and thus could potentially contribute to several pharmacologic classes. Thus, as in 1998 and 1999, during 2000 pharmacologic research with marine chemicals continued to contribute potentially novel chemical leads to the ongoing global search for therapeutic agents in the treatment of multiple disease categories. PMID:14583811

  18. Weakened Immune System and Adult Vaccination

    MedlinePlus

    ... for Healthcare Professionals Weakened Immune System and Adult Vaccination Recommend on Facebook Tweet Share Compartir Vaccines are ... up to age 26 years Learn about adult vaccination and other health conditions Asplenia Diabetes Type 1 ...

  19. Anti-TNF-α agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls.

    PubMed

    Silva, Léia C R; Ortigosa, Luciena C M; Benard, Gil

    2010-11-01

    TNF-α is a potent inducer of the inflammatory response, a key regulator of innate immunity and plays an important role in the regulation of Th1 immune responses against intracellular bacteria and certain viral infections. However, dysregulated TNF can also contribute to numerous pathological situations. These include immune-mediated inflammatory diseases (IMIDs) including rheumatoid arthritis, Crohn's disease, psoriatic arthritis, ankylosing spondylitis, ulcerative colitis and severe chronic plaque psoriasis. Animal and human studies concerning the role of TNF-α in IMIDs have led to the development of a therapy based on TNF blockage. This article focuses first on the potential mechanisms by which the three currently licensed agents, adalimumab, etarnecept and infliximab, decrease the inflammatory activity of patients with different IMIDs. Second, it focuses on the risks, precautions and complications of the use of TNF-α inhibitors in these patients. PMID:21091114

  20. Effects of chalcone derivatives on players of the immune system

    PubMed Central

    Lee, Jian Sian; Bukhari, Syed Nasir Abbas; Fauzi, Norsyahida Mohd

    2015-01-01

    The immune system is the defense mechanism in living organisms that protects against the invasion of foreign materials, microorganisms, and pathogens. It involves multiple organs and tissues in human body, such as lymph nodes, spleen, and mucosa-associated lymphoid tissues. However, the execution of immune activities depends on a number of specific cell types, such as B cells, T cells, macrophages, and granulocytes, which provide various immune responses against pathogens. In addition to normal physiological functions, abnormal proliferation, migration, and differentiation of these cells (in response to various chemical stimuli produced by invading pathogens) have been associated with several pathological disorders. The unwanted conditions related to these cells have made them prominent targets in the development of new therapeutic interventions against various pathological implications, such as atherosclerosis and autoimmune diseases. Chalcone derivatives exhibit a broad spectrum of pharmacological activities, such as immunomodulation, as well as anti-inflammatory, anticancer, antiviral, and antimicrobial properties. Many studies have been conducted to determine their inhibitory or stimulatory activities in immune cells, and the findings are of significance to provide a new direction for subsequent research. This review highlights the effects of chalcone derivatives in different types of immune cells. PMID:26316713

  1. Transportation Planning with Immune System Derived Approach

    NASA Astrophysics Data System (ADS)

    Sugiyama, Kenji; Yaji, Yasuhito; Ootsuki, John Takuya; Fujimoto, Yasutaka; Sekiguchi, Takashi

    This paper presents an immune system derived approach for planning transportation of materials between manufacturing processes in the factory. Transportation operations are modeled by Petri Net, and divided into submodels. Transportation orders are derived from the firing sequences of those submodels through convergence calculation by the immune system derived excitation and suppression operations. Basic evaluation of this approach is conducted by simulation-based investigation.

  2. [Role of immune system in the pathomechanism of obstructive sleep apnea].

    PubMed

    Chorostowska-Wynimko, Joanna; Kedzior, Marta E

    2008-01-01

    Immune system plays an essential role in the pathomechanism of obstructive sleep apnea syndrome (OSA), in the development of certain OSA complications, like the increased risk of cardiovascular diseases. Indeed, it is the sleep fragmentation and chronic intermittent hypoxia/reoxygenation, that stimulates increased immunoreactivity and chronic inflammatory response, both systemic and local in the upper airways. This review summarizes current evidence on the most important regulatory mechanisms involving immune cells and mediators. PMID:18464225

  3. Serum Homocysteine Concentration Is Significantly Associated with Inflammatory/Immune Factors

    PubMed Central

    Yang, Xiaobo; Zhang, Haiying; Qin, Xue; Hu, Yanling; Mo, Zengnan

    2015-01-01

    Recent studies suggest that serum homocysteine (HCY) level is correlated to inflammatory/immune factors that influence the development and progression of many diseases, such as cardiovascular disease. However, the association between serum HCY level and inflammatory/immune factors in healthy populations has not been systematically investigated. This study was conducted based on the Fangchenggang Area Male Health and Examination Survey (FAMHES) project. After comprehensive baseline analysis, we could not find any significant association between HCY level and inflammatory/immune factors. However, in the next linear regression analysis, serum C4 [age-adjusted: Beta = -0.053, 95%CI = (-3.798, -0.050), P = 0.044; multivariate adjusted: Beta = -0.064, 95%CI = (-4.271, -0.378), P = 0.019] and C-reactive protein (CRP) concentration [unadjusted: Beta = 0.056, 95%CI = (0.037, 0.740), P = 0.030] were positively related with HCY. In further binary regression analysis, a significant correlation was confirmed for C4 and HCY [age-adjusted: OR = 0.572, 95%CI = (0.359, 0.911); multivariate adjusted: OR = 0.558, 95%CI = (0.344, 0.905)]. In order to discover more potential associations, multivariate logistic regression analysis was applied and suggested that HCY and C4 were significantly correlated [age-adjusted: OR = 0.703, 95%CI = (0.519, 0.951); multivariate adjusted: OR = 0.696, 95%CI = (0.509, 0.951)]. In addition, immunoglobulin M (IgM) may influence the HCY level to some extent [unadjusted: OR = 1.427, 95%CI = (1.052, 1.936); age-adjusted: OR = 1.446, 95%CI = (1.061, 1.970); multivariate adjusted: OR = 1.447, 95%CI = (1.062, 1.973)]. Combining our results with recent studies, we propose that C4, CRP, and IgM in serum are significantly associated with HCY concentration. Further studies are needed on the mechanism of the interaction, especially among cardiovascular disease subjects. PMID:26367537

  4. Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease

    PubMed Central

    Al-Ghadban, Sara; Kaissi, Samira; Homaidan, Fadia R.; Naim, Hassan Y.; El-Sabban, Marwan E.

    2016-01-01

    Inflammatory bowel disease (IBD) involves functional impairment of intestinal epithelial cells (IECs), concomitant with the infiltration of the lamina propria by inflammatory cells. We explored the reciprocal paracrine and direct interaction between human IECs and macrophages (MΦ) in a co-culture system that mimics some aspects of IBD. We investigated the expression of intercellular junctional proteins in cultured IECs under inflammatory conditions and in tissues from IBD patients. IECs establish functional gap junctions with IECs and MΦ, respectively. Connexin (Cx26) and Cx43 expression in cultured IECs is augmented under inflammatory conditions; while, Cx43-associated junctional complexes partners, E-cadherin, ZO-1, and β-catenin expression is decreased. The expression of Cx26 and Cx43 in IBD tissues is redistributed to the basal membrane of IEC, which is associated with decrease in junctional complex proteins’ expression, collagen type IV expression and infiltration of MΦ. These data support the notion that the combination of paracrine and hetero-cellular communication between IECs and MΦs may regulate epithelial cell function through the establishment of junctional complexes between inflammatory cells and IECs, which ultimately contribute to the dys-regulation of intestinal epithelial barrier. PMID:27417573

  5. Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease.

    PubMed

    Al-Ghadban, Sara; Kaissi, Samira; Homaidan, Fadia R; Naim, Hassan Y; El-Sabban, Marwan E

    2016-01-01

    Inflammatory bowel disease (IBD) involves functional impairment of intestinal epithelial cells (IECs), concomitant with the infiltration of the lamina propria by inflammatory cells. We explored the reciprocal paracrine and direct interaction between human IECs and macrophages (MΦ) in a co-culture system that mimics some aspects of IBD. We investigated the expression of intercellular junctional proteins in cultured IECs under inflammatory conditions and in tissues from IBD patients. IECs establish functional gap junctions with IECs and MΦ, respectively. Connexin (Cx26) and Cx43 expression in cultured IECs is augmented under inflammatory conditions; while, Cx43-associated junctional complexes partners, E-cadherin, ZO-1, and β-catenin expression is decreased. The expression of Cx26 and Cx43 in IBD tissues is redistributed to the basal membrane of IEC, which is associated with decrease in junctional complex proteins' expression, collagen type IV expression and infiltration of MΦ. These data support the notion that the combination of paracrine and hetero-cellular communication between IECs and MΦs may regulate epithelial cell function through the establishment of junctional complexes between inflammatory cells and IECs, which ultimately contribute to the dys-regulation of intestinal epithelial barrier. PMID:27417573

  6. Effects of mannose-binding lectin on pulmonary gene expression and innate immune inflammatory response to ozone.

    PubMed

    Ciencewicki, Jonathan M; Verhein, Kirsten C; Gerrish, Kevin; McCaw, Zachary R; Li, Jianying; Bushel, Pierre R; Kleeberger, Steven R

    2016-08-01

    Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl(+/+)) and MBL-deficient (Mbl(-/-)) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl(-/-) than Mbl(+/+) mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl(+/+) and Mbl(-/-) mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS(2) data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at

  7. The immune system in space and microgravity

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    2002-01-01

    Space flight and models that created conditions similar to those that occur during space flight have been shown to affect a variety of immunological responses. These have primarily been cell-mediated immune responses including leukocyte proliferation, cytokine production, and leukocyte subset distribution. The mechanisms and biomedical consequences of these changes remain to be established. Among the possible causes of space flight-induced alterations in immune responses are exposure to microgravity, exposure to stress, exposure to radiation, and many more as yet undetermined causes. This review chronicles the known effects of space flight on the immune system and explores the possible role of stress in contributing to these changes.

  8. Constrained optimization via artificial immune system.

    PubMed

    Zhang, Weiwei; Yen, Gary G; He, Zhongshi

    2014-02-01

    An artificial immune system inspired by the fundamental principle of the vertebrate immune system, for solving constrained optimization problems, is proposed. The analogy between the mechanism of biological immune response and constrained optimization formulation is drawn. Individuals in population are classified into feasible and infeasible groups according to their constraint violations that closely match with the two states, inactivated and activated, of B-cells in the immune response. Feasible group focuses on exploitation in the feasible areas through clonal selection, recombination, and hypermutation, while infeasible group facilitates exploration along the feasibility boundary via location update. Direction information is extracted to promote the interactions between these two groups. This approach is validated by the benchmark functions proposed most recently and compared with those of the state of the art from various branches of evolutionary computation paradigms. The performance achieved is considered fairly competitive and promising. PMID:23757542

  9. [Systemic inflammatory rheumatic diseases competence network].

    PubMed

    Rufenach, C; Burmester, G-R; Zeidler, H; Radbruch, A

    2004-04-01

    The foundation of the competence network for rheumatology, which is funded by the "Bundesministerium für Bildung und Forschung" (BMBF) since 1999, succeeded to create a unique research structure in Germany: medical doctors and scientists from six university rheumatology centres (Berlin, Düsseldorf, Erlangen, Freiburg, Hannover und Lübeck/Bad Bramstedt) work closely together with scientists doing basic research at the Deutsches Rheuma-Forschungszentrum (DRFZ), with rheumatological hospitals, reha-clinics, and rheumatologists. Jointly they are searching for causes of systemic inflammatory rheumatic diseases and try to improve therapies-nationwide and with an interdisciplinary approach. The primary objective of this collaboration is to transfer new scientific insights more rapidly in order to improve methods for diagnosis and patients treatment. PMID:14999386

  10. THE EMERGING ROLE OF RESIDENT MEMORY T CELLS IN PROTECTIVE IMMUNITY AND INFLAMMATORY DISEASE

    PubMed Central

    Park, Changook; Kupper, Thomas S

    2015-01-01

    Over the past decade, it has become clear that there is an important subset of memory T cells that resides in tissues — tissue resident memory T cells (TRM). There is an emerging understanding that TRM have a role in human tissue specific immune and inflammatory diseases. Furthermore, the nature of the molecular signals that maintain TRM in tissues is the subject of much investigation. In addition while it is logical for TRM to be located in barrier tissues at interfaces with the environment in human and mouse, TRM have also been found in brain, kidney, joint, and other non-barrier tissues in both species. Their biology and behavior make it likely that they play a role in chronic relapsing and remitting diseases of both barrier and non-barrier tissues. This review will discuss recent understandings of the biology of TRM with a particular focus on their role in disease. PMID:26121195

  11. Penicillium marneffei presenting as an immune reconstitution inflammatory syndrome (IRIS) in a patient with advanced HIV

    PubMed Central

    Hall, Charlotte; Hajjawi, Rachel; Barlow, Gavin; Thaker, Hiten; Adams, Kate; Moss, Peter

    2013-01-01

    A 62-year-old British man with advanced HIV was established on antiretroviral therapy and treatment for disseminated Mycobacterium avium complex and Cytomegalovirus infections. One month later he re-presented with epigastric pain, an epigastric mass and skin lesions. Abdominal imaging revealed large volume lymphadenopathy, which was not present on previous imaging. Blood cultures yielded Penicillium marneffei, a dimorphic fungus endemic to South-east Asia. The patient had spent several years travelling in Thailand prior to the diagnosis of HIV. Penicilliosis is a common AIDS-defining illness in endemic areas, but remains rare in Europe. In this case, it presented in the context of a rapidly decreasing viral load as an immune reconstitution inflammatory syndrome. The challenges of management in the context of multiple comorbidities and polypharmacy are discussed. PMID:23362074

  12. Translational research in immune and inflammatory diseases; what are the challenges, expected advances, and innovative therapies?

    PubMed

    Joubert, Jean-Michel; Gottenberg, Jacques-Eric; Paintaud, Gilles; Augendre-Ferrante, Béatrice; Cans, Christophe; Cellier, Dominique; Chevalier, Marie-Pierre; Diaz, Isabelle; Filipecki, Jamila; Kahn, Jean-Emmanuel; Le Men, Johan; Mulleman, Denis; Urbain, Rémi; Vasmant, Daniel

    2014-01-01

    Despite very different aetiologies and clinical expressions, advancing knowledge in the physiopathology and treatment of immune and inflammatory diseases (IID) prompts us to consider them as a whole. These are chronic, often incapacitating and painful illnesses that progress and destroy organs. Management by discipline too often leads to erroneous diagnoses and sometimes inappropriate treatment. More integrated translational research would further understanding of the complex relationships between cytokines and organ damage, which vary with the conditions and patients, making it possible to develop new biomarkers and personalize treatment. The research in France has very many strengths but its organization is fragmented. Better coordinated research into IID, which could be based on creating a strategic valorization field (domaine de valorisation stratégique, DVS) and thematic multi-organization institute (Institut thématique multi-organismes ITMO), would advance patient management. PMID:25099671

  13. Inflammatory and innate immune responses in dengue infection: protection versus disease induction.

    PubMed

    Costa, Vivian Vasconcelos; Fagundes, Caio Tavares; Souza, Danielle G; Teixeira, Mauro Martins

    2013-06-01

    Dengue disease is a mosquito-borne viral disease of expanding geographical range and incidence. Infection by one of the four serotypes of dengue virus induces a spectrum of disease manifestations, ranging from asymptomatic to life-threatening Dengue hemorrhagic fever/dengue shock syndrome. Many efforts have been made to elucidate several aspects of dengue virus-induced disease, but the pathogenesis of disease is complex and remains unclear. Understanding the mechanisms involved in the early stages of infection is crucial to determine and develop safe therapeutics to prevent the severe outcomes of disease without interfering with control of infection. In this review, we discuss the dual role of the innate and inflammatory pathways activated during dengue disease in mediating both protection and exacerbation of disease. We show that some mediators involved in each of these responses differ substantially, suggesting that interfering in disease-associated immune pathways may represent a potential therapeutic opportunity for the treatment of severe dengue. PMID:23567637

  14. Immune and inflammatory responses of Australian firefighters after repeated exposures to the heat.

    PubMed

    Walker, Anthony; Keene, Toby; Argus, Christos; Driller, Matthew; Guy, Joshua H; Rattray, Ben

    2015-01-01

    When firefighters work in hot conditions, altered immune and inflammatory responses may increase the risk of a cardiac event. The present study aimed to establish the time course of such responses. Forty-two urban firefighters completed a repeat work protocol in a heat chamber (100 ± 5°C). Changes to leukocytes, platelets, TNFα, IL-6, IL-10, LPS and CRP were evaluated immediately post-work and also after 1 and 24 h of rest. Increases in core temperatures were associated with significant increases in leukocytes, platelets and TNFα directly following work. Further, platelets continued to increase at 1 h (+31.2 ± 31.3 × 10(9) l, p < 0.01) and remained elevated at 24 h (+15.9 ± 19.6 × 10(9) l, p < 0.01). Sustained increases in leukocytes and platelets may increase the risk of cardiac events in firefighters when performing repeat work tasks in the heat. This is particularly relevant during multi-day deployments following natural disasters. Practitioner Summary: Firefighters regularly re-enter fire affected buildings or are redeployed to further operational tasks. Should work in the heat lead to sustained immune and inflammatory changes following extended rest periods, incident controllers should plan appropriate work/rest cycles to minimise these changes and any subsequent risks of cardiac events. PMID:26082313

  15. Comments on introducing the immune system.

    PubMed

    Ahmed, E

    2009-01-01

    It is argued that by studying some design principles of the immune system, e.g. nonlinearity and being a complex adaptive system, one can easily find some explanations of basic properties of the system e.g. memory and tolerance. PMID:19519897

  16. Systems-Level Analysis of Innate Immunity

    PubMed Central

    Zak, Daniel E.; Tam, Vincent C.; Aderem, Alan

    2014-01-01

    Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology. PMID:24655298

  17. Immune system stimulation by probiotic microorganisms.

    PubMed

    Ashraf, Rabia; Shah, Nagendra P

    2014-01-01

    Probiotic organisms are claimed to offer several functional properties including stimulation of immune system. This review is presented to provide detailed informations about how probiotics stimulate our immune system. Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Bifidobacterium animalis Bb-12, Lactobacillus johnsonii La1, Bifidobacterium lactis DR10, and Saccharomyces cerevisiae boulardii are the most investigated probiotic cultures for their immunomodulation properties. Probiotics can enhance nonspecific cellular immune response characterized by activation of macrophages, natural killer (NK) cells, antigen-specific cytotoxic T-lymphocytes, and the release of various cytokines in strain-specific and dose-dependent manner. Mixture and type (gram-positive and gram-negative) of probiotic organisms may induce different cytokine responses. Supplementation of probiotic organisms in infancy could help prevent immune-mediated diseases in childhood, whereas their intervention in pregnancy could affect fetal immune parameters, such as cord blood interferon (IFN)-γ levels, transforming growth factor (TGF)-β1 levels, and breast milk immunoglobulin (Ig)A. Probiotics that can be delivered via fermented milk or yogurt could improve the gut mucosal immune system by increasing the number of IgA(+) cells and cytokine-producing cells in the effector site of the intestine. PMID:24499072

  18. Immunogenomics: towards a digital immune system.

    PubMed

    Beck, Stephan

    2003-01-01

    One of the major differences that set apart vertebrates from non-vertebrates is the presence of a complex immune system. Over the past 400-500 million years, many novel immune genes and gene families have emerged and their products form sophisticated pathways providing protection against most pathogens. The Human Genome Project has laid the foundation to study these genes and pathways in unprecedented detail. Members of the immunoglobulin (Ig) superfamily alone were found to make up over 2% of human genes possibly constituting the largest gene family in the human genome. A subgroup of these human immune genes, those (among others) involved in antigen processing and presentation, are encoded in a single region, the major histocompatibility complex (MHC) on the short arm of chromosome 6. My laboratory has a long-standing interest in understanding the molecular organization and evolution of the MHC. To this end, we have been generating a range of MHC genomic resources that we make available in the form of maps and databases. Much of the complex data of the immune system can be reduced to binary (on/off) information that can easily be made available and analysed by bioinformatics approaches, thus contributing to better understand immune function via a 'digital immune system'. PMID:14712940

  19. Immunological profiling of tuberculosis-associated immune reconstitution inflammatory syndrome and non-immune reconstitution inflammatory syndrome death in HIV-infected adults with pulmonary tuberculosis starting antiretroviral therapy: a prospective observational cohort study

    PubMed Central

    Ravimohan, Shruthi; Tamuhla, Neo; Steenhoff, Andrew P.; Letlhogile, Rona; Nfanyana, Kebatshabile; Bellamy, Scarlett L.; MacGregor, Rob Roy; Gross, Robert; Weissman, Drew; Bisson, Gregory P.

    2015-01-01

    1–55·2]). At week 4 after ART initiation, tuberculosis-associated IRIS was independently associated with greater increases in several inflammatory biomarkers, including IL-6 (adjusted OR 1·7 [95% CI 1·2–2·5]) and TNF-α (1·5 [1·0–2·2]), versus controls. Death was likewise associated with greater increases in systemic inflammatory markers, including granulocyte colony-stimulating factor (adjusted OR 2·8 [95% CI 1·3–6·1]), IL-12p40 (1·8 [1·0–3·4]), and IL-15 (2·0 [1·1–3·7]), versus controls. However, changes in CD4 cell count during ART, which were similar between controls and patients with tuberculosis-associated IRIS (p=0·45), were substantially lower in patients who died (p=0·006). Interpretation Distinct immunologic profiles pre- and post-ART initiation characterize advanced HIV/TB patients who experience TB-IRIS and death. Interventions that decrease inflammation while promoting cellular immune recovery on ART among HIV/TB co-infected patients should be considered. Funding National Institutes of Health and the Penn Center for AIDS Research. PMID:25672566

  20. Influenza, Immune System, and Pregnancy

    PubMed Central

    Raj, Renju S.; Bonney, Elizabeth A.

    2014-01-01

    Influenza is a major health problem worldwide. Both seasonal influenza and pandemics take a major toll on the health and economy of our country. The present review focuses on the virology and complex immunology of this RNA virus in general and in relation to pregnancy. The goal is to attempt to explain the increased morbidity and mortality seen in infection during pregnancy. We discuss elements of innate and adaptive immunity as well as placental cellular responses to infection. In addition, we delineate findings in animal models as well as human disease. Increased knowledge of maternal and fetal immunologic responses to influenza is needed. However, enhanced understanding of nonimmune, pregnancy-specific factors influencing direct interaction of the virus with host cells is also important for the development of more effective prevention and treatment options in the future. PMID:24899469

  1. Anti‐Inflammatory Immune Skewing Is Atheroprotective: Apoe−/−FcγRIIb−/− Mice Develop Fibrous Carotid Plaques

    PubMed Central

    Harmon, Erin Y.; Fronhofer, Van; Keller, Rebecca S.; Feustel, Paul J.; Zhu, Xinmei; Xu, Hao; Avram, Dorina; Jones, David M.; Nagarajan, Shanmugam; Lennartz, Michelle R.

    2014-01-01

    Background Stroke, caused by carotid plaque rupture, is a major cause of death in the United States. Whereas vulnerable human plaques have higher Fc receptor (FcγR) expression than their stable counterparts, how FcγR expression impacts plaque histology is unknown. We investigated the role of FcγRIIb in carotid plaque development and stability in apolipoprotein (Apo)e−/− and Apoe−/−FcγRIIb−/− double knockout (DKO) animals. Methods and Results Plaques were induced by implantation of a shear stress‐modifying cast around the carotid artery. Plaque length and stenosis were followed longitudinally using ultrasound biomicroscopy. Immune status was determined by flow cytometry, cytokine release, immunoglobulin G concentration and analysis of macrophage polarization both in plaques and in vitro. Surprisingly, DKO animals had lower plaque burden in both carotid artery and descending aorta. Plaques from Apoe−/− mice were foam‐cell rich and resembled vulnerable human specimens, whereas those from DKO mice were fibrous and histologically stable. Plaques from DKO animals expressed higher arginase 1 (Arg‐1) and lower inducible nitric oxide synthase (iNOS), indicating the presence of M2 macrophages. Analysis of blood and cervical lymph nodes revealed higher interleukin (IL)‐10, immune complexes, and regulatory T cells (Tregs) and lower IL‐12, IL‐1β, and tumor necrosis factor alpha (TNF‐α) in DKO mice. Similarly, in vitro stimulation produced higher IL‐10 and Arg‐1 and lower iNOS, IL‐1β, and TNF‐α in DKO versus Apoe−/− macrophages. These results define a systemic anti‐inflammatory phenotype. Conclusions We hypothesized that removal of FcγRIIb would exacerbate atherosclerosis and generate unstable plaques. However, we found that deletion of FcγRIIb on a congenic C57BL/6 background induces an anti‐inflammatory Treg/M2 polarization that is atheroprotective. PMID:25516435

  2. Association of inflammatory and other immune markers with gallbladder cancer: Results from two independent case-control studies.

    PubMed

    Koshiol, Jill; Castro, Felipe; Kemp, Troy J; Gao, Yu-Tang; Roa, Juan Carlos; Wang, Bingsheng; Nogueira, Leticia; Araya, Juan Carlos; Shen, Ming-Chang; Rashid, Asif; Hsing, Ann W; Hildesheim, Allan; Ferreccio, Catterina; Pfeiffer, Ruth M; Pinto, Ligia A

    2016-07-01

    Most gallbladder cancer (GBC) cases arise in the context of gallstones, which cause inflammation, but few gallstone patients develop GBC. We explored inflammation/immune-related markers measured in bile and serum in GBC cases compared to gallstone patients to better understand how inflammatory patterns in these two conditions differ. We measured 65 immune-related markers in serum and bile from 41 GBC cases and 127 gallstone patients from Shanghai, China, and calculated age- and sex-adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for GBC versus gallstones. We then focused on the markers that were significantly elevated in bile and serum to replicate the findings in serum from 35 GBC cases and 31 gallstone controls from Chile. Comparing the highest versus lowest quantile, 15 markers (23%) were elevated in both serum and bile from GBC versus gallstone patients in the Shanghai study (p<0.05). The strongest OR was for CXCL8 (interleukin-8) in serum (96.8, 95% CI: 11.9-790.2). Of these 15 markers, 6 were also significantly elevated in serum from Chile (CCL20, C-reactive protein, CXCL8, CXCL10, resistin, serum amyloid A). Pooled ORs from Shanghai and Chile for these 6 markers ranged from 7.2 (95% CI: 2.8-18.4) for CXCL10 to 58.2 (95% CI: 12.4-273.0) for CXCL8. GBC is associated with inflammation above and beyond that generated by gallstones alone. This local inflammatory process is reflected systemically. Future longitudinal studies are needed to identify the key players in cancer development, which may guide translational efforts to identify individuals at high risk of developing GBC. PMID:27173614

  3. Neither classical nor alternative macrophage activation is required for Pneumocystis clearance during immune reconstitution inflammatory syndrome.

    PubMed

    Zhang, Zhuo-Qian; Wang, Jing; Hoy, Zachary; Keegan, Achsah; Bhagwat, Samir; Gigliotti, Francis; Wright, Terry W

    2015-12-01

    Pneumocystis is a respiratory fungal pathogen that causes pneumonia (Pneumocystis pneumonia [PcP]) in immunocompromised patients. Alveolar macrophages are critical effectors for CD4(+) T cell-dependent clearance of Pneumocystis, and previous studies found that alternative macrophage activation accelerates fungal clearance during PcP-related immune reconstitution inflammatory syndrome (IRIS). However, the requirement for either classically or alternatively activated macrophages for Pneumocystis clearance has not been determined. Therefore, RAG2(-/-) mice lacking either the interferon gamma (IFN-γ) receptor (IFN-γR) or interleukin 4 receptor alpha (IL-4Rα) were infected with Pneumocystis. These mice were then immune reconstituted with wild-type lymphocytes to preserve the normal T helper response while preventing downstream effects of Th1 or Th2 effector cytokines on macrophage polarization. As expected, RAG2(-/-) mice developed severe disease but effectively cleared Pneumocystis and resolved IRIS. Neither RAG/IFN-γR(-/-) nor RAG/IL-4Rα(-/-) mice displayed impaired Pneumocystis clearance. However, RAG/IFN-γR(-/-) mice developed a dysregulated immune response, with exacerbated IRIS and greater pulmonary function deficits than those in RAG2 and RAG/IL-4Rα(-/-) mice. RAG/IFN-γR(-/-) mice had elevated numbers of lung CD4(+) T cells, neutrophils, eosinophils, and NK cells but severely depressed numbers of lung CD8(+) T suppressor cells. Impaired lung CD8(+) T cell responses in RAG/IFN-γR(-/-) mice were associated with elevated lung IFN-γ levels, and neutralization of IFN-γ restored the CD8 response. These data demonstrate that restricting the ability of macrophages to polarize in response to Th1 or Th2 cytokines does not impair Pneumocystis clearance. However, a cell type-specific IFN-γ/IFN-γR-dependent mechanism regulates CD8(+) T suppressor cell recruitment, limits immunopathogenesis, preserves lung function, and enhances the resolution of PcP-related IRIS

  4. Local immune system in oviduct physiology and pathophysiology: attack or tolerance?

    PubMed

    Marey, M A; Yousef, M S; Kowsar, R; Hambruch, N; Shimizu, T; Pfarrer, C; Miyamoto, A

    2016-07-01

    The local immune system in the oviduct has a unique ability to deal with pathogens, allogeneic spermatozoa, and the semi-allogeneic embryo. To achieve this, it seems likely that the oviduct possesses an efficient and strictly controlled immune system that maintains optimal conditions for fertilization and early embryo development. The presence of a proper sperm and/or embryo-oviduct interaction begs the question of whether the local immune system in the oviduct exerts beneficial or deleterious effects on sperm and early embryo; support or attack?. A series of studies has revealed that bovine oviduct epithelial cells (BOECs) are influenced by preovulatory levels of Estradiol-17β, progesterone, and LH to maintain an immunologic homeostasis in bovine oviduct, via inhibition of proinflammatory responses that are detrimental to allogenic sperm. Under pathologic conditions, the mucosal immune system initiates the inflammatory response to the infection; the bacterial lipopolysaccharide (LPS) at low concentrations induces a proinflammatory response with increased expression of TLR-4, PTGS2, IL-1β, NFκB1, and TNFα, resulting in tissue damage. At higher concentrations, however, LPS induces a set of anti-inflammatory genes (TLR-2, IL-4, IL-10, and PTGES) that may initiate a tissue repair. This response of BOECs is accompanied by the secretion of acute phase protein, suggesting that BOECs react to LPS with a typical acute proinflammatory response. Under physiological conditions, polymorphonuclear neutrophils (PMN) are existent in the oviductal fluid during preovulatory period in the bovine. Interestingly, the bovine oviduct downregulates sperm phagocytosis by PMN via prostaglandin E2 (PGE2) action. In addition, the angiotensin-endothelin-PGE2 system controlling oviduct contraction may fine-tune the PMN phagocytic behavior to sperm in the oviduct. Importantly, a physiological range of PGE2 supplies anti-inflammatory balance in BOEC. Our recent results show that the sperm

  5. Catecholamines—Crafty Weapons in the Inflammatory Arsenal of Immune/Inflammatory Cells or Opening Pandora’s Box§?

    PubMed Central

    Flierl, Michael A; Rittirsch, Daniel; Huber-Lang, Markus; Sarma, J Vidya; Ward, Peter A

    2008-01-01

    It is well established that catecholamines (CAs), which regulate immune and inflammatory responses, derive from the adrenal medulla and from presynaptic neurons. Recent studies reveal that T cells also can synthesize and release catecholamines which then can regulate T cell function. We have shown recently that macrophages and neutrophils, when stimulated, can generate and release catecholamines de novo which, then, in an autocrine/paracrine manner, regulate mediator release from these phagocytes via engagement of adrenergic receptors. Moreover, regulation of catecholamine-generating enzymes as well as degrading enzymes clearly alter the inflammatory response of phagocytes, such as the release of proinflammatory mediators. Accordingly, it appears that phagocytic cells and lymphocytes may represent a major, newly recognized source of catecholamines that regulate inflammatory responses. PMID:18079995

  6. Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression.

    PubMed

    Elling, Roland; Chan, Jennie; Fitzgerald, Katherine A

    2016-03-01

    The innate immune system represents the first line of defense during infection and is initiated by the detection of conserved microbial products by germline-encoded pattern recognition receptors (PRRs). Sensing through PRRs induces broad transcriptional changes that elicit powerful inflammatory responses. Tight regulation of these processes depends on multiple regulatory checkpoints, including noncoding RNA species such as microRNAs. In addition, long noncoding RNAs (lncRNAs) have recently gained attention as important regulators of gene expression acting through versatile interactions with DNA, RNA, or proteins. As such, these RNAs have a multitude of mechanisms to modulate gene expression. Here, we summarize recent advances in this rapidly moving and evolving field. We highlight the contribution of lncRNAs to both the development and activation of innate immune cells, whether it is in the nucleus, where lncRNAs alter the transcription of target genes through interaction with transcription factors, chromatin-modifying complexes or heterogeneous ribonucleoprotein complexes, or in the cytosol where they can control the stability of target mRNAs. In addition, we discuss experimental approaches required to comprehensively investigate the function of a candidate noncoding RNA locus, including loss-of-function approaches encompassing genomic deletions, RNA interference, locked nucleic acids, and various adaptions of the CRISPR/Cas9 technology. PMID:26820238

  7. Neural Control of the Immune System

    ERIC Educational Resources Information Center

    Sundman, Eva; Olofsson, Peder S.

    2014-01-01

    Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have…

  8. Effects of microgravity on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Taylor, Gerald R.

    1991-01-01

    Changes in resistance to bacterial and viral infections in Apollo crew members has stimulated interest in the study of immunity and space flight. Results of studies from several laboratories in both humans and rodents have indicated alterations after space flight that include the following immunological parameters: thymus size, lymphocyte blastogenesis, interferon and interleukin production, natural killer cell activity, cytotoxic T-cell activity, leukocyte subset population distribution, response of bone marrow cells to colony stimulating factors, and delayed hypersensitivity skin test reactivity. The interactions of the immune system with other physiological systems, including muscle, bone, and the nervous system, may play a major role in the development of these immunological parameters during and after flight. There may also be direct effects of space flight on immune responses.

  9. Immune System Network and Cancer Vaccine

    NASA Astrophysics Data System (ADS)

    Bianca, Carlo; Pennisi, Marzio; Motta, Santo; Ragusa, Maria Alessandra

    2011-09-01

    This paper deals with the mathematical modelling of the immune system response to cancer disease, and specifically with the treatment of the mammary carcinoma in presence of an immunoprevenction vaccine. The innate action of the immune system network, the external stimulus represented by repeated vaccine administrations and the competition with cancer are described by an ordinary differential equations-based model. The mathematical model is able to depict preclinical experiments on transgenic mice. The results are of great interest both in the applied and theoretical sciences.

  10. Induction of apoptosis of lymphocytes in rat mucosal immune system

    PubMed Central

    Chen, Xue-Qing; Zhang, Wan-Dai; Song, Yu-Gang; Zhou, Dian-Yuan

    1998-01-01

    AIM: To undergo apoptosis during negative and positive selection processes in rat mucosal immune system which are implicated in the pathogenesis of various mucosal diseases. METHODS: Female Sprague-Dawley rats were given protein synthesis inhibitor, cycloheximide, intravenously or intraperitoneally, an apoptosis was recognized by morphological hallmark under light and electronmicroscopy, and the expression of proliferating cell nuclear antigen was visualized immunohistochemically. RESULTS: The apoptosis of mucosal lymphocytes in the digestive tract, as well as in trachea, uterus and lacrimal gland was induced by cycloheximide ( > 1.0 mg·kg-1 body weight), which were located mainly in lamina propria and germinal centers of lymphoid nodules. At the same time, a portion of crypt epithelial cells of proliferating zone in small and large intestine, and the epithelial cells in genital tract were also found to undergo apoptosis. Immunostainings showed that apoptotic cells expressed proliferating cell nuclear antigen. CONCLUSION: Apoptosis of lymphocytes in mucosal immune system can be induced by cycloheximide. This model will facilitate the understanding of normal mucosal immune system and its role in the pathogenesis of related diseases such as inflammatory bowel diseases. PMID:11819221

  11. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  12. The mucosal immune system for vaccine development.

    PubMed

    Lamichhane, Aayam; Azegamia, Tatsuhiko; Kiyonoa, Hiroshi

    2014-11-20

    Mucosal surfaces are continuously exposed to the external environment and therefore represent the largest lymphoid organ of the body. In the mucosal immune system, gut-associated lymphoid tissues (GALTs), including Peyer's patches and isolated lymphoid follicles, play an important role in the induction of antigen-specific immune responses in the gut. GALTs have unique organogenesis characteristics and interact with the network of dendritic cells and T cells for the simultaneous induction and regulation of IgA responses and oral tolerance. In these lymphoid tissues, antigens are up taken by M cells in the epithelial layer, and antigen-specific immune responses are subsequently initiated by GALT cells. Nasopharynx- and tear-duct-associated lymphoid tissues (NALTs and TALTs) are key organized lymphoid structures in the respiratory tract and ocular cavities, respectively, and have been shown to interact with each other. Mucosal surfaces are also characterized by host-microbe interactions that affect the genesis and maturation of mucosa-associated lymphoid tissues and the induction and regulation of innate and acquired mucosal immune responses. Because most harmful pathogens enter the body through mucosal surfaces by ingestion, inhalation, or sexual contact, the mucosa is a candidate site for vaccination. Mucosal vaccination has some physiological and practical advantages, such as decreased costs and reduced risk of needle-stick injuries and transmission of bloodborne diseases, and it is painless. Recently, the application of modern bioengineering and biochemical engineering technologies, including gene transformation and manipulation systems, resulted in the development of systems to express vaccine antigens in transgenic plants and nanogels, which will usher in a new era of delivery systems for mucosal vaccine antigens. In this review, based on some of our research group's thirty seven years of progress and effort, we highlight the unique features of mucosal immune

  13. Network representations of immune system complexity.

    PubMed

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A; Germain, Ronald N; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multiscale system composed of a hierarchically organized set of molecular, cellular, and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single-cell responses to increasingly complex networks of in vivo cellular interaction, positioning, and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather nonlinear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multiscale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels, while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating 'omics' and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular- and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  14. Fusobacterium nucleatum Alters Atherosclerosis Risk Factors and Enhances Inflammatory Markers with an Atheroprotective Immune Response in ApoEnull Mice

    PubMed Central

    Rivera-Kweh, Mercedes. F.; Chen, Hao; Zheng, Donghang; Bhattacharyya, Indraneel; Gangula, Pandu R.; Lucas, Alexandra R.; Kesavalu, Lakshmyya

    2015-01-01

    The American Heart Association supports an association between periodontal disease (PD) and atherosclerotic vascular disease (ASVD) but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infection with another significant periodontal pathogen Fusobacterium nucleatum can accelerate aortic inflammation and atherosclerosis in the aortic artery of ApoEnull mice. ApoEnull mice (n = 23) were orally infected with F. nucleatum ATCC 49256 and euthanized at 12 and 24 weeks. Periodontal disease assessments including F. nucleatum oral colonization, gingival inflammation, immune response, intrabony defects, and alveolar bone resorption were evaluated. Systemic organs were evaluated for infection, aortic sections were examined for atherosclerosis, and inflammatory markers were measured. Chronic oral infection established F. nucleatum colonization in the oral cavity, induced significant humoral IgG (P=0.0001) and IgM (P=0.001) antibody response (12 and 24 weeks), and resulted in significant (P=0.0001) alveolar bone resorption and intrabony defects. F. nucleatum genomic DNA was detected in systemic organs (heart, aorta, liver, kidney, lung) indicating bacteremia. Aortic atherosclerotic plaque area was measured and showed a local inflammatory infiltrate revealed the presence of F4/80+ macrophages and CD3+ T cells. Vascular inflammation was detected by enhanced systemic cytokines (CD30L, IL-4, IL-12), oxidized LDL and serum amyloid A, as well as altered serum lipid profile (cholesterol, triglycerides, chylomicrons, VLDL, LDL, HDL), in infected mice and altered aortic gene expression in infected mice. Despite evidence for systemic infection in several organs and modulation of known atherosclerosis risk factors, aortic atherosclerotic

  15. The cellular immune system in the post-myocardial infarction repair process.

    PubMed

    Latet, Sam C; Hoymans, Vicky Y; Van Herck, Paul L; Vrints, Christiaan J

    2015-01-20

    Growing evidence indicates that overactivation and prolongation of the inflammatory response after acute myocardial infarction (AMI) result in worse left ventricular remodelling, dysfunction and progression to heart failure. This post-AMI inflammatory response is characterised by the critical involvement of cells from both the innate and adaptive immune systems. In this review paper, we aim to summarise and discuss the emergence of immune cells in the bloodstream and myocardium after AMI in men and mice. Subset composition, phenotypes, and kinetics of immune cells are considered. In addition, the relation with post-MI cardiac remodelling, function and outcome is reported. Increased knowledge of immune components, the mechanisms and interactions by which these cells contribute to myocardial damage and repair following AMI may help to close the gaps that limit improvement of treatments of those who survive the acute infarction. PMID:25464457

  16. Immune system alterations in amyotrophic lateral sclerosis.

    PubMed

    Hovden, H; Frederiksen, J L; Pedersen, S W

    2013-11-01

    Amyotrophic lateral sclerosis is a disease of which the underlying cause and pathogenesis are unknown. Cumulatative data clearly indicates an active participation by the immune system in the disease. An increasingly recognized theory suggests a non-cell autonomous mechanism, meaning that multiple cells working together are necessary for the pathogenesis of the disease. Observed immune system alterations could indicate an active participation in this mechanism. Damaged motor neurons are able to activate microglia, astrocytes and the complement system, which further can influence each other and contribute to neurodegeneration. Infiltrating peripheral immune cells appears to correlate with disease progression, but their significance and composition is unclear. The deleterious effects of this collaborating system of cells appear to outweigh the protective aspects, and revealing this interplay might give more insight into the disease. Markers from the classical complement pathway are elevated where its initiator C1q appears to derive primarily from motor neurons. Activated microglia and astrocytes are found in close proximity to dying motor neurons. Their activation status and proliferation seemingly increases with disease progression. Infiltrating monocytes, macrophages and T cells are associated with these areas, although with mixed reports regarding T cell composition. This literature review will provide evidence supporting the immune system as an important part of ALS disease mechanism and present a hypothesis to direct the way for further studies. PMID:23550891

  17. Inflammatory etiopathogenesis of systemic lupus erythematosus: an update

    PubMed Central

    Podolska, Malgorzata J; Biermann, Mona HC; Maueröder, Christian; Hahn, Jonas; Herrmann, Martin

    2015-01-01

    The immune system struggles every day between responding to foreign antigens and tolerating self-antigens to delicately maintain tissue homeostasis. If self-tolerance is broken, the development of autoimmunity can be the consequence, as it is in the case of the chronic inflammatory autoimmune disease systemic lupus erythematosus (SLE). SLE is considered to be a multifactorial disease comprising various processes and cell types that act abnormally and in a harmful way. Oxidative stress, infections, or, in general, tissue injury are accompanied by massive cellular demise. Several processes such as apoptosis, necrosis, or NETosis (formation of Neutrophil Extracellular Traps [NETs]) may occur alone or in combination. If clearance of dead cells is insufficient, cellular debris may accumulate and trigger inflammation and leakage of cytoplasmic and nuclear autoantigens like ribonucleoproteins, DNA, or histones. Inadequate removal of cellular remnants in the germinal centers of secondary lymphoid organs may result in the presentation of autoantigens by follicular dendritic cells to autoreactive B cells that had been generated by chance during the process of somatic hypermutation (loss of peripheral tolerance). The improper exposure of nuclear autoantigens in this delicate location is consequently prone to break self-tolerance to nuclear autoantigens. Indeed, the germline variants of autoantibodies often do not show autoreactivity. The subsequent production of autoantibodies plays a critical role in the development of the complex immunological disorder fostering SLE. Immune complexes composed of cell-derived autoantigens and autoantibodies are formed and get deposited in various tissues, such as the kidney, leading to severe organ damage. Alternatively, they may also be formed in situ by binding to planted antigens of circulating autoantibodies. Here, we review current knowledge about the etiopathogenesis of SLE including the involvement of different types of cell death

  18. Aberrant Inflammasome Activation Characterizes Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome.

    PubMed

    Tan, Hong Yien; Yong, Yean Kong; Shankar, Esaki M; Paukovics, Geza; Ellegård, Rada; Larsson, Marie; Kamarulzaman, Adeeba; French, Martyn A; Crowe, Suzanne M

    2016-05-15

    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) complicates combination antiretroviral therapy (cART) in up to 25% of patients with HIV/TB coinfection. Monocytes and IL-18, a signature cytokine of inflammasome activation, are implicated in TB-IRIS pathogenesis. In this study, we investigated inflammasome activation both pre- and post-cART in TB-IRIS patients. HIV/TB patients exhibited higher proportions of monocytes expressing activated caspase-1 (casp1) pre-cART, compared with HIV patients without TB, and patients who developed TB-IRIS exhibited the greatest increase in casp1 expression. CD64(+) monocytes were a marker of increased casp1 expression. Furthermore, IL-1β, another marker of inflammasome activation, was also elevated during TB-IRIS. TB-IRIS patients also exhibited greater upregulation of NLRP3 and AIM2 inflammasome mRNA, compared with controls. Analysis of plasma mitochondrial DNA levels showed that TB-IRIS patients experienced greater cell death, especially pre-cART. Plasma NO levels were lower both pre- and post-cART in TB-IRIS patients, providing evidence of inadequate inflammasome regulation. Plasma IL-18 levels pre-cART correlated inversely with NO levels but positively with monocyte casp1 expression and mitochondrial DNA levels, and expression of IL-18Rα on CD4(+) T cells and NK cells was higher in TB-IRIS patients, providing evidence that IL-18 is a marker of inflammasome activation. We propose that inflammasome activation in monocytes/macrophages of HIV/TB patients increases with ineffective T cell-dependent activation of monocytes/macrophages, priming them for an excessive inflammatory response after cART is commenced, which is greatest in patients with TB-IRIS. PMID:27076678

  19. Suppression of systemic autoimmunity by the innate immune adaptor STING

    PubMed Central

    Sharma, Shruti; Campbell, Allison M.; Chan, Jennie; Schattgen, Stefan A.; Orlowski, Gregory M.; Nayar, Ribhu; Huyler, Annie H.; Nündel, Kerstin; Mohan, Chandra; Berg, Leslie J.; Shlomchik, Mark J.; Marshak-Rothstein, Ann; Fitzgerald, Katherine A.

    2015-01-01

    Cytosolic DNA-sensing pathways that signal via Stimulator of interferon genes (STING) mediate immunity to pathogens and also promote autoimmune pathology in DNaseII- and DNaseIII-deficient mice. In contrast, we report here that STING potently suppresses inflammation in a model of systemic lupus erythematosus (SLE). Lymphoid hypertrophy, autoantibody production, serum cytokine levels, and other indicators of immune activation were markedly increased in STING-deficient autoimmune-prone mice compared with STING-sufficient littermates. As a result, STING-deficient autoimmune-prone mice had significantly shorter lifespans than controls. Importantly, Toll-like receptor (TLR)-dependent systemic inflammation during 2,6,10,14-tetramethylpentadecane (TMPD)-mediated peritonitis was similarly aggravated in STING-deficient mice. Mechanistically, STING-deficient macrophages failed to express negative regulators of immune activation and thus were hyperresponsive to TLR ligands, producing abnormally high levels of proinflammatory cytokines. This hyperreactivity corresponds to dramatically elevated numbers of inflammatory macrophages and granulocytes in vivo. Collectively these findings reveal an unexpected negative regulatory role for STING, having important implications for STING-directed therapies. PMID:25646421

  20. The role of the immune system in central nervous system plasticity after acute injury

    PubMed Central

    Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-01-01

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalks between the injured brain and the immune system. In the acute phase, the damaged central nervous system (CNS) activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, which would ultimately bring the inflammatory reaction to a close. In the chronic phase, a sustained immune activation is described in many CNS disorders, and the degree of this prolonged response has variable effects on the spontaneous brain regenerative processes. The challenge for treating acute CNS damages is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Here we have reviewed the available information about the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of recovery after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that ultimately are associated to intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. PMID:24785677

  1. ASSESSING RISKS TO THE DEVELOPING IMMUNE SYSTEM

    EPA Science Inventory

    There is no standardized laboratory animal testing approach to assess the potential toxicity of chemicals to the developing immune system. The goal of this research is to apply a panel of in vivo, ex vivo and in vitro assays to determine whether the developing (i.e., prenatal, n...

  2. [The liver and the immune system].

    PubMed

    Jakab, Lajos

    2015-07-26

    The liver is known to be the metabolic centre of the organism and is under the control of the central nervous system. It has a peculiar tissue structure and its anatomic localisation defines it as part of the immune system having an individual role in the defence of the organism. The determinant of its particular tissue build-up is the sinusoid system. In addition to hepatocytes, one cell row "endothelium", stellate cells close to the external surface, Kupffer cells tightly to its inner surface, as well as dendritic cells and other cell types (T and B lymphocytes, natural killer and natural killer T-cells, mast cells, granulocytes) are present. The multitudes and variety of cells make it possible to carry out the tasks according to the assignment of the organism. The liver is a member of the immune system having immune cells largely in an activated state. Its principal tasks are the assurance of the peripheral immune tolerance of the organism with the help of the haemopoetic cells and transforming growth factor-β. The liver takes part in the determination of the manner of the non-specific immune response of the organism. In addition to acute phase reaction of the organism, the liver has a role in the adaptive/specific immune response. These functions include retardation of the T and B lymphocytes and the defence against harmful pathogens. With the collaboration of transforming growth factor-β, immunoglobulins and their subclasses are inhibited just as the response of the T lymphocytes. The only exception is the undisturbed immunoglobulin A production. Particularly important is the intensive participation of the liver in the acute phase reaction of the organism, which is organised and guided by the coordinated functions of the cortico-hypothalamo-hypophysis-adrenal axis. Beside cellular elements, hormones, adhesion molecules, chemokines and cytokines are also involved in the cooperation with the organs. Acute phase reactants play a central role in these processes

  3. A systems model of phosphorylation for inflammatory signaling events.

    PubMed

    Sadreev, Ildar I; Chen, Michael Z Q; Welsh, Gavin I; Umezawa, Yoshinori; Kotov, Nikolay V; Valeyev, Najl V

    2014-01-01

    Phosphorylation is a fundamental biochemical reaction that modulates protein activity in cells. While a single phosphorylation event is relatively easy to understand, multisite phosphorylation requires systems approaches for deeper elucidation of the underlying molecular mechanisms. In this paper we develop a mechanistic model for single- and multi-site phosphorylation. The proposed model is compared with previously reported studies. We compare the predictions of our model with experiments published in the literature in the context of inflammatory signaling events in order to provide a mechanistic description of the multisite phosphorylation-mediated regulation of Signal Transducer and Activator of Transcription 3 (STAT3) and Interferon Regulatory Factor 5 (IRF-5) proteins. The presented model makes crucial predictions for transcription factor phosphorylation events in the immune system. The model proposes potential mechanisms for T cell phenotype switching and production of cytokines. This study also provides a generic framework for the better understanding of a large number of multisite phosphorylation-regulated biochemical circuits. PMID:25333362

  4. Retinoic Acid in the Immune System

    PubMed Central

    Pino-Lagos, Karina; Benson, Micah J.; Noelle, Randolph J.

    2013-01-01

    On occasion, emerging scientific fields intersect and great discoveries result. In the last decade, the discovery of regulatory T cells (Treg) in immunity has revolutionized our understanding of how the immune system is controlled. Intersecting the rapidly emerging field of Treg function, has been the discovery that retinoic acid (RA) controls both the homing and differentiation of Treg. Instantly, the wealth and breadth of knowledge of the molecular basis for RA action, its receptors, and how it controls cellular differentiation can and will be exploited to understand its profound effects on Treg. Historically, vitamin A deprivation and repletion and RA agonists have been shown to profoundly affect immunity. Now these findings can be interpreted in light of the revelations that RA controls leukocyte homing and Treg function. PMID:19076350

  5. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies.

    PubMed

    Patial, Sonika; Curtis, Alan D; Lai, Wi S; Stumpo, Deborah J; Hill, Georgette D; Flake, Gordon P; Mannie, Mark D; Blackshear, Perry J

    2016-02-16

    Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate-rich elements (AREs) in the 3'-untranslated regions (3'UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3'UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases. PMID:26831084

  6. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies

    PubMed Central

    Patial, Sonika; Curtis, Alan D.; Lai, Wi S.; Stumpo, Deborah J.; Hill, Georgette D.; Flake, Gordon P.; Mannie, Mark D.; Blackshear, Perry J.

    2016-01-01

    Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate–rich elements (AREs) in the 3′-untranslated regions (3′UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3′UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases. PMID:26831084

  7. Equine herpesvirus type 1 modulates inflammatory host immune response genes in equine endothelial cells.

    PubMed

    Johnstone, Stephanie; Barsova, Jekaterina; Campos, Isabel; Frampton, Arthur R

    2016-08-30

    Equine herpesvirus myeloencephalopathy (EHM), a disease caused by equine herpesvirus type 1 (EHV-1), is characterized by severe inflammation, thrombosis, and hypoxia in central nervous system (CNS) endothelial cells, which can result in a spectrum of clinical signs including urinary incontinence, ataxia, and paralysis. Strains of EHV-1 that contain a single point mutation within the viral DNA polymerase (nucleotide A2254>G2254: amino acid N752→D752) are isolated from EHM afflicted horses at higher frequencies than EHV-1 strains that do not harbor this mutation. Due to the correlation between the DNA Pol mutation and EHM disease, EHV-1 strains that contain the mutation have been designated as neurologic. In this study, we measured virus replication, cell to cell spread efficacy, and host inflammatory responses in equine endothelial cells infected with 12 different strains of EHV-1. Two strains, T953 (Ohio 2003) (neurologic) and Kentucky A (KyA) (non-neurologic), have well described disease phenotypes while the remaining strains used in this study are classified as neurologic or non-neurologic based solely on the presence or absence of the DNA pol mutation, respectively. Results show that the neurologic strains do not replicate better or spread more efficiently in endothelial cells. Also, the majority of the host inflammatory genes were modulated similarly regardless of EHV-1 genotype. Analyses of host gene expression showed that a subset of pro-inflammatory cytokines, including the CXCR3 ligands CXCL9, CXCL10, and CXCL11, as well as CCL5, IL-6 and TNF-α were consistently up-regulated in endothelial cells infected with each EHV-1 strain. The identification of specific pro-inflammatory cytokines in endothelial cells that are modulated by EHV-1 provides further insight into the factors that contribute to the immunopathology observed after infection and may also reveal new targets for disease intervention. PMID:27527764

  8. Hyperperfusion in progressive multifocal leukoencephalopathy is associated with disease progression and absence of immune reconstitution inflammatory syndrome

    PubMed Central

    Khoury, Michael N.; Gheuens, Sarah; Ngo, Long; Wang, Xiaoen; Alsop, David C.

    2013-01-01

    We sought to characterize perfusion patterns of progressive multifocal leukoencephalopathy lesions by arterial spin labelling perfusion magnetic resonance imaging and to analyse their association with immune reconstitution inflammatory syndrome, and survival. A total of 22 patients with progressive multifocal leukoencephalopathy underwent a clinical evaluation and magnetic resonance imaging of the brain within 190 days of symptom onset. The presence of immune reconstitution inflammatory syndrome was determined based on clinical and laboratory criteria. Perfusion within progressive multifocal leukoencephalopathy lesions was determined by arterial spin labelling magnetic resonance imaging. We observed intense hyperperfusion within and at the edge of progressive multifocal leukoencephalopathy lesions in a subset of subjects. This hyperperfusion was quantified by measuring the fraction of lesion volume showing perfusion in excess of twice normal appearing grey matter. Hyperperfused lesion fraction was significantly greater in progressive multifocal leukoencephalopathy progressors than in survivors (12.8% versus 3.4% P = 0.02) corresponding to a relative risk of progression for individuals with a hyperperfused lesion fraction ≥ 4.0% of 9.1 (95% confidence interval of 1.4–59.5). The presence of hyperperfusion was inversely related to the occurrence of immune reconstitution inflammatory syndrome at the time of scan (P = 0.03). Indeed, within 3 months after symptom onset, hyperperfusion had a positive predictive value of 88% for absence of immune reconstitution inflammatory syndrome. Arterial spin labelling magnetic resonance imaging recognized regions of elevated perfusion within lesions of progressive multifocal leukoencephalopathy. These regions might represent virologically active areas operating in the absence of an effective adaptive immune response and correspond with a worse prognosis. PMID:24088807

  9. Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells

    PubMed Central

    Jean-Gilles, Lucie; Braitch, Manjit; Latif, M. Liaque; Aram, Jehan; Fahey, Angela J.; Edwards, Laura J.; Robins, R. Adrian; Tanasescu, Radu; Tighe, Patrick J.; Gran, Bruno; Showe, Louise C.; Alexander, Steve P.; Chapman, Victoria; Kendall, David A.; Constantinescu, Cris S.

    2015-01-01

    Aims To investigate the regulation of cannabinoid receptors CB1 and CB2 on immune cells by proinflammatory cytokines and its potential relevance to the inflammatory neurological disease, multiple sclerosis (MS). CB1 and CB2 signalling may be anti-inflammatory and neuroprotective in neuroinflammatory diseases. Cannabinoids can suppress inflammatory cytokines but the effects of these cytokines on CB1 and CB2 expression and function are unknown. Methods Immune cells from peripheral blood were obtained from healthy volunteers and patients with MS. Expression of CB1 and CB2 mRNA in whole blood cells, peripheral blood mononuclear cells (PBMC) and T cells was determined by quantitative real time-polymerase chain reaction (qRT-PCR). Expression of CB1 and CB2 protein was determined by flow cytometry. CB1 and CB2 signaling in PBMC was determined by Western blotting for Erk1/2. Results Proinflammatory cytokines IL-1β, IL-6 and TNF-α (the latter likely NFκB-dependently) can up-regulate CB1 and CB2 on human whole blood and peripheral blood mononuclear cells (PBMC). We also demonstrate up-regulation of CB1 and CB2 and increased IL-1β, IL-6 and TNF-α mRNA in blood of MS patients compared with controls. Conclusion The levels of CB1 and CB2 can be up-regulated by inflammatory cytokines, which can explain their increase in inflammatory conditions including MS. PMID:25704169

  10. [Intestinal-brain axis. Neuronal and immune-inflammatory mechanisms of brain and intestine pathology].

    PubMed

    Bondarenko, V M; Riabichenko, E V

    2013-01-01

    Mutually directed connections between intestine and brain are implemented by endocrine, neural and immune systems and nonspecific natural immunity. Intestine micro flora as an active participant of intestine-brain axis not only influences intestine functions but also stimulates the development of CNS in perinatal period and interacts with higher nervous centers causing depression and cognitive disorders in pathology. A special role belongs to intestine microglia. Apart from mechanic (protective) and trophic functions for intestine neurons, glia implements neurotransmitter, immunologic, barrier and motoric functions in the intestine. An interconnection between intestine barrier function and hematoencephalic barrier regulation exists. Chronic endotoxinemia as a result of intestine barrier dysfunction forms sustained inflammation state in periventricular zone of the brain with consequent destabilization of hematoencephalic barriers and spread oF inflammation to other parts of the brain resulting in neurodegradation development. PMID:23805681

  11. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings

    PubMed Central

    Meintjes, Graeme; Lawn, Stephen D; Scano, Fabio; Maartens, Gary; French, Martyn A; Worodria, William; Elliott, Julian H; Murdoch, David; Wilkinson, Robert J; Seyler, Catherine; John, Laurence; van der Loeff, Maarten Schim; Reiss, Peter; Lynen, Lut; Janoff, Edward N; Gilks, Charles; Colebunders, Robert

    2009-01-01

    The immune reconstitution inflammatory syndrome (IRIS) has emerged as an important early complication of antiretroviral therapy (ART) in resource-limited settings, especially in patients with tuberculosis. However, there are no consensus case definitions for IRIS or tuberculosis-associated IRIS. Moreover, previously proposed case definitions are not readily applicable in settings where laboratory resources are limited. As a result, existing studies on tuberculosis-associated IRIS have used a variety of non-standardised general case definitions. To rectify this problem, around 100 researchers, including microbiologists, immunologists, clinicians, epidemiologists, clinical trialists, and public-health specialists from 16 countries met in Kampala, Uganda, in November, 2006. At this meeting, consensus case definitions for paradoxical tuberculosis-associated IRIS, ART-associated tuberculosis, and unmasking tuberculosis-associated IRIS were derived, which can be used in high-income and resource-limited settings. It is envisaged that these definitions could be used by clinicians and researchers in a variety of settings to promote standardisation and comparability of data. PMID:18652998

  12. Late onset of cryptococcal cervical lymphadenitis following immune reconstitution inflammatory syndrome in a patient with AIDS.

    PubMed

    Sethupathi, Meenakshi; Yoganathan, Kathir

    2015-01-01

    A 32-year-old woman was diagnosed HIV positive with disseminated cryptococcal infection in May 2006. Her initial CD4 was 7 cells/µL and she had a right supraclavicular nodal mass, which was biopsied and shown to be consistent with cryptococcal lymphadenitis. She was treated for disseminated cryptococcal infection and was started on antiretroviral medications subsequently. Two years later, she developed a left supraclavicular mass. Her CD4 count was 320 cells/µL and HIV RNA level was undetectable. Investigations and biopsy results were consistent with a late presentation of cryptococcal immune reconstitution inflammatory syndrome (IRIS). She was treated with oral corticosteroids and her symptoms resolved completely. IRIS is a recognised complication of HIV treatment and occurs in a significant percentage of patients within the first 3 months of starting antiretroviral therapy. This case report illustrates the importance of recognising late presentations of IRIS. It is vital to differentiate true cryptococcal lymphadenitis from IRIS-induced cryptococcal lymphadenitis. PMID:25564633

  13. Predictors of immune reconstitution inflammatory syndrome associated with Kaposi's sarcoma: a case report.

    PubMed

    Cattelan, Anna Maria; Mattiolo, Adriana; Grassi, Angela; Piano, Maria Assunta; Sasset, Lolita; Trevenzoli, Marco; Zanovello, Paola; Calabrò, Maria Luisa

    2016-01-01

    We present here a case of immune reconstitution inflammatory syndrome associated with Kaposi's sarcoma (KS-IRIS) developed in an AIDS patient two months after initiation of antiretroviral therapy (ART). Baseline characteristics of this IRIS-KS case, within a cohort of 12 naïve AIDS-KS patients, were analyzed. No statistically significant differences in CD4 cell counts, plasma HIV RNA load, KS clinical staging, human herpesvirus 8 (HHV8) antibody titers and HHV8 load in peripheral blood mononuclear cells and saliva were evidenced. HHV8 load in plasma was found to be significantly higher in the KS-IRIS patient (> 6 log10 genome equivalents/ml, p = 0.01, t-test) compared to the 11 patients with KS regression. This case highlights that measurement of HHV8 load in plasma may be useful to identify patients at risk for KS-IRIS, and that this parameter should be included in the design of larger studies to define KS-IRIS risk predictors. PMID:26848307

  14. Metabolism meets immunity: The role of free fatty acid receptors in the immune system.

    PubMed

    Alvarez-Curto, Elisa; Milligan, Graeme

    2016-08-15

    There are significant numbers of nutrient sensing G protein-coupled receptors (GPCRs) that can be found in cells of the immune system and in tissues that are involved in metabolic function, such as the pancreas or the intestinal epithelium. The family of free fatty acid receptors (FFAR1-4, GPR84), plus a few other metabolite sensing receptors (GPR109A, GPR91, GPR35) have been for this reason the focus of studies linking the effects of nutrients with immunological responses. A number of the beneficial anti-inflammatory effects credited to dietary fats such as omega-3 fatty acids are attributed to their actions on FFAR4.This might play an important protective role in the development of obesity, insulin resistance or asthma. The role of the short-chain fatty acids resulting from fermentation of fibre by the intestinal microbiota in regulating acute inflammatory responses is also discussed. Finally we assess the therapeutic potential of this family of receptors to treat pathologies where inflammation is a major factor such as type 2 diabetes, whether by the use of novel synthetic molecules or by the modulation of the individual's diet. PMID:27002183

  15. The role of the immune system in central nervous system plasticity after acute injury.

    PubMed

    Peruzzotti-Jametti, L; Donegá, M; Giusto, E; Mallucci, G; Marchetti, B; Pluchino, S

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. PMID:24785677

  16. Fishing for mammalian paradigms in the teleost immune system

    PubMed Central

    Sunyer, J Oriol

    2013-01-01

    Recent years have witnessed a renaissance in the study of fish immune systems. Such studies have greatly expanded the knowledge of the evolution and diversification of vertebrate immune systems. Several findings in those studies have overturned old paradigms about the immune system and led to the discovery of novel aspects of mammalian immunity. Here I focus on how findings pertaining to immunity in teleost (bony) fish have led to major new insights about mammalian B cell function in innate and adaptive immunity. Additionally, I illustrate how the discovery of the most ancient mucosal immunoglobulin described thus far will help resolve unsettled paradigms of mammalian mucosal immunity. PMID:23507645

  17. The Mucosal Immune System of Teleost Fish

    PubMed Central

    Salinas, Irene

    2015-01-01

    Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT) of teleosts are the gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), the gill-associated lymphoid tissue (GIALT) and the recently discovered nasopharynx-associated lymphoid tissue (NALT). Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT+ B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture. PMID:26274978

  18. Integrated systemic inflammatory response syndrome epidemic model in scale-free networks

    NASA Astrophysics Data System (ADS)

    Cai, Shao-Hong; Zhang, Da-Min; Gong, Guang-Wu; Guo, Chang-Rui

    2011-09-01

    Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system.

  19. Systemic immune modulation induced by alcoholic beverage intake in obese-diabetes (db/db) mice.

    PubMed

    Lee, Hyunah; Jang, Ik-Soon; Park, Junsoo; Kim, Seol-Hee; Baek, So-Young; Go, Sung-Ho; Lee, Seung-Hoon

    2013-03-01

    Alcohol over-consumption is generally immunosuppressive. In this study, the effects of single or repetitive alcohol administration on the systemic immunity of db/db mice were observed to clarify the possible mechanisms for the increased susceptibility of obese individuals to alcohol-related immunological health problems. Alcohol (as a form of commercially available 20% distilled-alcoholic beverage) was orally administered one-time or seven times over 2 weeks to db/db mice and normal C57BL/6J mice. Immunologic alterations were analyzed by observation of body weight and animal activity, along with proportional changes of splenocytes for natural killer cells, macrophages, and T and B lymphocytes. Modulation of plasma cytokine level and immune-related genes were also ascertained by micro-bead assay and a microarray method, respectively. The immune micro-environment of db/db mice was an inflammatory state and adaptive cellular immunity was significantly suppressed. Low-dose alcohol administration reversed the immune response, decreasing inflammatory responses and the increment of adaptive immunity mainly related to CD4(+) T cells, but not CD8(+) T cells, to normal background levels. Systemic immune modulation due to alcohol administration in the obese-diabetic mouse model may be useful in the understanding of the induction mechanism, which will aid the development of therapeutics for related secondary diseases. PMID:23261674

  20. An Immunized Aircraft Maneuver Selection System

    NASA Technical Reports Server (NTRS)

    Karr, Charles L.

    2003-01-01

    The objective of this project, as stated in the original proposal, was to develop an immunized aircraft maneuver selection (IAMS) system. The IAMS system was to be composed of computational and informational building blocks that resemble structures in natural immune systems. The ultimate goal of the project was to develop a software package that could be flight tested on aircraft models. This report describes the work performed in the first year of what was to have been a two year project. This report also describes efforts that would have been made in the final year to have completed the project, had it been continued for the final year. After introductory material is provided in Section 2, the end-of-year-one status of the effort is discussed in Section 3. The remainder of the report provides an accounting of first year efforts. Section 4 provides background information on natural immune systems while Section 5 describes a generic ar&itecture developed for use in the IAMS. Section 6 describes the application of the architecture to a system identification problem. Finally, Section 7 describes steps necessary for completing the project.

  1. Effects of α-linolenic acid-enriched diets on gene expression of key inflammatory mediators in immune and milk cells obtained from Holstein dairy cows.

    PubMed

    Rezamand, Pedram; Hatch, Brent P; Carnahan, Kevin G; McGuire, Mark A

    2016-02-01

    Immune system and inflammatory responses are affected by α-linolenic acid (αLA: 18:3 ω-3). The objective of this study was to determine the effects of αLA-enriched rations on gene expression of systemic (blood) and local (mammary gland) inflammatory markers in Holstein dairy cattle. Further, the effect of dietary treatments was evaluated on the concentration of αLA in serum phospholipids. Camelina (Camelina sativa) meal (containing 24·2% αLA) was fed at 0, 3, 6, and 9% (dry matter basis) replacing canola meal (rich in 18:1 ω-9) to provide rations with incremental concentrations of αLA. Lactating primiparous Holstein cows (n = 18) were randomly assigned to a treatment sequence in a 4 × 4 Latin square design. Each period lasted 16 d and milk and blood samples were collected during the final 2 d of each period. Peripheral blood mononuclear cells (PBMC) and milk cells (MC) were harvested, and RNA extracted and converted to complementary DNA for quantitative real time PCR analysis. The effect of dietary treatments (αLA) on the relative abundance of pro- and anti-inflammatory genes in the PBMC and MC was tested by the MIXED procedure of SAS. Expression of pro-inflammatory tumour necrosis factor (TNF)-α in MC was linearly reduced (up to 40%) as dietary αLA increased. Expression of pro-inflammatory markers interleukin (IL)-1β, IL-8, and TNF-α was reduced (29, 20, and 27%, respectively) in PBMC isolated from cows fed 6% camelina meal ration as compared with cows fed 0% (control). Expression of IL-6 was, however, increased with inclusion of camelina meal. Greater dietary αLA linearly increased serum phospholipids αLA contents, and when fed up to 6% DM down-regulated expression of some of the local (milk) and systemic (blood) pro-inflammatory markers in vivo. PMID:26869108

  2. Idiopathic Pyoderma Gangrenosum as a Novel Manifestation of the HIV Immune Reconstitution Inflammatory Syndrome: A Report of Three Cases.

    PubMed

    Nambudiri, Vinod E; Kersellius, Romona; Harp, Joanna; Maniar, J K; Maurer, Toby A

    2015-07-01

    The initiation of antiretroviral treatment for individuals with HIV may be accompanied by a paradoxical flare of underlying inflammatory diseases, the recurrence of dormant infections, or worsening of prior treated opportunistic infections, termed the immune reconstitution inflammatory syndrome (IRIS). Cutaneous manifestations of IRIS are common. Pyoderma gangrenosum is a neutrophilic dermatosis postulated to reflect disrupted innate immune regulation causing altered neutrophil chemotaxis. It is uncommonly reported in association with HIV. In this case series, we present three cases of IRIS manifesting with pyoderma gangrenosum in individuals with HIV from India and the United States to raise awareness of this previously undescribed presentation and discuss the treatment challenges in the management of these patients. PMID:26731836

  3. Natural Products as Tools for Defining How Cellular Metabolism Influences Cellular Immune and Inflammatory Function during Chronic Infection

    PubMed Central

    Lovelace, Erica S.; Polyak, Stephen J.

    2015-01-01

    Chronic viral infections like those caused by hepatitis C virus (HCV) and human immunodeficiency virus (HIV) cause disease that establishes an ongoing state of chronic inflammation. While there have been tremendous improvements towards curing HCV with directly acting antiviral agents (DAA) and keeping HIV viral loads below detection with antiretroviral therapy (ART), there is still a need to control inflammation in these diseases. Recent studies indicate that many natural products like curcumin, resveratrol and silymarin alter cellular metabolism and signal transduction pathways via enzymes such as adenosine monophosphate kinase (AMPK) and mechanistic target of rapamycin (mTOR), and these pathways directly influence cellular inflammatory status (such as NF-κB) and immune function. Natural products represent a vast toolkit to dissect and define how cellular metabolism controls cellular immune and inflammatory function. PMID:26633463

  4. Effects of ceftaroline on the innate immune and on the inflammatory responses of bronchial epithelial cells exposed to cigarette smoke.

    PubMed

    Pace, E; Ferraro, M; Di Vincenzo, S; Siena, L; Gjomarkaj, M

    2016-09-01

    The tobacco smoking habit interferes with the innate host defence system against infections. Recurrent infections accelerated the functional respiratory decline. The present study assessed the effects of ceftaroline on TLR2 and TLR4 and on pro-inflammatory responses in airway epithelial cells (16HBE cell line and primary bronchial epithelial cells) with or without cigarette smoke extracts (CSE 10%). TLR2, TLR4, LPS binding and human beta defensin 2 (HBD2) were assessed by flow cytometry, NFkB nuclear translocation by western blot analysis, IL-8 and HBD2 mRNA by Real Time PCR; the localization of NFkB on the HBD2 and IL-8 promoters by ChiP Assay. CSE increased TLR4, TLR2 expression, LPS binding and IL-8 mRNA; CSE decreased HBD2 (protein and mRNA), activated NFkB and promoted the localization of NFkB on IL-8 promoter and not on HBD2 promoter. Ceftaroline counteracted the CSE effect on TLR2 expression, on LPS binding, on IL-8 mRNA, HBD2 and NFkB in 16HBE. The effects of ceftaroline on HBD2 protein and on IL-8 mRNA were confirmed in primary bronchial epithelial cells. In conclusion, ceftaroline is able to counteract the effects of CSE on the innate immunity and pro-inflammatory responses modulating TLR2, LPS binding, NFkB activation and activity, HBD2 and IL-8 expression in bronchial epithelial cells. PMID:27397760

  5. A review of current knowledge of the complement system and the therapeutic opportunities in inflammatory arthritis.

    PubMed

    Mizuno, M

    2006-01-01

    The complement activation system, a key component of the innate immune system, protects the host from microorganisms such as bacteria, and other foreign threats including abnormal cells. However, it is also double-edged in that it can have negative effects in the host; excessive complement activation damages the host and can even kill in anaphylactic shock and septic shock. Regulation of the complement system is a useful strategy to control inflammatory diseases, including inflammatory arthritis. Rheumatoid arthritis is a common inflammatory disease worldwide. Many medicines are developed to control inflammation, including recently developed biological response modifiers such as anti-TNF and IL-6 agents. Nevertheless, in some patients disease remains difficult to control because of complications, side effects and tolerance of medicines. In inflammatory arthritis, including rheumatoid arthritis, there is abundant evidence implicating complement activation in humans and animal models. Therefore, anti-complement agents might be beneficial as part of clinical treatment. However, at present, there are still no applicable agents for therapeutic regulation of excessive complement activation in chronic disease. Novel agents in development might be useful as a strategy to control complement activation. Here I describe recent knowledge of the complement system in inflammatory arthritis, the recent developments in anti-complement agents and their considerable potential for the future. PMID:16787214

  6. Effect of laparoscopy on the immune system.

    PubMed

    Kuhry, E; Jeekel, J; Bonjer, H J

    2004-03-01

    Surgery induces alterations in local and systemic immune responses. These changes appear to be associated with an increase in postoperative morbidity. Minimally invasive techniques are considered to improve the preservation of immune function compared with open surgery and may therefore be beneficial for patient recovery. As laparoscopic techniques are increasingly used in abdominal surgery, more research has focussed on the immunologic consequences of these techniques. Nevertheless, the changes that occur in response to trauma are still not completely understood. The immunologic benefits of laparoscopic surgery are the most obvious for minor surgical procedures such as cholecystectomy and antireflux surgery. For more complex procedures such as colorectal surgery for cancer, the benefits are not immediately obvious. Although laparoscopic surgery for colorectal malignancies may be associated with higher survival rates and lower recurrence rates because of improved immune function, it has also been related to high incidences of port-site metastases. Reviews in the literature have now shown that incidences of port-site metastases are comparable to incidences of wound metastases after open surgery. However, it will be necessary to wait for the long-term results of randomized, clinical trials to provide further clarification of how immune function is altered after laparoscopic and open surgery for colorectal cancer. PMID:15094977

  7. Progressive chronic inflammatory demyelinating polyneuropathy in a child with central nervous system involvement and myopathy.

    PubMed

    Barisić, Nina; Horvath, Rita; Grković, Lana; Mihelcić, Dina; Luetić, Tomislav

    2006-12-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) is a chronic disorder, manifesting with monophasic or relapsing course. Progressive course is rare in children. The article presents a boy with progressive generalized muscle weakness and areflexia since the age of two, developed after viral infection. Electromyoneurography showed severe neurogenic lesion, with myopathic pattern in proximal muscles. Increased serum ganglioside antibody titers (anti-GM1 and anti-GD1b) were registered. Sural nerve biopsy revealed demyelination and onion bulbs. Inflammatory perivascular CD3 positive infiltrates were present in muscle and nerve biopsies. Brain magnetic resonance imaging showed cortical atrophy, hyperintensities of the white matter and gray matter hypointensities. Improvement occurred on intravenous immune globulins and methylprednisolone treatment. Demyelination might develop in central and peripheral nervous system associated with inflammatory myopathy in patients with progressive course of CIDP. PMID:17243577

  8. Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries

    PubMed Central

    Li, Conglei; Li, June; Li, Yan; Lang, Sean; Yougbare, Issaka; Zhu, Guangheng; Chen, Pingguo; Ni, Heyu

    2012-01-01

    Platelets are small anucleate cells circulating in the blood. It has been recognized for more than 100 years that platelet adhesion and aggregation at the site of vascular injury are critical events in hemostasis and thrombosis; however, recent studies demonstrated that, in addition to these classic roles, platelets also have important functions in inflammation and the immune response. Platelets contain many proinflammatory molecules and cytokines (e.g., P-selectin, CD40L, IL-1β, etc.), which support leukocyte trafficking, modulate immunoglobulin class switch, and germinal center formation. Platelets express several functional Toll-like receptors (TLRs), such as TLR-2, TLR-4, and TLR-9, which may potentially link innate immunity with thrombosis. Interestingly, platelets also contain multiple anti-inflammatory molecules and cytokines (e.g., transforming growth factor-β and thrombospondin-1). Emerging evidence also suggests that platelets are involved in lymphatic vessel development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2. Besides the active contributions of platelets to the immune system, platelets are passively targeted in several immune-mediated diseases, such as autoimmune thrombocytopenia, infection-associated thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. These data suggest that platelets are important immune cells and may contribute to innate and adaptive immunity under both physiological and pathological conditions. PMID:23008717

  9. Therapeutics targeting innate immune/inflammatory responses through the interleukin-6/JAK/STAT signal transduction pathway in patients with cancer.

    PubMed

    Roxburgh, Campbell S D; McMillan, Donald C

    2016-01-01

    Over the last 15 years, there has been an evolution in the thinking of how tumors grow and disseminate: from the earlier work where it was considered that the intrinsic characteristics of the tumor largely determined the process to more recent work where local and systemic inflammatory responses play a key role in disease progression and survival in patients with cancer. Although the immune/inflammatory responses to cancer are complex, it is clear that targeting the host immune/inflammatory responses (in particular, innate/humoral responses) has considerable potential to improve outcomes in patients with a variety of common solid tumors. There are a wide variety of agents from the nonselective glucocorticoids to the selective Janus Activated Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) inhibitors that has considerable therapeutic potential. They may be considered to act through a main signal transduction mechanism, the interleukin-6/JAK/STAT pathway. This work heralds a new era in which it will be important not only to treat the tumor but also to treat the host, so called oncoimmunology. PMID:26432924

  10. The expression of inflammatory cytokines, TAM tyrosine kinase receptors and their ligands is upregulated in venous leg ulcer patients: a novel insight into chronic wound immunity.

    PubMed

    Filkor, Kata; Németh, Tibor; Nagy, István; Kondorosi, Éva; Urbán, Edit; Kemény, Lajos; Szolnoky, Győző

    2016-08-01

    The systemic host defence mechanisms, especially innate immunity, in venous leg ulcer patients are poorly investigated. The aim of the current study was to measure Candida albicans killing activity and gene expressions of pro- and anti-inflammatory cytokines and innate immune response regulators, TAM receptors and ligands of peripheral blood mononuclear cells separated from 69 venous leg ulcer patients and 42 control probands. Leg ulcer patients were stratified into responder and non-responder groups on the basis of wound healing properties. No statistical differences were found in Candida killing among controls, responders and non-responders. Circulating blood mononuclear cells of patients overexpress pro-inflammatory (IL-1α, TNFα, CXCL-8) and anti-inflammatory (IL-10) cytokines as well as TAM receptors (Tyro, Axl, MerTK) and their ligands Gas6 and Protein S compared with those of control individuals. IL-1α is notably overexpressed in venous leg ulcer treatment non-responders; in contrast, Axl gene expression is robustly stronger among responders. These markers may be considered as candidates for the prediction of treatment response among venous leg ulcer patients. PMID:26192232

  11. Dealing with Danger in the CNS: The Response of the Immune System to Injury

    PubMed Central

    Gadani, Sachin P.; Walsh, James T.; Lukens, John R.; Kipnis, Jonathan

    2015-01-01

    Fighting pathogens and maintaining tissue homeostasis are prerequisites for survival. Both of these functions are upheld by the immune system, though the latter is often overlooked in the context of the CNS. The mere presence of immune cells in the CNS was long considered a hallmark of pathology, but this view has been recently challenged by studies demonstrating that immunological signaling can confer pivotal neuroprotective effects on the injured CNS. In this review we describe the temporal sequence of immunological events that follow CNS injury. Beginning with immediate changes at the injury site including death of neural cells and release of damage-associated molecular patterns (DAMPs), and progressing through innate and adaptive immune responses, we describe the cascade of inflammatory mediators and the implications of their post-injury effects. We conclude by proposing a revised interpretation of immune privilege in the brain, which takes beneficial neuro-immune communications into account. PMID:26139369

  12. Immune regulation and anti-inflammatory effects of isogarcinol extracted from Garcinia mangostana L. against collagen-induced arthritis.

    PubMed

    Fu, Yanxia; Zhou, Hailing; Wang, Mengqi; Cen, Juren; Wei, Qun

    2014-05-01

    Isogarcinol is a natural compound that we extracted from Garcinia mangostana L., and we were the first to report that it is a new immunosuppressant. In the present study, we investigated the immune regulation and anti-inflammatory effects of isogarcinol on collagen-induced arthritis (CIA) and explored its potential mechanism in the treatment of rheumatoid arthritis. The oral administration of isogarcinol significantly reduced clinical scores, alleviated cartilage and bone erosion, and reduced the levels of serum inflammatory cytokines in CIA mice. Isogarcinol inhibited xylene-induced mouse ear edema in vivo. In vitro, isogarcinol decreased iNOS and COX-2 mRNA expression and NO content by inhibiting NF-κB expression. Furthermore, isogarcinol decreased the activity of NFAT and inhibited IL-2 expression. The mechanism of action of isogarcinol is associated with down-regulation of both autoimmune and inflammatory reactions. PMID:24738849

  13. Thoracic manifestations of paradoxical immune reconstitution inflammatory syndrome during or after antituberculous therapy in HIV-negative patients.

    PubMed

    Pornsuriyasak, Prapaporn; Suwatanapongched, Thitiporn

    2015-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is a consequence of exaggerated and dysregulated host's inflammatory response to invading microorganism, leading to uncontrolled inflammatory reactions. IRIS associated with tuberculosis (TB) is well recognized among human immunodeficiency virus (HIV)-infected patients receiving highly active antiretroviral therapy, but it is less common among HIV-negative patients. IRIS can manifest as a paradoxical worsening or recurring of preexisting tuberculous lesions or development of new lesions despite successful antituberculous treatment. Hence, the condition might be misdiagnosed as superimposed infections, treatment failure, or relapse of TB. This pictorial essay reviewed diagnostic criteria and various thoracic manifestations of the paradoxical form of TB-associated IRIS (TB-IRIS) that might aid in early recognition of this clinical entity among HIV-negative patients. The treatment and outcomes of TB-IRIS were also discussed. PMID:25698091

  14. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    SciTech Connect

    Libregts, Sten F.W.M.; Nolte, Martijn A.

    2014-12-10

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.

  15. Medications that Weaken Your Immune System and Fungal Infections

    MedlinePlus

    ... Diseases Mycotic Diseases Branch Medications that Weaken Your Immune System and Fungal Infections Recommend on Facebook Tweet Share ... They are most common among people with weak immune systems. People with certain health conditions may need to ...

  16. Study Suggests Causes for Lupus' Impact on Immune System

    MedlinePlus

    ... html Study Suggests Causes for Lupus' Impact on Immune System Certain cells seem to malfunction and create inflammation ... that help explain what's going wrong in the immune systems of people with lupus -- insight they hope will ...

  17. The effects of cocoa on the immune system

    PubMed Central

    Pérez-Cano, Francisco J.; Massot-Cladera, Malen; Franch, Àngels; Castellote, Cristina; Castell, Margarida

    2013-01-01

    Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of T helper type 2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions. PMID:23759861

  18. Evolution of immune systems from self/not self to danger to artificial immune systems (AIS)

    NASA Astrophysics Data System (ADS)

    Cooper, Edwin L.

    2010-03-01

    This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the

  19. Effects of Immunosuppressants on Immune Response to Vaccine in Inflammatory Bowel Disease

    PubMed Central

    Cao, Yuan; Zhao, Di; Xu, An-Tao; Shen, Jun; Ran, Zhi-Hua

    2015-01-01

    Objective: To evaluate the response rate to vaccination in different treatment groups (nonimmunosuppressants and immunosuppressants). Data Sources: We completed an online systematic search using PubMed to identify all articles published in English between January 1990 and December 2013 assessing the effect of the response rate to vaccination in different treatment groups (with and without immunomodulators). The following terms were used: “inflammatory bowel disease (IBD)” OR “Crohn's disease” OR “ulcerative colitis” AND (“vaccination” OR “vaccine”) AND (“corticosteroids” OR “mercaptopurine” OR “azathioprine” OR “methotrexate [MTX]”) AND “immunomodulators.” Study Selection: The inclusion criteria of articles were that the studies: (1) Randomized controlled trials which included patients with a diagnosis of IBD (established by standard clinical, radiographic, endoscopic, and histologic criteria); (2) exposed patients received immunomodulators for maintenance (weight-appropriate doses of 6-mercaptopurine/azathioprine or within 3 months of stopping, 15 mg or more MTX per week or within 3 months of stopping; (3) exposed patients received nonimmunomodulators (no therapy, antibiotics only, mesalazine only, biological agent only such as infliximab, adalimumab, certolizumab or natalizumab or within 3 months of stopping one of these agents). The exclusion criteria of articles were that the studies: (1) History of hepatitis B virus (HBV), influenza or streptococcus pneumoniae infection; (2) patients who had previously been vaccinated against HBV, influenza or streptococcus pneumoniae; (3) any medical condition known to cause immunosuppression (e.g. chronic renal failure and human immunodeficiency virus infection); (4) individuals with positive hepatitis markers or liver cirrhosis; (5) patients with a known allergy to eggs or other components of the vaccines and (6) pregnancy. Results: Patients treated with immunomodulators were

  20. Cytotoxic mediators in paradoxical HIV-tuberculosis immune reconstitution inflammatory syndrome.

    PubMed

    Wilkinson, Katalin A; Walker, Naomi F; Meintjes, Graeme; Deffur, Armin; Nicol, Mark P; Skolimowska, Keira H; Matthews, Kerryn; Tadokera, Rebecca; Seldon, Ronnett; Maartens, Gary; Rangaka, Molebogeng X; Besra, Gurdyal S; Wilkinson, Robert J

    2015-02-15

    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) frequently complicates combined antiretroviral therapy and antituberculosis therapy in HIV-1-coinfected tuberculosis patients. The immunopathological mechanisms underlying TB-IRIS are incompletely defined, and improved understanding is required to derive new treatments and to reduce associated morbidity and mortality. We performed longitudinal and cross-sectional analyses of human PBMCs from paradoxical TB-IRIS patients and non-IRIS controls (HIV-TB-coinfected patients commencing antiretroviral therapy who did not develop TB-IRIS). Freshly isolated PBMC stimulated with heat-killed Mycobacterium tuberculosis H37Rv (hkH37Rv) were used for IFN-γ ELISPOT and RNA extraction. Stored RNA was used for microarray and RT-PCR, whereas corresponding stored culture supernatants were used for ELISA. Stored PBMC were used for perforin and granzyme B ELISPOT and flow cytometry. There were significantly increased IFN-γ responses to hkH37Rv in TB-IRIS, compared with non-IRIS PBMC (p = 0.035). Microarray analysis of hkH37Rv-stimulated PBMC indicated that perforin 1 was the most significantly upregulated gene, with granzyme B among the top five (log2 fold difference 3.587 and 2.828, respectively), in TB-IRIS. Downstream experiments using RT-PCR, ELISA, and ELISPOT confirmed the increased expression and secretion of perforin and granzyme B. Moreover, granzyme B secretion reduced in PBMC from TB-IRIS patients during corticosteroid treatment. Invariant NKT cell (CD3(+)Vα24(+)) proportions were higher in TB-IRIS patients (p = 0.004) and were a source of perforin. Our data implicate the granule exocytosis pathway in TB-IRIS pathophysiology. Further understanding of the immunopathogenesis of this condition will facilitate development of specific diagnostic and improved therapeutic options. PMID:25589068

  1. CB2 and GPR55 Receptors as Therapeutic Targets for Systemic Immune Dysregulation

    PubMed Central

    Zhou, Juan; Burkovskiy, Ian; Yang, Hyewon; Sardinha, Joel; Lehmann, Christian

    2016-01-01

    The endocannabinoid system (ECS) is involved in many physiological processes and has been suggested to play a critical role in the immune response and the central nervous system (CNS). Therefore, ECS modulation has potential therapeutic effects on immune dysfunctional disorders, such as sepsis and CNS injury-induced immunodeficiency syndrome (CIDS). In sepsis, excessive release of pro- and anti-inflammatory mediators results in multi-organ dysfunction, failure, and death. In CIDS, an acute CNS injury dysregulates a normally well-balanced interplay between CNS and the immune system, leading to increased patients’ susceptibility to infections. In this review, we will discuss potential therapeutic modulation of the immune response in sepsis and CNS injury by manipulation of the ECS representing a novel target for immunotherapy. PMID:27597829

  2. CB2 and GPR55 Receptors as Therapeutic Targets for Systemic Immune Dysregulation.

    PubMed

    Zhou, Juan; Burkovskiy, Ian; Yang, Hyewon; Sardinha, Joel; Lehmann, Christian

    2016-01-01

    The endocannabinoid system (ECS) is involved in many physiological processes and has been suggested to play a critical role in the immune response and the central nervous system (CNS). Therefore, ECS modulation has potential therapeutic effects on immune dysfunctional disorders, such as sepsis and CNS injury-induced immunodeficiency syndrome (CIDS). In sepsis, excessive release of pro- and anti-inflammatory mediators results in multi-organ dysfunction, failure, and death. In CIDS, an acute CNS injury dysregulates a normally well-balanced interplay between CNS and the immune system, leading to increased patients' susceptibility to infections. In this review, we will discuss potential therapeutic modulation of the immune response in sepsis and CNS injury by manipulation of the ECS representing a novel target for immunotherapy. PMID:27597829

  3. The α7-nicotinic receptor is upregulated in immune cells from HIV-seropositive women: consequences to the cholinergic anti-inflammatory response

    PubMed Central

    Delgado-Vélez, Manuel; Báez-Pagán, Carlos A; Gerena, Yamil; Quesada, Orestes; Santiago-Pérez, Laura I; Capó-Vélez, Coral M; Wojna, Valerie; Meléndez, Loyda; León-Rivera, Rosiris; Silva, Walter; Lasalde-Dominicci, José A

    2015-01-01

    Antiretroviral therapy partially restores the immune system and markedly increases life expectancy of HIV-infected patients. However, antiretroviral therapy does not restore full health. These patients suffer from poorly understood chronic inflammation that causes a number of AIDS and non-AIDS complications. Here we show that chronic inflammation in HIV+ patients may be due to the disruption of the cholinergic anti-inflammatory pathway by HIV envelope protein gp120IIIB. Our results demonstrate that HIV gp120IIIB induces α7 nicotinic acetylcholine receptor (α7) upregulation and a paradoxical proinflammatory phenotype in macrophages, as activation of the upregulated α7 is no longer capable of inhibiting the release of proinflammatory cytokines. Our results demonstrate that disruption of the cholinergic-mediated anti-inflammatory response can result from an HIV protein. Collectively, these findings suggest that HIV tampering with a natural strategy to control inflammation could contribute to a crucial, unresolved problem of HIV infection: chronic inflammation. PMID:26719799

  4. The α7-nicotinic receptor is upregulated in immune cells from HIV-seropositive women: consequences to the cholinergic anti-inflammatory response.

    PubMed

    Delgado-Vélez, Manuel; Báez-Pagán, Carlos A; Gerena, Yamil; Quesada, Orestes; Santiago-Pérez, Laura I; Capó-Vélez, Coral M; Wojna, Valerie; Meléndez, Loyda; León-Rivera, Rosiris; Silva, Walter; Lasalde-Dominicci, José A

    2015-12-01

    Antiretroviral therapy partially restores the immune system and markedly increases life expectancy of HIV-infected patients. However, antiretroviral therapy does not restore full health. These patients suffer from poorly understood chronic inflammation that causes a number of AIDS and non-AIDS complications. Here we show that chronic inflammation in HIV+ patients may be due to the disruption of the cholinergic anti-inflammatory pathway by HIV envelope protein gp120IIIB. Our results demonstrate that HIV gp120IIIB induces α7 nicotinic acetylcholine receptor (α7) upregulation and a paradoxical proinflammatory phenotype in macrophages, as activation of the upregulated α7 is no longer capable of inhibiting the release of proinflammatory cytokines. Our results demonstrate that disruption of the cholinergic-mediated anti-inflammatory response can result from an HIV protein. Collectively, these findings suggest that HIV tampering with a natural strategy to control inflammation could contribute to a crucial, unresolved problem of HIV infection: chronic inflammation. PMID:26719799

  5. Neural circuitry and immunity.

    PubMed

    Pavlov, Valentin A; Tracey, Kevin J

    2015-12-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuro-immune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex, are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases define the emerging field of Bioelectronic Medicine. PMID:26512000

  6. Hygiene and other early childhood influences on the subsequent function of the immune system.

    PubMed

    Rook, Graham A W; Lowry, Christopher A; Raison, Charles L

    2015-08-18

    The immune system influences brain development and function. Hygiene and other early childhood influences impact the subsequent function of the immune system during adulthood, with consequences for vulnerability to neurodevelopmental and psychiatric disorders. Inflammatory events during pregnancy can act directly to cause developmental problems in the central nervous system (CNS) that have been implicated in schizophrenia and autism. The immune system also acts indirectly by "farming" the intestinal microbiota, which then influences brain development and function via the multiple pathways that constitute the gut-brain axis. The gut microbiota also regulates the immune system. Regulation of the immune system is crucial because inflammatory states in pregnancy need to be limited, and throughout life inflammation needs to be terminated completely when not required; for example, persistently raised levels of background inflammation during adulthood (in the presence or absence of a clinically apparent inflammatory stimulus) correlate with an increased risk of depression. A number of factors in the perinatal period, notably immigration from rural low-income to rich developed settings, caesarean delivery, breastfeeding and antibiotic abuse have profound effects on the microbiota and on immunoregulation during early life that persist into adulthood. Many aspects of the modern western environment deprive the infant of the immunoregulatory organisms with which humans co-evolved, while encouraging exposure to non-immunoregulatory organisms, associated with more recently evolved "crowd" infections. Finally, there are complex interactions between perinatal psychosocial stressors, the microbiota, and the immune system that have significant additional effects on both physical and psychiatric wellbeing in subsequent adulthood. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease. PMID:24732404

  7. A Dialogue between the Immune System and Brain, Spoken in the Language of Serotonin

    PubMed Central

    2012-01-01

    Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity

  8. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  9. Systems immune monitoring in cancer therapy.

    PubMed

    Greenplate, Allison R; Johnson, Douglas B; Ferrell, P Brent; Irish, Jonathan M

    2016-07-01

    Treatments that successfully modulate anti-cancer immunity have significantly improved outcomes for advanced stage malignancies and sparked intense study of the cellular mechanisms governing therapy response and resistance. These responses are governed by an evolving milieu of cancer and immune cell subpopulations that can be a rich source of biomarkers and biological insight, but it is only recently that research tools have developed to comprehensively characterize this level of cellular complexity. Mass cytometry is particularly well suited to tracking cells in complex tissues because >35 measurements can be made on each of hundreds of thousands of cells per sample, allowing all cells detected in a sample to be characterized for cell type, signalling activity, and functional outcome. This review focuses on mass cytometry as an example of systems level characterization of cancer and immune cells in human tissues, including blood, bone marrow, lymph nodes, and primary tumours. This review also discusses the state of the art in single cell tumour immunology, including tissue collection, technical and biological quality controls, computational analysis, and integration of different experimental and clinical data types. Ex vivo analysis of human tumour cells complements both in vivo monitoring, which generally measures far fewer features or lacks single cell resolution, and laboratory models, which incur cell type losses, signalling alterations, and genomic changes during establishment. Mass cytometry is on the leading edge of a new generation of cytomic tools that work with small tissue samples, such as a fine needle aspirates or blood draws, to monitor changes in rare or unexpected cell subsets during cancer therapy. This approach holds great promise for dissecting cellular microenvironments, monitoring how treatments affect tissues, revealing cellular biomarkers and effector mechanisms, and creating new treatments that productively engage the immune system to

  10. Lavandula angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus aureus.

    PubMed

    Giovannini, D; Gismondi, A; Basso, A; Canuti, L; Braglia, R; Canini, A; Mariani, F; Cappelli, G

    2016-01-01

    Different studies described the antibacterial properties of Lavandula angustifolia (Mill.) essential oil and its anti-inflammatory effects. Besides, no data exist on its ability to activate human macrophages during the innate response against Staphylococcus aureus. The discovery of promising regulators of macrophage-mediated inflammatory response, without side effects, could be useful for the prevention of, or as therapeutic remedy for, various inflammation-mediated diseases. This study investigated, by transcriptional analysis, how a L. angustifolia essential oil treatment influences the macrophage response to Staphylococcus aureus infection. The results showed that the treatment increases the phagocytic rate and stimulates the containment of intracellular bacterial replication by macrophages. Our data showed that this stimulation is coupled with expression of genes involved in reactive oxygen species production (i.e., CYBB and NCF4). Moreover, the essential oil treatment balanced the inflammatory signaling induced by S. aureus by repressing the principal pro-inflammatory cytokines and their receptors and inducing the heme oxygenase-1 gene transcription. These data showed that the L. angustifolia essential oil can stimulate the human innate macrophage response to a bacterium which is responsible for one of the most important nosocomial infection and might suggest the potential development of this plant extract as an anti-inflammatory and immune regulatory coadjutant drug. PMID:26730790

  11. Modulatory Effects of Antidepressant Classes on the Innate and Adaptive Immune System in Depression.

    PubMed

    Eyre, H A; Lavretsky, H; Kartika, J; Qassim, A; Baune, B T

    2016-05-01

    Current reviews exploring for unique immune-modulatory profiles of antidepressant classes are limited by focusing mainly on cytokine modulation only and neglecting other aspects of the innate and adaptive immune system. These reviews also do not include recent comparative clinical trials, immune-genetic studies and therapeutics with unique neurotransmitter profiles (e. g., agomelatine). This systematic review extends the established literature by comprehensively reviewing the effects of antidepressants classes on both the innate and adaptive immune system. Antidepressants appear, in general, to reduce pro-inflammatory factor levels, particularly C-reactive protein (CRP), tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. We caution against conclusions as to which antidepressant possesses the greater anti-inflammatory effect, given the methodological heterogeneity among studies and the small number of comparative studies. The effects of antidepressant classes on adaptive immune factors are complex and poorly understood, and few studies have been conducted. Methodological heterogeneity is high among these studies (e. g., length of study, cohort characteristics, dosage used and immune marker analysis). We recommend larger, comparative studies - in clinical and pre-clinical populations. PMID:26951496

  12. A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System

    PubMed Central

    Long, Hai; Liao, Wei; Wang, Ling; Lu, Qianjin

    2016-01-01

    Summary Eosinophils have traditionally been associated with allergic diseases and parasite infection. Research advances in the recent decades have brought evolutionary changes in our understanding of eosinophil biology and its roles in immunity. It is currently recognized that eosinophils play multiple roles in both innate and adaptive immunity. As effector cells in innate immunity, eosinophils exert a pro-inflammatory and destructive role in the Th2 immune response associated with allergic inflammation or parasite infection. Eosinophils can also be recruited by danger signals released by pathogen infections or tissue injury, inducing host defense against parasitic, fungal, bacterial or viral infection or promoting tissue repair and remodeling. Eosinophils also serve as nonprofessional antigen-presenting cells in response to allergen challenge or helminth infection, and, meanwhile, are known to function as a versatile coordinator that actively regulates or interacts with various immune cells including T lymphocytes and dendritic cells. More roles of eosinophils implicated in immunity have been proposed including in immune homeostasis, allograft rejection, and anti-tumor immunity. Eosinophil interactions with structural cells are also implicated in the mechanisms in allergic inflammation and in Helicobacter pylori gastritis. These multifaceted roles of eosinophils as both players and coordinators in immune system are discussed in this review. PMID:27226792

  13. Role of the systemic immune system in brain metastasis.

    PubMed

    Hamilton, Alastair; Sibson, Nicola R

    2013-03-01

    Metastatic disease in the central nervous system (CNS) is a cause of increasing mortality amongst cancer patients. As with other types of cancer, cells of the systemic immune system play a range of important roles in the development of metastatic lesions in the CNS, both repressing and promoting tumour growth. Recent advances in immunotherapy have changed the emphasis in cancer treatment away from conventional chemotherapy and radiotherapy for certain tumour types. Despite this, our understanding of systemic immune system involvement in CNS metastases remains poor. The blood-brain barrier prevents the majority of diagnostic and therapeutic agents from crossing into the brain parenchyma until the late stages of metastatic disease. Thus, the development of immunotherapy for CNS pathologies is particularly desirable. This review draws together our current understanding in the relationships between CNS metastases and circulating systemic immune cells. We discuss the roles that circulating systemic immune cells may play in the homing of metastatic cells to the perivascular space, and the pro-metastatic and antagonistic roles that infiltrating systemic immune cells may play at sites of metastasis. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'. PMID:23073146

  14. Immunity challenge.

    PubMed

    Davenport, R John

    2003-06-11

    As people get older, their immune systems falter. The elderly are more susceptible to infections than youngsters are, and hyperactive inflammatory responses appear to contribute to some age-associated illnesses, including Alzheimer's disease and atherosclerosis. Investigating the effect of aging on the immune system was once a scientific stepchild, but card-carrying immunologists are now tackling the problem head-on. Despite the immune system's complexity, researchers have started to make sense of how its components change with age. As the research progresses, scientists hope to bolster elderly people's response to infectious diseases and quiet the inflammation that can make aging a painful experience. PMID:12844525

  15. Evolution of immune systems: specificity and autoreactivity.

    PubMed

    Bailey, Mick; Christoforidou, Zoe; Lewis, Marie

    2013-04-01

    Multicellularity evolved well before 600 million years ago, and all multicellular animals have evolved since then with the need to protect against pathogens. There is no reason to expect their immune systems to be any less sophisticated than ours. The vertebrate system, based on rearranging immunoglobulin-superfamily domains, appears to have evolved partly as a result of chance insertion of RAG genes by horizontal transfer. Remarkably sophisticated systems for expansion of immunological repertoire have evolved in parallel in many groups of organisms. Vaccination of invertebrates against commercially important pathogens has been empirically successful, and suggests that the definition of an adaptive and innate immune system should no longer depend on the presence of memory and specificity, since these terms are hard to define in themselves. The evolution of randomly-created immunological repertoire also carries with it the potential for generating autoreactive specificities and consequent autoimmune damage. While invertebrates may use systems analogous to ours to control autoreactive specificities, they may have evolved alternative mechanisms which operate either at the level of individuals-within-populations rather than cells-within-individuals, by linking self-reactive specificities to regulatory pathways and non-self-reactive to effector pathways. PMID:23201916

  16. Immunomodulatory impression of anti and pro-inflammatory cytokines in relation to humoral immunity in human scabies.

    PubMed

    Abd El-Aal, Amany Ahmed; Hassan, Marwa Adel; Gawdat, Heba Ismail; Ali, Meran Ahmed; Barakat, Manal

    2016-06-01

    The chief manifestations of scabies are mediated through hypersensitivity-like reactions and immune responses which are so far not well understood and remain poorly characterized. The aim of this study is to investigate the role of inflammatory cytokines in relation to humoral immunity in patients with scabies. Serum levels of total IgE, specific IgG, IL-10, IL-6, INF-γ, and TNF-α were investigated in a cross-sectional study including 37 patients with manifestations suggestive of scabies and serologically positive for anti-Sarcoptes IgG, in addition to 20 healthy controls. The median value of total IgE was 209 (range, 17-1219 IU/mL), reflecting its wide range within cases. IL-10 showed significant higher levels (287 ±: 139) in cases than in controls (17.4 ± 11.32). A positive correlation was reported between total IgE and severity of manifestations (r = 0.429, P <0.005). A significant positive correlation was observed between total IgE and both IgG and IL-6. On the contrary, a negative correlation was recorded between IL-6 and TNF-α which makes us suggested anti-inflammatory rather than pro-inflammatory effect of IL-6. Moreover, a negative correlation was noticed between the anti-inflammatory cytokine IL-10 and severity of manifestations, specific IgG, total IgE, and INF-γ. Therefore, the current study theorized a regulatory role of IL-10 in inflammatory responses of scabietic patients suggesting further future analysis of its therapeutic potential. PMID:26813861

  17. The spleen in local and systemic regulation of immunity

    PubMed Central

    Bronte, Vincenzo; Pittet, Mikael J

    2013-01-01

    Summary The spleen is the main filter for blood-borne pathogens and antigens, as well as a key organ for iron metabolism and erythrocyte homeostasis. However, immune and hematopoietic functions have been recently unveiled for the mouse spleen, suggesting additional roles for this secondary lymphoid organ. Here we discuss the integration of the spleen in the regulation of immune responses locally and in the whole body and present the relevance of findings for our understanding of inflammatory and degenerative diseases and their treatments. We also consider whether equivalent activities in humans are known, as well as initial therapeutic attempts to target the spleen for modulating innate and adaptive immunity. PMID:24238338

  18. [Association of fatty acid metabolism with systemic inflammatory response in chronic respiratory diseases].

    PubMed

    Denisenko, Y K; Novgorodtseva, T P; Zhukova, N V; Antonuk, M V; Lobanova, E G; Kalinina, E P

    2016-03-01

    We examined composition of plasma non-esterified fatty acids (NFAs), erythrocyte fatty acids, levels of eicosanoids in patients with asthma and chronic obstructive pulmonary disease (COPD) with different type of the inflammatory response. The results of our study show that asthma and COPD in remission are associated with changes in the composition NFAs of plasma, FA of erythrocytes, level eicosanoid despite the difference in the regulation of immunological mechanisms of systemic inflammation. These changes are characterized by excessive production of arachidonic acid (20:4n-6) and cyclooxygenase and lipoxygenase metabolites (thromboxane B2, leukotriene B4) and deficiency of their functional antagonist, eicosapentaenoic acid (20:5n-3). The recognized association between altered fatty acid composition and disorders of the immune mechanisms of regulation of systemic inflammation in COPD and asthma demonstrated the important role of fatty acids and their metabolites in persistence of inflammatory processes in diseases of the respiratory system in the condition of remission. PMID:27420629

  19. Systemic inflammatory mediators and cystic fibrosis genotype.

    PubMed

    Augarten, A; Paret, G; Avneri, I; Akons, H; Aviram, M; Bentur, L; Blau, H; Efrati, O; Szeinberg, A; Barak, A; Kerem, E; Yahav, J

    2004-10-01

    Morbidity and mortality in cystic fibrosis patients is mainly attributed to pulmonary infection and inflammation. Chemokines play a pivotal role in the inflammatory process. Although genotype-phenotype correlation in cystic fibrosis patients has been defined, a clear relationship between the defect in the cystic fibrosis transmembrane regulator (CFTR) gene and pulmonary inflammation has not been established. The aim of this study was to assess whether serum chemokines levels in cystic fibrosis patients correlate with genotype and pulmonary function tests, as well as with other clinical characteristics. Serum levels of interleukin-8, RANTES, and monocyte chemoattractant protein-1 were measured in 36 cystic fibrosis patients grouped according to their genotype. Group A included 25 patients who carried two mutations associated with a pathological sweat test and pancreatic insufficiency (deltaF508, W1282X, G542X, N1303K, S549R). Group B included 11 compound heterozygote patients who carried one mutation known to cause mild disease with borderline or normal sweat test and pancreatic sufficiency (3849+10kb C to T, 5T). Associations between chemokine levels, genotype, pulmonary function, Pseudomonas aeruginosa colonization, age, sweat chloride level, and pancreatic and nutritional status were examined. Mean interleukin-8 and monocyte chemoattractant protein-1 levels were significantly higher in group A than group B (11.4 +/- 2.1 pg/ml vs. 5 +/- 0.9 pg/ml and 157 +/- 16 pg/ml vs. 88.8 +/- 16.4 pg/ml, respectively) (P < 0.01). No difference in RANTES levels were found between groups. interleukin-8 levels were inversely related to forced expiratory volume in 1 s (r = -0.37, P < 0.02), while there was no association between the latter and RANTES and monocyte chemoattractant protein-1 levels. The Pseudomonas colonization rate was higher among group A patients than group B (88% vs. 40%, P < 0.01). No relationship was found between measured chemokines and age, sweat chloride

  20. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways.

    PubMed

    Martin-Subero, Marta; Anderson, George; Kanchanatawan, Buranee; Berk, Michael; Maes, Michael

    2016-04-01

    The nature of depression has recently been reconceptualized, being conceived as the clinical expression of activated immune-inflammatory, oxidative, and nitrosative stress (IO&NS) pathways, including tryptophan catabolite (TRYCAT), autoimmune, and gut-brain pathways. IO&NS pathways are similarly integral to the pathogenesis of inflammatory bowel disease (IBD). The increased depression prevalence in IBD associates with a lower quality of life and increased morbidity in IBD, highlighting the role of depression in modulating the pathophysiology of IBD.This review covers data within such a wider conceptualization that better explains the heightened co-occurrence of IBD and depression. Common IO&NS underpinning between both disorders is evidenced by increased pro-inflammatory cytokine levels, eg, interleukin-1 (IL-1) and tumor necrosis factor-α, IL-6 trans-signalling; Th-1- and Th-17-like responses; neopterin and soluble IL-2 receptor levels; positive acute phase reactants (haptoglobin and C-reactive protein); lowered levels of negative acute phase reactants (albumin, transferrin, zinc) and anti-inflammatory cytokines (IL-10 and transforming growth factor-β); increased O&NS with damage to lipids, proteinsm and DNA; increased production of nitric oxide (NO) and inducible NO synthase; lowered plasma tryptophan but increased TRYCAT levels; autoimmune responses; and increased bacterial translocation. As such, heightened IO&NS processes in depression overlap with the biological underpinnings of IBD, potentially explaining their increased co-occurrence. This supports the perspective that there is a spectrum of IO&NS disorders that includes depression, both as an emergent comorbidity and as a contributor to IO&NS processes. Such a frame of reference has treatment implications for IBD when "comorbid" with depression. PMID:26307347

  1. IMMUNE SYSTEM MATURITY AND SENSITIVITY TO CHEMICAL EXPOSURE

    EPA Science Inventory

    It is well established that human diseases associated with abnormal immune function, including some common infectious diseases and asthma, are considerably more prevalent at younger ages. The immune system continues to mature after birth, and functional immaturity accounts for m...

  2. Artificial Immune System for Recognizing Patterns

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.

  3. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin

    NASA Astrophysics Data System (ADS)

    Borovikova, Lyudmila V.; Ivanova, Svetlana; Zhang, Minghuang; Yang, Huan; Botchkina, Galina I.; Watkins, Linda R.; Wang, Haichao; Abumrad, Naji; Eaton, John W.; Tracey, Kevin J.

    2000-05-01

    Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1β, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

  4. Mucosal and systemic immunity to intestinal reovirus infection in aged mice.

    PubMed

    Fulton, Jonathan R; Cuff, Christopher F

    2004-09-01

    Systemic immunity is progressively impaired in aging, predisposing to morbidity and mortality from neoplasia and infectious disease. However, the effect of aging on mucosal immunity is controversial. To assess intestinal immunity in aging, young and aged mice were orally exposed to reovirus or cholera toxin (CT) and specific antibody and reovirus-specific cytotoxic T-cell (CTL) responses were assessed. As previously reported, aged mice immunized orally with CT mounted diminished intestinal IgA responses to CT compared to young mice. In contrast, aged mice yielded two to three-fold more reovirus-specific IgA-producing cells in the Peyers's patches (PP) compared to young mice, and higher titers of reovirus-specific IgA in fragment culture supernatants. Cytotoxicity and CTL frequencies from aged mice were not different from those of young mice. Together, these results suggest a diminished potential for systemic and intestinal immunity to orally applied protein antigens in aging, but an intact ability to respond to intestinal virus infection. Infection with a replicating virus may induce inflammatory mediators and innate immune factors that potentiate the priming of mucosal immunity; overcoming aging related deficits otherwise observed following oral immunization with non-replicating antigens, and suggests the importance of antigen replication to antigen-specific immunotherapy strategies in the elderly. PMID:15489051

  5. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression.

    PubMed

    Kim, Yong-Ku; Na, Kyoung-Sae; Myint, Aye-Mu; Leonard, Brian E

    2016-01-01

    Cytokines are pleiotropic molecules with important roles in inflammatory responses. Pro-inflammatory cytokines and neuroinflammation are important not only in inflammatory responses but also in neurogenesis and neuroprotection. Sustained stress and the subsequent release of pro-inflammatory cytokines lead to chronic neuroinflammation, which contributes to depression. Hippocampal glucocorticoid receptors (GRs) and the associated hypothalamus-pituitary-adrenal (HPA) axis have close interactions with pro-inflammatory cytokines and neuroinflammation. Elevated pro-inflammatory cytokine levels and GR functional resistance are among the most widely investigated factors in the pathophysiology of depression. These two major components create a vicious cycle. In brief, chronic neuroinflammation inhibits GR function, which in turn exacerbates pro-inflammatory cytokine activity and aggravates chronic neuroinflammation. On the other hand, neuroinflammation causes an imbalance between oxidative stress and the anti-oxidant system, which is also associated with depression. Although current evidence strongly suggests that cytokines and GRs have important roles in depression, they are essential components of a whole system of inflammatory and endocrine interactions, rather than playing independent parts. Despite the evidence that a dysfunctional immune and endocrine system contributes to the pathophysiology of depression, much research remains to be undertaken to clarify the cause and effect relationship between depression and neuroinflammation. PMID:26111720

  6. Hypo-gravity and immune system effects

    NASA Technical Reports Server (NTRS)

    Carter, Paul D.; Barnes, Frank

    1990-01-01

    Recent studies on the effects of hypo-gravity on astronauts have shown depressed response of the immune system component cells (e.g. T-lymphocytes activity) and associated bone-mass loss due to demineralization. The widespread use of various electrical stimulation techniques in fracture repair and bone growth make use of the inherent piezoelectric and streaming potentials in Ca(2++) depositation. In-vitro and in-vivo experiments were designed to determine if these potentials, absent or greatly reduced in space, could be artificially enhanced to advantageously effect the bone marrow and, consequently, immune system cells. The bone marrow plays an extremely important role in the development and maturation of all blood cells and, specifically, T- and B-lymphocytes. It is our belief that simulated E-fields will enhance this development when 'ambient' physiological fields are absent during spaceflight or extended bedrest. Our investigation began with a look at the component immune system cells and their growth patterns in vitro. The first chamber will induce E-fields by current densities produced from an agar-bridge electrode arrangement. The cells are immersed in a nutrient agar and isolated from the electrodes by an agar bridge to prevent electrolytic contamination. The second chamber induces current densities by mutual induction from a magnetic field produced by a solenoid coil. Cells are isolated in a small radial area to reduce (1/r) effects and for accurate field calculations. We anticipate inducing currents in the nano- and microampere range as indicated by our calculations of physiological fields.

  7. HIV infection and the gastrointestinal immune system

    PubMed Central

    Brenchley, JM; Douek, DC

    2009-01-01

    There has recently been a resurgence of interest in the gastrointestinal pathology observed in patients infected with HIV. The gastrointestinal tract is a major site of HIV replication, which results in massive depletion of lamina propria CD4 T cells during acute infection. Highly active antiretroviral therapy leads to incomplete suppression of viral replication and substantially delayed and only partial restoration of gastrointestinal CD4 T cells. The gastrointestinal pathology associated with HIV infection comprises significant enteropathy with increased levels of inflammation and decreased levels of mucosal repair and regeneration. Assessment of gut mucosal immune system has provided novel directions for therapeutic interventions that modify the consequences of acute HIV infection. PMID:19079157

  8. Prenatal Alcohol Exposure and the Developing Immune System

    PubMed Central

    Gauthier, Theresa W.

    2015-01-01

    Evidence from research in humans and animals suggest that ingesting alcohol during pregnancy can disrupt the fetal immune system and result in an increased risk of infections and disease in newborns that may persist throughout life. Alcohol may have indirect effects on the immune system by increasing the risk of premature birth, which itself is a risk factor for immune-related problems. Animal studies suggest that alcohol exposure directly disrupts the developing immune system. A comprehensive knowledge of the mechanisms underlying alcohol’s effects on the developing immune system only will become clear once researchers establish improved methods for identifying newborns exposed to alcohol in utero. PMID:26695750

  9. Opioid System Modulates the Immune Function: A Review

    PubMed Central

    Liang, Xuan; Liu, Renyu; Chen, Chunhua; Ji, Fang; Li, Tianzuo

    2016-01-01

    Opioid receptors and their ligands produce powerful analgesia that is effective in perioperative period and chronic pain managements accompanied with various side effects including respiratory depression, constipation and addiction etc. Opioids can also interfere with the immune system, not only participating in the function of the immune cells, but also modulating innate and acquired immune responses. The traditional notion of opioids is immunosuppressive. Recent studies indicate that the role of opioid receptors on immune function is complicated, working through various different mechanisms. Different opioids or opioids administrations show various effects on the immune system: immunosuppressive, immunostimulatory, or dual effect. It is important to elucidate the relationship between opioids and immune function, since immune system plays critical role in various physiological and pathophysiological processes, including the inflammation, tumor growth and metastasis, drug abuse, and so on. This review article tends to have an overview of the recent work and perspectives on opioids and the immune function. PMID:26985446

  10. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation" Always Inflammation?

    PubMed

    Kulkarni, Onkar P; Lichtnekert, Julia; Anders, Hans-Joachim; Mulay, Shrikant R

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of "proinflammatory" cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine "inflammation"? In this review, we discuss the functions of "inflammatory" mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury. PMID:27597803

  11. Fulminant inflammatory leukoencephalopathy associated with HAART-induced immune restoration in AIDS-related progressive multifocal leukoencephalopathy.

    PubMed

    Vendrely, Aurélie; Bienvenu, Boris; Gasnault, Jacques; Thiebault, Jean Baptiste; Salmon, Dominique; Gray, Françoise

    2005-04-01

    HAART-induced immune restoration is beneficial for patients with AIDS-related progressive multifocal leukoencephalopathy (PML). However, in rare instances, an immune-reconstitution inflammatory syndrome (IRIS) may cause paradoxical clinical deterioration. We report the neuropathological study of an AIDS patient who presented with progressive cognitive deterioration; CD4(+) count was 117 and the HIV viral load >10(4); imaging showed non-enhancing lesions consistent with PML. Following initiation of HAART, CD4(+) was 300 and HIV viral load <10(3), but his neurological symptoms continued to deteriorate. Imaging revealed an increase in the size and number of lesions and enhancement of all the lesions. A stereotactic biopsy showed severe inflammatory and demyelinating lesions with marked infiltration by macrophages and T lymphocytes in the absence of a detectable infectious agent. Despite high doses of steroids, the patient died 3 months after admission. Autopsy showed two types of lesions: (1) active inflammatory PML changes with abundant JC virus, and intraparenchymal and perivascular infiltration by T lymphocytes, and (2) acute perivenous leukoencephalitis devoid of JC virus. Most lymphocytes were CD8(+) lymphocytes; CD4(+) lymphocytes were virtually absent. Two pathological reactions were associated with the paradoxical clinical deterioration related to dysregulation of the immune response characteristic of IRIS in PML: (1) an accentuation of JCV infection, and (2) a nonspecific acute perivenous leukoencephalitis. We suggest that both these types of lesions are due to an imbalance of CD8(+)/CD4(+) T cells, with massive infiltration of the cerebral parenchyma by CD8(+) cytotoxic T lymphocytes in the absence of sufficient CD4(+) response. Better understanding of the mechanisms of the IRIS may enable prevention or cure of this severe, sometimes fatal complication of HAART. PMID:15739098

  12. Th2 differentiation in distinct lymph nodes influences the site of mucosal Th2 immune-inflammatory responses.

    PubMed

    Alvarez, David; Arkinson, Janine L; Sun, Jiangfeng; Fattouh, Ramzi; Walker, Tina; Jordana, Manel

    2007-09-01

    Allergic individuals rarely present with concurrent multiple-organ disease but, rather, with manifestations that privilege a specific site such as the lung, skin, or gastrointestinal tract. Whether the site of allergic sensitization influences the localization of Th2 immune-inflammatory responses and, ultimately, the organ-specific expression of disease, remains to be determined. In this study, we investigated whether both the site of initial Ag exposure and concomitant Th2 differentiation in specific lymph nodes (LNs) privileges Th2 memory responses to mucosal and nonmucosal sites, and whether this restriction is associated with a differential expression in tissue-specific homing molecules. In mice exposed to Ag (OVA) via the peritoneum, lung, or skin, we examined several local and distal LNs to determine the site of Ag-specific proliferation and Th2 differentiation. Whereas respiratory and cutaneous Ag exposure led to Ag-specific proliferation and Th2 differentiation exclusively in lung- and skin-draining LNs, respectively, Ag delivery to the peritoneum evoked responses in gut-associated, as well as distal thoracic, LNs. Importantly, only mice that underwent Th2 differentiation in thoracic- or gut-associated LNs mounted Th2 immune-inflammatory responses upon respiratory or gastric Ag challenge, respectively, whereas cutaneous Th2 recall responses were evoked irrespective of the site of initial sensitization. In addition, we observed the differential expression of gut homing molecules (CCR9, alpha(4), beta(7)) in gut-associated LNs and, unexpectedly, a universal induction of skin-related homing molecules (CCR4, CCR10) in all LNs. These data suggest that the site of initial Th2 differentiation and differential homing molecule expression restricts Th2 immune-inflammatory responses to mucosal, but not cutaneous, tissues. PMID:17709545

  13. Expansion of inflammatory innate lymphoid cells in patients with common variable immune deficiency

    PubMed Central

    Cols, Montserrat; Rahman, Adeeb; Maglione, Paul J.; Garcia-Carmona, Yolanda; Simchoni, Noa; Ko, Huai-Bin M.; Radigan, Lin; Cerutti, Andrea; Blankenship, Derek; Pascual, Virginia; Cunningham-Rundles, Charlotte

    2016-01-01

    Background Common variable immunodeficiency (CVID) is an antibody deficiency treated with immunoglobulin; however, patients can have noninfectious inflammatory conditions that lead to heightened morbidity and mortality. Objectives Modular analyses of RNA transcripts in whole blood previously identified an upregulation of many interferon-responsive genes. In this study we sought the cell populations leading to this signature. Methods Lymphoid cells were measured in peripheral blood of 55 patients with CVID (31 with and 24 without inflammatory/autoimmune complications) by using mass cytometry and flow cytometry. Surface markers, cytokines, and transcriptional characteristics of sorted innate lymphoid cells (ILCs) were defined by using quantitative PCR. Gastrointestinal and lung biopsy specimens of subjects with inflammatory disease were stained to seek ILCs in tissues. Results The linage-negative, CD127+, CD161+ lymphoid population containing T-box transcription factor, retinoic acid–related orphan receptor (ROR) γt, IFN-γ, IL-17A, and IL-22, all hallmarks of type 3 innate lymphoid cells, were expanded in the blood of patients with CVID with inflammatory conditions (mean, 3.7% of PBMCs). ILCs contained detectable amounts of the transcription factors inhibitor of DNA binding 2, T-box transcription factor, and RORγt and increased mRNA transcripts for IL-23 receptor (IL-23R) and IL-26, demonstrating inflammatory potential. In gastrointestinal and lung biopsy tissues of patients with CVID, numerous IFN-γ+RORγt+CD3− cells were identified, suggesting a role in these mucosal inflammatory states. Conclusions An expansion of this highly inflammatory ILC population is a characteristic of patients with CVID with inflammatory disease; ILCs and the interferon signature are markers for the uncontrolled inflammatory state in these patients. PMID:26542033

  14. Inflammatory and Immune Response Genes Polymorphisms are Associated with Susceptibility to Chronic Obstructive Pulmonary Disease in Tatars Population from Russia.

    PubMed

    Korytina, Gulnaz Faritovna; Akhmadishina, L Z; Kochetova, O V; Aznabaeva, Y G; Zagidullin, Sh Z; Victorova, T V

    2016-08-01

    Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease of the respiratory system affecting primarily distal respiratory pathways and lung parenchyma. This work was designed as a case-control study aimed at investigating the association of COPD with polymorphisms in inflammatory and immune response genes (JAK1, JAK3, STAT1, STAT3, NFKB1, IL17A, ADIPOQ, ADIPOR1, etc.) in Tatar population from Russia. Ten SNPs (rs310216, rs3212780, rs12693591, rs2293152, rs28362491, rs4711998, rs1974226, rs1501299, rs266729, and rs12733285) were genotyped by the real-time polymerase chain reaction (TaqMan assays) in a case-control study (425 COPD patients and 457 in the control group, from Ufa, Russia). Logistic regression was used to detect the association of SNPs in different models. Linear regression analyses were performed to estimate the relationship between SNPs and lung function parameters and pack-years. In Tatar population, significant associations of JAK1 (rs310216) (P = 0.0002, OR 1.70 in additive model), JAK3 (rs3212780) (P = 0.001, OR 1.61 in dominant model), and IL17A (rs1974226) (P = 0.0037, OR 2.31 in recessive model) with COPD were revealed. The disease risk was higher in carriers of insertion allele of NFKB1 (rs28362491) (P = 0.045, OR 1.22). We found a significant gene-by-environment interaction of smoking status and IL17A (rs1974226) (P interact = 0.016), JAK3 (rs3212780) (P interact = 0.031), ADIPOQ (rs266729) (P interact = 0.013), and ADIPOR1 (rs12733285) (P interact = 0.018). The relationship between the rs4711998, rs1974226, rs310216, rs3212780, rs28362491, and smoking pack-years was found (P = 0.045, P = 0.004, P = 0.0005, P = 0.021, and P = 0.042). A significant genotype-dependent variation of forced vital capacity was observed for NFKB1 (rs28362491) (P = 0.017), ADIPOR1 (rs12733285) (P = 0.043), and STAT1 (rs12693591) (P = 0.048). The genotypes of STAT1 (rs12693591) (P = 0.013) and JAK1 (rs

  15. Paradoxical immune reconstitution inflammatory syndrome associated with cryptococcal meningitis in China: a 5-year retrospective cohort study.

    PubMed

    Yan, S; Chen, L; Wu, W; Li, Z; Fu, Z; Zhang, H; Xue, J; Hu, Y; Mou, J; Fu, C

    2015-04-01

    We performed a retrospective cohort study of hospitalised cryptococcal meningitis (CM) patients at a single centre to evaluate the clinical epidemiological features of paradoxical cryptococcal-related immune reconstitution inflammatory syndrome (CM-IRIS) in a setting in China. A total of 154 AIDS patients with CM were involved, and 17.5% experienced IRIS at a median of 27 days after initiation of antiretroviral therapy (ART). Overall, 3 deaths were directly attributed to IRIS. The occurrences of CM-IRIS were independently associated with the pre-ART CD4+count, pre-C-reactive protein level, and the timing of ART initiation. PMID:25658526

  16. Reciprocal Interactions of the Intestinal Microbiota and Immune System

    PubMed Central

    Maynard, Craig L.; Elson, Charles O.; Hatton, Robin D.; Weaver, Casey T.

    2013-01-01

    Preface Emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defense. These same attributes carry risk for immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how it integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks in order to treat and prevent disease. PMID:22972296

  17. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  18. Cryptococcal Immune Reconstitution Inflammatory Syndrome in HIV-1–infected individuals: Literature Review and Proposed Clinical Case Definitions

    PubMed Central

    Haddow, Lewis J; Colebunders, Robert; Meintjes, Graeme; Lawn, Stephen D; Elliott, Julian H; Manabe, Yukari C; Bohjanen, Paul R; Sungkanuparph, Somnuek; Easterbrook, Philippa J; French, Martyn A; Boulware, David R

    2011-01-01

    Cryptococcal immune reconstitution inflammatory syndrome (C-IRIS) may present as a clinical deterioration or new presentation of cryptococcal disease following initiation of antiretroviral therapy (ART) and is believed to be caused by recovery of cryptococcus-specific immune responses. We have reviewed the existing literature on C-IRIS to inform the development of a consensus case definition specific for paradoxical cryptococcal IRIS in patients with known cryptococcal disease prior to ART, and a second definition for incident cases of cryptococcosis developing during ART (here termed ART-associated cryptococcosis), a proportion of which are likely to be “unmasking” C-IRIS. These structured case definitions are intended for use in future clinical, epidemiologic and immunopathologic studies of C-IRIS, harmonizing diagnostic criteria, and facilitating comparisons between studies. As with tuberculosis-associated IRIS, these proposed definitions should be regarded as preliminary until further insights into the immunopathology of IRIS permit their refinement. PMID:21029993

  19. Fever and the thermal regulation of immunity: the immune system feels the heat

    PubMed Central

    Evans, Sharon S.; Repasky, Elizabeth A.; Fisher, Daniel T.

    2016-01-01

    Fever is a cardinal response to infection that has been conserved in warm and cold-blooded vertebrates for over 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. Here, we review our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction as well as during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. Finally, we discuss the emerging evidence that suggests the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513

  20. Fever and the thermal regulation of immunity: the immune system feels the heat.

    PubMed

    Evans, Sharon S; Repasky, Elizabeth A; Fisher, Daniel T

    2015-06-01

    Fever is a cardinal response to infection that has been conserved in warm-blooded and cold-blooded vertebrates for more than 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. In this Review, we discuss our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction and during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. We also discuss the emerging evidence suggesting that the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513

  1. Delayed neutralization of interleukin 6 reduces organ injury, selectively suppresses inflammatory mediator, and partially normalizes immune dysfunction following trauma and hemorrhagic shock.

    PubMed

    Zhang, Yong; Zhang, Jinxiang; Korff, Sebastian; Ayoob, Faez; Vodovotz, Yoram; Billiar, Timothy R

    2014-09-01

    An excessive and uncontrolled systemic inflammatory response is associated with organ failure, immunodepression, and increased susceptibility to nosocomial infection following trauma. Interleukin 6 (IL-6) plays a particularly prominent role in the host immune response after trauma with hemorrhage. However, as a result of its pleiotropic functions, the effect of IL-6 in trauma and hemorrhage is still controversial. It remains unclear whether suppression of IL-6 after hemorrhagic shock and trauma will attenuate organ injury and immunosuppression. In this study, C57BL/6 mice were treated with anti-mouse IL-6 monoclonal antibody immediately prior to resuscitation in an experimental model combining hemorrhagic shock and lower-extremity injury. Interleukin 6 levels and signaling were transiently suppressed following administrations of anti-IL-6 monoclonal antibody following hemorrhagic shock and lower-extremity injury. This resulted in reduced lung and liver injury, as well as suppression in the levels of key inflammatory mediators including IL-10, keratinocyte-derived chemokine, monocyte chemoattractant protein 1, and macrophage inhibitory protein 1α at both 6 and 24 h. Furthermore, the shift to TH2 cytokine production and suppressed lymphocyte response were partly prevented. These results demonstrate that IL-6 is not only a biomarker but also an important driver of injury-induced inflammation and immune suppression in mice. Rapid measurement of IL-6 levels in the early phase of postinjury care could be used to guide IL-6-based interventions. PMID:24978887

  2. Prions and the blood and immune systems.

    PubMed

    Mabbott, Neil; Turner, Marc

    2005-04-01

    Prion diseases take a number of forms in animals and humans. They are caused by conformational change in widely expressed prion protein leading to the formation of intracellular aggregates. Although the main focus of disease is the central nervous system, it is known that involvement of the immune system occurs in peripherally transmitted disease in particular. Animal experiments suggest that in some prion diseases follicular dendritic cells in the germinal centers are a major site of initial accumulation, and that abnormal prion protein and infectivity are detectable in peripheral lymphoid tissue from the earliest phase of disease. This raises the possibility that in a human peripherally transmitted prion disease like variant Creutzfeldt-Jakob disease, further transmission could occur through blood or tissue products or contamination of surgical instrumentation. Indeed two recent reports confirm that this disease has been transmitted by blood, raising significant public health concerns. PMID:15820951

  3. Hepatic Expression Patterns of Inflammatory and Immune Response Genes Associated with Obesity and NASH in Morbidly Obese Patients

    PubMed Central

    Bertola, Adeline; Bonnafous, Stéphanie; Anty, Rodolphe; Patouraux, Stéphanie; Saint-Paul, Marie-Christine; Iannelli, Antonio; Gugenheim, Jean; Barr, Jonathan; Mato, José M.; Le Marchand-Brustel, Yannick; Tran, Albert; Gual, Philippe

    2010-01-01

    Background Obesity modulates inflammation and activation of immune pathways which can lead to liver complications. We aimed at identifying expression patterns of inflammatory and immune response genes specifically associated with obesity and NASH in the liver of morbidly obese patients. Methodology/Principal Findings Expression of 222 genes was evaluated by quantitative RT-PCR in the liver of morbidly obese patients with histologically normal liver (n = 6), or with severe steatosis without (n = 6) or with NASH (n = 6), and in lean controls (n = 5). Hepatic expression of 58 out of 222 inflammatory and immune response genes was upregulated in NASH patients. The most notable changes occurred in genes encoding chemokines and chemokine receptors involved in leukocyte recruitment, CD and cytokines involved in the T cell activation towards a Th1 phenotype, and immune semaphorins. This regulation seems to be specific for the liver since visceral adipose tissue expression and serum levels of MCP1, IP10, TNFα and IL6 were not modified. Importantly, 47 other genes were already upregulated in histologically normal liver (e.g. CRP, Toll-like receptor (TLR) pathway). Interestingly, serum palmitate, known to activate the TLR pathway, was increased with steatosis. Conclusion/Significance The liver of obese patients without histological abnormalities already displayed a low-grade inflammation and could be more responsive to activators of the TLR pathway. NASH was then characterized by a specific gene signature. These findings help to identify new potential actors of the pathogenesis of NAFLD. PMID:21042596

  4. Bridging the gap between host immune response and intestinal dysbiosis in inflammatory bowel disease: does immunoglobulin A mark the spot?

    PubMed

    Shapiro, Jason M; Cho, Judy H; Sands, Bruce E; LeLeiko, Neal S

    2015-05-01

    Inflammatory bowel disease (IBD) is a chronic, debilitating condition characterized by relapsing and remitting episodes of gastrointestinal inflammation. As the incidence and prevalence have increased, so has our understanding of the pathophysiology of this complex, immunologically mediated disease. With advances in bacterial and human gene sequencing technologies, a significant amount of work has focused on how alterations in the intestinal microbiome affect disease onset and progression. A recent study in Cell suggests that it may be possible to identify specific bacteria responsible for promoting a proinflammatory state by assessing the degree to which they are coated by the immunoglobulin (Ig) A. A combination of antibody-based bacterial cell sorting, flow cytometry, and 16s ribosomal RNA gene sequencing was used to identify IgA-coated bacteria from stool of specific pathogen-free mice. This technique was used to demonstrate that IgA-coated bacteria were indeed detectable and increased in a mouse model of colitis. Stool from patients with IBD was then used to generate 2 groups of IgA+ and IgA- bacterial consortia. When transplanted into specific pathogen-free mice, no initial clinical differences were noted. However, when mice with dextran sodium sulfate-induced colitis were transplanted with the IgA+ bacterial strains, they exhibited severe exacerbation of intestinal inflammation, whereas the IgA- group developed minimal symptoms. These findings suggest that bacteria highly coated with IgA are potentially responsible for driving gut inflammation in patients with IBD. These results may represent a critical advance in our understanding of the complex interactions between the host immune system and commensal microorganisms as it relates to the development and disease course of IBD. Future work will focus on how these findings can be translated into the development of individualized, microbiota-specific therapies. PMID:25725444

  5. Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems.

    PubMed

    Hartman, Kira G; Bortner, James D; Falk, Gary W; Ginsberg, Gregory G; Jhala, Nirag; Yu, Jian; Martín, Martín G; Rustgi, Anil K; Lynch, John P

    2014-09-01

    Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, and diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett's esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. PMID:24781339

  6. Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems

    PubMed Central

    Hartman, Kira G.; Bortner, James D.; Falk, Gary W.; Ginsberg, Gregory G.; Jhala, Nirag; Yu, Jian; Martín, Martín G.; Rustgi, Anil K.; Lynch, John P.

    2014-01-01

    Gastrointestinal (GI) illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammation are a common element of many GI diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett’s esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. PMID:24781339

  7. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26801961

  8. Systemic inflammatory responses in African tick-bite fever.

    PubMed

    Jensenius, Mogens; Ueland, Thor; Fournier, Pierre-Edouard; Brosstad, Frank; Stylianou, Eva; Vene, Sirkka; Myrvang, Bjørn; Raoult, Didier; Aukrust, Pål

    2003-04-15

    Information regarding the inflammatory response in African tick-bite fever (ATBF), an emerging spotted-fever-group rickettsiosis, in international travelers to sub-Saharan Africa, is scarce. Plasma/serum levels of von Willebrand factor (vWF), soluble (s) E-selectin, tumor necrosis factor-alpha, interleukin (IL)-6, interferon-gamma, IL-10, IL-13, IL-8, RANTES, macrophage inflammatory protein-1alpha, and C-reactive protein were studied, at both first presentation and follow-up, in 15 patients with travel-associated ATBF and in 14 healthy travelers who served as control subjects. Our main and novel findings are the following: (1) patients with ATBF had increased levels of vWF and sE-selectin, with a subsequent decrease at follow-up; (2) with the exception of IFN-gamma, levels of cytokines and chemokines were also increased in these patients at the first presentation; and (3) IL-10 and IL-13 tended to increase during follow-up, whereas most of the inflammatory cytokines decreased. The induction of these mediators and the balance between them may be critical both for the regulation of inflammation and for protective immunity in ATBF. PMID:12696016

  9. Systemic Inflammatory Syndrome Associated with a Case of Jugular Paraganglioma.

    PubMed

    Sokabe, Ayuko; Mizooka, Masafumi; Sakemi, Rinne; Kobayashi, Tomoki; Kishikawa, Nobusuke; Yokobayashi, Kenichi; Kanno, Keishi; Tazuma, Susumu

    2016-01-01

    Jugular paraganlioma is a benign, slow-growing tumor originating from the paraganglion cells and it is associated with catecholamine secretion. Paragangliomas can secrete Interleukin-6 (IL-6) and present as a systemic inflammatory syndrome; these characteristics have not been previously associated with jugular paragangliomas. A 63-year-old man with a jugular tumor in the skull base was referred to our hospital for an evaluation of pyrexia, back pain, and acute inflammation. His serum IL-6 level was elevated on admission and it decreased after radiotherapy. This is the first known case of a jugular paraganglioma exhibiting systemic inflammatory syndrome. PMID:27477424

  10. Intercellular Communication in the Adaptive Immune System

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup

    2004-03-01

    Higher organisms, like humans, have an adaptive immune system that can respond to pathogens that have not been encountered before. T lymphocytes (T cells) are the orchestrators of the adaptive immune response. They interact with cells, called antigen presenting cells (APC), that display molecular signatures of pathogens. Recently, video microscopy experiments have revealed that when T cells detect antigen on APC surfaces, a spatially patterned supramolecular assembly of different types of molecules forms in the junction between cell membranes. This recognition motif is implicated in information transfer between APC and T cells, and so, is labeled the immunological synapse. The observation of synapse formation sparked two broad questions: How does the synapse form? Why does the synapse form? I will describe progress made in answering these fundamental questions in biology by synergistic use of statistical mechanical theory/computation, chemical engineering principles, and genetic and biochemical experiments. The talk will also touch upon mechanisms that may underlie the extreme sensitivity with which T cells discriminate between self and non-self.

  11. Immunizing digital systems against electromagnetic interference

    NASA Astrophysics Data System (ADS)

    Ewing, P. D.; Korsah, K.; Antonescu, C.

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.

  12. Divergent Annexin A1 expression in periphery and gut is associated with systemic immune activation and impaired gut immune response during SIV infection

    PubMed Central

    Sena, Angela A. S.; Glavan, Tiffany; Jiang, Guochun; Sankaran-Walters, Sumathi; Grishina, Irina; Dandekar, Satya; Goulart, Luiz R.

    2016-01-01

    HIV-1 disease progression is paradoxically characterized by systemic chronic immune activation and gut mucosal immune dysfunction, which is not fully defined. Annexin A1 (ANXA1), an inflammation modulator, is a potential link between systemic inflammation and gut immune dysfunction during the simian immunodeficiency virus (SIV) infection. Gene expression of ANXA1 and cytokines were assessed in therapy-naïve rhesus macaques during early and chronic stages of SIV infection and compared with SIV-negative controls. ANXA1 expression was suppressed in the gut but systemically increased during early infection. Conversely, ANXA1 expression increased in both compartments during chronic infection. ANXA1 expression in peripheral blood was positively correlated with HLA-DR+CD4+ and CD8+ T-cell frequencies, and negatively associated with the expression of pro-inflammatory cytokines and CCR5. In contrast, the gut mucosa presented an anergic cytokine profile in relation to ANXA1 expression. In vitro stimulations with ANXA1 peptide resulted in decreased inflammatory response in PBMC but increased activation of gut lymphocytes. Our findings suggest that ANXA1 signaling is dysfunctional in SIV infection, and may contribute to chronic inflammation in periphery and with immune dysfunction in the gut mucosa. Thus, ANXA1 signaling may be a novel therapeutic target for the resolution of immune dysfunction in HIV infection. PMID:27484833

  13. Inflammatory myofibroblastic tumor of the central nervous system and its relationship to inflammatory pseudotumor.

    PubMed

    Swain, Rebecca S; Tihan, Tarik; Horvai, Andrew E; Di Vizio, Dolores; Loda, Massimo; Burger, Peter C; Scheithauer, Bernd W; Kim, Grace E

    2008-03-01

    Inflammatory myofibroblastic tumor (IMT) is a distinctive spindle cell lesion and occurs primarily in soft tissue. Recent evidence suggests a neoplastic nature, although historically, both neoplastic and nonneoplastic processes were combined in this category. Originally described as a nonneoplastic process, the term inflammatory pseudotumor (IP) has been used synonymously with IMT. IMTs have been linked to ALK gene (2p23) rearrangements, and some have suggested an association with the human herpesvirus 8 (HHV-8). IMT in the central nervous system (CNS) is rare, its characteristics are poorly defined, and its relation to similar tumors at other sites is unclear. To better characterize IMT within the CNS, we studied clinicopathologic features of 6 IMTs and compared them with 18 nonneoplastic lesions originally classified as IP. The IMT group consisted of 2 male and 4 female patients with a median age of 29 years. Of the six IMTs, 5 occurred within the cerebral hemispheres, and one was in the posterior fossa. All tumors were composed of neoplastic spindle cells and a variable amount of inflammatory infiltrate. Eighteen IPs included in this study consisted of predominantly inflammatory masses occasionally seen in the setting of systemic diseases. Only 1 IMT and none of the IPs recurred during the follow-up period. Four IMTs had either ALK protein overexpression or 2p23 rearrangement, and 1 case demonstrated both. None of the IPs were positive for ALK. Neither IMT nor IP cases demonstrated HHV-8 expression. We suggest that IMT in the CNS is distinct from the nonneoplastic IP, and distinguishing IMT from nonneoplastic lesions should enable better decisions for patient management. PMID:18261625

  14. Inflammation on the Mind: Visualizing Immunity in the Central Nervous System

    PubMed Central

    Kang, Silvia S.

    2016-01-01

    The central nervous system (CNS) is a remarkably complex structure that utilizes electrochemical signaling to coordinate activities throughout the entire body. Because the nervous system contains nonreplicative cells, it is postulated that, through evolutionary pressures, this compartment has acquired specialized mechanisms to limit damage. One potential source of damage comes from our immune system, which has the capacity to survey the CNS and periphery for the presence of foreign material. The immune system is equipped with numerous effector mechanisms and can greatly alter the homeostasis and function of the CNS. Degeneration, autoimmunity, and pathogen infection can all result in acute, and sometimes chronic, inflammation within the CNS. Understanding the specialized functionality of innate and adaptive immune cells within the CNS is critical to the design of more efficacious treatments to mitigate CNS inflammatory conditions. Much of our knowledge of CNS-immune interactions stems from seminal studies that have used static and dynamic imaging approaches to visualize inflammatory cells responding to different CNS conditions. This review will focus on how imaging techniques have elevated our understanding of CNS inflammation as well as the exciting prospects that lie ahead as we begin to pursue investigation of the inflamed CNS in real time. PMID:19521688

  15. A rare case of immune reconstitution inflammatory syndrome presenting as secondary syphilis.

    PubMed

    Khatri, Asma; Skalweit, Marion J

    2015-09-01

    Immune reconstitution syndrome has rarely been reported in the context of syphilis infection. We report a patient with AIDS (CD4 42 cells/mm(3), viral load 344,000 cp/ml), treated previously for secondary syphilis and started on an integrase inhibitor-based single-tablet antiretroviral treatment regimen. After four weeks of antiretroviral treatment, he presented with non-tender, non-blanching erythematous nodules on his chest, an elevated rapid plasma reagin (1:1024) and immune reconstitution (CD4 154 cells/mm(3), HIV-RNA 130 cp/ml). A detailed workup to exclude opportunistic infections including secondary and neurosyphilis was performed. The patient was continued on antiretroviral treatment and treated empirically for neurosyphilis given cerebrospinal lymphocytosis and dermatopathology suggesting treponemal antigen-driven B-cell hyperplasia. We favour a diagnosis of immune reconstitution in association with prior syphilis infection attributable to rapid and potent immune restoration afforded by integrase inhibitors. PMID:25311145

  16. Stability analysis of simple models for immune cells interacting with normal pathogens and immune system retroviruses.

    PubMed Central

    Reibnegger, G; Fuchs, D; Hausen, A; Werner, E R; Werner-Felmayer, G; Dierich, M P; Wachter, H

    1989-01-01

    A mathematical analysis is presented for several simple dynamical systems that might be considered as crude descriptions for the situation when an immune system retrovirus, immune cells, and normal autonomously replicating pathogens interact. By stability analysis of the steady-state solutions, the destabilizing effect of the immune system retrovirus is described. The qualitative behavior of the solutions depending on the system parameters is analyzed in terms of trajectories moving in a phase space in which the axes are defined by the population numbers of the interacting biological entities. PMID:2522657

  17. Neuroendocrine and immune system responses with spaceflights.

    PubMed

    Tipton, C M; Greenleaf, J E; Jackson, C G

    1996-08-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldosterone, and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flights data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  18. Neuroendocrine and Immune System Responses with Spaceflights

    NASA Technical Reports Server (NTRS)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  19. Effects of Ageing on the Immune System: Infants to Elderly.

    PubMed

    Valiathan, R; Ashman, M; Asthana, D

    2016-04-01

    Physiological ageing is accompanied by decline in immune system function and immune alteration during ageing increases susceptibility to infections. We retrospectively analysed the data for complete blood count (CBC) and lymphocyte subsets from infant to elderly age groups to determine changes during ageing. Data from dual-platform flow cytometry and CBC were analysed to determine the percentage (%) and absolute cell counts (Abs) of peripheral blood lymphocyte subsets (CD3, CD4, CD8, CD19 and CD56+16+ cells) in infants (1 month to 1 year), children (1 year to 6 years), adolescents (12 years to 18 years), adults (21 years to 50) and elderly (70 years to 92 years). Differences in plasma cytokine levels in adults and elderly were also analysed using Randox system. Comparisons among age groups from infants through adults revealed progressive declines in the percentage of total lymphocytes and absolute numbers of T and B cells. The NK cells declined from infancy to adulthood but increased in elderly participants. The percentages of T cells increased with age from infant to adulthood and then declined. Pro-inflammatory cytokines, TNF-α and IL-6, were higher in elderly people compared to adults. The elderly group had significantly higher levels of monocyte chemoattractant protein-1 (MCP-1) and lower levels of epidermal growth factor (EGF) compared to adults. Our findings confirm and extend earlier reports on age-related changes in lymphocyte subpopulations and data generated from this study is useful for clinicians and researchers, patient management in various age groups for the interpretation of disease-related changes, as well as therapy-dependent alterations. PMID:26808160

  20. Programmed cell death 1 inhibits inflammatory helper T-cell development through controlling the innate immune response.

    PubMed

    Rui, Yuxiang; Honjo, Tasuku; Chikuma, Shunsuke

    2013-10-01

    Programmed cell death 1 (PD-1) is an inhibitory coreceptor on immune cells and is essential for self-tolerance because mice genetically lacking PD-1 (PD-1(-/-)) develop spontaneous autoimmune diseases. PD-1(-/-) mice are also susceptible to severe experimental autoimmune encephalomyelitis (EAE), characterized by a massive production of effector/memory T cells against myelin autoantigen, the mechanism of which is not fully understood. We found that an increased primary response of PD-1(-/-) mice to heat-killed mycobacteria (HKMTB), an adjuvant for EAE, contributed to the enhanced production of T-helper 17 (Th17) cells. Splenocytes from HKMTB-immunized, lymphocyte-deficient PD-1(-/-) recombination activating gene (RAG)2(-/-) mice were found to drive antigen-specific Th17 cell differentiation more efficiently than splenocytes from HKMTB-immunized PD-1(+/+) RAG2(-/-) mice. This result suggested PD-1's involvement in the regulation of innate immune responses. Mice reconstituted with PD-1(-/-) RAG2(-/-) bone marrow and PD-1(+/+) CD4(+) T cells developed more severe EAE compared with the ones reconstituted with PD-1(+/+) RAG2(-/-) bone marrow and PD-1(+/+) CD4(+) T cells. We found that upon recognition of HKMTB, CD11b(+) macrophages from PD-1(-/-) mice produced very high levels of IL-6, which helped promote naive CD4(+) T-cell differentiation into IL-17-producing cells. We propose a model in which PD-1 negatively regulates antimycobacterial responses by suppressing innate immune cells, which in turn prevents autoreactive T-cell priming and differentiation to inflammatory effector T cells. PMID:24043779

  1. Inorganic nanoparticles and the immune system: detection, selective activation and tolerance

    NASA Astrophysics Data System (ADS)

    Bastús, Neus G.; Sánchez-Tilló, Ester; Pujals, Silvia; Comenge, Joan; Giralt, Ernest; Celada, Antonio; Lloberas, Jorge; Puntes, Victor F.

    2012-03-01

    The immune system is the responsible for body integrity and prevention of external invasion. On one side, nanoparticles are no triggers that the immune system is prepared to detect, on the other side it is known that foreign bodies, not only bacteria, viruses and parasites, but also inorganic matter, can cause various pathologies such as silicosis, asbestosis or inflammatory reactions. Therefore, nanoparticles entering the body, after interaction with proteins, will be either recognized as self-agents or detected by the immune system, encompassing immunostimulation or immunosuppression responses. The nature of these interactions seems to be dictated not specially by the composition of the material but by modifications of NP coating (composition, surface charge and structure). Herein, we explore the use of gold nanoparticles as substrates to carry multifunctional ligands to manipulate the immune system in a controlled manner, from undetection to immunostimulation. Murine bone marrow macrophages can be activated with artificial nanometric objects consisting of a gold nanoparticle functionalized with peptides. In the presence of some conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines were induced. The biochemical type of response depended on the type of conjugated peptide and was correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical NP conjugate design to either activate the immune system or hide from it, in order to reach their targets before being removed by phagocytes. Additionally, it opens up the possibility to modulate the immune response in order to suppress unwanted responses resulting from autoimmunity, or allergy or to stimulate protective responses against pathogens.

  2. Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response

    PubMed Central

    Karmarkar, Dipti; Rock, Kenneth L

    2013-01-01

    In the present study, we have found that intestinal flora strongly influence peritoneal neutrophilic inflammatory responses to diverse stimuli, including pathogen-derived particles like zymosan and sterile irritant particles like crystals. When germ-free and flora-deficient (antibiotic-treated) mice are challenged with zymosan intraperitoneally, neutrophils are markedly impaired in their ability to extravasate from blood into the peritoneum. In contrast, in these animals, neutrophils can extravasate in response to an intraperitoneal injection of the chemokine, macrophage inflammatory protein 2. Neutrophil recruitment upon inflammatory challenge requires stimulation by microbiota through a myeloid differentiation primary response gene (88) (MyD88) -dependent pathway. MyD88 signalling is crucial during the development of the immune system but depending upon the ligand it may be dispensable at the time of the actual inflammatory challenge. Furthermore, pre-treatment of flora-deficient mice with a purified MyD88-pathway agonist is sufficient to restore neutrophil migration. In summary, this study provides insight into the role of gut microbiota in influencing acute inflammation at sites outside the gastrointestinal tract. PMID:23909393

  3. Effects of Group Drumming Interventions on Anxiety, Depression, Social Resilience and Inflammatory Immune Response among Mental Health Service Users

    PubMed Central

    Fancourt, Daisy; Perkins, Rosie; Ascenso, Sara; Carvalho, Livia A.; Steptoe, Andrew; Williamon, Aaron

    2016-01-01

    Growing numbers of mental health organizations are developing community music-making interventions for service users; however, to date there has been little research into their efficacy or mechanisms of effect. This study was an exploratory examination of whether 10 weeks of group drumming could improve depression, anxiety and social resilience among service users compared with a non-music control group (with participants allocated to group by geographical location.) Significant improvements were found in the drumming group but not the control group: by week 6 there were decreases in depression (-2.14 SE 0.50 CI -3.16 to -1.11) and increases in social resilience (7.69 SE 2.00 CI 3.60 to 11.78), and by week 10 these had further improved (depression: -3.41 SE 0.62 CI -4.68 to -2.15; social resilience: 10.59 SE 1.78 CI 6.94 to 14.24) alongside significant improvements in anxiety (-2.21 SE 0.50 CI -3.24 to -1.19) and mental wellbeing (6.14 SE 0.92 CI 4.25 to 8.04). All significant changes were maintained at 3 months follow-up. Furthermore, it is now recognised that many mental health conditions are characterised by underlying inflammatory immune responses. Consequently, participants in the drumming group also provided saliva samples to test for cortisol and the cytokines interleukin (IL) 4, IL6, IL17, tumour necrosis factor alpha (TNFα), and monocyte chemoattractant protein (MCP) 1. Across the 10 weeks there was a shift away from a pro-inflammatory towards an anti-inflammatory immune profile. Consequently, this study demonstrates the psychological benefits of group drumming and also suggests underlying biological effects, supporting its therapeutic potential for mental health. Trial Registration: ClinicalTrials.gov NCT01906892 PMID:26974430

  4. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy

    PubMed Central

    Zamarin, Dmitriy; Holmgaard, Rikke B.; Subudhi, Sumit K.; Park, Joon Seok; Mansour, Mena; Palese, Peter; Merghoub, Taha

    2014-01-01

    Preexisting lymphocytic infiltration of tumors is associated with superior prognostic outcomes in a variety of cancers. Recent studies also suggest that lymphocytic responses may identify patients more likely to benefit from therapies targeting immune checkpoints, suggesting that therapeutic efficacy of immune checkpoint blockade can be enhanced through strategies that induce tumor inflammation. To achieve this effect, here we explored the immunotherapeutic potential of oncolytic Newcastle Disease Virus (NDV). We find that localized intratumoral therapy of B16 melanoma with NDV induces inflammatory responses leading to lymphocytic infiltrates and anti-tumor effect in distant (non-virally injected) tumors without distant virus spread. The inflammatory effect coincided with distant tumor infiltration with tumor-specific CD4+ and CD8+ T cells, which was dependent on the identity of the virus-injected tumor. Combination therapy with localized NDV and systemic CTLA-4 blockade led to rejection of pre-established distant tumors and protection from tumor re-challenge in poorly-immunogenic tumor models, irrespective of tumor cell line sensitivity to NDV-mediated lysis. Therapeutic effect was associated with marked distant tumor infiltration with activated CD8+ and CD4+ effector but not regulatory T cells, and was dependent on CD8+ cells, NK cells and type I interferon. Our findings demonstrate that localized therapy with oncolytic NDV induces inflammatory immune infiltrates in distant tumors, making them susceptible to systemic therapy with immunomodulatory antibodies, which provides a strong rationale for investigation of such combination therapies in clinic. PMID:24598590

  5. How colonization by microbiota in early life shapes the immune system.

    PubMed

    Gensollen, Thomas; Iyer, Shankar S; Kasper, Dennis L; Blumberg, Richard S

    2016-04-29

    Microbial colonization of mucosal tissues during infancy plays an instrumental role in the development and education of the host mammalian immune system. These early-life events can have long-standing consequences: facilitating tolerance to environmental exposures or contributing to the development of disease in later life, including inflammatory bowel disease, allergy, and asthma. Recent studies have begun to define a critical period during early development in which disruption of optimal host-commensal interactions can lead to persistent and in some cases irreversible defects in the development and training of specific immune subsets. Here, we discuss the role of early-life education of the immune system during this "window of opportunity," when microbial colonization has a potentially critical impact on human health and disease. PMID:27126036

  6. Role of Immune Cells in the Course of Central Nervous System Injury: Modulation with Natural Products.

    PubMed

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2016-01-01

    Immune cells actively participate to the central nervous system (CNS) injury either damaging or protecting neural tissue with release of various mediators. Residential microglia and monocyte-derived macrophages play a fundamental role within the injured CNS and, here, special emphasis will be placed on M1 and M2 macrophages for their different functional activities. On the other hand, peripheral T regulatory (Treg) cells exert antiinflammatory activities in the diseased host. In this respect, activation of Treg cells by nutraceuticals may represent a novel approach to treat neuroinflammation. Omega-3 fatty acids and polyphenols will be described as substances endowed with antioxidant and anti-inflammatory activities. However, taking into account that Treg cells act in the later phase of CNS injury, favoring immune suppression, manipulation of host immune system with both substances requires caution to avoid undesired side effects. PMID:26635268

  7. Vitamin D and inflammatory diseases

    PubMed Central

    Yin, Kai; Agrawal, Devendra K

    2014-01-01

    Beyond its critical function in calcium homeostasis, vitamin D has recently been found to play an important role in the modulation of the immune/inflammation system via regulating the production of inflammatory cytokines and inhibiting the proliferation of proinflammatory cells, both of which are crucial for the pathogenesis of inflammatory diseases. Several studies have associated lower vitamin D status with increased risk and unfavorable outcome of acute infections. Vitamin D supplementation bolsters clinical responses to acute infection. Moreover, chronic inflammatory diseases, such as atherosclerosis-related cardiovascular disease, asthma, inflammatory bowel disease, chronic kidney disease, nonalcoholic fatty liver disease, and others, tend to have lower vitamin D status, which may play a pleiotropic role in the pathogenesis of the diseases. In this article, we review recent epidemiological and interventional studies of vitamin D in various inflammatory diseases. The potential mechanisms of vitamin D in regulating immune/inflammatory responses in inflammatory diseases are also discussed. PMID:24971027

  8. Bariatric Surgery Induces Disruption in Inflammatory Signaling Pathways Mediated by Immune Cells in Adipose Tissue: A RNA-Seq Study

    PubMed Central

    Mathieu, François; Truong, Vinh; Blum, Yuna; Durand, Hervé; Alili, Rohia; Chelghoum, Nadjim; Pelloux, Véronique; Aron-Wisnewsky, Judith; Torcivia, Adriana; Bouillot, Jean-Luc; Parks, Brian W.; Ninio, Ewa; Clément, Karine; Tiret, Laurence

    2015-01-01

    Background Bariatric surgery is associated to improvements in obesity-associated comorbidities thought to be mediated by a decrease of adipose inflammation. However, the molecular mechanisms behind these beneficial effects are poorly understood. Methodology/Principal Findings We analyzed RNA-seq expression profiles in adipose tissue from 22 obese women before and 3 months after surgery. Of 15,972 detected genes, 1214 were differentially expressed after surgery at a 5% false discovery rate. Upregulated genes were mostly involved in the basal cellular machinery. Downregulated genes were enriched in metabolic functions of adipose tissue. At baseline, 26 modules of coexpressed genes were identified. The four most stable modules reflected the innate and adaptive immune responses of adipose tissue. A first module reflecting a non-specific signature of innate immune cells, mainly macrophages, was highly conserved after surgery with the exception of DUSP2 and CD300C. A second module reflected the adaptive immune response elicited by T lymphocytes; after surgery, a disconnection was observed between genes involved in T-cell signaling and mediators of the signal transduction such as CXCR1, CXCR2, GPR97, CCR7 and IL7R. A third module reflected neutrophil-mediated inflammation; after surgery, several genes were dissociated from the module, including S100A8, S100A12, CD300E, VNN2, TUBB1 and FAM65B. We also identified a dense network of 19 genes involved in the interferon-signaling pathway which was strongly preserved after surgery, with the exception of DDX60, an antiviral factor involved in RIG-I-mediated interferon signaling. A similar loss of connection was observed in lean mice compared to their obese counterparts. Conclusions/Significance These results suggest that improvements of the inflammatory state following surgery might be explained by a disruption of immuno-inflammatory cascades involving a few crucial molecules which could serve as potential therapeutic targets

  9. Neuro-Inflammatory Mechanisms in Developmental Disorders Associated with Intellectual Disability and Autism Spectrum Disorder: A Neuro- Immune Perspective.

    PubMed

    Marco, Barbara Di; Bonaccorso, Carmela M; Aloisi, Elisabetta; D'Antoni, Simona; Catania, Maria V

    2016-01-01

    Intellectual disability (ID) and autism are present in several neurodevelopmental disorders and are often associated in genetic syndromes, such as Fragile X and Rett syndromes. While most evidence indicates that a genetic component plays an important role in the aetiology of both autism and ID, a number of studies suggest that immunological dysfunctions may participate in the pathophysiology of these disorders. Brain-specific autoantibodies have been detected in the sera of many autistic children and autoimmune disorders are increased in families of children with autism. Furthermore, cytokine imbalance has been reported in children with autism. These results may reflect an inappropriate immune response to environmental factors, such as infectious or toxic exposure. The role of microglia as sensors of pre- and post-natal environmental stimuli and its involvement in the regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis has recently emerged. An abnormal immune response during critical windows of development and consequent abnormal production of neuro-inflammatory mediators may have an impact on the function and structure of brain and can play a role in the pathogenesis of non syndromic autism. Recent evidence suggests an involvement of neuro-inflammation also in syndromic forms of autism and ID. Immune dysregulation has been found in children with Fragile X syndrome and an intrinsic microglia dysfunction has been recently reported in Rett syndrome. The present review summarizes the current literature suggesting that neuro-inflammatory mechanisms may contribute to the pathogenesis of different ID- and autism-associated disorders, thus representing common pathophysiological pathways and potential therapeutic targets. PMID:26996174

  10. Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington's disease.

    PubMed

    Ramsingh, Arlene I; Manley, Kevin; Rong, Yinghui; Reilly, Andrew; Messer, Anne

    2015-11-01

    Immunotherapy, both active and passive, is increasingly recognized as a powerful approach to a wide range of diseases, including Alzheimer's and Parkinson's. Huntington's disease (HD), an autosomal dominant disorder triggered by misfolding of huntingtin (HTT) protein with an expanded polyglutamine tract, could also benefit from this approach. Individuals can be identified genetically at the earliest stages of disease, and there may be particular benefits to a therapy that can target peripheral tissues in addition to brain. In this active vaccination study, we first examined safety and immunogenicity for a broad series of peptide, protein and DNA plasmid immunization protocols, using fragment (R6/1), and knock-in (zQ175) models. No safety issues were found. The strongest and most uniform immune response was to a combination of three non-overlapping HTT Exon1 coded peptides, conjugated to KLH, delivered with alum adjuvant. An N586-82Q plasmid, delivered via gene gun, also showed ELISA responses, mainly in the zQ175 strain, but with more variability, and less robust responses in HD compared with wild-type controls. Transcriptome profiling of spleens from the triple peptide-immunized cohort showed substantial HD-specific differences including differential activation of genes associated with innate immune responses, absence of negative feedback control of gene expression by regulators, a temporal dysregulation of innate immune responses and transcriptional repression of genes associated with memory T cell responses. These studies highlight critical issues for immunotherapy and HD disease management in general. PMID:26307082

  11. IMMUNE RECONSTITUTION INFLAMMATORY SYNDROME (IRIS)-ASSOCIATED BURKITT LYMPHOMA FOLLOWING COMBINATION ANTI-RETROVIRAL THERAPY IN HIV-INFECTED PATIENTS

    PubMed Central

    Vishnu, Prakash; Dorer, Russell P.; Aboulafia, David M.

    2015-01-01

    HIV/AIDS-associated immune reconstitution inflammatory syndrome (IRIS) is defined as a paradoxical worsening or unmasking of infections and autoimmune diseases, following initiation of combination anti-retroviral therapy (cART). More recently, the case definition of IRIS has been broadened to include certain malignancies including Kaposi’s sarcoma, and less frequently Hodgkin’s and non-Hodgkin’s lymphoma (NHL). Here in we describe 3 patients infected with HIV who began cART and within a median of 15 weeks each achieved non-detectable HIV viral loads, and yet within 6 months presented for medical attention with fevers, night sweats, weight loss and bulky lymphadenopathy. Laboratory studies included elevated lactate dehydrogenase and β-2 microglobulin levels and well preserved CD4+ lymphocyte counts in excess of 350 cells/µL. In each patient lymph node biopsies were diagnostic of Burkitt lymphoma (BL). Patients were managed with multi-agent chemotherapy in conjunction with cART. We also survey the medical literature of other cases of IRIS-associated BL. Although the pathogenesis of IRIS-associated BL is not well elucidated, chronic antigenic stimulation coupled with immune deterioration, followed by subsequent restoration of the immune response and aberrant cytokine expression may be a pathway to lymphomagenesis. IRIS-associated BL should be suspected in patients with normal or near normal CD4+ lymphocyte counts who develop progressive lymphadenopathy post-initiation of cART. PMID:25458079

  12. Food Components and the Immune System: From Tonic Agents to Allergens

    PubMed Central

    Faria, Ana Maria Caetano; Gomes-Santos, Ana Cristina; Gonçalves, Juliana Lauar; Moreira, Thais Garcias; Medeiros, Samara Rabelo; Dourado, Luana Pereira Antunes; Cara, Denise Carmona

    2013-01-01

    The intestinal mucosa is the major site of contact with antigens, and it houses the largest lymphoid tissue in the body. In physiological conditions, microbiota and dietary antigens are the natural sources of stimulation for the gut-associated lymphoid tissues (GALT) and for the immune system as a whole. Germ-free models have provided some insights on the immunological role of gut antigens. However, most of the GALT is not located in the large intestine, where gut microbiota is prominent. It is concentrated in the small intestine where protein absorption takes place. In this review, we will address the involvement of food components in the development and the function of the immune system. Studies in mice have already shown that dietary proteins are critical elements for the developmental shift of the immature neonatal immune profile into a fully developed immune system. The immunological effects of other food components (such as vitamins and lipids) will also be addressed. Most of the cells in the GALT are activated and local pro-inflammatory mediators are abundant. Regulatory elements are known to provide a delicate yet robust balance that maintains gut homeostasis. Usually antigenic contact in the gut induces two major immune responses, oral tolerance and production of secretory IgA. However, under pathological conditions mucosal homeostasis is disturbed resulting in inflammatory reactions such as food hypersensitivity. Food allergy development depends on many factors such as genetic predisposition, biochemical features of allergens, and a growing array of environmental elements. Neuroimmune interactions are also implicated in food allergy and they are examples of the high complexity of the phenomenon. Recent findings on the gut circuits triggered by food components will be reviewed to show that, far beyond their role as nutrients, they are critical players in the operation of the immune system in health and disease. PMID:23730302

  13. Imaging Systemic Inflammatory Networks in Ischemic Heart Disease

    PubMed Central

    Nahrendorf, Matthias; Frantz, Stefan; Swirski, Filip K.; Mulder, Willem J.M.; Randolph, Gwendalyn; Ertl, Georg; Ntziachristos, Vasilis; Piek, Jan; Stroes, Erik; Schwaiger, Markus; Mann, Douglas L.; Fayad, Zahi A.

    2015-01-01

    While acute myocardial infarction mortality declines, patients continue to face reinfarction and/or heart failure. The immune system, which intimately interacts with healthy and diseased tissues through resident and recruited leukocytes, is a central interface for a global host response to ischemia. Pathways that enhance the systemic leukocyte supply may be potential therapeutic targets. Pre-clinically, imaging helps identify immunity’s decision nodes, which may serve as such targets. In translating the rapidly expanding preclinical data on immune activity, the difficulty of obtaining multiple clinical tissue samples from involved organs is an obstacle that whole-body imaging can help overcome. In patients, molecular and cellular imaging can be integrated with blood-based diagnostics to assess the translatability of discoveries, including the activation of hematopoietic tissues after myocardial infarction, and serve as an endpoint in clinical trials. In this review, we discuss these concepts while focusing on imaging immune activity in organs involved in ischemic heart disease. PMID:25881940

  14. Alkaline ceramidase 3 deficiency aggravates colitis and colitis-associated tumorigenesis in mice by hyperactivating the innate immune system

    PubMed Central

    Wang, K; Xu, R; Snider, A J; Schrandt, J; Li, Y; Bialkowska, A B; Li, M; Zhou, J; Hannun, Y A; Obeid, L M; Yang, V W; Mao, C

    2016-01-01

    Increasing studies suggest that ceramides differing in acyl chain length and/or degree of unsaturation have distinct roles in mediating biological responses. However, still much remains unclear about regulation and role of distinct ceramide species in the immune response. Here, we demonstrate that alkaline ceramidase 3 (Acer3) mediates the immune response by regulating the levels of C18:1-ceramide in cells of the innate immune system and that Acer3 deficiency aggravates colitis in a murine model by augmenting the expression of pro-inflammatory cytokines in myeloid and colonic epithelial cells (CECs). According to the NCBI Gene Expression Omnibus (GEO) database, ACER3 is downregulated in immune cells in response to lipopolysaccharides (LPS), a potent inducer of the innate immune response. Consistent with these data, we demonstrated that LPS downregulated both Acer3 mRNA levels and its enzymatic activity while elevating C18:1-ceramide, a substrate of Acer3, in murine immune cells or CECs. Knocking out Acer3 enhanced the elevation of C18:1-ceramide and the expression of pro-inflammatory cytokines in immune cells and CECs in response to LPS challenge. Similar to Acer3 knockout, treatment with C18:1-ceramide, but not C18:0-ceramide, potentiated LPS-induced expression of pro-inflammatory cytokines in immune cells. In the mouse model of dextran sulfate sodium-induced colitis, Acer3 deficiency augmented colitis-associated elevation of colonic C18:1-ceramide and pro-inflammatory cytokines. Acer3 deficiency aggravated diarrhea, rectal bleeding, weight loss and mortality. Pathological analyses revealed that Acer3 deficiency augmented colonic shortening, immune cell infiltration, colonic epithelial damage and systemic inflammation. Acer3 deficiency also aggravated colonic dysplasia in a mouse model of colitis-associated colorectal cancer. Taken together, these results suggest that Acer3 has an important anti-inflammatory role by suppressing cellular or tissue C18:1-ceramide, a

  15. Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice.

    PubMed

    Lampa, Jon; Westman, Marie; Kadetoff, Diana; Agréus, Anna Nordenstedt; Le Maître, Erwan; Gillis-Haegerstrand, Caroline; Andersson, Magnus; Khademi, Mohsen; Corr, Maripat; Christianson, Christina A; Delaney, Ada; Yaksh, Tony L; Kosek, Eva; Svensson, Camilla I

    2012-07-31

    During peripheral immune activation caused by an infection or an inflammatory condition, the innate immune response signals to the brain and causes an up-regulation of central nervous system (CNS) cytokine production. Central actions of proinflammatory cytokines, in particular IL-1β, are pivotal for the induction of fever and fatigue. In the present study, the influence of peripheral chronic joint inflammatory disease in rheumatoid arthritis (RA) on CNS inflammation was investigated. Intrathecal interleukin (IL)-1β concentrations were markedly elevated in RA patients compared with controls or with patients with multiple sclerosis. Conversely, the anti-inflammatory IL-1 receptor antagonist and IL-4 were decreased in RA cerebrospinal fluid (CSF). Tumor necrosis factor and IL-6 levels in the CSF did not differ between patients and controls. Concerning IL-1β, CSF concentrations in RA patients were higher than in serum, indicating local production in the CNS, and there was a positive correlation between CSF IL-1β and fatigue assessments. Next, spinal inflammation in experimental arthritis was investigated. A marked increase of IL-1β, IL-18, and tumor necrosis factor, but not IL-6 mRNA production, in the spinal cord was observed, coinciding with increased arthritis scores in the KBxN serum transfer model. These data provide evidence that peripheral inflammation such as arthritis is associated with an immunological activation in the CNS in both humans and mice, suggesting a possible therapeutic target for centrally affecting conditions as fatigue in chronic inflammatory diseases, for which to date there are no specific treatments. PMID:22802629

  16. Heme oxygenase and the immune system in normal and pathological pregnancies

    PubMed Central

    Ozen, Maide; Zhao, Hui; Lewis, David B.; Wong, Ronald J.; Stevenson, David K.

    2015-01-01

    Normal pregnancy is an immunotolerant state. Many factors, including environmental, socioeconomic, genetic, and immunologic changes by infection and/or other causes of inflammation, may contribute to inter-individual differences resulting in a normal or pathologic pregnancy. In particular, imbalances in the immune system can cause many pregnancy-related diseases, such as infertility, abortions, pre-eclampsia, and preterm labor, which result in maternal/fetal death, prematurity, or small-for-gestational age newborns. New findings imply that myeloid regulatory cells and regulatory T cells (Tregs) may mediate immunotolerance during normal pregnancy. Effector T cells (Teffs) have, in contrast, been implicated to cause adverse pregnancy outcomes. Furthermore, feto-maternal tolerance affects the developing fetus. It has been shown that the Treg/Teff balance affects litter size and adoptive transfer of pregnancy-induced Tregs can prevent fetal rejection in the mouse. Heme oxygenase-1 (HO-1) has a protective role in many conditions through its anti-inflammatory, anti-apoptotic, antioxidative, and anti-proliferative actions. HO-1 is highly expressed in the placenta and plays a role in angiogenesis and placental vascular development and in regulating vascular tone in pregnancy. In addition, HO-1 is a major regulator of immune homeostasis by mediating crosstalk between innate and adaptive immune systems. Moreover, HO-1 can inhibit inflammation-induced phenotypic maturation of immune effector cells and pro-inflammatory cytokine secretion and promote anti-inflammatory cytokine production. HO-1 may also be associated with T-cell activation and can limit immune-based tissue injury by promoting Treg suppression of effector responses. Thus, HO-1 and its byproducts may protect against pregnancy complications by its immunomodulatory effects, and the regulation of HO-1 or its downstream effects has the potential to prevent or treat pregnancy complications and prematurity. PMID

  17. Heme oxygenase and the immune system in normal and pathological pregnancies.

    PubMed

    Ozen, Maide; Zhao, Hui; Lewis, David B; Wong, Ronald J; Stevenson, David K

    2015-01-01

    Normal pregnancy is an immunotolerant state. Many factors, including environmental, socioeconomic, genetic, and immunologic changes by infection and/or other causes of inflammation, may contribute to inter-individual differences resulting in a normal or pathologic pregnancy. In particular, imbalances in the immune system can cause many pregnancy-related diseases, such as infertility, abortions, pre-eclampsia, and preterm labor, which result in maternal/fetal death, prematurity, or small-for-gestational age newborns. New findings imply that myeloid regulatory cells and regulatory T cells (Tregs) may mediate immunotolerance during normal pregnancy. Effector T cells (Teffs) have, in contrast, been implicated to cause adverse pregnancy outcomes. Furthermore, feto-maternal tolerance affects the developing fetus. It has been shown that the Treg/Teff balance affects litter size and adoptive transfer of pregnancy-induced Tregs can prevent fetal rejection in the mouse. Heme oxygenase-1 (HO-1) has a protective role in many conditions through its anti-inflammatory, anti-apoptotic, antioxidative, and anti-proliferative actions. HO-1 is highly expressed in the placenta and plays a role in angiogenesis and placental vascular development and in regulating vascular tone in pregnancy. In addition, HO-1 is a major regulator of immune homeostasis by mediating crosstalk between innate and adaptive immune systems. Moreover, HO-1 can inhibit inflammation-induced phenotypic maturation of immune effector cells and pro-inflammatory cytokine secretion and promote anti-inflammatory cytokine production. HO-1 may also be associated with T-cell activation and can limit immune-based tissue injury by promoting Treg suppression of effector responses. Thus, HO-1 and its byproducts may protect against pregnancy complications by its immunomodulatory effects, and the regulation of HO-1 or its downstream effects has the potential to prevent or treat pregnancy complications and prematurity. PMID

  18. PATHOLOGICAL ASPECTS OF THE ANTI-INFLAMMATORY/IMMUNE SUPPRESSIVE RESPONSE IN SEPSIS AND SHOCK

    PubMed Central

    Ayala, Alfred; Ding, Yanli; Rhee, Rebecca J.; Doughty, Lesley A.; Grutkoski, Patrician S.; Chung, Chun-Shiang

    2008-01-01

    Despite the recent advances in contemporary therapeutic, operative as well as supportive care sepsis and its associated co-morbidity/mortality are still a common occurrence in the critically ill trauma/surgical patient. Thus, it remains important to continue to expand our understanding of pathological components which drive the development of immune dysfunction contributing to subsequent multiple organ failure. Here we overview some of the immuno-pathological processes, cells and mediators which may play a role in the development of this immune dysfunctional condition. PMID:23181245

  19. Paucity of Initial Cerebrospinal Fluid Inflammation in Cryptococcal Meningitis is associated with subsequent Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Boulware, David R.; Bonham, Shulamith C.; Meya, David B.; Wiesner, Darin L.; Park, Gregory S.; Kambugu, Andrew; Janoff, Edward N.; Bohjanen, Paul R

    2010-01-01

    Background Cryptococcal meningitis (CM)-related immune reconstitution inflammatory syndrome (IRIS) complicates antiretroviral therapy (ART) in 20–40% of ART-naïve persons with AIDS and prior CM. Pathogenesis is unknown. Methods We compared initial CSF cultures, inflammatory markers and cytokine profiles in ART-naïve AIDS patients who did or did not subsequently develop IRIS after starting ART. We also compared results obtained at IRIS events or CM-relapse. Results Of 85 subjects with CM, 33 (39%) developed CM-IRIS and 5 (6%) developed culture-positive CM-relapse. At CM diagnosis, subjects subsequently developing IRIS had less inflammation, with decreased CSF leukocytes, protein, interferon-gamma (IFN-g), interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha (TNF-a) compared with subjects not developing IRIS (P<.05). Initial CSF WBCs ≤25 cells/μL and protein ≤50 mg/dL were associated with development of IRIS (OR=7.2, 95%CI: 2.7 to 18.7, P<.001). Compared to baseline levels, we identified CSF elevations of IFN-g, TNF-a, G-CSF, VEGF, and eotaxin (CCL11) (P<.05) at IRIS but minimal inflammatory changes in those with CM relapse. Conclusions Patients who subsequently develop CM-IRIS exhibit less initial CSF inflammation at the time of CM diagnosis compared to those who do not develop IRIS. The inflammatory CSF cytokine profiles observed at time of IRIS can distinguish IRIS from CM-relapse. PMID:20677939

  20. Final Report of project entitled "A metabolomics and mouse models approach to study inflammatory and immune responses to radiation"

    SciTech Connect

    Fornace, Albert J.; Li, Henghong

    2013-12-02

    The three-year project entitled ?A Metabolomics and Mouse Models Approach to Study Inflammatory and Immune Responses to Radiation? was initiated in September 2009. The overall objectives of this project were to investigate the acute and persistent effects of low dose radiation on T cell lymphocyte function and physiology, as well the contributions of these cells to radiation-induced inflammatory responses. Inflammation after ionizing radiation (IR), even at low doses, may impact a variety of disease processes, including infectious disease, cardiovascular disease, cancer, and other potentially inflammatory disorders. There were three overall specific aims: 1. To investigate acute and persistent effects of low dose radiation on T cell subsets and function; 2. A genetic approach with mouse models to investigate p38 MAPK pathways that are involved in radiation-induced inflammatory signaling; 3. To investigate the effect of radiation quality on the inflammatory response. We have completed the work proposed in these aims. Below are our major accomplishments: ? Our data show that T cells from low dose irradiated animals have lower proliferation potency and cytokine production upon T cell receptor (TCR) stimulation. This effect was observed as early as 4 hours after radiation, and lasted up to two weeks. ? Using our ultraperformance liquid chromatography coupled with highly sensitive time-of-flight mass spectrometry (UPLC-QTOF) metabolomics method, we demonstrated the global changes of metabolites in T cells upon TCR stimulation in a time-dependent pattern. ? We found that the TCR activation induced metabolome changes are remarkably altered in a dose-dependent manner after radiation. At a dose of 0.5 Gy and above, IR mitigated TCR activation induced metabolome changes while at the dose of as low as 0.1Gy IR had a mild stimulatory effect on some of the metabolome changes. ? We revealed the mechanism for how radiation affects T cell activation by showing that the energy

  1. FOXP3 and its role in the immune system.

    PubMed

    Kim, Chang H

    2009-01-01

    FOXP3 is a member of the forkhead transcription factor family. Unlike other members, it is mainly expressed in a subset of CD4+ T-cells that play a suppressive role in the immune system. A function of FOXP3 is to suppress the function of NFAT and NFkappaB and this leads to suppression ofexpression of many genes including IL-2 and effector T-cell cytokines. FOXP3 acts also as a transcription activator for many genes induding CD2S, Cytotoxic T-Lymphocyte Antigen 4 (CTLA4), glucocorticoid-induced TNF receptorfamily gene (GITR) andfolate receptor 4. FOXP3+ T-cells are made in the thymus and periphery. The FOXP3+ T-cells made in the thymus migrate to secondary lymphoid tissues and suppress antigen priming of lymphocytes. Antigen priming of naive FOXP3 T-cdlls and naive FOXP3 T-cells leads to generation of memory FOXP3+ T-cells which are efficient in migration to nonlymphoid tissues. Memory FOXP3+ T-cells are, therefore, effective in suppression of effector T-cell function, while naive FOXP3 T-cells are adept at suppressing the early immune responses in lymphoid tissues. Both naive and memory FOXP3 T-cells are required for effective maintenance of tolerance and prevention of autoimmune diseases throughout the body. Many factors such as cytokines and noncytokine factors regulate the generation of FOXP3 T-cells. For example, retinoic acid, produced by the dendritic cells and epithelial cells in the intestine, works together with TGF-beta1 and promotes generation of small intestine-homing FOXP3 T-cells by upregulating the expression ofFOXP3 and gut homing receptors. FOXP3+ T-cells can be produced in vitro from autologous naive T-cells and, therefore, have great therapeutic potentials in treating a number of inflammatory diseases and grafi rejection. PMID:20429413

  2. Targeting tumor microenvironment: the key role of immune system.

    PubMed

    Barar, Jaleh

    2012-01-01

    In recent years, huge investigations on cancer progression and invasion have led to under-stand the pivotal role of tumor microenvironment. The current era of cancer therapy is based on the concept of simply targeting precise mechanisms to kill or to suppress the growth and expansion of malignant cells. Clinical data clearly correlate with in-vitro re-sults, emphasizing the direct impact of cancer environment on disease progression. This provides the opportunity to advance cancer therapy by virtue of targeting cancerous cells and non-cancerous component of tumor in a combinatorial manner. This tailor-made strategy demands the profound knowledge of cross talk between the bio-factors of tumor environment and corresponding pharmacology of drug candidates. The neighborhood of tumor is critical for how cancer cells grow and invade surrounding tissues. It appears that the tumor microenvironment as a "co-op" includes malignant cells, blood vessels, im-mune/inflammatory factors and extracellular matrix. As a longstanding dilemma, it is well-proved that immune system plays a direct role in the existence and progression of such coop. In some cases, immune cells e.g. tumor associated macrophages (TAMs) infiltrate into tumor and instead of fighting cancer cells, support them to grow. As an important fact, this tumor complexity should not be taken as granted where it can be advantageous in cancer therapy as well as early detection and prevention. The central aim of this editorial article is to highlight the importance of tumor microenvironment for successful cancer therapy. PMID:23678436

  3. Mapping the effects of drugs on the immune system

    PubMed Central

    Kidd, Brian A; Wroblewska, Aleksandra; Boland, Mary R; Agudo, Judith; Merad, Miriam; Tatonetti, Nicholas P; Brown, Brian D; Dudley, Joel T

    2015-01-01

    Understanding how drugs affect the immune system has consequences for treating disease and minimizing unwanted side effects. Here we present an integrative computational approach for predicting interactions between drugs and immune cells in a system-wide manner. The approach matches gene sets between transcriptional signatures to determine their similarity. We apply the method to model the interactions between 1,309 drugs and 221 immune cell types and predict 69,995 known and novel interactions. The resulting immune-cell pharmacology map is used to predict how 5 drugs influence 4 immune cell types in humans and mice. To validate the predictions, we analyzed patient records and examined cell population changes from in vivo experiments. Our method offers a tool for screening thousands of interactions to identify relationships between drugs and the immune system. PMID:26619012

  4. Ascorbic acid: its role in immune system and chronic inflammation diseases.

    PubMed

    Sorice, Angela; Guerriero, Eliana; Capone, Francesca; Colonna, Giovanni; Castello, Giuseppe; Costantini, Susan

    2014-05-01

    Ascorbic acid (AA), also known as vitamin C, was initially identified as the factor preventing the scurvy disease, and became very popular for its antioxidant properties. It is an important co-substrate of a large class of enzymes, and regulates gene expression by interacting with important transcription factors. AA is important in all stressful conditions that are linked to inflammatory processes and involve immunity. It has been known for decades that the persistence of an inflammatory stimulus is responsible for the onset of many diseases. AA is essential to stimulate the immune system by increasing the strength and protection of the organism. Therefore, its immunostimulant, antinflammatory, antiviral and antibacterial roles are well known, we have summarized its main functions in different types of diseases related to the immune system and chronic inflammation. We can conclude that AA, due to its effects and diversity of regulated pathways, is suitable for use in various fields of medicine including immunology, toxicology, radiobiology and others. AA is not preferable to be used as an isolated mode of treatment, but it can be co-applied as an adjuvant to regulate immunity, gene expression and other important physiological processes. However, we propose that future studies will take into consideration the research of new combinations of antioxidant natural substances and drugs. PMID:24766384

  5. The Systemic Inflammatory Response to Clostridium difficile Infection

    PubMed Central

    Rao, Krishna; Erb-Downward, John R.; Walk, Seth T.; Micic, Dejan; Falkowski, Nicole; Santhosh, Kavitha; Mogle, Jill A.; Ring, Cathrin; Young, Vincent B.; Huffnagle, Gary B.; Aronoff, David M.

    2014-01-01

    Background The systemic inflammatory response to Clostridium difficile infection (CDI) is incompletely defined, particularly for patients with severe disease. Methods Analysis of 315 blood samples from 78 inpatients with CDI (cases), 100 inpatients with diarrhea without CDI (inpatient controls), and 137 asymptomatic outpatient controls without CDI was performed. Serum or plasma was obtained from subjects at the time of CDI testing or shortly thereafter. Severe cases had intensive care unit admission, colectomy, or death due to CDI within 30 days after diagnosis. Thirty different circulating inflammatory mediators were quantified using an antibody-linked bead array. Principal component analysis (PCA), multivariate analysis of variance (MANOVA), and logistic regression were used for analysis. Results Based on MANOVA, cases had a significantly different inflammatory profile from outpatient controls but not from inpatient controls. In logistic regression, only chemokine (C-C motif) ligand 5 (CCL5) levels were associated with cases vs. inpatient controls. Several mediators were associated with cases vs. outpatient controls, especially hepatocyte growth factor, CCL5, and epithelial growth factor (inversely associated). Eight cases were severe and associated with elevations in IL-8, IL-6, and eotaxin. Conclusions A broad systemic inflammatory response occurs during CDI and severe cases appear to differ from non-severe infections. PMID:24643077

  6. Murine macrophage inflammatory cytokine production and immune activation in response to Vibrio parahaemolyticus infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus is the most common cause of bacterial seafood-related illness in the United States. Currently, there is a dearth of literature regarding immunity to infection with this pathogen. Here we studied V. parahaemolyticus-infected RAW 264.7 murine macrophage detecting both pro- and...

  7. Balance of inflammatory pathways and interplay of immune cells in the liver during homeostasis and injury

    PubMed Central

    Baeck, Christer; Tacke, Frank

    2014-01-01

    Multiple potentially harmful stimuli challenge the liver, the chief metabolic and detoxifying organ of the human body. Due to its central anatomical location, continuous blood flow from the gastrointestinal tract through the hepatic sinusoids allows the metabolically active hepatocytes, the non-parenchymal cells and the various immune cell populations residing and patrolling in the liver to interact with antigens and microbiological components coming from the intestine. Cytokines are key mediators within the complex interplay of intrahepatic immune cells and hepatocytes, because they can activate effector functions of immune cells as well as hepatocytic intracellular signaling pathways controlling cellular homeostasis. Kupffer cells and liver-infiltrating monocyte-derived macrophages are primary sources of cytokines such as tumor necrosis factor (TNF). The liver is also enriched in natural killer (NK) and natural killer T (NKT) cells, which fulfill functions in pathogen defense, T cell recruitment and modulation of fibrogenic responses. TNF can activate specific intracellular pathways in hepatocytes that influence cell fate in different manners, e.g. pro-apoptotic signals via the caspase cascade, but also survival pathways, namely the nuclear factor (NF)-kappaB pathway. NF-kappaB regulates important functions in liver physiology and pathology. The exact dissection of the contribution of recruited and resident immune cells, their soluble cytokine and chemokine mediators and the intracellular hepatocytic response in liver homeostasis and injury could potentially identify novel targets for the treatment of acute and chronic liver disease, liver fibrosis or cirrhosis. PMID:26417243

  8. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    PubMed

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance. PMID:25895614

  9. PPARγ and the Innate Immune System Mediate the Resolution of Inflammation

    PubMed Central

    Croasdell, Amanda; Duffney, Parker F.; Kim, Nina; Lacy, Shannon H.; Sime, Patricia J.; Phipps, Richard P.

    2015-01-01

    The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids) in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer's disease, and obesity in animal models. Finally, novel specialized proresolving mediators—eicosanoids with critical roles in resolution—may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor. PMID:26713087

  10. Innate immune responses to microbial agonist stimulations in heterophils and monocytes from young commercial turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune system recognizes microbial pathogens and pathogen associated molecular patterns and incites inflammatory immune responses to control the infection. Here, we examined functional innate immune responses of turkey heterophils and monocytes to microbial agonist stimulations by measur...

  11. Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation.

    PubMed

    Spalinger, Marianne R; McCole, Declan F; Rogler, Gerhard; Scharl, Michael

    2015-03-01

    Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed intestinal tissue. PTPN2 seems to be critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses and finally for maintaining intestinal homeostasis. These observations have been confirmed in PTPN2 knockout mice in vivo. Those animals are clearly more susceptible to intestinal and systemic inflammation and feature alterations in innate and adaptive immune responses. PTPN22 controls inflammatory signaling in lymphocytes and mononuclear cells resulting in aberrant cytokine secretion pattern and autophagosome formation. PTPN22 deficiency in vivo results in more severe colitis demonstrating the relevance of PTPN22 for intestinal homeostasis in vivo. Of note, loss of PTPN22 promotes mitogen-activated protein kinase-induced cytokine secretion but limits secretion of nuclear factor κB-associated cytokines and autophagy in mononuclear cells. Loss of PTPN11 is also associated with increased colitis severity in vivo. In summary, dysfunction of those PTPs results in aberrant and uncontrolled immune responses that result in chronic inflammatory conditions. This way, it becomes more and more evident that dysfunction of PTPs displays an important factor in the pathogenesis of chronic intestinal inflammation, in particular inflammatory bowel disease. PMID:25581833

  12. Overview of fish immune system and infectious diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...

  13. The University Immune System: Overcoming Resistance to Change

    ERIC Educational Resources Information Center

    Gilley, Ann; Godek, Marisha; Gilley, Jerry W.

    2009-01-01

    A university, similar to any other organization, has an immune system that erects a powerful barrier against change. This article discusses the university immune system and what can be done to counteract its negative effects and thereby allow change to occur.

  14. Natural evolution, disease, and localization in the immune system

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2004-03-01

    Adaptive vertebrate immune system is a wonder of modern evolution. Under most circumstances, the dynamics of the immune system is well-matched to the dynamics of pathogen growth during a typical infection. Some pathogens, however, have evolved escape mechanisms that interact in subtle ways with the immune system dynamics. In addition, negative interactions the immune system, which has evolved over 400 000 000 years, and vaccination,which has been practiced for only 200 years, are possible. For example,vaccination against the flu can actually increase susceptibility to the flu in the next year. As another example, vaccination against one of the four strains of dengue fever typically increases susceptibility against the other three strains. Immunodominance also arises in the immune system control of nascent tumors--the immune system recognizes only a small subset of the tumor specific antigens, and the rest are free to grow and cause tumor growth. In this talk, I present a physical theory of original antigenic sin and immunodominance. How localization in the immune system leads to the observed phenomena is discussed. 1) M. W. Deem and H. Y. Lee, ``Sequence Space Localization in the Immune System Response to Vaccination and Disease,'' Phys. Rev. Lett. 91 (2003) 068101

  15. Wild Skylarks Seasonally Modulate Energy Budgets but Maintain Energetically Costly Inflammatory Immune Responses throughout the Annual Cycle

    PubMed Central

    Hegemann, Arne; Matson, Kevin D.; Versteegh, Maaike A.; Tieleman, B. Irene

    2012-01-01

    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase responses (APRs) are a particularly costly form of immune defence, and, hence, seasonal modulations in APRs are expected. Yet, hypotheses about APR modulation remain untested in free-living organisms throughout a complete annual cycle. We studied seasonal modulations in the APRs and in the energy budgets of skylarks Alauda arvensis, a partial migrant bird from temperate zones that experiences substantial ecological changes during its annual cycle. We characterized throughout the annual cycle changes in their energy budgets by measuring basal metabolic rate (BMR) and body mass. We quantified APRs by measuring the effects of a lipopolysaccharide injection on metabolic rate, body mass, body temperature, and concentrations of glucose and ketone. Body mass and BMR were lowest during breeding, highest during winter and intermediate during spring migration, moult and autumn migration. Despite this variation in energy budgets, the magnitude of the APR, as measured by all variables, was similar in all annual cycle stages. Thus, while we find evidence that some annual cycle stages are relatively more energetically constrained, we find no support for the hypothesis that during these annual cycle stages birds compromise an immune defence that is itself energetically costly. We suggest that the ability to mount an APR may be so essential to survival in every annual cycle stage that skylarks do not trade off this costly form of defence with other annual cycle demands. PMID:22570706

  16. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults

    PubMed Central

    Qin, Ling; Jing, Xie; Qiu, Zhifeng; Cao, Wei; Jiao, Yang; Routy, Jean-Pierre; Li, Taisheng

    2016-01-01

    Aging is a major risk factor for several conditions including neurodegenerative, cardiovascular diseases and cancer. Functional impairments in cellular pathways controlling genomic stability, and immune control have been identified. Biomarker of immune senescence is needed to improve vaccine response and to develop therapy to improve immune control. To identify phenotypic signature of circulating immune cells with aging, we enrolled 1068 Chinese healthy volunteers ranging from 18 to 80 years old. The decreased naïve CD4+ and CD8+ T cells, increased memory CD4+ or CD8+ T cells, loss of CD28 expression on T cells and reverse trend of CD38 and HLA-DR, were significant for aging of immune system. Conversely, the absolute counts and percentage of NK cells and CD19+B cells maintained stable in aging individuals. The Chinese reference ranges of absolute counts and percentage of peripheral lymphocyte in this study might be useful for future clinical evaluation. PMID:26886066

  17. Thrombomodulin Expression in Tissues From Dogs With Systemic Inflammatory Disease.

    PubMed

    Kim, S D; Baker, P; DeLay, J; Wood, R D

    2016-07-01

    Thrombomodulin (TM) is a membrane glycoprotein expressed on endothelial cells, which plays a major role in the protein C anticoagulation pathway. In people with inflammation, TM expression can be down-regulated on endothelial cells and a soluble form released into circulation, resulting in increased risk of thrombosis and disseminated intravascular coagulation. TM is present in dogs; however, there has been minimal investigation of its expression in canine tissues, and the effects of inflammation on TM expression in canine tissues have not been investigated. The objective of this study was to evaluate endothelial TM expression in tissues from dogs with systemic inflammatory diseases. A retrospective evaluation of tissue samples of lung, spleen, and liver from dogs with and without systemic inflammatory diseases was performed using immunohistochemistry (IHC) and a modified manual IHC scoring system. TM expression was significantly reduced in all examined tissues in dogs diagnosed with septic peritonitis or acute pancreatitis. PMID:26926084

  18. Systemic Inflammatory Load in Young and Old Ringdoves Is Modulated by Consumption of a Jerte Valley Cherry-Based Product

    PubMed Central

    Delgado, Jonathan; Terrón, María del Pilar; Garrido, María; Barriga, Carmen; Paredes, Sergio Damián; Espino, Javier

    2012-01-01

    Abstract A chronic subclinical inflammatory status that coexists with immune dysfunction is commonly found in the elderly population. Consumption of foods rich in antioxidants (e.g., cherries) is an attractive strategy to reduce risk from chronic diseases. Based on previous studies showing the antioxidant effect of a Jerte Valley cherry derivative product in humans, the objective of this work was to evaluate the effect of the intake of a Jerte Valley cherry-based beverage on inflammatory load in both young and old ringdoves (Streptopelia risoria). To this purpose, circulating levels of pro-inflammatory and anti-inflammatory cytokines as well as serum levels of different acute-phase proteins were measured before and after a 10-day treatment with the Jerte Valley cherry-based beverage. Thus, the 10-day treatment with the cherry-based beverage modulated the balance of pro- and anti-inflammatory cytokines in both young and old ringdoves by down-regulating the levels of pro-inflammatory cytokines (interleukin [IL]-1β, tumor necrosis factor-α, and interferon-γ) and up-regulating the levels of anti-inflammatory cytokines (IL-4, IL-2, and IL-10). Moreover, the 10-day treatment with the Jerte Valley cherry-based product reduced the levels of several proteins involved in acute-phase responses, such as C-reactive protein, haptoglobin, α2-macroglobulin, and serum amyloid P component. On the other hand, old birds showed imbalanced levels of inflammatory markers toward a pro-inflammatory status, thereby underlining the fact that aging is usually accompanied by systemic inflammation and inflammation-related chronic diseases. To sum up, the data suggest a potential health benefit by consuming the cherry-based beverage, especially in aged populations, through their anti-inflammatory properties. PMID:22846077

  19. Nerve growth factor: a neurotrophin with activity on cells of the immune system.

    PubMed

    Aloe, L; Simone, M D; Properzi, F

    Numerous studies published in the last two decades provide evidence that nerve growth factor (NGF), a polypeptide originally discovered because of its neurotrophic activity, acts on a variety of cells of the immune system, including mast cells, eosinophils, and B and T lymphocytes. NGF has been shown to increase during inflammatory responses, autoimmune disorders, parasitic infections, and allergic diseases. Moreover, stress, which is characterized also by activation of a variety of immune cells, causes a significant increase in basal plasma NGF levels. Recently published studies reveal that hematopoietic progenitor cells seem to be able to produce and/or respond to NGF. We report these data and discuss the hypothesis of the possible implication of NGF on the functional activities of immune cells. PMID:10383121

  20. Non-traditional cytokines: How catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system

    PubMed Central

    Barnes, Mark A.; Carson, Monica J.; Nair, Meera G.

    2015-01-01

    Catecholamines and adipokines function as hormones; catecholamines as neurotransmitters in the sympathetic nervous system, and adipokines as mediators of metabolic processes. It has become increasingly clear, however, that both also function as immunomodulators of innate and adaptive immune cells, including macrophages. Macrophages can respond to, as well as produce their own catecholamines. Dopamine, noradrenaline, and adrenaline are the most abundant catecholamines in the body, and can induce both pro-inflammatory and anti-inflammatory immune responses in macrophages, as well as non-immune processes such as thermogenesis. Though they are responsive to adipokines, particularly lipoproteins, leptin, and adiponectin, macrophages generally do synthesize their own adipokines, with the exception being resistin-like molecules. Adipokines contribute to adverse metabolic and immune response by stimulating lipid accumulation, foam cell formation and pro-inflammatory cytokine production in macrophages. Adipokines can also promote balance or resolution during metabolic and immune processes by promoting reverse lipid transport and expression of Th2 cytokines. This review will explore the mechanisms by which catecholamines and adipokines influence macrophage function in neural pathways, immunity and metabolism. PMID:25703786

  1. Meeting summary: Signal transduction pathways in immune and inflammatory cells. November 30-December 3, 2000, Amelia Island, Florida, U.S.A.

    PubMed

    Plevy, Scott; Mayer, Lloyd

    2003-01-01

    importance of small differences in enzymatic activity that may have dramatic biologic consequences. This symposium identified recently described signal transduction molecules that may be attractive therapeutic targets in IBD. Characterization of signaling molecules such as SLP-76, SLAM, SAP, and Fyb in the mucosal immune system will be an important area of future research. Ultimately, well-developed scientific hypotheses need to be tested in human beings. This paradigm was perhaps best illustrated by PPARgamma, where reductionist models and mouse experiments have recently lead to small trials suggesting proof of concept in human IBD. This meeting also emphasized a renewed interest in innate immunity in IBD and inflammation research. The role of enteric flora in initiating and perpetuating inflammation in animal models of IBD suggests at some level the importance of the innate immune response. The role of TLRs and bacterial interactions were discussed, as was NF-kappaB as the prominent transcription factor target of innate immune activation. Numerous bridges between innate and adaptive immunity were highlighted, including IL-10, IL-12, IL-18, and IFN-gamma. Their production during an innate immune response can profoundly affect functional T-cell responses in humans. In conclusion, the challenge of understanding signal transduction in IBD is one of integrating well-characterized inflammatory pathways into a complex biologic system that is inhabited by diverse cell types that communicate, and is characterized by interactions with a complex microbial environment. Making sense of this complexity is a daunting task that will require a multifactorial approach utilizing reductionist systems, mouse models, genetic studies, and ultimately human clinical trials. PMID:12656135

  2. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  3. Immunizations

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  4. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  5. Vaccinations in adults with chronic inflammatory joint disease: Immunization schedule and recommendations for patients taking synthetic or biological disease-modifying antirheumatic drugs.

    PubMed

    Morel, Jacques; Czitrom, Séverine Guillaume; Mallick, Auriane; Sellam, Jérémie; Sibilia, Jean

    2016-03-01

    The risk of infection associated with autoimmune diseases is further increased by the use of biotherapies. Recommendations to minimize this risk include administering the full complement of vaccines on the standard immunization schedule, as well as the pneumococcal and influenza vaccines. Adults with chronic inflammatory joint disease (IJD) may receive a 13-valent pneumococcal conjugate vaccine, as well as a live attenuated vaccine against recurrent herpes zoster, recently licensed by European regulatory authorities. Live attenuated vaccines can be given only after an interval without immunosuppressant and/or glucocorticoid therapy. The effectiveness of vaccines, as assessed based on titers of protective antibodies, varies across vaccine types and disease-modifying antirheumatic drugs (DMARDs). Thus, methotrexate and rituximab are usually associated with decreased vaccine responses. The risks associated with vaccines are often considerably exaggerated by the media, which serve lobbies opposed to immunizations and make some patients reluctant to accept immunizations. Increasing immunization coverage may diminish the risk of treatment-related infections. A physician visit dedicated specifically to detecting comorbidities in patients with chronic IJD may result in improved immunization coverage. In this review, we discuss immunizations for adults with chronic IJD based on the treatments used, as well as immunization coverage. Many questions remain unanswered and warrant investigation by studies coordinated by the French networks IREIVAC (Innovative clinical research network in vaccinology) and IMIDIATE (Immune-Mediated Inflammatory Disease Alliance for Translational and Clinical Research). PMID:26453106

  6. The Effects of Mind-Body Therapies on the Immune System: Meta-Analysis

    PubMed Central

    Morgan, Nani; Irwin, Michael R.; Chung, Mei; Wang, Chenchen

    2014-01-01

    Importance Psychological and health-restorative benefits of mind-body therapies have been investigated, but their impact on the immune system remain less defined. Objective To conduct the first comprehensive review of available controlled trial evidence to evaluate the effects of mind-body therapies on the immune system, focusing on markers of inflammation and anti-viral related immune responses. Methods Data sources included MEDLINE, CINAHL, SPORTDiscus, and PsycINFO through September 1, 2013. Randomized controlled trials published in English evaluating at least four weeks of Tai Chi, Qi Gong, meditation, or Yoga that reported immune outcome measures were selected. Studies were synthesized separately by inflammatory (n = 18), anti-viral related immunity (n = 7), and enumerative (n = 14) outcomes measures. We performed random-effects meta-analyses using standardized mean difference when appropriate. Results Thirty-four studies published in 39 articles (total 2, 219 participants) met inclusion criteria. For inflammatory measures, after 7 to 16 weeks of mind-body intervention, there was a moderate effect on reduction of C-reactive protein (effect size [ES], 0.58; 95% confidence interval [CI], 0.04 to 1.12), a small but not statistically significant reduction of interleukin-6 (ES, 0.35; 95% CI, −0.04 to 0.75), and negligible effect on tumor necrosis factor-α (ES, 0.21; 95% CI, −0.15 to 0.58). For anti-viral related immune and enumerative measures, there were negligible effects on CD4 counts (ES, 0.15; 95% CI, −0.04 to 0.34) and natural killer cell counts (ES, 0.12, 95% CI −0.21 to 0.45). Some evidence indicated mind-body therapies increase immune responses to vaccination. Conclusions Mind-body therapies reduce markers of inflammation and influence virus-specific immune responses to vaccination despite minimal evidence suggesting effects on resting anti-viral or enumerative measures. These immunomodulatory effects, albeit incomplete, warrant

  7. Co-methylated genes in different adipose depots of pig are associated with metabolic, inflammatory and immune processes.

    PubMed

    Li, Mingzhou; Wu, Honglong; Wang, Tao; Xia, Yudong; Jin, Long; Jiang, Anan; Zhu, Li; Chen, Lei; Li, Ruiqiang; Li, Xuewei

    2012-01-01

    It is well established that the metabolic risk factors of obesity and its comorbidities are more attributed to adipose tissue distribution rather than total adipose mass. Since emerging evidence suggests that epigenetic regulation plays an important role in the aetiology of obesity, we conducted a genome-wide methylation analysis on eight different adipose depots of three pig breeds living within comparable environments but displaying distinct fat level using methylated DNA immunoprecipitation sequencing. We aimed to investigate the systematic association between anatomical location-specific DNA methylation status of different adipose depots and obesity-related phenotypes. We show here that compared to subcutaneous adipose tissues which primarily modulate metabolic indicators, visceral adipose tissues and intermuscular adipose tissue, which are the metabolic risk factors of obesity, are primarily associated with impaired inflammatory and immune responses. This study presents epigenetic evidence for functionally relevant methylation differences between different adipose depots. PMID:22719223

  8. Autopolyreactivity Confers a Holistic Role in the Immune System.

    PubMed

    Avrameas, S

    2016-04-01

    In this review, we summarize and discuss some key findings from the study of naturally occurring autoantibodies. The B-cell compartment of the immune system appears to recognize almost all endogenous and environmental antigens. This ability is accomplished principally through autopolyreactive humoral and cellular immune receptors. This extended autopolyreactivity (1) along immunoglobulin gene recombination contributes to the immune system's ability to recognize a very large number of self and non-self constituents; and (2) generates a vast immune network that creates communication channels between the organism's interior and exterior. Thus, the immune system continuously evolves depending on the internal and external stimuli it encounters. Furthermore, this far-reaching network's existence implies activities resembling those of classical biological factors or activities that modulate the function of other classical biological factors. A few such antibodies have already been found. Another important concept is that natural autoantibodies are highly dependent on the presence or absence of commensal microbes in the organism. These results are in line with past and recent findings showing the fundamental influence of the microbiota on proper immune system development, and necessitate the existence of a host-microbe homeostasis. This homeostasis requires that the participating humoral and cellular receptors are able to recognize self-antigens and commensal microbes without damaging them. Autopolyreactive immune receptors expressing low affinity for both types of antigens fulfil this role. The immune system appears to play a holistic role similar to that of the nervous system. PMID:26808310

  9. The immune system and hormone-receptor positive breast cancer: Is it really a dead end?

    PubMed

    Dieci, Maria Vittoria; Griguolo, Gaia; Miglietta, Federica; Guarneri, Valentina

    2016-05-01

    Even if breast cancer has not been traditionally considered an immunogenic tumor, recent data suggest that immunity, and its interaction with tumor cells and tumor microenvironment, might play an important role in this malignancy, in particular in triple negative and HER2+ subtypes. As no consistent data on the potential clinical relevance of tumor infiltrating lymphocytes have been produced in hormone receptor positive (HR+) HER2- breast cancer, the interest in studying immune aspects in this subtype has become less appealing. Nevertheless, some scattered evidence indicates that immunity and inflammation may be implicated in the biology of this subtype as well. In HR+ breast cancer, the interaction between tumor cells and the immune milieu might rely on different mechanisms than in other BC subtypes, involving the modulation of the tumor microenvironment by mutual interplays of endocrine factors, pro-inflammatory status and immune cells. These subtle mechanisms may require more refined methods of evaluation, such as the assessment of tumor infiltrating lymphocytes subpopulations or gene signatures. In this paper we aim to perform a comprehensive review of pre-clinical and clinical data on the interplay between the immune system and breast cancer in the HR+ subtype, to guide further research in the field. PMID:27055087

  10. The immune system and inflammation in breast cancer

    PubMed Central

    Jiang, Xinguo; Shapiro, David J.

    2016-01-01

    During different stages of tumor development the immune system can either identify and destroy tumors, or promote their growth. Therapies targeting the immune system have emerged as a promising treatment modality for breast cancer, and immunotherapeutic strategies are being examined in preclinical and clinical models. However, our understanding of the complex interplay between cells of the immune system and breast cancer cells is incomplete. In this article, we review recent findings showing how the immune system plays dual host-protective and tumor-promoting roles in breast cancer initiation and progression. We then discuss estrogen receptor α (ERα)-dependent and ERα-independent mechanisms that shield breast cancers from immunosurveillance and enable breast cancer cells to evade immune cell induced apoptosis and produce an immunosuppressive tumor microenvironment. Finally, we discuss protumorigenic inflammation that is induced during tumor progression and therapy, and how inflammation promotes more aggressive phenotypes in ERα positive breast cancers. PMID:23791814

  11. Nanoneuromedicines for Degenerative, Inflammatory, and Infectious Nervous System Diseases

    PubMed Central

    Gendelman, Howard E.; Anantharam, Vellareddy; Bronich, Tatiana; Ghaisas, Shivani; Jin, Huajun; Kanthasamy, Anumantha G.; Liu, Xinming; McMillan, JoEllyn; Mosley, R. Lee; Narasimhan, Balaji; Mallapragada, Surya K.

    2015-01-01

    Interest in nanoneuromedicine has grown rapidly due to the immediate need for improved biomarkers and therapies for psychiatric, developmental, traumatic, inflammatory, infectious and degenerative nervous system disorders. These, in whole or in part, are a significant societal burden due to growth in numbers of affected people and in disease severity. Lost productivity of the patient and his or her caregiver, and the emotional and financial burden cannot be overstated. The need for improved health care, treatment and diagnostics are immediate. A means to such an end is nanotechnology. Indeed, recent developments of health-care enabling nanotechnologies and nanomedicines range from biomarker discovery including neuroimaging to therapeutic applications for degenerative, inflammatory and infectious disorders of the nervous system. This review focuses on the current and future potential of the field to positively affect clinical outcomes. PMID:25645958

  12. Regulation of the gut microbiota by the mucosal immune system in mice

    PubMed Central

    Hasegawa, Mizuho

    2014-01-01

    The benefits of commensal bacteria to the health of the host have been well documented, such as providing stimulation to potentiate host immune responses, generation of useful metabolites, and direct competition with pathogens. However, the ability of the host immune system to control the microbiota remains less well understood. Recent microbiota analyses in mouse models have revealed detailed structures and diversities of microbiota at different sites of the digestive tract in mouse populations. The contradictory findings of previous studies on the role of host immune responses in overall microbiota composition are likely attributable to the high β-diversity in mouse populations as well as technical limitations of the methods to analyze microbiota. The host employs multiple systems to strictly regulate their interactions with the microbiota. A spatial segregation between the host and microbiota is achieved with the mucosal epithelium, which is further fortified with a mucus layer on the luminal side and Paneth cells that produce antimicrobial peptides. When commensal bacteria or pathogens breach the epithelial barrier and translocate to peripheral tissues, the host immune system is activated to eliminate them. Defective segregation and tissue elimination of commensals result in exaggerated inflammatory responses and possibly death of the host. In this review, we discuss the current understanding of mouse microbiota, its common features with human microbiota, the technologies utilized to analyze microbiota, and finally the challenges faced to delineate the role of host immune responses in the composition of the luminal microbiota. PMID:24792038

  13. Molecular Players Involved in the Interaction Between Beneficial Bacteria and the Immune System

    PubMed Central

    Hevia, Arancha; Delgado, Susana; Sánchez, Borja; Margolles, Abelardo

    2015-01-01

    The human gastrointestinal tract is a very complex ecosystem, in which there is a continuous interaction between nutrients, host cells, and microorganisms. The gut microbiota comprises trillions of microbes that have been selected during evolution on the basis of their functionality and capacity to survive in, and adapt to, the intestinal environment. Host bacteria and our immune system constantly sense and react to one another. In this regard, commensal microbes contribute to gut homeostasis, whereas the necessary responses are triggered against enteropathogens. Some representatives of our gut microbiota have beneficial effects on human health. Some of the most important roles of these microbes are to help to maintain the integrity of the mucosal barrier, to provide nutrients such as vitamins, or to protect against pathogens. In addition, the interaction between commensal microbiota and the mucosal immune system is crucial for proper immune function. This process is mainly performed via the pattern recognition receptors of epithelial cells, such as Toll-like or Nod-like receptors, which are able to recognize the molecular effectors that are produced by intestinal microbes. These effectors mediate processes that can ameliorate certain inflammatory gut disorders, discriminate between beneficial and pathogenic bacteria, or increase the number of immune cells or their pattern recognition receptors (PRRs). This review intends to summarize the molecular players produced by probiotic bacteria, notably Lactobacillus and Bifidobacterium strains, but also other very promising potential probiotics, which affect the human immune system. PMID:26635753

  14. The innate immune system, toll-like receptors and dermal wound healing: A review.

    PubMed

    Portou, M J; Baker, D; Abraham, D; Tsui, J

    2015-08-01

    Wound healing is a complex physiological process comprised of discrete but inter-related and overlapping stages, requiring exact timing and regulation to successfully progress, yet occurs spontaneously in response to injury. It is characterised by four phases, coagulation, inflammation, proliferation and remodelling. Each phase is predominated by particular cell types, cytokines and chemokines. The innate immune system represents the first line of defence against invading microorganisms. It is entirely encoded with the genome, and comprised of a cellular response with specificity provided by pattern recognition receptors (PRRs) such as toll-like receptors (TLRs). TLRs are activated by exogenous microbial pathogen associated molecular patterns (PAMPs), initiating an immune response through the production of pro-inflammatory cytokines and further specialist immune cell recruitment. TLRs are also activated by endogenous molecular patterns termed damage associated molecular patterns (DAMPs). These ligands, usually shielded from the immune system, act as alarm signals alerting the immune system to damage and facilitate the normal wound healing process. TLRs are expressed by cells essential to wound healing such as keratinocytes and fibroblasts, however the specific role of TLRs in this process remains controversial. This article reviews the current knowledge on the potential role of TLRs in dermal wound healing where inflammation arising from pathogenic activation of these receptors appears to play a role in chronic ulceration associated with diabetes, scar hypertrophy and skin fibrosis. PMID:25869514

  15. Molecular Players Involved in the Interaction Between Beneficial Bacteria and the Immune System.

    PubMed

    Hevia, Arancha; Delgado, Susana; Sánchez, Borja; Margolles, Abelardo

    2015-01-01

    The human gastrointestinal tract is a very complex ecosystem, in which there is a continuous interaction between nutrients, host cells, and microorganisms. The gut microbiota comprises trillions of microbes that have been selected during evolution on the basis of their functionality and capacity to survive in, and adapt to, the intestinal environment. Host bacteria and our immune system constantly sense and react to one another. In this regard, commensal microbes contribute to gut homeostasis, whereas the necessary responses are triggered against enteropathogens. Some representatives of our gut microbiota have beneficial effects on human health. Some of the most important roles of these microbes are to help to maintain the integrity of the mucosal barrier, to provide nutrients such as vitamins, or to protect against pathogens. In addition, the interaction between commensal microbiota and the mucosal immune system is crucial for proper immune function. This process is mainly performed via the pattern recognition receptors of epithelial cells, such as Toll-like or Nod-like receptors, which are able to recognize the molecular effectors that are produced by intestinal microbes. These effectors mediate processes that can ameliorate certain inflammatory gut disorders, discriminate between beneficial and pathogenic bacteria, or increase the number of immune cells or their pattern recognition receptors (PRRs). This review intends to summarize the molecular players produced by probiotic bacteria, notably Lactobacillus and Bifidobacterium strains, but also other very promising potential probiotics, which affect the human immune system. PMID:26635753

  16. Chronic inflammatory systemic diseases: An evolutionary trade-off between acutely beneficial but chronically harmful programs.

    PubMed

    Straub, Rainer H; Schradin, Carsten

    2016-01-01

    It has been recognized that during chronic inflammatory systemic diseases (CIDs) maladaptations of the immune, nervous, endocrine and reproductive system occur. Maladaptation leads to disease sequelae in CIDs. The ultimate reason of disease sequelae in CIDs remained unclear because clinicians do not consider bodily energy trade-offs and evolutionary medicine. We review the evolution of physiological supersystems, fitness consequences of genes involved in CIDs during different life-history stages, environmental factors of CIDs, energy trade-offs during inflammatory episodes and the non-specificity of CIDs. Incorporating bodily energy regulation into evolutionary medicine builds a framework to better understand pathophysiology of CIDs by considering that genes and networks used are positively selected if they serve acute, highly energy-consuming inflammation. It is predicted that genes that protect energy stores are positively selected (as immune memory). This could explain why energy-demanding inflammatory episodes like infectious diseases must be terminated within 3-8 weeks to be adaptive, and otherwise become maladaptive. Considering energy regulation as an evolved adaptive trait explains why many known sequelae of different CIDs must be uniform. These are, e.g. sickness behavior/fatigue/depressive symptoms, sleep disturbance, anorexia, malnutrition, muscle wasting-cachexia, cachectic obesity, insulin resistance with hyperinsulinemia, dyslipidemia, alterations of steroid hormone axes, disturbances of the hypothalamic-pituitary-gonadal (HPG) axis, hypertension, bone loss and hypercoagulability. Considering evolved energy trade-offs helps us to understand how an energy imbalance can lead to the disease sequelae of CIDs. In the future, clinicians must translate this knowledge into early diagnosis and symptomatic treatment in CIDs. PMID:26817483

  17. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    PubMed Central

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  18. The proinflammatory function of lymphocytes in non-immune inflammation: effect of steroidal and non-steroidal anti-inflammatory agents.

    PubMed Central

    Leme, J. G.; Bechara, G. H.; Sudo, L. S.

    1977-01-01

    Leucopenia rendered rats unresponsive to various inflammatory stimuli. The intensity of the inflammatory response in such animals was restored by i.v. administration of suspensions of lymphocytes, but not of granulocytes. This restorative effect was blocked by both steroidal and non-steroidal anti-inflammatory drugs. Utilizing carrageenin to induce inflammatory responses in the rat's paw, the effect of these drugs on lymphocytes was observed in two circumstances. First, following incubation of the cells with the drugs in concentrations not exceeding the peak plasma levels estimated for these substances in man or laboratory animals; the effect of the drugs seemed selective, since anti-histamine and anti-serotonin agents, as well as amethopterin, were devoid of action. Second, when lymphocytes were collected from rats previously treated with the various anti-inflammatory agents, injected 6-hourly during periods of 18 and 36 h, respectively, for steroidal and non-steroidal anti-inflammatory substances. The total amounts given were lower than those required to produce consistent anti-inflammatory effects in normal animals, when the drug was given as a single dose before injection of the irritant. It is concluded that the pro-inflammatory function of lymphocytes in non-immune inflammation can be blocked by steroidal and non-steroidal anti-inflammatory agents. PMID:607989

  19. Characterization of the Probiotic Yeast Saccharomyces boulardii in the Healthy Mucosal Immune System

    PubMed Central

    Hudson, Lauren E.; McDermott, Courtney D.; Stewart, Taryn P.; Hudson, William H.; Rios, Daniel; Fasken, Milo B.; Corbett, Anita H.; Lamb, Tracey J.

    2016-01-01

    The probiotic yeast Saccharomyces boulardii has been shown to ameliorate disease severity in the context of many infectious and inflammatory conditions. However, use of S. boulardii as a prophylactic agent or therapeutic delivery vector would require delivery of S. boulardii to a healthy, uninflamed intestine. In contrast to inflamed mucosal tissue, the diverse microbiota, intact epithelial barrier, and fewer inflammatory immune cells within the healthy intestine may all limit the degree to which S. boulardii contacts and influences the host mucosal immune system. Understanding the nature of these interactions is crucial for application of S. boulardii as a prophylactic agent or therapeutic delivery vehicle. In this study, we explore both intrinsic and immunomodulatory properties of S. boulardii in the healthy mucosal immune system. Genomic sequencing and morphological analysis of S. boulardii reveals changes in cell wall components compared to non-probiotic S. cerevisiae that may partially account for probiotic functions of S. boulardii. Flow cytometry and immunohistochemistry demonstrate limited S. boulardii association with murine Peyer’s patches. We also show that although S. boulardii induces a systemic humoral immune response, this response is small in magnitude and not directed against S. boulardii itself. RNA-seq of the draining mesenteric lymph nodes indicates that even repeated administration of S. boulardii induces few transcriptional changes in the healthy intestine. Together these data strongly suggest that interaction between S. boulardii and the mucosal immune system in the healthy intestine is limited, with important implications for future work examining S. boulardii as a prophylactic agent and therapeutic delivery vehicle. PMID:27064405

  20. Characterization of the Probiotic Yeast Saccharomyces boulardii in the Healthy Mucosal Immune System.

    PubMed

    Hudson, Lauren E; McDermott, Courtney D; Stewart, Taryn P; Hudson, William H; Rios, Daniel; Fasken, Milo B; Corbett, Anita H; Lamb, Tracey J

    2016-01-01

    The probiotic yeast Saccharomyces boulardii has been shown to ameliorate disease severity in the context of many infectious and inflammatory conditions. However, use of S. boulardii as a prophylactic agent or therapeutic delivery vector would require delivery of S. boulardii to a healthy, uninflamed intestine. In contrast to inflamed mucosal tissue, the diverse microbiota, intact epithelial barrier, and fewer inflammatory immune cells within the healthy intestine may all limit the degree to which S. boulardii contacts and influences the host mucosal immune system. Understanding the nature of these interactions is crucial for application of S. boulardii as a prophylactic agent or therapeutic delivery vehicle. In this study, we explore both intrinsic and immunomodulatory properties of S. boulardii in the healthy mucosal immune system. Genomic sequencing and morphological analysis of S. boulardii reveals changes in cell wall components compared to non-probiotic S. cerevisiae that may partially account for probiotic functions of S. boulardii. Flow cytometry and immunohistochemistry demonstrate limited S. boulardii association with murine Peyer's patches. We also show that although S. boulardii induces a systemic humoral immune response, this response is small in magnitude and not directed against S. boulardii itself. RNA-seq of the draining mesenteric lymph nodes indicates that even repeated administration of S. boulardii induces few transcriptional changes in the healthy intestine. Together these data strongly suggest that interaction between S. boulardii and the mucosal immune system in the healthy intestine is limited, with important implications for future work examining S. boulardii as a prophylactic agent and therapeutic delivery vehicle. PMID:27064405

  1. Immune-stimulating complexes as adjuvants for inducing local and systemic immunity after oral immunization with protein antigens.

    PubMed Central

    Mowat, A M; Maloy, K J; Donachie, A M

    1993-01-01

    Orally active synthetic vaccines containing purified antigens would have many benefits for immunizing against systemic and mucosal diseases. However, several factors have limited the development of such vaccines, including the poor immunogenicity of purified proteins and their usual ability to induce tolerance when given orally. Here, we show that incorporation of ovalbumin (OVA) into immune-stimulating complexes (ISCOMS) containing saponin prevents the induction of oral tolerance in mice. In parallel, the spleen and mesenteric lymph node of mice fed OVA ISCOMS are primed for class I major histocompatibility complex (MHC)-restricted cytotoxic T-cell activity which recognizes physiologically processed epitopes on OVA. Oral immunization with OVA ISCOMS also stimulates high secretory IgA antibody responses in the intestine itself, as well as serum IgG antibodies. None of these active immune responses are detectable in mice fed OVA alone. Despite the potent priming of mucosal priming by OVA ISCOMS, re-exposure to antigen does not induce the intestinal immunopathology found in other systems after the breakdown of oral tolerance. Thus, ISCOMS have several unique properties as vectors for oral immunization and could provide a basis for future mucosal vaccines. PMID:7508416

  2. Cardiac RNA induces inflammatory responses in cardiomyocytes and immune cells via Toll-like receptor 7 signaling.

    PubMed

    Feng, Yan; Chen, Hongliang; Cai, Jiayan; Zou, Lin; Yan, Dan; Xu, Ganqiong; Li, Dan; Chao, Wei

    2015-10-30

    We have recently reported that extracellular RNA (exRNA) released from necrotic cells induces cytokine production in cardiomyocytes and immune cells and contributes to myocardial ischemia/reperfusion injury. However, the signaling mechanism by which exRNA exhibits its pro-inflammatory effect is unknown. Here we hypothesize that exRNA directly induces inflammation through specific Toll-like receptors (TLRs). To test the hypothesis, we treated rat neonatal cardiomyocytes, mouse bone marrow-derived macrophages (BMDM), or mouse neutrophils with RNA (2.5-10 μg/ml) isolated from rat cardiomyocytes or the hearts from mouse, rat, and human. We found that cellular RNA induced production of several cytokines such as macrophage inflammatory protein-2 (MIP-2), ILs, TNFα, and the effect was completely diminished by RNase, but not DNase. The RNA-induced cytokine production was partially inhibited in cells treated with TLR7 antagonist or genetically deficient in TLR7. Deletion of myeloid differentiation primary response protein 88 (MyD88), a downstream adapter of TLRs including TLR7, abolished the RNA-induced MIP-2 production. Surprisingly, genetic deletion of TLR3 had no impact on the RNA-induced MIP-2 response. Importantly, extracellular RNA released from damaged cardiomyocytes also induced cytokine production. Finally, mice treated with 50 μg of RNA intraperitoneal injection exhibited acute peritonitis as evidenced by marked neutrophil and monocyte migration into the peritoneal space. Together, these data demonstrate that exRNA of cardiac origin exhibits a potent pro-inflammatory property in vitro and in vivo and that exRNA induces cytokine production through TLR7-MyD88 signaling. PMID:26363072

  3. The immune system and cancer evasion strategies: therapeutic concepts.

    PubMed

    Muenst, S; Läubli, H; Soysal, S D; Zippelius, A; Tzankov, A; Hoeller, S

    2016-06-01

    The complicated interplay between cancer and the host immune system has been studied for decades. New insights into the human immune system as well as the mechanisms by which tumours evade immune control have led to the new and innovative therapeutic strategies that are considered amongst the medical breakthroughs of the last few years. Here, we will review the current understanding of cancer immunology in general, including immune surveillance and immunoediting, with a detailed look at immune cells (T cells, B cells, natural killer cells, macrophages and dendritic cells), immune checkpoints and regulators, sialic acid-binding immunoglobulin-like lectins (Siglecs) and other mechanisms. We will also present examples of new immune therapies able to reverse immune evasion strategies of tumour cells. Finally, we will focus on therapies that are already used in daily oncological practice such as the blockade of immune checkpoints cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death-1 (PD-1) in patients with metastatic melanoma or advanced lung cancer, or therapies currently being tested in clinical trials such as adoptive T-cell transfer. PMID:26748421

  4. HIV-tuberculosis-associated immune reconstitution inflammatory syndrome is characterized by Toll-like receptor and inflammasome signalling.

    PubMed

    Lai, Rachel P J; Meintjes, Graeme; Wilkinson, Katalin A; Graham, Christine M; Marais, Suzaan; Van der Plas, Helen; Deffur, Armin; Schutz, Charlotte; Bloom, Chloe; Munagala, Indira; Anguiano, Esperanza; Goliath, Rene; Maartens, Gary; Banchereau, Jacques; Chaussabel, Damien; O'Garra, Anne; Wilkinson, Robert J

    2015-01-01

    Patients with HIV-associated tuberculosis (TB) initiating antiretroviral therapy (ART) may develop immune reconstitution inflammatory syndrome (TB-IRIS). No biomarkers for TB-IRIS have been identified and the underlying mechanisms are unclear. Here we perform transcriptomic profiling of the blood samples of patients with HIV-associated TB. We identify differentially abundant transcripts as early as week 0.5 post ART initiation that predict downstream activation of proinflammatory cytokines in patients who progress to TB-IRIS. At the characteristic time of TB-IRIS onset (week 2), the signature is characterized by over-representation of innate immune mediators including TLR signalling and TREM-1 activation of the inflammasome. In keeping with the transcriptional data, concentrations of plasma cytokines and caspase-1/5 are elevated in TB-IRIS. Inhibition of MyD88 adaptor and group 1 caspases reduces secretion of cytokines including IL-1 in TB-IRIS patients. These data provide insight on the pathogenesis of TB-IRIS and may assist the development of specific therapies. PMID:26399326

  5. HIV–tuberculosis-associated immune reconstitution inflammatory syndrome is characterized by Toll-like receptor and inflammasome signalling

    PubMed Central

    Lai, Rachel P. J.; Meintjes, Graeme; Wilkinson, Katalin A.; Graham, Christine M.; Marais, Suzaan; Van der Plas, Helen; Deffur, Armin; Schutz, Charlotte; Bloom, Chloe; Munagala, Indira; Anguiano, Esperanza; Goliath, Rene; Maartens, Gary; Banchereau, Jacques; Chaussabel, Damien; O'Garra, Anne; Wilkinson, Robert J.

    2015-01-01

    Patients with HIV-associated tuberculosis (TB) initiating antiretroviral therapy (ART) may develop immune reconstitution inflammatory syndrome (TB-IRIS). No biomarkers for TB-IRIS have been identified and the underlying mechanisms are unclear. Here we perform transcriptomic profiling of the blood samples of patients with HIV-associated TB. We identify differentially abundant transcripts as early as week 0.5 post ART initiation that predict downstream activation of proinflammatory cytokines in patients who progress to TB-IRIS. At the characteristic time of TB-IRIS onset (week 2), the signature is characterized by over-representation of innate immune mediators including TLR signalling and TREM-1 activation of the inflammasome. In keeping with the transcriptional data, concentrations of plasma cytokines and caspase-1/5 are elevated in TB-IRIS. Inhibition of MyD88 adaptor and group 1 caspases reduces secretion of cytokines including IL-1 in TB-IRIS patients. These data provide insight on the pathogenesis of TB-IRIS and may assist the development of specific therapies. PMID:26399326

  6. Widespread activation of immunity and pro-inflammatory programs in peripheral blood leukocytes of HIV-infected patients with impaired lung gas exchange.

    PubMed

    Crothers, Kristina; Petrache, Irina; Wongtrakool, Cherry; Lee, Patty J; Schnapp, Lynn M; Gharib, Sina A

    2016-04-01

    HIV infection is associated with impaired lung gas transfer as indicated by a low diffusing capacity (DLCO), but the mechanisms are not well understood. We hypothesized that HIV-associated gas exchange impairment is indicative of system-wide perturbations that could be reflected by alterations in peripheral blood leukocyte (PBL) gene expression. Forty HIV-infected (HIV(+)) and uninfected (HIV(-)) men with preserved versus low DLCO were enrolled. All subjects were current smokers and those with acute illness, lung diseases other than COPD or asthma were excluded. Total RNA was extracted from PBLs and hybridized to whole-genome microarrays. Gene set enrichment analysis (GSEA) was performed between HIV(+) versus HIV(-) subjects with preserved DLCO and those with low DLCO to identify differentially activated pathways. Using pathway-based analyses, we found that in subjects with preserved DLCO, HIV infection is associated with activation of processes involved in immunity, cell cycle, and apoptosis. Applying a similar analysis to subjects with low DLCO, we identified a much broader repertoire of pro-inflammatory and immune-related pathways in HIV(+) patients relative to HIV(-) subjects, with up-regulation of multiple interleukin pathways, interferon signaling, and toll-like receptor signaling. We confirmed elevated circulating levels of IL-6 in HIV(+) patients with low DLCO relative to the other groups. Our findings reveal that PBLs of subjects with HIV infection and low DLCO are distinguished by widespread enrichment of immuno-inflammatory programs. Activation of these pathways may alter the biology of circulating leukocytes and play a role in the pathogenesis of HIV-associated gas exchange impairment. PMID:27117807

  7. The long pentraxin PTX3 as a key component of humoral innate immunity and a candidate diagnostic for inflammatory diseases.

    PubMed

    Jaillon, Sébastien; Bonavita, Eduardo; Gentile, Stefania; Rubino, Marcello; Laface, Ilaria; Garlanda, Cecilia; Mantovani, Alberto

    2014-01-01

    The innate immune system is composed of a cellular arm and a humoral arm. Components of the humoral arm include members of the complement cascade and soluble pattern recognition molecules (PRMs). These PRMs recognize pathogen-associated molecular patterns and are functional ancestors of antibodies, playing a role in complement activation, opsonization and agglutination. Pentraxins consist of a set of multimeric soluble proteins and represent the prototypic components of humoral innate immunity. The prototypic long pentraxin PTX3 is highly conserved in evolution and produced by somatic and innate immune cells after proinflammatory stimuli. PTX3 interacts with a set of self, nonself and modified self ligands and exerts essential roles in innate immunity, inflammation control and matrix deposition. In addition, translational studies suggest that PTX3 may be a useful biomarker of human pathologies complementary to C-reactive protein. In this study, we will review the general functions of pentraxins in innate immunity and inflammation, focusing our attention on the prototypic long pentraxin PTX3. PMID:25531094

  8. Rational modulation of the innate immune system for neuroprotection in ischemic stroke

    PubMed Central

    Amantea, Diana; Micieli, Giuseppe; Tassorelli, Cristina; Cuartero, María I.; Ballesteros, Iván; Certo, Michelangelo; Moro, María A.; Lizasoain, Ignacio; Bagetta, Giacinto

    2015-01-01

    The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood–brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction. PMID:25972779

  9. Biosimilars in immune-mediated inflammatory diseases: initial lessons from the first approved biosimilar anti-tumour necrosis factor monoclonal antibody.

    PubMed

    Isaacs, J D; Cutolo, M; Keystone, E C; Park, W; Braun, J

    2016-01-01

    The introduction of targeted biological therapies has revolutionised the management of immune-mediated inflammatory diseases (IMIDs) such as rheumatoid arthritis, ankylosing spondylitis, psoriasis and inflammatory bowel disease. Following treatment with these therapies, many patients experience significant improvements in different aspects of their disease, including symptoms, work productivity and other outcomes relevant for individuals and society. However, due to the complexity of biological drug development and manufacturing processes, the costs of these therapies are relatively high. Indeed, the financial burden on healthcare systems due to biological therapies is considerable and lack of patient access to effective treatment remains a concern in many parts of the world. As many reference biological therapies have now reached or are near to patent expiry, a number of 'biosimilar' drugs have been developed for use in various clinical settings, and some of these drugs are already in use in several countries. While the potential pharmacoeconomic benefits of cost-effective biosimilars seem clear, several issues have been raised regarding, for example, the definition of biosimilarity and the validity of indication extrapolation, as well as the 'switchability' and relative immunogenicity of biosimilars and their reference drugs. In this review, these issues will be discussed with reference to CT-P13, a biosimilar of the anti-tumour necrosis factor monoclonal antibody infliximab, which is approved in Europe and elsewhere for the treatment of various IMIDs. Other important issues, including those related to data collection during nonclinical and clinical development of biosimilars, are also discussed. PMID:26403380

  10. Influenza-induced tachypnea is prevented in immune cotton rats, but cannot be treated with an anti-inflammatory steroid or a neuraminidase inhibitor.

    PubMed

    Eichelberger, Maryna C; Prince, Gregory A; Ottolini, Martin G

    2004-05-01

    Influenza viruses are one of the leading causes of morbidity and mortality during winter months. Increased respiratory rate (tachypnea) is a sign of increasing lower respiratory disease during influenza infection and is frequently observed in hospitalized patients. We investigated this clinical sign in influenza virus-infected cotton rats (Sigmodon hispidus) and the efficacy of antiviral and anti-inflammatory therapy in reducing symptomatic disease. Cotton rats infected intranasally with A/Wuhan/359/95 (H3N2) had increased respiratory rates from 1 to 4 days postinfection that correlated with the dose of virus used to inoculate the animal but not the amount of virus recovered from the lung. In addition, evaluation of sequential lung tissue pathology revealed that extensive epithelial cell destruction of small airways correlated with tachypnea. Increased respiratory rate was not observed in immune animals, supporting results that demonstrated a requirement for exposure to, and infection by, large amounts of live virus for induction of tachypnea. A variety of therapeutic approaches proved ineffective in reducing tachypnea, including anti-inflammatory therapy with systemic triamcinolone acetonide, bronchodilatory therapy with levalbuterol, or antiviral therapy with zanamivir. These results, together with the pathologic observations, suggest that early disruption of the lower respiratory tract epithelium is a major component of the pathophysiology of influenza infection. Therapeutic approaches need to be tailored to clear airway obstruction and restore an intact epithelium. PMID:15110527

  11. A Cognitive Computational Model Inspired by the Immune System Response

    PubMed Central

    Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim

    2014-01-01

    The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective. PMID:25003131

  12. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  13. Kynurenines and Multiple Sclerosis: The Dialogue between the Immune System and the Central Nervous System

    PubMed Central

    Rajda, Cecilia; Majláth, Zsófia; Pukoli, Dániel; Vécsei, László

    2015-01-01

    Multiple sclerosis is an inflammatory disease of the central nervous system, in which axonal transection takes place in parallel with acute inflammation to various, individual extents. The importance of the kynurenine pathway in the physiological functions and pathological processes of the nervous system has been extensively investigated, but it has additionally been implicated as having a regulatory function in the immune system. Alterations in the kynurenine pathway have been described in both preclinical and clinical investigations of multiple sclerosis. These observations led to the identification of potential therapeutic targets in multiple sclerosis, such as synthetic tryptophan analogs, endogenous tryptophan metabolites (e.g., cinnabarinic acid), structural analogs (laquinimod, teriflunomid, leflunomid and tranilast), indoleamine-2,3-dioxygenase inhibitors (1MT and berberine) and kynurenine-3-monooxygenase inhibitors (nicotinylalanine and Ro 61-8048). The kynurenine pathway is a promising novel target via which to influence the immune system and to achieve neuroprotection, and further research is therefore needed with the aim of developing novel drugs for the treatment of multiple sclerosis and other autoimmune diseases. PMID:26287161

  14. Ulcerating type 1 lepra reaction mimicking lazarine leprosy: an unusual presentation of immune reconstitution inflammatory syndrome in an HIV-infected patient.

    PubMed

    Bhat, Ramesh; Pinto, Malcolm; Dandakeri, Sukumar; Kambil, Srinath

    2013-12-01

    Leprosy maybe "unmasked" in the context of immune reconstitution inflammatory syndrome and treating dermatologists, particularly in highly endemic areas for Hansen's disease, need to be cognizant to this possibility. It may also reflect emergence of a previously clinically silent infection in the course of immunologic restoration. PMID:24216029

  15. Neuroendocrine, metabolic, and immune functions during the acute phase response of inflammatory stress in monosodium L-glutamate-damaged, hyperadipose male rat.

    PubMed

    Castrogiovanni, Daniel; Gaillard, Rolf C; Giovambattista, Andrés; Spinedi, Eduardo

    2008-01-01

    In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity. PMID:18382067

  16. Mindfulness meditation and the immune system: a systematic review of randomized controlled trials.

    PubMed

    Black, David S; Slavich, George M

    2016-06-01

    Mindfulness meditation represents a mental training framework for cultivating the state of mindful awareness in daily life. Recently, there has been a surge of interest in how mindfulness meditation improves human health and well-being. Although studies have shown that mindfulness meditation can improve self-reported measures of disease symptomatology, the effect that mindfulness meditation has on biological mechanisms underlying human aging and disease is less clear. To address this issue, we conducted the first comprehensive review of randomized controlled trials examining the effects of mindfulness meditation on immune system parameters, with a specific focus on five outcomes: (1) circulating and stimulated inflammatory proteins, (2) cellular transcription factors and gene expression, (3) immune cell count, (4) immune cell aging, and (5) antibody response. This analysis revealed substantial heterogeneity across studies with respect to patient population, study design, and assay procedures. The findings suggest possible effects of mindfulness meditation on specific markers of inflammation, cell-mediated immunity, and biological aging, but these results are tentative and require further replication. On the basis of this analysis, we describe the limitations of existing work and suggest possible avenues for future research. Mindfulness meditation may be salutogenic for immune system dynamics, but additional work is needed to examine these effects. PMID:26799456

  17. Immune surveillance of the central nervous system in multiple sclerosis– Relevance for therapy and experimental models

    PubMed Central

    Hussain, Rehana Z.; Hayardeny, Liat; Cravens, Petra C.; Yarovinsky, Felix; Eagar, Todd N.; Arellano, Benjamine; Deason, Krystin; Castro-Rojas, Cyd; Stüve, Olaf

    2015-01-01

    Treatment of central nervous system (CNS) autoimmune disorders frequently involves the reduction, or depletion of immune-competent cells. Alternatively, immune cells are being sequestered away from the target organ by interfering with their movement from secondary lymphoid organs, or their migration into tissues. These therapeutic strategies have been successful in multiple sclerosis (MS), the most prevalent autoimmune inflammatory disorder of the CNS. However, many of the agents that are currently approved or in clinical development also have severe potential adverse effects that stem from the very mechanisms that mediate their beneficial effects by interfering with CNS immune surveillance. This review will outline the main cellular components of the innate and adaptive immune system that participate in host defense and maintain immune surveillance of the CNS. Their pathogenic role in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also discussed. Furthermore, an experimental model is introduced that may assist in evaluating the effect of therapeutic interventions on leukocyte homeostasis and function within the CNS. This model or similar models may become a useful tool in the repertoire of pre-clinical tests of pharmacological agents to better explore their potential for adverse events. PMID:25282087

  18. [Innate immunity, Toll receptor and sepsis].

    PubMed

    Carrillo-Esper, Raúl

    2003-01-01

    The innate immune response is the first line of defense against infection. Toll-like receptors (TLRs) recognize bacterial lipopolysaccharide and other pathogen-associated molecular patterns (PAMPs). Intracellular signals initiated by interaction between Toll receptors and specific PAMPs results in