Science.gov

Sample records for inflammatory pathways protects

  1. Magnesium isoglycyrrhizinate inhibits inflammatory response through STAT3 pathway to protect remnant liver function

    PubMed Central

    Tang, Guang-Hua; Yang, Hua-Yu; Zhang, Jin-Chun; Ren, Jin-Jun; Sang, Xin-Ting; Lu, Xin; Zhong, Shou-Xian; Mao, Yi-Lei

    2015-01-01

    AIM: To investigate the protective effect of magnesium isoglycyrrhizinate (MgIG) on excessive hepatectomy animal model and its possible mechanism. METHODS: We used the standard 90% hepatectomy model in Sprague-Dawley rats developed using the modified Emond’s method, in which the left, middle, right upper, and right lower lobes of the liver were removed. Rats with 90% liver resection were divided into three groups, and were injected intraperitoneally with 3 mL saline (control group), 30 mg/kg (low-dose group) and 60 mg/kg (high-dose group) of MgIG, respectively. Animals were sacrificed at various time points and blood was drawn from the vena cava. Biochemical tests were performed with an automatic biochemical analyzer for the following items: serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyl endopeptidase, total bilirubin (TBil), direct bilirubin (DBil), total protein, albumin, blood glucose (Glu), hyper-sensitivity C-reactive protein, prothrombin time (PT), and thrombin time (TT). Postoperative survival time was observed hourly until death. Hepatocyte regeneration was analyzed by immunohistochemistry. Serum inflammatory cytokines (IL-1, IL-6, IL-10, and iNOS) was analyzed by ELISA. STAT3 protein and mRNA were analyzed by Western blot and quantitative reverse-transcription PCR, respectively. RESULTS: The high-dose group demonstrated a significantly prolonged survival time, compared with both the control and the low-dose groups (22.0 ± 4.7 h vs 8.9 ± 2.0 vs 10.3 ± 3.3 h, P = 0.018). There were significant differences among the groups in ALT, Glu and PT levels starting from 6 h after surgery. The ALT levels were significantly lower in the MgIG treated groups than in the control group. Both Glu and PT levels were significantly higher in the MgIG treated groups than in the control group. At 12 h, ALT, AST, TBil, DBil and TT levels showed significant differences between the MgIG treated groups and the control group. No significant

  2. Inflammatory pathways in spondyloarthritis.

    PubMed

    Hreggvidsdottir, Hulda S; Noordenbos, Troy; Baeten, Dominique L

    2014-01-01

    Spondyloarthritis is the second most common form of chronic inflammatory arthritis and a unique hallmark of the disease is pathologic new bone formation. Several cytokine pathways have been genetically associated with ankylosing spondylitis (AS), the prototypic subtype of SpA, and additional evidence from human and animal studies support a role of these pathways in the disease. TNF has a key role in SpA as blockade significantly reduces inflammation and destruction, however the treatment does not halt new bone formation. New insights into the TNF pathway were recently obtained from an animal model specifically overexpressing the transmembrane form of TNF. This model leads to axial and peripheral new bone formation which is not seen in soluble TNF overexpression models, indicating different pathogenic roles of soluble and transmembrane TNF in arthritis development. Besides TNF, the IL-23/IL-17 axis is emerging as an important inflammatory pathway in SpA, as a SNP in the IL-23R locus has been associated with developing AS, mice overexpressing IL-23 develop SpA-like features and IL-17 blockade has been shown to be efficacious for AS patients in a phase II trial. In this review, we focus on the cytokine pathways that have recently been genetically associated with SpA, i.e. TNF, IL-1, IL-6 and IL-23/IL-17. We review the current genetic, experimental and human in vivo data available and discuss how these different pathways are involved in the pathophysiology of SpA. Additionally, we discuss how these pathways relate to the pathogenic new bone formation in SpA. PMID:23969080

  3. Liang-Ge-San, a classic traditional Chinese medicine formula, protects against lipopolysaccharide-induced inflammation through cholinergic anti-inflammatory pathway.

    PubMed

    Liu, Jun-Shan; Wei, Xi-Duan; Lu, Zi-Bin; Xie, Pei; Zhou, Hong-Ling; Chen, Yu-Yao; Ma, Jia-Mei; Yu, Lin-Zhong

    2016-04-19

    Liang-Ge-San (LGS) is a classic formula in traditional Chinese medicine, which is widely used to treat acute lung injury (ALI), pharyngitis and amygdalitis in clinic. However, the underlying mechanisms remain poorly defined. In this study, we discovered that LGS exerted potent anti-inflammatory effects in lipopolysaccharide (LPS)-induced inflammation. We found that LGS significantly depressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophage cells. The degradation and phosphorylation of IκBα and the nuclear translocation of NF-κB p65 were also inhibited. Moreover, LGS activated α7 nicotinic cholinergic receptor (α7nAchR). The blockage of α7nAchR by selective inhibitor methyllycaconitine (MLA) or α7nAchR siRNA attenuated the inhibitory effects of LGS on IκBα, NF-κB p65, IL-6 and TNF-α. Critically, LGS significantly inhibited inflammation in LPS-induced ALI rats through the activation of NF-κB signaling pathway. However, these protective effects could be counteracted by the treatment of MLA. Taken together, we first demonstrated anti-inflammatory effects of LGS both in vitro and in vivo through cholinergic anti-inflammatory pathway. The study provides a rationale for the clinical application of LGS as an anti-inflammatory agent and supports the critical role of cholinergic anti-inflammatory pathway in inflammation. PMID:27034013

  4. Liang-Ge-San, a classic traditional Chinese medicine formula, protects against lipopolysaccharide-induced inflammation through cholinergic anti-inflammatory pathway

    PubMed Central

    Xie, Pei; Zhou, Hong-Ling; Chen, Yu-Yao; Ma, Jia-Mei; Yu, Lin-Zhong

    2016-01-01

    Liang-Ge-San (LGS) is a classic formula in traditional Chinese medicine, which is widely used to treat acute lung injury (ALI), pharyngitis and amygdalitis in clinic. However, the underlying mechanisms remain poorly defined. In this study, we discovered that LGS exerted potent anti-inflammatory effects in lipopolysaccharide (LPS)-induced inflammation. We found that LGS significantly depressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophage cells. The degradation and phosphorylation of IκBα and the nuclear translocation of NF-κB p65 were also inhibited. Moreover, LGS activated α7 nicotinic cholinergic receptor (α7nAchR). The blockage of α7nAchR by selective inhibitor methyllycaconitine (MLA) or α7nAchR siRNA attenuated the inhibitory effects of LGS on IκBα, NF-κB p65, IL-6 and TNF-α. Critically, LGS significantly inhibited inflammation in LPS-induced ALI rats through the activation of NF-κB signaling pathway. However, these protective effects could be counteracted by the treatment of MLA. Taken together, we first demonstrated anti-inflammatory effects of LGS both in vitro and in vivo through cholinergic anti-inflammatory pathway. The study provides a rationale for the clinical application of LGS as an anti-inflammatory agent and supports the critical role of cholinergic anti-inflammatory pathway in inflammation. PMID:27034013

  5. Peroxisome proliferator-activated receptor α activation attenuates the inflammatory response to protect the liver from acute failure by promoting the autophagy pathway.

    PubMed

    Jiao, M; Ren, F; Zhou, L; Zhang, X; Zhang, L; Wen, T; Wei, L; Wang, X; Shi, H; Bai, L; Zhang, X; Zheng, S; Zhang, J; Chen, Y; Han, Y; Zhao, C; Duan, Z

    2014-01-01

    Peroxisome proliferator-activated receptor α (PPARα) has been reported to induce a potent anti-inflammatory response. Autophagy is a recently recognized rudimentary cellular response to inflammation and injury. The aim of the present study was to test the hypothesis that PPARα activation mediates autophagy to inhibit liver inflammation and protect against acute liver failure (ALF). PPARα expression during ALF and the impact of PPARα activation by Wy-14 643 on the hepatic immune response were studied in a D-galactosamine/lipopolysaccharide-induced mouse model. Autophagy was inhibited by 3-methyladenine or small interfering RNA (siRNA) against Atg7. In both the mouse model and human ALF subjects, PPARα was significantly downregulated in the injured liver. PPARα activation by pretreatment with Wy-14 643 protected against liver injury in mice. The protective effect of PPARα activation relied on the suppression of inflammatory mechanisms through the induction of autophagy. This hypothesis is supported by the following evidence: first, PPARα activation suppressed proinflammatory responses and inhibited phosphorylated NF-κBp65, phosphorylated JNK and phosphorylated ERK pathways in vivo. Second, protection by PPARα activation was due to the induction of autophagy because inhibition of autophagy by 3-methyladenine or Atg7 siRNA reversed liver protection and inflammation. Third, PPARα activation directly induced autophagy in primary macrophages in vitro, which protected cells from a lipopolysaccharide-induced proinflammatory response. Here, for the first time, we have demonstrated that PPARα-mediated induction of autophagy ameliorated liver injury in cases of ALF by attenuating inflammatory responses, indicating a potential therapeutic application for ALF treatment. PMID:25165883

  6. Methane-rich saline protects against concanavalin A-induced autoimmune hepatitis in mice through anti-inflammatory and anti-oxidative pathways.

    PubMed

    He, Rong; Wang, Liping; Zhu, Jiali; Fei, Miaomiao; Bao, Suhong; Meng, Yan; Wang, Yuanyuan; Li, Jinbao; Deng, Xiaoming

    2016-01-29

    Methane is a common gas which has been reported to play a protective role in organ injury and presents an anti-inflammatory property. However, its effects on Concanavalin A (Con A)-induced autoimmune hepatitis (AIH) remain unknown. Thus, the aim of this study was to investigate the effects of methane on Con A-induced autoimmune hepatitis in mice and its underlying mechanism. Autoimmune hepatitis was induced by Con A (15 mg/kg) in healthy C57BL/6 mice and methane-rich saline (MS) (20 ml/kg) was intraperitoneally injected 30 min after the challenge with Con A. We found that methane treatment significantly reduced the elevated serum aminotransferase levels and ameliorated liver pathological damage. Furthermore, methane treatment obviously suppressed the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-6 (IL-6) and interleukin-1β (IL-1β) and increased anti-inflammatory cytokine interleukin-10 (IL-10). Moreover, we found that the levels of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were highly increased while the activities of superoxide dismutase (SOD) and catalase (CAT) were decreased in liver with the injection of Con A, which was reversed by methane. Also, the data demonstrated that the phosphorylated IκB, NF-κB and P38 MAPK in liver were significantly down-regulated by methane. These results suggested that methane protected liver against Con A-induced injury through anti-inflammatory and anti-oxidative pathways. PMID:26721437

  7. Pinocembrin Protects Human Brain Microvascular Endothelial Cells against Fibrillar Amyloid-β1−40Injury by Suppressing the MAPK/NF-κB Inflammatory Pathways

    PubMed Central

    Li, Jin-ze; Song, Jun-ke; Sun, Jia-lin; Li, Yong-jie; Zhou, Si-bai; Du, Guan-hua

    2014-01-01

    Cerebrovascular accumulation of amyloid-β (Aβ) peptides in Alzheimer's disease (AD) may contribute to disease progression through Aβ-induced microvascular endothelial pathogenesis. Pinocembrin has been shown to have therapeutic effects in AD models. These effects correlate with preservation of microvascular function, but the effect on endothelial cells under Aβ-damaged conditions is unclear. The present study focuses on the in vitro protective effect of pinocembrin on fibrillar Aβ1−40 (fAβ1−40) injured human brain microvascular endothelial cells (hBMECs) and explores potential mechanisms. The results demonstrate that fAβ1−40-induced cytotoxicity in hBMECs can be rescued by pinocembrin treatment. Pinocembrin increases cell viability, reduces the release of LDH, and relieves nuclear condensation. The mechanisms of this reversal from Aβ may be associated with the inhibition of inflammatory response, involving inhibition of MAPK activation, downregulation of phosphor-IKK level, relief of IκBα degradation, blockage of NF-κB p65 nuclear translocation, and reduction of the release of proinflammatory cytokines. Pinocembrin does not show obvious effects on regulating the redox imbalance after exposure to fAβ1−40. Together, the suppression of MAPK and the NF-κB signaling pathways play a significant role in the anti-inflammation of pinocembrin in hBMECs subjected to fAβ1−40. This may serve as a therapeutic agent for BMEC protection in Alzheimer's-related deficits. PMID:25157358

  8. Tanshinol suppresses inflammatory factors in a rat model of vascular dementia and protects LPS-treated neurons via the MST1-FOXO3 signaling pathway.

    PubMed

    Yang, Yishu; Wang, Lili; Wu, Yan; Su, Dongmei; Wang, Ning; Wang, Jiedong; Shi, Cuige; Lv, Liping; Zhang, Shucheng

    2016-09-01

    Neuroinflammation plays an important role in vascular dementia(VD). Our previous work showed that mammalian Ste20-like kinase 1 (MST1) and the gene for a downstream transcription factor, FOXO3, play major roles in lipopolysaccharide (LPS)-induced apoptosis in hippocampal neurons. The neurotoxic effects of LPS are derived from its ability to cause an inflammatory response. We also previously showed that Tanshinol (TSL) provides neuro-protection in a rat model of VD. The present study further explores the effects of TSL on the neuroinflammatory aspects of VD and investigates whether TSL affects the MST1-FOXO3signaling pathway. VD was induced in rats using transient bilateral coronary artery occlusion. Interleukin(IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels were measured using enzyme-linked immunoabsorbent assay kits. Cell apoptosis was assessed by Hoechst 33342 staining. Protein and mRNA levels were evaluated by western blotting and quantitative polymerase chain reaction, respectively. TSL improved working memory and significantly inhibited plasma and hippocampal protein levels of IL-1β, IL-6, and TNF-α in a rat model of VD. LPS induced apoptosis in hippocampal neurons and increasedMST1 and p-FOXO3 protein expression, whereas MST1 siRNA transfection almost completely reversed LPS-induced neuronal apoptosis, indicating that LPS-induced cytotoxicity in hippocampal neurons is associated with MST1. TSL protected against LPS-induced cell apoptosis and suppressed IL-1β, IL-6, and TNF-α mRNA and protein expression as well as MST1 and p-FOXO3 protein expression in neurons. The present study provided novel mechanisms by which TSL exerts its neuroprotective activity and indicates that TSL may be a potential neuro-protective agent in VD. PMID:27317635

  9. D-allose protects the blood brain barrier through PPARγ-mediated anti-inflammatory pathway in the mice model of ischemia reperfusion injury.

    PubMed

    Huang, Tao; Gao, Dakuan; Hei, Yue; Zhang, Xin; Chen, Xiaoyan; Fei, Zhou

    2016-07-01

    Our early experiments confirmed that D-allose was closely involved in the blood brain barrier (BBB) protection from ischemia reperfusion (IR) injury, but the regulatory mechanism is not fully defined. In this study, we aimed to investigate the role of D-allose in the protection of BBB integrity and the relevant mechanisms involved in the mice model of middle cerebral artery occlusion and reperfusion (MCAO/Rep). D-allose was intravenously injected via a tail vein (0.2mg/g and 0.4mg/g, 1h before ischemia), GW9662 was intraperitoneal injected to the mice (4mg/kg) before inducing ischemia 24h. Pretreatment with D-allose ameliorated the neurological deficits, infarct volume and brain edema in brains of MCAO/Rep mice. D-allose inhibited cell apoptosis in the mice model of MCAO/Rep. We observed that D-allose remarkably decreased BBB permeability and prevented the reduction of ZO-1, Occludin and Claudin-5 in mice brains with MCAO/Rep injury. D-allose also repressed the levels of TNF-α, NF-κB, interleukin (IL)-1β and IL-8 in inflammatory responses. The increases of intercellular adhesion molecular-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and CD11b/CD18 were significantly inhibited by D-allose during the MCAO/Rep injury. And D-allose decreased the L-selectin and P-selectin levels after MCAO/Rep. Moreover, D-allose induced up-regulation of peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of TNF-α and NF-κB after MCAO/Rep, which were abolished by utilization of GW9662. In conclusion, we provided evidences that D-allose may has therapeutic potential against brain IR injury through attenuating BBB disruption and the inflammatory response via PPARγ-dependent regulation of NF-κB. PMID:27103568

  10. Immunoregulatory Pathways Involved in Inflammatory Bowel Disease.

    PubMed

    Fonseca-Camarillo, Gabriela; Yamamoto-Furusho, Jesús K

    2015-09-01

    Inflammatory bowel diseases (IBD) include ulcerative colitis and Crohn's disease. The immune response in ulcerative colitis is different from the Crohn's disease. Accumulating evidence suggests that IBD results from an inappropriate inflammatory response to intestinal microbes in a genetically susceptible host. Several immunoregulatory abnormalities have been reported in patients with IBD, including the ratio of proinflammatory (tumor necrosis factor alpha, IL-6, IL-1-β) to immunoregulatory cytokines (IL-10, TGF-β, IL-35) and selective activation of T-helper (Th) lymphocyte subsets (Th1, Th2, Th9, Th17, and regulatory T cells). The purpose of this review is to show the immunoregulatory pathways (regulatory cells and cytokines) involved in IBD published in recent years. PMID:26111210

  11. High content cell-based assay for the inflammatory pathway

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  12. Inflammatory and Epigenetic Pathways for Perinatal Depression.

    PubMed

    Garfield, Lindsey; Mathews, Herbert L; Janusek, Linda Witek

    2016-05-01

    Depression during the perinatal period is common and can have adverse consequences for women and their children. Yet, the biobehavioral mechanisms underlying perinatal depression are not known. Adverse early life experiences increase the risk for adult depression. One potential mechanism by which this increased risk occurs is epigenetic embedding of inflammatory pathways. The purpose of this article is to propose a conceptual model that explicates the linkage between early life adversity and the risk for maternal depression. The model posits that early life adversity embeds a proinflammatory epigenetic signature (altered DNA methylation) that predisposes vulnerable women to depression during pregnancy and the postpartum period. As proposed, women with a history of early life adversity are more likely to exhibit higher levels of proinflammatory cytokines and lower levels of oxytocin in response to the demands of pregnancy and new motherhood, both of which are associated with the risk for perinatal depression. The model is designed to guide investigations into the biobehavioral basis for perinatal depression, with emphasis upon the impact of early life adversity. Testing this model will provide a better understanding of maternal depressive risk and improve identification of vulnerable women who would benefit from targeted interventions that can reduce the impact of perinatal depression on maternal-infant health. PMID:26574573

  13. Acerola (Malpighia emarginata DC.) juice intake protects against alterations to proteins involved in inflammatory and lipolysis pathways in the adipose tissue of obese mice fed a cafeteria diet

    PubMed Central

    2014-01-01

    Background Obesity has been studied as a metabolic and an inflammatory disease and is characterized by increases in the production of pro-inflammatory adipokines in the adipose tissue. To elucidate the effects of natural dietary components on the inflammatory and metabolic consequences of obesity, we examined the effects of unripe, ripe and industrial acerola juice (Malpighia emarginata DC.) on the relevant inflammatory and lipolysis proteins in the adipose tissue of mice with cafeteria diet-induced obesity. Materials/methods Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into five subgroups, each of which received a different supplement for one further month (water, unripe acerola juice, ripe acerola juice, industrial acerola juice, or vitamin C) by gavage. Enzyme-linked immunosorbent assays, Western blotting, a colorimetric method and histology were utilized to assess the observed data. Results The CAF water (control obese) group showed a significant increase in their adiposity indices and triacylglycerol levels, in addition to a reduced IL-10/TNF-α ratio in the adipose tissue, compared with the control lean group. In contrast, acerola juice and Vitamin C intake ameliorated the weight gain, reducing the TAG levels and increasing the IL-10/TNF-α ratio in adipose tissue. In addition, acerola juice intake led to reductions both in the level of phosphorylated JNK and to increases in the phosphorylation of IκBα and HSLser660 in adipose tissue. Conclusions Taken together, these results suggest that acerola juice reduces low-grade inflammation and ameliorates obesity-associated defects in the lipolytic processes. PMID:24495336

  14. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway.

    PubMed

    Liu, Xiaojie; Mei, Zhigang; Qian, Jingping; Zeng, Yongbao; Wang, Mingzhi

    2013-12-01

    Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that anti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic anti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be involved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) reduced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-α in brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-κB) inhibition. These observations were inhibited by the alpha7 nicotinic acetylcholine receptor (α7nAchR) antagonist α-bungarotoxin (α-BGT). In addition, puerarin pretreatment increased the expression of α7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory response. Our results also indicated that the anti-inflammatory effect of puerarin may partly be mediated through the activation of the cholinergic anti-inflammatory pathway. PMID:25206641

  15. Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways.

    PubMed

    Chtourou, Yassine; Aouey, Bakhta; Kebieche, Mohammed; Fetoui, Hamadi

    2015-09-01

    Cisplatin (Cis) is an effective chemotherapeutic agent successfully used in the treatment of a wide range of malignancies while its usage is limited due to its dose-dependent toxicity. The present study was conducted to investigate the efficacy of naringin, an ubiquitous flavonoid, against Cis-induced striatum injury in Wistar aged rats. Briefly, the experimental procedures were divided in two sets of experiments. In the first, the animals were divided into 4 groups: control, Nar 25mg/kg, Nar 50mg/kg and Nar 100mg/kg. In the second, the animals were divided into 4 groups: Cis (5mg/kg/week for 5 consecutive weeks), Cis+Nar (25mg/kg), Cis+Nar (50mg/kg) and Cis+Nar (100mg/kg). The administration of Cis (5mg/kg/week for 5 consecutive weeks) resulted in a decline in the concentrations of reduced glutathione and ascorbic acid. The activity of membrane bound ATPases and glutathione peroxidase (GPx) were decreased while the activity of catalase (CAT) and superoxide dismutase (SOD) were increased. Further, in striatum tissue, Cis significantly enhance the mRNA gene expression of P53, nuclear factor κB pathway (NFκB) and tumor necrosis factor (TNF-α). Oxidative/nitrosative stress was evident in Cis group by increased malondialdehyde (MDA), protein carbonyls (PCO), reactive oxygen species (ROS) and nitrite concentration (NO). Naringin (25, 50 and 100mg/kg) administration was able to protect against deterioration in striatum tissue, abrogate the change in antioxidant enzyme activities and suppressed the increase in MDA, PCO, NO and TNF-α concentrations. Moreover, Nar inhibited P53, NFkB and TNF-α pathways mediated inflammation and apoptosis, and improved the histological changes induced by Cis. Thus, these findings demonstrated the neuroprotective nature of Nar by attenuating the pro-inflammatory and apoptotic mediators and improving antioxidant competence in striatum tissue. These results imply that Nar has perfect effect against Cis-induced striatum injury in aged rats

  16. Signalling pathways mediating inflammatory responses in brain ischaemia.

    PubMed

    Planas, A M; Gorina, R; Chamorro, A

    2006-12-01

    Stroke causes neuronal necrosis and generates inflammation. Pro-inflammatory molecules intervene in this process by triggering glial cell activation and leucocyte infiltration to the injured tissue. Cytokines are major mediators of the inflammatory response. Pro-inflammatory and anti-inflammatory cytokines are released in the ischaemic brain. Anti-inflammatory cytokines, such as interleukin-10, promote cell survival, whereas pro-inflammatory cytokines, such as TNFalpha (tumour necrosis factor alpha), can induce cell death. However, deleterious effects of certain cytokines can turn to beneficial actions, depending on particular features such as the concentration, time point and the very intricate network of intracellular signals that become activated and interact. A key player in the intracellular response to cytokines is the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) pathway that induces alterations in the pattern of gene transcription. These changes are associated either with cell death or survival depending, among other things, on the specific proteins involved. STAT1 activation is related to cell death, whereas STAT3 activation is often associated with survival. Yet, it is clear that STAT activation must be tightly controlled, and for this reason the function of JAK/STAT modulators, such as SOCS (suppressors of cytokine signalling) and PIAS (protein inhibitor of activated STAT), and phosphatases is most relevant. Besides local effects in the ischaemic brain, cytokines are released to the circulation and affect the immune system. Unbalanced pro-inflammatory and anti-inflammatory plasma cytokine concentrations favouring an 'anti-inflammatory' state can decrease the immune response. Robust evidence now supports that stroke can induce an immunodepression syndrome, increasing the risk of infection. The contribution of individual cytokines and their intracellular signalling pathways to this response needs to be further investigated

  17. Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway.

    PubMed

    Liu, Zhaoguo; Wang, Yueping; Wang, Yaoqi; Ning, Qiaoqing; Zhang, Yong; Gong, Chunzhi; Zhao, Wenxiang; Jing, Guangjian; Wang, Qianqian

    2016-06-01

    Dexmedetomidine (Dex) is a highly selective α2-adrenergic receptor agonist that is widely used for sedation in intensive care units and in clinical anesthesia. Dex has also been shown to possess anti-inflammatory benefits. However, the underlying mechanism by which Dex relieves the inflammatory reaction in the lung tissues of septic mice has not been fully elucidated. In this study, we aimed to evaluate the protective effects and possible mechanism of Dex on the sepsis-induced lung inflammatory response in mice. Sepsis was induced in mice models through the intraperitoneal injection of lipopolysaccharide (LPS). The preemptive administration of Dex substantially abated sepsis-induced pulmonary edema, pulmonary histopathological changes, and NF-κB p65 activity. The production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) at both the mRNA and protein levels was also reduced. Moreover, these effects were significantly blocked by the α7 nicotinic acetylcholine receptor (α7nAChR) antagonist α-bungarotoxin (α-Bgt). α-Bgt aggravated pulmonary edema and pulmonary histopathological changes, as well as increased NF-κB p65 activity and TNF-α and IL-6 expression at both the mRNA and protein levels. The overall results demonstrate that Dex inhibits the LPS-induced inflammatory reaction in the lung tissues of septic mice partly through the α7nAChR-dependent cholinergic anti-inflammatory pathway. PMID:27074053

  18. Alert cell strategy: mechanisms of inflammatory response and organ protection.

    PubMed

    Hatakeyama, Noboru; Matsuda, Naoyuki

    2014-01-01

    Systemic inflammatory response syndrome (SIRS) is triggered by various factors such as surgical operation, trauma, burn injury, ischemia, pancreatitis and bacterial translocation. Sepsis is a SIRS associated with bacterial infection. SIRS and sepsis tend to trigger excessive production of inflammatory cytokines and other inflammatory molecules and induce multiple organ failure, such as acute lung injury, acute kidney injury and inflammatory cardiac injury. Epithelial and endothelial cells in some major organs express inflammatory receptors on the plasma membrane and work as alert cells for inflammation, and regulation of these alert cells could have a relieving effect on the inflammatory response. In inflammatory conditions, initial cardiac dysfunction is mediated by decreased preload and adequate infusion therapy is required. Tachyarrhythmia is a complication of inflammatory conditions and early control of the inflammatory reaction would prevent the structural remodeling that is resistant to therapies. Furthermore, there seems to be crosstalk between major organs with a central focus on the kidneys in inflammatory conditions. As an alert cell strategy, volatile anesthetics, sevoflurane and isoflurane, seem to have anti-inflammatory effects, and both experimental and clinical studies have shown the beneficial effects of these drugs in various settings of inflammatory conditions. On the other hand, in terms of intravenous anesthetics, propofol and ketamine, their current status is still controversial as there is a lack of confirmatory evidence on whether they have an organ-protective effect in inflammatory conditions. The local anesthetic lidocaine suppressed inflammatory responses upon both systemic and local administration. For the control of inflammatory conditions, anesthetic agents may be a target of drug development in accordance with other treatments and drugs. PMID:25229471

  19. Heart Rate Variability Predicts Levels of Inflammatory Markers: Evidence for the Vagal Anti-Inflammatory Pathway

    PubMed Central

    Cooper, Timothy M.; McKinley, Paula S.; Seeman, Teresa E.; Choo, Tse-Hwei; Lee, Seonjoo; Sloan, Richard P.

    2015-01-01

    Evidence from numerous animal models shows that vagal activity regulates inflammatory responses by decreasing cytokine release. Heart rate variability (HRV) is a reliable index of cardiac vagal regulation and should be inversely related to levels of inflammatory markers. Inflammation is also regulated by sympathetic inputs, but only one previous paper controlled for this. In a larger and more representative sample, we sought to replicate those results and examine potential sex differences in the relationship between HRV and inflammatory markers. Using data from the MIDUS II study, we analyzed the relationship between 6 inflammatory markers and both HF-HRV and LF-HRV. After controlling for sympathetic effects measured by urinary norepinephrine as well as a host of other factors, LF-HRV was found to be inversely associated with fibrinogen, CRP and IL-6, while HF-HRV was inversely associated with fibrinogen and CRP. We did not observe consistent sex differences. These results support the existence of the vagal anti-inflammatory pathway and suggest that it has similar effects in men and women. PMID:25541185

  20. Obesity-Driven Gut Microbiota Inflammatory Pathways to Metabolic Syndrome

    PubMed Central

    Cavalcante-Silva, Luiz H. A.; Galvão, José G. F. M.; da Silva, Juliane Santos de França; de Sales-Neto, José M.; Rodrigues-Mascarenhas, Sandra

    2015-01-01

    The intimate interplay between immune system, metabolism, and gut microbiota plays an important role in controlling metabolic homeostasis and possible obesity development. Obesity involves impairment of immune response affecting both innate and adaptive immunity. The main factors involved in the relationship of obesity with inflammation have not been completely elucidated. On the other hand, gut microbiota, via innate immune receptors, has emerged as one of the key factors regulating events triggering acute inflammation associated with obesity and metabolic syndrome. Inflammatory disorders lead to several signaling transduction pathways activation, inflammatory cytokine, chemokine production and cell migration, which in turn cause metabolic dysfunction. Inflamed adipose tissue, with increased macrophages infiltration, is associated with impaired preadipocyte development and differentiation to mature adipose cells, leading to ectopic lipid accumulation and insulin resistance. This review focuses on the relationship between obesity and inflammation, which is essential to understand the pathological mechanisms governing metabolic syndrome. PMID:26635627

  1. Administration of Reconstituted Polyphenol Oil Bodies Efficiently Suppresses Dendritic Cell Inflammatory Pathways and Acute Intestinal Inflammation

    PubMed Central

    Cavalcanti, Elisabetta; Vadrucci, Elisa; Delvecchio, Francesca Romana; Addabbo, Francesco; Bettini, Simona; Liou, Rachel; Monsurrò, Vladia; Huang, Alex Yee-Chen; Pizarro, Theresa Torres

    2014-01-01

    Polyphenols are natural compounds capable of interfering with the inflammatory pathways of several in vitro model systems. In this study, we developed a stable and effective strategy to administer polyphenols to treat in vivo models of acute intestinal inflammation. The in vitro suppressive properties of several polyphenols were first tested and compared for dendritic cells (DCs) production of inflammatory cytokines. A combination of the polyphenols, quercetin and piperine, were then encapsulated into reconstituted oil bodies (OBs) in order to increase their stability. Our results showed that administration of low dose reconstituted polyphenol OBs inhibited LPS-mediated inflammatory cytokine secretion, including IL-6, IL-23, and IL-12, while increasing IL-10 and IL-1Rα production. Mice treated with the polyphenol-containing reconstituted OBs (ROBs) were partially protected from dextran sodium sulfate (DSS)-induced colitis and associated weight loss, while mortality and inflammatory scores revealed an overall anti-inflammatory effect that was likely mediated by impaired DC immune responses. Our study indicates that the administration of reconstituted quercetin and piperine-containing OBs may represent an effective and potent anti-inflammatory strategy to treat acute intestinal inflammation. PMID:24558444

  2. miR-146a Attenuates Inflammatory Pathways Mediated by TLR4/NF-κB and TNFα to Protect Primary Human Retinal Microvascular Endothelial Cells Grown in High Glucose

    PubMed Central

    Ye, Eun-Ah; Steinle, Jena J.

    2016-01-01

    Pathological mechanisms underlying diabetic retinopathy are still not completely understood. Increased understanding of potential cellular pathways responsive to hyperglycemia is essential to develop novel therapeutic strategies for diabetic retinopathy. A growing body of evidence shows that microRNA (miRNA) play important roles in pathological mechanisms involved in diabetic retinopathy, as well as possessing potential as novel therapeutic targets. The hypothesis of this study was that miR-146a plays a key role in attenuating hyperglycemia-induced inflammatory pathways through reduced TLR4/NF-κB and TNFα signaling in primary human retinal microvascular endothelial cells (REC). We cultured human REC in normal (5 mM) glucose or transferred to high glucose medium (25 mM) for 3 days. Transfection was performed on REC with miRNA mimic (hsa-miR-146a-5p). Our results demonstrate that miR-146a expression was decreased in human REC cultured in high glucose. Overexpression of miR-146a using mimics reduced the levels of TLR4/NF-κB and TNFα in REC cultured in high glucose. Both MyD88-dependent and -independent signaling were decreased by miR-146a overexpression in REC in high glucose conditions. The results suggest that miR-146a is a potential therapeutic target for reducing inflammation in REC through inhibition of TLR4/NF-κB and TNFα. Our study will contribute to understanding of diabetic retinal pathology, as well as providing important clues to develop therapeutics for clinical applications. PMID:26997759

  3. miR-146a Attenuates Inflammatory Pathways Mediated by TLR4/NF-κB and TNFα to Protect Primary Human Retinal Microvascular Endothelial Cells Grown in High Glucose.

    PubMed

    Ye, Eun-Ah; Steinle, Jena J

    2016-01-01

    Pathological mechanisms underlying diabetic retinopathy are still not completely understood. Increased understanding of potential cellular pathways responsive to hyperglycemia is essential to develop novel therapeutic strategies for diabetic retinopathy. A growing body of evidence shows that microRNA (miRNA) play important roles in pathological mechanisms involved in diabetic retinopathy, as well as possessing potential as novel therapeutic targets. The hypothesis of this study was that miR-146a plays a key role in attenuating hyperglycemia-induced inflammatory pathways through reduced TLR4/NF-κB and TNFα signaling in primary human retinal microvascular endothelial cells (REC). We cultured human REC in normal (5 mM) glucose or transferred to high glucose medium (25 mM) for 3 days. Transfection was performed on REC with miRNA mimic (hsa-miR-146a-5p). Our results demonstrate that miR-146a expression was decreased in human REC cultured in high glucose. Overexpression of miR-146a using mimics reduced the levels of TLR4/NF-κB and TNFα in REC cultured in high glucose. Both MyD88-dependent and -independent signaling were decreased by miR-146a overexpression in REC in high glucose conditions. The results suggest that miR-146a is a potential therapeutic target for reducing inflammation in REC through inhibition of TLR4/NF-κB and TNFα. Our study will contribute to understanding of diabetic retinal pathology, as well as providing important clues to develop therapeutics for clinical applications. PMID:26997759

  4. Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells

    PubMed Central

    Qvist, Rajes; Mohd Yusof, Kamaruddin; Ismail, Ikram Shah

    2016-01-01

    Purpose. Type 2 diabetes consists of progressive hyperglycemia and insulin resistance, which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study we investigated the effect of Gelam honey and quercetin on the oxidative stress-induced inflammatory pathways and the proinflammatory cytokines. Methods. HIT-T15 cells were cultured and preincubated with the extract of Gelam honey (20, 40, 60, and 80 μg/mL), as well as quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM glucose. Results. HIT-T15 cells cultured under hyperglycemic condition showed a significant increase in the inflammatory pathways by phosphorylating JNK, IKK-β, and IRS-1 at Ser307 (p < 0.05). There was a significant decrease in the phosphorylation of Akt at Ser473 (p < 0.05). Pretreatment with Gelam honey and quercetin reduced the expression of phosphorylated JNK, IKK-β, and IRS-1, thereby significantly reducing the expression of proinflammatory cytokines like TNF-α, IL-6, and IL-1β (p < 0.05). At the same time there was a significant increase in the phosphorylated Akt showing the protective effects against inflammation and insulin resistance (p < 0.05). In conclusion, our data suggest the potential use of the extract from Gelam honey and quercetin in modulating the inflammation induced insulin signaling pathways. PMID:27034691

  5. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.

    PubMed

    Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R

    2013-11-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. PMID:23932846

  6. Anti-Inflammatory and Organ-Protective Effects of Resveratrol in Trauma-Hemorrhagic Injury

    PubMed Central

    Liu, Fu-Chao; Tsai, Yung-Fong; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Resveratrol, a natural polyphenolic compound of grape and red wine, owns potential anti-inflammatory effects, which results in the reduction of cytokines overproduction, the inhibition of neutrophil activity, and the alteration of adhesion molecules expression. Resveratrol also possesses antioxidant, anti-coagulation and anti-aging properties, and it may control of cell cycle and apoptosis. Resveratrol has been shown to reduce organ damage following traumatic and shock-like states. Such protective phenomenon is reported to be implicated in a variety of intracellular signaling pathways including the activation of estrogen receptor, the regulation of the sirtuin 1/nuclear factor-kappa B and mitogen-activated protein kinases/hemeoxygenase-1 pathway, and the mediation of proinflammatory cytokines and reactive oxygen species formation and reaction. In the recent studies, resveratrol attenuates hepatocyte injury and improves cardiac contractility due to reduction of proinflammatory mediator expression and ameliorates hypoxia-induced liver and kidney mitochondrial dysfunction following trauma and hemorrhagic injuries. Moreover, through anti-inflammatory effects and antioxidant properties, the resveratrol is believed to protect organ function in trauma-hemorrhagic injury. In this review, the organ-protective and anti-inflammatory effects of resveratrol in trauma-hemorrhagic injury will be discussed. PMID:26273141

  7. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    PubMed Central

    2012-01-01

    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers. PMID:22747645

  8. Restraint of inflammatory signaling by interdependent strata of negative regulatory pathways

    PubMed Central

    Murray, Peter J.; Smale, Stephen T.

    2016-01-01

    Summary Activation of Toll-like receptor (TLR) signaling and related pathways by microbial products drives inflammatory responses, host defense pathways and adaptive immunity. The cost of excessive inflammation is cell and tissue damage, an underlying cause of many acute and chronic diseases. Coincident with activation of TLR signaling, a plethora of anti-inflammatory pathways and mechanisms begin to modulate inflammation until tissue repair is complete. Whereas most studies have focused on the signaling components immediately downstream of the TLRs, this review summarizes the different levels of anti-inflammatory pathways that have evolved to abate TLR signaling and how they are integrated to prevent cell and tissue destruction. PMID:22990889

  9. Differential activation of inflammatory pathways in testicular macrophages provides a rationale for their subdued inflammatory capacity.

    PubMed

    Bhushan, Sudhanshu; Tchatalbachev, Svetlin; Lu, Yongning; Fröhlich, Suada; Fijak, Monika; Vijayan, Vijith; Chakraborty, Trinad; Meinhardt, Andreas

    2015-06-01

    Spermatogenic cells express cell-specific molecules with the potential to be seen as "foreign" by the immune system. Owing to the time difference between their appearance in puberty and the editing of the lymphocyte repertoire around birth, local adaptations of the immune system coined immune privilege are required to confer protection from autoattack. Testicular macrophages (TM) play an important role in maintaining testicular immune privilege and display reduced proinflammatory capacity compared with other macrophages. However, the molecular mechanism underlying this macrophage phenotype remained elusive. We demonstrate that TM have a lower constitutive expression of TLR pathway-specific genes compared with peritoneal macrophages. Moreover, in TM stimulated with LPS, the NF-κB signaling pathway is blocked due to lack of IκBα ubiquitination and, hence, degradation. Instead, challenge of TM with LPS or polyinosinic-polycytidylic acid induces MAPK, AP-1, and CREB signaling pathways, which leads to production of proinflammatory cytokines such as TNF-α, although at much lower levels than in peritoneal macrophages. Pretreatment of TM with inhibitors for MAPKs p38 and ERK1/2 suppresses activation of AP-1 and CREB signaling pathways and attenuates LPS-induced TNF-α and IL-10 secretion. High levels of IL-10 production and activation of STAT3 by LPS stimulation in TM indicate a regulatory macrophage phenotype. Our results suggest that TM maintain testicular immune privilege by inhibiting NF-κB signaling through impairment of IκBα ubiquitination and a general reduction of TLR cascade gene expression. However, TM do maintain some capacity for innate immune responses through AP-1 and CREB signaling pathways. PMID:25917085

  10. Co-administration of 3-Acetyl-11-Keto-Beta-Boswellic Acid Potentiates the Protective Effect of Celecoxib in Lipopolysaccharide-Induced Cognitive Impairment in Mice: Possible Implication of Anti-inflammatory and Antiglutamatergic Pathways.

    PubMed

    Sayed, Aya Shoukry; El Sayed, Nesrine Salah El Dine

    2016-05-01

    Neuro-inflammation is known to initiate the underlying pathogenesis of several neurodegenerative disorders which may progress to cognitive, behavioral, and functional impairment. Boswellia serrata is a well-known powerful anti-inflammatory agent used to treat several inflammatory diseases. The aim of the current study is to investigate the effect of the combination therapy of 3-acetyl-11-keto-β-boswellic acid (AKBA), a 5-lipoxygenase (5-LOX) inhibitor and celecoxib, and a selective cyclooxygenase-2 (COX-2) inhibitor as dual enzyme inhibitors compared to monotherapies with celecoxib and AKBA. Cognitive dysfunction is induced by intraperational injection of lipopolysaccharide (LPS) in mice. Radial maze, Y maze, and novel object recognition (NOR) were performed to evaluate the possible behavioral changes. Moreover, estimation of glutamate and tumor necrosis factor-alpha (TNF-α), as well as an immunohistochemical investigation of amyloid beta peptide (Aβ) was performed to evaluate the molecular changes that followed the LPS or drug treatment. The results showed that the combination therapy of AKBA and celecoxib reversed the behavioral and molecular changes caused by LPS cognitive dysfunction model that predispose cognitive dysfunction in mice. This study showed the effectiveness of the dual therapy with AKBA and celecoxib as anti-inflammatory, antiglutamatergic, and anti-amyloidogenic agents in the management of cognitive dysfunction. PMID:26984336

  11. Ruscogenin Ameliorates Experimental Nonalcoholic Steatohepatitis via Suppressing Lipogenesis and Inflammatory Pathway

    PubMed Central

    Lu, Hung-Jen; Tzeng, Thing-Fong; Liou, Shorong-Shii; Chang, Chia Ju; Yang, Cheng; Wu, Ming-Chang; Liu, I-Min

    2014-01-01

    The aim of the study was to investigate the protective effects of ruscogenin, a major steroid sapogenin in Ophiopogon japonicus, on experimental models of nonalcoholic steatohepatitis. HepG2 cells were exposed to 300 μmol/l palmitic acid (PA) for 24 h with the preincubation of ruscogenin for another 24 h. Ruscogenin (10.0 μmol/l) had inhibitory effects on PA-induced triglyceride accumulation and inflammatory markers in HepG2 cells. Male golden hamsters were randomly divided into five groups fed a normal diet, a high-fat diet (HFD), or a HFD supplemented with ruscogenin (0.3, 1.0, or 3.0 mg/kg/day) by gavage once daily for 8 weeks. Ruscogenin alleviated dyslipidemia, liver steatosis, and necroinflammation and reversed plasma markers of metabolic syndrome in HFD-fed hamsters. Hepatic mRNA levels involved in fatty acid oxidation were increased in ruscogenin-treated HFD-fed hamsters. Conversely, ruscogenin decreased expression of genes involved in hepatic lipogenesis. Gene expression of inflammatory cytokines, chemoattractive mediator, nuclear transcription factor-(NF-) κB, and α-smooth muscle actin were increased in the HFD group, which were attenuated by ruscogenin. Ruscogenin may attenuate HFD-induced steatohepatitis through downregulation of NF-κB-mediated inflammatory responses, reducing hepatic lipogenic gene expression, and upregulating proteins in β-oxidation pathway. PMID:25136608

  12. Triggering ubiquitination of IFNAR1 protects tissues from inflammatory injury.

    PubMed

    Bhattacharya, Sabyasachi; Katlinski, Kanstantsin V; Reichert, Maximilian; Takano, Shigetsugu; Brice, Angela; Zhao, Bin; Yu, Qiujing; Zheng, Hui; Carbone, Christopher J; Katlinskaya, Yuliya V; Leu, N Adrian; McCorkell, Kelly A; Srinivasan, Satish; Girondo, Melanie; Rui, Hallgeir; May, Michael J; Avadhani, Narayan G; Rustgi, Anil K; Fuchs, Serge Y

    2014-03-01

    Type 1 interferons (IFN) protect the host against viruses by engaging a cognate receptor (consisting of IFNAR1/IFNAR2 chains) and inducing downstream signaling and gene expression. However, inflammatory stimuli can trigger IFNAR1 ubiquitination and downregulation thereby attenuating IFN effects in vitro. The significance of this paradoxical regulation is unknown. Presented here results demonstrate that inability to stimulate IFNAR1 ubiquitination in the Ifnar1(SA) knock-in mice renders them highly susceptible to numerous inflammatory syndromes including acute and chronic pancreatitis, and autoimmune and toxic hepatitis. Ifnar1(SA) mice (or their bone marrow-receiving wild type animals) display persistent immune infiltration of inflamed tissues, extensive damage and gravely inadequate tissue regeneration. Pharmacologic stimulation of IFNAR1 ubiquitination is protective against from toxic hepatitis and fulminant generalized inflammation in wild type but not Ifnar1(SA) mice. These results suggest that endogenous mechanisms that trigger IFNAR1 ubiquitination for limiting the inflammation-induced tissue damage can be purposely mimicked for therapeutic benefits. PMID:24480543

  13. Taxonomic applicability of inflammatory cytokines in adverse outcome pathway (AOP) development.

    PubMed

    Angrish, Michelle M; Pleil, Joachim D; Stiegel, Matthew A; Madden, Michael C; Moser, Virginia C; Herr, David W

    2016-01-01

    Cytokines, low-molecular-weight messenger proteins that act as intercellular immunomodulatory signals, have become a mainstream preclinical marker for assessing the systemic inflammatory response to external stressors. The challenge is to quantitate from healthy subjects cytokine levels that are below or at baseline and relate those dynamic and complex cytokine signatures of exposures with the inflammatory and repair pathways. Thus, highly sensitive, specific, and precise analytical and statistical methods are critically important. Investigators at the U.S. Environmental Protection Agency (EPA) have implemented advanced technologies and developed statistics for evaluating panels of inflammatory cytokines in human blood, exhaled breath condensate, urine samples, and murine biological media. Advanced multiplex, bead-based, and automated analytical platforms provided sufficient sensitivity, precision, and accuracy over the traditional enzyme-linked immunosorbent assay (ELISA). Thus, baseline cytokine levels can be quantified from healthy human subjects and animals and compared to an in vivo exposure response from an environmental chemical. Specifically, patterns of cytokine responses in humans exposed to environmental levels of ozone and diesel exhaust, and in rodents exposed to selected pesticides (such as fipronil and carbaryl), were used as case studies to generally assess the taxonomic applicability of cytokine responses. The findings in this study may aid in the application of measureable cytokine markers in future adverse outcome pathway (AOP)-based toxicity testing. Data from human and animal studies were coalesced and the possibility of using cytokines as key events (KE) to bridge species responses to external stressors in an AOP-based framework was explored. PMID:26914248

  14. The Arginine Decarboxylase Pathways of Host and Pathogen Interact to Impact Inflammatory Pathways in the Lung

    PubMed Central

    Dalluge, Joseph J.; Welchlin, Cole W.; Hughes, John; Han, Wei; Blackwell, Timothy S.; Laguna, Theresa A.; Williams, Bryan J.

    2014-01-01

    The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic. PMID:25350753

  15. Inflammatory and innate immune responses in dengue infection: protection versus disease induction.

    PubMed

    Costa, Vivian Vasconcelos; Fagundes, Caio Tavares; Souza, Danielle G; Teixeira, Mauro Martins

    2013-06-01

    Dengue disease is a mosquito-borne viral disease of expanding geographical range and incidence. Infection by one of the four serotypes of dengue virus induces a spectrum of disease manifestations, ranging from asymptomatic to life-threatening Dengue hemorrhagic fever/dengue shock syndrome. Many efforts have been made to elucidate several aspects of dengue virus-induced disease, but the pathogenesis of disease is complex and remains unclear. Understanding the mechanisms involved in the early stages of infection is crucial to determine and develop safe therapeutics to prevent the severe outcomes of disease without interfering with control of infection. In this review, we discuss the dual role of the innate and inflammatory pathways activated during dengue disease in mediating both protection and exacerbation of disease. We show that some mediators involved in each of these responses differ substantially, suggesting that interfering in disease-associated immune pathways may represent a potential therapeutic opportunity for the treatment of severe dengue. PMID:23567637

  16. The Cannabinoid Receptor 2 Protects Against Alcoholic Liver Disease Via a Macrophage Autophagy-Dependent Pathway.

    PubMed

    Denaës, Timothé; Lodder, Jasper; Chobert, Marie-Noële; Ruiz, Isaac; Pawlotsky, Jean-Michel; Lotersztajn, Sophie; Teixeira-Clerc, Fatima

    2016-01-01

    Kupffer cells, the resident macrophages of the liver, play a major role in the pathogenesis of alcoholic liver disease. We have previously demonstrated that CB2 receptor protects against alcoholic liver disease by inhibiting alcohol-induced inflammation and steatosis via the regulation of Kupffer cell activation. Here, we explored the mechanism underlying these effects and hypothesized that the anti-inflammatory properties of CB2 receptor in Kupffer cells rely on activation of autophagy. For this purpose, mice invalidated for CB2 receptor (CB2(Mye-/-) mice) or for the autophagy gene ATG5 (ATG5(Mye-/-) mice) in the myeloid lineage, and their littermate wild-type mice were subjected to chronic-plus-binge ethanol feeding. CB2(Mye-/-) mice showed exacerbated alcohol-induced pro-inflammatory gene expression and steatosis. Studies in cultured macrophages demonstrated that CB2 receptor activation by JWH-133 stimulated autophagy via a heme oxygenase-1 dependent pathway. Moreover, JWH-133 reduced the induction of inflammatory genes by lipopolysaccharide in wild-type macrophages, but not in ATG5-deficient cells. The CB2 agonist also protected from alcohol-induced liver inflammation and steatosis in wild-type mice, but not in ATG5(Mye-/-) mice demonstrating that macrophage autophagy mediates the anti-inflammatory and anti-steatogenic effects of CB2 receptor. Altogether these results demonstrate that CB2 receptor activation in macrophages protects from alcohol-induced steatosis by inhibiting hepatic inflammation through an autophagy-dependent pathway. PMID:27346657

  17. Annexin A2 binds to endosomes and negatively regulates TLR4-triggered inflammatory responses via the TRAM-TRIF pathway

    PubMed Central

    Zhang, Shuang; Yu, Min; Guo, Qiang; Li, Rongpeng; Li, Guobo; Tan, Shirui; Li, Xuefeng; Wei, Yuquan; Wu, Min

    2015-01-01

    Lipopolysaccharide (LPS) derived from Gram-negative bacteria activates plasma membrane signaling via Toll-like receptor 4 (TLR4) on host cells and triggers innate inflammatory responses, but the underlying mechanisms remain to be fully elucidated. Here we reveal a role for annexin A2 (AnxA2) in host defense against infection as anxa2−/− mice were highly susceptible to Gram-negative bacteria-induced sepsis with enhanced inflammatory responses. Computing analysis and biochemical experiments identified that constitutive AnxA2 expression facilitated TLR4 internalization and its subsequent translocation into early endosomal membranes. It activated the TRAM-dependent endosomal signaling, leading to the release of anti-inflammatory cytokines. Importantly, AnxA2 deficiency prolonged TLR4-mediated signaling from the plasma membrane, which was attributable to pro-inflammatory cytokine production (IL-6, TNFα and IL-1β). Thus, AnxA2 directly exerted negative regulation of inflammatory responses through TLR4-initiated TRAM-TRIF pathway occurring on endosomes. This study reveals AnxA2 as a critical regulator in infection-initiated inflammation, which protects the host from excessive inflammatory damage. PMID:26527544

  18. Inflammatory Pathways in Knee Osteoarthritis: Potential Targets for Treatment

    PubMed Central

    Bar-Or, David; Rael, Leonard T.; Thomas, Gregory W.; Brody, Edward N.

    2015-01-01

    Osteoarthritis (OA) of the knee is a wide-spread, debilitating disease that is prominent in Western countries. It is associated with old age, obesity, and mechanical stress on the knee joint. By examining the recent literature on the effect of the anti-inflammatory prostaglandins 15d-PGJ2 and Δ12-PGJ2, we propose that new therapeutic agents for this disease could facilitate the transition from the COX-2-dependent pro-inflammatory synthesis of the prostaglandin PGE2 (catalyzed by mPGES-1), to the equally COX-2-dependent synthesis of the aforementioned anti-inflammatory prostaglandins. This transition could be instrumental in halting the breakdown of cartilage via matrix metalloproteinases (MMPs) and aggrecanases, as well as promoting the matrix regeneration and synthesis of cartilage by chondrocytes. Another desirable property of new OA therapeutics could involve the recruitment of mesenchymal stem cells to the damaged cartilage and bone, possibly resulting in the generation of chondrocytes, synoviocytes, and, in the case of bone, osteoblasts. Moreover, we propose that research promoting this transition from pro-inflammatory to anti-inflammatory prostaglandins could aid in the identification of new OA therapeutics.

  19. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    SciTech Connect

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  20. The Laminin Response in Inflammatory Bowel Disease: Protection or Malignancy?

    PubMed Central

    Spenlé, Caroline; Lefebvre, Olivier; Lacroute, Joël; Méchine-Neuville, Agnès; Barreau, Frédérick; Blottière, Hervé M.; Duclos, Bernard; Arnold, Christiane; Hussenet, Thomas; Hemmerlé, Joseph; Gullberg, Donald; Kedinger, Michèle; Sorokin, Lydia; Orend, Gertraud; Simon-Assmann, Patricia

    2014-01-01

    Laminins (LM), basement membrane molecules and mediators of epithelial-stromal communication, are crucial in tissue homeostasis. Inflammatory Bowel Diseases (IBD) are multifactorial pathologies where the microenvironment and in particular LM play an important yet poorly understood role in tissue maintenance, and in cancer progression which represents an inherent risk of IBD. Here we showed first that in human IBD colonic samples and in murine colitis the LMα1 and LMα5 chains are specifically and ectopically overexpressed with a concomitant nuclear p53 accumulation. Linked to this observation, we provided a mechanism showing that p53 induces LMα1 expression at the promoter level by ChIP analysis and this was confirmed by knockdown in cell transfection experiments. To mimic the human disease, we induced colitis and colitis-associated cancer by chemical treatment (DSS) combined or not with a carcinogen (AOM) in transgenic mice overexpressing LMα1 or LMα5 specifically in the intestine. We demonstrated that high LMα1 or LMα5 expression decreased susceptibility towards experimentally DSS-induced colon inflammation as assessed by histological scoring and decrease of pro-inflammatory cytokines. Yet in a pro-oncogenic context, we showed that LM would favor tumorigenesis as revealed by enhanced tumor lesion formation in both LM transgenic mice. Altogether, our results showed that nuclear p53 and associated overexpression of LMα1 and LMα5 protect tissue from inflammation. But in a mutation setting, the same LM molecules favor progression of IBD into colitis-associated cancer. Our transgenic mice represent attractive new models to acquire knowledge about the paradoxical effect of LM that mediate either tissue reparation or cancer according to the microenvironment. In the early phases of IBD, reinforcing basement membrane stability/organization could be a promising therapeutic approach. PMID:25347196

  1. ANTI-INFLAMMATORY AND MAST CELL PROTECTIVE EFFECT OF FICUS RELIGIOSA

    PubMed Central

    Viswanathan, S.; Thirugnanasambantham, P.; Reddy, M. Kannappa; Narasimhan, S.; Subramaniam, G. Anantha

    1990-01-01

    The aqueous extract of bark of Ficus religiosa was prepared and investigated for its anti-inflammatory effect and for its protective effect on mast cells against degranulation. A significant anti-inflammatory effect was observed in both acute and chronic models of inflammation. The extract also protected mast cells from degranulation induced by various degranulatiors. The observed anti-inflammatory and mast cell protective effect may be responsible for the beneficial effect of Ficus religiosa in kumkum dermatitis and other inflammatory conditions. PMID:22556521

  2. Anti-inflammatory and mast cell protective effect of ficus religiosa.

    PubMed

    Viswanathan, S; Thirugnanasambantham, P; Reddy, M K; Narasimhan, S; Subramaniam, G A

    1990-10-01

    The aqueous extract of bark of Ficus religiosa was prepared and investigated for its anti-inflammatory effect and for its protective effect on mast cells against degranulation. A significant anti-inflammatory effect was observed in both acute and chronic models of inflammation. The extract also protected mast cells from degranulation induced by various degranulatiors. The observed anti-inflammatory and mast cell protective effect may be responsible for the beneficial effect of Ficus religiosa in kumkum dermatitis and other inflammatory conditions. PMID:22556521

  3. Interleukin-34 sustains inflammatory pathways in the gut.

    PubMed

    Franzè, Eleonora; Monteleone, Ivan; Cupi, Maria Laura; Mancia, Pamela; Caprioli, Flavio; Marafini, Irene; Colantoni, Alfredo; Ortenzi, Angela; Laudisi, Federica; Sica, Giuseppe; Sileri, PierPaolo; Pallone, Francesco; Monteleone, Giovanni

    2015-08-01

    IBD (inflammatory bowel disease)-related tissue damage occurs in areas which are massively infiltrated with monocytes/macrophages. These cells respond to inflammatory stimuli with enhanced production of cytokines/chemokines. In the present study, we analysed the expression and role of IL (interleukin)-34, a regulator of monocyte/macrophage differentiation, survival and function, in IBD. A significant increase in IL-34 mRNA and protein expression was seen in inflamed mucosa of patients with CD (Crohn's disease) and patients with UC (ulcerative colitis) compared with the uninvolved areas of the same patients and normal controls. IL-34 was up-regulated in LPMCs (lamina propria mononuclear cells) isolated from normal colon by TNF-α (tumour necrosis factor α) and TLR (Toll-like receptor) ligands and was down-regulated in intestinal biopsies and LPMCs of IBD patients upon treatment with infliximab. Treatment of normal LPMCs with IL-34 increased TNF-α expression in an ERK1/2 (extracellular-signal-regulated kinase 1/2)-dependent fashion and neutralization of IL-34 in IBD mucosal explants reduced TNF-α and IL-6 synthesis. In conclusion, our results indicate that IL-34 is up-regulated in IBD and suggest a role for this cytokine in sustaining the inflammatory responses in this disease. PMID:25800277

  4. The role of zinc in neurodegenerative inflammatory pathways in depression.

    PubMed

    Szewczyk, Bernadeta; Kubera, Marta; Nowak, Gabriel

    2011-04-29

    According to new hypothesis, depression is characterized by decreased neurogenesis and enhanced neurodegeneration which, in part, may be caused by inflammatory processes. There is much evidence indicating that depression, age-related changes often associated with impaired brain function and cognitive performances or neurodegenerative processes could be related to dysfunctions affecting the zinc ion availability. Clinical studies revealed that depression is accompanied by serum hypozincemia, which can be normalized by successful antidepressant treatment. In patients with major depression, a low zinc serum level was correlated with an increase in the activation of markers of the immune system, suggesting that this effect may result in part from a depression-related alteration in the immune-inflammatory system. Moreover, a preliminary clinical study demonstrated the benefit of zinc supplementation in antidepressant therapy in both treatment non-resistant and resistant patients. In the preclinical study, the antidepressant activity of zinc was observed in the majority of rodent tests and models of depression and revealed a causative role for zinc deficiency in the induction of depressive-like symptoms, the reduction of neurogenesis and neuronal survival or impaired learning and memory ability. This paper provides an overview of the clinical and experimental evidence that implicates the role of zinc in the pathophysiology and therapy of depression within the context of the inflammatory and neurodegenerative hypothesis of this disease. PMID:20156515

  5. Denervation protects limbs from inflammatory arthritis via an impact on the microvasculature

    PubMed Central

    Stangenberg, Lars; Burzyn, Dalia; Binstadt, Bryce A.; Weissleder, Ralph; Mahmood, Umar; Mathis, Diane

    2014-01-01

    Two-way communication between the mammalian nervous and immune systems is increasingly recognized and appreciated. An intriguing example of such crosstalk comes from clinical observations dating from the 1930s: Patients who suffer a stroke and then develop rheumatoid arthritis atypically present with arthritis on only one side, the one not afflicted with paralysis. Here we successfully modeled hemiplegia-induced protection from arthritis using the K/BxN serum-transfer system, focused on the effector phase of inflammatory arthritis. Experiments entailing pharmacological inhibitors, genetically deficient mouse strains, and global transcriptome analyses failed to associate the protective effect with a single nerve quality (i.e., with the sympathetic, parasympathetic, or sensory nerves). Instead, there was clear evidence that denervation had a long-term effect on the limb microvasculature: The rapid and joint-localized vascular leak that typically accompanies and promotes serum-transferred arthritis was compromised in denervated limbs. This defect was reflected in the transcriptome of endothelial cells, the expression of several genes impacting vascular leakage or transendothelial cell transmigration being altered in denervated limbs. These findings highlight a previously unappreciated pathway to dissect and eventually target in inflammatory arthritis. PMID:25049388

  6. Inflammatory Pathways in Parkinson's Disease; A BNE Microarray Study

    PubMed Central

    Durrenberger, Pascal. F.; Grünblatt, Edna; Fernando, Francesca S.; Monoranu, Camelia Maria; Evans, Jordan; Riederer, Peter; Reynolds, Richard; Dexter, David T.

    2012-01-01

    The aetiology of Parkinson's disease (PD) is yet to be fully understood but it is becoming more and more evident that neuronal cell death may be multifactorial in essence. The main focus of PD research is to better understand substantia nigra homeostasis disruption, particularly in relation to the wide-spread deposition of the aberrant protein α-synuclein. Microarray technology contributed towards PD research with several studies to date and one gene, ALDH1A1 (Aldehyde dehydrogenase 1 family, member A1), consistently reappeared across studies including the present study, highlighting dopamine (DA) metabolism dysfunction resulting in oxidative stress and most probably leading to neuronal cell death. Neuronal cell death leads to increased inflammation through the activation of astrocytes and microglia. Using our dataset, we aimed to isolate some of these pathways so to offer potential novel neuroprotective therapeutic avenues. To that effect our study has focused on the upregulation of P2X7 (purinergic receptor P2X, ligand-gated ion channel, 7) receptor pathway (microglial activation) and on the NOS3 (nitric oxide synthase 3) pathway (angiogenesis). In summary, although the exact initiator of striatal DA neuronal cell death remains to be determined, based on our analysis, this event does not remain without consequence. Extracellular ATP and reactive astrocytes appear to be responsible for the activation of microglia which in turn release proinflammatory cytokines contributing further to the parkinsonian condition. In addition to tackling oxidative stress pathways we also suggest to reduce microglial and endothelial activation to support neuronal outgrowth. PMID:22548201

  7. Pathogenesis of Endometriosis: Roles of Retinoids and Inflammatory Pathways.

    PubMed

    Taylor, Robert N; Kane, Maureen A; Sidell, Neil

    2015-07-01

    Endometriosis is a nonmalignant, but potentially metastatic, gynecological condition manifested by the extrauterine growth of inflammatory endometrial implants. Ten percent of reproductive-age women are affected and commonly suffer pelvic pain and/or infertility. The theories of endometriosis histogenesis remain controversial, but retrograde menstruation and metaplasia each infer mechanisms that explain the immune cell responses observed around the ectopic lesions. Recent findings from our laboratories and others suggest that retinoic acid metabolism and action are fundamentally flawed in endometriotic tissues and even generically in women with endometriosis. The focus of our ongoing research is to develop medical therapies as adjuvants or alternatives to the surgical excision of these lesions. On the basis of concepts put forward in this review, we predict that the pharmacological actions and anticipated low side-effect profiles of retinoid supplementation might provide a new treatment option for the long-term management of this chronic and debilitating gynecological disease. PMID:26132929

  8. Regulation of different inflammatory diseases by impacting the mevalonate pathway

    PubMed Central

    Zeiser, Robert; Maas, Kristina; Youssef, Sawsan; Dürr, Christoph; Steinman, Lawrence; Negrin, Robert S

    2009-01-01

    The 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins) interfere with the mevalonate pathway. While initially developed for their lipid-lowering properties, statins have been extensively investigated with respect to their impact on autoantigen and alloantigen driven immune responses. Mechanistically it was shown that statins modify immune responses on several levels, including effects on dendritic cells, endothelial cells, macrophages, B cells and T cells. Several lines of evidence suggest that statins act in a disease-specific manner and are not effective in each immune disorder. This review discusses possible modes of action of statins in modulating immunity towards autoantigens and alloantigens. PMID:19191903

  9. Resveratrol Attenuates Acute Inflammatory Injury in Experimental Subarachnoid Hemorrhage in Rats via Inhibition of TLR4 Pathway

    PubMed Central

    Zhang, Xiang-Sheng; Li, Wei; Wu, Qi; Wu, Ling-Yun; Ye, Zhen-Nan; Liu, Jing-Peng; Zhuang, Zong; Zhou, Meng-Liang; Zhang, Xin; Hang, Chun-Hua

    2016-01-01

    Toll-like receptor 4 (TLR4) has been proven to play a critical role in neuroinflammation and to represent an important therapeutic target following subarachnoid hemorrhage (SAH). Resveratrol (RSV), a natural occurring polyphenolic compound, has a powerful anti-inflammatory property. However, the underlying molecular mechanisms of RSV in protecting against early brain injury (EBI) after SAH remain obscure. The purpose of this study was to investigate the effects of RSV on the TLR4-related inflammatory signaling pathway and EBI in rats after SAH. A prechiasmatic cistern SAH model was used in our experiment. The expressions of TLR4, high-mobility group box 1 (HMGB1), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) were evaluated by Western blot and immunohistochemistry. The expressions of Iba-1 and pro-inflammatory cytokines in brain cortex were determined by Western blot, immunofluorescence staining, or enzyme-linked immunosorbent assay. Neural apoptosis, brain edema, and neurological function were further evaluated to investigate the development of EBI. We found that post-SAH treatment with RSV could markedly inhibit the expressions of TLR4, HMGB1, MyD88, and NF-κB. Meanwhile, RSV significantly reduced microglia activation, as well as inflammatory cytokines leading to the amelioration of neural apoptosis, brain edema, and neurological behavior impairment at 24 h after SAH. However, RSV treatment failed to alleviate brain edema and neurological deficits at 72 h after SAH. These results indicated that RSV treatment could alleviate EBI after SAH, at least in part, via inhibition of TLR4-mediated inflammatory signaling pathway. PMID:27529233

  10. Resveratrol Attenuates Acute Inflammatory Injury in Experimental Subarachnoid Hemorrhage in Rats via Inhibition of TLR4 Pathway.

    PubMed

    Zhang, Xiang-Sheng; Li, Wei; Wu, Qi; Wu, Ling-Yun; Ye, Zhen-Nan; Liu, Jing-Peng; Zhuang, Zong; Zhou, Meng-Liang; Zhang, Xin; Hang, Chun-Hua

    2016-01-01

    Toll-like receptor 4 (TLR4) has been proven to play a critical role in neuroinflammation and to represent an important therapeutic target following subarachnoid hemorrhage (SAH). Resveratrol (RSV), a natural occurring polyphenolic compound, has a powerful anti-inflammatory property. However, the underlying molecular mechanisms of RSV in protecting against early brain injury (EBI) after SAH remain obscure. The purpose of this study was to investigate the effects of RSV on the TLR4-related inflammatory signaling pathway and EBI in rats after SAH. A prechiasmatic cistern SAH model was used in our experiment. The expressions of TLR4, high-mobility group box 1 (HMGB1), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) were evaluated by Western blot and immunohistochemistry. The expressions of Iba-1 and pro-inflammatory cytokines in brain cortex were determined by Western blot, immunofluorescence staining, or enzyme-linked immunosorbent assay. Neural apoptosis, brain edema, and neurological function were further evaluated to investigate the development of EBI. We found that post-SAH treatment with RSV could markedly inhibit the expressions of TLR4, HMGB1, MyD88, and NF-κB. Meanwhile, RSV significantly reduced microglia activation, as well as inflammatory cytokines leading to the amelioration of neural apoptosis, brain edema, and neurological behavior impairment at 24 h after SAH. However, RSV treatment failed to alleviate brain edema and neurological deficits at 72 h after SAH. These results indicated that RSV treatment could alleviate EBI after SAH, at least in part, via inhibition of TLR4-mediated inflammatory signaling pathway. PMID:27529233

  11. The Cannabinoid Receptor 2 Protects Against Alcoholic Liver Disease Via a Macrophage Autophagy-Dependent Pathway

    PubMed Central

    Denaës, Timothé; Lodder, Jasper; Chobert, Marie-Noële; Ruiz, Isaac; Pawlotsky, Jean-Michel; Lotersztajn, Sophie; Teixeira-Clerc, Fatima

    2016-01-01

    Kupffer cells, the resident macrophages of the liver, play a major role in the pathogenesis of alcoholic liver disease. We have previously demonstrated that CB2 receptor protects against alcoholic liver disease by inhibiting alcohol-induced inflammation and steatosis via the regulation of Kupffer cell activation. Here, we explored the mechanism underlying these effects and hypothesized that the anti-inflammatory properties of CB2 receptor in Kupffer cells rely on activation of autophagy. For this purpose, mice invalidated for CB2 receptor (CB2Mye−/− mice) or for the autophagy gene ATG5 (ATG5Mye−/− mice) in the myeloid lineage, and their littermate wild-type mice were subjected to chronic-plus-binge ethanol feeding. CB2Mye−/− mice showed exacerbated alcohol-induced pro-inflammatory gene expression and steatosis. Studies in cultured macrophages demonstrated that CB2 receptor activation by JWH-133 stimulated autophagy via a heme oxygenase-1 dependent pathway. Moreover, JWH-133 reduced the induction of inflammatory genes by lipopolysaccharide in wild-type macrophages, but not in ATG5-deficient cells. The CB2 agonist also protected from alcohol-induced liver inflammation and steatosis in wild-type mice, but not in ATG5Mye−/− mice demonstrating that macrophage autophagy mediates the anti-inflammatory and anti-steatogenic effects of CB2 receptor. Altogether these results demonstrate that CB2 receptor activation in macrophages protects from alcohol-induced steatosis by inhibiting hepatic inflammation through an autophagy-dependent pathway. PMID:27346657

  12. A Novel Compound C12 Inhibits Inflammatory Cytokine Production and Protects from Inflammatory Injury In Vivo

    PubMed Central

    Pan, Yong; Li, Jianling; Zhang, Yali; Ye, Faqing; Yang, Shulin; Zhang, Hui; Li, Xiaokun; Liang, Guang

    2011-01-01

    Inflammation is a hallmark of many diseases. Although steroids and cyclooxygenase inhibitors are main anti-inflammatory therapeutical agents, they may cause serious side effects. Therefore, developing non-steroid anti-inflammatory agents is urgently needed. A novel hydrosoluble compound, C12 (2,6-bis(4-(3-(dimethylamino)-propoxy)benzylidene)cyclohexanone), has been designed and synthesized as an anti-inflammatory agent in our previous study. In the present study, we investigated whether C12 can affect inflammatory processes in vitro and in vivo. In mouse primary peritoneal macrophages, C12 potently inhibited the production of the proinflammatory gene expression including TNF-α, IL-1β, IL-6, iNOS, COX-2 and PGE synthase. The activity of C12 was partly dependent on inhibition of ERK/JNK (but p38) phosphorylation and NF-κB activation. In vivo, C12 suppressed proinflammatory cytokine production in plasma and liver, attenuated lung histopathology, and significantly reduced mortality in endotoxemic mice. In addition, the pre-treatment with C12 reduced the inflammatory pain in the acetic acid and formalin models and reduced the carrageenan-induced paw oedema and acetic acid-increased vascular permeability. Taken together, C12 has multiple anti-inflammatory effects. These findings, coupled with the low toxicity and hydrosolubility of C12, suggests that this agent may be useful in the treatment of inflammatory diseases. PMID:21931698

  13. Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain

    PubMed Central

    Wang, Xiao-Min; Wu, Tian-Xia; Hamza, May; Ramsay, Edward S.; Wahl, Sharon M.; Dionne, Raymond A.

    2007-01-01

    New insights into the biological properties of cyclooxygenase-2 (COX-2) and its response pathway challenge the hypothesis that COX-2 is simply pro-inflammatory and inhibition of COX-2 solely prevents the development of inflammation and ameliorates inflammatory pain. The present study performed a comprehensive analysis of gene/protein expression induced by a selective inhibitor of COX-2, rofecoxib, compared with a non-selective COX inhibitor, ibuprofen, and placebo in a clinical model of acute inflammatory pain (the surgical extraction of impacted third molars) using microarray analysis followed by quantitative RT-PCR verification and Western blotting. Inhibition of COX-2 modulated gene expression related to inflammation and pain, the arachidonic acid pathway, apoptosis/angiogenesis, cell adhesion and signal transduction. Compared to placebo, rofecoxib treatment increased the gene expression of ANXA3 (annexin 3), SOD2 (superoxide dismutase 2), SOCS3 (suppressor of cytokine signaling 3) and IL1RN (IL1 receptor antagonist) which are associated with inhibition of phospholipase A2 and suppression of cytokine signaling cascades, respectively. Both rofecoxib and ibuprofen treatment increased the gene expression of the pro-inflammatory mediators, IL6 and CCL2 (chemokine C-C motif ligand 2), following tissue injury compared to the placebo treatment. These results indicate a complex role for COX-2 in the inflammatory cascade in addition to the well-characterized COX-dependent pathway, as multiple pathways are also involved in rofecoxib-induced anti-inflammatory and analgesic effects at the gene expression level. These findings may also suggest an alternative hypothesis for the adverse effects attributed to selective inhibition of COX-2. PMID:17070997

  14. Guanosine Protects Against Cortical Focal Ischemia. Involvement of Inflammatory Response.

    PubMed

    Hansel, Gisele; Tonon, André Comiran; Guella, Felipe Lhywinskh; Pettenuzzo, Letícia Ferreira; Duarte, Thiago; Duarte, Marta Maria Medeiros Frescura; Oses, Jean Pierre; Achaval, Matilde; Souza, Diogo Onofre

    2015-12-01

    Stroke is the major cause of death and the most frequent cause of disability in the adult population worldwide. Guanosine plays an important neuroprotective role in several cerebral ischemic models and is involved in the modulation of oxidative responses and glutamatergic parameters. Because the excessive reactive oxygen species produced during an ischemic event can trigger an inflammatory response, the purpose of this study was to evaluate the hypothesis that guanosine is neuroprotective against focal cerebral ischemia, inhibits microglia/macrophages activation, and mediates an inflammatory response ameliorating the neural damage. Permanent focal cerebral ischemia was induced in adult rats, and guanosine was administered immediately, 1, 3, and 6 h after surgery. Twenty-four hours after ischemia, the asymmetry scores were evaluated by the cylinder test; neuronal damage was evaluated by Fluoro-Jade C (FJC) staining and propidium iodide (PI) incorporation; microglia and immune cells were evaluated by anti-Iba-1 antibody; and inflammatory parameters such as interleukins (IL): IL-1, IL-6, IL-10; tumor necrosis factors alpha (TNF-α); and interferon-gamma (INF-γ) were evaluated in the brain tissue and cerebrospinal fluid. The ischemic event increased the levels of Iba-1-positive cells and pro-inflammatory cytokines and decreased IL-10 levels (an anti-inflammatory cytokine) in the lesion periphery. The guanosine treatment attenuated the changes in these inflammatory parameters and also reduced the infarct volume, PI incorporation, and number of FJC-positive cells, improving the functional recovery. Thus, guanosine may have been a promising therapeutic agent for the treatment of ischemic brain injury by reduction of inflammatory process triggered in an ischemic event. PMID:25394382

  15. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis

    PubMed Central

    Bao, Lei; Zhang, Huayi; Chan, Lawrence S

    2013-01-01

    Atopic dermatitis (AD), a common chronic inflammatory skin disease, is characterized by inflammatory cell skin infiltration. The JAK-STAT pathway has been shown to play an essential role in the dysregulation of immune responses in AD, including the exaggeration of Th2 cell response, the activation of eosinophils, the maturation of B cells, and the suppression of regulatory T cells (Tregs). In addition, the JAK-STAT pathway, activated by IL-4, also plays a critical role in the pathogenesis of AD by upregulating epidermal chemokines, pro-inflammatroy cytokines, and pro-angiogenic factors as well as by downregulating antimicrobial peptides (AMPs) and factors responsible for skin barrier function. In this review, we will highlight the recent advances in our understanding of the JAK-STAT pathway in the pathogenesis of AD. PMID:24069552

  16. Tetrabromobisphenol A Activates Inflammatory Pathways in Human First Trimester Extravillous Trophoblasts in vitro

    PubMed Central

    Park, Hae-Ryung; Kamau, Patricia W.; Korte, Cassandra; Loch-Caruso, Rita

    2014-01-01

    Tetrabromobisphenol A (TBBPA) is a widely used flame retardant. Despite the presence of TBBPA in gestational tissues and the importance of proper regulation of inflammatory networks for successful pregnancy, there is no prior study on the effects of TBBPA on inflammatory responses in gestational tissues. The present study aimed to investigate TBBPA activation of inflammatory pathways, specifically cytokine and prostaglandin production, in the human first trimester placental cell line HTR-8/SVneo. TBBPA enhanced release of interleukin (IL)-6, IL-8, and prostaglandin E2 (PGE2), and suppressed TGF-β release in HTR-8/SVneo cells. The lowest effective concentration was 10 μM TBBPA. A commercial immune response PCR array revealed increased expression of genes involved in inflammatory pathways stimulated by TBBPA in HTR-8/SVneo cells. Because proper regulation of inflammatory mediators in the gestational compartment is necessary for normal placental development and successful pregnancy, further investigation on the impact of TBBPA-stimulated responses on trophoblast function is warranted. PMID:25461914

  17. Block of the Mevalonate Pathway Triggers Oxidative and Inflammatory Molecular Mechanisms Modulated by Exogenous Isoprenoid Compounds

    PubMed Central

    Tricarico, Paola Maura; Kleiner, Giulio; Valencic, Erica; Campisciano, Giuseppina; Girardelli, Martina; Crovella, Sergio; Knowles, Alessandra; Marcuzzi, Annalisa

    2014-01-01

    Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD). One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines’ release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3), cytokines and nitric oxide (NO)]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD. PMID:24758928

  18. JAK2/STAT3 pathway mediating inflammatory responses in heatstroke-induced rats.

    PubMed

    Tao, Zhen; Cheng, Ming; Wang, Shu-Cai; Lv, Wei; Hu, Huai-Qiang; Li, Chuan-Fen; Cao, Bing-Zhen

    2015-01-01

    Heatstroke not only directly induces cell injury, but also causes large amounts of inflammatory mediators release and cells with extensive biological activities to induce a systemic inflammatory response and immune dysfunction. This study aimed to observe the effects of JAK2 inhibitor AG490 on the brain injury and inflammatory responses of rats with systemic heatstroke. Under the light microscope, the hippocampus tissues of rat with heatstroke were edema and apoptotic rate was increased. Up-regulation of malondialdehyde (MDA), nitric oxide synthase (iNOS), reactive oxygen species (ROS) and down-regulation of superoxide dismutase (SOD) were also found after heatstroke in rats, which compared with that of the control group. Heatstroke induced inflammation factors secretions and up-regulated levels of matrix metallopeptidase 2 and 9 (MMP2 and MMP-9) and systemic inflammatory response molecules including intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-beta 1 (TNF-β1) and cyclooxygenase-2 (COX-2). However, the JAK2 inhibitor AG490 was significantly attenuated the brain injury and inflammatory responses induced by heatstroke in rats. The survival time of heatstroke rats showed that AG490 notably lived longer than heatstroke rats without AG490 treatment. These findings suggest that AG490 may prevent the occurrence of heatstroke via inhibiting the JAK2/STAT3 pathway and the systemic inflammatory responses. PMID:26261556

  19. JAK2/STAT3 pathway mediating inflammatory responses in heatstroke-induced rats

    PubMed Central

    Tao, Zhen; Cheng, Ming; Wang, Shu-Cai; Lv, Wei; Hu, Huai-Qiang; Li, Chuan-Fen; Cao, Bing-Zhen

    2015-01-01

    Heatstroke not only directly induces cell injury, but also causes large amounts of inflammatory mediators release and cells with extensive biological activities to induce a systemic inflammatory response and immune dysfunction. This study aimed to observe the effects of JAK2 inhibitor AG490 on the brain injury and inflammatory responses of rats with systemic heatstroke. Under the light microscope, the hippocampus tissues of rat with heatstroke were edema and apoptotic rate was increased. Up-regulation of malondialdehyde (MDA), nitric oxide synthase (iNOS), reactive oxygen species (ROS) and down-regulation of superoxide dismutase (SOD) were also found after heatstroke in rats, which compared with that of the control group. Heatstroke induced inflammation factors secretions and up-regulated levels of matrix metallopeptidase 2 and 9 (MMP2 and MMP-9) and systemic inflammatory response molecules including intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-beta 1 (TNF-β1) and cyclooxygenase-2 (COX-2). However, the JAK2 inhibitor AG490 was significantly attenuated the brain injury and inflammatory responses induced by heatstroke in rats. The survival time of heatstroke rats showed that AG490 notably lived longer than heatstroke rats without AG490 treatment. These findings suggest that AG490 may prevent the occurrence of heatstroke via inhibiting the JAK2/STAT3 pathway and the systemic inflammatory responses. PMID:26261556

  20. Oxytocin activates NF-κB-mediated inflammatory pathways in human gestational tissues.

    PubMed

    Kim, Sung Hye; MacIntyre, David A; Firmino Da Silva, Maria; Blanks, Andrew M; Lee, Yun S; Thornton, Steven; Bennett, Phillip R; Terzidou, Vasso

    2015-03-01

    Human labour, both at term and preterm, is preceded by NF-κB-mediated inflammatory activation within the uterus, leading to myometrial activation, fetal membrane remodelling and cervical ripening. The stimuli triggering inflammatory activation in normal human parturition are not fully understood. We show that the neurohypophyseal peptide, oxytocin (OT), activates NF-κB and stimulates downstream inflammatory pathways in human gestational tissues. OT stimulation (1 pM-100 nM) specifically via its receptor (OTR) in human myometrial and amnion primary cells led to MAPK and NF-κB activation within 15 min and maximal p65-subunit nuclear translocation within 30 min. Both in human myometrium and amnion, OT-induced activation of the canonical NF-κB pathway upregulated key inflammatory labour-associated genes including IL-8, CCL5, IL-6 and COX-2. IKKβ inhibition (TPCA1; 10 µM) suppressed OT-induced NF-κB-p65 phosphorylation, whereas p65-siRNA knockdown reduced basal and OT-induced COX-2 levels in myometrium and amnion. In both gestational tissues, MEK1/2 (U0126; 10 µM) or p38 inhibition (SB203580; 10 µM) suppressed OT-induced COX-2 expression, but OT-induced p65-phosphorylation was only inhibited in amnion, suggesting OT activation of NF-κB in amnion is MAPK-dependent. Our data provide new insight into the OT/OTR system in human parturition and suggest that its therapeutic modulation could be a strategy for regulating both contractile and inflammatory pathways in the clinical context of term/preterm labour. PMID:25451977

  1. Mediators, Receptors, and Signalling Pathways in the Anti-Inflammatory and Antihyperalgesic Effects of Acupuncture

    PubMed Central

    McDonald, John L.; Cripps, Allan W.; Smith, Peter K.

    2015-01-01

    Acupuncture has been used for millennia to treat allergic diseases including both intermittent rhinitis and persistent rhinitis. Besides the research on the efficacy and safety of acupuncture treatment for allergic rhinitis, research has also investigated how acupuncture might modulate immune function to exert anti-inflammatory effects. A proposed model has previously hypothesized that acupuncture might downregulate proinflammatory neuropeptides, proinflammatory cytokines, and neurotrophins, modulating transient receptor potential vallinoid (TRPV1), a G-protein coupled receptor which plays a central role in allergic rhinitis. Recent research has been largely supportive of this model. New advances in research include the discovery of a novel cholinergic anti-inflammatory pathway activated by acupuncture. A chemokine-mediated proliferation of opioid-containing macrophages in inflamed tissues, in response to acupuncture, has also been demonstrated for the first time. Further research on the complex cross talk between receptors during inflammation is also helping to elucidate the mediators and signalling pathways activated by acupuncture. PMID:26339274

  2. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses

    PubMed Central

    Aho, Vilma; Ollila, Hanna M.; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J.; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S.A.; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M.; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T.; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja

    2016-01-01

    Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases. PMID:27102866

  3. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses.

    PubMed

    Aho, Vilma; Ollila, Hanna M; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S A; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja

    2016-01-01

    Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases. PMID:27102866

  4. The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway

    NASA Astrophysics Data System (ADS)

    Goldstein, Alona; Soroka, Yoram; Frušić-Zlotkin, Marina; Lewis, Aaron; Kohen, Ron

    2016-06-01

    Plasmonic gold nanoparticles (AuNPs) are widely investigated for cancer therapy, due to their ability to strongly absorb light and convert it to heat and thus selectively destroy tumor cells. In this study we shed light on a new aspect of AuNPs and their plasmonic excitation, wherein they can provide anti-oxidant and anti-inflammatory protection by stimulating the cellular protective Nrf2 pathway. Our study was carried out on cells of the immune system, macrophages, and on skin cells, keratinocytes. A different response to AuNPs was noted in the two types of cells, explained by their distinct uptake profiles. In keratinocytes, the exposure to AuNPs, even at low concentrations, was sufficient to activate the Nrf2 pathway, without any irradiation, due to the presence of free AuNPs inside the cytosol. In contrast, in macrophages, the plasmonic excitation of the AuNPs by a low, non-lethal irradiation dose was required for their release from the constraining vesicles. The mechanism by which AuNPs activate the Nrf2 pathway was studied. Direct and indirect activation were suggested, based on the inherent ability of the AuNPs to react with thiol groups and to generate reactive oxygen species, in particular, under plasmonic excitation. The ability of AuNPs to directly activate the Nrf2 pathway renders them good candidates for treatment of disorders in which the up-regulation of Nrf2 is beneficial, specifically for topical treatment of inflammatory skin diseases.

  5. The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway.

    PubMed

    Goldstein, Alona; Soroka, Yoram; Frušić-Zlotkin, Marina; Lewis, Aaron; Kohen, Ron

    2016-06-01

    Plasmonic gold nanoparticles (AuNPs) are widely investigated for cancer therapy, due to their ability to strongly absorb light and convert it to heat and thus selectively destroy tumor cells. In this study we shed light on a new aspect of AuNPs and their plasmonic excitation, wherein they can provide anti-oxidant and anti-inflammatory protection by stimulating the cellular protective Nrf2 pathway. Our study was carried out on cells of the immune system, macrophages, and on skin cells, keratinocytes. A different response to AuNPs was noted in the two types of cells, explained by their distinct uptake profiles. In keratinocytes, the exposure to AuNPs, even at low concentrations, was sufficient to activate the Nrf2 pathway, without any irradiation, due to the presence of free AuNPs inside the cytosol. In contrast, in macrophages, the plasmonic excitation of the AuNPs by a low, non-lethal irradiation dose was required for their release from the constraining vesicles. The mechanism by which AuNPs activate the Nrf2 pathway was studied. Direct and indirect activation were suggested, based on the inherent ability of the AuNPs to react with thiol groups and to generate reactive oxygen species, in particular, under plasmonic excitation. The ability of AuNPs to directly activate the Nrf2 pathway renders them good candidates for treatment of disorders in which the up-regulation of Nrf2 is beneficial, specifically for topical treatment of inflammatory skin diseases. PMID:27224746

  6. EGCG Attenuates Uric Acid-Induced Inflammatory and Oxidative Stress Responses by Medicating the NOTCH Pathway

    PubMed Central

    Xie, Hua; Sun, Jianqin; Chen, Yanqiu; Zong, Min; Li, Shijie; Wang, Yan

    2015-01-01

    Background. The aim of this study is to investigate whether (-)-epigallocatechin-3-gallate (EGCG) can prevent the UA-induced inflammatory effect of human umbilical vein endothelial cells (HUVEC) and the involved mechanisms in vitro. Methods. HUVEC were subjected to uric acid (UA) with or without EGCG treatment. RT-PCR and western blots were performed to determine the level of inflammation marker. The antioxidant activity was evaluated by measuring scavenged reactive oxygen species (ROS). Functional studies of the role of Notch-1 in HUVEC lines were performed using RNA interference analyses. Results. UA significantly increased the expressions of IL-6, ICAM-1, TNF-α, and MCP-1 and the production of ROS in HUVEC. Meanwhile, the expression of Notch-1 and its downstream effects significantly increased. Using siRNA, inhibition of Notch-1 signaling significantly impeded the expressions of inflammatory cytokines under UA treatment. Interestingly, EGCG suppressed the expressions of inflammatory cytokines and the generation of ROS. Western blot analysis of Notch-1 showed that EGCG significantly decreased the expressions of inflammatory cytokines through Notch-1 signaling pathways. Conclusions. In summary, our findings indicated that Notch-1 plays an important role in the UA-induced inflammatory response, and the downregulation of Notch-1 by EGCG could be an effective approach to decrease inflammation and oxidative stress induced by UA. PMID:26539255

  7. Anti-inflammatory pathways and alcoholic liver disease: role of an adiponectin/interleukin-10/heme oxygenase-1 pathway.

    PubMed

    Mandal, Palash; Pritchard, Michele T; Nagy, Laura E

    2010-03-21

    The development of alcoholic liver disease (ALD) is a complex process involving both the parenchymal and non-parenchymal cells in the liver. Enhanced inflammation in the liver during ethanol exposure is an important contributor to injury. Kupffer cells, the resident macrophages in liver, are particularly critical to the onset of ethanol-induced liver injury. Chronic ethanol exposure sensitizes Kupffer cells to activation by lipopolysaccharide via Toll-like receptor 4. This sensitization enhances production of inflammatory mediators, such as tumor necrosis factor-alpha and reactive oxygen species, that contribute to hepatocyte dysfunction, necrosis, apoptosis, and fibrosis. Impaired resolution of the inflammatory process probably also contributes to ALD. The resolution of inflammation is an active, highly coordinated response that can potentially be manipulated via therapeutic interventions to treat chronic inflammatory diseases. Recent studies have identified an adiponectin/interleukin-10/heme oxygenase-1 (HO-1) pathway that is profoundly effective in dampening the enhanced activation of innate immune responses in primary cultures of Kupffer cells, as well as in an in vivo mouse model of chronic ethanol feeding. Importantly, induction of HO-1 also reduces ethanol-induced hepatocellular apoptosis in this in vivo model. Based on these data, we hypothesize that the development of therapeutic agents to regulate HO-1 and its downstream targets could be useful in enhancing the resolution of inflammation during ALD and preventing progression of early stages of liver injury. PMID:20238399

  8. Naringin Protects Against Cartilage Destruction in Osteoarthritis Through Repression of NF-κB Signaling Pathway.

    PubMed

    Zhao, Yunpeng; Li, Zhong; Wang, Wenhan; Zhang, Hui; Chen, Jianying; Su, Peng; Liu, Long; Li, Weiwei

    2016-02-01

    Naringin was previously reported as a multifunctional agent. Recently, naringin was found to play a protective role in various inflammatory conditions. However, the role of naringin in cartilage degeneration and osteoarthritis (OA) progression is still unknown. TNF-α is reported to play a detrimental role in OA. Herein, primary murine chondrocytes were isolated and cultured with stimulation of TNF-α, in the presence or absence of naringin treatment. As a result, naringin attenuated TNF-α-mediated inflammation and catabolism in chondrocyte. Besides, surgically induced OA mice models were established. Cartilage degradation and OA severity were evaluated using Safranin-O staining, immunohistochemistry, and ELISA. Moreover, levels of inflammatory cytokines and catabolic markers in OA were analyzed. Oral administration of naringin alleviated degradation of cartilage matrix and protected against OA development in the surgically induced OA models. Furthermore, the protective function of naringin in cartilage and chondrocyte was possibly due to suppression of NF-κB signaling pathway. Collectively, this study presents naringin as a potential target for the treatment of joint degenerative diseases, including OA. PMID:26438631

  9. MicroRNAs: New players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways

    PubMed Central

    Zhang, Chengyue; Shu, Limin; Kong, Ah-Ng Tony

    2015-01-01

    miRNAs are endogenous small non-coding RNAs of 20-22 nucleotides that repress gene expression at the post-transcriptional level. There is growing interest in the role of miRNAs in cancer chemoprevention, and several naturally occurring chemopreventive agents have been found to be modulators of miRNA expression both in vitro and in vivo. Moreover, these chemopreventive phytochemicals commonly possess anti-oxidative and/or anti-inflammatory properties, and Nrf2 has been extensively studied as a molecular target in cancer prevention. The crosstalk between miRNAs and the traditional cellular signaling pathways of chemoprevention remain to be fully elucidated. This review summarizes the data regarding the potential interactions between miRNAs and anti-oxidative and anti-inflammatory pathways. Cellular redox homeostasis can affect the biogenesis and processing of miRNAs, which in turn regulate the Nrf2 pathway of detoxifying/anti-oxidative genes. We also discuss the miRNA regulatory mechanisms in relation to inflammation-related cancer signaling pathways. PMID:26618104

  10. The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors.

    PubMed

    Lu, JingWei; Plank, Terra-Dawn; Su, Fang; Shi, XiuJuan; Liu, Chen; Ji, Yuan; Li, ShuaiJun; Huynh, Andrew; Shi, Chao; Zhu, Bo; Yang, Guang; Wu, YanMing; Wilkinson, Miles F; Lu, YanJun

    2016-08-01

    Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Little is known about the molecular pathways that precipitate IMT formation. Here, we report the identification of somatic mutations in UPF1, a gene that encodes an essential component of the nonsense-mediated RNA decay (NMD) pathway, in 13 of 15 pulmonary IMT samples. The majority of mutations occurred in a specific region of UPF1 and triggered UPF1 alternative splicing. Several mRNA targets of the NMD pathway were upregulated in IMT samples, indicating that the UPF1 mutations led to reduced NMD magnitude. These upregulated NMD targets included NIK mRNA, which encodes a potent activator of NF-κB. In human lung cells, UPF1 depletion increased expression of chemokine-encoding genes in a NIK-dependent manner. Elevated chemokines and IgE class switching events were observed in IMT samples, consistent with NIK upregulation in these tumors. Together, these results support a model in which UPF1 mutations downregulate NMD, leading to NIK-dependent NF-κB induction, which contributes to the immune infiltration that is characteristic of IMTs. The molecular link between the NMD pathway and IMTs has implications for the diagnosis and treatment of these tumors. PMID:27348585

  11. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models

    SciTech Connect

    Lee, Wonhwa; Kim, Tae Hoon; Ku, Sae-Kwang; Min, Kyoung-jin; Lee, Hyun-Shik; Kwon, Taeg Kyu; Bae, Jong-Sup

    2012-07-01

    Withaferin A (WFA), an active compound from Withania somnifera, is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. In this study, we first investigated the possible barrier protective effects of WFA against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice induced by high mobility group box 1 protein (HMGB1) and the associated signaling pathways. The barrier protective activities of WFA were determined by measuring permeability, leukocytes adhesion and migration, and activation of pro-inflammatory proteins in HMGB1-activated HUVECs. We found that WFA inhibited lipopolysaccharide (LPS)-induced HMGB1 release and HMGB1-mediated barrier disruption, expression of cell adhesion molecules (CAMs) and adhesion/transendothelial migration of leukocytes to human endothelial cells. WFA also suppressed acetic acid-induced hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Further studies revealed that WFA suppressed the production of interleukin 6, tumor necrosis factor-α (TNF-α) and activation of nuclear factor-κB (NF-κB) by HMGB1. Collectively, these results suggest that WFA protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. -- Highlights: ► Withaferin A inhibited LPS induced HMGB1 release. ► Withaferin A reduced HMGB1-mediated hyperpermeability. ► Withaferin A inhibited HMGB1-mediated adhesion and migration of leukocytes. ► Withaferin A inhibited HMGB1-mediated activation of NF-κB, IL-6 and TNF-α.

  12. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer.

    PubMed

    Prasad, Sahdeo; Phromnoi, Kannokarn; Yadav, Vivek R; Chaturvedi, Madan M; Aggarwal, Bharat B

    2010-08-01

    Observational studies have suggested that lifestyle risk factors such as tobacco, alcohol, high-fat diet, radiation, and infections can cause cancer and that a diet consisting of fruits and vegetables can prevent cancer. Evidence from our laboratory and others suggests that agents either causing or preventing cancer are linked through the regulation of inflammatory pathways. Genes regulated by the transcription factor NF- kappaB have been shown to mediate inflammation, cellular transformation, tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Whereas various lifestyle risk factors have been found to activate NF- kappaB and NF- kappaB-regulated gene products, flavonoids derived from fruits and vegetables have been found to suppress this pathway. The present review describes various flavones, flavanones, flavonols, isoflavones, anthocyanins, and chalcones derived from fruits, vegetables, legumes, spices, and nuts that can suppress the proinflammatory cell signaling pathways and thus can prevent and even treat the cancer. PMID:20635307

  13. Human SNP Links Differential Outcomes in Inflammatory and Infectious Disease to a FOXO3-Regulated Pathway

    PubMed Central

    Lee, James C.; Espéli, Marion; Anderson, Carl A.; Linterman, Michelle A.; Pocock, Joanna M.; Williams, Naomi J.; Roberts, Rebecca; Viatte, Sebastien; Fu, Bo; Peshu, Norbert; Hien, Tran Tinh; Phu, Nguyen Hoan; Wesley, Emma; Edwards, Cathryn; Ahmad, Tariq; Mansfield, John C.; Gearry, Richard; Dunstan, Sarah; Williams, Thomas N.; Barton, Anne; Vinuesa, Carola G.; Phillips, Anne; Mowat, Craig; Drummond, Hazel; Kennedy, Nick; Lees, Charlie W.; Satsangi, Jack; Taylor, Kirstin; Prescott, Natalie J.; Mathew, Christopher G.; Simpson, Peter; Simmons, Alison; Khan, Mohammed; Newman, William G.; Hawkey, Christopher; Hart, Ailsa; Wilson, David C.; Henderson, Paul; Barrett, Jeffrey C.; Parkes, Miles; Lyons, Paul A.; Smith, Kenneth G.C.

    2013-01-01

    Summary The clinical course and eventual outcome, or prognosis, of complex diseases varies enormously between affected individuals. This variability critically determines the impact a disease has on a patient’s life but is very poorly understood. Here, we exploit existing genome-wide association study data to gain insight into the role of genetics in prognosis. We identify a noncoding polymorphism in FOXO3A (rs12212067: T > G) at which the minor (G) allele, despite not being associated with disease susceptibility, is associated with a milder course of Crohn’s disease and rheumatoid arthritis and with increased risk of severe malaria. Minor allele carriage is shown to limit inflammatory responses in monocytes via a FOXO3-driven pathway, which through TGFβ1 reduces production of proinflammatory cytokines, including TNFα, and increases production of anti-inflammatory cytokines, including IL-10. Thus, we uncover a shared genetic contribution to prognosis in distinct diseases that operates via a FOXO3-driven pathway modulating inflammatory responses. PaperClip PMID:24035192

  14. A sumoylation-dependent pathway mediating transrepression of inflammatory response genes by PPARγ

    PubMed Central

    Pascual, Gabriel; Fong, Amy L.; Ogawa, Sumito; Gamliel, Amir; Li, Andrew C.; Perissi, Valentina; Rose, David W.; Willson, Timothy; Rosenfeld, Michael G.; Glass, Christopher K.

    2005-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) plays essential roles in adipogenesis and glucose homeostasis and is a molecular target of insulin-sensitizing drugs1–3. Although the ability of PPARγ agonists to antagonize inflammatory responses by transrepression of nuclear factor kappaB (NF-κB) target genes is linked to anti-diabetic4 and antiatherogenic actions5, the mechanisms remain poorly understood. Here we report the identification of a molecular pathway by which PPARγ represses transcriptional activation of inflammatory response genes in macrophages. The initial step of this pathway involves ligand-dependent sumoylation of the PPARγ ligand-binding domain, which targets PPARγ to nuclear receptor co-repressor (NCoR)/histone deacetylase-3 (HDAC3) complexes on inflammatory gene promoters. This in turn prevents recruitment of the ubiquitylation/19S proteosome machinery that normally mediates the signal-dependent removal of corepressor complexes required for gene activation. As a result, NCoR complexes are not cleared from the promoter and target genes are maintained in a repressed state. This mechanism provides an explanation for how an agonist-bound nuclear receptor can be converted from an activator of transcription to a promoter-specific repressor of NF-κB target genes that regulate immunity and homeostasis. PMID:16127449

  15. Anti-inflammatory and protective properties of daphnetin in endotoxin-induced lung injury.

    PubMed

    Yu, Wen-wen; Lu, Zhe; Zhang, Hang; Kang, Yan-hua; Mao, Yun; Wang, Huan-huan; Ge, Wei-hong; Shi, Li-yun

    2014-12-24

    Uncontrolled inflammatory responses cause tissue injury and severe immunopathology. Pharmacological interference of intracellular pro-inflammatory signaling may confer a therapeutic benefit under these conditions. Daphnetin, a natural coumarin derivative, has been used to treat inflammatory diseases including bronchitis. However, the protective effect of daphnetin in inflammatory airway disorders has yet to be determined, and the molecular basis for its anti-inflammatory properties is unknown. This paper shows that daphnetin treatment conferred substantial protection from endotoxin-induced acute lung injury (ALI), in parallel with reductions in the production of inflammatory mediators, symptoms of airway response, and infiltration of inflammatory cells. Further studies indicate that activation of macrophage and human alveolar epithelial cells in response to lipopolysaccharide (LPS) was remarkably suppressed by daphnetin, which was related to the down-regulation of NF-κB-dependent signaling events. Importantly, this study demonstrates that TNF-α-induced protein 3 (TNFAIP3), also known as A20, was significantly induced by daphnetin, which appeared to be largely responsible for the down-regulation of NF-κB activity through modulation of nondegradative TRAF6 ubiquitination. Accordingly, the deletion of TNFAIP3 in primary macrophages reversed daphnetin-elicited inhibition of immune response, and the beneficial effect of daphnetin in the pathogenesis of ALI was, partially at least, abrogated by TNFAIP3 knockdown. These findings demonstrate the anti-inflammatory and protective functions of daphnetin in endotoxin-induced lung inflammation and injury and also reveal the key mechanism underlying its action in vitro as well as in vivo. PMID:25419854

  16. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  17. The HMGB1 signaling pathway activates the inflammatory response in Schwann cells

    PubMed Central

    Man, Li-li; Liu, Fan; Wang, Ying-jie; Song, Hong-hua; Xu, Hong-bo; Zhu, Zi-wen; Zhang, Qing; Wang, Yong-jun

    2015-01-01

    Schwann cells are not only myelinating cells, but also function as immune cells and express numerous innate pattern recognition receptors, including the Toll-like receptors. Injury to peripheral nerves activates an inflammatory response in Schwann cells. However, it is unclear whether specific endogenous damage-associated molecular pattern molecules are involved in the inflammatory response following nerve injury. In the present study, we demonstrate that a key damage-associated molecular pattern molecule, high mobility group box 1 (HMGB1), is upregulated following rat sciatic nerve axotomy, and we show colocalization of the protein with Schw-ann cells. HMGB1 alone could not enhance expression of Toll-like receptors or the receptor for advanced glycation end products (RAGE), but was able to facilitate migration of Schwann cells. When Schwann cells were treated with HMGB1 together with lipopolysaccharide, the expression levels of Toll-like receptors and RAGE, as well as inflammatory cytokines were upregulated. Our novel findings demonstrate that the HMGB1 pathway activates the inflammatory response in Schwann cells following peripheral nerve injury. PMID:26692874

  18. The Role of Inflammatory Pathway Genetic Variation on Maternal Metabolic Phenotypes during Pregnancy

    PubMed Central

    Urbanek, Margrit; Hayes, M. Geoffrey; Lee, Hoon; Freathy, Rachel M.; Lowe, Lynn P.; Ackerman, Christine; Jafari, Nadereh; Dyer, Alan R.; Cox, Nancy J.; Dunger, David B.; Hattersley, Andrew T.; Metzger, Boyd E.; Lowe, William L.

    2012-01-01

    Background Since mediators of inflammation are associated with insulin resistance, and the risk of developing diabetes mellitus and gestational diabetes, we hypothesized that genetic variation in members of the inflammatory gene pathway impact glucose levels and related phenotypes in pregnancy. We evaluated this hypothesis by testing for association between genetic variants in 31 inflammatory pathway genes in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) cohort, a large multiethnic multicenter study designed to address the impact of glycemia less than overt diabetes on pregnancy outcome. Results Fasting, 1-hour, and 2-hour glucose, fasting and 1-hour C-peptide, and HbA1c levels were measured in blood samples obtained from HAPO participants during an oral glucose tolerance test at 24-32 weeks gestation. We tested for association between 458 SNPs mapping to 31 genes in the inflammatory pathway and metabolic phenotypes in 3836 European ancestry and 1713 Thai pregnant women. The strongest evidence for association was observed with TNF alpha and HbA1c (rs1052248; 0.04% increase per allele C; p-value = 4.4×10−5), RETN and fasting plasma glucose (rs1423096; 0.7 mg/dl decrease per allele A; p-value = 1.1×10−4), IL8 and 1 hr plasma glucose (rs2886920; 2.6 mg/dl decrease per allele T; p-value = 1.3×10−4), ADIPOR2 and fasting C-peptide (rs2041139; 0.55 ug/L decrease per allele A; p-value = 1.4×10−4), LEPR and 1-hour C-peptide (rs1171278; 0.62 ug/L decrease per allele T; p-value = 2.4×10−4), and IL6 and 1-hour plasma glucose (rs6954897; −2.29 mg/dl decrease per allele G, p-value = 4.3×10−4). Conclusions Based on the genes surveyed in this study the inflammatory pathway is unlikely to have a strong impact on maternal metabolic phenotypes in pregnancy although variation in individual members of the pathway (e.g. RETN, IL8, ADIPOR2, LEPR, IL6, and TNF alpha,) may contribute to metabolic phenotypes in pregnant women. PMID

  19. Endogenous ghrelin attenuates pressure overload-induced cardiac hypertrophy via a cholinergic anti-inflammatory pathway.

    PubMed

    Mao, Yuanjie; Tokudome, Takeshi; Kishimoto, Ichiro; Otani, Kentaro; Nishimura, Hirohito; Yamaguchi, Osamu; Otsu, Kinya; Miyazato, Mikiya; Kangawa, Kenji

    2015-06-01

    Cardiac hypertrophy, which is commonly caused by hypertension, is a major risk factor for heart failure and sudden death. Endogenous ghrelin has been shown to exert a beneficial effect on cardiac dysfunction and postinfarction remodeling via modulation of the autonomic nervous system. However, ghrelin's ability to attenuate cardiac hypertrophy and its potential mechanism of action are unknown. In this study, cardiac hypertrophy was induced by transverse aortic constriction in ghrelin knockout mice and their wild-type littermates. After 12 weeks, the ghrelin knockout mice showed significantly increased cardiac hypertrophy compared with wild-type mice, as evidenced by their significantly greater heart weight/tibial length ratios (9.2±1.9 versus 7.9±0.8 mg/mm), left ventricular anterior wall thickness (1.3±0.2 versus 1.0±0.2 mm), and posterior wall thickness (1.1±0.3 versus 0.9±0.1 mm). Furthermore, compared with wild-type mice, ghrelin knockout mice showed suppression of the cholinergic anti-inflammatory pathway, as indicated by reduced parasympathetic nerve activity and higher plasma interleukin-1β and interleukin-6 levels. The administration of either nicotine or ghrelin activated the cholinergic anti-inflammatory pathway and attenuated cardiac hypertrophy in ghrelin knockout mice. In conclusion, our results show that endogenous ghrelin plays a crucial role in the progression of pressure overload-induced cardiac hypertrophy via a mechanism that involves the activation of the cholinergic anti-inflammatory pathway. PMID:25870195

  20. Exploring the anti-inflammatory activity of a novel 2-phenylquinazoline analog with protection against inflammatory injury

    SciTech Connect

    Chatterjee, Nabanita; Das, Subhadip; Bose, Dipayan; Banerjee, Somenath; Das, Sujata; Chattopadhyay, Debprasad; Saha, Krishna Das

    2012-10-15

    Inflammation is a protective immune response against harmful stimuli whose long time continuation results in host disease. Quinazolinones are nitrogen containing heterocyclic compounds with wide spectrum of biological activities. The anticancer effect of a 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative was reported earlier. The anti-inflammatory effect of these quinazolinone derivatives has now been examined in endotoxin stimulated macrophages and in different in vivo models of inflammation by measuring the proinflammatory cytokines (TNF-α, IL-1β and IL-6), mediators NO and NF-κB (by ELISA and western blot), and translocation of the nuclear factor kB (by immunocytochemical analysis). To elucidate the in vivo effect, mice endotoxin model was and the various levels of edema, inflammatory pain and vascular permeability were studied. One of the quinazolinone derivatives showed significant anti-inflammatory activity in stimulated macrophage cells by inhibiting the expression of TNF-α, IL-1β, IL-6, iNOS, COX-2, p-IκB and NF-κBp65. Significant (P < 0.01) improvement was observed in the mortality of endotoxemic mice. The carrageenan and formalin-induced paw edema thicknesses were found to be reduced significantly (P < 0.01) along with the reduction of pain, vascular permeability and edema induced by complete Freund's adjuvant (P < 0.01). These findings indicate that 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative as a potential anti-inflammatory agent. -- Highlights: ► 2-phenylquinazoline analog suppresses the cytokines in stimulated macrophages. ► 2-phenylquinazoline analog down regulated NF-kB P65 translocation. ► Role of 2-phenylquinazoline analog in endotoximia and peripheral inflammations.

  1. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    SciTech Connect

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  2. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases

    PubMed Central

    Raker, Verena Katharina; Becker, Christian; Steinbrink, Kerstin

    2016-01-01

    Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes. PMID:27065076

  3. Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer

    PubMed Central

    Yadav, Vivek R.; Prasad, Sahdeo; Sung, Bokyung; Kannappan, Ramaswamy; Aggarwal, Bharat B.

    2010-01-01

    Traditional medicine and diet has served mankind through the ages for prevention and treatment of most chronic diseases. Mounting evidence suggests that chronic inflammation mediates most chronic diseases, including cancer. More than other transcription factors, nuclear factor-kappaB (NF-κB) and STAT3 have emerged as major regulators of inflammation, cellular transformation, and tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Thus, agents that can inhibit NF-κB and STAT3 activation pathways have the potential to both prevent and treat cancer. In this review, we examine the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis. These triterpenes include avicins, betulinic acid, boswellic acid, celastrol, diosgenin, madecassic acid, maslinic acid, momordin, saikosaponins, platycodon, pristimerin, ursolic acid, and withanolide. This review thus supports the famous adage of Hippocrates, “Let food be thy medicine and medicine be thy food”. PMID:22069560

  4. Protective and pro-inflammatory roles of intestinal bacteria.

    PubMed

    Reinoso Webb, Cynthia; Koboziev, Iurii; Furr, Kathryn L; Grisham, Matthew B

    2016-06-01

    The intestinal mucosal surface in all vertebrates is exposed to enormous numbers of microorganisms that include bacteria, archaea, fungi and viruses. Coexistence of the host with the gut microbiota represents an active and mutually beneficial relationship that helps to shape the mucosal and systemic immune systems of both mammals and teleosts (ray-finned fish). Due to the potential for enteric microorganisms to invade intestinal tissue and induce local and/or systemic inflammation, the mucosal immune system has developed a number of protective mechanisms that allow the host to mount an appropriate immune response to invading bacteria, while limiting bystander tissue injury associated with these immune responses. Failure to properly regulate mucosal immunity is thought to be responsible for the development of chronic intestinal inflammation. The objective of this review is to present our current understanding of the role that intestinal bacteria play in vertebrate health and disease. While our primary focus will be humans and mice, we also present the new and exciting comparative studies being performed in zebrafish to model host-microbe interactions. PMID:26947707

  5. Protective effects of Forsythia suspense extract with antioxidant and anti-inflammatory properties in a model of rotenone induced neurotoxicity.

    PubMed

    Zhang, Shuai; Shao, Si-Yuan; Song, Xiu-Yun; Xia, Cong-Yuan; Yang, Ya-Nan; Zhang, Pei-Cheng; Chen, Nai-Hong

    2016-01-01

    The present study investigated the neuroprotective effects of Forsythia suspense extract in a rotenone-induced neurotoxic model. FS8, one of the herbal extracts, markedly protected PC12 cells against rotenone toxicity and was selected for the in vivo study. Gavage administration of FS8 (50 and 200mg/kg, but not 10mg/kg) for 25 days significantly improved the behavior function, decreased the loss of dopaminergic neurons in substantia nigra (SN), and maintained the level of dopamine in striatum after unilateral infusion of rotenone in SN. Wherein, the protective effects of FS8 at the dose of 200mg/kg were better than selegiline. Further study indicated the excellent antioxidant activity of FS8 on the 5th and 21st days after intranigral injection of rotenone. Moreover, FS8 could inhibit microglia activity and accumulation in SN, and obviously decreased the expression of pro-inflammatory molecules (IL-6, TNF-α, iNOS and COX-2), which indicated the anti-inflammatory effects of FS8. In the PI3K/Akt/NF-κB and MAPK pathways, FS8 significantly down-regulated the protein expression of p-PI3K, p-Akt, p-IκB, p-P65, cleaved Caspase 8, p-p38 and p-JNK but not p-mTOR, cleaved Caspase 3 and p-ERK. Therefore, FS8 protected dopamine neurons against rotenone toxicity via antioxidant and anti-inflammatory effects, which suggested the promising application of FS8 in the prevention and treatment of Parkinson disease. PMID:26408940

  6. Pathway-based approaches to the treatment of inflammatory bowel disease.

    PubMed

    Bamias, Giorgos; Pizarro, Theresa T; Cominelli, Fabio

    2016-01-01

    Crohn's disease and ulcerative colitis, collectively termed inflammatory bowel disease (IBD), are immunologic disorders that represent the prototypes of chronic intestinal inflammation. Their pathogenesis involves the dysregulated interaction between the intestinal microbiota and the gut-associated mucosal immune system that takes place when genetically predisposed individuals are exposed to detrimental environmental triggers. In recent years, the therapeutic dogma in IBD has shifted away from the administration of nonspecific immunosuppressives toward a pathway-based approach. In this review, we present an outlook of IBD treatment based on this new conceptual approach. Firstly, we will provide an overview of the major aspects of IBD pathogenesis with emphasis on specific pathway-based defects. Secondly, we will examine in detail the development of novel therapeutic approaches that can be used to target genetics, dysbiosis, the epithelial barrier, proinflammatory cytokines, and leukocyte trafficking. Most of these strategies are still in the developmental phase, but promising approaches include fecal microbiota transplantation as a means to correct IBD-related dysbiosis; administration of modified phosphatidylcholine to enhance the function of the intestinal mucous and tighten the defective epithelial barrier; the reduction of over-reactive proinflammatory pathways through the blockade of novel, nontumor necrosis factor inflammatory mediators via monoclonal antibodies against the common p40 chain of interleukin (IL-12) and IL-23, Janus kinase inhibitors, or antisense oligonucleotides against inhibitors of the immunosuppressive cytokine transforming growth factor-β1; and finally, inhibition of leukocyte trafficking to the gut via neutralization of the gut-specific α4β7 integrin. Availability of such diverse treatment modalities with specific pathway-based targets will increase the therapeutic options for patients with IBD. PMID:26408803

  7. Monocyte/macrophage inflammatory response pathways to combat Francisella infection: possible therapeutic targets?

    PubMed Central

    Gillette, Devyn D.; Tridandapani, Susheela; Butchar, Jonathan P.

    2014-01-01

    Francisella tularensis can bypass and suppress host immune responses, even to the point of manipulating immune cell phenotypes and intercellular inflammatory networks. Strengthening these responses such that immune cells more readily identify and destroy the bacteria is likely to become a viable (and perhaps necessary) strategy for combating infections with Francisella, especially given the likelihood of antibiotic resistance in the foreseeable future. Monocytes and macrophages offer a niche wherein Francisella can invade and replicate, resulting in substantially higher bacterial load that can overcome the host. As such, understanding their responses to Francisella may uncover potential avenues of therapy that could promote a lowering of bacterial burden and clearance of infection. These response pathways include Toll-like Receptor 2 (TLR2), the caspase-1 inflammasome, Interferons, NADPH oxidase, Phosphatidylinositide 3-kinase (PI3K), and the Ras pathway. In this review we summarize the literature pertaining to the roles of these pathways during Francisella infection, with an emphasis on monocyte/macrophage responses. The therapeutic targeting of one or more such pathways may ultimately become a valuable tool for the treatment of tularemia, and several possibilities are discussed. PMID:24600590

  8. Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages

    PubMed Central

    Ross, Christina L; Harrison, Benjamin S

    2013-01-01

    In the treatment of bacterial infections, antibiotics have proven to be very effective, but the way in which antibiotics are dosed can create a lag time between the administration of the drug and its absorption at the site of insult. The time it takes an antibiotic to reach therapeutic levels can often be significantly increased if the vascular system is compromized. Bacteria can multiply pending the delivery of the drug, therefore, developing treatments that can inhibit the inflammatory response while waiting for antibiotics to take effect could help prevent medical conditions such as septic shock. The aim of this study was to examine the effect of a pulsed electromagnetic field on the production of inflammatory markers tumor necrosis factor (TNF), transcription factor nuclear factor kappa B (NFkB), and the expression of the A20 (tumor necrosis factor-alpha-induced protein 3), in an inflamed-cell model. Lipopolysaccharide-challenged cells were exposed to a pulsed electromagnetic field at various frequencies in order to determine which, if any, frequency would affect the TNF-NFkB-A20 inflammatory response pathway. Our study revealed that cells continuously exposed to a pulsed electromagnetic field at 5 Hz demonstrated significant changes in the downregulation of TNF-α and NFkB and also showed a trend in the down regulation of A20, as compared with controls. This treatment could be beneficial in modulating the immune response, in the presence of infection. PMID:23576877

  9. Inhibition of M current in sensory neurons by exogenous proteases: a signaling pathway mediating inflammatory nociception.

    PubMed

    Linley, John E; Rose, Kirstin; Patil, Mayur; Robertson, Brian; Akopian, Armen N; Gamper, Nikita

    2008-10-29

    Inflammatory pain is thought to be mediated in part through the action of inflammatory mediators on membrane receptors of peripheral nerve terminals, however, the downstream signaling events which lead to pain are poorly understood. In this study we investigated the nociceptive pathways induced by activation of protease-activated receptor 2 (PAR-2) in damage-sensing (nociceptive) neurons from rat dorsal root ganglion (DRG). We found that activation of PAR-2 in these cells strongly inhibited M-type potassium currents (conducted by Kv7 potassium channels). Such inhibition caused depolarization of the neuronal resting membrane potential leading, ultimately, to nociception. Consistent with this mechanism, injection of the specific M channel blocker XE991 into rat paw induced nociception in a concentration-dependent manner. Injection of a PAR-2 agonist peptide also induced nociception but coinjection of XE991 and the PAR-2 agonist did not result in summation of nociception, suggesting that the action of both agents may share a similar mechanism. We also studied the signaling pathway of M current inhibition by PAR-2 using patch-clamp and fluorescence imaging of DRG neurons. These experiments revealed that the PAR-2 effect was mediated by phospholipase C (PLC). Further experiments demonstrated that M current inhibition required concurrent rises in cytosolic Ca(2+) concentration and depletion of membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)). We propose that PLC- and Ca(2+)/PIP(2)-mediated inhibition of M current in sensory neurons may represent one of the general mechanisms underlying pain produced by inflammatory mediators, and may therefore open up a new therapeutic window for treatment of this major clinical problem. PMID:18971466

  10. Micheliolide inhibits LPS-induced inflammatory response and protects mice from LPS challenge

    PubMed Central

    Qin, Xiangyang; Jiang, Xinru; Jiang, Xin; Wang, Yuli; Miao, Zhulei; He, Weigang; Yang, Guizhen; Lv, Zhenhui; Yu, Yizhi; Zheng, Yuejuan

    2016-01-01

    Sepsis is the principal cause of fatality in the intensive care units worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Micheliolide (MCL), a sesquiterpene lactone, was reported to inhibit dextran sodium sulphate (DSS)-induced inflammatory intestinal disease, colitis-associated cancer and rheumatic arthritis. Nevertheless, the role of MCL in microbial infection and sepsis is unclear. We demonstrated that MCL decreased lipopolysaccharide (LPS, the main cell wall component of Gram-negative bacteria)-mediated production of cytokines (IL-6, TNF-α, MCP-1, etc) in Raw264.7 cells, primary macrophages, dendritic cells and human monocytes. MCL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB and PI3K/Akt/p70S6K pathways. It has negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. In the acute peritonitis mouse model, MCL reduced the secretion of IL-6, TNF-α, IL-1β, MCP-1, IFN-β and IL-10 in sera, and ameliorated lung and liver damage. MCL down-regulated the high mortality rate caused by lethal LPS challenge. Collectively, our data illustrated that MCL enabled maintenance of immune equilibrium may represent a potentially new anti-inflammatory and immunosuppressive drug candidate in the treatment of sepsis and septic shock. PMID:26984741

  11. 15-oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways

    PubMed Central

    Snyder, Nathaniel W.; Golin-Bisello, Franca; Gao, Yang; Blair, Ian A.; Freeman, Bruce A.; Wendell, Stacy Gelhaus

    2014-01-01

    Bioactive lipids govern cellular homeostasis and pathogenic inflammatory processes. Current dogma holds that bioactive lipids, such as prostaglandins and lipoxins, are inactivated by 15-hydroxyprostaglandin dehydrogenase (15PGDH). In contrast, the present results reveal that catabolic “inactivation” of hydroxylated polyunsaturated fatty acids (PUFAs) yields electrophilic α,β-unsaturated ketone derivatives. These endogenously produced species are chemically reactive signaling mediators that induce tissue protective events. Electrophilic fatty acids diversify the proteome through post-translational alkylation of nucleophilic cysteines in key transcriptional regulatory proteins and enzymes that govern cellular metabolic and inflammatory homeostasis. 15PGDH regulates these processes as it is responsible for the formation of numerous electrophilic fatty acids including the arachidonic acid metabolite, 15-oxoeicosatetraenoic acid (15-oxoETE). Herein, the role of 15-oxoETE in regulating signaling responses is reported. In cell cultures, 15-oxoETE activates Nrf2-regulated antioxidant responses (AR) and inhibits NF-κB-mediated pro-inflammatory responses via IKKβ inhibition. Inhibition of glutathione S-transferases using ethacrynic acid incrementally increased the signaling capacity of 15-oxoETE by decreasing 15-oxoETE-GSH adduct formation. This work demonstrates that 15PGDH plays a role in the regulation of cell and tissue homeostasis via the production of electrophilic fatty acid signaling mediators. PMID:25450232

  12. Erythropoietin Protects Rat Brain Injury from Carbon Monoxide Poisoning by Inhibiting Toll-Like Receptor 4/NF-kappa B-Dependent Inflammatory Responses.

    PubMed

    Pang, Li; Zhang, Nan; Dong, Ning; Wang, Da-Wei; Xu, Da-Hai; Zhang, Ping; Meng, Xiang-Wei

    2016-04-01

    Inflammatory responses play critical roles in carbon monoxide (CO) poisoning-induced cerebral injury. The present study investigated whether erythropoietin (EPO) modulates the toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) inflammatory signaling pathways in brain injury after acute CO poisoning. EPO (2500 and 5000 U/kg) was injected subcutaneously twice a day after acute CO poisoning for 2 days. At 48 h after treatment, the expression levels of TLR4 and NF-κB as well as the levels of inflammatory cytokines in the hippocampal tissues were measured. Our results showed that CO poisoning induced a significant upregulation of TLR4, NF-κB, and inflammatory cytokines in the injured rat hippocampal tissues. Treatment with EPO remarkably suppressed the gene and protein expression levels of TLR4 and NF-κB, as well as the concentrations of TNF-α, IL-1β, and IL-6 in the hippocampal tissues. EPO treatment ameliorated CO poisoning-induced histological edema and neuronal necrosis. These results suggested that EPO protected against CO poisoning-induced brain damage by inhibiting the TLR4-NF-κB inflammatory signaling pathway. PMID:26521252

  13. Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer.

    PubMed

    Ghanghas, Preety; Jain, Shelly; Rana, Chandan; Sanyal, S N

    2016-03-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are emerging as novel chemopreventive agents against a variety of cancers owing to their capability in blocking the tumor development by cellular proliferation and by promoting apoptosis. Inflammation is principal cause of colon carcinogenesis. A missing link between inflammation and cancer could be the activation of NF-κB, which is a hallmark of inflammatory response, and is commonly detected in malignant tumors. Therefore, targeting pro-inflammatory cyclooxygenase enzymes and transcription factors will be profitable as a mechanism to inhibit tumor growth. In the present study, we have studied the role of various pro-inflammatory enzymes and transcription factors in the development of the 1,2-dimethylhydrazine dihydrochloride (DMH)-induced colorectal cancer and also observed the role of three NSAIDs, viz., Celecoxib, Etoricoxib and Diclofenac. Carcinogenic changes were observed in morphological and histopathological studies, whereas protein regulations of various biomolecules were identified by immunofluorescence analysis. Apoptotic studies was done by TUNEL assay and Hoechst/PI co-staining of the isolated colonocytes. It was found that DMH-treated animals were having an over-expression of pro-inflammatory enzymes, aberrant nuclear localization of activated cell survival transcription factor, NF-κB and suppression of anti-inflammatory transcription factor PPAR-γ, thereby suggesting a marked role of inflammation in the tumor progression. However, co-administration of NSAIDs has significantly reduced the inflammatory potential of the growing neoplasm. PMID:26898448

  14. Anti-inflammatory effects of escin are correlated with the glucocorticoid receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway.

    PubMed

    Wang, Hongsheng; Zhang, Leiming; Jiang, Na; Wang, Zhenhua; Chong, Yating; Fu, Fenghua

    2013-08-01

    In China, escin has been widely used in the clinic as a potent anti-inflammatory drug. Previous studies have indicated that escin exerts its anti-inflammatory effect by enhancing the release of glucocorticoids (GCs) and prostaglandin-F2α (PGF2α), and this has been documented in the drug description. However, our previous studies demonstrated that escin did not increase the secretion of GCs, but instead elevated the protein expression of the GC receptor (GR), which may have repressed nuclear factor (NF)-κB-mediated gene expression. The aim of this study was to determine the functions of NF-κB and PGF2α with regard to the anti-inflammatory effect of escin. We investigated the anti-inflammatory effects of dexamethasone, diclofenac and escin against carrageenan-induced paw edema in rats, and observed that escin exerted a GC-like anti-inflammatory effect. In addition, we studied the role of PGF2α in the anti-inflammatory effect exerted by escin in an acetic acid-induced capillary permeability model in mice. The results revealed that the coadministration of escin and diclofenac, a potent prostaglandin-synthesis inhibitor, did not affect the anti-inflammatory effect of escin. Furthermore, we investigated the function of NF-κB with regard to the anti-inflammatory effect exerted by escin in lipopolysaccharide (LPS)-treated mice, and demonstrated that escin significantly inhibited the expression of NF-κB. These results suggest that escin has a GC-like anti-inflammatory effect, and that its mechanisms may be correlated with the GC receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway. PMID:24137201

  15. Anti-inflammatory effects of escin are correlated with the glucocorticoid receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway

    PubMed Central

    WANG, HONGSHENG; ZHANG, LEIMING; JIANG, NA; WANG, ZHENHUA; CHONG, YATING; FU, FENGHUA

    2013-01-01

    In China, escin has been widely used in the clinic as a potent anti-inflammatory drug. Previous studies have indicated that escin exerts its anti-inflammatory effect by enhancing the release of glucocorticoids (GCs) and prostaglandin-F2α (PGF2α), and this has been documented in the drug description. However, our previous studies demonstrated that escin did not increase the secretion of GCs, but instead elevated the protein expression of the GC receptor (GR), which may have repressed nuclear factor (NF)-κB-mediated gene expression. The aim of this study was to determine the functions of NF-κB and PGF2α with regard to the anti-inflammatory effect of escin. We investigated the anti-inflammatory effects of dexamethasone, diclofenac and escin against carrageenan-induced paw edema in rats, and observed that escin exerted a GC-like anti-inflammatory effect. In addition, we studied the role of PGF2α in the anti-inflammatory effect exerted by escin in an acetic acid-induced capillary permeability model in mice. The results revealed that the coadministration of escin and diclofenac, a potent prostaglandin-synthesis inhibitor, did not affect the anti-inflammatory effect of escin. Furthermore, we investigated the function of NF-κB with regard to the anti-inflammatory effect exerted by escin in lipopolysaccharide (LPS)-treated mice, and demonstrated that escin significantly inhibited the expression of NF-κB. These results suggest that escin has a GC-like anti-inflammatory effect, and that its mechanisms may be correlated with the GC receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway. PMID:24137201

  16. NEFAs activate the oxidative stress-mediated NF-κB signaling pathway to induce inflammatory response in calf hepatocytes.

    PubMed

    Shi, Xiaoxia; Li, Dangdang; Deng, Qinghua; Li, Yu; Sun, Guoquan; Yuan, Xue; Song, Yuxiang; Wang, Zhe; Li, Xiaobing; Li, Xinwei; Liu, Guowen

    2015-01-01

    Non-esterified fatty acids (NEFAs) are important induction factors of inflammatory responses in some metabolic diseases. High plasma levels of NEFAs and oxidative stress exist in the dairy cows with ketosis. The aim of this study was to investigate whether high levels of NEFAs can induce inflammatory response and the specific molecular mechanism in the hepatocytes of dairy cow. In vitro, primary cultured bovine hepatocytes were treated with different concentrations of NEFAs, PDTC (an NF-κB inhibitor) and NAC (an antioxidant). NEFAs significantly activated NF-κB pathway. Activated NF-κB upregulated the release of pro-inflammatory cytokines, thereby inducing inflammatory response in bovine hepatocytes. When PDTC was added, activation of NF-κB-mediated inflammatory response induced by NEFAs was inhibited. NEFAs treatment results in the overproduction of the markers of oxidative stress, reactive oxygen species (ROS) and malondialdehyde (MDA), which were ameliorated by NAC treatment. These increased ROS and MDA were caused by decreasing activity of antioxidant system, including glutathione peroxidase, superoxide dismutase and catalase, in bovine hepatocytes treated with NEFAs. NAC also ameliorated NEFAs-mediated NF-κB activation and the release of pro-inflammatory cytokines. These results indicate that high concentrations of NEFAs can induce cattle hepatocytes inflammatory response through activating the oxidative stress-mediated NF-κB signaling pathway. PMID:25465477

  17. T helper type 17 pathway suppression by appendicitis and appendectomy protects against colitis.

    PubMed

    Cheluvappa, R; Luo, A S; Grimm, M C

    2014-02-01

    Appendicitis followed by appendectomy (AA) at a young age protects against inflammatory bowel disease (IBD). We wanted to characterize the role of the T helper type 17 (Th17) system involved in this protective effect. AA was performed on 5-week-old male BALB/c mice and distal-colon samples were harvested. Mice with two laparotomies each served as sham-sham (SS) controls. RNA was extracted from four individual colonic samples per group (AA and SS groups) and each sample microarray-analysed and reverse transcription-polymerase chain reaction (RT-PCR)-validated. Gene-set enrichment analysis (GSEA) showed that the Th17 recruitment factor gene CCL20 was significantly suppressed at both 3 days post-AA and 28 days post-AA. Although Th17 cell development differentiation factor genes TGF-β2 and TGF-β3 were significantly up-regulated 3 days post-AA, GSEA 28 days post-AA showed that AA down-regulated 29 gene-sets associated with TGF-β1, TGF-β2 and TGF-β3 in contrast to none up-regulated with any of these genes. GSEA showed substantial down-regulation of gene-sets associated with Th17 lymphocyte recruitment, differentiation, activation and cytokine expression in the AA group 28 days post-AA. We conclude that Th17-system cytokines are kept under control by AA via down-regulation of proinflammatory CCL20, a rapid down-regulation of pro-Th17 cell differentiation genes TGF-β2 and TGF-β3, suppression of RORC-associated gene-sets, increased protective STAT1 expression and suppression of 81 'pro-Th17' system gene-sets. AA suppresses the Th17 pathway leading to colitis amelioration. Further characterization of Th17-associated genes and biological pathways will assist in the development of better therapeutic approaches in IBD management. PMID:24666024

  18. Protein-kinase inhibitors: A new treatment pathway for autoimmune and inflammatory diseases?

    PubMed

    Hernández-Flórez, Diana; Valor, Lara

    2016-01-01

    Although advances in biological medicine have seen significant progress in the treatment of autoimmune and inflammatory disease, many patients do not experience a satisfactory response. Hence, there are two challenges facing the medical research community. The first is to continue development in the field of existing biological therapies, such as monoclonal antibodies. The second is to open new frontiers of research and explore treatment alternatives for non-responders to other therapies. Attention has increasingly turned to the therapeutic potential of small molecule weight kinase inhibitors (SMKIs), currently used extensively in oncology and haematology. Initial research into the therapeutic value of SMKIs for autoimmune and inflammatory diseases has been encouraging. SMKIs are taken orally, which reduces cost for the health provider, and could increase compliance for the patient. This is why research is now focusing increasingly on SMKIs as a new generation line of treatment in these diseases. Tofacitinib, an inhibitor of Janus-kinase, is currently the only drug approved for the treatment of rheumatoid arthritis by FDA. However, much more needs to be done to understand the intracellular signalling pathways and how these might affect disease progression before solid conclusions can be drawn. PMID:26283525

  19. Anti-inflammatory and protective effects of 2-methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells.

    PubMed

    Yumoto, Hiromichi; Hirota, Katsuhiko; Hirao, Kouji; Miyazaki, Tsuyoshi; Yamamoto, Nobuyuki; Miyamoto, Koji; Murakami, Keiji; Fujiwara, Natsumi; Matsuo, Takashi; Miyake, Yoichiro

    2015-02-01

    Periodontitis is a chronic inflammatory disease initiated by a microbial biofilm formed in the periodontal pocket. Gingival epithelium plays important roles as the first physical barrier to bacterial invasion and in orchestrating the innate immune reaction via toll-like receptors (TLRs), which recognize various bacterial products, and maintaining its function. Newly developed oral care products to inhibit bacterial adherence, subsequent inflammatory reaction and protect the gingival epithelium are expected. We previously reported that 2-methacryloyloxyethyl phosphorylcholine (MPC)-polymer coating decreased bacterial adhesion to human oral keratinocytes, RT-7, and mouth-rinsing with MPC-polymer inhibited the increase of oral bacteria. In this study, regarding the possibility of MPC-polymer application for preventing the adherence of periodontal pathogen, subsequent inflammatory reaction and protection of gingival epithelium, we examined the effects of MPC-polymer on the adherence of Porphyromonas gingivalis, major periodontitis-related pathogen, and TLR2 ligand to RT-7 and subsequent interleukin (IL)-8 production. MPC-polymer treatment significantly reduced P. gingivalis adherence by 44% and TLR2-mediated IL-8 production by blocking the binding of its specific-ligand in a concentration-dependent manner. Furthermore, MPC-polymer pretreatment protected RT-7 from injury by chemical irritants, cetylpyridinium chloride. These findings suggest that MPC-polymer is potentially useful for oral care to prevent oral infection and to maintain oral epithelial function. PMID:24753309

  20. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS)

    PubMed Central

    Morris, Gerwyn; Maes, Michael

    2014-01-01

    Myalgic Encephalomyelitis (ME) / Chronic Fatigue Syndrome (CFS) has been classified as a disease of the central nervous system by the WHO since 1969. Many patients carrying this diagnosis do demonstrate an almost bewildering array of biological abnormalities particularly the presence of oxidative and nitrosative stress (O&NS) and a chronically activated innate immune system. The proposal made herein is that once generated chronically activated O&NS and immune-inflammatory pathways conspire to generate a multitude of self-sustaining and self-amplifying pathological processes which are associated with the onset of ME/CFS. Sources of continuous activation of O&NS and immune-inflammatory pathways in ME/CFS are chronic, intermittent and opportunistic infections, bacterial translocation, autoimmune responses, mitochondrial dysfunctions, activation of the Toll-Like Receptor Radical Cycle, and decreased antioxidant levels. Consequences of chronically activated O&NS and immune-inflammatory pathways in ME/CFS are brain disorders, including neuroinflammation and brain hypometabolism / hypoperfusion, toxic effects of nitric oxide and peroxynitrite, lipid peroxidation and oxidative damage to DNA, secondary autoimmune responses directed against disrupted lipid membrane components and proteins, mitochondrial dysfunctions with a disruption of energy metabolism (e.g. compromised ATP production) and dysfunctional intracellular signaling pathways. The interplay between all of these factors leads to self-amplifying feed forward loops causing a chronic state of activated O&NS, immune-inflammatory and autoimmune pathways which may sustain the disease. PMID:24669210

  1. ADAR1 Suppresses the Activation of Cytosolic RNA-Sensing Signaling Pathways to Protect the Liver from Ischemia/Reperfusion Injury

    PubMed Central

    Wang, Hui; Wang, Guoliang; Zhang, Liyong; Zhang, Junbin; Zhang, Jinxiang; Wang, Qingde; Billiar, Timothy R.

    2016-01-01

    Excessive inflammation resulting from activation of the innate immune system significantly contributes to ischemia/reperfusion injury (IRI). Inflammatory reactions in both IRI and infections share the same signaling pathways evoked by danger/pathogen associated molecular pattern molecules. The cytosolic retinoid-inducible gene I(RIG-I)-like RNA receptor (RLR) RNA sensing pathway mediates type I IFN production during viral infection and the sensing of viral RNA is regulated by adenosine deaminase acting on RNA 1 (ADAR1). Using a model of liver IRI, we provide evidence that ADAR1 also regulates cytosolic RNA-sensing pathways in the setting of ischemic stress. Suppression of ADAR1 significantly enhanced inflammation and liver damage following IRI, which was accompanied by significant increases in type I IFN through cytosolic RNA-sensing pathways. In addition, knocking ADAR1 down in hepatocytes exaggerates inflammatory signaling to dsRNA or endotoxin and results in over production of type I IFN, which could be abolished by the interruption of RIG-I. Therefore, we identified a novel ADAR1-dependent protective contribution through which hepatocytes guard against aberrant cytosolic RLR-RNA-sensing pathway mediated inflammatory reaction in response to acute liver IR. ADAR1 protects against over activation of viral RNA-sensing pathways in non-infectious tissue stress. PMID:26832817

  2. Fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, attenuates experimental arthritis by activating anti-inflammatory adenosinergic pathway

    PubMed Central

    Veras, Flávio P.; Peres, Raphael S.; Saraiva, André L. L.; Pinto, Larissa G.; Louzada-Junior, Paulo; Cunha, Thiago M.; Paschoal, Jonas A. R.; Cunha, Fernando Q.; Alves-Filho, José C.

    2015-01-01

    Fructose 1,6-bisphosphate (FBP) is an endogenous intermediate of the glycolytic pathway. Exogenous administration of FBP has been shown to exert protective effects in a variety of ischemic injury models, which are attributed to its ability to sustain glycolysis and increase ATP production. Here, we demonstrated that a single treatment with FBP markedly attenuated arthritis, assessed by reduction of articular hyperalgesia, joint swelling, neutrophil infiltration and production of inflammatory cytokines, TNF and IL-6, while enhancing IL-10 production in two mouse models of arthritis. Our mechanistic studies showed that FBP reduces joint inflammation through the systemic generation of extracellular adenosine and subsequent activation of adenosine receptor A2a (A2aR). Moreover, we showed that FBP-induced adenosine generation requires hydrolysis of extracellular ATP through the activity of the ectonucleosides triphosphate diphosphohydrolase-1 (ENTPD1, also known as CD39) and ecto-5′-nucleotidase (E5NT, also known as CD73). In accordance, inhibition of CD39 and CD73 abolished anti-arthritic effects of FBP. Taken together, our findings provide a new insight into the molecular mechanism underlying the anti-inflammatory effect of FBP, showing that it effectively attenuates experimental arthritis by activating the anti-inflammatory adenosinergic pathway. Therefore, FBP may represent a new therapeutic strategy for treatment of rheumatoid arthritis (RA). PMID:26478088

  3. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney

    PubMed Central

    Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-01-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), calcium adenosine triphosphatase (Ca2+-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  4. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney.

    PubMed

    Guo, Hongrui; Deng, Huidan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-10-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase), calcium adenosine triphosphatase (Ca(2+)-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  5. Sterols and triterpenoids as potential anti-inflammatories: Molecular docking studies for binding to some enzymes involved in inflammatory pathways.

    PubMed

    Loza-Mejía, Marco A; Salazar, Juan Rodrigo

    2015-11-01

    Triterpenes and sterols are good candidates for the development of anti-inflammatory drugs and use in chemoprevention or chemotherapy of cancer via the interaction with therapeutic targets related to inflammation, such as COX-1 and -2; LOX-5; MPO, PLA2 and i-NOS. In this study, we use molecular docking to evaluate the potential binding of a database of selected sterol and triterpenoid compounds with several skeletons against enzymes related to inflammation to propose structural requirements beneficial for anti-inflammatory activity that can be used for the design of more potent and selective anti-inflammatory and antitumor drugs. Our results suggest that the substitution pattern is important and that there is an important relationship between the class of sterol or triterpenoid skeleton and enzyme binding. PMID:26342572

  6. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways.

    PubMed

    Bhasin, Manoj K; Dusek, Jeffery A; Chang, Bei-Hung; Joseph, Marie G; Denninger, John W; Fricchione, Gregory L; Benson, Herbert; Libermann, Towia A

    2013-01-01

    The relaxation response (RR) is the counterpart of the stress response. Millennia-old practices evoking the RR include meditation, yoga and repetitive prayer. Although RR elicitation is an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging, the underlying molecular mechanisms that explain these clinical benefits remain undetermined. To assess rapid time-dependent (temporal) genomic changes during one session of RR practice among healthy practitioners with years of RR practice and also in novices before and after 8 weeks of RR training, we measured the transcriptome in peripheral blood prior to, immediately after, and 15 minutes after listening to an RR-eliciting or a health education CD. Both short-term and long-term practitioners evoked significant temporal gene expression changes with greater significance in the latter as compared to novices. RR practice enhanced expression of genes associated with energy metabolism, mitochondrial function, insulin secretion and telomere maintenance, and reduced expression of genes linked to inflammatory response and stress-related pathways. Interactive network analyses of RR-affected pathways identified mitochondrial ATP synthase and insulin (INS) as top upregulated critical molecules (focus hubs) and NF-κB pathway genes as top downregulated focus hubs. Our results for the first time indicate that RR elicitation, particularly after long-term practice, may evoke its downstream health benefits by improving mitochondrial energy production and utilization and thus promoting mitochondrial resiliency through upregulation of ATPase and insulin function. Mitochondrial resiliency might also be promoted by RR-induced downregulation of NF-κB-associated upstream and downstream targets that mitigates stress. PMID:23650531

  7. Vitamin D receptor pathway is required for probiotic protection in colitis.

    PubMed

    Wu, Shaoping; Yoon, Sonia; Zhang, Yong-Guo; Lu, Rong; Xia, Yinglin; Wan, Jiandi; Petrof, Elaine O; Claud, Erika C; Chen, Di; Sun, Jun

    2015-09-01

    Low expression of vitamin D receptor (VDR) and dysfunction of vitamin D/VDR signaling are reported in patients with inflammatory bowel disease (IBD); therefore, restoration of VDR function to control inflammation in IBD is desirable. Probiotics have been used in the treatment of IBD. However, the role of probiotics in the modulation of VDR signaling to effectively reduce inflammation is unknown. We identified a novel role of probiotics in activating VDR activity, thus inhibiting inflammation, using cell models and VDR knockout mice. We found that the probiotics Lactobacillus rhamnosus strain GG (LGG) and Lactobacillus plantarum (LP) increased VDR protein expression in both mouse and human intestinal epithelial cells. Using the VDR luciferase reporter vector, we detected increased transcriptional activity of VDR after probiotic treatment. Probiotics increased the expression of the VDR target genes, such as antimicrobial peptide cathelicidin, at the transcriptional level. Furthermore, the role of probiotics in regulating VDR signaling was tested in vivo using a Salmonella-colitis model in VDR knockout mice. Probiotic treatment conferred physiological and histologic protection from Salmonella-induced colitis in VDR(+/+) mice, whereas probiotics had no effects in the VDR(-/-) mice. Probiotic treatment also enhanced numbers of Paneth cells, which secrete AMPs for host defense. These data indicate that the VDR pathway is required for probiotic protection in colitis. Understanding how probiotics enhance VDR signaling and inhibit inflammation will allow probiotics to be used effectively, resulting in innovative approaches to the prevention and treatment of chronic inflammation. PMID:26159695

  8. Mangiferin protect myocardial insults through modulation of MAPK/TGF-β pathways.

    PubMed

    Suchal, Kapil; Malik, Salma; Gamad, Nanda; Malhotra, Rajiv Kumar; Goyal, Sameer N; Ojha, Shreesh; Kumari, Santosh; Bhatia, Jagriti; Arya, Dharamvir Singh

    2016-04-01

    Mangiferin, a xanthone glycoside isolated from leaves of Mangifera indica (Anacardiaceae) is known to modulate many biological targets in inflammation and oxidative stress. The present study was designed to investigate whether mangiferin exerts protection against myocardial ischemia-reperfusion (IR) injury and possible role of Mitogen Activated Protein Kinase (MAPKs) and Transforming Growth Factor-β (TGF-β) pathways in its cardioprotection. Male albino Wistar rats were treated with mangiferin (40 mg/kg, i.p.) for 15 days. At the end of the treatment protocol, rats were subjected to IR injury consisting of 45 min ischemia followed by 1h reperfusion. IR-control rats caused significant cardiac dysfunction, increased serum cardiac injury markers, lipid peroxidation and a significant decrease in tissue antioxidants as compared to sham group. Histopathological examination of IR rats revealed myocardial necrosis, edema and infiltration of inflammatory cells. However, pretreatment with mangiferin significantly restored myocardial oxidant-antioxidant status, maintained membrane integrity, and attenuated the levels of proinflammatory cytokines, pro-apoptotic proteins and TGF-β. Furthermore, mangiferin significantly reduced the phosphorylation of p38, and JNK and enhanced phosphorylation of ERK1/2. These results suggest that mangiferin protects against myocardial IR injury by modulating MAPK mediated inflammation and apoptosis. PMID:26921754

  9. Cross-talk between TLR4 and PPARγ pathways in the arachidonic acid-induced inflammatory response in pancreatic acini.

    PubMed

    Mateu, A; Ramudo, L; Manso, M A; De Dios, I

    2015-12-01

    Arachidonic acid (AA) is generally associated with inflammation in different settings. We assess the molecular mechanisms involved in the inflammatory response exerted by AA on pancreatic acini as an approach to acute pancreatitis (AP). Celecoxib (COX-2 inhibitor), TAK-242 (TLR4 inhibitor) and 15d-PGJ2 (PPARγ agonist) were used to ascertain the signaling pathways. In addition, we examine the effects of TAK-242 and 15d-PGJ2 on AP induced in rats by bile-pancreatic duct obstruction (BPDO). To carry out in vitro studies, acini were isolated from pancreas of control rats. Generation of PGE2 and TXB2, activation of pro-inflammatory pathways (MAPKs, NF-κB, and JAK/STAT3) and overexpression of CCL2 and P-selectin was found in AA-treated acini. In addition, AA up-regulated TLR4 and down-regulated PPARγ expression. Celecoxib prevented the up-regulation of CCL2 and P-selectin but did not show any effect on the AA-mediated changes in TLR4 and PPARγ expression. TAK-242, reduced the generation of AA metabolites and repressed both the cascade of pro-inflammatory events which led to CCL2 and P-selectin overexpression as well as the AA-induced PPARγ down-regulation. Thus, TLR4 acts as upstream activating pro-inflammatory and inhibiting anti-inflammatory pathways. 15d-PGJ2 down-regulated TLR4 expression and hence prevented the synthesis of AA metabolites and the inflammatory response mediated by them. Reciprocal negative cross-talk between TLR4 and PPARγ pathways is evidenced. In vivo experiments showed that TAK-242 and 15d-PGJ2 treatments reduced the inflammatory response in BPDO-induced AP. We conclude that through TLR4-dependent mechanisms, AA up-regulated CCL2 and P-selectin in pancreatic acini, partly mediated by the generation of PGE2 and TXB2, which activated pro-inflammatory pathways, but also directly by down-regulating PPARγ expression with anti-inflammatory activity. In vitro and in vivo studies support the role of TLR4 in AP and the use of TLR4 inhibitors and

  10. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways.

    PubMed

    Martin-Subero, Marta; Anderson, George; Kanchanatawan, Buranee; Berk, Michael; Maes, Michael

    2016-04-01

    The nature of depression has recently been reconceptualized, being conceived as the clinical expression of activated immune-inflammatory, oxidative, and nitrosative stress (IO&NS) pathways, including tryptophan catabolite (TRYCAT), autoimmune, and gut-brain pathways. IO&NS pathways are similarly integral to the pathogenesis of inflammatory bowel disease (IBD). The increased depression prevalence in IBD associates with a lower quality of life and increased morbidity in IBD, highlighting the role of depression in modulating the pathophysiology of IBD.This review covers data within such a wider conceptualization that better explains the heightened co-occurrence of IBD and depression. Common IO&NS underpinning between both disorders is evidenced by increased pro-inflammatory cytokine levels, eg, interleukin-1 (IL-1) and tumor necrosis factor-α, IL-6 trans-signalling; Th-1- and Th-17-like responses; neopterin and soluble IL-2 receptor levels; positive acute phase reactants (haptoglobin and C-reactive protein); lowered levels of negative acute phase reactants (albumin, transferrin, zinc) and anti-inflammatory cytokines (IL-10 and transforming growth factor-β); increased O&NS with damage to lipids, proteinsm and DNA; increased production of nitric oxide (NO) and inducible NO synthase; lowered plasma tryptophan but increased TRYCAT levels; autoimmune responses; and increased bacterial translocation. As such, heightened IO&NS processes in depression overlap with the biological underpinnings of IBD, potentially explaining their increased co-occurrence. This supports the perspective that there is a spectrum of IO&NS disorders that includes depression, both as an emergent comorbidity and as a contributor to IO&NS processes. Such a frame of reference has treatment implications for IBD when "comorbid" with depression. PMID:26307347

  11. A Low-Abundance Biofilm Species Orchestrates Inflammatory Periodontal Disease through the Commensal Microbiota and the Complement Pathway

    PubMed Central

    Hajishengallis, George; Liang, Shuang; Payne, Mark A.; Hashim, Ahmed; Jotwani, Ravi; Eskan, Mehmet A.; McIntosh, Megan L.; Alsam, Asil; Kirkwood, Keith L.; Lambris, John D.; Darveau, Richard P.; Curtis, Michael A.

    2011-01-01

    SUMMARY Porphyromonas gingivalis is a low-abundance oral anaerobic bacterium implicated in periodontitis, a polymicrobial inflammatory disease, and the associated systemic conditions. However, the mechanism by which P. gingivalis contributes to inflammation and disease has remained elusive. Here we show that P. gingivalis, at very low colonization levels, triggers changes to the amount and composition of the oral commensal microbiota leading to inflammatory periodontal bone loss. The commensal microbiota and the complement pathway were both required for P. gingivalis-induced bone loss as germ-free mice or conventionally raised C3a and C5a receptor deficient mice did not develop bone loss after inoculation with P. gingivalis. These findings demonstrate that a single, low-abundance species can disrupt host-microbial homeostasis to cause inflammatory disease. The identification and targeting of similar low-abundance pathogens with community-wide impact may be important for treating inflammatory diseases of polymicrobial etiology. PMID:22036469

  12. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway.

    PubMed

    Wang, Jing; Liu, Yu-Tao; Xiao, Lu; Zhu, Lingpeng; Wang, Qiujuan; Yan, Tianhua

    2014-12-01

    This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of apigenin lipopolysaccharide (LPS)-induced inflammatory in acute lung injury. In this study, the anti-inflammatory effects of apigenin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible mechanisms involved in this protection were investigated. Pretreatment with apigenin prior to the administration of intratracheal LPS significantly induced a decrease in lung wet weight/dry weight ratio in total leukocyte number and neutrophil percent in the bronchoalveolar lavage fluid (BALF) and in IL-6 and IL-1β, the tumor neurosis factor-α (TNF-α) in the BALF. These results showed that anti-inflammatory effects of apigenin against the LPS-induced ALI may be due to its ability of primary inhibition of cyclooxygenase-2 (COX-2) gene expression and nuclear factor kB (NF-kB) gene expression of lung. The results presented here suggest that the protective mechanism of apigenin may be attributed partly to decreased production of proinflammatory cytokines through the inhibition of COX-2 and NF-kB activation. The results support that use of apigenin is beneficial in the treatment of ALI. PMID:24958013

  13. A novel pathway by which the environmental toxin 4-Nonylphenol may promote an inflammatory response in inflammatory bowel disease

    PubMed Central

    Kim, Albert; Jung, Byeong Ho; Cadet, Patrick

    2014-01-01

    Background 4-Nonylphenol is a ubiquitous environmental toxin that is formed as a byproduct in the manufacturing and/or sewage treatment of regular household items. Previous work in our lab has implicated 4-NP in the progression of autoimmune diseases such as inflammatory bowel disease in which macrophages mistakenly attack the intestinal linings, causing chronic inflammation. Several key pro-and anti-inflammatory molecules have been shown to be involved in the manifestation of this disease, including IL-23A, COX-2, IL-8, TLR-4, and IL-10. Material/Methods 4-NP’s effects on these known mediators of IBD were effectively analyzed using a novel model for IBD, by which 4-NP may promote an inflammatory response. Data were collected using DNA Microarray, RT-PCR, and ELISA, after 48 hour treatment of U937 histiocytic lymphocyte cells and COLO320DM human intestinal epithelial cells with 1 nM and 5 nM concentrations of 4-NP. Results Significant dysregulation of the expression of both pro- and anti-inflammatory genes was observed in U937 cells that would promote and prolong inflammation. However, TLR-4, IL-8, and COX-2 gene expressions showed unprecedented effects in COLO320DM cells suggesting that these genes mediate apoptotic processes within the gastrointestinal tract. Conclusions Overall, our results suggest that 4-NP administration engenders immune responses linked to apoptotic processes via dysregulation of macrophage signaling. In sum, 4-NP appears to increases the risk of developing inflammatory bowel disease by promoting or prolonging adverse progression of inflammation in the gastrointestinal tract. PMID:24717721

  14. Thymoquinone Modulates Blood Coagulation in Vitro via Its Effects on Inflammatory and Coagulation Pathways

    PubMed Central

    Muralidharan-Chari, Vandhana; Kim, Jaehan; Abuawad, Ahlam; Naeem, Mubeena; Cui, Huadong; Mousa, Shaker A.

    2016-01-01

    Thymoquinone (THQ) is a major component of black seeds. Given that both THQ and black seeds exhibit anti-cancer and anti-inflammatory activities, we hypothesized that THQ will affect cancer-associated thrombosis (CAT), which is primarily triggered by tissue factor (TF) and inflammation. The effect of both black seed-extracted and purchased (“pure”) THQ on normal blood coagulation was tested with in vitro thromboelastography (TEG) and activated partial thromboplastin time (aPTT) coagulation assays. The effect of pure THQ on CAT was tested with aPTT assay using pancreatic cancer cell lines that are either positive or negative for TF, and with TEG assay using lipopolysaccharide as an inflammatory trigger. Additionally, the direct effect of THQ on the inactivation of factors IIa and Xa was assessed. Since TNF-α facilitates crosstalk between inflammation and thrombosis by triggering the NF-κB pathway, we tested THQ’s ability to interfere with this communication with a luciferase assay. Both extracted and pure THQ had minimal effects on normal blood coagulation. Pure THQ reversed CAT initiated by both TF and inflammation to basal levels (p < 0.001). Mechanistically, while THQ had minimal to no effect on factor IIa and Xa inactivation, it strongly reduced the effects of TNF-α on NF-κB elements (p < 0.001). THQ has a minimal effect on basal coagulation and can reverse CAT in vitro, possibly by interfering with the crosstalk between inflammation and coagulation. This study suggests the utility of THQ as a preventative anticoagulant and/or as a supplement to existing chemotherapies and anticoagulant therapies. PMID:27043539

  15. Pyruvate protects against experimental stroke via an anti-inflammatory mechanism

    PubMed Central

    Wang, Qing; van Hoecke, Michael; Tang, Xiannan; Lee, Hokyou; Zheng, Zheng; Swanson, Raymond A.; Yenari, Midori A.

    2009-01-01

    Pyruvate, a key intermediate in glucose metabolism, was explored as a potential treatment in models of experimental stroke and inflammation. Pyruvate was administered to rodents after the onset of middle cerebral artery occlusion (MCAO). Since the extent of inflammation is often proportional to the size of the infarct, we also studied a group of animals given lipopolysaccharide (LPS) to cause brain inflammation without cell death. Following MCAO, pyruvate did not affect physiological parameters but significantly reduced infarct volume, improved behavioral tests and reduced numbers of neutrophils, microglial and NF-kB activation. Animals given LPS showed increased microglial and NF-kB activation which was almost completely abolished by pyruvate. Lactate, a major metabolite of pyruvate, was increased after pyruvate administration. However, administration of lactate itself did not have any anti-inflammatory effects. Pyruvate protects against ischemia possibly by blocking inflammation, but lactate itself does not appear to explain pyruvate's anti-inflammatory properties. PMID:19635562

  16. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I.

    PubMed

    Sultana, Afroza; Cochran, Blake J; Tabet, Fatiha; Patel, Mili; Torres, Luisa Cuesta; Barter, Philip J; Rye, Kerry-Anne

    2016-06-01

    Activation of inflammatory signaling pathways links obesity with metabolic disorders. TLR4-mediated activation of MAPKs and NF-κB are 2 such pathways implicated in obesity-induced inflammation. Apolipoprotein A-I (apoA-I) exerts anti-inflammatory effects on adipocytes by effluxing cholesterol from the cells via the ATP binding cassette transporter A1 (ABCA1). It is not known if these effects involve inhibition of inflammatory signaling pathways by apoA-I. This study asks if apoA-I inhibits activation of MAPKs and NF-κB in mouse 3T3-L1 adipocytes and whether this inhibition is ABCA1 dependent. Incubation of differentiated 3T3-L1 adipocytes with apoA-I decreased cell surface expression of TLR4 by 16 ± 2% and synthesis of the TLR4 adaptor protein, myeloid differentiation primary response 88, by 24 ± 4% in an ABCA1-dependent manner. ApoA-I also inhibited downstream activation of MAPKs, such as ERK, p38MAPK, and JNK, as well as expression of proinflammatory adipokines in bacterial LPS-stimulated 3T3-L1 adipocytes in an ABCA1-dependent manner. ApoA-I, by contrast, suppressed nuclear localization of the p65 subunit of NF-κB by 30 ± 3% in LPS-stimulated 3T3-L1 adipocytes in an ABCA1-independent manner. In conclusion, apoA-I inhibits TLR4-mediated inflammatory signaling pathways in adipocytes by preventing MAPK and NF-κB activation.-Sultana, A., Cochran, B. J., Tabet, F., Patel, M., Cuesta Torres, L., Barter, P. J., Rye, K.-A. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I. PMID:26965683

  17. Protective effects of ethanol extract from Portulaca oleracea L on dextran sulphate sodium-induced mice ulcerative colitis involving anti-inflammatory and antioxidant

    PubMed Central

    Yang, Xiaohang; Yan, Yongmei; Li, Jiankang; Tang, Zhishu; Sun, Jing; Zhang, Huan; Hao, Siyang; Wen, Aidong; Liu, Li

    2016-01-01

    Portulaca oleracea L., (POL) is one of commonly used medicine-food herbs and has a cosmopolitan distribution in many countries. Many studies showed that POL exhibited a wide range of pharmacological effects such as anti-inflammatory and liver complaints. In the clinical studies, POL was usually used for the treatment of UC disease and the clinical efficacy was well, but the mechanism and scientific intension was still unknown. In the present study, we studied the protective effects of the ethanol extract from POL on dextran sulphate sodium-induced UC in C57BL/6 mice model through oxidative stress and inflammatory pathway. The results demonstrated that the ethanol extract from POL could exhibit the effective protection for the DSS induced UC by increasing the colon length, decreasing body weight loss and the disease activity index score, inhibiting oxidative stress response through the MDA, NO, SOD activities, reducing the mRNA expressions of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and the protein expressions of TNF-α and NF-kB p65. These results may prove that POL could be considered as a useful and effective botanical compound from the edible plant to be used in UC through the oxidative stress and inflammatory activities. PMID:27347321

  18. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.

    PubMed

    Grompone, Gianfranco; Martorell, Patricia; Llopis, Silvia; González, Núria; Genovés, Salvador; Mulet, Ana Paula; Fernández-Calero, Tamara; Tiscornia, Inés; Bollati-Fogolín, Mariela; Chambaud, Isabelle; Foligné, Benoit; Montserrat, Agustín; Ramón, Daniel

    2012-01-01

    Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H(2)O(2)). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans. PMID:23300685

  19. Triptolide Modulates TREM-1 Signal Pathway to Inhibit the Inflammatory Response in Rheumatoid Arthritis

    PubMed Central

    Fan, Danping; He, Xiaojuan; Bian, Yanqin; Guo, Qingqing; Zheng, Kang; Zhao, Yukun; Lu, Cheng; Liu, Baoqin; Xu, Xuegong; Zhang, Ge; Lu, Aiping

    2016-01-01

    pathway to inhibit the inflammatory response in RA. PMID:27049384

  20. Triptolide Modulates TREM-1 Signal Pathway to Inhibit the Inflammatory Response in Rheumatoid Arthritis.

    PubMed

    Fan, Danping; He, Xiaojuan; Bian, Yanqin; Guo, Qingqing; Zheng, Kang; Zhao, Yukun; Lu, Cheng; Liu, Baoqin; Xu, Xuegong; Zhang, Ge; Lu, Aiping

    2016-01-01

    pathway to inhibit the inflammatory response in RA. PMID:27049384

  1. Virus-Like Particles Activate Type I Interferon Pathways to Facilitate Post-Exposure Protection against Ebola Virus Infection

    PubMed Central

    Ayithan, Natarajan; Bradfute, Steven B.; Anthony, Scott M.; Stuthman, Kelly S.; Bavari, Sina; Bray, Mike; Ozato, Keiko

    2015-01-01

    Ebola virus (EBOV) causes a severe hemorrhagic disease with high fatality. Virus-like particles (VLPs) are a promising vaccine candidate against EBOV. We recently showed that VLPs protect mice from lethal EBOV infection when given before or after viral infection. To elucidate pathways through which VLPs confer post-exposure protection, we investigated the role of type I interferon (IFN) signaling. We found that VLPs lead to accelerated induction of IFN stimulated genes (ISGs) in liver and spleen of wild type mice, but not in Ifnar-/- mice. Accordingly, EBOV infected Ifnar-/- mice, unlike wild type mice succumbed to death even after VLP treatment. The ISGs induced in wild type mice included anti-viral proteins and negative feedback factors known to restrict viral replication and excessive inflammatory responses. Importantly, proinflammatory cytokine/chemokine expression was much higher in WT mice without VLPs than mice treated with VLPs. In EBOV infected Ifnar-/- mice, however, uninhibited viral replication and elevated proinflammatory factor expression ensued, irrespective of VLP treatment, supporting the view that type I IFN signaling helps to limit viral replication and attenuate inflammatory responses. Further analyses showed that VLP protection requires the transcription factor, IRF8 known to amplify type I IFN signaling in dendritic cells and macrophages, the probable sites of initial EBOV infection. Together, this study indicates that VLPs afford post-exposure protection by promoting expeditious initiation of type I IFN signaling in the host. PMID:25719445

  2. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies.

    PubMed

    Patial, Sonika; Curtis, Alan D; Lai, Wi S; Stumpo, Deborah J; Hill, Georgette D; Flake, Gordon P; Mannie, Mark D; Blackshear, Perry J

    2016-02-16

    Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate-rich elements (AREs) in the 3'-untranslated regions (3'UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3'UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases. PMID:26831084

  3. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies

    PubMed Central

    Patial, Sonika; Curtis, Alan D.; Lai, Wi S.; Stumpo, Deborah J.; Hill, Georgette D.; Flake, Gordon P.; Mannie, Mark D.; Blackshear, Perry J.

    2016-01-01

    Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate–rich elements (AREs) in the 3′-untranslated regions (3′UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3′UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases. PMID:26831084

  4. Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer

    PubMed Central

    Zhang, Emma Yue; Cristofanilli, Massimo; Robertson, Fredika; Reuben, James M; Mu, Zhaomei; Beavis, Ronald C.; Im, Hogune; Snyder, Michael; Hofree, Matan; Ideker, Trey; Omenn, Gilbert S.; Fanayan, Susan; Jeong, Seul-Ki; Paik, Young-ki; Zhang, Anna Fan; Wu, Shiaw-Lin; Hancock, William S.

    2014-01-01

    lines, growth factor receptor-bound protein 7 (GRB7), Crk-like protein (CRKL) and Catenin delta-1 (CTNND1) for ERBB signaling, caveolin 1 (CAV1), plectin (PLEC) for EGFR signaling; filamin A (FLNA) and actinin alpha1 (ACTN1) (associated with high levels of EGFR transcript) for integrin signalings: branched chain amino-acid transaminase 1 (BCAT1), carbamoyl-phosphate synthetase (CAD), nucleolin (NCL) (high levels of EGFR transcript); transferrin receptor (TFRC), metadherin (MTDH) (high levels of ERBB2 transcript) for MYC signaling; S100-A2 protein (S100A2), caveolin 1 (CAV1), Serpin B5 (SERPINB5), stratifin (SFN), PYD and CARD domain containing (PYCARD), and EPH receptor A2 (EPHA2) for PI3K signaling, p53 sub-pathway. Future studies of inflammatory breast cancer (IBC), from which the cell lines were derived, will be used to explore the significance of these observations. PMID:23647160

  5. Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease.

    PubMed

    Jones, Simon P; Franco, Nunzio F; Varney, Bianca; Sundaram, Gayathri; Brown, David A; de Bie, Josien; Lim, Chai K; Guillemin, Gilles J; Brew, Bruce J

    2015-01-01

    The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes. PMID:26114426

  6. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases.

    PubMed

    Casas, Rosa; Sacanella, Emilio; Estruch, Ramon

    2014-01-01

    Dietary patterns high in refined starches, sugar, and saturated and trans-fatty acids, poor in natural antioxidants and fiber from fruits, vegetables, and whole grains, and poor in omega-3 fatty acids may cause an activation of the innate immune system, most likely by excessive production of proinflammatory cytokines associated with a reduced production of anti-inflammatory cytokines. The Mediterranean Diet (MedDiet) is a nutritional model inspired by the traditional dietary pattern of some of the countries of the Mediterranean basin. This dietary pattern is characterized by the abundant consumption of olive oil, high consumption of plant foods (fruits, vegetables, pulses, cereals, nuts and seeds); frequent and moderate intake of wine (mainly with meals); moderate consumption of fish, seafood, yogurt, cheese, poultry and eggs; and low consumption of red meat, processed meat products and seeds. Several epidemiological studies have evaluated the effects of a Mediterranean pattern as protective against several diseases associated with chronic low-grade inflammation such as cancer, diabetes, obesity, atherosclerosis, metabolic syndrome and cognition disorders. The adoption of this dietary pattern could counter the effects of several inflammatory markers, decreasing, for example, the secretion of circulating and cellular biomarkers involved in the atherosclerotic process. Thus, the aim of this review was to consider the current evidence about the effectiveness of the MedDiet in these chronic inflammatory diseases due to its antioxidant and anti-inflammatory properties, which may not only act on classical risk factors but also on inflammatory biomarkers such as adhesion molecules, cytokines or molecules related to the stability of atheromatic plaque. PMID:25244229

  7. The Immune Protective Effect of the Mediterranean Diet against Chronic Low-grade Inflammatory Diseases

    PubMed Central

    Casas, Rosa; Sacanella, Emilio; Estruch, Ramon

    2014-01-01

    Dietary patterns high in refined starches, sugar, and saturated and trans-fatty acids, poor in natural antioxidants and fiber from fruits, vegetables, and whole grains, and poor in omega-3 fatty acids may cause an activation of the innate immune system, most likely by excessive production of proinflammatory cytokines associated with a reduced production of anti-inflammatory cytokines. The Mediterranean Diet (MedDiet) is a nutritional model inspired by the traditional dietary pattern of some of the countries of the Mediterranean basin. This dietary pattern is characterized by the abundant consumption of olive oil, high consumption of plant foods (fruits, vegetables, pulses, cereals, nuts and seeds); frequent and moderate intake of wine (mainly with meals); moderate consumption of fish, seafood, yogurt, cheese, poultry and eggs; and low consumption of red meat, processed meat products and seeds. Several epidemiological studies have evaluated the effects of a Mediterranean pattern as protective against several diseases associated with chronic low-grade inflammation such as cancer, diabetes, obesity, atherosclerosis, metabolic syndrome and cognition disorders. The adoption of this dietary pattern could counter the effects of several inflammatory markers, decreasing, for example, the secretion of circulating and cellular biomarkers involved in the atherosclerotic process. Thus, the aim of this review was to consider the current evidence about the effectiveness of the MedDiet in these chronic inflammatory diseases due to its antioxidant and anti-inflammatory properties, which may not only act on classical risk factors but also on inflammatory biomarkers such as adhesion molecules, cytokines or molecules related to the stability of atheromatic plaque. PMID:25244229

  8. The essential role of lipopolysaccharide-binding protein in protection of mice against a peritoneal Salmonella infection involves the rapid induction of an inflammatory response.

    PubMed

    Heinrich, J M; Bernheiden, M; Minigo, G; Yang, K K; Schütt, C; Männel, D N; Jack, R S

    2001-08-01

    Acute and chronic hyperinflammation are of major clinical concern, and many treatment strategies are therefore directed to inactivating parts of the inflammatory system. However, survival depends on responding quickly to pathogen attack, and since the adaptive immune system requires several days to adequately react, we rely initially on a range of innate defenses, many of which operate by activating parts of the inflammatory network. For example, LPS-binding protein (LBP) can transfer the LPS of Gram-negative bacteria to CD14 on the surface of macrophages, and this initiates an inflammatory reaction. However, the importance of this chain of events in infection is unclear. First, the innate system is redundant, and bacteria have many components that may serve as targets for it. Second, LBP can transfer LPS to other acceptors that do not induce inflammation. In this study, we show that innate defense against a lethal peritoneal infection with Salmonella requires a direct proinflammatory involvement of LBP, and that this is a major nonredundant function of LBP in this infection model. This emphasizes that blocking the LBP-initiated inflammatory cascade disables an essential defense pathway. Any anti-inflammatory protection that may be achieved must be balanced against the risks inherent in blinding the innate system to the presence of Gram-negative pathogens. PMID:11466385

  9. Rapamycin protects neurons from brain contusion-induced inflammatory reaction via modulation of microglial activation

    PubMed Central

    SONG, QI; XIE, DUJIANG; PAN, SHIYONG; XU, WEIJUN

    2015-01-01

    The inflammatory reaction is important in secondary injury following traumatic brain injury (TBI). Rapamycin has been demonstrated as a neuroprotective agent in a mouse model of TBI, however, there is a lack of data regarding the effects of rapamycin on the inflammatory reaction following TBI. Therefore, the present study was designed to assess the effects of treatment with rapamycin on inflammatory reactions and examine the possible involvement of microglial activation following TBI. Male imprinting control region mice were randomly divided into four groups: Sham group (n=23), TBI group (n=23), TBI + dimethyl sulfoxide (DMSO) group (n=31) and TBI + rapamycin group (n=31). Rapamycin was dissolved in DMSO (50 mg/ml) and injected 30 min after TBI (2 mg/Kg; intraperitoneally). A weight-drop model of TBI was induced, and the brain tissues were harvested 24 h after TBI. The findings indicated that the administration of rapamycin following TBI was associated with decreased levels of activated microglia and neuron degeneration at the peri-injury site, reduced levels of proinflammatory cytokines and increased neurobehavioral function, possibly mediated by inactivation of the mammalian target of rapamycin pathway. The results of the present study offer novel insight into the mechanisms responsible for the anti-neuroinflammatory effects of rapamycin, possibly involving the modulation of microglial activation. PMID:26458361

  10. MUC1-C ACTIVATES THE TAK1 INFLAMMATORY PATHWAY IN COLON CANCER

    PubMed Central

    Takahashi, Hidekazu; Jin, Caining; Rajabi, Hasan; Pitroda, Sean; Alam, Maroof; Ahmad, Rehan; Raina, Deepak; Hasegawa, Masanori; Suzuki, Yozo; Tagde, Ashujit; Bronson, Roderick T.; Weichselbaum, Ralph; Kufe, Donald

    2015-01-01

    The mucin 1 (MUC1) oncoprotein has been linked to the inflammatory response by promoting cytokine-mediated activation of the NF-κB pathway. The TGF-β-activated kinase 1 (TAK1) is an essential effector of proinflammatory NF-κB signaling that also regulates cancer cell survival. The present studies demonstrate that the MUC1-C transmembrane subunit induces TAK1 expression in colon cancer cells. MUC1 also induces TAK1 in a MUC1+/−/IL-10−/− mouse model of colitis and colon tumorigenesis. We show that MUC1-C promotes NF-κB-mediated activation of TAK1 transcription and, in a positive regulatory loop, MUC1-C contributes to TAK1-induced NF-κB signaling. In this way, MUC1-C binds directly to TAK1 and confers the association of TAK1 with TRAF6, which is necessary for TAK1-mediated activation of NF-κB. Targeting MUC1-C thus suppresses the TAK1→NF-κB pathway, downregulates BCL-XL, and in turn sensitizes colon cancer cells to MEK inhibition. Analysis of colon cancer databases further indicates that MUC1, TAK1 and TRAF6 are upregulated in tumors associated with decreased survival and that MUC1-C-induced gene expression patterns predict poor outcomes in patients. These results support a model in which MUC1-C-induced TAK1→NF-κB signaling contributes to intestinal inflammation and colon cancer progression. PMID:25659581

  11. Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer.

    PubMed

    Zhang, Emma Yue; Cristofanilli, Massimo; Robertson, Fredika; Reuben, James M; Mu, Zhaomei; Beavis, Ronald C; Im, Hogune; Snyder, Michael; Hofree, Matan; Ideker, Trey; Omenn, Gilbert S; Fanayan, Susan; Jeong, Seul-Ki; Paik, Young-Ki; Zhang, Anna Fan; Wu, Shiaw-Lin; Hancock, William S

    2013-06-01

    In this study we selected three breast cancer cell lines (SKBR3, SUM149 and SUM190) with different oncogene expression levels involved in ERBB2 and EGFR signaling pathways as a model system for the evaluation of selective integration of subsets of transcriptomic and proteomic data. We assessed the oncogene status with reads per kilobase per million mapped reads (RPKM) values for ERBB2 (14.4, 400, and 300 for SUM149, SUM190, and SKBR3, respectively) and for EGFR (60.1, not detected, and 1.4 for the same 3 cell lines). We then used RNA-Seq data to identify those oncogenes with significant transcript levels in these cell lines (total 31) and interrogated the corresponding proteomics data sets for proteins with significant interaction values with these oncogenes. The number of observed interactors for each oncogene showed a significant range, e.g., 4.2% (JAK1) to 27.3% (MYC). The percentage is measured as a fraction of the total protein interactions in a given data set vs total interactors for that oncogene in STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, version 9.0) and I2D (Interologous Interaction Database, version 1.95). This approach allowed us to focus on 4 main oncogenes, ERBB2, EGFR, MYC, and GRB2, for pathway analysis. We used bioinformatics sites GeneGo, PathwayCommons and NCI receptor signaling networks to identify pathways that contained the four main oncogenes and had good coverage in the transcriptomic and proteomic data sets as well as a significant number of oncogene interactors. The four pathways identified were ERBB signaling, EGFR1 signaling, integrin outside-in signaling, and validated targets of C-MYC transcriptional activation. The greater dynamic range of the RNA-Seq values allowed the use of transcript ratios to correlate observed protein values with the relative levels of the ERBB2 and EGFR transcripts in each of the four pathways. This provided us with potential proteomic signatures for the SUM149 and 190 cell lines

  12. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    SciTech Connect

    Luo, Ying; Li, Shu-Jun; Yang, Jian; Qiu, Yuan-Zhen; Chen, Fang-Ping

    2013-09-06

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulum stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.

  13. Non-steroidal anti-inflammatory drugs protect against chondrocyte apoptotic death.

    PubMed

    Mukherjee, P; Rachita, C; Aisen, P S; Pasinetti, G M

    2001-01-01

    Recent evidence suggests that the degradation of cartilage in osteoarthritis is characterized by chondrocyte apoptosis, but little is known about the molecular mechanisms involved or potential protective measures. In the present study, we used an immortalized chondrocyte cell line to explore the mechanisms of apoptotic chondrocyte cell death. We found that staurosporine-mediated chondrocyte death depended on the concentration and time of incubation, and coincided with increased Bax:Bcl-X mRNA expression, cytochrome C release, and activation of caspase-3. Pre-treatment of the cultures with nimesulide, a preferential cyclooxygenase (COX)-2 inhibitor, or with ibuprofen, a non-selective COX-1/COX-2 inhibitor, protected the chondrocytes against the staurosporine-mediated nuclear damage and cell death in a concentration-dependent manner (10(-12) to 10(-6) M). Cell protection coincided with inhibition of the staurosporine-mediated induction of caspase-3 activation. Notably, the selective COX-2 inhibitor NS-398 (10(-6) M, 24 hr pre-treatment) did not protect the cells against staurosporine-mediated apoptotic death. The data suggest that nimesulide and ibuprofen, in addition to their anti-inflammatory and analgesic benefits, may also have a protective effect in osteoarthritis through the inhibition of apoptosis in chondrocytes. PMID:11296547

  14. Inhibition of inflammatory mediators contributes to the anti-inflammatory activity of KYKZL-1 via MAPK and NF-κB pathway

    SciTech Connect

    Xu, Guang-Lin; Du, Yi-Fang; Cheng, Jing; Huan, Lin; Chen, Shi-Cui; Wei, Shao-Hua; Gong, Zhu-Nan; Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting; Ao, Gui-Zhen

    2013-10-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the anti-inflammatory activity test focusing on its modulation of inflammatory mediators as well as intracellular MAPK and NF-κB signaling pathways. In acute ear edema model, pretreatment with KYKZL-1 (p.o.) dose-dependently inhibited the xylene-induced ear edema in mice with a higher inhibition than diclofenac. In a three-day TPA-induced inflammation, KYKZL-1 also showed significant anti-inflammatory activity with inhibition ranging between 20% and 64%. In gastric lesion test, KYKZL-1 elicited markedly fewer stomach lesions with a low index of ulcer as compared to diclofenac in rats. In further studies, KYKZL-1 was found to significantly inhibit the production of NO, PGE{sub 2}, LTB{sub 4} in LPS challenged RAW264.7, which is parallel to its attenuation of the expression of iNOS, COX-2, 5-LOX mRNAs or proteins and inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. Taken together, our data indicate that KYKZL-1 comprises dual inhibition of COX and 5-LOX and exerts an obvious anti-inflammatory activity with an enhanced gastric safety profile via simultaneous inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 inhibits NO, PGE{sub 2} and LTB{sub 4} and iNOS, COX-2 and 5-LOX mRNAs and MAPKs. • KYKZL-1 inhibits phosphorylation of MAPKs. • KYKZL-1 inactivates NF-κB pathway.

  15. Protective effect of diallyl trisulfide against naphthalene-induced oxidative stress and inflammatory damage in mice.

    PubMed

    Zhang, Fang; Zhang, Yongchun; Wang, Kaiming; Liu, Guangpu; Yang, Min; Zhao, Zhongxi; Li, Shanzhong; Cai, Jianhua; Cao, Jimin

    2016-06-01

    The aim of this study was to investigate the possible protective effects of diallyl trisulfide (DATS) against naphthalene-induced oxidative and inflammatory damage in the livers and lungs of mice. Elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels showed significant hepatic damage after the challenge with 100 mg/kg naphthalene. Hepatic malondialdehyde (MDA) contents and the activity of myeloperoxidase (MPO) increased significantly, accompanying a decrease in the hepatic activity of total superoxide dismutase (SOD) and glutathione (GSH) levels after the naphthalene damage. In addition, the serum levels of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 8 (IL-8) increased significantly in the groups damaged with naphthalene. The main parameters related to oxidative stress and inflammatory responses in the lungs, including the NO, MPO, and GSH contents, were determined, and the histopathological and immunohistochemical changes in the lung and liver tissues were also observed. In the DATS-treated groups, all of the oxidative and inflammatory damage in the serum, liver, and lung tissues were significantly prevented. PMID:26813860

  16. Oxymatrine attenuates CCl4-induced hepatic fibrosis via modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways.

    PubMed

    Zhao, Hong-Wei; Zhang, Zhen-Fang; Chai, Xuan; Li, Guang-Quan; Cui, He-Rong; Wang, Hong-Bo; Meng, Ya-Kun; Liu, Hui-Min; Wang, Jia-Bo; Li, Rui-Sheng; Bai, Zhao-Fang; Xiao, Xiao-He

    2016-07-01

    Oxymatrine (OMT) is able to effectively protect against hepatic fibrosis because of its anti-inflammatory property, while the underlying mechanism remains incompletely understood. In this study, forty rats were randomly divided into five groups: control group, model group (carbon tetrachloride, CCl4) and three OMT treatment groups (30, 60, 120mg/kg). After CCl4 alone, the fibrosis score was 20.2±0.8, and the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hydroxyproline content, and collagen I expression was elevated, but OMT blunted these parameters. Treatment with OMT prevented CCl4-induced increases in expression of pro-inflammatory and pro-fibrotic cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α, meanwhile OMT promoted the expression of anti-inflammatory and anti-fibrotic factors such as interleukin (IL)-10 and bone morphogenetic protein and activin membrane-bound inhibitor (Bambi). Moreover, lipopolysaccharides (LPS) and high mobility group box-1 (HMGB1), which activates Toll-like receptor 4 (TLR4) and modulate hepatic fibrogenesis through hepatic stellate cells (HSCs) or Kupffer cells, were significantly decreased by OMT treatment. These results were further supported by in vitro data. First, OMT suppressed the expression of TLR4 and its downstream pro-inflammatory cytokines, lowered the level of HMGB1, TGF-β1 in macrophages. Then, OMT promoted Bambi expression and thereby inhibited activation of HSCs mediated by transforming growth factor (TGF)-β1. In conclusion, this study showed that OMT could effectively attenuate the CCl4-induced hepatic fibrosis, and this effect may be due to modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways. PMID:27179304

  17. Anti-inflammatory activity of intravenous immunoglobulins protects against West Nile virus encephalitis

    PubMed Central

    Srivastava, Ruchi; Ramakrishna, Chandran

    2015-01-01

    West Nile virus (WNV), an important global human pathogen, targets neurons to cause lethal encephalitis, primarily in elderly and immunocompromised patients. Currently, there are no approved therapeutic agents or vaccines to treat WNV encephalitis. Recent studies have suggested that inflammation is a major contributor to WNV encephalitis morbidity. In this study we evaluated the use of IVIG (intravenous immunoglobulins – a clinical product comprising pooled human IgG) as an anti-inflammatory treatment in a model of lethal WNV infection. We report here that IVIG and pooled human WNV convalescent sera (WNV-IVIG) inhibited development of lethal WNV encephalitis by suppressing central nervous system (CNS) infiltration by CD45high leukocytes. Pathogenic Ly6Chigh CD11b+ monocytes were the major infiltrating subset in the CNS of infected control mice, whereas IVIG profoundly reduced infiltration of these pathogenic Ly6Chigh monocytes into the CNS of infected mice. Interestingly, WNV-IVIG was more efficacious than IVIG in controlling CNS inflammation when mice were challenged with a high-dose inoculum (105 versus 104 p.f.u.) of WNV. Importantly, adsorption of WNV E-glycoprotein neutralizing antibodies did not abrogate IVIG protection, consistent with virus neutralization not being essential for IVIG protection. These findings confirmed the potent immunomodulatory activity of generic IVIG, and emphasized its potential as an effective immunotherapeutic drug for encephalitis and other virus induced inflammatory diseases. PMID:25667322

  18. Protective effect of taraxasterol against LPS-induced endotoxic shock by modulating inflammatory responses in mice.

    PubMed

    Zhang, Xuemei; Xiong, Huanzhang; Li, Hongyu; Cheng, Yao

    2014-02-01

    Taraxasterol, a pentacyclic-triterpene, was isolated from the Chinese medicinal herb Taraxacum officinale. In the present study, we investigated the protective effect of taraxasterol on murine model of endotoxic shock and the mechanism of its action. Mice were treated with 2.5, 5 and 10 mg/kg of taraxasterol prior to a lethal dose of lipopolysaccharide (LPS) challenge. Survival of mice was monitored twice a day for 7 days. To further understand the mechanism, the serum levels of inflammatory cytokine tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), interleukin-6 (IL-6) and mediator nitric oxide (NO), prostaglandin E₂ (PGE₂) as well as histology of lungs were examined. The results showed that taraxasterol significantly improved mouse survival and attenuated tissue injury of the lungs in LPS-induced endotoxemic mice. Further studies revealed that taraxasterol significantly reduced TNF-α, IFN-γ, IL-1β, IL-6, NO and PGE₂ levels in sera from mice with endotoxic shock. These results indicate that taraxasterol has a protective effect on murine endotoxic shock induced by LPS through modulating inflammatory cytokine and mediator secretion. This finding might provide a new strategy for the treatment of endotoxic shock and associated inflammation. PMID:24286370

  19. Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis

    PubMed Central

    Norling, Lucy V.; Headland, Sarah E.; Dalli, Jesmond; Arnardottir, Hildur H.; Haworth, Oliver; Jones, Hefin R.; Irimia, Daniel; Serhan, Charles N.; Perretti, Mauro

    2016-01-01

    Rheumatoid arthritis (RA) is a debilitating disease characterized by persistent accumulation of leukocytes within the articular cavity and synovial tissue. Metabololipidomic profiling of arthritic joints from omega-3 supplemented mice identified elevated levels of specialized proresolving lipid mediators (SPM) including resolvin D1 (RvD1). Profiling of human RA synovial fluid revealed physiological levels of RvD1, which — once applied to human neutrophils — attenuated chemotaxis. These results prompted analyses of the antiarthritic properties of RvD1 in a model of murine inflammatory arthritis. The stable epimer 17R-RvD1 (100 ng/day) significantly attenuated arthritis severity, cachexia, hind-paw edema, and paw leukocyte infiltration and shortened the remission interval. Metabololipidomic profiling in arthritic joints revealed 17R-RvD1 significantly reduced PGE2 biosynthesis, while increasing levels of protective SPM. Molecular analyses indicated that 17R-RvD1 enhanced expression of genes associated with cartilage matrix synthesis, and direct intraarticular treatment induced chondroprotection. Joint protective actions of 17R-RvD1 were abolished in RvD1 receptor–deficient mice termed ALX/fpr2/3−/−. These investigations open new therapeutic avenues for inflammatory joint diseases, providing mechanistic substance for the benefits of omega-3 supplementation in RA. PMID:27158677

  20. [Regulative mechanism of renal inflammatory-related p38MAPK signaling pathway in diabetic nephropathy and interventional effects of Chinese herbal medicine].

    PubMed

    Chen, Hao-Li; Wan, Yi-Gang; Zhao, Qing; Huang, Yan-Ru; Shi, Xi-Miao; Meng, Xian-Jie; Yao, Jian

    2013-07-01

    It is reported, in the process of diabetic nephropathy (DN), inflammatory-related p38 mitogen-activated protein kinase (MAPK) signaling pathway has a close relationship with renal injury. On the one hand,many factors in the upstream including hyperglycemia, abnormal hemodynamics, oxidative stress, and pro-inflammatory cytokines could activate p38MAPK signaling pathway. On the other hand,the activated p38MAPK signaling pathway could lead to renal damage via activating inflammatory cells, inducing the expression of inflammatory mediators, and intervening cytokines production. CHM could intervene p38MAPK signaling pathway through multi-ways, including inhibiting inflammatory cytokines expression, regulating phosphorylated p38MAPK (p-p38MAPK) expression, and reducing fibrogenic factors expression. PMID:24199552

  1. Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway.

    PubMed

    Yao, Hong; Hu, Changsheng; Yin, Lianhong; Tao, Xufeng; Xu, Lina; Qi, Yan; Han, Xu; Xu, Youwei; Zhao, Yanyan; Wang, Changyuan; Peng, Jinyong

    2016-07-01

    We previously reported the effects of dioscin against carbon tetrachloride-, acetaminophen- and alcohol-induced acute liver damage. However, its effect on lipopolysaccharide (LPS)-induced inflammatory liver injury remains unknown. In the present work, liver injury in mice and rats was induced by LPS, and dioscin was intragastrically administered for 7days. In vitro, the AML-12 cells and HepG-2 cells were treated with LPS after dioscin treatment. The results showed that dioscin not only markedly reduced serum ALT, AST levels and relative liver weights, but also restored cell injury caused by LPS. In mechanism study, dioscin significantly attenuated inflammation through down-regulating the levels of toll-like receptor (TLR) 4, myeloid differentiation factor 88 (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK1), tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylated inhibitor of nuclear factor κB kinase (p-IKK), phosphorylated inhibitor of nuclear factor κB alpha (p-IκBα), phosphorylated nuclear factor κB p65 (p-NF-κB p65), high-mobility group protein 1 (HMGB-1), interleukin (IL)-1, IL-6 and tumor necrosis factor-α (TNF-α). TLR4 overexpression was also decreased by dioscin, leading to the markedly decreased levels of MyD88, IRAK1, TRAF6, p-IKK, p-IκBα, p-NF-κB p65 and HMGB-1. Suppression of MyD88 by ST2825 eliminated the inhibitory effects of dioscin on the levels of IRAK1, TRAF6, p-IKK, p-IκBα, p-NF-κB p65, HMGB-1, IL-1β, IL-6 and TNF-α. Our results suggested that dioscin exhibited protective effect against LPS-induced liver injury via altering TLR4/MyD88 pathway, which should be developed as one potent candidate for the treatment of acute inflammatory liver injury in the future. PMID:27135544

  2. Integrin CD11b attenuates colitis by strengthening Src-Akt pathway to polarize anti-inflammatory IL-10 expression

    PubMed Central

    Hu, Xiang; Han, Chaofeng; Jin, Jing; Qin, Kewei; Zhang, Hua; Li, Tianliang; Li, Nan; Cao, Xuetao

    2016-01-01

    Interleukin-10 (IL-10) plays a central role in regulation of intestinal mucosal homeostasis and prevention of inflammatory bowel disease (IBD). We previously reported that CD11bhi regulatory dendritic cells (DCs) can produce more IL-10, and CD11b can negatively regulate Toll-like receptors (TLRs)-induced inflammatory responses in macrophages. However whether CD11b and its signaling can control autoimmunity via IL-10 production remains unclear. Here we found that CD11b deficient (Itgam−/−) mice were more susceptible to dextran sulfate sodium (DSS)-induced colitis, with more tumor necrosis factor α (TNF-α) while less IL-10 production. CD11b inhibited nuclear factor-kappa B (NF-κB) while promoted activator protein 1 (AP-1) activation through activating sarcoma oncogene (Src), leading to decreased TNF-α while increased IL-10 production. Src interacted with and promoted c-casitas B lineage lymphoma proto-oncogene (c-Cbl)-mediated degradation of the inhibitory subunit p85 of phosphatidylinositol 3-kinase (PI3K). Importantly, Src inhibitor dasatinib aggravated DSS-induced colitis by decreasing IL-10 while increasing TNF-α in vivo. Therefore, CD11b promotes IL-10 production by activating Src-Akt signal pathway. An axis of CD11b-Src pathway is important in balancing homeostasis of TLR-induced pro-inflammatory and anti-inflammatory responses. PMID:27188220

  3. Integrin CD11b attenuates colitis by strengthening Src-Akt pathway to polarize anti-inflammatory IL-10 expression.

    PubMed

    Hu, Xiang; Han, Chaofeng; Jin, Jing; Qin, Kewei; Zhang, Hua; Li, Tianliang; Li, Nan; Cao, Xuetao

    2016-01-01

    Interleukin-10 (IL-10) plays a central role in regulation of intestinal mucosal homeostasis and prevention of inflammatory bowel disease (IBD). We previously reported that CD11b(hi) regulatory dendritic cells (DCs) can produce more IL-10, and CD11b can negatively regulate Toll-like receptors (TLRs)-induced inflammatory responses in macrophages. However whether CD11b and its signaling can control autoimmunity via IL-10 production remains unclear. Here we found that CD11b deficient (Itgam(-/-)) mice were more susceptible to dextran sulfate sodium (DSS)-induced colitis, with more tumor necrosis factor α (TNF-α) while less IL-10 production. CD11b inhibited nuclear factor-kappa B (NF-κB) while promoted activator protein 1 (AP-1) activation through activating sarcoma oncogene (Src), leading to decreased TNF-α while increased IL-10 production. Src interacted with and promoted c-casitas B lineage lymphoma proto-oncogene (c-Cbl)-mediated degradation of the inhibitory subunit p85 of phosphatidylinositol 3-kinase (PI3K). Importantly, Src inhibitor dasatinib aggravated DSS-induced colitis by decreasing IL-10 while increasing TNF-α in vivo. Therefore, CD11b promotes IL-10 production by activating Src-Akt signal pathway. An axis of CD11b-Src pathway is important in balancing homeostasis of TLR-induced pro-inflammatory and anti-inflammatory responses. PMID:27188220

  4. Protective role of macrophage-derived ceruloplasmin in inflammatory bowel disease

    PubMed Central

    Bakhautdin, Bakytzhan; Febbraio, Maria; Goksoy, Esen; de la Motte, Carol A; Gulen, Muhammet F; Childers, Erin Patricia; Hazen, Stanley L; Li, Xiaoxia; Fox, Paul L

    2013-01-01

    Objective Intestinal microflora and inflammatory cell infiltrates play critical roles in the pathogenesis of acute colitis. Ceruloplasmin is an acute-phase plasma protein produced by hepatocytes and activated macrophages, and has ferroxidase with bactericidal activities. The goal is to understand the role of ceruloplasmin in colitis progression in a genetically modified murine model. Design Experimental colitis was induced in ceruloplasmin null (Cp−/−) and wild-type (WT) mice by dextran sulphate sodium administration. The role of ceruloplasmin was further evaluated by transplantation of WT macrophages into Cp−/− mice. Results Cp−/− mice rapidly lost weight and were moribund by day 14, while WT mice survived at least 30 days. Colon culture supernatants from Cp−/− mice exhibited elevated levels of TNFα, KC and MCP-1, indicative of increased inflammation and neutrophil and macrophage infiltration. Elevated leucocytes and severe histopathology were observed in Cp−/− mice. Elevated protein carbonyl content was detected in colons from Cp−/− mice suggesting ceruloplasmin antioxidant activity might contribute to its protective function. Unexpectedly, intraperitoneal administration of human ceruloplasmin into Cp−/− mice did not afford protection. Bone marrow transplantation from WT mice or injection of isolated peripheral blood monocytes markedly reduced severity of colitis and morbidity in Cp−/− mice. Conclusion Macrophage-derived ceruloplasmin contributes importantly to protection against inflammation and tissue injury in acute and chronic experimental colitis. The findings suggest that defects in ceruloplasmin expression or processing may influence the onset or progression of inflammatory bowel disease in patients. PMID:22345661

  5. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    SciTech Connect

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  6. Food-Derived Bioactives Can Protect the Anti-Inflammatory Activity of Cortisol with Antioxidant-Dependent and -Independent Mechanisms

    PubMed Central

    Ruijters, Erik J. B.; Haenen, Guido R. M. M.; Willemsen, Mathijs; Weseler, Antje R.; Bast, Aalt

    2016-01-01

    In chronic inflammatory diseases the anti-inflammatory effect of glucocorticoids (GCs) is often decreased, leading to GC resistance. Inflammation is related with increased levels of reactive oxygen species (ROS), leading to oxidative stress which is thought to contribute to the development of GC resistance. Plant-derived compounds such as flavonoids are known for their ability to protect against ROS. In this exploratory study we screened a broad range of food-derived bioactives for their antioxidant and anti-inflammatory effects in order to investigate whether their antioxidant effects are associated with the ability to preserve the anti-inflammatory effects of cortisol. The anti-inflammatory potency of the tested compounds was assessed by measuring the oxidative stress–induced GC resistance in human macrophage-like cells. Cells were pre-treated with H2O2 (800 µM) with and without bioactives and then exposed to lipopolysaccharides (LPS) (10 ng/mL) and cortisol (100 nM). The level of inflammation was deducted from the concentration of interleukin-8 (IL-8) in the medium. Intracellular oxidative stress was measured using the fluorescent probe 2′,7′-dichlorofluorescein (DCFH). We found that most of the dietary bioactives display antioxidant and anti-inflammatory action through the protection of the cortisol response. All compounds, except for quercetin, revealing antioxidant activity also protect the cortisol response. This indicates that the antioxidant activity of compounds plays an important role in the protection of the GC response. However, next to the antioxidant activity of the bioactives, other mechanisms also seem to be involved in this protective, anti-inflammatory effect. PMID:26891295

  7. Food-Derived Bioactives Can Protect the Anti-Inflammatory Activity of Cortisol with Antioxidant-Dependent and -Independent Mechanisms.

    PubMed

    Ruijters, Erik J B; Haenen, Guido R M M; Willemsen, Mathijs; Weseler, Antje R; Bast, Aalt

    2016-01-01

    In chronic inflammatory diseases the anti-inflammatory effect of glucocorticoids (GCs) is often decreased, leading to GC resistance. Inflammation is related with increased levels of reactive oxygen species (ROS), leading to oxidative stress which is thought to contribute to the development of GC resistance. Plant-derived compounds such as flavonoids are known for their ability to protect against ROS. In this exploratory study we screened a broad range of food-derived bioactives for their antioxidant and anti-inflammatory effects in order to investigate whether their antioxidant effects are associated with the ability to preserve the anti-inflammatory effects of cortisol. The anti-inflammatory potency of the tested compounds was assessed by measuring the oxidative stress-induced GC resistance in human macrophage-like cells. Cells were pre-treated with H₂O₂ (800 µM) with and without bioactives and then exposed to lipopolysaccharides (LPS) (10 ng/mL) and cortisol (100 nM). The level of inflammation was deducted from the concentration of interleukin-8 (IL-8) in the medium. Intracellular oxidative stress was measured using the fluorescent probe 2',7'-dichlorofluorescein (DCFH). We found that most of the dietary bioactives display antioxidant and anti-inflammatory action through the protection of the cortisol response. All compounds, except for quercetin, revealing antioxidant activity also protect the cortisol response. This indicates that the antioxidant activity of compounds plays an important role in the protection of the GC response. However, next to the antioxidant activity of the bioactives, other mechanisms also seem to be involved in this protective, anti-inflammatory effect. PMID:26891295

  8. Antioxidative and anti-inflammatory protection from carnosine in the striatum of MPTP-treated mice.

    PubMed

    Tsai, Shih-Jei; Kuo, Wei-Wen; Liu, Wen-Hu; Yin, Mei-Chin

    2010-11-10

    Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were used to examine the neuroprotective effects of carnosine. Carnosine at 0.5, 1, and 2 g/L was directly added to the drinking water for 4 weeks. MPTP treatment significantly depleted striatal glutathione content, reduced the activity of glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase, increased malondialdehyde and reactive oxygen species levels, and elevated interleukin-6, nitrite, and tumor necrosis factor-α production as well as enhanced inducible nitric oxide synthase (iNOS) activity in the striatum (P < 0.05). The preintake of carnosine significantly attenuated MPTP-induced glutathione loss, retained the activity of GPX and SOD, diminished oxidative stress, and lowered inflammatory cytokines and nitrite levels as well as suppressed iNOS activity (P < 0.05). MPTP treatment significantly suppressed GPX mRNA expression and enhanced iNOS mRNA expression (P < 0.05). Carnosine preintake significantly elevated GPX mRNA expression and declined iNOS mRNA expression (P < 0.05). Preintake of carnosine also significantly improved MPTP-induced dopamine depletion and maintained 3,4-dihydroxyphenylacetic acid and homovanillic acid levels (P < 0.05). These results suggest that carnosine could provide antioxidative and anti-inflammatory protection for the striatum against the development of Parkinson's disease. PMID:20925384

  9. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures.

    PubMed Central

    Van Lenten, B J; Hama, S Y; de Beer, F C; Stafforini, D M; McIntyre, T M; Prescott, S M; La Du, B N; Fogelman, A M; Navab, M

    1995-01-01

    We previously reported that high density lipoprotein (HDL) protects against the oxidative modification of low density lipoprotein (LDL) induced by artery wall cells causing these cells to produce pro-inflammatory molecules. We also reported that enzyme systems associated with HDL were responsible for this anti-inflammatory property of HDL. We now report studies comparing HDL before and during an acute phase response (APR) in both humans and a croton oil rabbit model. In rabbits, from the onset of APR the protective effect of HDL progressively decreased and was completely lost by day three. As serum amyloid A (SAA) levels in acute phase HDL (AP-HDL) increased, apo A-I levels decreased 73%. Concomitantly, paraoxonase (PON) and platelet activating factor acetylhydrolase (PAF-AH) levels in HDL declined 71 and 90%, respectively, from days one to three. After day three, there was some recovery of the protective effect of HDL. AP-HDL from human patients and rabbits but not normal or control HDL (C-HDL) exhibited increases in ceruloplasmin (CP). This increase in CP was not seen in acute phase VLDL or LDL. C-HDL incubated with purified CP and re-isolated (CP-HDL), lost its ability to inhibit LDL oxidation. Northern blot analyses demonstrated enhanced expression of MCP-1 in coculture cells treated with AP-HDL and CP-HDL compared to C-HDL. Enrichment of human AP-HDL with purified PON or PAF-AH rendered AP-HDL protective against LDL modification. We conclude that under basal conditions HDL serves an anti-inflammatory role but during APR displacement and/or exchange of proteins associated with HDL results in a pro-inflammatory molecule. Images PMID:8675645

  10. Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects

    PubMed Central

    Zhang, Zhen; Sun, Tao; Niu, Jian-guo; He, Zhen-quan; Liu, Yang; Wang, Feng

    2015-01-01

    Amentoflavone is a natural biflavone compound with many biological properties, including anti-inflammatory, antioxidative, and neuroprotective effects. We presumed that amentoflavone exerts a neuroprotective effect in epilepsy models. Prior to model establishment, mice were intragastrically administered 25 mg/kg amentoflavone for 3 consecutive days. Amentoflavone effectively prevented pilocarpine-induced epilepsy in a mouse kindling model, suppressed nuclear factor-κB activation and expression, inhibited excessive discharge of hippocampal neurons resulting in a reduction in epileptic seizures, shortened attack time, and diminished loss and apoptosis of hippocampal neurons. Results suggested that amentoflavone protected hippocampal neurons in epilepsy mice via anti-inflammation, antioxidation, and antiapoptosis, and then effectively prevented the occurrence of seizures. PMID:26330838

  11. TNF-α expression, risk factors, and inflammatory exposures in ovarian cancer: evidence for an inflammatory pathway of ovarian carcinogenesis?

    PubMed

    Gupta, Mamta; Babic, Ana; Beck, Andrew H; Terry, Kathryn

    2016-08-01

    Inflammatory cytokines, like tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), are elevated in ovarian cancer. Differences in cytokine expression by histologic subytpe or ovarian cancer risk factors can provide useful insight into ovarian cancer risk and etiology. We used ribonucleic acid in situ hybridization to assess TNF-α and IL-6 expression on tissue microarray slides from 78 epithelial ovarian carcinomas (51 serous, 12 endometrioid, 7 clear cell, 2 mucinous, 6 other) from a population-based case-control study. Cytokine expression was scored semiquantitatively, and odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using polytomous logistic regression. TNF-α was expressed in 46% of the tumors, whereas sparse IL-6 expression was seen in only 18% of the tumors. For both markers, expression was most common in high-grade serous carcinomas followed by endometrioid carcinomas. Parity was associated with a reduced risk of TNF-α-positive (OR, 0.3; 95% CI, 0.1-0.7 for 3 or more children versus none) but not TNF-α-negative tumors (P heterogeneity=.02). In contrast, current smoking was associated with a nearly 3-fold increase in risk of TNF-α-negative (OR, 2.8; 95% CI, 1.2-6.6) but not TNF-α-positive tumors (P heterogeneity = .06). Our data suggest that TNF-α expression in ovarian carcinoma varies by histologic subtype and provides some support for the role of inflammation in ovarian carcinogenesis. The novel associations detected in our study need to be validated in a larger cohort of patients in future studies. PMID:27068525

  12. Protective Effects of Celastrol on Diabetic Liver Injury via TLR4/MyD88/NF-κB Signaling Pathway in Type 2 Diabetic Rats

    PubMed Central

    Han, Li-ping; Li, Chun-jun; Sun, Bei; Xie, Yun; Guan, Yue; Ma, Ze-jun; Chen, Li-ming

    2016-01-01

    Immune and inflammatory pathways play a central role in the pathogenesis of diabetic liver injury. Celastrol is a potent immunosuppressive and anti-inflammatory agent. So far, there is no evidence regarding the mechanism of innate immune alterations of celastrol on diabetic liver injury in type 2 diabetic animal models. The present study was aimed at investigating protective effects of celastrol on the liver injury in diabetic rats and at elucidating the possible involved mechanisms. We analyzed the liver histopathological and biochemical changes and the expressions of TLR4 mediated signaling pathway. Compared to the normal control group, diabetic rats were found to have obvious steatohepatitis and proinflammatory cytokine activities were significantly upregulated. Celastrol-treated diabetic rats show reduced hepatic inflammation and macrophages infiltration. The expressions of TLR4, MyD88, NF-κB, and downstream inflammatory factors IL-1β and TNFα in the hepatic tissue of treated rats were downregulated in a dose-dependent manner. We firstly found that celastrol treatment could delay the progression of diabetic liver disease in type 2 diabetic rats via inhibition of TLR4/MyD88/NF-κB signaling cascade pathways and its downstream inflammatory effectors. PMID:27057550

  13. Protective links between vitamin D, inflammatory bowel disease and colon cancer.

    PubMed

    Meeker, Stacey; Seamons, Audrey; Maggio-Price, Lillian; Paik, Jisun

    2016-01-21

    Vitamin D deficiency has been associated with a wide range of diseases and multiple forms of cancer including breast, colon, and prostate cancers. Relatively recent work has demonstrated vitamin D to be critical in immune function and therefore important in inflammatory diseases such as inflammatory bowel disease (IBD). Because vitamin D deficiency or insufficiency is increasingly prevalent around the world, with an estimated 30%-50% of children and adults at risk for vitamin D deficiency worldwide, it could have a significant impact on IBD. Epidemiologic studies suggest that low serum vitamin D levels are a risk factor for IBD and colon cancer, and vitamin D supplementation is associated with decreased colitis disease activity and/or alleviated symptoms. Patients diagnosed with IBD have a higher incidence of colorectal cancer than the general population, which supports the notion that inflammation plays a key role in cancer development and underscores the importance of understanding how vitamin D influences inflammation and its cancer-promoting effects. In addition to human epidemiological data, studies utilizing mouse models of colitis have shown that vitamin D is beneficial in preventing or ameliorating inflammation and clinical disease. The precise role of vitamin D on colitis is unknown; however, vitamin D regulates immune cell trafficking and differentiation, gut barrier function and antimicrobial peptide synthesis, all of which may be protective from IBD and colon cancer. Here we focus on effects of vitamin D on inflammation and inflammation-associated colon cancer and discuss the potential use of vitamin D for protection and treatment of IBD and colon cancer. PMID:26811638

  14. Protective links between vitamin D, inflammatory bowel disease and colon cancer

    PubMed Central

    Meeker, Stacey; Seamons, Audrey; Maggio-Price, Lillian; Paik, Jisun

    2016-01-01

    Vitamin D deficiency has been associated with a wide range of diseases and multiple forms of cancer including breast, colon, and prostate cancers. Relatively recent work has demonstrated vitamin D to be critical in immune function and therefore important in inflammatory diseases such as inflammatory bowel disease (IBD). Because vitamin D deficiency or insufficiency is increasingly prevalent around the world, with an estimated 30%-50% of children and adults at risk for vitamin D deficiency worldwide, it could have a significant impact on IBD. Epidemiologic studies suggest that low serum vitamin D levels are a risk factor for IBD and colon cancer, and vitamin D supplementation is associated with decreased colitis disease activity and/or alleviated symptoms. Patients diagnosed with IBD have a higher incidence of colorectal cancer than the general population, which supports the notion that inflammation plays a key role in cancer development and underscores the importance of understanding how vitamin D influences inflammation and its cancer-promoting effects. In addition to human epidemiological data, studies utilizing mouse models of colitis have shown that vitamin D is beneficial in preventing or ameliorating inflammation and clinical disease. The precise role of vitamin D on colitis is unknown; however, vitamin D regulates immune cell trafficking and differentiation, gut barrier function and antimicrobial peptide synthesis, all of which may be protective from IBD and colon cancer. Here we focus on effects of vitamin D on inflammation and inflammation-associated colon cancer and discuss the potential use of vitamin D for protection and treatment of IBD and colon cancer. PMID:26811638

  15. Hydrogen sulfide (H2S) attenuates uranium-induced acute nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-κB pathways.

    PubMed

    Zheng, Jifang; Zhao, Tingting; Yuan, Yan; Hu, Nan; Tang, Xiaoqing

    2015-12-01

    As an endogenous gaseous mediator, H2S exerts anti-oxidative, anti-inflammatory and cytoprotective effects in kidneys. This study was designed to investigate the protective effect of H2S against uranium-induced nephrotoxicity in adult SD male rats after in vivo effect of uranium on endogenous H2S formation was explored in kidneys. The levels of endogenous H2S and H2S-producing enzymes (CBS and CSE) were measured in renal homogenates from rats intoxicated by an intraperitoneally (i.p.) injection of uranyl acetate at a single dose of 2.5, 5 or 10 mg/kg. In rats injected i.p. with uranyl acetate (5 mg/kg) or NaHS (an H2S donor, 28 or 56 μmol/kg) alone or in combination, we determined biochemical parameters and histopathological alteration to assess kidney function, examined oxidative stress markers, and investigated Nrf2 and NF-κB pathways in kidney homogenates. The results suggest that uranium intoxication in rats decreased endogenous H2S generation as well as CBS and CSE protein expression. NaHS administration in uranium-intoxicated rats ameliorated the renal biochemical indices and histopathological effects, lowered MDA accumulation, and restored GSH level and anti-oxidative enzymes activities like SOD, CAT, GPx and GST. NaHS treatment in uranium-intoxicated rats activated uranium-inhibited protein expression and nuclear translocation of transcription factor Nrf2, which increased protein expression of downstream target-Nrf2 genes HO-1, NQO-1, GCLC, and TXNRD-1. NaHS administration in uranium-intoxicated rats inhibited uranium-induced nuclear translocation and phosphorylation of transcription factor κB/p65, which decreased protein expression of target-p65 inflammatory genes TNF-α, iNOS, and COX-2. Taken together, these data implicate that H2S can afford protection to rat kidneys against uranium-induced adverse effects through induction of antioxidant defense by activating Nrf2 pathway and reduction of inflammatory response by suppressing NF-κB pathway. PMID

  16. Celecoxib can suppress expression of genes associated with PGE2 pathway in chondrocytes under inflammatory conditions

    PubMed Central

    Sun, Tian-Wen; Wu, Zhi-Hong; Weng, Xi-Sheng

    2015-01-01

    This study aimed to investigate the effect of a selective cyclooxygenase-2 (COX-2) inhibitor (celecoxib) on the expression of arachidonate-associated inflammatory genes in cultured human normal chondrocytes. Normal chondrocytes were obtained from the cartilage of three different amputated patients without osteoarthritis (OA). Affymetrix Human microarray was used to assess the alterations in gene expression in three groups of cells: untreated cells (negative control group), cells treated with interleukin-1β (IL-1β) (positive control group), and cells treated with IL-1β and celecoxib. The patterns of up-regulation and down-regulation of gene expression were further validated by real-time PCR. A total of 1091 up-regulated genes and 1252 down-regulated genes were identified in the positive control group compared with the negative control group. Among them, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 are known to be involved in chondrocyte inflammation, while VEGFA, BCL2, TRAF1, CYR61, BMP6, DAPK1, DUSP7, IL1RN, MMP13 and TNFSF10 were reported being associated with cytokine and chemokine signaling. 189 up-regulated genes and 177 down-regulated genes were identified in the positive control group compared with intervention group. PTGS1, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 were among the genes down-regulated upon the treatment with celecoxib. Our results demonstrated that the OA chondrocytes are the site of active eicosanoid production. IL-1β can activate inflammation in chondrocytes and trigger the production of various proteins involved in cyclooxygenase pathway. The expression of genes corresponding to these proteins can be down-regulated by celecoxib. The findings indicate that the therapy with prostaglandin E2 (PGE2)-blocking agents may decrease the PGE2 production not only by direct inhibition of COX-2 activity, but also by down-regulating the expression of genes encoding for COX-2, microsomal prostaglandin-endoperoxide synthase 1 (mPGES-1) and prostaglandin

  17. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats

    PubMed Central

    2013-01-01

    Background Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. Results EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat’s paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. Conclusions The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats. PMID:23517865

  18. Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: the brain-gut connection begins in utero

    PubMed Central

    Garzoni, L.; Faure, C.; Frasch, M.G.

    2013-01-01

    Necrotizing enterocolitis (NEC) is an acute neonatal inflammatory disease that affects the intestine and may result in necrosis, systemic sepsis and multisystem organ failure. NEC affects 5–10% of all infants with birth weight ≤ 1500 g or gestational age less than 30 weeks. Chorioamnionitis (CA) is the main manifestation of pathological inflammation in the fetus and is strong associated with NEC. CA affects 20% of full-term pregnancies and upto 60% of preterm pregnancies and, notably, is often an occult finding. Intrauterine exposure to inflammatory stimuli may switch innate immunity cells such as macrophages to a reactive phenotype (“priming”). Confronted with renewed inflammatory stimuli during labour or postnatally, such sensitized cells can sustain a chronic or exaggerated production of proinflammatory cytokines associated with NEC (two-hit hypothesis). Via the cholinergic anti-inflammatory pathway, a neurally mediated innate anti-inflammatory mechanism, higher levels of vagal activity are associated with lower systemic levels of proinflammatory cytokines. This effect is mediated by the α7 subunit nicotinic acetylcholine receptor (α7nAChR) on macrophages. The gut is the most extensive organ innervated by the vagus nerve; it is also the primary site of innate immunity in the newborn. Here we review the mechanisms of possible neuroimmunological brain-gut interactions involved in the induction and control of antenatal intestinal inflammatory response and priming. We propose a neuroimmunological framework to (1) study the long-term effects of perinatal intestinal response to infection and (2) to uncover new targets for preventive and therapeutic intervention. PMID:23964209

  19. Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats.

    PubMed

    An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Jung, Eui-Man; Kang, Hong-Seok; Choi, In-Gyu; Park, Mi-Jin; Jeung, Eui-Bae

    2013-07-01

    Essential oils are concentrated hydrophobic liquids containing volatile aromatic compounds from plants. In the present study, the essential oil of Chamaecyparis obtusa (C. obtusa), which is commercially used in soap, toothpaste and cosmetics, was extracted. Essential oil extracted from C. obtusa contains several types of terpenes, which have been shown to have anti-oxidative and anti-inflammatory effects. In the present study, we examined the anti-inflammatory effects of C. obtusa essential oil in vivo and in vitro following the induction of inflammation by lipopolysaccharides (LPS) in rats. While LPS induced an inflammatory response through the production of prostaglandin E2 (PGE2) in the blood and peripheral blood mononuclear cells (PMNCs), these levels were reduced when essential oil was pre-administered. Additionally, the mechanism of action underlying the anti-inflammatory effects of C. obtusa essential oil was investigated by measuring the mRNA expression of inflammation‑associated genes. LPS treatment significantly induced the expression of transforming growth factor α (TNFα) and cyclooxygenase-2 (COX-2) in rats, while C. obtusa essential oil inhibited this effect. Taken together, our results demonstrate that C. obtusa essential oil exerts anti‑inflammatory effects by regulating the production of PGE2 and TNFα gene expression through the COX-2 pathway. These findings suggest that C. obtusa essential oil may constitute a novel source of anti-inflammatory drugs. PMID:23652412

  20. Esculin exhibited anti-inflammatory activities in vivo and regulated TNF-α and IL-6 production in LPS-stimulated mouse peritoneal macrophages in vitro through MAPK pathway.

    PubMed

    Niu, Xiaofeng; Wang, Yu; Li, Weifeng; Zhang, Hailin; Wang, Xiumei; Mu, Qingli; He, Zehong; Yao, Huan

    2015-12-01

    Esculin, a coumarinic derivative found in Aesculus hippocastanum L. (Horse-chestnut), has been reported to have potent anti-inflammatory properties. The present study is designed to investigate the protective effects of esculin on various inflammation models in vivo and in vitro and to clarify the possible mechanism. Induced-animal models of inflammation and lipopolysaccharide (LPS)-challenged mouse peritoneal macrophages were used to examine the anti-inflammatory activity of esculin. In present study, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced mouse pleurisy were attenuated by esculin. In vitro, the pro-inflammatory cytokine levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in supernatant were reduced by esculin. Meanwhile, we found that esculin significantly inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathway in peritoneal macrophages. These results suggest that esculin has potent anti-inflammatory activities in vivo and in vitro, which may involve the inhibition of the MAPK pathway. Esculin may be a promising preventive agent for inflammatory diseases in human. PMID:26391063

  1. Fas/FasL pathway participates in regulation of antiviral and inflammatory response during mousepox infection of lungs.

    PubMed

    Bień, Karolina; Sokołowska, Justyna; Bąska, Piotr; Nowak, Zuzanna; Stankiewicz, Wanda; Krzyzowska, Malgorzata

    2015-01-01

    Fas receptor-Fas ligand (FasL) signalling is involved in apoptosis of immune cells as well as of the virus infected target cells but increasing evidence accumulates on Fas as a mediator of apoptosis-independent processes such as induction of activating and proinflammatory signals. In this study, we examined the role of Fas/FasL pathway in inflammatory and antiviral response in lungs using a mousepox model applied to C57BL6/J, B6. MRL-Faslpr/J, and B6Smn.C3-Faslgld/J mice. Ectromelia virus (ECTV) infection of Fas- and FasL-deficient mice led to increased virus titers in lungs and decreased migration of IFN-γ expressing NK cells, CD4+ T cells, CD8+ T cells, and decreased IL-15 expression. The lungs of ECTV-infected Fas- and FasL-deficient mice showed significant inflammation during later phases of infection accompanied by decreased expression of anti-inflammatory IL-10 and TGF-β1 cytokines and disturbances in CXCL1 and CXCL9 expression. Experiments in vitro demonstrated that ECTV-infected cultures of epithelial cells, but not macrophages, upregulate Fas and FasL and are susceptible to Fas-induced apoptosis. Our study demonstrates that Fas/FasL pathway during ECTV infection of the lungs plays an important role in controlling local inflammatory response and mounting of antiviral response. PMID:25873756

  2. Fas/FasL Pathway Participates in Regulation of Antiviral and Inflammatory Response during Mousepox Infection of Lungs

    PubMed Central

    Bień, Karolina; Sokołowska, Justyna; Bąska, Piotr; Nowak, Zuzanna; Stankiewicz, Wanda; Krzyzowska, Malgorzata

    2015-01-01

    Fas receptor-Fas ligand (FasL) signalling is involved in apoptosis of immune cells as well as of the virus infected target cells but increasing evidence accumulates on Fas as a mediator of apoptosis-independent processes such as induction of activating and proinflammatory signals. In this study, we examined the role of Fas/FasL pathway in inflammatory and antiviral response in lungs using a mousepox model applied to C57BL6/J, B6. MRL-Faslpr/J, and B6Smn.C3-Faslgld/J mice. Ectromelia virus (ECTV) infection of Fas- and FasL-deficient mice led to increased virus titers in lungs and decreased migration of IFN-γ expressing NK cells, CD4+ T cells, CD8+ T cells, and decreased IL-15 expression. The lungs of ECTV-infected Fas- and FasL-deficient mice showed significant inflammation during later phases of infection accompanied by decreased expression of anti-inflammatory IL-10 and TGF-β1 cytokines and disturbances in CXCL1 and CXCL9 expression. Experiments in vitro demonstrated that ECTV-infected cultures of epithelial cells, but not macrophages, upregulate Fas and FasL and are susceptible to Fas-induced apoptosis. Our study demonstrates that Fas/FasL pathway during ECTV infection of the lungs plays an important role in controlling local inflammatory response and mounting of antiviral response. PMID:25873756

  3. TLR-2/TLR-4 TREM-1 Signaling Pathway Is Dispensable in Inflammatory Myeloid Cells during Sterile Kidney Injury

    PubMed Central

    Campanholle, Gabriela; Mittelsteadt, Kristen; Nakagawa, Shunsaku; Kobayashi, Akio; Lin, Shuei-Liong; Gharib, Sina A.; Heinecke, Jay W.; Hamerman, Jessica A.; Altemeier, William A.; Duffield, Jeremy S.

    2013-01-01

    Inflammatory macrophages are abundant in kidney disease, stimulating repair, or driving chronic inflammation and fibrosis. Damage associated molecules (DAMPs), released from injured cells engage pattern recognition receptors (PRRs) on macrophages, contributing to activation. Understanding mechanisms of macrophage activation during kidney injury may lead to strategies to alleviate chronic disease. We identified Triggering-Receptor-in-Myeloid-cells (TREM)-1, a regulator of TLR signaling, as highly upregulated in kidney inflammatory macrophages and tested the roles of these receptors in macrophage activation and kidney disease. Kidney DAMPs activated macrophages in vitro, independently of TREM-1, but partially dependent on TLR-2/−4, MyD88. In two models of progressive interstitial kidney disease, TREM-1 blockade had no impact on disease or macrophage activation in vivo, but TLR-2/−4, or MyD88 deficiency was anti-inflammatory and anti-fibrotic. When MyD88 was mutated only in the myeloid lineage, however, there was no bearing on macrophage activation or disease progression. Instead, TLR-2/−4 or MyD88 deficiency reduced activation of mesenchyme lineage cells resulting in reduced inflammation and fibrosis, indicating that these pathways play dominant roles in activation of myofibroblasts but not macrophages. To conclude, TREM-1, TLR2/4 and MyD88 signaling pathways are redundant in myeloid cell activation in kidney injury, but the latter appear to regulate activation of mesenchymal cells. PMID:23844229

  4. Taxonomic applicability of inflammatory cytokines in adverse outcome pathway (AOP) development

    EPA Science Inventory

    Cytokines, low-molecular-weight messenger proteins that act as intercellular immunomodulatory signals, have become a mainstream preclinical marker for assessing the systemic inflammatory response to external stressors. The challenge is to quantitate from healthy subjects cytokine...

  5. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways

    EPA Science Inventory

    Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...

  6. Roles of BN52021 in platelet-activating factor pathway in inflammatory MS1 cells

    PubMed Central

    Xia, Shi-Hai; Xiang, Xiao-Hui; Chen, Kai; Xu, Wei

    2013-01-01

    AIM: To determine the effects of BN52021 on platelet-activating factor receptor (PAFR) signaling molecules under lipopolysaccharide (LPS)-induced inflammatory conditions in MS1 cells. METHODS: MS1 cells (a mouse pancreatic islet endothelial cell line) were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 2 mmol/L glutamine and 100 μg/mL penicillin/streptomycin in 5% CO2 at 37 °C. After growth to confluency in media, the cells were processed for subsequent studies. The MS1 cells received 0, 0.1, 1 and 10 μg/mL LPS in this experiment. The viability/proliferation of the cells induced by LPS was observed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Apoptosis and necrosis of the cells under the inflammatory condition described previously were observed using Hoechst 33342-propidium iodide staining. Adenylate cyclase (AC), phospholipase A2 (PLA2), phospholipase Cβ (PLCβ), protein tyrosine kinase (PTK), G protein-coupled receptor kinases (GRK) and p38-mitogen-activated protein kinase (p38 MAPK) mRNA in the PAFR signaling pathway were measured by real-time polymerase chain reaction. The protein expression level of phosphorylated AC (p-AC), phosphorylated PLA2 (p-PLA2), phosphorylated PTK (p-PTK), phosphorylated p38 MAPK (p-p38 MAPK), PLCβ and GRK was measured using Western blotting analysis. RESULTS: The activity of MS1 cells incubated with different concentrations of LPS for 6 h decreased significantly in the 1 μg/mL LPS group (0.49 ± 0.10 vs 0.67 ± 0.13, P < 0.05) and 10 μg/mL LPS group (0.44 ± 0.10 vs 0.67 ± 0.13, P < 0.001), but not in 0.1 μg/mL group. When the incubation time was extended to 12 h (0.33 ± 0.05, 0.32 ± 0.03 and 0.25 ± 0.03 vs 0.69 ± 0.01) and 24 h (0.31 ± 0.01, 0.29 ± 0.03 and 0.25 ± 0.01 vs 0.63 ± 0.01), MS1 cell activity decreased in all LPS concentration groups compared with the blank control (P < 0.001). BN52021 significantly improved the cell

  7. Investigation of Pharmacological Activity of Caralluma penicillata: Anti-Inflammatory Properties and Gastritis Protection against Indomethacin in Adult Guinea Pigs

    PubMed Central

    Albaser, Nabil; Ghanem, Najeeb; Shehab, Mohanad; Al-Adhal, Adnan

    2014-01-01

    Caralluma is a plant that possessing a great therapeutic potential in folk medicine in Yemen, namely, Caralluma penicillata (C. penicillata) as antiulcer. The study aims to evaluate the anti-inflammatory properties and gastritis protection activity of C. penicillata against indomethacin in adult guinea pigs. The study was divided into four parts: firstly, the optimum dose of extract as anti-inflammatory effect was determined. Secondly, the acute anti-inflammatory effect of extract were estimated. Thirdly, the repeated doses of extract against chronic inflammation was estimated. The anti-inflammatory activity of extract was compared with indomethacin as a prototype of drug against inflammation. Fourthly, the gastritis protection properties of extract with/without indomethacin were performed. The results showed that a 400 mg/kg of 10% ethanol extract produced the maximum of anti-inflammatory effect. Also, the single dose of extract was equipotent for indomethacin (10 mg/kg), but shorter in duration with regard to acute anti-inflammatory effect. In addition, the repeated doses of extract against chronic inflammation were less potent than indomethacin with regard to ulcerogenic effect. On the other hand, extract-indomethacin combination reduced the gastritis effect of indomethacin based on ulcer index and histological study.

  8. PACAP protects against inflammatory-mediated toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson's disease.

    PubMed

    Brown, Dwayne; Tamas, Andrea; Reglodi, Dora; Tizabi, Yousef

    2014-10-01

    There has been a growing recognition of the role of neuroinflammation caused by microglia-exaggerated release of inflammatory mediators in the pathogenesis of Parkinson's disease (PD). Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous 38 amino acid containing neuropeptide that has been shown to possess neurotrophic as well as neuroprotective properties. In this study, we sought to determine whether PACAP could protect SH-SY5Y dopaminergic cells against toxicity induced by inflammatory mediators. For this purpose, THP-1 cells which possess microglia-like property were stimulated by a combination of lipopolysaccharide (LPS) and interferon gamma (IFN-γ), and the media containing inflammatory mediators were isolated and applied to SH-SY5Y cells. Such treatment resulted in approximately 54 % cell death as well as a reduction in brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic AMP response element-binding protein (p-CREB). Pretreatment of the SH-SY5Y cells with PACAP (1-38) dose-dependently attenuated toxicity induced by the inflammatory mediators. PACAP effects, in turn, were dose-dependently blocked by the PACAP receptor antagonist (PACAP 6-38). These results suggest protective effects of PACAP against inflammatory-induced toxicity in a cellular model of PD that is likely mediated by enhancement of cell survival markers through activation of PACAP receptors. Hence, PACAP or its agonists could be of therapeutic benefit in inflammatory-mediated PD. PMID:24740430

  9. Anti-inflammatory effect of resveratrol through the suppression of NF-κB and JAK/STAT signaling pathways.

    PubMed

    Ma, Chunfang; Wang, Yin; Dong, Lei; Li, Minjing; Cai, Wanru

    2015-03-01

    Resveratrol, the most important ingredient extracted from Polygonum cuspidatum, exerts cytoprotective effects via anti-inflammatory actions in vitro. In this study, we investigated this effect of resveratrol on the lipopolysaccharide (LPS)-induced inflammatory response and its underlying molecular mechanism of action in RAW264.7 murine macrophages. Results showed that resveratrol down-regulated the expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6), therefore, suppressed the production of nitric oxide and the secretion of IL-6 in LPS-stimulated RAW264.7 cells in a dose-dependent manner. Resveratrol also inhibited the translocation of high-mobility group box 1 (HMGB1) from the nucleus to the cytoplasm and of nuclear transcription factor kappa-B (NF-κB) p65 from the cytoplasm to the nucleus; it suppressed the phosphorylation of IκBα. Furthermore, these actions were mediated by suppressing the phosphorylation of signal transducer and activator of transcription (STAT)-1 and -3. In conclusion, these data indicate that resveratrol exerts anti-inflammatory effects, at least in part by reducing the release of HMGB1 and modulating the NF-κB and Janus kinase/STAT signaling pathways. Resveratrol could potentially be developed as a useful agent for the chemoprevention of inflammatory diseases. PMID:25651848

  10. Lycopene protects against acute zearalenone-induced oxidative, endocrine, inflammatory and reproductive damages in male mice.

    PubMed

    Boeira, Silvana Peterini; Funck, Vinícius Rafael; Borges Filho, Carlos; Del'Fabbro, Lucian; de Gomes, Marcelo Gomes; Donato, Franciele; Royes, Luiz Fernando Freire; Oliveira, Mauro Schneider; Jesse, Cristiano Ricardo; Furian, Ana Flávia

    2015-03-25

    Male mice received lycopene for 10 days before a single oral administration of zearalenone (ZEA). After 48 h testes and blood were collected. Mice treated with lycopene/ZEA exhibited amelioration of the hematological changes. Lycopene prevented the reduction in the number and motility of spermatozoa and testosterone levels, indicating a protective effect in the testicular damage induced by ZEA. Lycopene was also effective in protecting against the decrease in glutathione-S-transferase, glutathione peroxidase, glutathione reductase and δ-aminolevulinic acid dehydratase activities caused by ZEA in the testes. Exposure of animals to ZEA induced modification of antioxidant and inflammatory status with increase of reduced glutathione (GSH) levels and increase of the oxidized glutathione, interleukins 1β, 2, 6, 10, tumor necrosis factor-α and bilirubin levels. Lycopene prevented ZEA-induced changes in GSH levels and inhibited the processes of inflammation, reducing the damage induced by ZEA. Altogether, our results indicate that lycopene was able to prevent ZEA-induced damage in the mice. PMID:25682699

  11. Ursolic acid protects against ulcerative colitis via anti-inflammatory and antioxidant effects in mice.

    PubMed

    Liu, Baohai; Piao, Xuehua; Guo, Lianyi; Liu, Shanshan; Chai, Fang; Gao, Leming

    2016-06-01

    Ursolic acid (UA) has been reported to have a protective effect in colitis. However, the underlying mechanisms remain to be elucidated. In the present study, experimental ulcerative colitis was induced in male BALB/c mice by the administration of 5% dextran sulfate sodium (DSS) for 7 days, followed by treatment with UA for another 7 days. Hematoxylin & eosin staining was performed to evaluate colon tissue damage, and enzyme assays were used to measure malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in colon homogenate. In addition, serum levels of interleukin (IL)‑1β and tumor necrosis factor (TNF)‑α were measured using an ELISA, and the level of nuclear factor (NF)‑κB p65 in the colonic tissues was assessed by western blotting. The 7‑day DSS administration induced marked colon damage, increased the serum levels of IL‑1β and TNF‑α, increased MDA content and decreased SOD activity in the colon homogenate. These changes were significantly improved by treatment with UA. UA also reduced the DSS‑stimulated high nuclear level of NF‑κB p65 in the colon tissues. These results demonstrate a protective role of UA in ulcerative colitis, and suggest that anti-inflammatory and antioxidant activities are involved in the underlying mechanisms. PMID:27082984

  12. Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum.

    PubMed

    Lau, Kit-Man; He, Zhen-Dan; Dong, Hui; Fung, Kwok-Pui; But, Paul Pui-Hay

    2002-11-01

    Aqueous extract of processed leaves of Ligustrum robustum could dose-dependently scavenge superoxide radicals, inhibit lipid peroxidation, and prevent AAPH-induced hemolysis of red blood cells. In comparison with green tea, oolong tea and black tea, processed leaves of L. robustum exhibited comparable antioxidant potency in scavenging superoxide radicals and in preventing red blood cell hemolysis. By activity-guided fractionation, a glycoside-rich fraction named fraction B2 was separated and demonstrated to possess strong antioxidant effect. It was evaluated for its anti-inflammatory and hepato-protective activities. A single oral dose of fraction B2 at 0.5 g/kg could provide 51.5% inhibition on the vascular permeability change induced by intraperitoneal injection of acetic acid, but it could not inhibit croton oil-induced ear edema. On the other hand, fraction B2 exhibited moderate hepato-protective effect. Intragastric application of fraction B2 at 1.25, 2.5 or 5 g/kg 6 h after carbon tetrachloride administration could reduce the elevations of serum levels of aminotransferases (AST and ALT). Also, liver integrity was preserved, as liver sections from rats post-treated with fraction B2 showed a milder degree of fatty accumulation and necrosis. These results offer partial support to the traditional uses of the leaves of L. robustum as Ku-Ding-Cha. PMID:12413708

  13. Enhanced Hsp70 expression protects against acute lung injury by modulating apoptotic pathways.

    PubMed

    Aschkenasy, Gabriella; Bromberg, Zohar; Raj, Nichelle; Deutschman, Clifford S; Weiss, Yoram G

    2011-01-01

    The Acute respiratory distress syndrome (ARDS) is a highly lethal inflammatory lung disorder. Apoptosis plays a key role in its pathogenesis. We showed that an adenovirus expressing the 70 kDa heat shock protein Hsp70 (AdHSP) protected against sepsis-induced lung injury. In this study we tested the hypothesis that AdHSP attenuates apoptosis in sepsis-induced lung injury. Sepsis was induced in rats via cecal ligation and double puncture (2CLP). At the time of 2CLP PBS, AdHSP or AdGFP (an adenoviral vector expressing green fluorescent protein) were injected into the tracheas of septic rats. 48 hours later, lungs were isolated. One lung was fixed for TUNEL staining and immunohistochemistry. The other was homogenized to isolate cytosolic and nuclear protein. Immunoblotting, gel filtration and co-immunoprecipitation were performed in these extracts. In separate experiments MLE-12 cells were incubated with medium, AdHSP or AdGFP. Cells were stimulated with TNFα. Cytosolic and nuclear proteins were isolated. These were subjected to immunoblotting, co-immunoprecipitation and a caspase-3 activity assay. TUNEL assay demonstrated that AdHSP reduced alveolar cell apoptosis. This was confirmed by immunohistochemical detection of caspase 3 abundance. In lung isolated from septic animals, immunoblotting, co-immunoprecipitation and gel filtration studies revealed an increase in cytoplasmic complexes containing caspases 3, 8 and 9. AdHSP disrupted these complexes. We propose that Hsp70 impairs apoptotic cellular pathways via interactions with caspases. Disruption of large complexes resulted in stabilization of lower molecular weight complexes, thereby, reducing nuclear caspase-3. Prevention of apoptosis in lung injury may preserve alveolar cells and aid in recovery. PMID:22132083

  14. Pancreatic damage in fetal and newborn cystic fibrosis pigs involves the activation of inflammatory and remodeling pathways.

    PubMed

    Abu-El-Haija, Maisam; Ramachandran, Shyam; Meyerholz, David K; Abu-El-Haija, Marwa; Griffin, Michelle; Giriyappa, Radhamma L; Stoltz, David A; Welsh, Michael J; McCray, Paul B; Uc, Aliye

    2012-08-01

    Pancreatic disease has onset in utero in humans with cystic fibrosis (CF), and progresses over time to complete destruction of the organ. The exact mechanisms leading to pancreatic damage in CF are incompletely understood. Inflammatory cells are present in the pancreas of newborn pigs with CF (CF pigs) and humans, which suggests that inflammation may have a role in the destructive process. We wondered whether tissue inflammation and genes associated with inflammatory pathways were increased in the pancreas of fetal CF pigs [83 to 90 days gestation (normal pig gestation is ~114 days)] and newborn pigs. Compared with fetal pigs without CF (non-CF pigs), in fetal CF pigs, the pancreas exhibited patchy inflammation and acinar atrophy, with progression in distribution and severity in neonatal CF pigs. Large-scale transcript profiling revealed that the pancreas in fetal and newborn CF pigs exhibited significantly increased expression of proinflammatory, complement cascade, and profibrotic genes when compared with fetal and newborn non-CF pigs. Acinar cells exhibited increased apoptosis in the pancreas of fetal and newborn CF pigs. α-Smooth muscle actin and transforming growth factor β1 were increased in both fetal and newborn CF pig pancreas, suggesting activation of profibrotic pathways. Cell proliferation and mucous cell metaplasia were detected in newborn, but not fetal, CF pigs, indicating that they were not an initiator of pathogenesis but a response. Proinflammatory, complement cascade, proapoptotic, and profibrotic pathways are activated in CF pig pancreas, and likely contribute to the destructive process. PMID:22683312

  15. Pancreatic Damage in Fetal and Newborn Cystic Fibrosis Pigs Involves the Activation of Inflammatory and Remodeling Pathways

    PubMed Central

    Abu-El-Haija, Maisam; Ramachandran, Shyam; Meyerholz, David K.; Abu-El-Haija, Marwa; Griffin, Michelle; Giriyappa, Radhamma L.; Stoltz, David A.; Welsh, Michael J.; McCray, Paul B.; Uc, Aliye

    2013-01-01

    Pancreatic disease has onset in utero in humans with cystic fibrosis (CF), and progresses over time to complete destruction of the organ. The exact mechanisms leading to pancreatic damage in CF are incompletely understood. Inflammatory cells are present in the pancreas of newborn pigs with CF (CF pigs) and humans, which suggests that inflammation may have a role in the destructive process. We wondered whether tissue inflammation and genes associated with inflammatory pathways were increased in the pancreas of fetal CF pigs [83 to 90 days gestation (normal pig gestation is ∼114 days)] and newborn pigs. Compared with fetal pigs without CF (non-CF pigs), in fetal CF pigs, the pancreas exhibited patchy inflammation and acinar atrophy, with progression in distribution and severity in neonatal CF pigs. Large-scale transcript profiling revealed that the pancreas in fetal and newborn CF pigs exhibited significantly increased expression of proinflammatory, complement cascade, and profibrotic genes when compared with fetal and newborn non-CF pigs. Acinar cells exhibited increased apoptosis in the pancreas of fetal and newborn CF pigs. α-Smooth muscle actin and transforming growth factor β1 were increased in both fetal and newborn CF pig pancreas, suggesting activation of profibrotic pathways. Cell proliferation and mucous cell metaplasia were detected in newborn, but not fetal, CF pigs, indicating that they were not an initiator of pathogenesis but a response. Proinflammatory, complement cascade, proapoptotic, and profibrotic pathways are activated in CF pig pancreas, and likely contribute to the destructive process. PMID:22683312

  16. [Advances in the research of effects of cholinergic anti-inflammatory pathway on vital organ function and its mechanism].

    PubMed

    Li, X H; Yao, Y M

    2016-07-20

    Serious major burns, trauma and surgical stress can easily develop into sepsis, and further result in septic shock or even multiple organ dysfunction syndrome (MODS). The mechanism of MODS is complicated, including excessive inflammation, immune dysfunction, coagulation disorder, and ischemia-reperfusion injury. Recent studies have demonstrated that the nervous system could significantly and quickly suppress systemic inflammatory response via the vagus nerve, which might improve multiple organ damage following acute injury. This article is to brief our understanding concerning the structure characteristics of cholinergic anti-inflammatory pathway, and its effects on vital organ function and the regulatory mechanism, which might be of great significance to seek a novel way for interventional strategy of MODS. PMID:27464633

  17. The Rho-GEF Trio regulates a novel pro-inflammatory pathway through the transcription factor Ets2.

    PubMed

    Van Rijssel, Jos; Timmerman, Ilse; Van Alphen, Floris P J; Hoogenboezem, Mark; Korchynskyi, Olexandr; Geerts, Dirk; Geissler, Judy; Reedquist, Kris A; Niessen, Hans W M; Van Buul, Jaap D

    2013-06-15

    Inflammation is characterized by endothelium that highly expresses numerous adhesion molecules to trigger leukocyte extravasation. Central to this event is increased gene transcription. Small Rho-GTPases not only control the actin cytoskeleton, but are also implicated in gene regulation. However, in inflammation, it is not clear how this is regulated. Here, we show that the guanine-nucleotide exchange factor Trio expression is increased upon inflammatory stimuli in endothelium. Additionally, increased Trio expression was found in the vessel wall of rheumatoid arthritis patients. Trio silencing impaired VCAM-1 expression. Finally, we excluded that Trio-controlled VCAM-1 expression used the classical NFκB or MAP-kinase pathways, but rather acts on the transcriptional level by increasing phosphorylation and nuclear translocalization of Ets2. These data implicate Trio in regulating inflammation and provide novel targets for therapeutic purposes to treat inflammatory diseases such as rheumatoid arthritis. PMID:23789107

  18. Study of plasma protein C and inflammatory pathways: biomarkers for dimethylnitrosamine-induced liver fibrosis in rats.

    PubMed

    Saha, Joy K; Xia, Jinqi; Sandusky, George E; Chen, Yun-Fei; Gerlitz, Bruce; Grinnell, Brian; Jakubowski, Joseph A

    2007-12-01

    The present investigation was designed to identify potential biomarker(s) and assess the involvement of inflammatory pathway in dimethylnitrosamine (DMN)-induced liver fibrosis in rats. Following DMN-treatment (10 mg/ml/kg, i.p., given three consecutive days each week for 4 weeks) body and liver weights were significantly decreased concurrent with increasing severity of liver damage assessed by bridging fibrosis, a histopathologic assessment and characteristic of human liver disease. Protein C along with albumin, C-reactive-protein (CRP), haptoglobin and total protein were significantly reduced and correlated with changes in liver histopathology. Biochemical markers of liver functions were significantly increased and correlated with changes in liver histopathology and plasma levels of protein C. Soluble intracellular-adhesion-molecule-1 (sICAM-1) levels were increased significantly but were poorly correlated with histopathology and protein C levels. Inflammatory chemokines and other analytes, monocyte-chemoattractant-protein-1 and 3 (MCP-1 and MCP-3), macrophage-colony-stimulating-factor (M-CSF) were significantly increased during the disease progression, whereas macrophage-derived-chemokine (MDC) and CRP were significantly suppressed. Circulating neutrophils and monocytes were also increased along with disease progression. The differential changes in sICAM-1, hyaluronic acid, gamma-glutamyltranspeptidase (GGT), neutrophil and other inflammatory chemokines suggest the involvement of inflammatory pathways in DMN-induced liver fibrosis. In conclusion, the progressive changes in protein C along with other noninvasive biochemical parameters whose levels were significantly correlated with disease progression may serve as biomarkers for pharmacological assessment of targeted therapy for liver fibrosis. PMID:17719030

  19. Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus.

    PubMed

    Qi, Zhilin; Qi, Shimei; Ling, Liefeng; Lv, Jun; Feng, Zunyong

    2016-06-01

    Salidroside (SAL) is an active ingredient isolated from the Rhodiola rosea, has potent anti-inflammatory effect, but the mechanism is still elusive. The purpose of this study is to verify the effects of SAL on LPS-induced inflammatory response and investigate the possible underlying molecular mechanism. RAW264.7 cells were pre-incubated with SAL for 2h, then stimulated with or without LPS for another 16h. The levels of TNF-α, MCP-1, IL-6, and PGE2 were detected by ELISA, and the production of NO was determined by nitrite analysis. The expression levels of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected by Western blotting. In RAW264.7 cells and murine peritoneal macrophages, the activation of signal molecules was also measured by Western blot. The nuclear translocation of STAT3 was determined by Laser confocal and nucleocytoplasmic separation experiments. Our results showed that SAL attenuated the productions of TNF-α, IL-6, MCP-1, PGE2 and NO dose dependently. SAL also suppressed LPS-induced expressions of iNOS and COX-2 significantly. Further studies revealed that SAL down-regulated the phosphorylation of JAK2-STAT3 signaling pathway and reduced the nuclear translocation of STAT3 induced by LPS in RAW264.7 cells and primary peritoneal macrophages. In addition, consistent with the results in vitro, in the model of mice acute lung injury (ALI) induced by LPS, SAL reduced the infiltration of inflammatory cells and decreased the levels of serum TNF-α and IL-6 obviously. Taken together, these data indicated that SAL exerted anti-inflammatory action via down-regulating LPS-induced activation of JAK2-STAT3 pathway and suppressing STAT3 transfer into the nucleus at least in part. PMID:27085677

  20. The NKG2D-IL-15 signaling pathway contributes to T-cell mediated pathology in inflammatory myopathies.

    PubMed

    Ruck, Tobias; Bittner, Stefan; Afzali, Ali Maisam; Göbel, Kerstin; Glumm, Sarah; Kraft, Peter; Sommer, Claudia; Kleinschnitz, Christoph; Preuße, Corinna; Stenzel, Werner; Wiendl, Heinz; Meuth, Sven G

    2015-12-22

    NKG2D is an activating receptor on T cells, which has been implicated in the pathogenesis of autoimmune diseases. T cells are critically involved in idiopathic inflammatory myopathies (IIM) and have been proposed as specific therapeutic targets. However, the mechanisms underlying T cell-mediated progressive muscle destruction in IIM remain to be elucidated. We here determined the involvement of the NKG2D - IL-15 signaling pathway. Primary human myoblasts expressed NKG2D ligands, which were further upregulated upon inflammatory stimuli. In parallel, shedding of the soluble NKG2D ligand MICA (sMICA) decreased upon inflammation potentially diminishing inhibition of NKG2D signaling. Membrane-related expression of IL-15 by myoblasts induced differentiation of naïve CD8+ T cells into highly activated, cytotoxic CD8+NKG2Dhigh T cells demonstrating NKG2D-dependent lysis of myoblasts in vitro. CD8+NKG2Dhigh T cell frequencies were increased in the peripheral blood of polymyositis (PM) patients and correlated with serum creatinine kinase concentrations, while serum sMICA levels were not significantly changed. In muscle biopsy specimens from PM patients expression of the NKG2D ligand MICA/B was upregulated, IL-15 was expressed by muscle cells, CD68+ macrophages as well as CD4+ T cells, and CD8+NKG2D+ cells were frequently detected within inflammatory infiltrates arguing for a local signaling circuit in the inflammatory muscle milieu. In conclusion, the NKG2D - IL-15 signaling pathway contributes to progressive muscle destruction in IIM potentially opening new therapeutic avenues. PMID:26646698

  1. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2011-01-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212

  2. Protective effect of polyphenols in an inflammatory process associated with experimental pulmonary fibrosis in mice.

    PubMed

    Impellizzeri, Daniela; Talero, Elena; Siracusa, Rosalba; Alcaide, Antonio; Cordaro, Marika; Maria Zubelia, Jose; Bruschetta, Giuseppe; Crupi, Rosalia; Esposito, Emanuela; Cuzzocrea, Salvatore; Motilva, Virginia

    2015-09-28

    Polyphenols have been described to have a wide range of biological activities, and many reports, published during recent years, have highlighted the beneficial effects of phenolic compounds, illustrating their promising role as therapeutic tools in several acute and chronic disorders. The purpose of study was to evaluate, in an already-assessed model of lung injury caused by bleomycin (BLM) administration, the role of resveratrol and quercetin, as well as to explore the potential beneficial properties of a mango leaf extract, rich in mangiferin, and a grape leaf extract, rich in dihydroquercetin (DHQ), on the same model. Mice were subjected to intra-tracheal administration of BLM, and polyphenols were administered by oral route immediately after BLM instillation and daily for 7 d. Treatment with resveratrol, mangiferin, quercetin and DHQ inhibited oedema formation and body weight loss, as well as ameliorated polymorphonuclear infiltration into the lung tissue and reduced the number of inflammatory cells in bronchoalveolar lavage fluid. Moreover, polyphenols suppressed inducible nitric oxide synthase expression, and prevented oxidative and nitroxidative lung injury, as shown by the reduced nitrotyrosine and poly (ADP-ribose) polymerase levels. The degree of apoptosis, as evaluated by Bid and Bcl-2 balance, was also suppressed after polyphenol treatment. Finally, these natural products down-regulated cyclo-oxygenase-2, extracellular signal-regulated kinase phosphorylated expression and reduced NF-κBp65 translocation. Our findings confirmed the anti-inflammatory effects of resveratrol and quercetin in BLM-induced lung damage, and highlight, for the first time, the protective properties of exogenous administration of mangiferin and DHQ on experimental pulmonary fibrosis. PMID:26334388

  3. Berberine inhibits inflammatory mediators and attenuates acute pancreatitis through deactivation of JNK signaling pathways.

    PubMed

    Choi, Sun-Bok; Bae, Gi-Sang; Jo, Il-Joo; Wang, Shaofan; Song, Ho-Joon; Park, Sung-Joo

    2016-06-01

    Acute pancreatitis (AP) is a life-threatening disease. Berberine (BBR), a well-known plant alkaloid, is reported to have anti-inflammatory activity in many diseases. However, the effects of BBR on AP have not been clearly elucidated. Therefore, the present study aimed to investigate the effects of BBR on cerulein-induced AP in mice. AP was induced by either cerulein or l-arginine. In the BBR treated group, BBR was administered intraperitoneally 1h before the first cerulein or l-arginine injection. Blood samples were obtained to determine serum amylase and lipase activities and nitric oxide production. The pancreas and lung were rapidly removed for examination of histologic changes, myeloperoxidase (MPO) activity, and real-time reverse transcription-polymerase chain reaction. Furthermore, the regulating mechanisms of BBR were evaluated. Treatment of mice with BBR reduced pancreatic injury and activities of amylase, lipase, and pancreatitis-associated lung injury, as well as inhibited several inflammatory parameters such as the expression of pro-inflammatory cytokines and inducible nitric oxide synthesis (iNOS). Furthermore, BBR administration significantly inhibited c-Jun N-terminal kinase (JNK) activation in the cerulein-induced AP. Deactivation of JNK resulted in amelioration of pancreatitis and the inhibition of inflammatory mediators. These results suggest that BBR exerts anti-inflammatory effects on AP via JNK deactivation on mild and severe acute pancreatitis model, and could be a beneficial target in the management of AP. PMID:27148818

  4. Multiple Signaling Pathways of the Insulin-Like Growth Factor 1 Receptor in Protection from Apoptosis

    PubMed Central

    Peruzzi, Francesca; Prisco, Marco; Dews, Michael; Salomoni, Paolo; Grassilli, Emanuela; Romano, Gaetano; Calabretta, Bruno; Baserga, Renato

    1999-01-01

    The type 1 insulin-like growth factor receptor (IGF-1R), activated by its ligands, protects several cell types from a variety of apoptotic injuries. The main signaling pathway for IGF-1R-mediated protection from apoptosis has been previously elucidated and rests on the activation of phosphatidylinositol 3-kinase, Akt/protein kinase B, and the phosphorylation and inactivation of BAD, a member of the Bcl-2 family of proteins. In 32D cells (a murine hemopoietic cell line devoid of insulin receptor substrate 1 [IRS-1]), the IGF-1R activates alternative pathways for protection from apoptosis induced by withdrawal of interleukin-3. One of these pathways leads to the activation of mitogen-activated protein kinase, while a third pathway results in the mitochondrial translocation of Raf and depends on the integrity of a group of serines in the C terminus of the receptor that are known to interact with 14.3.3 proteins. All three pathways, however, result in BAD phosphorylation. The presence of multiple antiapoptotic pathways may explain the remarkable efficacy of the IGF-1R in protecting cells from apoptosis. PMID:10490655

  5. Role of nuclear factor-κB-mediated inflammatory pathways in cancer-related symptoms and their regulation by nutritional agents

    PubMed Central

    Gupta, Subash C; Kim, Ji Hye; Kannappan, Ramaswamy; Reuter, Simone; Dougherty, Patrick M; Aggarwal, Bharat B

    2011-01-01

    Cancer is a disease characterized by dysregulation of multiple genes and is associated with symptoms such as cachexia, anorexia, fatigue, depression, neuropathic pain, anxiety, cognitive impairment, sleep disorders and delirium (acute confusion state) in medically ill patients. These symptoms are caused by either the cancer itself or the cancer treatment. During the past decade, increasing evidence has shown that the dysregulation of inflammatory pathways contributes to the expression of these symptoms. Cancer patients have been found to have higher levels of proinflammatory cytokines such as interleukin-6. The nuclear factor (NF)- κB is a major mediator of inflammatory pathways. Therefore, anti-inflammatory agents that can modulate the NF-κB activation and inflammatory pathways may have potential in improving cancer-related symptoms in patients. Because of their multitargeting properties, low cost, low toxicity and immediate availability, natural agents have gained considerable attention for prevention and treatment of cancer-related symptoms. How NF-κB and inflammatory pathways contribute to cancer-related symptoms is the focus of this review. We will also discuss how nutritional agents such as curcumin, genistein, resveratrol, epigallocatechin gallate and lycopene can modulate inflammatory pathways and thereby reduce cancer-related symptoms in patients. PMID:21565893

  6. Brazilin exerts protective effects against renal ischemia-reperfusion injury by inhibiting the NF-κB signaling pathway

    PubMed Central

    JIA, YANYAN; ZHAO, JINYI; LIU, MEIYOU; LI, BINGLING; SONG, YING; LI, YUWEN; WEN, AIDONG; SHI, LEI

    2016-01-01

    Renal ischemia-reperfusion (I/R) injury is associated with high morbidity and mortality as there is currently no available effective therapeutic strategy with which to treat this injury. Thus, the aim of this study was to investigate the potential protective effects of brazilin, a major active component of the Chinese medicine Caesalpinia sappan L., against renal I/R injury in vitro and in vivo. Rats were subjected to removal of the right kidney and I/R injury to the left kidney (ischemia for 45 min followed by reperfusion for 24 h). Treatment with brazilin (30 mg/kg, administered intravenously at 30 min prior to ischemia) led to the reversal of I/R-induced changes in serum creatinine (Scr) and blood urea nitrogen (BUN) levels, and also attenuated the histopathological damage induced by I/R. Furthermore, TUNEL assay revealed that brazilin reduced cell necrosis, and significantly decreased the expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in renal tissue. Moreover, HK-2 cells were used in order to elucidate the mechanisms responsible for the protective effects of brazilin. The levels of phosphorylated IκBα and the nuclear translocation of nuclear factor-κB (NF-κB) were all evidently decreased by brazilin. These findings suggested that pre-treatment with brazilin protects against I/R-induced renal damage and suppresses the inflammatory response by inhibiting the activation of the NF-κB signaling pathway. PMID:27247107

  7. IL23R (Interleukin 23 Receptor) Variants Protective against Inflammatory Bowel Diseases (IBD) Display Loss of Function due to Impaired Protein Stability and Intracellular Trafficking.

    PubMed

    Sivanesan, Durga; Beauchamp, Claudine; Quinou, Christiane; Lee, Jonathan; Lesage, Sylvie; Chemtob, Sylvain; Rioux, John D; Michnick, Stephen W

    2016-04-15

    Genome-wide association studies as well as murine models have shown that the interleukin 23 receptor (IL23R) pathway plays a pivotal role in chronic inflammatory diseases such as Crohn disease (CD), ulcerative colitis, psoriasis, and type 1 diabetes. Genome-wide association studies and targeted re-sequencing studies have revealed the presence of multiple potentially causal variants of the IL23R. Specifically the G149R, V362I, and R381Q IL23Rα chain variants are linked to protection against the development of Crohn disease and ulcerative colitis in humans. Moreover, the exact mechanism of action of these receptor variants has not been elucidated. We show that all three of these IL23Rα variants cause a reduction in IL23 receptor activation-mediated phosphorylation of the signal-transducing activator of transcription 3 (STAT3) and phosphorylation of signal transducing activator of transcription 4 (STAT4). The reduction in signaling is due to lower levels of cell surface receptor expression. For G149R, the receptor retention in the endoplasmic reticulum is due to an impairment of receptor maturation, whereas the R381Q and V362I variants have reduced protein stability. Finally, we demonstrate that the endogenous expression of IL23Rα protein from V362I and R381Q variants in human lymphoblastoid cell lines exhibited lower expression levels relative to susceptibility alleles. Our results suggest a convergent cause of IL23Rα variant protection against chronic inflammatory disease. PMID:26887945

  8. Zinc Carnosine Inhibits Lipopolysaccharide-Induced Inflammatory Mediators by Suppressing NF-κb Activation in Raw 264.7 Macrophages, Independent of the MAPKs Signaling Pathway.

    PubMed

    Ooi, Theng Choon; Chan, Kok Meng; Sharif, Razinah

    2016-08-01

    This study aimed to investigate the role of the mitogen-activated protein kinases (MAPKs) signaling pathway in the anti-inflammatory effects of zinc carnosine (ZnC) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Cells were pretreated with ZnC (0-100 μM) for 2 h prior to the addition of LPS (1 μg/ml). Following 24 h of treatment, ZnC was found not to be cytotoxic to RAW 264.7 cells up to the concentration of 100 μM. Our current findings showed that ZnC did not protect RAW 264.7 cells from LPS-induced "respiratory burst". Significant increment in intracellular glutathione (GSH) level and reduction in thiobarbituric acid reactive substances (TBARS) concentration can only be observed in cell pretreated with high doses of ZnC only (50 and 100 μM for GSH and 100 μM only for TBARS). On the other hand, pretreatment of cells with ZnC was able to inhibit LPS-induced inducible nitric oxide synthase and cyclooxygenase-2 expression significantly. Furthermore, results from immunoblotting showed that ZnC was able to suppress nuclear factor-kappaB (NF-κB) activation, and highest suppression can be observed at 100 μM of ZnC pretreatment. However, pretreatment of ZnC did not inhibit the early activation of MAPKs. In conclusion, pretreatment with ZnC was able to inhibit the expression of inflammatory mediators in LPS-induced RAW 264.7 cells, mainly via suppression of NF-κB activation, and is independent of the MAPKs signaling pathway. PMID:26749414

  9. Curcumin protects against ischemic spinal cord injury: The pathway effect.

    PubMed

    Zhang, Jinhua; Wei, Hao; Lin, Meimei; Chen, Chunmei; Wang, Chunhua; Liu, Maobai

    2013-12-25

    Inducible nitric oxide synthase and N-methyl-D-aspartate receptors have been shown to participate in nerve cell injury during spinal cord ischemia. This study observed a protective effect of curcumin on ischemic spinal cord injury. Models of spinal cord ischemia were established by ligating the lumbar artery from the left renal artery to the bifurcation of the abdominal aorta. At 24 hours after model establishment, the rats were intraperitoneally injected with curcumin. Reverse transcription-polymerase chain reaction and immunohistochemical results demonstrated that after spinal cord ischemia, inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression significantly increased. However, curcumin significantly decreased inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression in the ischemic spinal cord. Tarlov scale results showed that curcumin significantly improved motor function of the rat hind limb after spinal cord ischemia. The results demonstrate that curcumin exerts a neuroprotective fect against ischemic spinal cord injury by decreasing inducible nitric oxide synthase and N-methyl-D-aspartate receptor expression. PMID:25206661

  10. Protective Effect of Brown Alga Phlorotannins against Hyper-inflammatory Responses in Lipopolysaccharide-Induced Sepsis Models.

    PubMed

    Yang, Yeong-In; Woo, Jeong-Hwa; Seo, Yun-Ji; Lee, Kyung-Tae; Lim, Yunsook; Choi, Jung-Hye

    2016-01-27

    Brown algae have been recognized as a food ingredient and health food supplement in Japan and Korea, and phlorotannins are unique marine phenol compounds produced exclusively by brown algae. Sepsis is a whole-body inflammatory condition with a mortality rate of 30-40%. Here, we investigated the effects of a phlorotannin-rich extract of the edible brown alga Ecklonia cava against hyper-inflammatory response in LPS-induced septic shock mouse model. E. cava extract significantly increased the survival rate and attenuated liver and kidney damage in the mice. In addition, E. cava attenuated serum levels of NO, PGE2, and HMGB-1. In macrophages, treatment with E. cava extract down-regulated iNOS, COX-2, TNF-α, IL-6, and HMGB-1. In addition, E. cava suppressed the NIK/TAK1/IKK/IκB/NFκB pathway. Moreover, E. cava increased Nrf2 and HO-1 expression. HO-1 knockdown using siRNA restored the extract-suppressed NO and PGE2 production. Dieckol, a major compound in the extract, reduced mortality, tissue toxicity, and serum levels of the inflammatory factors in septic mice. These data suggest that brown algae phlorotannins suppress septic shock through negative regulation of pro-inflammatory factors via the NIK/TAK1/IKK/IκB/NFκB and Nrf2/HO-1 pathways. PMID:26730445

  11. The oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human amnion via G(αi) signalling.

    PubMed

    Kim, Sung Hye; MacIntyre, David A; Hanyaloglu, Aylin C; Blanks, Andrew M; Thornton, Steven; Bennett, Phillip R; Terzidou, Vasso

    2016-01-15

    Oxytocin (OT) plays an important role in the onset of human labour by stimulating uterine contractions and promoting prostaglandin/inflammatory cytokine synthesis in amnion via oxytocin receptor (OTR) coupling. The OTR-antagonist, Atosiban, is widely used as a tocolytic for the management of acute preterm labour. We found that in primary human amniocytes, Atosiban (10 μM) signals via PTX-sensitive Gαi to activate transcription factor NF-κB p65, ERK1/2, and p38 which subsequently drives upregulation of the prostaglandin synthesis enzymes, COX-2 and phospho-cPLA2 and excretion of prostaglandins (PGE2) (n = 6; p < 0.05, ANOVA). Moreover, Atosiban treatment increased expression and excretion of the inflammatory cytokines, IL-6 and CCL5. We also showed that OT-simulated activation of NF-κB, ERK1/2, and p38 and subsequent prostaglandin and inflammatory cytokine synthesis is via Gαi-2 and Gαi-3 but not Gαq, and is not inhibited by Atosiban. Activation or exacerbation of inflammation is not a desirable effect of tocolytics. Therefore therapeutic modulation of the OT/OTR system for clinical management of term/preterm labour should consider the effects of differential G-protein coupling of the OTR and the role of OT or selective OTR agonists/antagonists in activating proinflammatory pathways. PMID:26586210

  12. Dimethyl Cardamonin Exhibits Anti-inflammatory Effects via Interfering with the PI3K-PDK1-PKCα Signaling Pathway

    PubMed Central

    Yu, Wan-Guo; He, Hao; Yao, Jing-Yun; Zhu, Yi-Xiang; Lu, Yan-Hua

    2015-01-01

    Consumption of herbal tea [flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry (Myrtaceae)] is associated with health beneficial effects against multiple diseases including diabetes, asthma, and inflammatory bowel disease. Emerging evidences have reported that High mobility group box 1 (HMGB1) is considered as a key “late” proinflammatory factor by its unique secretion pattern in aforementioned diseases. Dimethyl cardamonin (2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone, DMC) is a major ingredient of C. operculatus flower buds. In this study, the anti-inflammatory effects of DMC and its underlying molecular mechanisms were investigated on lipopolysaccharide (LPS)-induced macrophages. DMC notably suppressed the mRNA expressions of TNF-α, IL-1β, IL-6, and HMGB1, and also markedly decreased their productions in a time- and dose-dependent manner. Intriguingly, DMC could notably reduce LPS-stimulated HMGB1 secretion and its nucleo-cytoplasmic translocation. Furthermore, DMC dose-dependently inhibited the activation of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1), and protein kinase C alpha (PKCα). All these data demonstrated that DMC had anti-inflammatory effects through reducing both early (TNF-α, IL-1β, and IL-6) and late (HMGB1) cytokines expressions via interfering with the PI3K-PDK1-PKCα signaling pathway. PMID:26535080

  13. Adenosine 5'-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages.

    PubMed

    Zhu, Yanfang Peipei; Brown, Jonathan R; Sag, Duygu; Zhang, Lihua; Suttles, Jill

    2015-01-15

    AMP-activated protein kinase (AMPK) is a conserved serine/threonine kinase with a critical function in the regulation of metabolic pathways in eukaryotic cells. Recently, AMPK has been shown to play an additional role as a regulator of inflammatory activity in leukocytes. Treatment of macrophages with chemical AMPK activators, or forced expression of a constitutively active form of AMPK, results in polarization to an anti-inflammatory phenotype. In addition, we reported previously that stimulation of macrophages with anti-inflammatory cytokines such as IL-10, IL-4, and TGF-β results in rapid activation of AMPK, suggesting that AMPK contributes to the suppressive function of these cytokines. In this study, we investigated the role of AMPK in IL-10-induced gene expression and anti-inflammatory function. IL-10-stimulated wild-type macrophages displayed rapid activation of PI3K and its downstream targets Akt and mammalian target of rapamycin complex (mTORC1), an effect that was not seen in macrophages generated from AMPKα1-deficient mice. AMPK activation was not impacted by treatment with either the PI3K inhibitor LY294002 or the JAK inhibitor CP-690550, suggesting that IL-10-mediated activation of AMPK is independent of PI3K and JAK activity. IL-10 induced phosphorylation of both Tyr(705) and Ser(727) residues of STAT3 in an AMPKα1-dependent manner, and these phosphorylation events were blocked by inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase β, an upstream activator of AMPK, and by the mTORC1 inhibitor rapamycin, respectively. The impaired STAT3 phosphorylation in response to IL-10 observed in AMPKα1-deficient macrophages was accompanied by reduced suppressor of cytokine signaling 3 expression and an inadequacy of IL-10 to suppress LPS-induced proinflammatory cytokine production. Overall, our data demonstrate that AMPKα1 is required for IL-10 activation of the PI3K/Akt/mTORC1 and STAT3-mediated anti-inflammatory pathways regulating macrophage

  14. Bioactive Fraction of Geopropolis from Melipona scutellaris Decreases Neutrophils Migration in the Inflammatory Process: Involvement of Nitric Oxide Pathway.

    PubMed

    Franchin, Marcelo; da Cunha, Marcos Guilherme; Denny, Carina; Napimoga, Marcelo Henrique; Cunha, Thiago Mattar; Bueno-Silva, Bruno; Matias de Alencar, Severino; Ikegaki, Masaharu; Luiz Rosalen, Pedro

    2013-01-01

    The aim of this study was to evaluate the activity of the ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and its fractions on the modulation of neutrophil migration in the inflammatory process, and the participation of nitric oxide (NO) pathway, as well as to check the chemical profile of the bioactive fraction. EEGP and its aqueous fraction decreased neutrophil migration in the peritoneal cavity and also the interaction of leukocytes (rolling and adhesion) with endothelial cells. The levels of chemokines CXCL1/KC and CXCL2/MIP-2 were not altered after treatment with EEGP and the aqueous fraction. It was found that the injection of NO pathway antagonists abolished the EEGP and the aqueous fraction inhibitory activity on the neutrophil migration. The expression of intercellular adhesion molecule type 1 (ICAM-1) was reduced, and nitrite levels increased after treatment with EEGP and aqueous fraction. In the carrageenan-induced paw edema model, EEGP and the aqueous fraction showed antiedema activity. No pattern of flavonoid and phenolic acid commonly found in propolis samples of Apis mellifera could be detected in the aqueous fraction samples. These data indicate that the aqueous fraction found has promising bioactive substances with anti-inflammatory activity. PMID:23737853

  15. Bioactive Fraction of Geopropolis from Melipona scutellaris Decreases Neutrophils Migration in the Inflammatory Process: Involvement of Nitric Oxide Pathway

    PubMed Central

    Franchin, Marcelo; da Cunha, Marcos Guilherme; Denny, Carina; Napimoga, Marcelo Henrique; Cunha, Thiago Mattar; Bueno-Silva, Bruno; Matias de Alencar, Severino; Ikegaki, Masaharu; Luiz Rosalen, Pedro

    2013-01-01

    The aim of this study was to evaluate the activity of the ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and its fractions on the modulation of neutrophil migration in the inflammatory process, and the participation of nitric oxide (NO) pathway, as well as to check the chemical profile of the bioactive fraction. EEGP and its aqueous fraction decreased neutrophil migration in the peritoneal cavity and also the interaction of leukocytes (rolling and adhesion) with endothelial cells. The levels of chemokines CXCL1/KC and CXCL2/MIP-2 were not altered after treatment with EEGP and the aqueous fraction. It was found that the injection of NO pathway antagonists abolished the EEGP and the aqueous fraction inhibitory activity on the neutrophil migration. The expression of intercellular adhesion molecule type 1 (ICAM-1) was reduced, and nitrite levels increased after treatment with EEGP and aqueous fraction. In the carrageenan-induced paw edema model, EEGP and the aqueous fraction showed antiedema activity. No pattern of flavonoid and phenolic acid commonly found in propolis samples of Apis mellifera could be detected in the aqueous fraction samples. These data indicate that the aqueous fraction found has promising bioactive substances with anti-inflammatory activity. PMID:23737853

  16. Flavonoid myricetin inhibits TNF-α-stimulated production of inflammatory mediators by suppressing the Akt, mTOR and NF-κB pathways in human keratinocytes.

    PubMed

    Lee, Da Hee; Lee, Chung Soo

    2016-08-01

    Flavonoid myricetin has been shown to exhibit anti-inflammatory and anti-oxidant effects. Nevertheless, the effect of myricetin on the TNF-α-stimulated production of inflammatory mediators in keratinocytes has not been studied. Using human keratinocytes, we examined the effect of myricetin on the TNF-α-stimulated production of inflammatory mediators in relation to the Akt, mTOR and NF-κB pathways, which regulate the transcription genes involved in immune and inflammatory responses. TNF-α stimulated production of the inflammatory mediators and reactive oxygen species in keratinocytes, and activation of the Akt, mTOR and NF-κB pathways in HaCaT cells and primary keratinocytes. Myricetin, Akt inhibitor, Bay 11-7085 (an inhibitor of NF-κB activation), rapamycin (mTOR inhibitor) and N-acetylcysteine attenuated TNF-α-induced activation of Akt, mTOR and NF-κB. Myricetin and N-acetylcysteine attenuated the TNF-α-stimulated production of cytokines and chemokines, and production of reactive oxygen species in keratinocytes. The results show that myricetin may reduce TNF-α-stimulated inflammatory mediator production in keratinocytes by suppressing the activation of the Akt, mTOR and NF-κB pathways. The effect of myricetin appears to be associated with inhibition of the production of reactive oxygen species. Further, myricetin appears to attenuate the proinflammatory mediator-induced inflammatory skin diseases. PMID:27221774

  17. Interactions between Nitric Oxide and Hypoxia-Inducible Factor Signaling Pathways in Inflammatory Disease

    PubMed Central

    Olson, Nels; van der Vliet, Albert

    2011-01-01

    Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O2) consumption and redistribution, the ability of NO to regulate various aspects of hypoxia-induced signaling has received widespread attention. Conditions of tissue hypoxia and the activation of hypoxia-inducible factors (HIF) have been implicated in hypoxia or in cancer biology, but are also being increasingly recognized as important features of acute and chronic inflammation. Thus, the activation of HIF transcription factors has been increasingly implicated in inflammatory diseases, and recent studies have indicated its critical importance in regulating phagocyte function, inflammatory mediator production, and regulation of epithelial integrity and repair processes. Finally, HIF also appears to contribute to important features of tissue fibrosis and epithelial-to-mesenchymal transition, processes that are associated with tissue remodeling in various non-malignant chronic inflammatory disorders. In this review, we briefly summarize the current state of knowledge with respect to the general mechanisms involved in HIF regulation and the impact of NO on HIF activation. Secondly, we will summarize the major recent findings demonstrating a role for HIF signaling in infection, inflammation, and tissue repair and remodeling, and will address the involvement of NO. The growing interest in hypoxia-induced signaling and its relation with NO biology is expected to lead to further insights into the complex roles of NO in acute or chronic inflammatory diseases and may point to the importance of HIF signaling as key feature of NO-mediated events during these disorders. PMID

  18. Ozone Inhalation Provokes Glucocorticoid-Dependent and -Independent Effects on Inflammatory and Metabolic Pathways.

    PubMed

    Thomson, Errol M; Pal, Shinjini; Guénette, Josée; Wade, Michael G; Atlas, Ella; Holloway, Alison C; Williams, Andrew; Vincent, Renaud

    2016-07-01

    Growing evidence implicates air pollutants in adverse health effects beyond respiratory and cardiovascular disease, including metabolic impacts (diabetes, metabolic syndrome, obesity) and neurological/neurobehavioral outcomes (neurodegenerative disease, cognitive decline, perceived stress, depression, suicide). We have shown that inhalation of particulate matter or ozone activates the hypothalamic-pituitary-adrenal axis in rats and increases plasma levels of the glucocorticoid corticosterone. To investigate the role of corticosterone in mediating inflammatory and metabolic effects of pollutant exposure, in this study male Fischer-344 rats were administered the 11β-hydroxylase inhibitor metyrapone (0, 50, 150 mg/kg body weight) and exposed by nose-only inhalation for 4 h to air or 0.8 ppm ozone. Ozone inhalation provoked a 2-fold increase in plasma corticosterone, an effect blocked by metyrapone, but did not alter epinephrine levels. Inhibition of corticosterone production was associated with increased inflammatory signaling in the lungs and plasma in response to ozone, consistent with a role for glucocorticoids in limiting local and systemic inflammatory responses. Effects of ozone on insulin and glucagon, but not ghrelin or plasminogen activator inhibitor-1, were modified by metyrapone, revealing glucocorticoid-dependent and -independent effects on circulating metabolic and hemostatic factors. Several immunosuppressive and metabolic impacts of ozone in the lungs, heart, liver, kidney, and spleen were blocked by metyrapone and reproduced through exogenous administration of corticosterone (10 mg/kg body weight), demonstrating glucocorticoid-dependent effects in target tissues. Our results support involvement of endogenous glucocorticoids in ozone-induced inflammatory and metabolic effects, providing insight into potential biological mechanisms underlying health impacts and susceptibility. PMID:27037194

  19. A Novel Biological Role of α-Mangostin in Modulating Inflammatory Response Through the Activation of SIRT-1 Signaling Pathway.

    PubMed

    Franceschelli, Sara; Pesce, Mirko; Ferrone, Alessio; Patruno, Antonia; Pasqualone, Livia; Carlucci, Giuseppe; Ferrone, Vincenzo; Carlucci, Maura; de Lutiis, Maria Anna; Grilli, Alfredo; Felaco, Mario; Speranza, Lorenza

    2016-11-01

    Several studies have shown that xanthones obtained from Garcinia Mangostana (GM) have remarkable biological activities. α-mangostin (α-MG) is the main constituent of the fruit hull of the GM. Several findings have suggested that SIRT-1, a nuclear histone deacetylase, could influence cellular function by the inhibition of NF-kB signaling. ROS can inhibit SIRT-1 activity by initiating oxidative modifications on its cysteine residues, and suppression of SIRT-1 enhances the NF-κB signaling resulting in inflammatory responses. The goals of the present study were to evaluate the quantity of α-MG in the methanolic extract of GM (Vithagroup Spa) and to investigate the activity of this xanthone in U937 cell line and in human monocytes from responsive to inflammatory insult analyzing the possible changes on the activation of SIRT-1 protein via NF-Kb. Cells were treated with the methanolic extract of GM and/or LPS. The chromatographic separation of α-MG was performed by an HPLC analysis. EX 527, a specific SIRT-1 inhibitor, was used to determine if SIRT-1/NfkB signaling pathway might be involved in α-MG action on cells. Our results show that α-MG inhibits p65 acetylation and down-regulates the pro-inflammatory gene products as COX-2, iNOS via SIRT-1 activation. Cells treated with EX 527 showed an up-regulation of NFkB acetylation and an over expression of inducible enzymes and their product of catalysis (NO and PGE2). These results suggest that α-MG may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process. J. Cell. Physiol. 231: 2439-2451, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895796

  20. Preinduction of heat shock protein 70 protects mice against post-infection irritable bowel syndrome via NF-κB and NOS/NO signaling pathways.

    PubMed

    Zhou, Xuchun; Dong, Liwei; Yang, Bo; He, Zhoutao; Chen, Yiyao; Deng, Taozhi; Huang, Baili; Lan, Cheng

    2015-12-01

    This study aimed to investigate the protective effects of preinduction of heat shock protein 70 (HSP70) on Trichinella spiralis infection-induced post-infectious irritable bowel syndrome (PI-IBS) in mice. Trichinella spiralis infection significantly reduced HSP70 abundance, ileal villus height and crypt depth, expression of tight junctions, serum lysine and arginine concentrations, and ileal SCL7A6 and SCL7A7 mRNA levels, induced inflammatory response, and activated NF-κB signaling pathway. Meanwhile, the heat treatment upregulated HSP70 expression, and then reversed intestinal dysfunction and inflammatory response. Preinduction of HSP70 enhanced serum arginine and intestinal SCL7A7 expression and inhibited NF-κB activation compared with PI-IBS model. Treatment with pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) and N-nitro-L-arginine methyl ester hydrochloride (L-NAME, a nitric oxide synthase inhibitor, NOS) further demonstrated that preinduction of HSP70 might inhibit NF-κB and activated NOS/nitric oxide (NO) signaling pathways. In conclusion, preinduction of HSP70 by heat treatment may confer beneficial effects on Trichinella spiralis infection-induced PI-IBS in mice, and the protective effect of HSP70 may be associated with inhibition of NF-κB and stimulation of NOS/NO signaling pathways. PMID:26215736

  1. Nimesulide as a downregulator of the activity of the neutrophil myeloperoxidase pathway. Focus on the histoprotective potential of the drug during inflammatory processes.

    PubMed

    Ottonello, L; Dapino, P; Pastorino, G; Montagnani, G; Gatti, F; Guidi, G; Dallegri, F

    1993-01-01

    Neutrophils, recruited to tissue sites of inflammation, release a variety of oxidants and enzymes, which are responsible for tissue damage. Among the oxidants released are potent chlorinated compounds, such as hypochlorous acid and chloramines, which induce tissue cell damage and inactivate protease inhibitors, particularly alpha 1-antitrypsin, the specific inhibitor of neutrophil elastase. In studying a rational approach to the pharmacological control of neutrophil-mediated tissue injury, we investigated the activity of the anti-inflammatory drug nimesulide. This agent reduced the function of the myeloperoxidase pathway (which generates hypochlorous acid), by exerting a cell-directed inhibitory activity, as shown by measurement of superoxide anion and hydrogen peroxide production. Nimesulide also inactivated hypochlorous acid directly and protected alpha 1-antitrypsin from the neutrophil-mediated oxidation. Thus, neutrophil elastolytic activity may be attenuated by nimesulide-spared alpha 1-antitrypsin. The prevention of oxidative inactivation of alpha 1-antitrypsin by nimesulide strictly correlates with the drug's ability to suppress the extracellular availability of hypochlorous acid. Taken together, these data suggest that nimesulide may prevent tissue injury at sites of inflammation by maintaining natural host protective systems. PMID:7506191

  2. Anti-inflammatory properties of lipoxin A4 protect against diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury

    PubMed Central

    Han, Jiang-quan; Liu, Cheng-ling; Wang, Zheng-yuan; Liu, Ling; Cheng, Ling; Fan, Ya-dan

    2016-01-01

    Lipoxin A4 can alleviate cerebral ischemia/reperfusion injury by reducing the inflammatory reaction, but it is currently unclear whether it has a protective effect on diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury. In this study, we established rat models of diabetes mellitus using an intraperitoneal injection of streptozotocin. We then induced focal cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery for 2 hours and reperfusion for 24 hours. After administration of lipoxin A4 via the lateral ventricle, infarction volume was reduced, the expression levels of pro-inflammatory factors tumor necrosis factor alpha and nuclear factor-kappa B in the cerebral cortex were decreased, and neurological functioning was improved. These findings suggest that lipoxin A4 has strong neuroprotective effects in diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury and that the underlying mechanism is related to the anti-inflammatory action of lipoxin A4. PMID:27212926

  3. Perceived Barriers and Protective Factors of Juvenile Offenders on Their Developmental Pathway to Adulthood

    ERIC Educational Resources Information Center

    Unruh, Deanne; Povenmire-Kirk, Tiana; Yamamoto, Scott

    2009-01-01

    Adolescents involved in the juvenile justice system face multiple challenges on their pathway to adulthood. These adolescents not only have an increased risk of committing future crimes and are further at risk of not becoming healthy, productive adults. The purpose of this study was to examine the risk and protective factors and associations…

  4. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway

    PubMed Central

    Zhang, Qiang; Yang, Yujie; Yan, Shuxian; Liu, Jiantao; Xu, Zhongmin; Yu, Junping; Song, Yajing; Zhang, Anding; Jin, Meilin

    2015-01-01

    Streptococcus suis 2 is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for the high levels of early mortality observed in septic shock-like syndrome cases. However, the mechanisms through which S. suis 2 (SS2) causes excessive inflammation remain unclear. Thus, this study aimed to identify novel pro-inflammatory mediators that play important roles in the development of therapies against SS2 infection. In this study, the novel pro-inflammatory protein HP0459, which was encoded by the SSUSC84_0459 gene, was discovered. The stimulation of RAW 264.7 macrophages with recombinant HP0459 protein induced the expression of pro-inflammatory cytokines (IL-1β, MCP-1 and TNF-α). Compared with the wild-type (WT) strain, the isogenic knockout of HP0459 in SS2 led to reduced production of pro-inflammatory cytokines in RAW264.7 macrophages and in vivo. The pro-inflammatory activity of HP0459 was significantly reduced by an antibody against Toll-like receptor 2 (TLR2) in RAW264.7 macrophages and was lower in TLR2-deficient (TLR2-/-) macrophages than in WT macrophages. Furthermore, specific inhibitors of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways significantly decreased the HP0459-induced pro-inflammatory cytokine production, and a western blot assay showed that HP0459 stimulation induced the activation of the ERK1/2 pathway. Taken together, our data indicate that HP0459 is a novel pro-inflammatory mediator of SS2 and induces TLR2-dependent pro-inflammatory activity in RAW264.7 macrophages through the ERK1/2 pathway. PMID:25806027

  5. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation.

    PubMed

    Gessner, Denise K; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal's health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  6. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation

    PubMed Central

    Gessner, Denise K.; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal´s health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  7. Tricin, flavonoid from Njavara reduces inflammatory responses in hPBMCs by modulating the p38MAPK and PI3K/Akt pathways and prevents inflammation associated endothelial dysfunction in HUVECs.

    PubMed

    Shalini, V; Pushpan, Chithra K; G, Sindhu; A, Jayalekshmy; A, Helen

    2016-02-01

    Previous studies revealed the potent anti-inflammatory activity of tricin, the active component of Njavara rice bran. Here, we report the involvement of specific signaling pathways in the protective effect of tricin against LPS induced inflammation in hPBMCs and the role of tricin in modulating endothelial dysfunction in LPS induced HUVECs. Pretreatment with tricin (15μM) significantly inhibited the release of TNF-α and was comparable to the specific pathway blockers like ERK inhibitor (PD98059), JNK inhibitor (SP600125) and p38 inhibitor (SB203580), whereas an increased release of TNF-α was observed in PI3K/Akt inhibitor (LY294002) treated cells. Tricin alone and combination treatment of tricin and SB203580 showed more significant inhibition of activation of COX-2 and TNF-α than that of SB203580 alone treated group. Combination treatment of tricin and LY294002 showed increased activation of COX-2 and TNF-α, proved that PI3K activation is essential for the anti-inflammatory effect of tricin. Studies conducted on HUVECs revealed the protective effect of tricin against endothelial dysfunction associated with LPS induced inflammation by inhibiting the activation of proinflammatory mediators like TNF-α, IFN-γ, MCP 1 by modulating NF-κB and MAPK signaling pathways. ELISA and flow cytometric analysis again confirmed the protection of tricin against endothelial damage, especially from the decreased activation of cell adhesion molecules like ICAM-1, VCAM-1 and E-Selectin upon tricin treatment. This work establishes the mechanism behind the potent anti-inflammatory activity of the flavonoid tricin. PMID:26514297

  8. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe.

    PubMed

    Aggarwal, Bharat B; Vijayalekshmi, R V; Sung, Bokyung

    2009-01-15

    Chronic infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and high-calorie diet have been recognized as major risk factors for the most common types of cancer. All these risk factors are linked to cancer through inflammation. Although acute inflammation that persists for short-term mediates host defense against infections, chronic inflammation that lasts for long term can predispose the host to various chronic illnesses, including cancer. Linkage between cancer and inflammation is indicated by numerous lines of evidence; first, transcription factors nuclear factor-kappaB (NF-kappaB) and signal transducers and activators of transcription 3 (STAT3), two major pathways for inflammation, are activated by most cancer risk factors; second, an inflammatory condition precedes most cancers; third, NF-kappaB and STAT3 are constitutively active in most cancers; fourth, hypoxia and acidic conditions found in solid tumors activate NF-kappaB; fifth, chemotherapeutic agents and gamma-irradiation activate NF-kappaB and lead to chemoresistance and radioresistance; sixth, most gene products linked to inflammation, survival, proliferation, invasion, angiogenesis, and metastasis are regulated by NF-kappaB and STAT3; seventh, suppression of NF-kappaB and STAT3 inhibits the proliferation and invasion of tumors; and eighth, most chemopreventive agents mediate their effects through inhibition of NF-kappaB and STAT3 activation pathways. Thus, suppression of these proinflammatory pathways may provide opportunities for both prevention and treatment of cancer. PMID:19147746

  9. Molecular approaches toward targeted cancer prevention with some food plants and their products: inflammatory and other signal pathways.

    PubMed

    Khuda-Bukhsh, Anisur Rahman; Das, Sreemanti; Saha, Santu Kumar

    2014-01-01

    In recent years, there has been growing interest in cancer prevention by food plants and their products. Although several plant parts have potentials for chemoprevention and other therapeutic use, their molecular mechanisms of action are not always well understood. Extensive research has identified several molecular targets that can potentially be used for the prevention and/or treatment of cancer. In this review, we accumulate evidences of modulating abilities of some dietary plants and their products on several signaling pathways, including the inflammatory and apoptotic ones, which may be targeted for cancer therapy. We have mainly focused on several phytochemicals like resveratrol (red grapes and peanuts), allicin (garlic), lycopene (tomato), indole-3-carbinol (cruciferous vegetables), vitamin C (citrus fruits), [6]-gingerol (ginger), emodin (aloe), natural antioxidant mixture (spinach), beta carotenoids (carrots), sulphoraphane (mustard), ellagic acid (pomegranate), myrecitin (cranberry), carnosol (rosemary), vanillin (vanilla) and eugenol (cloves). They act through one or more signaling pathways like nuclear factor kappa B, cyclooxygenase-2, signal transducer and activator of transcription 3, Akt, mitogen activated protein kinase/extracellular regulated kinase, Bcl-2, caspases, poly (ADP-ribose) polymerase, matrix metalloproteinase 2/9, and cyclin D1. Critical knowledge on these compounds and their signaling pathways may help in formulation of effective anticancer drugs. PMID:24377653

  10. MiR-150 impairs inflammatory cytokine production by targeting ARRB-2 after blocking CD28/B7 costimulatory pathway.

    PubMed

    Sang, Wei; Wang, Ying; Zhang, Cong; Zhang, Dianzheng; Sun, Cai; Niu, Mingshan; Zhang, Zhe; Wei, Xiangyu; Pan, Bin; Chen, Wei; Yan, Dongmei; Zeng, Lingyu; Loughran, Thomas P; Xu, Kailin

    2016-04-01

    MiR-150, a major modulator negatively regulating the development and differentiation of various immune cells, is widely involved in orchestrating inflammation. In transplantation immunity, miR-150 can effectively induce immune tolerance, although the underlying mechanisms have not been fully elucidated. In the current study, we found that miR-150 is elevated after blocking CD28/B7 co-stimulatory signaling pathway and impaired IL-2 production by targeting ARRB2. Further investigation suggested that miR-150 not only repressed the level of ARRB2/PDE4 directly but also prevented AKT/ARRB2/PDE4 trimer recruitment into the lipid raft by inhibiting the activities of PI3K and AKT through the cAMP-PKA-Csk signaling pathway. This leads to the interruption of cAMP degradation and subsequently results in inhibition of the NF-kB pathway and reduced production of both IL-2 and TNF. In conclusion, our study demonstrated that miR-150 can effectively prevent CD28/B7 co-stimulatory signaling transduction, decrease production of inflammatory cytokines, such as IL-2 and TNF, and elicit the induction of immune tolerance. Therefore, miR-150 could become a novel potential therapeutic target in transplantation immunology. PMID:26549736

  11. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals

    PubMed Central

    Gupta, Subash C.; Kim, Ji Hye; Prasad, Sahdeo

    2010-01-01

    Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy medicine and medicine be thy food.” Exploring the association between diet and health continues today. For example, we now know that as many as 35% of all cancers can be prevented by dietary changes. Carcinogenesis is a multistep process involving the transformation, survival, proliferation, invasion, angiogenesis, and metastasis of the tumor and may take up to 30 years. The pathways associated with this process have been linked to chronic inflammation, a major mediator of tumor progression. The human body consists of about 13 trillion cells, almost all of which are turned over within 100 days, indicating that 70,000 cells undergo apoptosis every minute. Thus, apoptosis/cell death is a normal physiological process, and it is rare that a lack of apoptosis kills the patient. Almost 90% of all deaths due to cancer are linked to metastasis of the tumor. How our diet can prevent cancer is the focus of this review. Specifically, we will discuss how nutraceuticals, such as allicin, apigenin, berberine, butein, caffeic acid, capsaicin, catechin gallate, celastrol, curcumin, epigallocatechin gallate, fisetin, flavopiridol, gambogic acid, genistein, plumbagin, quercetin, resveratrol, sanguinarine, silibinin, sulforaphane, taxol, γ-tocotrienol, and zerumbone, derived from spices, legumes, fruits, nuts, and vegetables, can modulate inflammatory pathways and thus affect the survival, proliferation, invasion, angiogenesis, and metastasis of the tumor. Various cell signaling pathways that are modulated by these agents will also be discussed. PMID:20737283

  12. Progranulin protects against endotoxin-induced acute kidney injury by downregulating renal cell death and inflammatory responses in mice.

    PubMed

    Xu, Xiaoying; Gou, Linfeng; Zhou, Meng; Yang, Fusheng; Zhao, Yihan; Feng, Tingting; Shi, Peikun; Ghavamian, Armin; Zhao, Weiming; Yu, Yuan; Lu, Yi; Yi, Fan; Liu, Guangyi; Tang, Wei

    2016-09-01

    Progranulin (PGRN), a pluripotent secreted growth factor, is involved in various physiologic and disease processes. However, the role of PGRN in endotoxin-induced septic acute kidney injury (AKI) remains unknown. The objective of this study is to investigate the protective effects of PGRN on an endotoxin-induced AKI mouse model by using PGRN-deficient mice and recombinant PGRN (rPGRN) pretreatment. PGRN levels were increased in kidneys of wild-type (WT) mice at 6 and 24h after lipopolysaccharide (LPS) injection. Renal function detection, hematoxylin and eosin staining, immunohistochemical staining, ELISA and in situ terminal deoxynucleotidyl transferase-mediated uridine triphosphate nick-end labeling were used to reveal tissue injury, inflammatory cell infiltration, production of inflammatory mediators and cell death in mouse kidneys after LPS injection. PGRN deficiency resulted in severe kidney injury and increased apoptotic death, inflammatory cell infiltration, production of pro-inflammatory mediators and the expression and nucleus-to-cytoplasmic translocation of HMGB1 in the kidney. In addition, rPGRN administration before LPS treatment ameliorated the endotoxin-induced AKI in WT mice. PGRN may be a novel biologic agent with therapeutic potential for endotoxin-induced septic AKI possibly by inhibiting LPS-induced renal cell death and inflammatory responses in mice. PMID:27367257

  13. Balance of inflammatory pathways and interplay of immune cells in the liver during homeostasis and injury

    PubMed Central

    Baeck, Christer; Tacke, Frank

    2014-01-01

    Multiple potentially harmful stimuli challenge the liver, the chief metabolic and detoxifying organ of the human body. Due to its central anatomical location, continuous blood flow from the gastrointestinal tract through the hepatic sinusoids allows the metabolically active hepatocytes, the non-parenchymal cells and the various immune cell populations residing and patrolling in the liver to interact with antigens and microbiological components coming from the intestine. Cytokines are key mediators within the complex interplay of intrahepatic immune cells and hepatocytes, because they can activate effector functions of immune cells as well as hepatocytic intracellular signaling pathways controlling cellular homeostasis. Kupffer cells and liver-infiltrating monocyte-derived macrophages are primary sources of cytokines such as tumor necrosis factor (TNF). The liver is also enriched in natural killer (NK) and natural killer T (NKT) cells, which fulfill functions in pathogen defense, T cell recruitment and modulation of fibrogenic responses. TNF can activate specific intracellular pathways in hepatocytes that influence cell fate in different manners, e.g. pro-apoptotic signals via the caspase cascade, but also survival pathways, namely the nuclear factor (NF)-kappaB pathway. NF-kappaB regulates important functions in liver physiology and pathology. The exact dissection of the contribution of recruited and resident immune cells, their soluble cytokine and chemokine mediators and the intracellular hepatocytic response in liver homeostasis and injury could potentially identify novel targets for the treatment of acute and chronic liver disease, liver fibrosis or cirrhosis. PMID:26417243

  14. The Protective Role of Interleukin-33 in Myocardial Ischemia and Reperfusion Is Associated with Decreased HMGB1 Expression and Up-Regulation of the P38 MAPK Signaling Pathway

    PubMed Central

    Gangying, Hu; Chunfeng, Yi; Changjiang, Zhang; Xuefei, Li; Yuanhong, Li; Hong, Jiang

    2015-01-01

    Interleukin-33 (IL-33) plays a protective role in myocardial ischemia and reperfusion (I/R) injury, but the underlying mechanism was not fully elucidated. The present study was designed to investigate whether IL-33 protects against myocardial I/R injury by regulating both P38 mitogen-activated-protein kinase (P38 MAPK), which is involved in one of the downstream signaling pathways of IL-33, and high mobility group box protein 1 (HMGB1), a late pro-inflammatory cytokine. Myocardial I/R injury increased the level of IL-33 and its induced receptor (sST) in myocardial tissue. Compared with the I/R group, the IL-33 group had significantly lower cardiac injury (lower serum creatine kinase (CK), lactate dehydrogenase (LDH), and cTnI levels and myocardial infarct size), a suppressed inflammatory response in myocardial tissue (lower expression of HMGB1, IL-6, TNF-α and INF-γ) and less myocardial apoptosis (much higher Bcl-2/Bax ratio and lower cleaved caspase-3 expression). Moreover, IL-33 activated the P38 MAPK signaling pathway (up-regulating P-P38 expression) in myocardial tissue, and SB230580 partially attenuated the anti-inflammatory and anti-apoptosis effects of IL-33. These findings indicated that IL-33 protects against myocardial I/R injury by inhibiting inflammatory responses and myocardial apoptosis, which may be associated with the HMGB1 and P38 MAPK signaling pathways. PMID:26571038

  15. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    SciTech Connect

    Ahmed, Maha A.E.

    2015-02-01

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level

  16. Doxycycline Promotes Carcinogenesis & Metastasis via Chronic Inflammatory Pathway: An In Vivo Approach

    PubMed Central

    Nanda, Neha; Dhawan, Devinder K.; Bhatia, Alka; Mahmood, Akhtar; Mahmood, Safrun

    2016-01-01

    Background Doxycycline (DOX) exhibits anti-inflammatory, anti-tumor, and pro-apoptotic activity and is being tested in clinical trials as a chemotherapeutic agent for several cancers, including colon cancer. Materials & Methods In the current study, the chemotherapeutic activity of doxycycline was tested in a rat model of colon carcinogenesis, induced by colon specific cancer promoter, 1,2, dimethylhydrazine (DMH) as well as study the effect of DOX-alone on a separate group of rats. Results Doxycycline administration in DMH-treated rats (DMH-DOX) unexpectedly increased tumor multiplicity, stimulated progression of colonic tumor growth from adenomas to carcinomas and revealed metastasis in small intestine as determined by macroscopic and histopathological analysis. DOX-alone treatment showed markedly enhanced chronic inflammation and reactive hyperplasia, which was dependent upon the dose of doxycycline administered. Moreover, immunohistochemical analysis revealed evidence of inflammation and anti-apoptotic action of DOX by deregulation of various biomarkers. Conclusion These results suggest that doxycycline caused chronic inflammation in colon, small intestine injury, enhanced the efficacy of DMH in tumor progression and provided a mechanistic link between doxycycline-induced chronic inflammation and tumorigenesis. Ongoing studies thus may need to focus on the molecular mechanisms of doxycycline action, which lead to its inflammatory and tumorigenic effects. PMID:26998758

  17. The Role of Inflammatory Pathways in Implantation Failure: Chronic Endometritis and Hydrosalpinges.

    PubMed

    Akopians, Alin L; Pisarska, Margareta D; Wang, Erica T

    2015-07-01

    The process of implantation is highly complex and involves a delicate interplay between the embryo and the appropriate maternal environment. The failure to implant is thought to be due to maternal factors or embryonic factors. Inflammation can be a part of the normal physiologic process during implantation; however, there are also pathologic entities that adversely affect uterine receptivity. This review will focus on chronic endometritis and hydrosalpinges as two specific inflammatory processes that contribute to implantation failure. For both chronic endometritis and hydrosalpinges, we will review the diagnosis, pathophysiology, and effect on implantation following treatment. The existing literature conclusively demonstrates that hydrosalpinges should be addressed by either laparoscopic salpingectomy or proximal tubal occlusion prior to in vitro fertilization. The picture for chronic endometritis is less clear since the diagnosis and treatment of chronic endometritis are not standardized, and there are no available randomized controlled trials on this topic. Future studies may target gene expression arrays as a method for further elucidating the role of inflammatory markers in normal and abnormal implantation processes. PMID:26132934

  18. CFTR Deletion in Mouse Testis Induces VDAC1 Mediated Inflammatory Pathway Critical for Spermatogenesis

    PubMed Central

    Huijuan, Liao; Jiang, Xie; Ming, Yang; Huaqin, Sun; Wenming, Xu

    2016-01-01

    Cystic fibrosis is the most common genetic disease among Caucasians and affects tissues including lung, pancreas and reproductive tracts. It has been shown that Endoplasmic Reticulum (ER) stress and heat shock response are two major deregulated functional modules related to CFTR dysfunction. To identify the impact of CFTR deletion during spermatogenesis, we examined the expression of spermiogenesis-related genes in the testis of CFTR mutant mice (CF mice). We confirmed expression changes of MSY2, a germ cell specific RNA binding protein, resulting from deletion of CFTR in testis. Furthermore, real time PCR and Western blot results showed that an inflammatory response was activated in CF mice testis, as reflected by the altered expression of cytokines. We demonstrate for the first time that expression of MSY2 is decreased in CF mice. Our results suggest that CFTR deletion in testis influences inflammatory responses and these features are likely to be due to the unique environment of the seminiferous tubule during the spermatogenesis process. The current study also suggests avenues to understand the pathophysiology of CFTR during spermatogenesis and provides targets for the possible treatment of CFTR-related infertility. PMID:27483469

  19. CFTR Deletion in Mouse Testis Induces VDAC1 Mediated Inflammatory Pathway Critical for Spermatogenesis.

    PubMed

    Yan, Chen; Lang, Qin; Huijuan, Liao; Jiang, Xie; Ming, Yang; Huaqin, Sun; Wenming, Xu

    2016-01-01

    Cystic fibrosis is the most common genetic disease among Caucasians and affects tissues including lung, pancreas and reproductive tracts. It has been shown that Endoplasmic Reticulum (ER) stress and heat shock response are two major deregulated functional modules related to CFTR dysfunction. To identify the impact of CFTR deletion during spermatogenesis, we examined the expression of spermiogenesis-related genes in the testis of CFTR mutant mice (CF mice). We confirmed expression changes of MSY2, a germ cell specific RNA binding protein, resulting from deletion of CFTR in testis. Furthermore, real time PCR and Western blot results showed that an inflammatory response was activated in CF mice testis, as reflected by the altered expression of cytokines. We demonstrate for the first time that expression of MSY2 is decreased in CF mice. Our results suggest that CFTR deletion in testis influences inflammatory responses and these features are likely to be due to the unique environment of the seminiferous tubule during the spermatogenesis process. The current study also suggests avenues to understand the pathophysiology of CFTR during spermatogenesis and provides targets for the possible treatment of CFTR-related infertility. PMID:27483469

  20. Sesamin protects against renal ischemia reperfusion injury by promoting CD39-adenosine-A2AR signal pathway in mice

    PubMed Central

    Li, Ke; Gong, Xia; Kuang, Ge; Jiang, Rong; Wan, Jingyuan; Wang, Bin

    2016-01-01

    Ischemia reperfusion injury (IRI) is a leading cause of acute kidney injury with high morbidity and mortality due to limited therapy. Here, we examine whether sesamin attenuates renal IRI in an animal model and explore the underlying mechanisms. Male mice were subjected to right renal ischemia for 30 min followed by reperfusion for 24 h with sesamin (100 mg/kg) during which the left kidney was removed. Renal damage and function were assessed subsequently. The results showed that sesamin reduced kidney ischemia reperfusion injury, as assessed by decreased serum creatinine (Scr) and Blood urea nitrogen (BUN), alleviated tubular damage and apoptosis. In addition, sesamin inhibited neutrophils infiltration and pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in IR-preformed kidney. Notably, sesamin promoted the expression of CD39, A2A adenosine receptor (A2AAR), and A2BAR mRNA and protein as well as adenosine production. Furthermore, CD39 inhibitor or A2AR antagonist abolished partly the protection of sesamin in kidney IRI. In conclusion, sesamin could effectively protect kidney from IRI by inhibiting inflammatory responses, which might be associated with promoting the adenosine-CD39-A2AR signaling pathway. PMID:27347331

  1. Protection against chemotaxis in the anti-inflammatory effect of bioactives from tomato ketchup.

    PubMed

    Hazewindus, Merel; Haenen, Guido R M M; Weseler, Antje R; Bast, Aalt

    2014-01-01

    The consumption of tomato products has been associated with a decreased risk for chronic inflammatory diseases. In this study, the anti-inflammatory potential of tomato ketchup was evaluated by studying the effect of tomato ketchup extracts and bioactives from tomato ketchup on human monocytes and vascular endothelial cells (HUVEC). HUVEC were pre-treated for 1 h with either individual bioactives (7.5 µM lycopene, 1.4 µM α-tocopherol or 55 µM ascorbic acid) or a combination of these three compounds, or with the hydrophilic or lipophilic tomato ketchup extracts or with the two extracts combined. After the pretreatment, the cells were washed and challenged with TNF-α (10 ng/ml) for 6 h. The medium was used for the determination of the release of cytokines and the chemotaxis of monocytes. Inflammatory protein expression and production were assayed with real-time RT-PCR and ELISA. It was found that tomato ketchup extracts significantly reduced gene expression and release of the pro-inflammatory cytokines TNF-α and IL-8 in HUVEC after the inflammatory challenge, whereas the release of the anti-inflammatory cytokine IL-10 was increased. Chemotaxis was effectively impeded as demonstrated by a reduced monocyte migration. This effect correlated with the reduction of IL-8 production in the presence of the test compounds and extracts. The results consistently emphasize the contribution of lycopene to the anti-inflammatory effect of tomato ketchup. Other compounds in tomato ketchup such as α-tocopherol and ascorbic acid appeared to strengthen the anti-inflammatory effect of lycopene. The tomato ketchup extracts subtly interfered with several inflammatory phases that inhibit chemotaxis. Such a pleotropic mode of action exemplifies its potential mitigation of diseases characterized by prolonged low grade inflammation. PMID:25551565

  2. Protection against Chemotaxis in the Anti-Inflammatory Effect of Bioactives from Tomato Ketchup

    PubMed Central

    Hazewindus, Merel; Haenen, Guido R. M. M.; Weseler, Antje R.; Bast, Aalt

    2014-01-01

    The consumption of tomato products has been associated with a decreased risk for chronic inflammatory diseases. In this study, the anti-inflammatory potential of tomato ketchup was evaluated by studying the effect of tomato ketchup extracts and bioactives from tomato ketchup on human monocytes and vascular endothelial cells (HUVEC). HUVEC were pre-treated for 1 h with either individual bioactives (7.5 µM lycopene, 1.4 µM α-tocopherol or 55 µM ascorbic acid) or a combination of these three compounds, or with the hydrophilic or lipophilic tomato ketchup extracts or with the two extracts combined. After the pretreatment, the cells were washed and challenged with TNF-α (10 ng/ml) for 6 h. The medium was used for the determination of the release of cytokines and the chemotaxis of monocytes. Inflammatory protein expression and production were assayed with real-time RT-PCR and ELISA. It was found that tomato ketchup extracts significantly reduced gene expression and release of the pro-inflammatory cytokines TNF-α and IL-8 in HUVEC after the inflammatory challenge, whereas the release of the anti-inflammatory cytokine IL-10 was increased. Chemotaxis was effectively impeded as demonstrated by a reduced monocyte migration. This effect correlated with the reduction of IL-8 production in the presence of the test compounds and extracts. The results consistently emphasize the contribution of lycopene to the anti-inflammatory effect of tomato ketchup. Other compounds in tomato ketchup such as α-tocopherol and ascorbic acid appeared to strengthen the anti-inflammatory effect of lycopene. The tomato ketchup extracts subtly interfered with several inflammatory phases that inhibit chemotaxis. Such a pleotropic mode of action exemplifies its potential mitigation of diseases characterized by prolonged low grade inflammation. PMID:25551565

  3. Genome-wide Pathway Analysis Using Gene Expression Data of Colonic Mucosa in Patients with Inflammatory Bowel Disease

    PubMed Central

    Creanza, Teresa M.; Bossa, Fabrizio; Palumbo, Orazio; Maglietta, Rosalia; Ancona, Nicola; Corritore, Giuseppe; Latiano, Tiziana; Martino, Giuseppina; Biscaglia, Giuseppe; Scimeca, Daniela; De Petris, Michele P.; Carella, Massimo; Annese, Vito; Andriulli, Angelo; Latiano, Anna

    2015-01-01

    Background: Ulcerative colitis (UC) and Crohn's disease (CD) share some pathogenetic features. To provide new steps on the role of altered gene expression, and the involvement of gene networks, in the pathogenesis of these diseases, we performed a genome-wide analysis in 15 patients with CD and 14 patients with UC by comparing the RNA from inflamed and noninflamed colonic mucosa. Methods: Two hundred ninety-eight differentially expressed genes in CD and 520 genes in UC were identified. By bioinformatic analyses, 34 pathways for CD, 6 of them enriched in noninflamed and 28 in inflamed tissues, and 19 pathways for UC, 17 in noninflamed and 2 in inflamed tissues, were also highlighted. Results: In CD, the pathways included genes associated with cytokines and cytokine receptors connection, response to external stimuli, activation of cell proliferation or differentiation, cell migration, apoptosis, and immune regulation. In UC, the pathways were associated with genes related to metabolic and catabolic processes, biosynthesis and interconversion processes, leukocyte migration, regulation of cell proliferation, and epithelial-to-mesenchymal transition. Conclusions: In UC, the pattern of inflammation of colonic mucosa is due to a complex interaction network between host, gut microbiome, and diet, suggesting that bacterial products or endogenous synthetic/catabolic molecules contribute to impairment of the immune response, to breakdown of epithelial barrier, and to enhance the inflammatory process. In patients with CD, genes encoding a large variety of proteins, growth factors, cytokines, chemokines, and adhesion molecules may lead to uncontrolled inflammation with ensuing destruction of epithelial cells, inappropriate stimulation of antimicrobial and T cells differentiation, and inflammasome events. PMID:25901971

  4. The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer’s disease phenotype

    PubMed Central

    Joshi, Yash B.; Praticò, Domenico

    2015-01-01

    Alzheimer’s disease (AD) is the most common, and, arguably, one of the most-well studied, neurodegenerative conditions. Several decades of investigation have revealed that amyloid-β and tau proteins are critical pathological players in this condition. Genetic analyses have revealed specific mutations in the cellular machinery that produces amyloid-β, but these mutations are found in only a small fraction of patients with the early-onset variant of AD. In addition to development of amyloid-β and tau pathology, oxidative damage and inflammation are consistently found in the brains of these patients. The 5-lipoxygenase protein enzyme (5LO) and its downstream leukotriene metabolites have long been known to be important modulators of oxidation and inflammation in other disease states. Recent in vivo evidence using murine knock-out models has implicated the 5LO pathway, which also requires the 5LO activating protein (FLAP), in the molecular pathology of AD, including the metabolism of amyloid-β and tau. In this manuscript, we will provide an overview of 5LO and FLAP, discussing their involvement in biochemical pathways relevant to AD pathogenesis. We will also discuss how the 5LO pathway contributes to the molecular and behavioral insults seen in AD and provide an assessment of how targeting these proteins could lead to therapeutics relevant not only for AD, but also other related neurodegenerative conditions. PMID:25642165

  5. [Evidence-based and consented pathways for patients with inflammatory bowel diseases (IBD)].

    PubMed

    Raspe, H; Conrad, S; Muche-Borowski, C

    2009-06-01

    Crohn's disease and ulcerative colitis are diseases characterized by remission and relapse, an early age of onset and restrictions on activities and participation. IBD patients need a comprehensive, easily accessible and problem-oriented health care. This requires the integration and coordination of different health care sectors, medical and non-medical professionals, social and health care facilities and funding agencies. The pathways to guide patients through integrated health care were based on clinical considerations, interviews with patients and specialists, systematically searched evidence and results of a questionnaire survey. Within a systematic assessment-assignment approach relevant problems were identified and subsequently related to different medical and non-medical professionals, health care services and medical sectors. The pathways further imply (1) medical care according to evidence-based guideline recommendations, (2) patient education programs to foster shared decision making and self-management and (3) suggestions for further research. The pathways were consented in a consensus conference using nominal group process methods. Their feasibility and effect will be evaluated within a regional implementation project. PMID:19533545

  6. Accumulation of Palmitoylcarnitine and Its Effect on Pro‐Inflammatory Pathways and Calcium Influx in Prostate Cancer

    PubMed Central

    Al‐Bakheit, Ala'a; Traka, Maria; Saha, Shikha; Mithen, Richard

    2016-01-01

    BACKGROUND Acylcarnitines are intermediates of fatty acid oxidation and accumulate as a consequence of the metabolic dysfunction resulting from the insufficient integration between β‐oxidation and the tricarboxylic acid (TCA) cycle. The aim of this study was to investigate whether acylcarnitines accumulate in prostate cancer tissue, and whether their biological actions could be similar to those of dihydrotestosterone (DHT), a structurally related compound associated with cancer development. METHODS Levels of palmitoylcarnitine (palcar), a C16:00 acylcarnitine, were measured in prostate tissue using LC‐MS/MS. The effect of palcar on inflammatory cytokines and calcium (Ca2+) influx was investigated in in vitro models of prostate cancer. RESULTS We observed a significantly higher level of palcar in prostate cancerous tissue compared to benign tissue. High levels of palcar have been associated with increased gene expression and secretion of the pro‐inflammatory cytokine IL‐6 in cancerous PC3 cells, compared to normal PNT1A cells. Furthermore, we found that high levels of palcar induced a rapid Ca2+ influx in PC3 cells, but not in DU145, BPH‐1, or PNT1A cells. This pattern of Ca2+ influx was also observed in response to DHT. Through the use of whole genome arrays we demonstrated that PNT1A cells exposed to palcar or DHT have a similar biological response. CONCLUSIONS This study suggests that palcar might act as a potential mediator for prostate cancer progression through its effect on (i) pro‐inflammatory pathways, (ii) Ca2+ influx, and (iii) DHT‐like effects. Further studies need to be undertaken to explore whether this class of compounds has different biological functions at physiological and pathological levels. Prostate 76:1326–1337, 2016. © 2016 The Authors. The Prostate published by Wiley Periodicals, Inc. PMID:27403764

  7. Geniposide suppresses LPS-induced nitric oxide, PGE2 and inflammatory cytokine by downregulating NF-κB, MAPK and AP-1 signaling pathways in macrophages.

    PubMed

    Shi, Qinghai; Cao, Jinjun; Fang, Li; Zhao, Hongyan; Liu, Zhengxiang; Ran, Jihua; Zheng, Xinchuan; Li, Xiaoling; Zhou, Yu; Ge, Di; Zhang, Hongming; Wang, Li; Ran, Ying; Fu, Jianfeng

    2014-06-01

    Inflammatory responses are important to host immune reactions, but uncontrolled inflammatory mediators may aid in the pathogenesis of other inflammatory diseases. Geniposide, an iridoid glycoside found in the herb gardenia, is believed to have broad-spectrum anti-inflammatory effects in murine models but its mechanism of action is unclear. We investigated the action of this compound in murine macrophages stimulated by lipopolysaccharide (LPS), as the stimulation of macrophages by LPS is known to induce inflammatory reactions. We determined the effect of geniposide on LPS-induced production of the inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), the mRNA and protein expression of the NO and PGE2 synthases, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively, and the mRNA and protein expression of the inflammatory cytokine, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Furthermore, nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK) and activator protein (AP)-1 activity were assayed. To understand the action of geniposide on the NF-κB and MAPK pathways, we studied the effect of NF-κB and MAPK inhibitors on the LPS-induced production of NO, PGE2 and TNF-α. Our findings clearly showed that geniposide mainly exerts its anti-inflammatory effects by inhibiting the LPS-induced NF-κB, MAPK and AP-1 signaling pathways in macrophages, which subsequently reduces overexpression of the inducible enzymes iNOS and COX-2 and suppresses the expression and release of the inflammatory factors, TNF-α, IL-6, NO and PGE2. Thus, geniposide shows promise as a therapeutic agent in inflammatory diseases. PMID:24735815

  8. Anti-inflammatory effects of Perilla frutescens in activated human neutrophils through two independent pathways: Src family kinases and Calcium

    PubMed Central

    Chen, Chun-Yu; Leu, Yann-Lii; Fang, Yu; Lin, Chwan-Fwu; Kuo, Liang-Mou; Sung, Wei-Che; Tsai, Yung-Fong; Chung, Pei-Jen; Lee, Ming-Chung; Kuo, Yu-Ting; Yang, Hsuan-Wu; Hwang, Tsong-Long

    2015-01-01

    The leaves of Perilla frutescens (L.) Britt. have been traditionally used as an herbal medicine in East Asian countries to treat a variety diseases. In this present study, we investigated the inhibitory effects of P. frutescens extract (PFE) on N-formyl-Met-Leu-Phe (fMLF)-stimulated human neutrophils and the underlying mechanisms. PFE (1, 3, and 10 μg/ml) inhibited superoxide anion production, elastase release, reactive oxygen species formation, CD11b expression, and cell migration in fMLF-activated human neutrophils in dose-dependent manners. PFE inhibited fMLF-induced phosphorylation of the Src family kinases (SFKs), Src (Tyr416) and Lyn (Tyr396), and reduced their enzymatic activities. Both PFE and PP2 (a selective inhibitor of SFKs) reduced the phosphorylation of Burton’s tyrosine kinases (Tyr223) and Vav (Tyr174) in fMLF-activated human neutrophils. Additionally, PFE decreased intracellular Ca2+ levels ([Ca2+]i), whereas PP2 prolonged the time required for [Ca2+]i to return to its basal level. Our findings indicated that PFE effectively regulated the inflammatory activities of fMLF-activated human neutrophils. The anti-inflammatory effects of PFE on activated human neutrophils were mediated through two independent signaling pathways involving SFKs (Src and Lyn) and mobilization of intracellular Ca2+. PMID:26659126

  9. Anti-inflammatory effects of Perilla frutescens in activated human neutrophils through two independent pathways: Src family kinases and Calcium.

    PubMed

    Chen, Chun-Yu; Leu, Yann-Lii; Fang, Yu; Lin, Chwan-Fwu; Kuo, Liang-Mou; Sung, Wei-Che; Tsai, Yung-Fong; Chung, Pei-Jen; Lee, Ming-Chung; Kuo, Yu-Ting; Yang, Hsuan-Wu; Hwang, Tsong-Long

    2015-01-01

    The leaves of Perilla frutescens (L.) Britt. have been traditionally used as an herbal medicine in East Asian countries to treat a variety diseases. In this present study, we investigated the inhibitory effects of P. frutescens extract (PFE) on N-formyl-Met-Leu-Phe (fMLF)-stimulated human neutrophils and the underlying mechanisms. PFE (1, 3, and 10 μg/ml) inhibited superoxide anion production, elastase release, reactive oxygen species formation, CD11b expression, and cell migration in fMLF-activated human neutrophils in dose-dependent manners. PFE inhibited fMLF-induced phosphorylation of the Src family kinases (SFKs), Src (Tyr416) and Lyn (Tyr396), and reduced their enzymatic activities. Both PFE and PP2 (a selective inhibitor of SFKs) reduced the phosphorylation of Burton's tyrosine kinases (Tyr223) and Vav (Tyr174) in fMLF-activated human neutrophils. Additionally, PFE decreased intracellular Ca(2+) levels ([Ca(2+)]i), whereas PP2 prolonged the time required for [Ca(2+)]i to return to its basal level. Our findings indicated that PFE effectively regulated the inflammatory activities of fMLF-activated human neutrophils. The anti-inflammatory effects of PFE on activated human neutrophils were mediated through two independent signaling pathways involving SFKs (Src and Lyn) and mobilization of intracellular Ca(2+). PMID:26659126

  10. The role of cholinergic anti-inflammatory pathway in acetic acid-induced colonic inflammation in the rat.

    PubMed

    Kolgazi, Meltem; Uslu, Unal; Yuksel, Meral; Velioglu-Ogunc, Ayliz; Ercan, Feriha; Alican, Inci

    2013-09-01

    The "cholinergic anti-inflammatory pathway" provides neurological modulation of cytokine synthesis to limit the magnitude of the immune response. This study aimed to evaluate the impact of the cholinergic anti-inflammatory pathway on the extent of tissue integrity, oxidant-antioxidant status and neutrophil infiltration to the inflamed organ in a rat model of acetic acid-induced colitis. Colitis was induced by intrarectal administration of 5% acetic acid (1ml) to Sprague-Dawley rats (200-250g; n=7-8 per group). Control group received an equal volume of saline intrarectally. The rats were treated with either nicotine (1mg/kg/day) or huperzine A (0.1mg/kg/day) intraperitoneally for 3 days. After decapitation, the distal colon was scored macroscopically and microscopically. Tissue samples were used for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity. Formation of reactive oxygen species was monitored by using chemiluminescence (CL). Nuclear factor (NF)-κB expression was evaluated in colonic samples via immunohistochemical analysis. Trunk blood was collected for the assessment of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-10, resistin and visfatin levels. Both nicotine and huperzine A reduced the extent of colonic lesions, increased colonic MDA level, high MPO activity and NF-κB expression in the colitis group. Elevation of serum IL-1β level due to colitis was also attenuated by both treatments. Additionally, huperzine A was effective to reverse colitis-induced high lucigenin-enhanced CL values and serum TNF-α levels. Colitis group revealed decreased serum visfatin levels compared to control group which was completely reversed by nicotine. In conclusion, modulation of the cholinergic system either by nicotine or ACh esterase inhibition improved acetic acid-induced colonic inflammation as confirmed by macroscopic and microscopic examination and biochemical assays. PMID:23810507

  11. High fat diet alters lactation outcomes: possible involvement of inflammatory and serotonergic pathways.

    PubMed

    Hernandez, Laura L; Grayson, Bernadette E; Yadav, Ekta; Seeley, Randy J; Horseman, Nelson D

    2012-01-01

    Delay in the onset of lactogenesis has been shown to occur in women who are obese, however the mechanism altered within the mammary gland causing the delay remains unknown. Consumption of high fat diets (HFD) has been previously determined to result decreased litters and litter numbers in rodent models due to a decrease in fertility. We examined the effects of feeding a HFD (60% kcal from fat) diet versus a low-fat diet (LFD; 10% kcal from fat) to female Wistar rats on lactation outcomes. Feeding of HFD diet resulted in increased pup weights compared to pups from LFD fed animals for 4 d post-partum. Lactation was delayed in mothers on HFD but they began to produce copious milk volumes beginning 2 d post-partum, and milk yield was similar to LFD by day 3. Mammary glands collected from lactating animals on HFD diet, displayed a disrupted morphologies, with very few and small alveoli. Consistently, there was a significant decrease in the mRNA expression of milk protein genes, glucose transporter 1 (GLUT1) and keratin 5 (K5), a luminobasal cell marker in the mammary glands of HFD lactating animals. Expression of tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin (5-HT) biosynthesis, and the 5-HT(7) receptor (HTR7), which regulates mammary gland involution, were significantly increased in mammary glands of HFD animals. Additionally, we saw elevation of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α). These results indicate that consumption of HFD impairs mammary parenchymal tissue and impedes its ability to synthesize and secrete milk, possibly through an increase in 5-HT production within the mammary gland leading to an inflammatory process. PMID:22403677

  12. Imipramine protects retinal ganglion cells from oxidative stress through the tyrosine kinase receptor B signaling pathway

    PubMed Central

    Han, Ming-lei; Liu, Guo-hua; Guo, Jin; Yu, Shu-juan; Huang, Jing

    2016-01-01

    Retinal ganglion cell (RGC) degeneration is irreversible in glaucoma and tyrosine kinase receptor B (TrkB)-associated signaling pathways have been implicated in the process. In this study, we attempted to examine whether imipramine, a tricyclic antidepressant, may protect hydrogen peroxide (H2O2)-induced RGC degeneration through the activation of the TrkB pathway in RGC-5 cell lines. RGC-5 cell lines were pre-treated with imipramine 30 minutes before exposure to H2O2. Western blot assay showed that in H2O2 -damaged RGC-5 cells, imipramine activated TrkB pathways through extracellular signal-regulated protein kinase/TrkB phosphorylation. TUNEL staining assay also demonstrated that imipramine ameliorated H2O2 -induced apoptosis in RGC-5 cells. Finally, TrkB-IgG intervention was able to reverse the protective effect of imipramine on H2O2 -induced RGC-5 apoptosis. Imipramine therefore protects RGCs from oxidative stress-induced apoptosis through the TrkB signaling pathway. PMID:27127489

  13. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway.

    PubMed

    Moon, H-G; Cao, Y; Yang, J; Lee, J H; Choi, H S; Jin, Y

    2015-01-01

    Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release 'messenger' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial 'apoptotic bodies', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50-120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after

  14. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway

    PubMed Central

    Moon, H-G; Cao, Y; Yang, J; Lee, J H; Choi, H S; Jin, Y

    2015-01-01

    Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release ‘messenger' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial ‘apoptotic bodies', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50–120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after

  15. Effects of vagus nerve stimulation via cholinergic anti-inflammatory pathway activation on myocardial ischemia/reperfusion injury in canine

    PubMed Central

    Zhang, Rong; Wugeti, Najina; Sun, Juan; Yan, Huang; Guo, Yujun; Zhang, Ling; Ma, Mei; Guo, Xingui; Jiao, Changan; Xu, Wenli; Li, Tianqi; Liu, Haili; Ma, Yitong

    2014-01-01

    Background: Acute myocardial infarction (AMI) was a type of disease with high mortality rate and high disability rate. And about 50% of the final area of myocardial infarction after AMI was led by ischemia/reperfusion (I/R) injury. The I/R injury was a kind of systemic inflammatory response, in which the main performance laid in the release of the large quantity of inflammatory cytokines. The basic experiments, clinical studies and the large scaled epidemiology investigations found that the low functions of vagus nerves had close relevance with the occurrence, development and prognosis of the cardiovascular diseases. This study investigate the effects of cholinergic anti-inflammatory pathway with with vagus never stimulation I/R injury in canine. Methods: 18 adult mongrel dogs were randomly divided into 3 groups (n = 6): sham operation group (sham Group), ischemia/reperfusion group (I/R group), right vagus nerve stimulation and ischemia/reperfusion group (STM group). The hemodynamic indexes were measured after reperfusion 120 min. Through internal jugular venous blood, serum acetylcholine (Ach), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) concentrations were detected by ELISA. Alpha 7 subunit Ach acetylcholine receptor (α7nAchR) expression level was detected with immunohistochemical method. HE staining was used to observe the degree of neutrophil infiltration. Results: After ischemia/reperfusion 120 min, compared with sham group, TNF-α and IL-6 were significantly decreased, Ach content increased, the expression of α7nAchR protein was significantly reduced in I/R group (P < 0.05). Expression of α7nAchR protein, Ach content, TNF-α and IL-6 level had no significant difference in STM group (P < 0.05). Compared with I/R group, the expression of Ach and α7nAchR protein significantly increased the TNF- and IL-6 levels decreased in STM group (P < 0.05). Compared with the baseline, TNF-α and IL-6 levels significantly increased Ach content decreased

  16. Effect of Silibinin in Reducing Inflammatory Pathways in In Vitro and In Vivo Models of Infection-Induced Preterm Birth

    PubMed Central

    Lim, Ratana; Morwood, Carrington J.; Barker, Gillian; Lappas, Martha

    2014-01-01

    Infection-induced preterm birth is the largest cause of infant death and of neurological disabilities in survivors. Silibinin, from milk thistle, exerts potent anti-inflammatory activities in non-gestational tissues. The aims of this study were to determine the effect of silibinin on pro-inflammatory mediators in (i) human fetal membranes and myometrium treated with bacterial endotoxin lipopolysaccharide (LPS) or the pro-inflammatory cytokine IL-1β, and (ii) in preterm fetal membranes with active infection. The effect of silibinin on infection induced inflammation and brain injury in pregnant mice was also assessed. Fetal membranes and myometrium (tissue explants and primary cells) were treated with 200 μM silibinin in the presence or absence of 10 μg/ml LPS or 1 ng/ml IL-1β. C57BL/6 mice were injected with 70 mg/kg silibinin with or without 50 μg LPS on embryonic day 16. Fetal brains were collected after 6 h. In human fetal membranes, silibinin significantly decreased LPS-stimulated expression of IL-6 and IL-8, COX-2, and prostaglandins PGE2 and PGF2α. In primary amnion and myometrial cells, silibinin also decreased IL-1β-induced MMP-9 expression. Preterm fetal membranes with active infection treated with silibinin showed a decrease in IL-6, IL-8 and MMP-9 expression. Fetal brains from mice treated with silibinin showed a significant decrease in LPS-induced IL-8 and ninjurin, a marker of brain injury. Our study demonstrates that silibinin can reduce infection and inflammation-induced pro-labour mediators in human fetal membranes and myometrium. Excitingly, the in vivo results indicate a protective effect of silibinin on infection-induced brain injury in a mouse model of preterm birth. PMID:24647589

  17. Genetic Investigation of Complement Pathway Genes in Type 2 Diabetic Retinopathy: An Inflammatory Perspective

    PubMed Central

    Yang, Ming Ming; Wang, Jun; Ren, Hong; Sun, Yun Duan; Fan, Jiao Jie; Teng, Yan; Li, Yan Bo

    2016-01-01

    Diabetic retinopathy (DR) has complex multifactorial pathogenesis. This study aimed to investigate the association of complement pathway genes with susceptibility to DR. Eight haplotype-tagging SNPs of SERPING1 and C5 were genotyped in 570 subjects with type 2 diabetes: 295 DR patients (138 nonproliferative DR [NPDR] and 157 proliferative DR [PDR]) and 275 diabetic controls. Among the six C5 SNPs, a marginal association was first detected between rs17611 and total DR patients (P = 0.009, OR = 0.53 for recessive model). In stratification analysis, a significant decrease in the frequencies of G allele and GG homozygosity for rs17611 was observed in PDR patients compared with diabetic controls (Pcorr = 0.032, OR = 0.65 and Pcorr = 0.016, OR = 0.37, resp.); it was linked with a disease progression. A haplotype AA defined by the major alleles of rs17611 and rs1548782 was significantly predisposed to PDR with increased risk of 1.54 (Pcorr = 0.023). Regarding other variants in C5 and SERPING1, none of the tagging SNPs had a significant association with DR and its subgroups (all P > 0.05). Our study revealed an association between DR and C5 polymorphisms with clinical significance, whereas SERPING1 is not a major genetic component of DR. Our data suggest a link of complement pathway with DR pathogenesis. PMID:26989329

  18. Lipotoxic brain microvascular injury is mediated by activating transcription factor 3-dependent inflammatory and oxidative stress pathways.

    PubMed

    Aung, Hnin Hnin; Altman, Robin; Nyunt, Tun; Kim, Jeffrey; Nuthikattu, Saivageethi; Budamagunta, Madhu; Voss, John C; Wilson, Dennis; Rutledge, John C; Villablanca, Amparo C

    2016-06-01

    Dysfunction of the cerebrovasculature plays an important role in vascular cognitive impairment (VCI). Lipotoxic injury of the systemic endothelium in response to hydrolyzed triglyceride-rich lipoproteins (TGRLs; TGRL lipolysis products) or a high-fat Western diet (WD) suggests similar mechanisms may be present in brain microvascular endothelium. We investigated the hypothesis that TGRL lipolysis products cause lipotoxic injury to brain microvascular endothelium by generating increased mitochondrial superoxide radical generation, upregulation of activating transcription factor 3 (ATF3)-dependent inflammatory pathways, and activation of cellular oxidative stress and apoptotic pathways. Human brain microvascular endothelial cells were treated with human TGRL lipolysis products that induced intracellular lipid droplet formation, mitochondrial superoxide generation, ATF3-dependent transcription of proinflammatory, stress response, and oxidative stress genes, as well as activation of proapoptotic cascades. Male apoE knockout mice were fed a high-fat/high-cholesterol WD for 2 months, and brain microvessels were isolated by laser capture microdissection. ATF3 gene transcription was elevated 8-fold in the hippocampus and cerebellar brain region of the WD-fed animals compared with chow-fed control animals. The microvascular injury phenotypes observed in vitro and in vivo were similar. ATF3 plays an important role in mediating brain microvascular responses to acute and chronic lipotoxic injury and may be an important preventative and therapeutic target for endothelial dysfunction in VCI. PMID:27087439

  19. The human papillomavirus (HPV) E7 protein antagonises an Imiquimod-induced inflammatory pathway in primary human keratinocytes.

    PubMed

    Richards, Kathryn H; Wasson, Christopher W; Watherston, Oliver; Doble, Rosella; Blair, G Eric; Wittmann, Miriam; Macdonald, Andrew

    2015-01-01

    High-risk human papillomaviruses (HPV) are the etiological pathogen of cervical and a number of ano-genital cancers. How HPVs overcome the significant barriers of the skin immune system has been the topic of intensive research. The E6 and E7 oncoproteins have emerged as key players in the deregulation of host innate immune pathways that are required for the recruitment of effector cells of the immune response. Here we demonstrate that E7, and to a lesser extend E6, strongly reduce NFκB activation in response to the inflammatory mediator imiquimod. Moreover, we establish that undifferentiated keratinocytes do not express the putative receptor for imiquimod, TLR7, and as such are stimulated by imiquimod through a novel pathway. Inhibition of imiquimod induced cytokine production required residues in the CR1 and CR3 regions of E7 and resulted in reduced nuclear translocation and acetylation of the p65 sub-unit of NFκB. The results provide further evidence for a TLR7-independent role of imiquimod in the epithelial immune response and reinforce the ability of the HPV oncoproteins to disrupt the innate immune response, which may have important consequences for establishment of a chronic infection. PMID:26268216

  20. Maternal Exposure to Low Levels of Corticosterone during Lactation Protects against Experimental Inflammatory Colitis-Induced Damage in Adult Rat Offspring

    PubMed Central

    Petrella, Carla; Giuli, Chiara; Agostini, Simona; Bacquie, Valérie; Zinni, Manuela; Theodorou, Vassilia; Broccardo, Maria; Casolini, Paola; Improta, Giovanna

    2014-01-01

    Opposing emotional events (negative/trauma or positive/maternal care) during the postnatal period may differentially influence vulnerability to the effects of stress later in life. The development and course of intestinal disorders such as inflammatory bowel disease are negatively affected by persistent stress, but to date the role of positive life events on these pathologies has been entirely unknown. In the present study, the effect of early life beneficial experiences in the development of intestinal dysfunctions, where inflammation and stress stimuli play a primary role, was investigated. As a “positive” experimental model we used adult male rat progeny nursed by mothers whose drinking water was supplemented with moderate doses of corticosterone (CORT) (0.2 mg/ml) during the lactation period. Such animals have been generally shown to cope better with different environmental situations during life. The susceptibility to inflammatory experimental colitis induced by intracolonic infusion of TNBS (2,4,6-trinitrobenzenesulphonic acid) was investigated in CORT-nursed rats in comparison with control rats. This mild increase in maternal corticosterone during lactation induced, in CORT-nursed rats, a long lasting protective effect on TNBS-colitis, characterized by improvements in some indices of the disease (increased colonic myeloperoxidase activity, loss of body weight and food intake) and by the involvement of endogenous peripheral pathways known to participate in intestinal disorder development (lower plasma corticosterone levels and colonic mast cell degranulation, alterations in the colonic expression of both corticotrophin releasing factor/CRF and its receptor/CRH-1R). All these findings contribute to suggesting that the reduced vulnerability to TNBS-colitis in CORT-nursed rats is due to recovery from the colonic mucosal barrier dysfunction. Such long lasting changes induced by mild hormonal manipulation during lactation, making the adult also better adapted

  1. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    SciTech Connect

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  2. Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions.

    PubMed

    Dal-Cim, Tharine; Ludka, Fabiana K; Martins, Wagner C; Reginato, Charlise; Parada, Esther; Egea, Javier; López, Manuela G; Tasca, Carla I

    2013-08-01

    Guanosine (GUO) is an endogenous modulator of glutamatergic excitotoxicity and has been shown to promote neuroprotection in in vivo and in vitro models of neurotoxicity. This study was designed to understand the neuroprotective mechanism of GUO against oxidative damage promoted by oxygen/glucose deprivation and reoxygenation (OGD). GUO (100 μM) reduced reactive oxygen species production and prevented mitochondrial membrane depolarization induced by OGD. GUO also exhibited anti-inflammatory actions as inhibition of nuclear factor kappa B activation and reduction of inducible nitric oxide synthase induction induced by OGD. These GUO neuroprotective effects were mediated by adenosine A1 receptor, phosphatidylinositol-3 kinase and MAPK/ERK. Furthermore, GUO recovered the impairment of glutamate uptake caused by OGD, an effect that occurred via a Pertussis toxin-sensitive G-protein-coupled signaling, blockade of adenosine A2A receptors (A2A R), but not via A1 receptor. The modulation of glutamate uptake by GUO also involved MAPK/ERK activation. In conclusion, GUO, by modulating adenosine receptor function and activating MAPK/ERK, affords neuroprotection of hippocampal slices subjected to OGD by a mechanism that implicates the following: (i) prevention of mitochondrial membrane depolarization, (ii) reduction of oxidative stress, (iii) regulation of inflammation by inhibition of nuclear factor kappa B and inducible nitric oxide synthase, and (iv) promoting glutamate uptake. PMID:23713463

  3. Low-Density Lipoprotein Modified by Myeloperoxidase in Inflammatory Pathways and Clinical Studies

    PubMed Central

    Vanhamme, Luc; Roumeguère, Thierry; Zouaoui Boudjeltia, Karim

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) has a key role in atherogenesis. Among the different models of oxidation that have been studied, the one using myeloperoxidase (MPO) is thought to be more physiopathologically relevant. Apolipoprotein B-100 is the unique protein of LDL and is the major target of MPO. Furthermore, MPO rapidly adsorbs at the surface of LDL, promoting oxidation of amino acid residues and formation of oxidized lipoproteins that are commonly named Mox-LDL. The latter is not recognized by the LDL receptor and is accumulated by macrophages. In the context of atherogenesis, Mox-LDL accumulates in macrophages leading to foam cell formation. Furthermore, Mox-LDL seems to have specific effects and triggers inflammation. Indeed, those oxidized lipoproteins activate endothelial cells and monocytes/macrophages and induce proinflammatory molecules such as TNFα and IL-8. Mox-LDL may also inhibit fibrinolysis mediated via endothelial cells and consecutively increase the risk of thrombus formation. Finally, Mox-LDL has been involved in the physiopathology of several diseases linked to atherosclerosis such as kidney failure and consequent hemodialysis therapy, erectile dysfunction, and sleep restriction. All these issues show that the investigations of MPO-dependent LDL oxidation are of importance to better understand the inflammatory context of atherosclerosis. PMID:23983406

  4. Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis.

    PubMed

    He, Xuexiu; Wei, Zhengkai; Wang, Jingjing; Kou, Jinhua; Liu, Weijian; Fu, Yunhe; Yang, Zhengtao

    2016-01-01

    Alpinetin, a composition of Alpinia katsumadai Hayata, has been reported to have a number of biological properties, such as antibacterial, antitumor and other important therapeutic activities. However, the effect of alpinetin on inflammatory bowel disease (IBD) has not yet been reported. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of alpinetin on dextran sulfate sodium (DSS)-induced colitis in mice. In vivo, DSS-induced mice colitis model was established by giving mice drinking water containing 5% (w/v) DSS for 7 days. Alpinetin (25, 50 and 100 mg/kg) were administered once a day by intraperitoneal injection 3 days before DSS treatment. In vitro, phorbol myristate acetate (PMA)-differentiated monocytic THP-1 macrophages were treated with alpinetin and stimulated by lipopolysaccharide (LPS). The results showed that alpinetin significantly attenuated diarrhea, colonic shortening, histological injury, myeloperoxidase (MPO) activity and the expressions of tumor necrosis factor (TNF-α) and interleukin (IL-1β) production in mice. In vitro, alpinetin markedly inhibited LPS-induced TNF-α and IL-1β production, as well as Toll-like receptor 4 (TLR4) mediated nuclear transcription factor-kappaB (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, this study demonstrated that alpinetin had protective effects on DSS-induced colitis and may be a promising therapeutic reagent for colitis treatment. PMID:27321991

  5. Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis

    PubMed Central

    He, Xuexiu; Wei, Zhengkai; Wang, Jingjing; Kou, Jinhua; Liu, Weijian; Fu, Yunhe; Yang, Zhengtao

    2016-01-01

    Alpinetin, a composition of Alpinia katsumadai Hayata, has been reported to have a number of biological properties, such as antibacterial, antitumor and other important therapeutic activities. However, the effect of alpinetin on inflammatory bowel disease (IBD) has not yet been reported. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of alpinetin on dextran sulfate sodium (DSS)-induced colitis in mice. In vivo, DSS-induced mice colitis model was established by giving mice drinking water containing 5% (w/v) DSS for 7 days. Alpinetin (25, 50 and 100 mg/kg) were administered once a day by intraperitoneal injection 3 days before DSS treatment. In vitro, phorbol myristate acetate (PMA)-differentiated monocytic THP-1 macrophages were treated with alpinetin and stimulated by lipopolysaccharide (LPS). The results showed that alpinetin significantly attenuated diarrhea, colonic shortening, histological injury, myeloperoxidase (MPO) activity and the expressions of tumor necrosis factor (TNF-α) and interleukin (IL-1β) production in mice. In vitro, alpinetin markedly inhibited LPS-induced TNF-α and IL-1β production, as well as Toll-like receptor 4 (TLR4) mediated nuclear transcription factor-kappaB (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, this study demonstrated that alpinetin had protective effects on DSS-induced colitis and may be a promising therapeutic reagent for colitis treatment. PMID:27321991

  6. Carbon Tetrachloride Increases the Pro-inflammatory Cytokines Levels in Different Brain Areas of Wistar Rats: The Protective Effect of Acai Frozen Pulp.

    PubMed

    de Souza Machado, Fernanda; Marinho, Jéssica Pereira; Abujamra, Ana Lúcia; Dani, Caroline; Quincozes-Santos, André; Funchal, Cláudia

    2015-09-01

    Acai offers health benefits associated with its high antioxidante capacity, phytochemical composition, nutritional and sensory value. Therefore, the objective of this study was to evaluate the protective effect of acai frozen pulp on carbon tetrachloride (CCl4)-induced damage via modulation of anti- and pro-inflammatory cytokines in rat brain tissue. The rats were treated via oral (gavage) daily with water or acai frozen pulp for 14 days at a dose of 7 μL/g. On the 15th day, the animals in each group received a single intraperitoneal injection of CCl4 in a dose of 3.0 mL/kg or the same volume of mineral oil. After 4 h, the animals were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum were dissected and homogenated to evaluate the levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), interleukin 18 (IL-18), interleukin 6 (IL-6) and interleukin 10 (IL-10). Data were statistically analyzed by analysis of variance followed by the Tukey post hoc test. It was observed that CCl4 increased TNF-α, IL-1β and IL-18 levels in all brain tissues, and that acai frozen pulp was able to prevent this increase. IL-6 and IL-10 brain tissue levels remained unchanged during all treatments. CCl4 experimental model was suitable to investigate brain tissue anti and pro-inflammatory cytokines. Acai frozen pulp prevented an increase in IL-1β, IL-18 and TNF-α, while IL-6 and IL-10 levels remained unchanged. The precise pathway by which inflammation contribute to hepatic encephalopathy, as well as to how this pathway can be modulated, is still under investigation. PMID:26283513

  7. Sulforaphane Protects Rodent Retinas against Ischemia-Reperfusion Injury through the Activation of the Nrf2/HO-1 Antioxidant Pathway

    PubMed Central

    Liu, Ruixing; Brecha, Nicholas C.; Yu, Albert Cheung Hoi; Pu, Mingliang

    2014-01-01

    Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway. PMID:25470382

  8. Anti-inflammatory activity of baicalein in LPS-stimulated RAW264.7 macrophages via estrogen receptor and NF-κB-dependent pathways.

    PubMed

    Fan, Guan-Wei; Zhang, Yuan; Jiang, Xiaorui; Zhu, Yan; Wang, Bingyao; Su, Lina; Cao, Wenjie; Zhang, Han; Gao, Xiumei

    2013-12-01

    Baicalein has been used for many years as a popular antiviral and antibacterial in China. Recent investigations revealed that baicalein also has anti-inflammatory activities. Our results indicated that baicalein increases ERE-luciferase activity in an estrogen receptor (ER)-dependent manner when either ERα or ERβ were coexpressed in Hela cells. This study examined whether baicalein exerts an anti-inflammatory effect in RAW264.7 cells through an estrogen receptor-dependent pathway and through regulation of NF-ĸB activation. In lipopolysaccharide (LPS)-induced RAW264.7 cells, baicalein exerts anti-inflammatory effects by inhibiting iNOS, COX-2, and TNF-α mRNA expression; NO production; as well as inflammatory cytokine (IL-1β, PGE2, and TNF-α) production through an ER-dependent pathway. These effects are accompanied with the inhibition of the transcription factor NF-ĸB activation and IκBα phosphorylation. We therefore conclude that baicalein inhibits LPS-induced inflammatory cytokine production via regulation of the NF-ĸB pathway and estrogen-like activity, suggesting that it may be useful for preventing inflammation-related diseases. PMID:23892998

  9. Brazilin exerts protective effects against renal ischemia-reperfusion injury by inhibiting the NF-κB signaling pathway.

    PubMed

    Jia, Yanyan; Zhao, Jinyi; Liu, Meiyou; Li, Bingling; Song, Ying; Li, Yuwen; Wen, Aidong; Shi, Lei

    2016-07-01

    Renal ischemia-reperfusion (I/R) injury is associated with high morbidity and mortality as there is currently no available effective therapeutic strategy with which to treat this injury. Thus, the aim of this study was to investigate the potential protective effects of brazilin, a major active component of the Chinese medicine Caesalpinia sappan L., against renal I/R injury in vitro and in vivo. Rats were subjected to removal of the right kidney and I/R injury to the left kidney (ischemia for 45 min followed by reperfusion for 24 h). Treatment with brazilin (30 mg/kg, administered intravenously at 30 min prior to ischemia) led to the reversal of I/R-induced changes in serum creatinine (Scr) and blood urea nitrogen (BUN) levels, and also attenuated the histopathological damage induced by I/R. Furthermore, TUNEL assay revealed that brazilin reduced cell necrosis, and significantly decreased the expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in renal tissue. Moreover, HK-2 cells were used in order to elucidate the mechanisms responsible for the protective effects of brazilin. The levels of phosphorylated IκBα and the nuclear translocation of nuclear factor-κB (NF-κB) were all evidently decreased by brazilin. These findings suggested that pre-treatment with brazilin protects against I/R-induced renal damage and suppresses the inflammatory response by inhibiting the activation of the NF-κB signaling pathway. PMID:27247107

  10. White adipose tissue cells and the progression of cachexia: inflammatory pathways

    PubMed Central

    Neves, Rodrigo X.; Rosa‐Neto, José Cesar; Yamashita, Alex S.; Matos‐Neto, Emidio M.; Riccardi, Daniela M. R.; Lira, Fabio S.; Batista, Miguel L.

    2015-01-01

    Abstract Background Cachexia is a systemic syndrome leading to body wasting, systemic inflammation, and to metabolic chaos. It is a progressive condition, and little is known about its dynamics. Detection of the early signs of the disease may lead to the attenuation of the associated symptoms. The white adipose tissue is an organ with endocrine functions, capable of synthesising and secreting a plethora of proteins, including cytokines, chemokines, and adipokines. It is well established that different adipose tissue depots demonstrate heterogeneous responses to physiological and pathological stimuli. The present study aimed at providing insight into adipocyte involvement in inflammation along the progression of cachexia. Methods Eight‐weeks‐old male rats were subcutaneously inoculated with a Walker 256 carcinosarcoma cell suspension (2 × 107 cells in 1.0 mL; tumour‐bearing, T) or Phosphate‐buffered saline (control, C). The retroperitoneal, epididymal, and mesenteric adipose pads were excised on Days 0, 7, and 14 post‐tumour cell injection, and the adipocytes were isolated. Results Mesenteric and epididymal adipocytes showed up‐regulation of IL‐1β protein expression and activation of the inflammasome pathway, contributing for whole tissue inflammation. The stromal vascular fraction of the retroperitoneal adipose tissue, on the other hand, seems to be the major contributor for the inflammation in this specific pad. Conclusion Adipocytes seem to play a relevant role in the establishment of white adipose tissue inflammation, through the activation of the NF‐κB and inflammasome pathways. In epididymal adipocytes, induction of the inflammasome may be detected already on Day 7 post‐tumour cell inoculation.

  11. Paeonol suppresses lipopolysaccharide-induced inflammatory cytokines in macrophage cells and protects mice from lethal endotoxin shock.

    PubMed

    Chen, Na; Liu, Dianfeng; Soromou, Lanan Wassy; Sun, Jingjing; Zhong, Weiting; Guo, Weixiao; Huo, Meixia; Li, Hongyu; Guan, Shuang; Chen, Zhenwen; Feng, Haihua

    2014-06-01

    Paeonol (2'-hydroxy-4'-methoxyacetophenone) is the main phenolic compound of the radix of Paeonia suffruticosa which has been used as traditional Chinese medicine. In this study, we primarily investigated the anti-inflammatory effects and the underlying mechanisms of paeonol in RAW macrophage cells; and based on these effects, we assessed the protective effects of paeonol on lipopolysaccharide-induced endotoxemia in mice. The in vitro study showed that paeonol regulated the production of TNF-α, IL-1β, IL-6, and IL-10 via inactivation of IκBα, ERK1/2, JNK, and p38 MAPK. In mouse model of lipopolysaccharide-induced endotoxemia, pro- and anti-inflammatory cytokines are significantly regulated, and thus the survival rates of lipolysaccharide-challenged mice are improved by paeonol (150, 200, or 250 mg/kg). Therefore, paeonol has a beneficial activity against lipopolysaccharide-induced inflammation in RAW 264.7 cell and mouse models. PMID:23413967

  12. Identification of signaling pathways associated with cancer protection in Laron syndrome.

    PubMed

    Lapkina-Gendler, Lena; Rotem, Itai; Pasmanik-Chor, Metsada; Gurwitz, David; Sarfstein, Rive; Laron, Zvi; Werner, Haim

    2016-05-01

    The growth hormone (GH)-insulin-like growth factor-1 (IGF1) pathway emerged in recent years as a critical player in cancer biology. Enhanced expression or activation of specific components of the GH-IGF1 axis, including the IGF1 receptor (IGF1R), is consistently associated with a transformed phenotype. Recent epidemiological studies have shown that patients with Laron syndrome (LS), the best-characterized entity among the congenital IGF1 deficiencies, seem to be protected from cancer development. To identify IGF1-dependent genes and signaling pathways associated with cancer protection in LS, we conducted a genome-wide analysis using immortalized lymphoblastoid cells derived from LS patients and healthy controls of the same gender, age range, and ethnic origin. Our analyses identified a collection of genes that are either over- or under-represented in LS-derived lymphoblastoids. Gene differential expression occurs in several gene families, including cell cycle, metabolic control, cytokine-cytokine receptor interaction, Jak-STAT signaling, and PI3K-AKT signaling. Major differences between LS and healthy controls were also noticed in pathways associated with cell cycle distribution, apoptosis, and autophagy. Our results highlight the key role of the GH-IGF1 axis in the initiation and progression of cancer. Furthermore, data are consistent with the concept that homozygous congenital IGF1 deficiency may confer protection against future tumor development. PMID:27090428

  13. The Protective Effect of Beraprost Sodium on Diabetic Nephropathy by Inhibiting Inflammation and p38 MAPK Signaling Pathway in High-Fat Diet/Streptozotocin-Induced Diabetic Rats.

    PubMed

    Peng, Li; Li, Jie; Xu, Yixing; Wang, Yangtian; Du, Hong; Shao, Jiaqing; Liu, Zhimin

    2016-01-01

    Background. p38 mitogen-activated protein kinase (MAPK) plays a crucial role in regulating signaling pathways implicated in inflammatory processes leading to diabetic nephropathy (DN). This study aimed to examine p38 MAPK activation in DN and determine whether beraprost sodium (BPS) ameliorates DN by inhibiting inflammation and p38 MAPK signaling pathway in diabetic rats. Methods. Forty male Sprague Dawley (SD) rats were randomly divided into the normal control group, type 2 diabetic group, and BPS treatment group. At the end of the 8-week experiment, we measured renal pathological changes and the activation of the p38 MAPK signaling pathway and inflammation. Result. After BPS treatment, renal function, 24-hour urine protein, lipid profiles, and blood glucose level were improved significantly; meanwhile, inflammation and the expression of p38 MAPK signaling pathway in the diabetic kidney were attenuated. Conclusions. BPS significantly prevented type 2 diabetes induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms are complicated but may be mainly attributed to the inhibition of the p38 MAPK signaling pathway and inflammation in the diabetic kidney. PMID:27212945

  14. The Protective Effect of Beraprost Sodium on Diabetic Nephropathy by Inhibiting Inflammation and p38 MAPK Signaling Pathway in High-Fat Diet/Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Peng, Li; Li, Jie; Xu, Yixing; Wang, Yangtian; Du, Hong; Shao, Jiaqing; Liu, Zhimin

    2016-01-01

    Background. p38 mitogen-activated protein kinase (MAPK) plays a crucial role in regulating signaling pathways implicated in inflammatory processes leading to diabetic nephropathy (DN). This study aimed to examine p38 MAPK activation in DN and determine whether beraprost sodium (BPS) ameliorates DN by inhibiting inflammation and p38 MAPK signaling pathway in diabetic rats. Methods. Forty male Sprague Dawley (SD) rats were randomly divided into the normal control group, type 2 diabetic group, and BPS treatment group. At the end of the 8-week experiment, we measured renal pathological changes and the activation of the p38 MAPK signaling pathway and inflammation. Result. After BPS treatment, renal function, 24-hour urine protein, lipid profiles, and blood glucose level were improved significantly; meanwhile, inflammation and the expression of p38 MAPK signaling pathway in the diabetic kidney were attenuated. Conclusions. BPS significantly prevented type 2 diabetes induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms are complicated but may be mainly attributed to the inhibition of the p38 MAPK signaling pathway and inflammation in the diabetic kidney. PMID:27212945

  15. Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways

    PubMed Central

    Neacsu, Patricia; Mazare, Anca; Schmuki, Patrik; Cimpean, Anisoara

    2015-01-01

    Biomaterial implantation in a living tissue triggers the activation of macrophages in inflammatory events, promoting the transcription of pro-inflammatory mediator genes. The initiation of macrophage inflammatory processes is mainly regulated by signaling proteins of mitogen-activated protein kinase (MAPK) and by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. We have previously shown that titania nanotubes modified Ti surfaces (Ti/TiO2) mitigate the immune response, compared with flat Ti surfaces; however, little is known regarding the underlying mechanism. Therefore, the aim of this study is to investigate the mechanism(s) by which this nanotopography attenuates the inflammatory activity of macrophages. Thus, we analyzed the effects of TiO2 nanotubes on the activation of MAPK and NF-κB signaling pathways in standard and lipopolysaccharide-evoked conditions. Results showed that the Ti/TiO2 significantly reduce the expression levels of the phosphorylated forms of p38, ERK1/2, c-Jun NH2-terminal kinase (JNK), IKKβ, and IkB-α. Furthermore, a significant reduction in the p65 nuclear accumulation on the nanotubular surface was remarked. Following, by using specific MAPK inhibitors, we observed that lipopolysaccharide-induced production of monocyte chemotactic protein-1 and nitric oxide was significantly inhibited on the Ti/TiO2 surface via p38 and ERK1/2, but not via JNK. However, the selective inhibitor for JNK signaling pathway (SP600125) was effective in reducing tumor necrosis factor alpha release as well as monocyte chemotactic protein-1 and nitric oxide production. Altogether, these data suggest that titania nanotubes can attenuate the macrophage inflammatory response via suppression of MAPK and NF-κB pathways providing a potential mechanism for their anti-inflammatory activity. PMID:26491301

  16. Inhibitory Effects of Palmultang on Inflammatory Mediator Production Related to Suppression of NF-κB and MAPK Pathways and Induction of HO-1 Expression in Macrophages

    PubMed Central

    Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Gu, Min-Jung; Ma, Jin Yeul

    2014-01-01

    Palmultang (PM) is an herbal decoction that has been used to treat anorexia, anemia, general prostration, and weakness due to chronic illness since medieval times in Korea, China, and Japan. The present study focused on the inhibitory effects of PM on the production of inflammatory factors and on the activation of mechanisms in murine macrophages. PM suppressed the expression of nitric oxide (NO), inflammatory cytokines and inflammatory proteins by inhibiting nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways and by inducing heme oxygenase (HO)-1 expression. Collectively, our results explain the anti-inflammatory effect and inhibitory mechanism of PM in macrophages stimulated with lipopolysaccharide (LPS). PMID:24828204

  17. Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway

    PubMed Central

    Latremoliere, Alban; Latini, Alexandra; Andrews, Nick; Cronin, Shane J.; Fujita, Masahide; Gorska, Katarzyna; Hovius, Ruud; Romero, Carla; Chuaiphichai, Surawee; Painter, Michio; Miracca, Giulia; Babaniyi, Olusegun; Remor, Aline Pertile; Duong, Kelly; Riva, Priscilla; Barrett, Lee B.; Ferreirós, Nerea; Naylor, Alasdair; Penninger, Josef M.; Tegeder, Irmgard; Zhong, Jian; Blagg, Julian; Channon, Keith M.; Johnsson, Kai; Costigan, Michael; Woolf, Clifford J.

    2015-01-01

    SUMMARY Human genetic studies have revealed an association between GTP cyclohydrolase 1 polymorphisms, which decrease tetrahydrobiopterin (BH4) levels, and reduced pain in patients. We now show that excessive BH4 is produced in mice by both axotomized sensory neurons and macrophages infiltrating damaged nerves and inflamed tissue. Constitutive BH4 overproduction in sensory neurons increases pain sensitivity, whereas blocking BH4 production only in these cells reduces nerve injury-induced hypersensitivity without affecting nociceptive pain. To minimize risk of side effects, we targeted sepiapterin reductase (SPR), whose blockade allows minimal BH4 production through the BH4 salvage pathways. Using a structure-based design, we developed a potent SPR inhibitor and show that it reduces pain hypersensitivity effectively with a concomitant decrease in BH4 levels in target tissues, acting both on sensory neurons and macrophages, with no development of tolerance or adverse effects. Finally, we demonstrate that sepiapterin accumulation is a sensitive biomarker for SPR inhibition in vivo. PMID:26087165

  18. Activation of osmolyte pathways in inflammatory myopathy and Duchenne muscular dystrophy points to osmoregulation as a contributing pathogenic mechanism.

    PubMed

    De Paepe, Boel; Martin, Jean-Jacques; Herbelet, Sandrine; Jimenez-Mallebrera, Cecilia; Iglesias, Estibaliz; Jou, Cristina; Weis, Joachim; De Bleecker, Jan L

    2016-08-01

    Alongside well-known nuclear factor κB (NFκB) and its associated cytokine networks, nuclear factor of activated T cells 5 (NFAT5), the master regulator of cellular osmoprotective programs, comes forward as an inflammatory regulator. To gain insight into its yet unexplored role in muscle disease, we studied the expression of NFAT5 target proteins involved in osmolyte accumulation: aldose reductase (AR), taurine transporter (TauT), and sodium myo-inositol co-transporter (SMIT). We analyzed idiopathic inflammatory myopathy and Duchenne muscular dystrophy muscle biopsies and myotubes in culture, using immunohistochemistry, immunofluorescence, and western blotting. We report that the level of constitutive AR was upregulated in patients, most strongly so in Duchenne muscular dystrophy. TauT and SMIT expression levels were induced in patients' muscle fibers, mostly representing regenerating and atrophic fibers. In dermatomyositis, strong staining for AR, TauT, and SMIT in atrophic perifascicular fibers was accompanied by staining for other molecular NFAT5 targets, including chaperones, chemokines, and inducible nitric oxide synthase. In these fibers, NFAT5 and NFκB p65 staining coincided, linking both transcription factors with this important pathogenic hallmark. In sporadic inclusion body myositis, SMIT localized to inclusions inside muscle fibers. In addition, SMIT was expressed by a substantial subset of muscle-infiltrating macrophages and T cells in patient biopsies. Our results indicate that osmolyte pathways may contribute to normal muscle functioning, and that activation of AR, TauT, and SMIT in muscle inflammation possibly contributes to the tissue's failing program of damage control. PMID:27322952

  19. Bariatric Surgery Induces Disruption in Inflammatory Signaling Pathways Mediated by Immune Cells in Adipose Tissue: A RNA-Seq Study

    PubMed Central

    Mathieu, François; Truong, Vinh; Blum, Yuna; Durand, Hervé; Alili, Rohia; Chelghoum, Nadjim; Pelloux, Véronique; Aron-Wisnewsky, Judith; Torcivia, Adriana; Bouillot, Jean-Luc; Parks, Brian W.; Ninio, Ewa; Clément, Karine; Tiret, Laurence

    2015-01-01

    Background Bariatric surgery is associated to improvements in obesity-associated comorbidities thought to be mediated by a decrease of adipose inflammation. However, the molecular mechanisms behind these beneficial effects are poorly understood. Methodology/Principal Findings We analyzed RNA-seq expression profiles in adipose tissue from 22 obese women before and 3 months after surgery. Of 15,972 detected genes, 1214 were differentially expressed after surgery at a 5% false discovery rate. Upregulated genes were mostly involved in the basal cellular machinery. Downregulated genes were enriched in metabolic functions of adipose tissue. At baseline, 26 modules of coexpressed genes were identified. The four most stable modules reflected the innate and adaptive immune responses of adipose tissue. A first module reflecting a non-specific signature of innate immune cells, mainly macrophages, was highly conserved after surgery with the exception of DUSP2 and CD300C. A second module reflected the adaptive immune response elicited by T lymphocytes; after surgery, a disconnection was observed between genes involved in T-cell signaling and mediators of the signal transduction such as CXCR1, CXCR2, GPR97, CCR7 and IL7R. A third module reflected neutrophil-mediated inflammation; after surgery, several genes were dissociated from the module, including S100A8, S100A12, CD300E, VNN2, TUBB1 and FAM65B. We also identified a dense network of 19 genes involved in the interferon-signaling pathway which was strongly preserved after surgery, with the exception of DDX60, an antiviral factor involved in RIG-I-mediated interferon signaling. A similar loss of connection was observed in lean mice compared to their obese counterparts. Conclusions/Significance These results suggest that improvements of the inflammatory state following surgery might be explained by a disruption of immuno-inflammatory cascades involving a few crucial molecules which could serve as potential therapeutic targets

  20. Gemfibrozil attenuates the inflammatory response and protects rats from abdominal sepsis

    PubMed Central

    CÁMARA-LEMARROY, CARLOS R.; GUZMAN-DE LA GARZA, FRANCISCO J.; CORDERO-PEREZ, PAULA; IBARRA-HERNANDEZ, JUAN M.; MUÑOZ-ESPINOSA, LINDA E.; FERNANDEZ-GARZA, NANCY E.

    2015-01-01

    Sepsis is a serious condition characterized by an infectious process that induces a severe systemic inflammatory response. In this study, the effects of gemfibrozil (GFZ) on the inflammatory response associated with abdominal sepsis were investigated using a rat model of cecal-ligation and puncture (CLP). Male Wistar rats were randomly divided into three groups: Sham-operated group (sham), where laparotomy was performed, the intestines were manipulated, and the cecum was ligated but not punctured; control group, subjected to CLP; and GFZ group, which received GFZ prior to undergoing CLP. The groups were then subdivided into three different time-points: 2, 4 and 24 h, indicating the time at which blood samples were obtained for analysis. Serum concentrations of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), malondialdehyde (MDA), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) were determined. The LDH, AST and ALT values were significantly elevated following CLP compared with those in the sham group, and GFZ treatment was able to reduce these elevations. GFZ also reduced the sepsis-induced elevations of TNF-α and IL-1. In conclusion, GFZ treatment was able to attenuate the inflammatory response associated with CLP-induced sepsis, by diminishing the release of inflammatory cytokines, thereby reducing tissue injury and oxidative stress. PMID:25667670

  1. Sphingosine-1-Phosphate Protects Intestinal Epithelial Cells from Apoptosis Through the Akt Signaling Pathway

    PubMed Central

    Greenspon, Jose; Li, Ruiyun; Xiao, Lan; Rao, Jaladanki N.; Marasa, Bernard S.; Strauch, Eric D.; Wang, Jian-Ying; Turner, Douglas J.

    2009-01-01

    Objective The regulation of apoptosis of intestinal mucosal cells is important in maintenance of normal intestinal physiology. Summary Sphingosine-1-phosphate (S1P) has been shown to play a critical role in cellular protection to otherwise lethal stimuli in several nonintestinal tissues. Methods The current study determines whether S1P protected normal intestinal epithelial cells (IECs) from apoptosis and whether Akt activation was the central pathway for this effect. Results S1P demonstrated significantly reduced levels of apoptosis induced by tumor necrosis factor-alpha (TNF-α)/cycloheximide (CHX). S1P induced increased levels of phosphorylated Akt and increased Akt activity, but did not affect total amounts of Akt. This activation of Akt was associated with decreased levels of both caspase-3 protein levels and of caspase-3 activity. Inactivation of Akt by treatment with the PI3K chemical inhibitor LY294002 or by overexpression of the dominant negative mutant of Akt (DNMAkt) prevented the protective effect of S1P on apoptosis. Additionally, silencing of the S1P-1 receptor by specific siRNA demonstrated a lesser decrease in apoptosis to S1P exposure. Conclusion These results indicate that S1P protects intestinal epithelial cells from apoptosis via an Akt-dependent pathway. PMID:18654850

  2. Autoantibody Specificities and Type I Interferon Pathway Activation in Idiopathic Inflammatory Myopathies.

    PubMed

    Ekholm, L; Vosslamber, S; Tjärnlund, A; de Jong, T D; Betteridge, Z; McHugh, N; Plestilova, L; Klein, M; Padyukov, L; Voskuyl, A E; Bultink, I E M; Michiel Pegtel, D; Mavragani, C P; Crow, M K; Vencovsky, J; Lundberg, I E; Verweij, C L

    2016-08-01

    Myositis is a heterogeneous group of autoimmune diseases, with different pathogenic mechanisms contributing to the different subsets of disease. The aim of this study was to test whether the autoantibody profile in patients with myositis is associated with a type I interferon (IFN) signature, as in patients with systemic lupus erythematous (SLE). Patients with myositis were prospectively enrolled in the study and compared to healthy controls and to patients with SLE. Autoantibody status was analysed using an immunoassay system and immunoprecipitation. Type I IFN activity in whole blood was determined using direct gene expression analysis. Serum IFN-inducing activity was tested using peripheral blood cells from healthy donors. Blocking experiments were performed by neutralizing anti-IFNAR or anti-IFN-α antibodies. Patients were categorized into IFN high and IFN low based on an IFN score. Patients with autoantibodies against RNA-binding proteins had a higher IFN score compared to patients without these antibodies, and the IFN score was related to autoantibody multispecificity. Patients with dermatomyositis (DM) and inclusion body myositis (IBM) had a higher IFN score compared to the other subgroups. Serum type I IFN bioactivity was blocked by neutralizing anti-IFNAR or anti-IFN-α antibodies. To conclude, a high IFN score was not only associated with DM, as previously reported, and IBM, but also with autoantibody monospecificity against several RNA-binding proteins and with autoantibody multispecificity. These studies identify IFN-α in sera as a trigger for activation of the type I IFN pathway in peripheral blood and support IFN-α as a possible target for therapy in these patients. PMID:27173897

  3. Effects of Yishen Pinggan Recipe on Renal Protection and NF-κB Signaling Pathway in Spontaneously Hypertensive Rats

    PubMed Central

    Luo, Guodong; Zhu, Xiying; Gao, Zhongxiang; Ge, Huaxun; Yu, Yang; Guo, Yuanyuan; Zheng, Jian-Pu; Liu, Longmin

    2016-01-01

    Inflammation is an important etiological factor of hypertensive renal damage. The effects of Yishen Pinggan Recipe (YPR) on urine microalbumin, histology, and NF-κB/P65, IκB-α, IL-1β, IL-6, and TNF-α in renal tissues were evaluated in SHR to explore the mechanism of its renal protection in hypertensive renal damage. The SBP of 12-week-old SHR was 192.41 ± 3.93 mmHg and DBP was 142.38 ± 5.79 mmHg. Without treatment, the 24-week-old SHRs' SBP was 196.96 ± 3.77 mmHg and DBP was 146.08 ± 4.82 mmHg. After the 12-week-old SHR were administered YPR for 12 weeks, the rats' SBP was 161.45 ± 7.57 mmHg and DBP was 117.21 ± 5.17 mmHg; YPR could lower blood pressure in SHR. And renal function damage was observed in 24-week-old SHR without treatment, manifested as urine protein and morphological changes which could be inhibited by YPR. In addition, YPR could reduce the expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in kidneys. It could also inhibit the nuclear translocation of NF-κB p65 and degradation of IκB-α in renal cells, indicating that the NF-κB signaling pathway was inhibited by YPR. Finally, the study suggests that YPR could significantly improve the renal function in SHR. The mechanism could be attributed to its inhibition of renal NF-κB signaling pathway and inflammation. PMID:27069492

  4. Mechanisms of endothelial cell protection by blockade of the JAK2 pathway.

    PubMed

    Neria, Fernando; Caramelo, Carlos; Peinado, Héctor; González-Pacheco, Francisco R; Deudero, Juan J P; de Solis, Alain J; Fernández-Sánchez, Ruth; Peñate, Silvia; Cano, Amparo; Castilla, María Angeles

    2007-03-01

    Inhibition of the JAK2/STAT pathway has been implicated recently in cytoprotective mechanisms in both vascular smooth muscle cells and astrocytes. The advent of JAK2-specific inhibitors provides a practical tool for the study of this pathway in different cellular types. An interest in finding methods to improve endothelial cell (EC) resistance to injury led us to examine the effect of JAK2/STAT inhibition on EC protection. Furthermore, the signaling pathways involved in JAK2/STAT inhibition-related actions were examined. Our results reveal, for the first time, that blockade of JAK2 with the tyrosine kinase inhibitor AG490 strongly protects cultured EC against cell detachment-dependent death and serum deprivation and increases reseeding efficiency. Confirmation of the specificity of the effects of JAK2 inhibition was attained by finding protective effects on transfection with a dominant negative JAK2. Furthermore, AG490 blocked serum deprivation-induced phosphorylation of JAK2. In terms of mechanism, treatment with AG490 induces several relevant responses, both in monolayer and detached cells. These mechanisms include the following: 1) Increase and nuclear translocation of the active, dephosphorylated form of beta-catenin. In functional terms, this translocation is transcriptionally active, and its protective effect is further supported by the stimulation of EC cytoprotection by transfectionally induced excess of beta-catenin. 2) Increase of platelet endothelial cell adhesion molecule (PECAM)/CD31 levels. 3) Increase in total and phosphorylated AKT. 4) Increase in phosphorylated glycogen synthase kinase (GSK)3alpha/beta. The present findings imply potential practical applications of JAK2 inhibition on EC. These applications affect not only EC in the monolayer but also circulating detached cells and involve mechanistic interactions not previously described. PMID:17035297

  5. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    PubMed

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  6. Inflammatory Proprotein Convertase-Matrix Metalloproteinase Proteolytic Pathway in Antigen-presenting Cells as a Step to Autoimmune Multiple Sclerosis*

    PubMed Central

    Shiryaev, Sergey A.; Remacle, Albert G.; Savinov, Alexei Y.; Chernov, Andrei V.; Cieplak, Piotr; Radichev, Ilian A.; Williams, Roy; Shiryaeva, Tatiana N.; Gawlik, Katarzyna; Postnova, Tatiana I.; Ratnikov, Boris I.; Eroshkin, Alexei M.; Motamedchaboki, Khatereh; Smith, Jeffrey W.; Strongin, Alex Y.

    2009-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system with autoimmune etiology. Susceptibility to MS is linked to viral and bacterial infections. Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination. The splice variants of the single MBP gene are expressed in the oligodendrocytes of the central nervous system (classic MBP) and in the immune cells (Golli-MBPs). Our data suggest that persistent inflammation caused by environmental risk factors is a step to MS. We have discovered biochemical evidence suggesting the presence of the inflammatory proteolytic pathway leading to MS. The pathway involves the self-activated furin and PC2 proprotein convertases and membrane type-6 MMP (MT6-MMP/MMP-25) that is activated by furin/PC2. These events are followed by MMP-25 proteolysis of the Golli-MBP isoforms in the immune system cells and stimulation of the specific autoimmune T cell clones. It is likely that the passage of these autoimmune T cell clones through the disrupted blood-brain barrier to the brain and the recognition of neuronal, classic MBP causes inflammation leading to the further up-regulation of the activity of the multiple individual MMPs, the massive cleavage of MBP in the brain, demyelination, and MS. In addition to the cleavage of Golli-MBPs, MMP-25 proteolysis readily inactivates crystallin αB that is a suppressor of MS. These data suggest that MMP-25 plays an important role in MS pathology and that MMP-25, especially because of its restricted cell/tissue expression pattern and cell surface/lipid raft localization, is a promising drug target in MS. PMID:19726693

  7. Inflammatory proprotein convertase-matrix metalloproteinase proteolytic pathway in antigen-presenting cells as a step to autoimmune multiple sclerosis.

    PubMed

    Shiryaev, Sergey A; Remacle, Albert G; Savinov, Alexei Y; Chernov, Andrei V; Cieplak, Piotr; Radichev, Ilian A; Williams, Roy; Shiryaeva, Tatiana N; Gawlik, Katarzyna; Postnova, Tatiana I; Ratnikov, Boris I; Eroshkin, Alexei M; Motamedchaboki, Khatereh; Smith, Jeffrey W; Strongin, Alex Y

    2009-10-30

    Multiple sclerosis (MS) is a disease of the central nervous system with autoimmune etiology. Susceptibility to MS is linked to viral and bacterial infections. Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination. The splice variants of the single MBP gene are expressed in the oligodendrocytes of the central nervous system (classic MBP) and in the immune cells (Golli-MBPs). Our data suggest that persistent inflammation caused by environmental risk factors is a step to MS. We have discovered biochemical evidence suggesting the presence of the inflammatory proteolytic pathway leading to MS. The pathway involves the self-activated furin and PC2 proprotein convertases and membrane type-6 MMP (MT6-MMP/MMP-25) that is activated by furin/PC2. These events are followed by MMP-25 proteolysis of the Golli-MBP isoforms in the immune system cells and stimulation of the specific autoimmune T cell clones. It is likely that the passage of these autoimmune T cell clones through the disrupted blood-brain barrier to the brain and the recognition of neuronal, classic MBP causes inflammation leading to the further up-regulation of the activity of the multiple individual MMPs, the massive cleavage of MBP in the brain, demyelination, and MS. In addition to the cleavage of Golli-MBPs, MMP-25 proteolysis readily inactivates crystallin alphaB that is a suppressor of MS. These data suggest that MMP-25 plays an important role in MS pathology and that MMP-25, especially because of its restricted cell/tissue expression pattern and cell surface/lipid raft localization, is a promising drug target in MS. PMID:19726693

  8. Downhill Running-Based Overtraining Protocol Improves Hepatic Insulin Signaling Pathway without Concomitant Decrease of Inflammatory Proteins

    PubMed Central

    Pauli, José R.; Cintra, Dennys E.; de Souza, Claudio T.; Ropelle, Eduardo R.; R. da Silva, Adelino S.

    2015-01-01

    The purpose of this study was to verify the effects of overtraining (OT) on insulin, inflammatory and gluconeogenesis signaling pathways in the livers of mice. Rodents were divided into control (CT), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up) and overtrained by running without inclination (OTR). Rotarod, incremental load, exhaustive and grip force tests were used to evaluate performance. Thirty-six hours after a grip force test, the livers were extracted for subsequent protein analyses. The phosphorylation of insulin receptor beta (pIRbeta), glycogen synthase kinase 3 beta (pGSK3beta) and forkhead box O1 (pFoxo1) increased in OTR/down versus CT. pGSK3beta was higher in OTR/up versus CT, and pFoxo1 was higher in OTR/up and OTR versus CT. Phosphorylation of protein kinase B (pAkt) and insulin receptor substrate 1 (pIRS–1) were higher in OTR/up versus CT and OTR/down. The phosphorylation of IκB kinase alpha and beta (pIKKalpha/beta) was higher in all OT protocols versus CT, and the phosphorylation of stress-activated protein kinases/Jun amino-terminal kinases (pSAPK-JNK) was higher in OTR/down versus CT. Protein levels of peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) and hepatocyte nuclear factor 4alpha (HNF-4alpha) were higher in OTR versus CT. In summary, OTR/down improved the major proteins of insulin signaling pathway but up-regulated TRB3, an Akt inhibitor, and its association with Akt. PMID:26445495

  9. Chronic Trigeminal Nerve Stimulation Protects Against Seizures, Cognitive Impairments, Hippocampal Apoptosis, and Inflammatory Responses in Epileptic Rats.

    PubMed

    Wang, Qian-Qian; Zhu, Li-Jun; Wang, Xian-Hong; Zuo, Jian; He, Hui-Yan; Tian, Miao-Miao; Wang, Lei; Liang, Gui-Ling; Wang, Yu

    2016-05-01

    Trigeminal nerve stimulation (TNS) has recently been demonstrated effective in the treatment of epilepsy and mood disorders. Here, we aim to determine the effects of TNS on epileptogenesis, cognitive function, and the associated hippocampal apoptosis and inflammatory responses. Rats were injected with pilocarpine to produce status epilepticus (SE) and the following chronic epilepsy. After SE induction, TNS treatment was conducted for 4 consecutive weeks. A pilocarpine re-injection was then used to induce a seizure in the epileptic rats. The hippocampal neuronal apoptosis induced by seizure was assessed by TUNEL staining and inflammatory responses by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). The spontaneous recurrent seizure (SRS) number was counted through video monitoring, and the cognitive function assessed through Morris Water Maze (MWM) test. TNS treatment attenuated the SRS attacks and improved the cognitive impairment in epileptic rats. A pilocarpine re-injection resulted in less hippocampal neuronal apoptosis and reduced level of interleukin-1 beta (IL-1β), tumor necrosis factor-α (TNF-α), and microglial activation in epileptic rats with TNS treatment in comparison to the epileptic rats without TNS treatment. It is concluded that TNS treatment shortly after SE not only protected against the chronic spontaneous seizures but also improved cognitive impairments. These antiepileptic properties of TNS may be related to its attenuating effects on hippocampal apoptosis and pro-inflammatory responses. PMID:26973056

  10. The Protective Effect of Bee Venom on Fibrosis Causing Inflammatory Diseases

    PubMed Central

    Lee, Woo-Ram; Pak, Sok Cheon; Park, Kwan-Kyu

    2015-01-01

    Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient’s skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease. PMID:26580653

  11. Electroacupuncture Could Regulate the NF-κB Signaling Pathway to Ameliorate the Inflammatory Injury in Focal Cerebral Ischemia/Reperfusion Model Rats.

    PubMed

    Qin, Wen-Yi; Luo, Yong; Chen, Ling; Tao, Tao; Li, Yang; Cai, Yan-Li; Li, Ya-Hui

    2013-01-01

    The activated nuclear factor-KappaB signaling pathway plays a critical role in inducing inflammatory injury. It has been reported that electroacupuncture could be an effective anti-inflammatory treatment. We aimed to explore the complex mechanism by which EA inhibits the activation of the NF- κ B signal pathway and ameliorate inflammatory injury in the short term; the effects of NEMO Binding Domain peptide for this purpose were compared. Focal cerebral I/R was induced by middle cerebral artery occlusion for 2 hrs. Total 380 male Sprague-Dawley rats are in the study. The neurobehavioral scores, infarction volumes, and the levels of IL-1 β and IL-13 were detected. NF- κ B p65, I κ B α , IKK α , and IKK β were analyzed and the ability of NF- κ B binding DNA was investigated. The EA treatment and the NBD peptide treatment both reduced infarct size, improved neurological scores, and regulated the levels of IL-1 β and IL-13. The treatment reduced the expression of IKK α and IKK β and altered the expression of NF- κ B p65 and I κ B α in the cytoplasm and nucleus; the activity of NF- κ B was effectively reduced. We conclude that EA treatment might interfere with the process of NF- κ B nuclear translocation. And it also could suppress the activity of NF- κ B signaling pathway to ameliorate the inflammatory injury after focal cerebral ischemia/reperfusion. PMID:23970940

  12. Angiopoietin-Like Protein 7 Promotes an Inflammatory Phenotype in RAW264.7 Macrophages Through the P38 MAPK Signaling Pathway.

    PubMed

    Qian, Tao; Wang, Kun; Cui, Jiesheng; He, Yiduo; Yang, Zaiqing

    2016-06-01

    Angiopoietin-like protein 7 (Angptl7) has been extensively studied for decades, but its potential immune functions have not been characterized. Hence, we investigated the relationship between Angptl7 and inflammation by using RAW264.7 monocyte/macrophage cells. The expression of genes encoding inflammation-associated factors cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, IL-10, and transforming growth factor beta 1 (TGF-β1)) decreased after RAW264.7 cells were treated with anti-Angptl7 polyclonal antibody but increased after the cells were transfected with an Angptl7-expressing plasmid. Angptl7 overexpression enhanced phagocytosis and inhibited the proliferation of RAW264.7 cells. In addition, Angptl7 antagonized the anti-inflammatory effects of TGF-β1 and dexamethasone. Pathway analysis showed that Angptl7 promoted the phosphorylation of both p65 and p38, but only the P38 mitogen-activated protein kinase (MAPK) signaling pathway mediated Angptl7-associated inflammatory functions. Additionally, after 1 week of daily intraperitoneal injections of recombinant TNF-α in a mouse model of peripheral inflammation, Angptl7 expression increased in the mouse eyes. Thus, Angptl7 is a factor that promotes pro-inflammatory responses in macrophages through the P38 MAPK signaling pathway and represents a potential therapeutic target for treatment of inflammatory diseases. PMID:26973239

  13. Insulin-like Growth Factor 1 Signaling Axis Meets p53 Genome Protection Pathways

    PubMed Central

    Werner, Haim; Sarfstein, Rive; LeRoith, Derek; Bruchim, Ilan

    2016-01-01

    Clinical, epidemiological, and experimental evidence indicate that the insulin-like growth factors (IGFs) are important mediators in the biochemical chain of events that lead from a phenotypically normal to a neoplastic cell. The IGF1 receptor (IGF1R), which mediates the biological actions of IGF1 and IGF2, exhibits potent pro-survival and antiapoptotic activities. The IGF1R is highly expressed in most types of cancer and is regarded as a promising therapeutic target in oncology. p53 is a transcription factor with tumor suppressor activity that is usually activated in response to DNA damage and other forms of cellular stress. On the basis of its protective activities, p53 is commonly regarded as the guardian of the genome. We provide evidence that the IGF signaling axis and p53 genome protection pathways are tightly interconnected. Wild-type, but not mutant, p53 suppresses IGF1R gene transcription, leading to abrogation of the IGF signaling network, with ensuing cell cycle arrest. Gain-of-function, or loss-of-function, mutations of p53 in tumor cells may disrupt its inhibitory activity, thus generating oncogenic molecules capable of transactivating the IGF1R gene. The interplay between the IGF1 and p53 pathways is also of major relevance in terms of metabolic regulation, including glucose transport and glycolysis. A better understanding of the complex physical and functional interactions between these important signaling pathways will have major basic and translational relevance. PMID:27446805

  14. The Fanconi Anemia Pathway Protects Genome Integrity from R-loops

    PubMed Central

    García-Rubio, María L.; Pérez-Calero, Carmen; Barroso, Sonia I.; Tumini, Emanuela; Herrera-Moyano, Emilia; Rosado, Iván V.; Aguilera, Andrés

    2015-01-01

    Co-transcriptional RNA-DNA hybrids (R loops) cause genome instability. To prevent harmful R loop accumulation, cells have evolved specific eukaryotic factors, one being the BRCA2 double-strand break repair protein. As BRCA2 also protects stalled replication forks and is the FANCD1 member of the Fanconi Anemia (FA) pathway, we investigated the FA role in R loop-dependent genome instability. Using human and murine cells defective in FANCD2 or FANCA and primary bone marrow cells from FANCD2 deficient mice, we show that the FA pathway removes R loops, and that many DNA breaks accumulated in FA cells are R loop-dependent. Importantly, FANCD2 foci in untreated and MMC-treated cells are largely R loop dependent, suggesting that the FA functions at R loop-containing sites. We conclude that co-transcriptional R loops and R loop-mediated DNA damage greatly contribute to genome instability and that one major function of the FA pathway is to protect cells from R loops. PMID:26584049

  15. Hippocampal protection in mice with an attenuated inflammatory monocyte response to acute CNS picornavirus infection

    PubMed Central

    Howe, Charles L.; LaFrance-Corey, Reghann G.; Sundsbak, Rhianna S.; Sauer, Brian M.; LaFrance, Stephanie J.; Buenz, Eric J.; Schmalstieg, William F.

    2012-01-01

    Neuronal injury during acute viral infection of the brain is associated with the development of persistent cognitive deficits and seizures in humans. In C57BL/6 mice acutely infected with the Theiler's murine encephalomyelitis virus, hippocampal CA1 neurons are injured by a rapid innate immune response, resulting in profound memory deficits. In contrast, infected SJL and B6xSJL F1 hybrid mice exhibit essentially complete hippocampal and memory preservation. Analysis of brain-infiltrating leukocytes revealed that SJL mice mount a sharply attenuated inflammatory monocyte response as compared to B6 mice. Bone marrow transplantation experiments isolated the attenuation to the SJL immune system. Adoptive transfer of B6 inflammatory monocytes into acutely infected B6xSJL hosts converted these mice to a hippocampal damage phenotype and induced a cognitive deficit marked by failure to recognize a novel object. These findings show that inflammatory monocytes are the critical cellular mediator of hippocampal injury during acute picornavirus infection of the brain. PMID:22848791

  16. Saikosaponin A mediates the inflammatory response by inhibiting the MAPK and NF-κB pathways in LPS-stimulated RAW 264.7 cells

    PubMed Central

    ZHU, JIE; LUO, CHENGQUN; WANG, PING; HE, QUANYONG; ZHOU, JIANDA; PENG, HAO

    2013-01-01

    Saikosaponin A (SSA) is a major triterpenoid saponin isolated from Radix bupleuri (RB), a widely used Chinese traditional medicine to treat various inflammation-related diseases. The aim of this study was to investigate the anti-inflammatory activity, as well as the molecular mechanism of SSA in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. In this study, we demonstrated that SSA markedly inhibits the expression of certain immune-related cytotoxic factors, including cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase (iNOS), as well as pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. It also significantly upregulates the expression of IL-10, an important anti-inflammatory cytokine, suggesting its anti-inflammatory activity in LPS-stimulated macrophages. We further demonstrated that SSA inhibits the activation of the nuclear factor-κB (NF-κB) signaling pathway by suppressing the phosphorylation of inhibitory NF-κB inhibitor α (IκBα) and thus holding p65 NF-κB in the cytoplasm to prevent its translocation to the nucleus. In addition, SSA also inhibits the mitogen-activated protein kinase (MAPK) signaling pathway by downregulating the phosphorylation of p38 MAPK, c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK), the three key components of the MAPK family. In conclusion, our study demonstrates that SSA has an anti-inflammatory effect by regulating inflammatory mediators and suppressing the MAPK and NF-κB signaling pathways in LPS-stimulated RAW 264.7 cells. PMID:23737876

  17. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway.

    PubMed

    Mao, Jiamin; Yang, Jianbing; Zhang, Yan; Li, Ting; Wang, Cheng; Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang; Nie, Xiaoke; Chen, Gang

    2016-07-15

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. PMID:27174766

  18. Characterizing the Mechanistic Pathways of the Instant Blood-Mediated Inflammatory Reaction in Xenogeneic Neonatal Islet Cell Transplantation

    PubMed Central

    Liuwantara, David; Chew, Yi Vee; Favaloro, Emmanuel J.; Hawkes, Joanne M.; Burns, Heather L.; O'Connell, Philip J.; Hawthorne, Wayne J.

    2016-01-01

    Introduction The instant blood-mediated inflammatory reaction (IBMIR) causes major loss of islets after transplantation and consequently represents the initial barrier to survival of porcine neonatal islet cell clusters (NICC) after xenotransplantation. Methods This study used novel assays designed to characterize the various immunologic components responsible for xenogeneic IBMIR to identify initiators and investigate processes of IBMIR-associated coagulation, complement activation and neutrophil infiltration. The IBMIR was induced in vitro by exposing NICC to platelet-poor or platelet-rich human plasma or isolated neutrophils. Results We found that xenogeneic IBMIR was characterized by rapid, platelet-independent thrombin generation, with addition of platelets both accelerating and exacerbating this response. Platelet-independent complement activation was observed as early as 30 minutes after NICC exposure to plasma. However, membrane attack complex formation was not observed in NICC histopathology sections until after 60 minutes. We demonstrated for the first time that NICC-mediated complement activation was necessary for neutrophil activation in the xenogeneic IBMIR setting. Finally, using the Seahorse extracellular flux analyzer, we identified substantial loss of islet function (up to 40%) after IBMIR with surviving NICC showing evidence of mitochondrial damage. Conclusions This study used novel assays to describe multiple key pathways by which xenogeneic IBMIR causes islet destruction, allowing further refinement of future interventions aimed at resolving the issue of IBMIR in xenotransplantation. PMID:27500267

  19. Peroxisome proliferator-activated receptor-γ agonist inhibits the mammalian target of rapamycin signaling pathway and has a protective effect in a rat model of status epilepticus.

    PubMed

    San, Yong-Zhi; Liu, Yu; Zhang, Yu; Shi, Ping-Ping; Zhu, Yu-Lan

    2015-08-01

    Peroxisome proliferator-activated receptor γ (PPAR-γ) has a protective role in several neurological diseases. The present study investigated the effect of the PPAR-γ agonist, pioglitazone, on the mammalian target of rapamycin (mTOR) signaling pathway in a rat model of pentylenetetrazol (PTZ)-induced status epilepticus (SE). The investigation proceeded in two stages. First, the course of activation of the mTOR signaling pathway in PTZ-induced SE was examined to determine the time-point of peak activity, as reflected by phopshorylated (p)-mTOR/mTOR and p-S6/S6 ratios. Subsequently, pioglitazone was administrated intragastrically to investigate its effect on the mTOR signaling pathway, through western blot and immunochemical analyses. The levels of the interleukin (IL)-1β and IL-6 inflammatory cytokines were detected using ELISA, and neuronal loss was observed via Nissl staining. In the first stage of experimentation, the mTOR signaling pathway was activated, and the p-mTOR/mTOR and p-S6/S6 ratios peaked on the third day. Compared with the vehicle treated-SE group, pretreatment with pioglitazone was associated with the loss of fewer neurons, lower levels of IL-1β and IL-6, and inhibition of the activation of the mTOR signaling pathway. Therefore, the mTOR signaling pathway was activated in the PTZ-induced SE rat model, and the PPAR-γ agonist, pioglitazone, had a neuroprotective effect, by inhibiting activation of the mTOR pathway and preventing the increase in the levels of IL-1β and IL-6. PMID:25891824

  20. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via the SIRT1 pathway

    PubMed Central

    Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin MD.; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), which is primarily synthesized in and secreted from the pineal gland, plays a pivotal role in cell proliferation as well as in the regulation of cell metastasis and cell survival in a diverse range of cells. The aim of this study is to investigate protection effect of melatonin on H2O2-induced cell damage and the mechanisms of melatonin in human keratinocytes. Hydrogen peroxide dose-dependently induced cell damages in human keratinocytes and co-treatment of melatonin protected the keratinocytes against H2O2-induced cell damage. Melatonin treatment activated the autophagy flux signals, which were identified by the decreased levels of p62 protein. Inhibition of autophagy flux via an autophagy inhibitor and ATG5 siRNA technique blocked the protective effects of melatonin against H2O2-induced cell death in human keratinocytes. And we found the inhibition of sirt1 using sirtinol and sirt1 siRNA reversed the protective effects of melatonin and induces the autophagy process in H2O2-treated cells. This is the first report demonstrating that autophagy flux activated by melatonin protects human keratinocytes through sirt1 pathway against hydrogen peroxide-induced damages. And this study also suggest that melatonin could potentially be utilized as a therapeutic agent in skin disease. PMID:26918354

  1. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via the SIRT1 pathway.

    PubMed

    Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin Md; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-03-15

    Melatonin (N-acetyl-5-methoxytryptamine), which is primarily synthesized in and secreted from the pineal gland, plays a pivotal role in cell proliferation as well as in the regulation of cell metastasis and cell survival in a diverse range of cells. The aim of this study is to investigate protection effect of melatonin on H2O2-induced cell damage and the mechanisms of melatonin in human keratinocytes. Hydrogen peroxide dose-dependently induced cell damages in human keratinocytes and co-treatment of melatonin protected the keratinocytes against H2O2-induced cell damage. Melatonin treatment activated the autophagy flux signals, which were identified by the decreased levels of p62 protein. Inhibition of autophagy flux via an autophagy inhibitor and ATG5 siRNA technique blocked the protective effects of melatonin against H2O2-induced cell death in human keratinocytes. And we found the inhibition of sirt1 using sirtinol and sirt1 siRNA reversed the protective effects of melatonin and induces the autophagy process in H2O2-treated cells. This is the first report demonstrating that autophagy flux activated by melatonin protects human keratinocytes through sirt1 pathway against hydrogen peroxide-induced damages. And this study also suggest that melatonin could potentially be utilized as a therapeutic agent in skin disease. PMID:26918354

  2. Total flavonoids of Hedyotis diffusa Willd inhibit inflammatory responses in LPS-activated macrophages via suppression of the NF-κB and MAPK signaling pathways

    PubMed Central

    CHEN, YUNLONG; LIN, YANYAN; LI, YACHAN; LI, CANDONG

    2016-01-01

    Nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways play a central role in inflammatory responses. Total flavonoids of Hedyotis diffusa Willd (TFHDW) are active compounds derived from Hedyotis diffusa Willd, which has been long used in Chinese traditional medicine for the treatment of various inflammatory diseases, including ulcerative colitis and bronchitis; however, the precise mechanisms underlying the effects of TFHDW are largely unknown. In the present study, the anti-inflammatory effect of TFHDW was evaluated and the underlying molecular mechanisms were investigated in an in vitro inflammatory model comprising lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The results indicated that TFHDW inhibited the inflammatory response as it significantly reduced the LPS-induced expression of pro-inflammatory nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in a concentration-dependent manner, without causing cytotoxicity. In addition, the mRNA expression of inducible nitric oxide synthase, TNF-α, IL-6 and IL-1β was suppressed by treatment with TFHDW in LPS-stimulated RAW 264.7 cells. Moreover, TFHDW treatment significantly inhibited the LPS-induced activation of NF-κB via the suppression of inhibitor of κB (IκB) phosphorylation, and reduced the phosphorylation of MAPK signaling molecules (p38, c-Jun N-terminal protein kinase and extracellular signal-regulated kinase 1/2), which resulted in the inhibition of cytokine expression. These findings suggest that TFHDW exerted anti-inflammatory activity via suppression of the NF-κB and MAPK signaling pathways. PMID:26998046

  3. Tetrahydropalmatine protects rat pulmonary endothelial cells from irradiation-induced apoptosis by inhibiting oxidative stress and the calcium sensing receptor/phospholipase C-γ1 pathway.

    PubMed

    Yu, J; Zhao, L; Liu, L; Yang, F; Zhu, X; Cao, B

    2016-06-01

    The aim of this study was to confirm the protective effect of tetrahydropalmatine (THP) against irradiation-induced rat pulmonary endothelial cell apoptosis and to explore the underlying mechanism, with a focus on the calcium-sensing receptor (CaSR)/phospholipase C-γ1 (PLC-γ1) pathway. We established a model of irradiation-induced primary rat pulmonary endothelial cell injury. Cell apoptosis and mitochondrial membrane potential (Δψm) were measured by flow cytometry. The expression of CaSR, cytochrome c, PLC-γ1, reactive oxygen species (ROS) and [Ca(2+)]i was also determined. Caspase-3 and caspase-9 activities were measured using commercial kits. Inositol triphosphate (IP3) and the production of inflammatory cytokines were detected by enzyme-linked immunosorbent assay. The results showed that THP significantly inhibited irradiation-induced cell apoptosis and intracellular accumulation of ROS. Pretreatment with THP significantly decreased the expression of CaSR, inhibited the CaSR/PLC-γ1 pathway and subsequent [Ca(2+)]i overload stimulated by irradiation. THP, NPS2390 (inhibitor of CaSR), U73122 (inhibitor of PLC-γ1) and 2-APB (inhibitor of IP3) further decreased cell apoptosis, along with down-regulation of cytochrome c, caspase-3 and caspase-9 activation, disruption of Δψm and the production of inflammatory cytokines. These findings suggest that THP protects primary rat pulmonary endothelial cells against irradiation-induced apoptosis by inhibiting oxidative stress and the CaSR/PLC-γ1 pathway. PMID:27134043

  4. (-)-Patchouli alcohol protects against Helicobacter pylori urease-induced apoptosis, oxidative stress and inflammatory response in human gastric epithelial cells.

    PubMed

    Xie, Jianhui; Lin, Zhixiu; Xian, Yanfang; Kong, Songzhi; Lai, Zhengquan; Ip, Siupo; Chen, Haiming; Guo, Huizhen; Su, Zuqing; Yang, Xiaobo; Xu, Yang; Su, Ziren

    2016-06-01

    (-)-Patchouli alcohol (PA), the major active principle of Pogostemonis Herba, has been reported to have anti-Helicobacter pylori and gastroprotective effects. In the present work, we aimed to investigate the possible protective effect of PA on H. pylori urease (HPU)-injured human gastric epithelial cells (GES-1) and to elucidate the underlying mechanisms of action. Results showed that pre-treatment with PA (5.0, 10.0, 20.0μM) was able to remarkably ameliorate the cytotoxicity induced by 17.0U/mg HPU in GES-1 cells. Flow cytometric analysis on cellular apoptosis showed that pre-treatment with PA effectively attenuated GES-1 cells from the HPU-induced apoptosis. Moreover, the cytoprotective effect of PA was found to be associated with amelioration of the HPU-induced disruption of MMP, attenuating oxidative stress by decreasing contents of intracellular ROS and MDA, and increasing superoxide dismutase (SOD) and catalase (CAT) enzymatic activities. In addition, pre-treatment with PA markedly attenuated the secretion of nitric oxide (NO) and pro-inflammatory cytokines such as interleukin-2 (IL-2), interleukin-4 (IL-4) and tumor necrosis factor-α (TNF-α), whereas elevated the anti-inflammatory cytokine interleukin-13 (IL-13) in the HPU-stimulated GES-1 cells. Molecular docking assay suggested that PA engaged in the active site of urease bearing nickel ions and interacted with important residues via covalent binding, thereby restricting the active urease catalysis conformation. Our experimental findings suggest that PA could inhibit the cellular processes critically involved in the pathogenesis of H. pylori infection, and its protective effects against the HPU-induced cytotoxicity in GES-1 cells are believed to be associated with its anti-apoptotic, antioxidative, anti-inflammatory and HPU inhibitory actions. PMID:27017292

  5. ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment

    PubMed Central

    Liang, Li; Zhou, Wei; Yang, Nan; Yu, Jifeng; Liu, Hongchen

    2016-01-01

    Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM) for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment. PMID:26884650

  6. Inflammatory stimuli promote growth and invasion of pancreatic cancer cells through NF-κB pathway dependent repression of PP2Ac.

    PubMed

    Tao, Min; Liu, Lu; Shen, Meng; Zhi, Qiaoming; Gong, Fei-Ran; Zhou, Binhua P; Wu, Yadi; Liu, Haiyan; Chen, Kai; Shen, Bairong; Wu, Meng-Yao; Shou, Liu-Mei; Li, Wei

    2016-01-01

    Previous studies have indicated that inflammatory stimulation represses protein phosphatase 2A (PP2A), a well-known tumor suppressor. However, whether PP2A repression participates in pancreatic cancer progression has not been verified. We used lipopolysaccharide (LPS) and macrophage-conditioned medium (MCM) to establish in vitro inflammation models, and investigated whether inflammatory stimuli affect pancreatic cancer cell growth and invasion PP2A catalytic subunit (PP2Ac)-dependently. Via nude mouse models of orthotopic tumor xenografts and dibutyltin dichloride (DBTC)-induced chronic pancreatitis, we evaluated the effect of an inflammatory microenvironment on PP2Ac expression in vivo. We cloned the PP2Acα and PP2Acβ isoform promoters to investigate the PP2Ac transcriptional regulation mechanisms. MCM accelerated pancreatic cancer cell growth; MCM and LPS promoted cell invasion. DBTC promoted xenograft growth and metastasis, induced tumor-associated macrophage infiltration, promoted angiogenesis, activated the nuclear factor-κB (NF-κB) pathway, and repressed PP2Ac expression. In vitro, LPS and MCM downregulated PP2Ac mRNA and protein. PP2Acα overexpression attenuated JNK, ERK, PKC, and IKK phosphorylation, and impaired LPS/MCM-stimulated cell invasion and MCM-promoted cell growth. LPS and MCM activated the NF-κB pathway in vitro. LPS and MCM induced IKK and IκB phosphorylation, leading to p65/RelA nuclear translocation and transcriptional activation. Overexpression of the dominant negative forms of IKKα attenuated LPS and MCM downregulation of PP2Ac, suggesting inflammatory stimuli repress PP2Ac expression NF-κB pathway-dependently. Luciferase reporter gene assay verified that LPS and MCM downregulated PP2Ac transcription through an NF-κB-dependent pathway. Our study presents a new mechanism in inflammation-driven cancer progression through NF-κB pathway-dependent PP2Ac repression. PMID:26761431

  7. Blueberry Component Pterostilbene Protects Corneal Epithelial Cells from Inflammation via Anti-oxidative Pathway.

    PubMed

    Li, Jin; Ruzhi Deng; Hua, Xia; Zhang, Lili; Lu, Fan; Coursey, Terry G; Pflugfelder, Stephen C; Li, De-Quan

    2016-01-01

    Blueberries have been recognized to possess protective properties from inflammation and various diseases, but not for eye and ocular disorders. This study explores potential benefits of pterostilbene (PS), a natural component of blueberries, in preventing ocular surface inflammation using an in vitro culture model of human corneal epithelial cells (HCECs) exposed to hyperosmotic medium at 450 mOsM. Gene expression was detected by RT-qPCR, and protein production or activity was determined by ELISA, zymography, Western blotting and immunofluorescent staining. Reactive oxygen species (ROS) production was measured using DCFDA kit. The addition of PS significantly reduced the expression of pro-inflammatory mediators, TNF-α, IL-1 β, IL-6, MMP-2 and MMP-9 in HCECs exposed to hyperosmotic medium. Pre-treatment with PS (5 to 20 μM) suppressed ROS overproduction in a dose-dependent manner. Additionally, PS significantly decreased the levels of oxidative damage biomarkers, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), aconitase-2 and 8-hydroxydeoxyguanosine (8-OHdG). Importantly, PS was found to rebalance homeostasis between oxygenases and anti-oxidative enzymes by decreasing cyclooxygenase 2 (COX2) expression and restoring the activity of antioxidant enzymes, superoxide dismutase 1 (SOD1) and peroxiredoxin-4 (PRDX4) during hyperosmotic stress. Our findings demonstrate that PS protects human cornea from hyperosmolarity-induced inflammation and oxidative stress, suggesting protective effects of PS on dry eye. PMID:26762881

  8. Blueberry Component Pterostilbene Protects Corneal Epithelial Cells from Inflammation via Anti-oxidative Pathway

    PubMed Central

    Li, Jin; Ruzhi Deng; Hua, Xia; Zhang, Lili; Lu, Fan; Coursey, Terry G.; Pflugfelder, Stephen C.; Li, De-Quan

    2016-01-01

    Blueberries have been recognized to possess protective properties from inflammation and various diseases, but not for eye and ocular disorders. This study explores potential benefits of pterostilbene (PS), a natural component of blueberries, in preventing ocular surface inflammation using an in vitro culture model of human corneal epithelial cells (HCECs) exposed to hyperosmotic medium at 450 mOsM. Gene expression was detected by RT-qPCR, and protein production or activity was determined by ELISA, zymography, Western blotting and immunofluorescent staining. Reactive oxygen species (ROS) production was measured using DCFDA kit. The addition of PS significantly reduced the expression of pro-inflammatory mediators, TNF-α, IL-1 β, IL-6, MMP-2 and MMP-9 in HCECs exposed to hyperosmotic medium. Pre-treatment with PS (5 to 20 μM) suppressed ROS overproduction in a dose-dependent manner. Additionally, PS significantly decreased the levels of oxidative damage biomarkers, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), aconitase-2 and 8-hydroxydeoxyguanosine (8-OHdG). Importantly, PS was found to rebalance homeostasis between oxygenases and anti-oxidative enzymes by decreasing cyclooxygenase 2 (COX2) expression and restoring the activity of antioxidant enzymes, superoxide dismutase 1 (SOD1) and peroxiredoxin-4 (PRDX4) during hyperosmotic stress. Our findings demonstrate that PS protects human cornea from hyperosmolarity-induced inflammation and oxidative stress, suggesting protective effects of PS on dry eye. PMID:26762881

  9. Suppression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways.

    PubMed

    Limtrakul, Pornngarm; Yodkeeree, Supachai; Pitchakarn, Pornsiri; Punfa, Wanisa

    2015-01-01

    Anthocyanin, a phenolic compound, has been reported to have an anti-inflammatory effect against lipopolysaccharide (LPS) induced changes in immune cells. However, little is known about the molecular mechanisms underlying its anti-inflammatory effects. Few research studies have concerned the anti-inflammation properties of colored rice extract as a functional material. Therefore, the purpose of this study was to examine anti-inflammatory effects of the polar fraction of black rice whole grain extracts (BR-WG-P) that features a high anthocyanin content. Our results showed that BR-WG-P significantly inhibited LPS-induced pro- inflammatory mediators, including production of NO and expression of iNOS and COX-2. In addition, secretion of pro-inflammatory cytokines including TNF-α and IL-6 was also significantly inhibited. Moreover, BR-WG-P and anthocyanin inhibited NF-kB and AP-1 translocation into the nucleus. BR-WG-P also decreased the phosphorylation of ERK, p38 and JNK in a dose dependent manner. These results suggested that BR-WG-P might suppress LPS-induced inflammation via the inhibition of the MAPK signaling pathway leading to decrease of NF-kB and AP-1 translocation. All of these results indicate that BR-WG-P exhibits therapeutic potential associated with the anthocyanin content in the extract for treating inflammatory diseases associated with cancer. PMID:26028086

  10. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia.

    PubMed

    Cianciulli, Antonia; Calvello, Rosa; Porro, Chiara; Trotta, Teresa; Salvatore, Rosaria; Panaro, Maria Antonietta

    2016-07-01

    Microglia are resident macrophages in the central nervous system (CNS) deputed to defend against pathogens. Persistent or acute inflammation of microglia leads to CNS disorders, so regulation of pro-inflammatory responses of microglial cells is thought to be a promising therapeutic strategy to attenuate abnormal inflammatory responses observed in neurodegenerative disease. We hypothesized that curcumin supplementation could reduce the inflammatory responses of activated microglial cells modulating PI3K/Akt pathway. Different curcumin concentrations were administered as BV-2 microglia pre-treatment 1h prior to LPS stimulation. Nitric oxide (NO) and inducible nitric oxide synthase (iNOS) expression were determined by Griess reagent and western blotting, respectively. Inflammatory cytokines release was evaluated by ELISA and qRT-PCR. PI3K/Akt expression was analyzed by western blotting analysis. Curcumin significantly attenuated, in a dose-dependent manner, LPS-induced release of NO and pro-inflammatory cytokines, as well as iNOS expression. Interestingly, curcumin was able to reduce, again in a dose-dependent manner, PI3K/Akt phosphorylation as well as NF-κB activation in LPS-activated microglial cells. Overall these results suggest that curcumin plays an important role in the attenuation of LPS-induced inflammatory responses in microglial cells and that the mechanisms involve down-regulation of the PI3K/Akt signalling. PMID:27208432

  11. Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx.

    PubMed

    Kong, Guiqing; Huang, Xiao; Wang, Lipeng; Li, Yan; Sun, Ting; Han, Shasha; Zhu, Weiwei; Ma, Mingming; Xu, Haixiao; Li, Jiankui; Zhang, Xiaohua; Liu, Xiangyong; Wang, Xiaozhi

    2016-07-01

    Acute respiratory distress syndrome (ARDS) is a devastating disorder that is characterized by increased vascular endothelial permeability and inflammation. Unfortunately, no effective treatment beyond supportive care is available for ARDS. Astilbin, a flavonoid compound isolated from Rhizoma Smilacis Glabrae, has been used for anti-hepatic, anti-arthritic, and anti-renal injury treatments. This study examined the effects of Astilbin on pulmonary inflammatory activation and endothelial cell barrier dysfunction caused by Gram-negative bacterial endotoxin lipopolysaccharide (LPS). Endothelial cells from human umbilical veins or male Kunming mice were pretreated with Astilbin 24h before LPS stimulation. Results showed that Astilbin significantly attenuated the pulmonary histopathological changes and neutrophil infiltration 6h after the LPS challenge. Astilbin suppressed the activities of myeloperoxidase and malondialdehyde, as well as the expression of tumor necrosis factor-α and interleukin-6 in vivo and in vitro. As indices of pulmonary edema, lung wet-to-dry weight ratios, were markedly decreased by Astilbin pretreatment. Western blot analysis also showed that Astilbin inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathways in lung tissues. Furthermore, Astilbin significantly inhibited the activity of heparanase and reduced the production of heparan sulfate in the blood serum as determined by ELISA. These findings indicated that Astilbin can alleviate LPS-induced ARDS, which potentially contributed to the suppression of MAPK pathway activation and the degradation of endothelial glycocalyx. PMID:27111514

  12. Kaempferol protects cardiomyocytes against anoxia/reoxygenation injury via mitochondrial pathway mediated by SIRT1.

    PubMed

    Guo, Zhen; Liao, Zhangping; Huang, Liqing; Liu, Dan; Yin, Dong; He, Ming

    2015-08-15

    Mitochondria-mediated apoptosis is a critical mechanism of anoxia/ reoxygenation (A/R)-induced injury in cardiomyocytes. Kaempferol (Kae) is a natural polyphenol and a type of flavonoid, which has been demonstrated to protect myocardium against ischemia/reperfusion (I/R) injury. However, the mechanism is still not fully elucidated. We hypothesize that Kae may improve the mitochondrial function during I/R injury via a potential signal pathway. In this study, an in vitro I/R model was replicated on neonatal rat primary cardiomyocytes by A/R treatment. Cell viability was monitored by the 3-(4,5-dimethylthiazol- 2-yl)-5-(3- carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay. The levels of intracellular reactive oxygen species, mitochondrial membrane potential (Δψm) and apoptosis were determined by flow cytometry. Protein expression was detected by Western Blotting. mPTP opening and the activity of caspase-3 were measured by colorimetric method. The results showed that Kae effectively enhanced the cell viability and decreased the LDH release in cardiomyocytes subjected to A/R injury. Kae reduced the A/R-induced reactive oxygen species generation, the loss of Δψm, and the release of cytochrome c from mitochondria into cytosol. Kae inhibited the A/R-stimulated mPTP opening and activation of caspase-3, and ultimate decrease in cardiomyocytes apoptosis. Furthermore, we found Kae up-regulated Human Silent Information Regulator Type 1 (SIRT1) expression, indicating SIRT1 signal pathway likely involved the cardioprotection of Kae. Sirtinol, a SIRT1 inhibitor, abolished the protective effect of Kae in cardiomyocytes subjected to A/R. Additionally, Kae significantly increased the expression of Bcl-2. Thus, we firstly demonstrate that Kae protects cardiomyocytes against A/R injury through mitochondrial pathway mediated by SIRT1. PMID:26086862

  13. Protective effects of protocatechuic acid on acute lung injury induced by lipopolysaccharide in mice via p38MAPK and NF-κB signal pathways.

    PubMed

    Zhang, Xiuli; Li, Chunli; Li, Jun; Xu, Yingzhen; Guan, Shui; Zhao, Mingshan

    2015-05-01

    The study aims to investigate the effects of protocatechuic acid (PCA) separated from Chinese herbs, on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in mice. The mouse model was induced by intraperitoneal injection of LPS at the dose of 5mg/kg body weight. Three doses of PCA (30, 15, 5 mg/kg) were administered to mice with intraperitoneal injection one hour prior to LPS exposure. Six hours later after LPS administration, the effect of PCA on ALI mice was assessed via histopathological examination by HE staining, inflammatory cytokine production by ELISA assay and RT-PCR, p38MAPK and NF-κB activation by Western blot analysis. We found that PCA administration significantly ameliorated lung histopathological changes and decreased protein concentration in the bronchoalveolar lavage fluid. Furthermore, the overproduction of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) was reduced by PCA. Additionally, PCA at the dose of 30 mg/kg could block the activation of p38MAPK and NF-κB signal pathways induced by LPS. In conclusion, our findings demonstrate that PCA possesses a protective effect on LPS-induced ALI in mice via suppression of p38MAPK and NF-κB signal pathways. Therefore, PCA may be useful in the therapy of lung inflammatory diseases, especially for ALI. PMID:25841318

  14. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury

    SciTech Connect

    Milatovic, Dejan; Gupta, Ramesh C.; Yu, Yingchun; Zaja-Milatovic, Snjezana; Aschner, Michael

    2011-11-15

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p < 0.01) increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 {mu}M) for 2 h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F{sub 2}-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100 mg/kg, s.c.) 24 h. Additionally, pretreatment with vitamin E (100 mg/kg, i.p.) or ibuprofen (140 {mu}g/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F{sub 2}-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic

  15. Expression of Metabolic, Tissue Remodeling, Oxidative Stress, and Inflammatory Pathways in Mammary Tissue During Involution in Lactating Dairy Cows

    PubMed Central

    Piantoni, Paola; Wang, Ping; Drackley, James K.; Hurley, Walter L.; Loor, Juan J.

    2010-01-01

    Histological and functional changes associated with involution in the mammary gland are partly regulated by changes in gene expression. At 42 d postpartum, Holstein cows underwent a period of 5 d during which they were milked 1X daily until complete cessation of milking. Percutaneous mammary biopsies (n = 5/time point) were obtained on d 1, 5, 14, and 21 relative to the start of 1X milking for transcript profiling via qPCR of 57 genes associated with metabolism, apoptosis/proliferation, immune response/inflammation, oxidative stress, and tissue remodeling. Not surprisingly, there was clear downregulation of genes associated with milk fat synthesis (FASN, ACACA, CD36, FABP3, SCD) and lipid-related transcription regulation (SREBF1, SREBF2). Similar to milk fat synthesis-related genes, those encoding proteins required for glucose uptake (SLC2A1), casein synthesis (CSN2, CSN3), and lactose synthesis (LALBA) decreased during involution. Unlike metabolic genes, those associated with immune response and inflammation (C3, LTF, SAA3), oxidative stress (GPX1, SOD2), and pro-inflammatory cytokine signaling (SPP1, TNF) increased to peak levels by d 14 from the start of 1X milking. These adaptations appeared to be related with tissue remodeling as indicated by upregulation of proteins encoding matrix proteinases (MMP2), IGFBP3, and transcriptional regulation of apoptosis/cell proliferation (MYC). In contrast, the concerted upregulation of STAT3, TGFB1, and TGFB1R during the first 14 d was suggestive of an activation of these signaling pathways probably as an acute response to regulate differentiation and/or mammary cell survival upon the onset of a marked pro-inflammatory and oxidative stress response induced by the gradual reduction in milk removal. Results suggest a central role of STAT3, MYC, PPARG, SREBF1, and SREBF2 in regulating concerted alterations in metabolic and cell survival mechanisms, which were induced partly via oxidative stressed-triggered inflammation and the

  16. Deletion of Nuclear Factor kappa B p50 Subunit Decreases Inflammatory Response and Mildly Protects Neurons from Transient Forebrain Ischemia-induced Damage.

    PubMed

    Rolova, Taisia; Dhungana, Hiramani; Korhonen, Paula; Valonen, Piia; Kolosowska, Natalia; Konttinen, Henna; Kanninen, Katja; Tanila, Heikki; Malm, Tarja; Koistinaho, Jari

    2016-08-01

    Transient forebrain ischemia induces delayed death of the hippocampal pyramidal neurons, particularly in the CA2 and medial CA1 area. Early pharmacological inhibition of inflammatory response can ameliorate neuronal death, but it also inhibits processes leading to tissue regeneration. Therefore, research efforts are now directed to modulation of post-ischemic inflammation, with the aim to promote beneficial effects of inflammation and limit adverse effects. Transcription factor NF-κB plays a key role in the inflammation and cell survival/apoptosis pathways. In the brain, NF-κB is predominantly found in the form of a heterodimer of p65 (RelA) and p50 subunit, where p65 has a transactivation domain while p50 is chiefly involved in DNA binding. In this study, we subjected middle-aged Nfkb1 knockout mice (lacking p50 subunit) and wild-type controls of both sexs to 17 min of transient forebrain ischemia and assessed mouse performance in a panel of behavioral tests after two weeks of post-operative recovery. We found that ischemia failed to induce clear memory and motor deficits, but affected spontaneous locomotion in genotype- and sex-specific way. We also show that both the lack of the NF-κB p50 subunit and female sex independently protected CA2 hippocampal neurons from ischemia-induced cell death. Additionally, the NF-κB p50 subunit deficiency significantly reduced ischemia-induced microgliosis, astrogliosis, and neurogenesis. Lower levels of hippocampal microgliosis significantly correlated with faster spatial learning. We conclude that NF-κB regulates the outcome of transient forebrain ischemia in middle-aged subjects in a sex-specific way, having an impact not only on neuronal death but also specific inflammatory responses and neurogenesis. PMID:27493832

  17. Deletion of Nuclear Factor kappa B p50 Subunit Decreases Inflammatory Response and Mildly Protects Neurons from Transient Forebrain Ischemia-induced Damage

    PubMed Central

    Rolova, Taisia; Dhungana, Hiramani; Korhonen, Paula; Valonen, Piia; Kolosowska, Natalia; Konttinen, Henna; Kanninen, Katja; Tanila, Heikki; Malm, Tarja; Koistinaho, Jari

    2016-01-01

    Transient forebrain ischemia induces delayed death of the hippocampal pyramidal neurons, particularly in the CA2 and medial CA1 area. Early pharmacological inhibition of inflammatory response can ameliorate neuronal death, but it also inhibits processes leading to tissue regeneration. Therefore, research efforts are now directed to modulation of post-ischemic inflammation, with the aim to promote beneficial effects of inflammation and limit adverse effects. Transcription factor NF-κB plays a key role in the inflammation and cell survival/apoptosis pathways. In the brain, NF-κB is predominantly found in the form of a heterodimer of p65 (RelA) and p50 subunit, where p65 has a transactivation domain while p50 is chiefly involved in DNA binding. In this study, we subjected middle-aged Nfkb1 knockout mice (lacking p50 subunit) and wild-type controls of both sexs to 17 min of transient forebrain ischemia and assessed mouse performance in a panel of behavioral tests after two weeks of post-operative recovery. We found that ischemia failed to induce clear memory and motor deficits, but affected spontaneous locomotion in genotype- and sex-specific way. We also show that both the lack of the NF-κB p50 subunit and female sex independently protected CA2 hippocampal neurons from ischemia-induced cell death. Additionally, the NF-κB p50 subunit deficiency significantly reduced ischemia-induced microgliosis, astrogliosis, and neurogenesis. Lower levels of hippocampal microgliosis significantly correlated with faster spatial learning. We conclude that NF-κB regulates the outcome of transient forebrain ischemia in middle-aged subjects in a sex-specific way, having an impact not only on neuronal death but also specific inflammatory responses and neurogenesis. PMID:27493832

  18. BRCA1 and BRCA2: different roles in a common pathway of genome protection

    PubMed Central

    Roy, Rohini; Chun, Jarin; Powell, Simon N.

    2016-01-01

    The proteins encoded by the two major breast cancer susceptibility genes, BRCA1 and BRCA2, work in a common pathway of genome protection. However, the two proteins work at different stages in the DNA damage response (DDR) and in DNA repair. BRCA1 is a pleiotropic DDR protein that functions in both checkpoint activation and DNA repair, whereas BRCA2 is a mediator of the core mechanism of homologous recombination. The links between the two proteins are not well understood, but they must exist to explain the marked similarity of human cancer susceptibility that arises with germline mutations in these genes. As discussed here, the proteins work in concert to protect the genome from double-strand DNA damage during DNA replication. PMID:22193408

  19. Sulforaphane protects against acrolein-induced oxidative stress and inflammatory responses: modulation of Nrf-2 and COX-2 expression

    PubMed Central

    Deng, Yu-Hui; Cui, Fa-Cai

    2016-01-01

    Introduction Acrolein (2-propenal) is a reactive α, β-unsaturated aldehyde which causes a health hazard to humans. The present study focused on determining the protection offered by sulforaphane against acrolein-induced damage in peripheral blood mononuclear cells (PBMC). Material and methods Acrolein-induced oxidative stress was determined through evaluating the levels of reactive oxygen species, protein carbonyl and sulfhydryl content, thiobarbituric acid reactive species, total oxidant status and antioxidant status (total antioxidant capacity, glutathione, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase activity). Also, Nrf-2 expression levels were determined using western blot analysis. Acrolein-induced inflammation was determined through analyzing expression of cyclooxygenase-2 by western blot and PGE2 levels by ELISA. The protection offered by sulforaphane against acrolein-induced oxidative stress and inflammation was studied. Results Acrolein showed a significant (p < 0.001) increase in the levels of oxidative stress parameters and down-regulated Nrf-2 expression. Acrolein-induced inflammation was observed through upregulation (p < 0.001) of COX-2 and PGE2 levels. Pretreatment with sulforaphane enhanced the antioxidant status through upregulating Nrf-2 expression (p < 0.001) in PBMC. Acrolein-induced inflammation was significantly inhibited through suppression of COX-2 (p < 0.001) and PGE2 levels (p < 0.001). Conclusions The present study provides clear evidence that pre-treatment with sulforaphane completely restored the antioxidant status and prevented inflammatory responses mediated by acrolein. Thus the protection offered by sulforaphane against acrolein-induced damage in PBMC is attributed to its anti-oxidant and anti-inflammatory potential. PMID:27478470

  20. Salidroside Protects against Cadmium-Induced Hepatotoxicity in Rats via GJIC and MAPK Pathways

    PubMed Central

    Han, Tao; Hu, Di; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Zhu, Jiaqiao; Liu, Zong-ping

    2015-01-01

    It is known that cadmium (Cd) induces cytotoxicity in hepatocytes; however, the underlying mechanism is unclear. Here, we studied the molecular mechanisms of Cd-induced hepatotoxicity in rat liver cells (BRL 3A) and in vivo. We observed that Cd treatment was associated with a time- and concentration-dependent decrease in the cell index (CI) of BRL 3A cells and cellular organelle ultrastructure injury in the rat liver. Meanwhile, Cd treatment resulted in the inhibition of gap junction intercellular communication (GJIC) and activation of mitogen-activated protein kinase (MAPK) pathways. Gap junction blocker 18-β-glycyrrhetinic acid (GA), administered in combination with Cd, exacerbated cytotoxic injury in BRL 3A cells; however, GA had a protective effect on healthy cells co-cultured with Cd-exposed cells in a co-culture system. Cd-induced cytotoxic injury could be attenuated by co-treatment with an extracellular signal-regulated kinase (ERK) inhibitor (U0126) and a p38 inhibitor (SB202190) but was not affected by co-treatment with a c-Jun N-terminal kinase (JNK) inhibitor (SP600125). These results indicate that ERK and p38 play critical roles in Cd-induced hepatotoxicity and mediate the function of gap junctions. Moreover, MAPKs induce changes in GJIC by controlling connexin gene expression, while GJIC has little effect on the Cd-induced activation of MAPK pathways. Collectively, our study has identified a possible mechanistic pathway of Cd-induced hepatotoxicity in vitro and in vivo, and identified the participation of GJIC and MAPK-mediated pathways in Cd-induced hepatotoxicity. Furthermore, we have shown that salidroside may be a functional chemopreventative agent that ameliorates the negative effects of Cd via GJIC and MAPK pathways. PMID:26070151

  1. DAP12 Stabilizes the C-terminal Fragment of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) and Protects against LPS-induced Pro-inflammatory Response.

    PubMed

    Zhong, Li; Chen, Xiao-Fen; Zhang, Zhen-Lian; Wang, Zhe; Shi, Xin-Zhen; Xu, Kai; Zhang, Yun-Wu; Xu, Huaxi; Bu, Guojun

    2015-06-19

    Triggering receptor expressed on myeloid cells 2 (TREM2) is a DAP12-associated receptor expressed in microglia, macrophages, and other myeloid-derived cells. Previous studies have suggested that TREM2/DAP12 signaling pathway reduces inflammatory responses and promotes phagocytosis of apoptotic neurons. Recently, TREM2 has been identified as a risk gene for Alzheimer disease (AD). Here, we show that DAP12 stabilizes the C-terminal fragment of TREM2 (TREM2-CTF), a substrate for γ-secretase. Co-expression of DAP12 with TREM2 selectively increased the level of TREM2-CTF with little effects on that of full-length TREM2. The interaction between DAP12 and TREM2 is essential for TREM2-CTF stabilization as a mutant form of DAP12 with disrupted interaction with TREM2 failed to exhibit such an effect. Silencing of either Trem2 or Dap12 gene significantly exacerbated pro-inflammatory responses induced by lipopolysaccharides (LPS). Importantly, overexpression of either full-length TREM2 or TREM2-CTF reduced LPS-induced inflammatory responses. Taken together, our results support a role of DAP12 in stabilizing TREM2-CTF, thereby protecting against excessive pro-inflammatory responses. PMID:25957402

  2. t-BHQ Provides Protection against Lead Neurotoxicity via Nrf2/HO-1 Pathway

    PubMed Central

    Ye, Fang; Li, Xiaoyi; Li, Lili; Yuan, Jing; Chen, Jun

    2016-01-01

    The neurotoxicity of lead has been well established, and oxidative stress is strongly associated with lead-induced neurotoxicity. Nrf2 is important for protection against oxidative stress in many disease models. We applied t-BHQ, which is an Nrf2 activator, to investigate the possible role of Nrf2 in the protection against lead neurotoxicity. t-BHQ significantly attenuated the oxidative stress in developmental rats by decreasing MDA level, as well as by increasing SOD activity and GSH content, in the hippocampus and frontal cortex. Furthermore, neuronal apoptosis was detected by Nissl staining, and Bax expression was inhibited in the t-BHQ-treated group. Results showed that t-BHQ suppressed ROS production and caspase 3/7 activity but increased intracellular GSH content, in SH-SY5Y cells under lead exposure. Moreover, in vivo and in vitro, t-BHQ enhanced the nuclear translocation of Nrf2 and binding to ARE areas but did not induce Nrf2 transcription. These phenomena were confirmed using RT-PCR, EMSA, Western blot, and immunofluorescence analyses. Subsequent upregulation of the expression of HO-1, NQO1, and GCLC was observed. However, knockdown of Nrf2 or HO-1 adversely affected the protective effects of t-BHQ against lead toxicity in SH-SY5Y cells. Thus, t-BHQ can protect against lead neurotoxicity, depending on the Nrf2/HO-1 pathway. PMID:26798413

  3. Serotonin and Dopamine Protect from Hypothermia/Rewarming Damage through the CBS/ H2S Pathway

    PubMed Central

    Talaei, Fatemeh; Bouma, Hjalmar R.; Van der Graaf, Adrianus C.; Strijkstra, Arjen M.; Schmidt, Martina; Henning, Robert H.

    2011-01-01

    Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H2S production by the endogenous enzyme cystathionine-β-synthase (CBS) and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS) formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR) and increased H2S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H2S and activation of CBS by Prydoxal 5′-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H2S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H2S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters. PMID:21829469

  4. Asiatic Acid Protects against Cardiac Hypertrophy through Activating AMPKα Signalling Pathway

    PubMed Central

    Ma, Zhen-Guo; Dai, Jia; Wei, Wen-Ying; Zhang, Wen-Bin; Xu, Si-Chi; Liao, Hai-Han; Yang, Zheng; Tang, Qi-Zhu

    2016-01-01

    Background: AMPactivated protein kinase α (AMPKα) is closely involved in the process of cardiac hypertrophy. Asiatic acid (AA), a pentacyclic triterpene, was found to activate AMPKα in our preliminary experiment. However, its effects on the development of cardiac hypertrophy remain unclear. The present study was to determine whether AA could protect against cardiac hypertrophy. Methods: Mice subjected to aortic banding were orally given AA (10 or 30mg/kg) for 7 weeks. In the inhibitory experiment, Compound C was intraperitoneally injected for 3 weeks after surgery. Results: Our results showed that AA markedly inhibited hypertrophic responses induced by pressure overload or angiotensin II. AA also suppressed cardiac fibrosis in vivo and accumulation of collagen in vitro. The protective effects of AA were mediated by activation of AMPKα and inhibition of the mammalian target of rapamycin (mTOR) pathway and extracellular signal-regulated kinase (ERK) in vivo and in vitro. However, AA lost the protective effects after AMPKα inhibition or gene deficiency. Conclusions: AA protects against cardiac hypertrophy by activating AMPKα, and has the potential to be used for the treatment of heart failure. PMID:27313499

  5. Lipoxin A4 activates alveolar epithelial sodium channel gamma via the microRNA-21/PTEN/AKT pathway in lipopolysaccharide-induced inflammatory lung injury.

    PubMed

    Qi, Wei; Li, Hui; Cai, Xiao-Hong; Gu, Jia-Qi; Meng, Jin; Xie, Hai-Qing; Zhang, Jun-Li; Chen, Jie; Jin, Xian-Guan; Tang, Qian; Hao, Yu; Gao, Ye; Wen, Ai-Qing; Xue, Xiang-Yang; Gao Smith, Fang; Jin, Sheng-Wei

    2015-11-01

    Lipoxin A4 (LXA4), as an endogenously produced lipid mediator, promotes the resolution of inflammation. Previously, we demonstrated that LXA4 stimulated alveolar fluid clearance through alveolar epithelial sodium channel gamma (ENaC-γ). In this study, we sought to investigate the mechanisms of LXA4 in modulation of ENaC-γ in lipopolysaccharide (LPS)-induced inflammatory lung injury. miR-21 was upregulated during an LPS challenge and downregulated by LXA4 administration in vivo and in vitro. Serum miR-21 concentration was also elevated in acute respiratory distress syndrome patients as compared with healthy volunteers. LPS increased miR-21 expression by activation of activator protein 1 (AP-1). In A549 cells, miR-21 upregulated phosphorylation of AKT activation via inhibition of phosphatase and tensin homolog (PTEN), and therefore reduced the expression of ENaC-γ. In contrast, LXA4 reversed LPS-inhibited ENaC-γ expression through inhibition of AP-1 and activation of PTEN. In addition, an miR-21 inhibitor mimicked the effects of LXA4; overexpression of miR-21 abolished the protective effects of LXA4. Finally, both AKT and ERK inhibitors (LY294002 and UO126) blocked effects of LPS on the depression of ENaC-γ. However, LXA4 only inhibited LPS-induced phosphorylation of AKT. In summary, LXA4 activates ENaC-γ in part via the miR-21/PTEN/AKT signaling pathway. PMID:26302186

  6. Quercetin Attenuates Inflammatory Responses in BV-2 Microglial Cells: Role of MAPKs on the Nrf2 Pathway and Induction of Heme Oxygenase-1

    PubMed Central

    Sun, Grace Y.; Chen, Zihong; Jasmer, Kimberly J.; Chuang, Dennis Y.; Gu, Zezong; Hannink, Mark; Simonyi, Agnes

    2015-01-01

    A large group of flavonoids found in fruits and vegetables have been suggested to elicit health benefits due mainly to their anti-oxidative and anti-inflammatory properties. Recent studies with immune cells have demonstrated inhibition of these inflammatory responses through down-regulation of the pro-inflammatory pathway involving NF-κB and up-regulation of the anti-oxidative pathway involving Nrf2. In the present study, the murine BV-2 microglial cells were used to compare anti-inflammatory activity of quercetin and cyanidin, two flavonoids differing by their alpha, beta keto carbonyl group. Quercetin was 10 folds more potent than cyanidin in inhibition of lipopolysaccharide (LPS)-induced NO production as well as stimulation of Nrf2-induced heme-oxygenase-1 (HO-1) protein expression. In addition, quercetin demonstrated enhanced ability to stimulate HO-1 protein expression when cells were treated with LPS. In an attempt to unveil mechanism(s) for quercetin to enhance Nrf2/HO-1 activity under endotoxic stress, results pointed to an increase in phospho-p38MAPK expression upon addition of quercetin to LPS. In addition, pharmacological inhibitors for phospho-p38MAPK and MEK1/2 for ERK1/2 further showed that these MAPKs target different sites of the Nrf2 pathway that regulates HO-1 expression. However, inhibition of LPS-induced NO by quercetin was not fully reversed by TinPPIX, a specific inhibitor for HO-1 activity. Taken together, results suggest an important role of quercetin to regulate inflammatory responses in microglial cells and its ability to upregulate HO-1 against endotoxic stress through involvement of MAPKs. PMID:26505893

  7. Zhen-wu-tang attenuates cationic bovine serum albumin-induced inflammatory response in membranous glomerulonephritis rat through inhibiting AGEs/RAGE/NF-κB pathway activation.

    PubMed

    Wu, Junbiao; Liu, Bihao; Liang, Chunling; Ouyang, Hui; Lin, Jin; Zhong, Yanchun; He, Yu; Zhou, Jie; Zhou, Yuan; Zhou, Jiuyao

    2016-04-01

    Zhen-wu-tang (ZWT), a traditional Chinese compound formula recorded in the Treatise on Febrile Diseases, has significant inhibitory effects on inflammatory damage and oxidative lesions in rats, but its mechanism of action remains unclear. The aim of the present study was to explore whether the anti-inflammatory and anti-oxidative effects of ZWT were mediated by the AGEs/RAGE/NF-κB signaling pathway in rats with cationic bovine serum albumin (C-BSA)-induced membranous glomerulonephritis (MGN). We found that ZWT significantly reduced the production of malondialdehyde (MDA), but enhanced the superoxide dismutase (SOD) activity. The ELISA results showed that ZWT not only reduced the serum levels of AGEs but also decreased the release of inflammatory mediators (TNF-α, IL-1β, and IL-6). Meanwhile, HE staining showed that pathological kidney injury was alleviated by ZWT. In addition, ZWT suppressed the expression of RAGE1 and NF-κB p65, as well as the nuclear translocation of NF-κB p65. The accumulation of AGEs, oxidative lesions and inflammation damage were reduced by an AGE inhibitor. Thus, the present study demonstrates that AGEs play a role in the pathogenesis of MGN and that AGE inhibition could reduce the inflammatory reactions and oxidative lesions in MGN. In general, ZWT attenuated MGN, in part, by inhibiting the AGEs/RAGE/NF-κB pathway. PMID:26851631

  8. The CD40-CD40L Pathway Contributes to the Proinflammatory Function of Intestinal Epithelial Cells in Inflammatory Bowel Disease

    PubMed Central

    Borcherding, Frauke; Nitschke, Martin; Hundorfean, Gheorghe; Rupp, Jan; von Smolinski, Dorthe; Bieber, Katja; van Kooten, Cees; Lehnert, Hendrik; Fellermann, Klaus; Büning, Jürgen

    2010-01-01

    In inflammatory bowel diseases (IBD), intestinal epithelial cells (IECs) are involved in the outbalanced immune responses toward luminal antigens. However, the signals responsible for this proinflammatory capacity of IECs in IBD remain unclear. The CD40/CD40L interaction activates various pathways in immune and nonimmune cells related to inflammation and was shown to be critical for the development of IBD. Here we demonstrate CD40 expression within IECs during active IBD. Endoscopically obtained biopsies taken from Crohn’s disease (n = 112) and ulcerative colitis patients (n = 67) consistently showed immunofluorescence staining for CD40 in IECs of inflamed ileal or colonic mucosa. In noninvolved mucosa during active disease, tissue obtained during Crohn’s disease or ulcerative colitis in remission and biopsies from healthy controls (n = 38) IECs almost entirely lacked CD40 staining. Flow cytometry and RT-PCR analysis using different intestinal epithelial cell lines (HT29, SW480, and T84) showed IFN-γ to effectively induce CD40 in IECs. Cells were virtually unresponsive to LPS or whole E. coli regarding CD40 expression. In addition, a moderate induction of CD40 was found in response to TNF-α, which exerted synergistical effects with IFN-γ. CD40 ligation by CD40L-transfected murine fibroblasts or soluble CD40L increased the secretion of IL-8 in IFN-γ pretreated HT29 cells. Our findings provide evidence for the epithelial expression and modulation of CD40 in IBD-affected mucosa and indicate its involvement in the proinflammatory function of IECs. PMID:20133813

  9. Inflammatory muscle pain is dependent on the activation of kinin B1 and B2 receptors and intracellular kinase pathways

    PubMed Central

    Meotti, FC; Campos, R; da Silva, KABS; Paszcuk, AF; Costa, R; Calixto, JB

    2012-01-01

    BACKGROUND AND PURPOSE B1 and B2 kinin receptors are involved in pain transmission but they may have different roles in the muscle pain induced by intense exercise or inflammation. We investigated the contribution of each of these receptors, and the intracellular pathways involved, in the initial development and maintenance of the muscle pain associated with inflammation-induced tissue damage. EXPERIMENTAL APPROACH Mechanical hyperalgesia was measured using the Randall–Selitto apparatus after injecting 5% formalin solution into the gastrocnemius muscle in mice treated with selective antagonists for B1 or B2 receptors. The expression of kinin receptors and cytokines and the activation of intracellular kinases were monitored by real-time PCR and immunohistochemistry. KEY RESULTS The i.m. injection of formalin induced an overexpression of B1 and B2 receptors. This overexpression was associated with the mechanical hyperalgesia induced by formalin because treatment with B1 receptor antagonists (des-Arg9[Leu8]-BK, DALBK, and SSR240612) or B2 receptor antagonists (HOE 140 and FR173657) prevented the hyperalgesia. Formalin increased myeloperoxidase activity, and up-regulated TNF-α, IL-1β and IL-6 in gastrocnemius. Myeloperoxidase activity and TNF-α mRNA expression were inhibited by either DALBK or HOE 140, whereas IL-6 was inhibited only by HOE 140. The hyperalgesia induced by i.m. formalin was dependent on the activation of intracellular MAPKs p38, JNK and PKC. CONCLUSIONS AND IMPLICATIONS Inflammatory muscle pain involves a cascade of events that is dependent on the activation of PKC, p38 and JNK, and the synthesis of IL-1β, TNF-α and IL-6 associated with the up-regulation of both B1 and B2 kinin receptors. PMID:22220695

  10. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer’s disease transgenic mice

    PubMed Central

    Currais, Antonio; Prior, Marguerite; Dargusch, Richard; Armando, Aaron; Ehren, Jennifer; Schubert, David; Quehenberger, Oswald; Maher, Pamela

    2014-01-01

    Alzheimer’s disease (AD) is the most common type of dementia. It is the only one of the top ten causes of death in the USA for which prevention strategies have not been developed. Although AD has traditionally been associated with the deposition of amyloid β plaques and tau tangles, it is becoming increasingly clear that it involves disruptions in multiple cellular systems. Therefore, it is unlikely that hitting a single target will result in significant benefits to patients with AD. An alternative approach is to identify molecules that have multiple biological activities that are relevant to the disease. Fisetin is a small, orally active molecule which can act on many of the target pathways implicated in AD. We show here that oral administration of fisetin to APPswe/PS1dE9 double transgenic AD mice from 3 to 12 months of age prevents the development of learning and memory deficits. This correlates with an increase in ERK phosphorylation along with a decrease in protein carbonylation, a marker of oxidative stress. Importantly, fisetin also reduces the levels of the cyclin-dependent kinase 5 (Cdk5) activator p35 cleavage product, p25, in both control and AD brains. Elevated levels of p25 relative to p35 cause dysregulation of Cdk5 activity leading to neuroinflammation and neurodegeneration. These fisetin-dependent changes correlate with additional anti-inflammatory effects, including alterations in global eicosanoid synthesis, and the maintenance of markers of synaptic function in the AD mice. Together, these results suggest that fisetin may provide a new approach to the treatment of AD. PMID:24341874

  11. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    SciTech Connect

    Jiang, Shao-Yun; Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan; Deng, Jia-Yin

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  12. Pathways from marine protected area design and management to ecological success

    PubMed Central

    2015-01-01

    Using an international dataset compiled from 121 sites in 87 marine protected areas (MPAs) globally (Edgar et al., 2014), I assessed how various configurations of design and management conditions affected MPA ecological performance, measured in terms of fish species richness and biomass. The set-theoretic approach used Boolean algebra to identify pathways that combined up to five ‘NEOLI’ (No-take, Enforced, Old, Large, Isolated) conditions and that were sufficient for achieving positive, and negative, ecological outcomes. Ecological isolation was overwhelming the most important condition affecting ecological outcomes but Old and Large were also conditions important for achieving high levels of biomass among large fishes (jacks, groupers, sharks). Solution coverage was uniformly low (<0.35) for all models of positive ecological performance suggesting the presence of numerous other conditions and pathways to ecological success that did not involve the NEOLI conditions. Solution coverage was higher (>0.50) for negative results (i.e., the absence of high biomass) among the large commercially-exploited fishes, implying asymmetries in how MPAs may rebuild populations on the one hand and, on the other, protect against further decline. The results revealed complex interactions involving MPA design, implementation, and management conditions that affect MPA ecological performance. In general terms, the presence of no-take regulations and effective enforcement were insufficient to ensure MPA effectiveness on their own. Given the central role of ecological isolation in securing ecological benefits from MPAs, site selection in the design phase appears critical for success. PMID:26644975

  13. Pathways from marine protected area design and management to ecological success.

    PubMed

    Rudd, Murray A

    2015-01-01

    Using an international dataset compiled from 121 sites in 87 marine protected areas (MPAs) globally (Edgar et al., 2014), I assessed how various configurations of design and management conditions affected MPA ecological performance, measured in terms of fish species richness and biomass. The set-theoretic approach used Boolean algebra to identify pathways that combined up to five 'NEOLI' ( No-take, Enforced, Old, Large, Isolated) conditions and that were sufficient for achieving positive, and negative, ecological outcomes. Ecological isolation was overwhelming the most important condition affecting ecological outcomes but Old and Large were also conditions important for achieving high levels of biomass among large fishes (jacks, groupers, sharks). Solution coverage was uniformly low (<0.35) for all models of positive ecological performance suggesting the presence of numerous other conditions and pathways to ecological success that did not involve the NEOLI conditions. Solution coverage was higher (>0.50) for negative results (i.e., the absence of high biomass) among the large commercially-exploited fishes, implying asymmetries in how MPAs may rebuild populations on the one hand and, on the other, protect against further decline. The results revealed complex interactions involving MPA design, implementation, and management conditions that affect MPA ecological performance. In general terms, the presence of no-take regulations and effective enforcement were insufficient to ensure MPA effectiveness on their own. Given the central role of ecological isolation in securing ecological benefits from MPAs, site selection in the design phase appears critical for success. PMID:26644975

  14. THE EMERGING ROLE OF RESIDENT MEMORY T CELLS IN PROTECTIVE IMMUNITY AND INFLAMMATORY DISEASE

    PubMed Central

    Park, Changook; Kupper, Thomas S

    2015-01-01

    Over the past decade, it has become clear that there is an important subset of memory T cells that resides in tissues — tissue resident memory T cells (TRM). There is an emerging understanding that TRM have a role in human tissue specific immune and inflammatory diseases. Furthermore, the nature of the molecular signals that maintain TRM in tissues is the subject of much investigation. In addition while it is logical for TRM to be located in barrier tissues at interfaces with the environment in human and mouse, TRM have also been found in brain, kidney, joint, and other non-barrier tissues in both species. Their biology and behavior make it likely that they play a role in chronic relapsing and remitting diseases of both barrier and non-barrier tissues. This review will discuss recent understandings of the biology of TRM with a particular focus on their role in disease. PMID:26121195

  15. A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression.

    PubMed

    Kiyofuji, Kana; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Mishima, Satoshi; Katsuki, Hiroshi

    2015-08-01

    Inflammatory events involving activated microglia have been recognized to play an important role in pathogenesis of various neurodegenerative disorders including Parkinson disease. Compounds regulating activation profiles of microglia may provide therapeutic benefits for Parkinson disease characterized by degeneration of midbrain dopaminergic neurons. Here we examined the effect of macelignan, a compound derived from nutmeg, on inflammatory degeneration of midbrain dopaminergic neurons. Treatment of midbrain slice cultures with interferon (IFN)-γ and lipopolysaccharide (LPS) caused a substantial decrease in viable dopaminergic neurons and an increase in nitric oxide (NO) production indicated by extracellular nitrite accumulation. Application of macelignan (10 μM) concomitantly with LPS prevented the loss of dopaminergic neurons. Besides nitrite accumulation, up-regulation of inducible NO synthase protein expression in response to IFN-γ/LPS was confirmed by Western blotting, and immunohistochemical examination revealed expression of inducible NO synthase in a subpopulation of Iba-1-poitive microglia. However, macelignan did not affect any of these NO-related parameters. On the other hand, macelignan promoted expression of arginase-1 in midbrain slice cultures irrespective of the presence or the absence of IFN-γ/LPS treatment. Arginase-1 expression was mainly localized in a subpopulation of Iba-1-positive cells. Importantly, the neuroprotective effect of macelignan was antagonized by N(ω)-hydroxy-nor-L-arginine, a specific arginase inhibitor. The neuroprotective effect of macelignan was also prevented by GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Overall, these results indicate that macelignan, a compound with PPARγ agonist activity, can provide neuroprotective effect on dopaminergic neurons in an arginase-dependent but NO-independent manner. PMID:25917324

  16. The Gamma Interferon Receptor Is Required for the Protective Pulmonary Inflammatory Response to Cryptococcus neoformans

    PubMed Central

    Chen, Gwo-Hsiao; McDonald, Roderick A.; Wells, Jason C.; Huffnagle, Gary B.; Lukacs, Nicholas W.; Toews, Galen B.

    2005-01-01

    Mice with a null deletion mutation in the gamma interferon (IFN-γ) receptor gene were used to study the role of IFN-γ responsiveness during experimental pulmonary cryptococcosis. Cryptococcus neoformans was inoculated intratracheally into mice lacking the IFN-γ receptor gene (IFN-γR−/−) and into control mice (IFN-γR+/+). The numbers of CFU in lung, spleen, and brain were determined to assess clearance; cytokines produced by lung leukocytes were measured, and survival curves were generated. In the present study, we demonstrate the following points. (i) IFN-γR−/− mice are markedly more susceptible to C. neoformans infection than IFN-γR+/+ mice. (ii) In the absence of IFN-γ signaling, pulmonary CFU continue to increase over the course of infection, and the infection disseminates to the brain. (iii) In the absence of IFN-γ receptor, recruitment of inflammatory cells in response to pulmonary cryptococcal infection is not impaired. (iv) At week 5 postinfection, IFN-γR−/− mice have recruited greater numbers of leukocytes into their lungs, with neutrophils, eosinophils, and lymphocytes accounting for this cellular increase. (v) IFN-γ signaling is required for the development of a T1 over a T2 immune response in the lung following cryptococcal infection. These results indicate that in the absence of IFN- γ responsiveness, even though the recruitment of pulmonary inflammatory cells is not impaired and the secretion of IFN-γ is not affected, IFN-γR−/− mice do not have the ability to resolve the cryptococcal infection. In conclusion, our data suggest that proper functional IFN-γ signaling, possibly through a mechanism which inhibits the potentially disease-promoting T2 response, is required for mice to confine the cryptococcal infection. PMID:15731080

  17. Evaluation of In Vitro Anti-Inflammatory Activities and Protective Effect of Fermented Preparations of Rhizoma Atractylodis Macrocephalae on Intestinal Barrier Function against Lipopolysaccharide Insult

    PubMed Central

    Bose, Shambhunath; Kim, Hojun

    2013-01-01

    Lipopolysaccharide (LPS), a potent inducer of systemic inflammatory responses, is known to cause impairment of intestinal barrier function. Here, we evaluated the in vitro protective effect of an unfermented formulation of Rhizoma Atractylodis Macrocephalae (RAM), a traditional Chinese herbal medicine widely used in the treatment of many digestive and gastrointestinal disorders, and two fermented preparations of RAM, designated as FRAM-1 (prepared in Luria-Bertani broth) and FRAM-2 (prepared in glucose), on intestinal epithelial cells (IECs) against LPS insult. In general, fermented formulations, especially FRAM-2, but not unfermented RAM, exerted an appreciable protective effect on IECs against LPS-induced perturbation of membrane resistance and permeability. Both fermented formulations exhibited appreciable anti-inflammatory activities in terms of their ability to inhibit LPS-induced gene expression and induced production of a number of key inflammatory mediators and cytokines in RAW 264.7 macrophage cells. However, in most cases, FRAM-2 exhibited stronger anti-inflammatory effects than FRAM-1. Our findings also suggest that suppression of nuclear factor-κβ (NF-κβ) activity might be one of the possible mechanisms by which the fermented RAM exerts its anti-inflammatory effects. Collectively, our results highlight the benefits of using fermented products of RAM to protect against LPS-induced inflammatory insult and impairment in intestinal barrier function. PMID:23573125

  18. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario.

    PubMed

    Arrázola, Macarena S; Silva-Alvarez, Carmen; Inestrosa, Nibaldo C

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder and is characterized by progressive memory loss and cognitive decline. One of the hallmarks of AD is the overproduction of amyloid-beta aggregates that range from the toxic soluble oligomer (Aβo) form to extracellular accumulations in the brain. Growing evidence indicates that mitochondrial dysfunction is a common feature of neurodegenerative diseases and is observed at an early stage in the pathogenesis of AD. Reports indicate that mitochondrial structure and function are affected by Aβo and can trigger neuronal cell death. Mitochondria are highly dynamic organelles, and the balance between their fusion and fission processes is essential for neuronal function. Interestingly, in AD, the process known as "mitochondrial dynamics" is also impaired by Aβo. On the other hand, the activation of the Wnt signaling pathway has an essential role in synaptic maintenance and neuronal functions, and its deregulation has also been implicated in AD. We have demonstrated that canonical Wnt signaling, through the Wnt3a ligand, prevents the permeabilization of mitochondrial membranes through the inhibition of the mitochondrial permeability transition pore (mPTP), induced by Aβo. In addition, we showed that non-canonical Wnt signaling, through the Wnt5a ligand, protects mitochondria from fission-fusion alterations in AD. These results suggest new approaches by which different Wnt signaling pathways protect neurons in AD, and support the idea that mitochondria have become potential therapeutic targets for the treatment of neurodegenerative disorders. Here we discuss the neuroprotective role of the canonical and non-canonical Wnt signaling pathways in AD and their differential modulation of mitochondrial processes, associated with mitochondrial dysfunction and neurodegeneration. PMID:25999816

  19. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario

    PubMed Central

    Arrázola, Macarena S.; Silva-Alvarez, Carmen; Inestrosa, Nibaldo C.

    2015-01-01

    Alzheimer’s disease (AD) is the most common neurodegenerative disorder and is characterized by progressive memory loss and cognitive decline. One of the hallmarks of AD is the overproduction of amyloid-beta aggregates that range from the toxic soluble oligomer (Aβo) form to extracellular accumulations in the brain. Growing evidence indicates that mitochondrial dysfunction is a common feature of neurodegenerative diseases and is observed at an early stage in the pathogenesis of AD. Reports indicate that mitochondrial structure and function are affected by Aβo and can trigger neuronal cell death. Mitochondria are highly dynamic organelles, and the balance between their fusion and fission processes is essential for neuronal function. Interestingly, in AD, the process known as “mitochondrial dynamics” is also impaired by Aβo. On the other hand, the activation of the Wnt signaling pathway has an essential role in synaptic maintenance and neuronal functions, and its deregulation has also been implicated in AD. We have demonstrated that canonical Wnt signaling, through the Wnt3a ligand, prevents the permeabilization of mitochondrial membranes through the inhibition of the mitochondrial permeability transition pore (mPTP), induced by Aβo. In addition, we showed that non-canonical Wnt signaling, through the Wnt5a ligand, protects mitochondria from fission-fusion alterations in AD. These results suggest new approaches by which different Wnt signaling pathways protect neurons in AD, and support the idea that mitochondria have become potential therapeutic targets for the treatment of neurodegenerative disorders. Here we discuss the neuroprotective role of the canonical and non-canonical Wnt signaling pathways in AD and their differential modulation of mitochondrial processes, associated with mitochondrial dysfunction and neurodegeneration. PMID:25999816

  20. Protective effect of aqueous extract of Bombax malabaricum DC on experimental models of inflammatory bowel disease in rats and mice.

    PubMed

    Jagtap, A G; Niphadkar, P V; Phadke, A S

    2011-05-01

    There is little evidence regarding role of B. malabaricum in the treatment of inflammatory bowel disease (IBD); though it is clinically employed as a constituent of a polyherbal preparation for IBD. To establish its role as a monotherapy for IBD, preliminary phytochemical screening of aqueous extract of B. malabaricum (AEBM) was undertaken. Subsequently, its protective effect in indomethacin and iodoacetamide induced colitis in rats (45, 90, 180, 270 mg/kg) and acetic acid induced colitis in mice (65, 130, 250, 500 mg/kg) was assessed. AEBM (270 mg/kg) in indomethacin and iodoacetamide induced colitis significantly reduced the ulcer score and myeloperoxidase (MPO) activity. AEBM/500 mg/kg dose/significantly reduced the ulcer score and MPO activity in acetic acid induced colitis. The extract (270 mg/kg in rats and 500 mg/kg in mice) was found to be comparable with prednisolone (10 mg/kg) and 5-aminosalicylic acid (5-ASA) (100 mg/kg) used as standard treatments. AEBM provided reduction in edema of the intestinal tissues, ulcer protection and lowering of MPO activity in a dose dependent manner. AEBM (500 mg/kg) significantly reduced colonic and serum TNF-alpha level when compared with the positive control in acetic acid induced colitis model. The results suggest a protective role of AEBM in IBD. PMID:21615058

  1. Moderate exercise training provides modest protection against adipose tissue inflammatory gene expression in response to high-fat feeding.

    PubMed

    Linden, Melissa A; Pincu, Yair; Martin, Stephen A; Woods, Jeffrey A; Baynard, Tracy

    2014-01-01

    As white adipose tissue (WAT) expands under obesogenic conditions, local WAT hypoxia may contribute to the chronic low-grade inflammation observed in obesity. Aerobic exercise training is beneficial in treating WAT inflammation after obesity is established, but it remains unknown whether exercise training, while on a concomitant high-fat (HF) diet, influences WAT inflammation during the development of obesity. We sought to determine the effects of 4, 8, and 12 weeks of HF feeding and/or moderate intensity treadmill exercise training (EX) on the relationship between inflammatory and hypoxic gene expression within mouse WAT. Male C57Bl6/J mice (n = 113) were randomized into low-fat (LF)/sedentary (SED), LF/EX, HF/SED, or HF/EX groups. The low-fat and high-fat diets contained 10% and 60% energy from fat, respectively. Exercise training consisted of treadmill running 5 days/week at 12 m/min, 8% incline, 40 min/day. Quantitative real-time PCR was used to assess gene expression. HF diet impaired glucose regulation, and upregulated WAT gene expression of inflammation (IL-1β, IL-1ra, TNFα), macrophage recruitment and infiltration (F4/80 and monocyte chemoattractant protein), and M1 (CD11c) and M2 (CD206 and Arginase-1) macrophage polarization markers. Treadmill training resulted in a modest reduction of WAT macrophage and inflammatory gene expression. HF diet had little effect on hypoxia-inducible factor-1α and vascular endothelial growth factor, suggesting that WAT inflammatory gene expression may not be driven by hypoxia within the adipocytes. Treadmill training may provide protection by preventing WAT expansion and macrophage recruitment. PMID:25347855

  2. MyD88 Mediates Instructive Signaling in Dendritic Cells and Protective Inflammatory Response during Rickettsial Infection.

    PubMed

    Bechelli, Jeremy; Smalley, Claire; Zhao, Xuemei; Judy, Barbara; Valdes, Patricia; Walker, David H; Fang, Rong

    2016-04-01

    Spotted fever group rickettsiae cause potentially life-threatening infections throughout the world. Several members of the Toll-like receptor (TLR) family are involved in host response to rickettsiae, and yet the mechanisms by which these TLRs mediate host immunity remain incompletely understood. In the present study, we found that host susceptibility of MyD88(-/-)mice to infection with Rickettsia conorii or Rickettsia australis was significantly greater than in wild-type (WT) mice, in association with severely impaired bacterial clearance in vivo R. australis-infected MyD88(-/-)mice showed significantly lower expression levels of gamma interferon (IFN-γ), interleukin-6 (IL-6), and IL-1β, accompanied by significantly fewer inflammatory infiltrates of macrophages and neutrophils in infected tissues, than WT mice. The serum levels of IFN-γ, IL-12, IL-6, and granulocyte colony-stimulating factor were significantly reduced, while monocyte chemoattractant protein 1, macrophage inflammatory protein 1α, and RANTES were significantly increased in infected MyD88(-/-)mice compared to WT mice. Strikingly, R. australis infection was incapable of promoting increased expression of MHC-II(high)and production of IL-12p40 in MyD88(-/-)bone marrow-derived dendritic cells (BMDCs) compared to WT BMDCs, although costimulatory molecules were upregulated in both types of BMDCs. Furthermore, the secretion levels of IL-1β by Rickettsia-infected BMDCs and in the sera of infected mice were significantly reduced in MyD88(-/-)mice compared to WT controls, suggesting that in vitro and in vivo production of IL-1β is MyD88 dependent. Taken together, our results suggest that MyD88 signaling mediates instructive signals in DCs and secretion of IL-1β and type 1 immune cytokines, which may account for the protective inflammatory response during rickettsial infection. PMID:26755162

  3. Protective effect of Bauhinia tomentosa on acetic acid induced ulcerative colitis by regulating antioxidant and inflammatory mediators.

    PubMed

    Kannan, Narayanan; Guruvayoorappan, Chandrasekharan

    2013-05-01

    Inflammatory bowel diseases (IBD), including Crohn's disease and Ulcerative colitis (UC), are life-long and recurrent disorders of the gastrointestinal tract with unknown etiology. The present study is designed to evaluate the ameliorative effect of Bauhinia tomentosa during ulcerative colitis (UC). Three groups of animals (n=6) were treated with B. tomentosa (5, 10, 20 mg/kg B.wt respectively) for 5 consecutive days before induction of UC. UC was induced by intracolonic injection of 3% acetic acid. The colonic mucosal injury was assessed by macroscopic scoring and histological examination. Furthermore, the mucosal content of lipid peroxidation (LPO), reduced glutathione (GSH), nitric oxide (NO), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity confirms that B. tomentosa could significantly inhibit colitis in a dose dependent manner. The myeloperoxidase (MPO), tumor necrosis factor (TNF-α), inducible nitric oxide synthase (iNOS) expression studies and lactate dehydrogenase (LDH) assay also supported that B. tomentosa could significantly inhibit experimental colitis. The effect was comparable to the standard drug sulfasalazine. Colonic mucosal injury parallels with the result of histological and biochemical evaluations. The extracts obtained from B. tomentosa possess active substances, which exert marked protective effects in acute experimental colitis, possibly by regulating the antioxidant and inflammatory mediators. PMID:23538025

  4. Inhibiting HMGB1 with Glycyrrhizic Acid Protects Brain Injury after DAI via Its Anti-Inflammatory Effect

    PubMed Central

    Pang, Honggang; Huang, Tinqin; Li, Dandong; Zhao, Yonglin; Ma, Xudong

    2016-01-01

    High-mobility group box 1 (HMGB1), a nuclear protein that has endogenous cytokine-like activity, is involved in several neurological diseases by mediating inflammatory response. In this study, a lateral head rotation device was used to establish a rat diffuse axonal injury (DAI) model. The dynamic expression of HMGB1, apoptosis-associated proteins, and proinflammatory cytokines were detected by Western blot, and neuronal apoptosis was observed by TUNEL staining. The extracellular release of HMGB1 and the accumulation of β-APP were observed by immunofluorescence and immunohistochemistry, respectively. The brain injury was indicated by modified neurological severity score (mNSS), brain water content (BWC), and the extravasation of Evans blue. We showed that HMGB1 level obviously decreased within 48 h after DAI, accompanied by neuronal apoptosis, the activation of caspases 3 and 9, and the phosphorylation of BCL-2. Inhibiting HMGB1 with glycyrrhizic acid (GL) can suppress the activation of apoptosis-associated proteins and inhibit the expression of proinflammatory cytokines, which ameliorated motor and cognitive deficits, reduced neuronal apoptosis, and protected the integrity of blood brain barrier (BBB) and axonal injury after experimental DAI in rats. Thus, HMGB1 may be involved in the inflammatory response after DAI, and inhibition of HMGB1 release with GL can notably alleviate the brain injury after DAI. PMID:27041825

  5. The Type III Secretion System (T3SS) of Chlamydophila psittaci Is Involved in the Host Inflammatory Response by Activating the JNK/ERK Signaling Pathway

    PubMed Central

    He, Qing-zhi; Zeng, Huai-cai; Huang, Yan; Hu, Yan-qun; Wu, Yi-mou

    2015-01-01

    Chlamydophila psittaci (C. psittaci) is a human zoonotic pathogen, which could result in severe respiratory disease. In the present study, we investigated the role and mechanism of the type III secretion system (T3SS) of C. psittaci in regulating the inflammatory response in host cells. C. psittaci-infected THP-1 cells were incubated with the specific T3SS inhibitor INP0007, inhibitors of ERK, p38, or JNK, and the levels of inflammatory cytokines were analyzed using Q-PCR and ELISA. The levels of ERK, p38, and JNK phosphorylation were analyzed by Western blot. Our results verified that INP0007 inhibited chlamydial growth in vitro, but the coaddition of exogenous iron completely reversed the growth deficit. INP0007 inhibited the growth of C. psittaci and decreased the levels of IL-8, IL-6, TNF-α, and IL-1β. Exogenous iron restored the chlamydial growth but not the production of inflammatory cytokines. These results demonstrated that the expression of inflammatory cytokines during infection was associated with the T3SS which reduced by incubation with ERK and JNK inhibitors, but not with p38 inhibitor. We concluded that the T3SS elicited inflammatory responses by activating the JNK or ERK signaling pathways in the infection of C. psittaci. PMID:25685800

  6. Extra virgin olive oil polyphenolic extracts downregulate inflammatory responses in LPS-activated murine peritoneal macrophages suppressing NFκB and MAPK signalling pathways.

    PubMed

    Cárdeno, A; Sánchez-Hidalgo, M; Aparicio-Soto, M; Sánchez-Fidalgo, S; Alarcón-de-la-Lastra, C

    2014-06-01

    Extra virgin olive oil (EVOO) is obtained from the fruit of the olive tree Olea europaea L. Phenolic compounds present in EVOO have recognized anti-oxidant and anti-inflammatory properties. However, the activity of the total phenolic fraction extracted from EVOO and the action mechanisms involved are not well defined. The present study was designed to evaluate the potential anti-inflammatory mechanisms of the polyphenolic extract (PE) from EVOO on LPS-stimulated peritoneal murine macrophages. Nitric oxide (NO) production was analyzed by the Griess method and intracellular reactive oxygen species (ROS) by fluorescence analysis. Moreover, changes in the protein expression of the pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1), as well as the role of nuclear transcription factor kappa B (NFκB) and mitogen-activated protein kinase (MAPK) signalling pathways, were analyzed by Western blot. PE from EVOO reduced LPS-induced oxidative stress and inflammatory responses through decreasing NO and ROS generation. In addition, PE induced a significant down-regulation of iNOS, COX-2 and mPGES-1 protein expressions, reduced MAPK phosphorylation and prevented the nuclear NFκB translocation. This study establishes that PE from EVOO possesses anti-inflammatory activities on LPS-stimulated murine macrophages. PMID:24740524

  7. Forsythiaside A Exhibits Anti-inflammatory Effects in LPS-Stimulated BV2 Microglia Cells Through Activation of Nrf2/HO-1 Signaling Pathway.

    PubMed

    Wang, Yue; Zhao, Hongfei; Lin, Chuangxin; Ren, Jie; Zhang, Shizhong

    2016-04-01

    Inflammation and oxidative stress have been reported to play critical roles in the pathogenesis of neurodegenerative disease. Forsythiaside A, a phenylethanoside product isolated from air-dried fruits of Forsythia suspensa, has been reported to have anti-inflammatory and antioxidant effects. In this study, the anti-inflammatory effects of forsythiaside A on LPS-stimulated BV2 microglia cells and primary microglia cells were investigated. The production of inflammatory mediators TNF-α, IL-1β, NO and PGE2 were detected in this study. NF-κB, nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) expression were detected by western blot analysis. Our results showed that forsythiaside A significantly inhibited LPS-induced inflammatory mediators TNF-α, IL-1β, NO and PGE2 production. LPS-induced NF-κB activation was suppressed by forsythiaside A. Furthermore, forsythiaside A was found to up-regulate the expression of Nrf2 and HO-1. In conclusion, this study demonstrates that forsythiaside A inhibits LPS-induced inflammatory responses in BV2 microglia cells and primary microglia cells through inhibition of NF-κB activation and activation of Nrf2/HO-1 signaling pathway. PMID:26498935

  8. Total glucosides of paeony (TGP) inhibits the production of inflammatory cytokines in oral lichen planus by suppressing the NF-κB signaling pathway.

    PubMed

    Wang, Yanni; Zhang, Han; Du, Guanhuan; Wang, Yufeng; Cao, Tianyi; Luo, Qingqiong; Chen, Junjun; Chen, Fuxiang; Tang, Guoyao

    2016-07-01

    Total glucosides of paeony (TGP) is a bioactive compound extracted from paeony roots and has been widely used to ameliorate inflammation in several autoimmune and inflammatory diseases. However, the anti-inflammatory effect of TGP on oral lichen planus (OLP), a chronic inflammatory oral condition characterized by T-cell infiltration and abnormal epithelial keratinization cycle remains unclear. In this study, we found that TLR4 was highly expressed and activation of the NF-κB signaling pathway was obviously observed in the OLP tissues. Moreover, there was significant higher mRNA expression of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in OLP keratinocytes than normal oral epithelial keratinocytes. With the help of the cell culture model by stimulating the keratinocyte HaCaT cells with lipopolysaccharides (LPS), we mimicked the local inflammatory environment of OLP. And we further confirmed that TGP could inhibit LPS-induced production of IL-6 and TNF-α in HaCaT cells via a dose-dependent manner. TGP treatment decreased the phosphorylation of IκBα and NF-κB p65 proteins, thus leading to less nuclear translocation of NF-κB p65 in HaCaT cells. Therefore, our data suggested that TGP may be a new potential candidate for the therapy of OLP. PMID:27107800

  9. The blocking of uPAR suppresses lipopolysaccharide‐induced inflammatory osteoclastogenesis and the resultant bone loss through attenuation of integrin β3/Akt pathway

    PubMed Central

    Ishisaki, Akira; Miyashita, Mei; Matsuo, Osamu

    2016-01-01

    Abstract Introduction Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis, cause the bone destruction by promotion of the differentiation of monocyte/macrophage lineage cells into mature osteoclasts (OCs) with active bone‐resorbing character. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated the role of urokinase plasminogen activator receptor (uPAR) in the bone destruction caused by chronic inflammation. Methods We investigated that the effect of uPAR on inflammatory OC formation induced by lipopolysaccharide (LPS) in inflammatory diseases. Results We found that the LPS more weakly induced OC formation and the resultant bone loss in uPAR‐deficient mice than in wild‐type mice. Additionally, we demonstrated that uPAR significantly potentiated LPS‐induced OC formation of RAW264.7 mouse monocyte/macrophage linage cells in integrin β3/Akt‐dependent manner. Moreover, we showed that the blocking of uPAR function by the administration of anti‐uPAR neutralizing antibody significantly attenuated the LPS‐induced OC formation and the resultant bone loss in mice. Conclusions These results strongly suggest that uPAR negatively regulates the LPS‐induced inflammatory OC formation and the resultant bone loss mediated through the integrin β3/Akt pathway. Our findings partly clarify the molecular mechanisms underlying bone destruction caused by chronic inflammatory diseases, and would benefit research on identifying antibody therapy for the treatment of these diseases. PMID:27621816

  10. Anti-Inflammatory Activity of Odina wodier Roxb, an Indian Folk Remedy, through Inhibition of Toll-Like Receptor 4 Signaling Pathway

    PubMed Central

    Ojha, Durbadal; Mukherjee, Hemanta; Mondal, Supriya; Jena, Aditya; Dwivedi, Ved Prakash; Mondal, Keshab C.; Malhotra, Bharti; Samanta, Amalesh; Chattopadhyay, Debprasad

    2014-01-01

    Inflammation is part of self-limiting non-specific immune response, which occurs during bodily injury. In some disorders the inflammatory process becomes continuous, leading to the development of chronic inflammatory diseases including cardiovascular diseases, diabetes, cancer etc. Several Indian tribes used the bark of Odina wodier (OWB) for treating inflammatory disorders. Thus, we have evaluated the immunotherapeutic potential of OWB methanol extract and its major constituent chlorogenic acid (CA), using three popular in vivo antiinflammatory models: Carrageenan- and Dextran-induced paw edema, Cotton pellet granuloma, and Acetic acid-induced vascular permeability. To elucidate the possible anti-inflammatory mechanism of action we determine the level of major inflammatory mediators (NO, iNOS, COX-2-dependent prostaglandin E2 or PGE2), and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-12). Further, we determine the toll-like receptor 4 (TLR4), Myeloid differentiation primary response gene 88 (MyD88), c-Jun N-terminal kinases (JNK), nuclear factor kappa-B cells (NF-κB), and NF-kB inhibitor alpha (IK-Bα) by protein and mRNA expression, and Western blot analysis in drug treated LPS-induced murine macrophage model. Moreover, we determined the acute and sub-acute toxicity of OWB extract in BALB/c mice. Our study demonstrated a significant anti-inflammatory activity of OWB extract and CA along with the inhibition of TNF-α, IL-1β, IL-6 and IL-12 expressions. Further, the expression of TLR4, NF-κBp65, MyD88, iNOS and COX-2 molecules were reduced in drug-treated groups, but not in the LPS-stimulated untreated or control groups, Thus, our results collectively indicated that the OWB extract and CA can efficiently inhibit inflammation through the down regulation of TLR4/MyD88/NF-kB signaling pathway. PMID:25153081

  11. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes

    PubMed Central

    Ku, Chai Siah; Pham, Tho X.; Park, Youngki; Kim, Bohkyung; Shin, Min; Kang, Insoo; Lee, Jiyoung

    2013-01-01

    Background Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases. Methods Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. Sphaeroides Kützing (NO) and Spirulina Platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE−/−) mice fed BGA. Results When macrophages pretreated with 100 μg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1β in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE−/− fed an atherogenic diet containing 5% NO or SP for 12 weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1β and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels. Conclusion NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition. General significance This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation. PMID:23357040

  12. Anti-inflammatory activity of Odina wodier Roxb, an Indian folk remedy, through inhibition of toll-like receptor 4 signaling pathway.

    PubMed

    Ojha, Durbadal; Mukherjee, Hemanta; Mondal, Supriya; Jena, Aditya; Dwivedi, Ved Prakash; Mondal, Keshab C; Malhotra, Bharti; Samanta, Amalesh; Chattopadhyay, Debprasad

    2014-01-01

    Inflammation is part of self-limiting non-specific immune response, which occurs during bodily injury. In some disorders the inflammatory process becomes continuous, leading to the development of chronic inflammatory diseases including cardiovascular diseases, diabetes, cancer etc. Several Indian tribes used the bark of Odina wodier (OWB) for treating inflammatory disorders. Thus, we have evaluated the immunotherapeutic potential of OWB methanol extract and its major constituent chlorogenic acid (CA), using three popular in vivo antiinflammatory models: Carrageenan- and Dextran-induced paw edema, Cotton pellet granuloma, and Acetic acid-induced vascular permeability. To elucidate the possible anti-inflammatory mechanism of action we determine the level of major inflammatory mediators (NO, iNOS, COX-2-dependent prostaglandin E2 or PGE2), and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-12). Further, we determine the toll-like receptor 4 (TLR4), Myeloid differentiation primary response gene 88 (MyD88), c-Jun N-terminal kinases (JNK), nuclear factor kappa-B cells (NF-κB), and NF-kB inhibitor alpha (IK-Bα) by protein and mRNA expression, and Western blot analysis in drug treated LPS-induced murine macrophage model. Moreover, we determined the acute and sub-acute toxicity of OWB extract in BALB/c mice. Our study demonstrated a significant anti-inflammatory activity of OWB extract and CA along with the inhibition of TNF-α, IL-1β, IL-6 and IL-12 expressions. Further, the expression of TLR4, NF-κBp65, MyD88, iNOS and COX-2 molecules were reduced in drug-treated groups, but not in the LPS-stimulated untreated or control groups, Thus, our results collectively indicated that the OWB extract and CA can efficiently inhibit inflammation through the down regulation of TLR4/MyD88/NF-kB signaling pathway. PMID:25153081

  13. Protective Effect of an Antibody against Specific Extracellular Domain of TLR2 on Agonists-Driven Inflammatory and Allergic Response

    PubMed Central

    Guo, Tianwu; Cai, Jun; Peng, Yanxia; Zhang, Lifang; Lan, Qiaofen; Chen, Yanwen; Liao, Huanjin; Xie, Tong; Wu, Ping; Pan, Qingjun

    2016-01-01

    Specific blocking strategies of TLR2-mediated inflammatory signaling and hypersensitivity reactions may offer novel therapeutic strategies to prevent a variety of diseases. In this study, we investigated the blocking effects of a new anti-TLR2 antibody anti-T20 against a 20 mer peptide T20 located in the extracellular specific domain of mouse TLR2. In addition, the effects of the anti-T20 in vitro, measuring the inhibition of the IL-6 and TNF-α production in response to PGN, LTA, and Pam3CSK4-stimulated RAW264.7 cells, were determined. In vivo, the effects of anti-T20 on a lethal anaphylaxis model using PGN-challenged OVA allergic mice, including the rectal temperature and mortality, and serum levels of TNF-α, IL-6, and LTC4 were assayed. The results showed that anti-T20 specifically bound to TLR2 and significantly inhibited PGN, LTA, and Pam3CSK4-driven TNF-α and IL-6 production by RAW264.7 cells. Also, anti-T20 protected OVA allergic mice from PGN-induced lethal anaphylaxis, and the serum levels of TNF-α, IL-6, and LTC4 of anti-T20 treated PGN-challenged OVA allergic mice were decreased as compared to isotype control of anti-T20 treated mice. In summary, this study produced a new antibody against the specific extracellular domain of TLR2 which has protective effect on TLR2 agonists-driven inflammatory and allergic response. PMID:27213155

  14. Roles of NAD in Protection of Axon against Degeneration via SIRT1 Pathways.

    PubMed

    Zhang, Jing; Guo, Wei-Hua; Qi, Xiao-Xia; Li, Gui-Bao; Hu, Yan-Lai; Wu, Qi; Ding, Zhao-Xi; Li, Hong-Yu; Hao, Jing; Sun, Jin-Hao

    2016-04-30

    Axonal degeneration is a common pathological change of neurogenical disease which often arises before the neuron death. But it had not found any effective method to protect axon from degeneration. In this study we intended to confirm the protective effect of nicotinamide adenine dinucleotide (NAD), investigate the optimal administration dosage and time of NAD, and identify the relationship between silence signal regulating factor 1 (SIRT1) and axonal degeneration. An axonal degeneration model was established using dorsal root ganglion (DRG) neurons injured by vincristine to observe the protective effects of NAD to the injured axons. In addition, the potential contribution of the SIRT1 in axonal degeneration was also investigated. Through the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, immunochemistry staining, axons counting and length measuring, transmission electron microscope (TEM) observation, we demonstrated that NAD played an important role in preventing axonal degeneration. Further study revealed that the expression of SIRT1 and phosphorylated Akt1 (p-Akt1) was up-regulated when NAD was added into the culturing medium. Taking together, our results demonstrated that NAD might delay the axonal degeneration through SIRT1/Akt1 pathways. PMID:27080463

  15. COX-2 Protects against Atherosclerosis Independently of Local Vascular Prostacyclin: Identification of COX-2 Associated Pathways Implicate Rgl1 and Lymphocyte Networks

    PubMed Central

    Kirkby, Nicholas S.; Lundberg, Martina H.; Wright, William R.; Warner, Timothy D.; Paul-Clark, Mark J.; Mitchell, Jane A.

    2014-01-01

    Cyxlo-oxygenase (COX)-2 inhibitors, including traditional nonsteroidal anti-inflammatory drugs (NSAIDs) are associated with increased cardiovascular side effects, including myocardial infarction. We and others have shown that COX-1 and not COX-2 drives vascular prostacyclin in the healthy cardiovascular system, re-opening the question of how COX-2 might regulate cardiovascular health. In diseased, atherosclerotic vessels, the relative contribution of COX-2 to prostacyclin formation is not clear. Here we have used apoE−/−/COX-2−/− mice to show that, whilst COX-2 profoundly limits atherosclerosis, this protection is independent of local prostacyclin release. These data further illustrate the need to look for new explanations, targets and pathways to define the COX/NSAID/cardiovascular risk axis. Gene expression profiles in tissues from apoE−/−/COX-2−/− mice showed increased lymphocyte pathways that were validated by showing increased T-lymphocytes in plaques and elevated plasma Th1-type cytokines. In addition, we identified a novel target gene, rgl1, whose expression was strongly reduced by COX-2 deletion across all examined tissues. This study is the first to demonstrate that COX-2 protects vessels against atherosclerotic lesions independently of local vascular prostacyclin and uses systems biology approaches to identify new mechanisms relevant to development of next generation NSAIDs. PMID:24887395

  16. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway

    SciTech Connect

    Wang, Yiting; Tu, Qunfei; Yan, Wei; Xiao, Dan; Zeng, Zhimin; Ouyang, Yuming; Huang, Long; Cai, Jing; Zeng, Xiaoli; Chen, Ya-Jie; Liu, Anwen

    2015-01-02

    Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.

  17. Inflammatory markers in paroxysmal atrial fibrillation and the protective role of renin-angiotensin-aldosterone system inhibitors

    PubMed Central

    ROŞIANU, ŞTEFAN HORIA; ROŞIANU, ADELA-NICOLETA; ALDICA, MIHAI; CĂPÂLNEANU, RADU; BUZOIANU, ANCA DANA

    2013-01-01

    RAAS inhibitors and is correlated with longer duration of AF, left atrial diameter and left atrial volume. ACE inhibitors and ARBs, acting on cardiac substrate and reducing the inflammatory process, may have a therapeutic protective role of decreasing AF burden. PMID:26527951

  18. Over-expression of HSPA12B protects mice against myocardium ischemic/reperfusion injury through a PPARγ-dependent PI3K/Akt/eNOS pathway

    PubMed Central

    Sun, Yanjun; Ye, Lincai; Jiang, Chuan; Jiang, Jun; Hong, Haifa; Qiu, Lisheng

    2015-01-01

    Acute myocardial ischemia/reperfusion (MIR) injury leads to severe arrhythmias and a high lethality. We aim to determine the effect of heat shock protein A12B (HSPA12B), a newly discovered member of the Hsp70 family, on heart injury parameters following MIR surgery. We used HSPA12B transgenic mice to determine its effects on heart function parameters, infarct size and cellular apoptosis following MIR surgery. Proinflammatory cytokines, oxidative products and anti-oxidative enzymes in the myocardium were measured to evaluate the anti-inflammatory and anti-oxidative effects of HSPA12B over-expression. The role of PPARs/eNOS/PI3k/Akt pathway was investigated using their inhibitors. The alteration of hemodynamic parameters, histopathological, apoptotic and infarct size caused by MIR was greatly attenuated in HSPA12B over-expressed mice. HSPA12B also greatly mitigated the inflammatory response, demonstrated by the decrease in the levels of IL-1β, IL-6, TNF-a and MPO. Anti-oxidative enzymes (SOD, Catalase and GPx) were restored by HSPA12B; oxidative products (8-OHdG, MDA and protein carbonyl) were decreased. HSPA12B activated the PPARγ-dependent eNOS/PI3k/Akt pathway, and the influence of HSPA12B on cardiac function was reversed by the inhibitors of eNOS, PPARγ, Akt and PI3K. Our results present a novel signaling mechanism that HSPA12B protects MIR injury through a PPARγ-dependent PI3K/Akt/eNOS pathway. PMID:26885270

  19. Ectopic Tertiary Lymphoid Tissue in Inflammatory Bowel Disease: Protective or Provocateur?

    PubMed Central

    McNamee, Eóin N.; Rivera-Nieves, Jesús

    2016-01-01

    Organized lymphoid tissues like the thymus first appeared in jawed vertebrates around 500 million years ago and have evolved to equip the host with a network of specialized sites, strategically located to orchestrate strict immune-surveillance and efficient immune responses autonomously. The gut-associated lymphoid tissues maintain a mostly tolerant environment to dampen our responses to daily dietary and microbial products in the intestine. However, when this homeostasis is perturbed by chronic inflammation, the intestine is able to develop florid organized tertiary lymphoid tissues (TLT), which heralds the onset of regional immune dysregulation. While TLT are a pathologic hallmark of Crohn’s disease (CD), their role in the overall process remains largely enigmatic. A critical question remains; are intestinal TLT generated by the immune infiltrated intestine to modulate immune responses and rebuild tolerance to the microbiota or are they playing a more sinister role by generating dysregulated responses that perpetuate disease? Herein, we discuss the main theories of intestinal TLT neogenesis and focus on the most recent findings that open new perspectives to their role in inflammatory bowel disease. PMID:27579025

  20. Continued Administration of Ciliary Neurotrophic Factor Protects Mice from Inflammatory Pathology in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Kuhlmann, Tanja; Remington, Leah; Cognet, Isabelle; Bourbonniere, Lyne; Zehntner, Simone; Guilhot, Florence; Herman, Alexandra; Guay-Giroux, Angélique; Antel, Jack P.; Owens, Trevor; Gauchat, Jean-François

    2006-01-01

    Multiple sclerosis is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. We show that daily administration (days 8 to 24) of murine ciliary neurotrophic factor (CNTF), a neurotrophic factor that has been described as a survival and differentiation factor for neurons and oligodendrocytes, significantly ameliorates the clinical course of a mouse model of multiple sclerosis. In the acute phase of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein peptide 35-55, treatment with CNTF did not change the peripheral immune response but did reduce the number of perivascular infiltrates and T cells and the level of diffuse microglial activation in spinal cord. Blood brain barrier permeability was significantly reduced in CNTF-treated animals. Beneficial effects of CNTF did not persist after it was withdrawn. After cessation of CNTF treatment, inflammation and symptoms returned to control levels. However, slight but significantly higher numbers of oligodendrocytes, NG2-positive cells, axons, and neurons were observed in mice that had been treated with high concentrations of CNTF. Our results show that CNTF inhibits inflammation in the spinal cord, resulting in amelioration of the clinical course of experimental autoimmune encephalomyelitis during time of treatment. PMID:16877358

  1. Ectopic Tertiary Lymphoid Tissue in Inflammatory Bowel Disease: Protective or Provocateur?

    PubMed

    McNamee, Eóin N; Rivera-Nieves, Jesús

    2016-01-01

    Organized lymphoid tissues like the thymus first appeared in jawed vertebrates around 500 million years ago and have evolved to equip the host with a network of specialized sites, strategically located to orchestrate strict immune-surveillance and efficient immune responses autonomously. The gut-associated lymphoid tissues maintain a mostly tolerant environment to dampen our responses to daily dietary and microbial products in the intestine. However, when this homeostasis is perturbed by chronic inflammation, the intestine is able to develop florid organized tertiary lymphoid tissues (TLT), which heralds the onset of regional immune dysregulation. While TLT are a pathologic hallmark of Crohn's disease (CD), their role in the overall process remains largely enigmatic. A critical question remains; are intestinal TLT generated by the immune infiltrated intestine to modulate immune responses and rebuild tolerance to the microbiota or are they playing a more sinister role by generating dysregulated responses that perpetuate disease? Herein, we discuss the main theories of intestinal TLT neogenesis and focus on the most recent findings that open new perspectives to their role in inflammatory bowel disease. PMID:27579025

  2. Protective Effect of Zingiber Officinale against CCl4-Induced Liver Fibrosis Is Mediated through Downregulating the TGF-β1/Smad3 and NF-ĸB/IĸB Pathways.

    PubMed

    Hasan, Iman H; El-Desouky, M A; Hozayen, Walaa G; Abd el Aziz, Ghada M

    2016-01-01

    No ideal hepatoprotective agents are available in modern medicine to effectively prevent liver disorders. In this study, we aimed at evaluating the potential of Zingiber officinale in the regression of liver fibrosis and its underlining mechanism of action. To induce liver fibrosis, male Wistar rats received CCl4 (2 ml/kg/2 times/week; i.p.), with and without 300 or 600 mg/kg Z. officinale extract daily through oral gavage. To assess the protective effect of Z. officinale, liver function parameters, histopathology, inflammatory markers and gene expression of transforming growth factor-beta 1 (TGF-β1)/Smad3 and nuclear factor-kappa B (NF-ĸB)/IĸB pathways were analyzed. Results demonstrate that Z. officinale extract markedly prevented liver injury as evident by the decreased liver marker enzymes. Concurrent administration of Z. officinale significantly protected against the CCl4-induced inflammation as showed by the decreased pro-inflammatory cytokine levels as well as the downregulation of the NF-ĸB)/IĸB and TGF-β1/Smad3 pathways in CCl4-administered rats. In conclusion, our study provides evidence that the protective effect of Z. officinale against rat liver fibrosis could be explained through its ability to modulate the TGF-β1/Smad3 and NF-ĸB)/IĸB signaling pathways. PMID:26551763

  3. Pro-inflammatory cytokine TNF-α is a key inhibitory factor for lactose synthesis pathway in lactating mammary epithelial cells.

    PubMed

    Kobayashi, Ken; Kuki, Chinatsu; Oyama, Shoko; Kumura, Haruto

    2016-01-15

    Lactose is a milk-specific carbohydrate synthesized by mammary epithelial cells (MECs) in mammary glands during lactation. Lactose synthesis is downregulated under conditions causing inflammation such as mastitis, in which MECs are exposed to high concentrations of inflammatory cytokines. In this study, we investigated whether inflammatory cytokines (TNF-α, IL-1β, and IL-6) directly influence the lactose synthesis pathway by using two types of murine MEC culture models: the monolayer culture of MECs to induce lactogenesis; and the three-dimensional culture of MECs surrounded by Matrigel to induce reconstitution of the alveolar structure in vitro. TNF-α caused severe down-regulation of lactose synthesis-related genes concurrently with the degradation of glucose transporter 1 (GLUT1) from the basolateral membranes in MECs. IL-1β also caused degradation of GLUT1 along with a decrease in the expression level of β-1,4-galactosylransferase 3. IL-6 caused both up-regulation and down-regulation of the expression levels of lactose synthesis-related genes in MECs. These results indicate that TNF-α, IL-1β, and IL-6 have different effects on the lactose synthesis pathway in MECs. Furthermore, TNF-α triggered activation of NFκB and inactivation of STAT5, suggesting that NFκB and STAT5 signaling pathways are involved in the multiple adverse effects of TNF-α on the lactose synthesis pathway. PMID:26518119

  4. Detoxified pneumolysin derivative Plym2 directly protects against pneumococcal infection via induction of inflammatory cytokines.

    PubMed

    Lu, Jingcai; Sun, Tianxu; Hou, Hongjia; Xu, Man; Gu, Tiejun; Dong, Yunliang; Wang, Dandan; Chen, Pinxu; Wu, Chunlai; Liang, Chunshu; Sun, Shiyang; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2014-01-01

    Streptococcus pneumoniae is a major cause of infectious disease and complications worldwide, such as pneumonia, otitis media, bacteremia and meningitis. New generation protein-based pneumococcal vaccines are recognized as alternative vaccine candidates. Pneumolysin (Ply) is a cholesterol-dependent cytolysin produced by all clinical isolates of S. pneumoniae. Our research group previously developed a highly detoxified Ply mutant designated Plym2 by replacement of two animo acids (C428G and W433F). Exhibiting undetectable levels of cytotoxicity, Plym2 could still elicit high titer neutralizing antibodies against the native toxin. However, evaluation of the active immunoprotective effects of Plym2 by subcutaneous immunization and lethal challenge with S. pneumoniae in mice did not yield favorable results. In the present work, we confirmed the previous observations by using passive immunization and systemic challenge. Results of the passive immunization were consistent with those of active immunization. Further experiments were conducted to explain the inability of high titer neutralizing antibodies against Ply to protect mice from S. pneumoniae challenge. Pneumococcal Ply is known to be the major factor responsible for the induction of inflammation that benefits the host. Proinflammatory cytokines facilitate the clearance of invaders by the recruitment and activation of leukocytes at the early infection stage. We demonstrated that Plym2 could induce proinflammatory cytokines similarly to wild-type Ply. A systemic infection model was used to clarify that Plym2 lacking cytolytic activity could protect mice from intraperitoneal challenge directly, while antibodies to the mutant had no effect. Therefore, the protective function of Plym2 may be due to its induction of proinflammatory cytokines. When used in the systemic infection model, Plym2 antibodies may block the induction of proinflammatory cytokines by Ply. These findings demonstrate that a Ply-based vaccine would

  5. Muscovite is protective against non-steroidal anti-inflammatory drug-induced small bowel injury

    PubMed Central

    Huang, Chen; Lu, Bin; Fan, Yi-Hong; Zhang, Lu; Jiang, Ning; Zhang, Shuo; Meng, Li-Na

    2014-01-01

    AIM: To evaluate the effect of muscovite in preventing small bowel injury induced by nonsteroidal anti-inflammatory drugs (NSAIDs). METHODS: We recruited and screened thirty-two healthy volunteers who were randomly allocated equally into two groups: an NSAID control group, who received 75 mg slow-release diclofenac, twice daily for 14 d; and an NSAID-muscovite group, who received 3 g of muscovite in addition to the 75 mg of slow-release diclofenac, twice daily for 14 d. For gastroprotection, both groups were administered 20 mg/d of the proton pump inhibitor omeprazole. All eligible subjects underwent video capsule endoscopy (CE) prior to and 14 d after treatment. RESULTS: Thirty subjects (NSAID-muscovite group, n =16; NSAID control group, n =14) finally completed the whole trail. At the baseline CE examination, no statistically significant differences between the two groups have been observed. However, after 14 d of drug treatment, a significant difference was observed in the percentage of subjects with mucosal breaks when comparing the NSAID-muscovite group with the NSAID control group. While 71.4% (10/14) of subjects in the NSAID control group had at least one mucosal break, co-administration of muscovite in the NSAID-muscovite group reduced the rate to 31.3% (5/16) (P = 0.028). Moreover, higher number of mucosal breaks was found in the NSAID control group vs that in the NSAID-muscovite group (P < 0.05). CONCLUSION: Muscovite co-therapy reduced the incidence of small intestinal injury after 14 d of diclofenac administration. PMID:25152605

  6. Calcitriol plays a protective role in diabetic nephropathy through anti-inflammatory effects

    PubMed Central

    Mao, Li; Ji, Feng; Liu, Yuanyuan; Zhang, Wei; Ma, Xianghua

    2014-01-01

    Aims: To ascertain the protective role of calcitriol in the development of diabetic nephropathy and unravel the mechanism of the protective effects. Methods: In this prospective study, 69 patients were screened for type 1 diabetes, and 31 patients with type 1 diabetes were enrolled. Among these 31 patients, 24 patients had insufficient or deficient levels of serum vitamin D and 21 patients complied with calcitriol and were followed up. At baseline, these 21 patients who suffered from vitamin D deficiency or insufficiency displayed elevated inflammation markers and urinary albumin excretion in contrast with patients with sufficient vitamin D. Simultaneously, serum 25(OH)D3 level was negatively associated with serum and urinary inflammation markers, such as TNF-α, IL-6, and ICAM-1. Six months later, even though glycol-metabolism was not alleviated, all the serum and urinary inflammation markers decreased significantly. Meanwhile, proteinuria declined with inflammation markers. Results: Calcitriol supplementation alleviated inflammation and proteinuria in patients with type 1 diabetes. Conclusions: Calcitriol might delay the development of diabetic nephropathy through suppressing inflammation. PMID:25664053

  7. Role of Genetic Polymorphisms in NFKB-Mediated Inflammatory Pathways in Response to Primary Chemoradiation Therapy for Rectal Cancer

    SciTech Connect

    Dzhugashvili, Maia; Luengo-Gil, Ginés; García, Teresa; González-Conejero, Rocío; Conesa-Zamora, Pablo; Escolar, Pedro Pablo; Calvo, Felipe; Vicente, Vicente; Ayala de la Peña, Francisco

    2014-11-01

    Purpose: To investigate whether polymorphisms of genes related to inflammation are associated with pathologic response (primary endpoint) in patients with rectal cancer treated with primary chemoradiation therapy (PCRT). Methods and Materials: Genomic DNA of 159 patients with locally advanced rectal cancer treated with PCRT was genotyped for polymorphisms rs28362491 (NFKB1), rs1213266/rs5789 (PTGS1), rs5275 (PTGS2), and rs16944/rs1143627 (IL1B) using TaqMan single nucleotide polymorphism genotyping assays. The association between each genotype and pathologic response (poor response vs complete or partial response) was analyzed using logistic regression models. Results: The NFKB1 DEL/DEL genotype was associated with pathologic response (odds ratio [OR], 6.39; 95% confidence interval [CI], 0.78-52.65; P=.03) after PCRT. No statistically significant associations between other polymorphisms and response to PCRT were observed. Patients with the NFKB1 DEL/DEL genotype showed a trend for longer disease-free survival (log-rank test, P=.096) and overall survival (P=.049), which was not significant in a multivariate analysis that included pathologic response. Analysis for 6 polymorphisms showed that patients carrying the haplotype rs28362491-DEL/rs1143627-A/rs1213266-G/rs5789-C/rs5275-A/rs16944-G (13.7% of cases) had a higher response rate to PCRT (OR, 8.86; 95% CI, 1.21-64.98; P=.034) than the reference group (rs28362491-INS/rs1143627-A/rs1213266-G/rs5789-C/rs5275-A/rs16944-G). Clinically significant (grade ≥2) acute organ toxicity was also more frequent in patients with that same haplotype (OR, 4.12; 95% CI, 1.11-15.36; P=.037). Conclusions: Our results suggest that genetic variation in NFKB-related inflammatory pathways might influence sensitivity to primary chemoradiation for rectal cancer. If confirmed, an inflammation-related radiogenetic profile might be used to select patients with rectal cancer for preoperative combined-modality treatment.

  8. Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways.

    PubMed

    Chen, Meihui; Hou, Yu; Lin, Dingkun

    2016-01-01

    Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs) death caused by hydrogen peroxide (H2O2), imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. PMID:27022401

  9. Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways

    PubMed Central

    Chen, Meihui; Hou, Yu; Lin, Dingkun

    2016-01-01

    Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs) death caused by hydrogen peroxide (H2O2), imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. PMID:27022401

  10. Update on the protective molecular pathways improving pancreatic beta-cell dysfunction.

    PubMed

    Puddu, Alessandra; Sanguineti, Roberta; Mach, François; Dallegri, Franco; Viviani, Giorgio Luciano; Montecucco, Fabrizio

    2013-01-01

    The primary function of pancreatic beta-cells is to produce and release insulin in response to increment in extracellular glucose concentrations, thus maintaining glucose homeostasis. Deficient beta-cell function can have profound metabolic consequences, leading to the development of hyperglycemia and, ultimately, diabetes mellitus. Therefore, strategies targeting the maintenance of the normal function and protecting pancreatic beta-cells from injury or death might be crucial in the treatment of diabetes. This narrative review will update evidence from the recently identified molecular regulators preserving beta-cell mass and function recovery in order to suggest potential therapeutic targets against diabetes. This review will also highlight the relevance for novel molecular pathways potentially improving beta-cell dysfunction. PMID:23737653

  11. Cutting Edge: the BTLA-HVEM regulatory pathway interferes with protective immunity to intestinal Helminth infection.

    PubMed

    Breloer, Minka; Hartmann, Wiebke; Blankenhaus, Birte; Eschbach, Marie-Luise; Pfeffer, Klaus; Jacobs, Thomas

    2015-02-15

    Helminths exploit intrinsic regulatory pathways of the mammalian immune system to dampen the immune response directed against them. In this article, we show that infection with the parasitic nematode Strongyloides ratti induced upregulation of the coinhibitory receptor B and T lymphocyte attenuator (BTLA) predominantly on CD4(+) T cells but also on a small fraction of innate leukocytes. Deficiency of either BTLA or its ligand herpes virus entry mediator (HVEM) resulted in reduced numbers of parasitic adults in the small intestine and reduced larval output throughout infection. Reduced parasite burden in BTLA- and HVEM-deficient mice was accompanied by accelerated degranulation of mucosal mast cells and increased Ag-specific production of the mast cell-activating cytokine IL-9. Our combined results support a model whereby BTLA on CD4(+) T cells and additional innate leukocytes is triggered by HVEM and delivers negative signals into BTLA(+) cells, thereby interfering with the protective immune response to this intestinal parasite. PMID:25595777

  12. Advanced glycation end-products induced VEGF production and inflammatory responses in human synoviocytes via RAGE-NF-κB pathway activation.

    PubMed

    Chen, Ying-Ju; Chan, Ding-Cheng; Chiang, Chih-Kang; Wang, Ching-Chia; Yang, Ting-Hua; Lan, Kuo-Cheng; Chao, Sung-Chuan; Tsai, Keh-Sung; Yang, Rong-Sen; Liu, Shing-Hwa

    2016-05-01

    Aging and diabetes are known to be the major cause to affect the progression of osteoarthritis (OA). Advanced glycation end products (AGEs) have been observed to accumulate in various organs especially in joint tissue and do damage to the joint tissue during aging and diabetes. Synovial angiogenesis and inflammation are observed across the full range of OA severity. The signaling pathway of AGEs on vascular endothelial growth factor (VEGF) production and inflammatory responses in synoviocytes are still unclear. Here, we investigated the role of receptor for AGEs (RAGE) and the signaling pathway involved in AGEs-induced VEGF production and inflammatory responses in human synoviocytes. Human synoviocytes were cultured and treated with AGEs (25-100 µg/ml). AGEs significantly induced the protein expressions of cyclooxygenase-2 (COX-2) and VEGF and the productions of prostaglandin-E2 (PGE2), VEGF, interleukin-6 (IL-6), and metalloproteinase-13 (MMP-13) in human synoviocytes in a dose-dependent manner. Moreover, AGEs markedly activated the phosphorylations of IκB kinase (IKK)α/β, IκBα, and nuclear factor (NF)-κB-p65 proteins in human synoviocytes in a time-dependent manner. Treatment with neutralizing antibody for RAGE statistically significantly decreased the AGEs-induced increase in COX-2, VEGF, PGE2, IL-6, and MMP13 and AGEs-activated NF-κB pathway activation. Taken together, these findings indicate that AGEs are capable of inducing VEGF production and inflammatory responses via RAGE-NF-κB pathway activation in human synoviocytes. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:791-800, 2016. PMID:26497299

  13. Ischemic preconditioning protects the brain against injury via inhibiting CaMKII-nNOS signaling pathway.

    PubMed

    Wang, Mei; Qi, Da-Shi; Zhou, Cui; Han, Dong; Li, Pei-Pei; Zhang, Fang; Zhou, Xiao-Yan; Han, Meng; Di, Jie-Hui; Ye, Jun-Song; Yu, Hong-Min; Song, Yuan-Jian; Zhang, Guang-Yi

    2016-03-01

    Although studies have shown that cerebral ischemic preconditioning (IPC) can ameliorate ischemia/reperfusion (I/R) induced brain damage, but its precise mechanisms remain unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of IPC against ischemic brain damage induced by cerebral I/R and to explore whether the Calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway contributed to the protection provided by IPC. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with 3min of IPC alone or KN62 (selective antagonist of CaMKII) treatment before IPC, after reperfusion for 3 days, 6min ischemia was induced. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of CaMKII, nNOS, c-Jun and the expression of FasL. Immunoprecipitation was used to examine the binding between PSD95 and nNOS. The results showed that IPC could significantly protect neurons against cerebral I/R injury, furthermore, the combination of PSD95 and nNOS was increased, coinstantaneously the phosphorylation of CaMKII and nNOS (ser847) were up-regulated, however the activation of c-Jun and FasL were reduced. Conversely, KN62 treatment before IPC reversed all these effects of IPC. Taken together, the results suggest that IPC could diminish ischemic brain injury through CaMKII-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway. PMID:26794251

  14. Ghrelin protects infarcted myocardium by induction of autophagy and AMP-activated protein kinase pathway.

    PubMed

    Yuan, Ming-Jie; Kong, Bin; Wang, Tao; Wang, Xin; Huang, He; Maghsoudi, Taneen

    2016-08-01

    The majority of studies have reported that enhancing autophagy in the myocardium is cardioprotective. Here, we tested the hypothesis that ghrelin, a growth hormone-releasing peptide, will protect infarcted myocardium by inducing of autophagy. Myocardial infarction was induced in mice by left coronary artery ligation the surviving mice 24 h after surgical were started on 2 week treatments with one of the following: vehicle, acylated ghrelin(50 mg/kg per day) or acylated ghrelin plus 3-MA(an autophagy inhibitor, 15 mg/kg, per day). We found that ghrelin significantly improved the cardiac function, and autophagy was enhanced by elevated LC3-II/LC-I ratio and mRNA expression of autophagy related protein. In vitro, cultured neonatal rat ventricular cardiomyocytes were subjected to simulate ischemia/reperfusion, 3-MA significantly attenuated ghrelin-induced autophagy, which was associated with activated AMP-activated protein kinase (AMPK) signal pathway. Moreover, ghrelin reduced cell death, and RNAi-mediated knockdown of autophagy protein 5 (Atg5) partly abolished ghrelin's cardioprotective effect. It is the first time to demonstrate that the cardioprotective effect of ghrelin on ischemia myocardium in part through regulating of autophagy signal pathway. PMID:27235554

  15. Histone deacetylase inhibition protects hearing against acute ototoxicity by activating the Nf-κB pathway

    PubMed Central

    Layman, WS; Williams, DM; Dearman, JA; Sauceda, MA; Zuo, J

    2015-01-01

    Auditory hair cells have repeatedly been shown to be susceptible to ototoxicity from a multitude of drugs including aminoglycoside antibiotics. Here, we found that systemic HDAC inhibition using suberoylanilide hydroxamic acid (SAHA) on adult mice offers almost complete protection against hair cell loss and hearing threshold shifts from acute ototoxic insult from kanamycin potentiated with furosemide. We also found that the apparent lack of hair cell loss was completely independent of spontaneous or facilitated (ectopic Atoh1 induction) hair cell regeneration. Rather, SAHA treatment correlated with RelA acetylation (K310) and subsequent activation of the Nf-κB pro-survival pathway leading to expression of pro-survival genes such as Cflar (cFLIP) and Bcl2l1 (Bcl-xL). In addition, we also detected increased expression of pro-survival genes Cdkn1a (p21) and Hspa1a (Hsp70), and decreased expression of the pro-apoptosis gene Bcl2l11 (Bim). These data combined provide evidence that class I HDACs control the transcriptional activation of pro-survival pathways in response to ototoxic insult by regulating the acetylation status of transcription factors found at the crossroads of cell death and survival in the mammalian inner ear. PMID:26279947

  16. Autophagy confers DNA damage repair pathways to protect the hematopoietic system from nuclear radiation injury

    PubMed Central

    Lin, Weiwei; Yuan, Na; Wang, Zhen; Cao, Yan; Fang, Yixuan; Li, Xin; Xu, Fei; Song, Lin; Wang, Jian; Zhang, Han; Yan, Lili; Xu, Li; Zhang, Xiaoying; Zhang, Suping; Wang, Jianrong

    2015-01-01

    Autophagy is essentially a metabolic process, but its in vivo role in nuclear radioprotection remains unexplored. We observed that ex vivo autophagy activation reversed the proliferation inhibition, apoptosis, and DNA damage in irradiated hematopoietic cells. In vivo autophagy activation improved bone marrow cellularity following nuclear radiation exposure. In contrast, defective autophagy in the hematopoietic conditional mouse model worsened the hematopoietic injury, reactive oxygen species (ROS) accumulation and DNA damage caused by nuclear radiation exposure. Strikingly, in vivo defective autophagy caused an absence or reduction in regulatory proteins critical to both homologous recombination (HR) and non-homologous end joining (NHEJ) DNA damage repair pathways, as well as a failure to induce these proteins in response to nuclear radiation. In contrast, in vivo autophagy activation increased most of these proteins in hematopoietic cells. DNA damage assays confirmed the role of in vivo autophagy in the resolution of double-stranded DNA breaks in total bone marrow cells as well as bone marrow stem and progenitor cells upon whole body irradiation. Hence, autophagy protects the hematopoietic system against nuclear radiation injury by conferring and intensifying the HR and NHEJ DNA damage repair pathways and by removing ROS and inhibiting apoptosis. PMID:26197097

  17. Reducing canonical Wingless/Wnt signaling pathway confers protection against mutant Huntingtin toxicity in Drosophila.

    PubMed

    Dupont, Pascale; Besson, Marie-Thérèse; Devaux, Jérôme; Liévens, Jean-Charles

    2012-08-01

    Huntington's disease (HD) is a genetic neurodegenerative disease characterized by movement disorders, cognitive decline and neuropsychiatric symptoms. HD is caused by expanded CAG tract within the coding region of Huntingtin protein. Despite major insights into the molecular mechanisms leading to HD, no effective cure is yet available. Mutant Huntingtin (mHtt) has been reported to alter the stability and levels of β-Catenin, a key molecule in cell adhesion and signal transduction in Wingless (Wg)/Wnt pathway. However it remains to establish whether manipulation of Wg/Wnt signaling can impact HD pathology. We here investigated the phenotypic interactions between mHtt and Wg/Wnt signaling by using the power of Drosophila genetics. We provide compelling evidence that reducing Armadillo/β-Catenin levels confers protection and that this beneficial effect is correlated with the inactivation of the canonical Wg/Wnt signaling pathway. Knockdowns of Wnt ligands or of the downstream transcription factor Pangolin/TCF both ameliorate the survival of HD flies. Similarly, overexpression of one Armadillo/β-Catenin destruction complex component (Axin, APC2 or Shaggy/GSK-3β) increases the lifespan of HD flies. Loss of functional Armadillo/β-Catenin not only abolishes neuronal intrinsic but also glia-induced alterations in HD flies. Our findings highlight that restoring canonical Wg/Wnt signaling may be of therapeutic value. PMID:22531500

  18. IGF-1 protects tubular epithelial cells during injury via activation of ERK/MAPK signaling pathway

    PubMed Central

    Wu, Zengbin; Yu, Yang; Niu, Lei; Fei, Aihua; Pan, Shuming

    2016-01-01

    Injury of renal tubular epithelial cells can induce acute renal failure and obstructive nephropathy. Previous studies have shown that administration of insulin-like growth factor-1 (IGF-1) ameliorates the renal injury in a mouse unilateral ureteral obstruction (UUO) model, whereas the underlying mechanisms are not completely understood. Here, we addressed this question. We found that the administration of IGF-1 significantly reduced the severity of the renal fibrosis in UUO. By analyzing purified renal epithelial cells, we found that IGF-1 significantly reduced the apoptotic cell death of renal epithelial cells, seemingly through upregulation of anti-apoptotic protein Bcl-2, at protein but not mRNA level. Bioinformatics analyses and luciferase-reporter assay showed that miR-429 targeted the 3′-UTR of Bcl-2 mRNA to inhibit its protein translation in renal epithelial cells. Moreover, IGF-1 suppressed miR-429 to increase Bcl-2 in renal epithelial cells to improve survival after UUO. Furthermore, inhibition of ERK/MAPK signaling pathway in renal epithelial cells abolished the suppressive effects of IGF-1 on miR-429 activation, and then the enhanced effects on Bcl-2 in UUO. Thus, our data suggest that IGF-1 may protect renal tubular epithelial cells via activation of ERK/MAPK signaling pathway during renal injury. PMID:27301852

  19. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation.

    PubMed

    Rialdi, Alex; Campisi, Laura; Zhao, Nan; Lagda, Arvin Cesar; Pietzsch, Colette; Ho, Jessica Sook Yuin; Martinez-Gil, Luis; Fenouil, Romain; Chen, Xiaoting; Edwards, Megan; Metreveli, Giorgi; Jordan, Stefan; Peralta, Zuleyma; Munoz-Fontela, Cesar; Bouvier, Nicole; Merad, Miriam; Jin, Jian; Weirauch, Matthew; Heinz, Sven; Benner, Chris; van Bakel, Harm; Basler, Christopher; García-Sastre, Adolfo; Bukreyev, Alexander; Marazzi, Ivan

    2016-05-27

    The host innate immune response is the first line of defense against pathogens and is orchestrated by the concerted expression of genes induced by microbial stimuli. Deregulated expression of these genes is linked to the initiation and progression of diseases associated with exacerbated inflammation. We identified topoisomerase 1 (Top1) as a positive regulator of RNA polymerase II transcriptional activity at pathogen-induced genes. Depletion or chemical inhibition of Top1 suppresses the host response against influenza and Ebola viruses as well as bacterial products. Therapeutic pharmacological inhibition of Top1 protected mice from death in experimental models of lethal inflammation. Our results indicate that Top1 inhibition could be used as therapy against life-threatening infections characterized by an acutely exacerbated immune response. PMID:27127234

  20. Naringenin Inhibits Superoxide Anion-Induced Inflammatory Pain: Role of Oxidative Stress, Cytokines, Nrf-2 and the NO-cGMP-PKG-KATPChannel Signaling Pathway.

    PubMed

    Manchope, Marília F; Calixto-Campos, Cássia; Coelho-Silva, Letícia; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Georgetti, Sandra R; Baracat, Marcela M; Casagrande, Rúbia; Verri, Waldiceu A

    2016-01-01

    In the present study, the effect and mechanism of action of the flavonoid naringenin were evaluated in superoxide anion donor (KO2)-induced inflammatory pain in mice. Naringenin reduced KO2-induced overt-pain like behavior, mechanical hyperalgesia, and thermal hyperalgesia. The analgesic effect of naringenin depended on the activation of the NO-cGMP-PKG-ATP-sensitive potassium channel (KATP) signaling pathway. Naringenin also reduced KO2-induced neutrophil recruitment (myeloperoxidase activity), tissue oxidative stress, and cytokine production. Furthermore, naringenin downregulated KO2-induced mRNA expression of gp91phox, cyclooxygenase (COX)-2, and preproendothelin-1. Besides, naringenin upregulated KO2-reduced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mRNA expression coupled with enhanced heme oxygenase (HO-1) mRNA expression. In conclusion, the present study demonstrates that the use of naringenin represents a potential therapeutic approach reducing superoxide anion-driven inflammatory pain. The antinociceptive, anti-inflammatory and antioxidant effects are mediated via activation of the NO-cGMP-PKG-KATP channel signaling involving the induction of Nrf2/HO-1 pathway. PMID:27045367

  1. Flavonoids from Radix Tetrastigmae inhibit TLR4/MD-2 mediated JNK and NF-κB pathway with anti-inflammatory properties.

    PubMed

    Liu, Dandan; Cao, Gang; Han, Likai; Ye, Yilu; SiMa, Yuhan; Ge, Weihong

    2016-08-01

    Radix Tetrastigmae (RT) has immunomodulatory activity, particularly on inflammation and the flavonoids from RT (RTFs) are one of the main components. In this study, we detected the anti-inflammation potential of RTFs in LPS-induced RAW264.7 cells and tried to uncover the underlying mechanism. Results demonstrated that RTFs (10-160μg/ml) treatment significantly decreased LPS-induced production of pro-inflammatory mediators, including NO, IL-1β, TNF-α, IL-6, IL-12p40, sTNF-R1 and increased anti-inflammatory cytokine IL-10 expression in macrophages in a dose-dependent manner. Molecular research showed the up-regulated expression of TLR4, MD-2, MyD88 and TLR4/MD-2 complex induced by LPS were attenuated after RTFs treatment. Furthermore, phosphorylation and activity of JNK and NF-κB, two important downstream signaling molecules of TLR4/MD-2 pathway, were also changed along with TLR4/MD-2 complex. But no significant phosphorylation was observed on p38 and ERK. In conclusion, RTFs contribute to the regulation of LPS-induced inflammatory response in RAW264.7 cells through TLR4/MD-2 mediated NF-κB and JNK pathway. It may be a potential choice for the treatment of inflammation diseases. PMID:27235587

  2. Naringenin Inhibits Superoxide Anion-Induced Inflammatory Pain: Role of Oxidative Stress, Cytokines, Nrf-2 and the NO−cGMP−PKG−KATPChannel Signaling Pathway

    PubMed Central

    Manchope, Marília F.; Calixto-Campos, Cássia; Coelho-Silva, Letícia; Zarpelon, Ana C.; Pinho-Ribeiro, Felipe A.; Georgetti, Sandra R.; Baracat, Marcela M.; Casagrande, Rúbia; Verri, Waldiceu A.

    2016-01-01

    In the present study, the effect and mechanism of action of the flavonoid naringenin were evaluated in superoxide anion donor (KO2)-induced inflammatory pain in mice. Naringenin reduced KO2-induced overt-pain like behavior, mechanical hyperalgesia, and thermal hyperalgesia. The analgesic effect of naringenin depended on the activation of the NO−cGMP−PKG−ATP-sensitive potassium channel (KATP) signaling pathway. Naringenin also reduced KO2-induced neutrophil recruitment (myeloperoxidase activity), tissue oxidative stress, and cytokine production. Furthermore, naringenin downregulated KO2-induced mRNA expression of gp91phox, cyclooxygenase (COX)-2, and preproendothelin-1. Besides, naringenin upregulated KO2-reduced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mRNA expression coupled with enhanced heme oxygenase (HO-1) mRNA expression. In conclusion, the present study demonstrates that the use of naringenin represents a potential therapeutic approach reducing superoxide anion-driven inflammatory pain. The antinociceptive, anti-inflammatory and antioxidant effects are mediated via activation of the NO−cGMP−PKG−KATP channel signaling involving the induction of Nrf2/HO-1 pathway. PMID:27045367

  3. Protective Effects of Green Tea Polyphenol Against Renal Injury Through ROS-Mediated JNK-MAPK Pathway in Lead Exposed Rats

    PubMed Central

    Wang, Haidong; Li, Deyuan; Hu, Zhongze; Zhao, Siming; Zheng, Zhejun; Li, Wei

    2016-01-01

    To investigate the potential therapeutic effects of polyphenols in treating Pb induced renal dysfunction and intoxication and to explore the detailed underlying mechanisms. Wistar rats were divided into four groups: control groups (CT), Pb exposure groups (Pb), Pb plus Polyphenols groups (Pb+PP) and Polyphenols groups (PP). Animals were kept for 60 days and sacrificed for tests of urea, serum blood urea nitrogen (BUN) and creatinine. Histological evaluations were then performed. In vitro studies were performed using primary kidney mesangial cells to reveal detailed mechanisms. Cell counting kit-8 (CCK-8) was used to evaluate cell viability. Pb induced cell apoptosis was measured by flow cytometry. Reactive oxygen species (ROS) generation and scavenging were tested by DCFH-DA. Expression level of tumor necrosis factor-α (TNF-α), interleukin-1-β (IL-1-β) and IL-6 were assayed by ELISA. Western blot and qPCR were used to measure the expression of ERK1/2, JNK1/2 and p38. Polyphenols have obvious protective effects on Pb induced renal dysfunction and intoxication both in vivo and in vitro. Polyphenols reduced Pb concentration and accumulation in kidney. Polyphenols also protected kidney mesangial cells from Pb induced apoptosis. Polyphenols scavenged Pb induced ROS generation and suppressed ROS-mediated ERK/JNK/p38 pathway. Downstream pro-inflammatory cytokines were inhibited in consistency. Polyphenol is protective in Pb induced renal intoxication and inflammatory responses. The underlying mechanisms lie on the antioxidant activity and ROS scavenging activity of polyphenols. PMID:27239812

  4. Protective Effects of Green Tea Polyphenol Against Renal Injury Through ROS-Mediated JNK-MAPK Pathway in Lead Exposed Rats.

    PubMed

    Wang, Haidong; Li, Deyuan; Hu, Zhongze; Zhao, Siming; Zheng, Zhejun; Li, Wei

    2016-06-30

    To investigate the potential therapeutic effects of polyphenols in treating Pb induced renal dysfunction and intoxication and to explore the detailed underlying mechanisms. Wistar rats were divided into four groups: control groups (CT), Pb exposure groups (Pb), Pb plus Polyphenols groups (Pb+PP) and Polyphenols groups (PP). Animals were kept for 60 days and sacrificed for tests of urea, serum blood urea nitrogen (BUN) and creatinine. Histological evaluations were then performed. In vitro studies were performed using primary kidney mesangial cells to reveal detailed mechanisms. Cell counting kit-8 (CCK-8) was used to evaluate cell viability. Pb induced cell apoptosis was measured by flow cytometry. Reactive oxygen species (ROS) generation and scavenging were tested by DCFH-DA. Expression level of tumor necrosis factor-α (TNF-α), interleukin-1-β (IL-1-β) and IL-6 were assayed by ELISA. Western blot and qPCR were used to measure the expression of ERK1/2, JNK1/2 and p38. Polyphenols have obvious protective effects on Pb induced renal dysfunction and intoxication both in vivo and in vitro. Polyphenols reduced Pb concentration and accumulation in kidney. Polyphenols also protected kidney mesangial cells from Pb induced apoptosis. Polyphenols scavenged Pb induced ROS generation and suppressed ROS-mediated ERK/JNK/p38 pathway. Downstream pro-inflammatory cytokines were inhibited in consistency. Polyphenol is protective in Pb induced renal intoxication and inflammatory responses. The underlying mechanisms lie on the antioxidant activity and ROS scavenging activity of polyphenols. PMID:27239812

  5. STK4 regulates TLR pathways and protects against chronic inflammation–related hepatocellular carcinoma

    PubMed Central

    Li, Weiyun; Xiao, Jun; Zhou, Xin; Xu, Ming; Hu, Chaobo; Xu, Xiaoyan; Lu, Yao; Liu, Chang; Xue, Shengjie; Nie, Lei; Zhang, Haibin; Li, Zhiqi; Zhang, Yanbo; Ji, Fu; Hui, Lijian; Tao, Wufan; Wei, Bin; Wang, Hongyan

    2015-01-01

    Hepatocellular carcinoma (HCC) is frequently associated with pathogen infection–induced chronic inflammation. Large numbers of innate immune cells are present in HCCs and can influence disease outcome. Here, we demonstrated that the tumor suppressor serine/threonine-protein kinase 4 (STK4) differentially regulates TLR3/4/9-mediated inflammatory responses in macrophages and thereby is protective against chronic inflammation–associated HCC. STK4 dampened TLR4/9-induced proinflammatory cytokine secretion but enhanced TLR3/4-triggered IFN-β production via binding to and phosphorylating IL-1 receptor–associated kinase 1 (IRAK1), leading to IRAK1 degradation. Notably, macrophage-specific Stk4 deletion resulted in chronic inflammation, liver fibrosis, and HCC in mice treated with a combination of diethylnitrosamine (DEN) and CCl4, along with either LPS or E. coli infection. STK4 expression was markedly reduced in macrophages isolated from human HCC patients and was inversely associated with the levels of IRAK1, IL-6, and phospho-p65 or phospho-STAT3. Moreover, serum STK4 levels were specifically decreased in HCC patients with high levels of IL-6. In STK4-deficient mice, treatment with an IRAK1/4 inhibitor after DEN administration reduced serum IL-6 levels and liver tumor numbers to levels similar to those observed in the control mice. Together, our results suggest that STK4 has potential as a diagnostic biomarker and therapeutic target for inflammation-induced HCC. PMID:26457732

  6. Liquiritigenin Protects Rats from Carbon Tetrachloride Induced Hepatic Injury through PGC-1α Pathway

    PubMed Central

    Zhang, Yiping; He, Yuanqiao; Yu, Hongbo; Ma, Fuying; Wu, Jianguo; Zhang, Xiaoyu

    2015-01-01

    The lack of effective treatment for liver cirrhosis and hepatocellular carcinomas imposes serious challenges to the healthcare system. Here, we investigated the efficacy and mechanism of liquiritigenin involved in preventing or retarding the progression of liver diseases in a rat model with chronic carbon tetrachloride (CCl4) exposure. Sprague Dawley rats were given CCl4 and lliquiritigenin alone or simultaneously for 8 weeks before liver was harvested to check histological changes by Hematoxylin and Eosin (H&E) staining, apoptosis by TUNEL assay, ROS by dihydroethidium staining, antioxidant enzyme activities and malondialdehyde using specific kits, and gene expression by quantitative real-time PCR and western blot. Chronic CCl4 exposure caused profound changes in liver histology with extensive hepatocyte death (necrosis and apoptosis), fat accumulation, and infiltration of inflammatory cells, accompanied by depressed activities of antioxidant enzymes, increased oxidative stress, elevated expression of inflammation and fibrotic genes, and downregulation of PGC-1α, ND1, and Bcl-x in rat liver. All these changes were abolished or alleviated by lliquiritigenin. The results demonstrated that liquiritigenin is effective in protecting liver from injury or treating chronic liver diseases. The modulation of PGC-1α and its downstream genes might play a critical role in relieving CCl4-induced hepatic pathogenesis by liquiritigenin. PMID:26199636

  7. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway.

    PubMed

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-10-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8(+) T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  8. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway

    PubMed Central

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-01-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  9. Alpha-Pinene Exhibits Anti-Inflammatory Activity Through the Suppression of MAPKs and the NF-κB Pathway in Mouse Peritoneal Macrophages.

    PubMed

    Kim, Dae-Seung; Lee, Hyun-Ja; Jeon, Yong-Deok; Han, Yo-Han; Kee, Ji-Ye; Kim, Hyun-Jeong; Shin, Hyun-Ji; Kang, JongWook; Lee, Beom Su; Kim, Sung-Hoon; Kim, Su-Jin; Park, Sang-Hyun; Choi, Byung-Min; Park, Sung-Joo; Um, Jae-Young; Hong, Seung-Heon

    2015-01-01

    In this study, we found that alpha-pinene (α-pinene) exhibits anti-inflammatory activity through the suppression of mitogen-activated protein kinases (MAPKs) and the nuclear factor-kappa B (NF-κB) pathway in mouse peritoneal macrophages. α-Pinene is found in the oils of many coniferous trees and rosemary. We investigated the inhibitory effects of α-Pinene on inflammatory responses induced by lipopolysaccharide (LPS) using mouse peritoneal macrophages. α-Pinene significantly decreased the LPS-induced production of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO). α-Pinene also inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in LPS-stimulated macrophages. Additionally, the activations of MAPKs and NF-κB were attenuated by means of α-pinene treatment. These results indicate that α-pinene has an anti-inflammatory effect and that it is a potential candidate as a new drug to treat various inflammatory diseases. PMID:26119957

  10. Pioglitazone Protected against Cardiac Hypertrophy via Inhibiting AKT/GSK3β and MAPK Signaling Pathways

    PubMed Central

    Wei, Wen-Ying; Ma, Zhen-Guo; Xu, Si-Chi; Zhang, Ning; Tang, Qi-Zhu

    2016-01-01

    Peroxisome proliferator activated receptor γ (PPARγ) has been closely involved in the process of cardiovascular diseases. This study was to investigate whether pioglitazone (PIO), a PPARγ agonist, could protect against pressure overload-induced cardiac hypertrophy. Mice were orally given PIO (2.5 mg/kg) from 1 week after aortic banding and continuing for 7 weeks. The morphological examination and biochemical analysis were used to evaluate the effects of PIO. Neonatal rat ventricular cardiomyocytes were also used to verify the protection of PIO against hypertrophy in vitro. The results in our study demonstrated that PIO remarkably inhibited hypertrophic response induced by aortic banding in vivo. Besides, PIO also suppressed cardiac fibrosis in vivo. PIO treatment also inhibited the activation of protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) and mitogen-activated protein kinase (MAPK) in the heart. In addition, PIO alleviated angiotensin II-induced hypertrophic response in vitro. In conclusion, PIO could inhibit cardiac hypertrophy via attenuation of AKT/GSK3β and MAPK pathways. PMID:27110236

  11. Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress and inhibiting polyol pathway

    PubMed Central

    Li, Qing-rong; Wang, Zhuo; Zhou, Wei; Fan, Shou-rui; Ma, Run; Xue, Li; Yang, Lu; Li, Ya-shan; Tan, Hong-li; Shao, Qing-hua; Yang, Hong-ying

    2016-01-01

    Epalrestat is a noncompetitive and reversible aldose reductase inhibitor used for the treatment of diabetic neuropathy. This study assumed that epalrestat had a protective effect on diabetic peripheral nerve injury by suppressing the expression of aldose reductase in peripheral nerves of diabetes mellitus rats. The high-fat and high-carbohydrate model rats were established by intraperitoneal injection of streptozotocin. Peripheral neuropathy occurred in these rats after sustaining high blood glucose for 8 weeks. At 12 weeks after streptozotocin injection, rats were intragastrically administered epalrestat 100 mg/kg daily for 6 weeks. Transmission electron microscope revealed that the injuries to myelinated nerve fibers, non-myelinated nerve fibers and Schwann cells of rat sciatic nerves had reduced compared to rats without epalrestat administuation. Western blot assay and immunohistochemical results demonstrated that after intervention with epalrestat, the activities of antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase gradually increased, but aldose reductase protein expression gradually diminished. Results confirmed that epalrestat could protect against diabetic peripheral neuropathy by relieving oxidative stress and suppressing the polyol pathway. PMID:27073391

  12. Wild bitter gourd protects against alcoholic fatty liver in mice by attenuating oxidative stress and inflammatory responses.

    PubMed

    Lu, Kuan-Hung; Tseng, Hui-Chun; Liu, Chun-Ting; Huang, Ching-Jang; Chyuan, Jong-Ho; Sheen, Lee-Yan

    2014-05-01

    Bitter gourd (Momordica charantia L.) is a common vegetable grown widely in Asia that is used as a traditional medicine. The objective of this study was to investigate whether wild bitter gourd possessed protective effects against chronic alcohol-induced liver injury in mice. C57BL/6 mice were fed an alcohol-containing liquid diet for 4 weeks to induce alcoholic fatty liver. Meanwhile, mice were treated with ethanol extracts from four different wild bitter gourd cultivars: Hualien No. 1', Hualien No. 2', Hualien No. 3' and Hualien No. 4'. The results indicated that the daily administration of 500 mg kg body weight(-1) of a Hualien No. 3' extract (H3E) or a Hualien No. 4' extract (H4E) markedly reduced the steatotic alternation of liver histopathology. In addition, the activation of serum aminotransferases (AST and ALT) and the accumulation of hepatic TG content caused by alcohol were ameliorated. The hepatoprotective effects of H3E and H4E involved the enhancement of the antioxidant defence system (GSH, GPx, GRd, CAT and SOD), inhibition of lipid peroxidation (MDA) and reduction of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in the liver. Moreover, H3E and H4E supplementation suppressed the alcohol-induced elevation of CYP2E1, SREBP-1, FAS and ACC protein expression. These results demonstrated that ethanol extracts of Hualien No. 3' and Hualien No. 4' have beneficial effects against alcoholic fatty liver, in which they attenuate oxidative stress and inflammatory responses. PMID:24664243

  13. Inflammatory and fibrotic processes are involved in the cardiotoxic effect of sunitinib: Protective role of L-carnitine.

    PubMed

    Blanca, Antonio J; Ruiz-Armenta, María V; Zambrano, Sonia; Miguel-Carrasco, José L; Arias, José L; Arévalo, Miguel; Mate, Alfonso; Aramburu, Oscar; Vázquez, Carmen M

    2016-01-22

    Sunitinib (Su) is currently approved for treatment of several malignances. However, along with the benefits of disease stabilization, cardiovascular toxicities have also been increasingly recognized. The aim of this study was to analyze which mechanisms are involved in the cardiotoxicity caused by Su, as well as to explore the potential cardioprotective effects of l-carnitine (LC). To this end, four groups of Wistar rats were used: (1) control; (2) rats treated with 400mg LC/kg/day; (3) rats treated with 25mg Su/kg/day; and (4) rats treated with LC+Su simultaneously. In addition, cultured rat cardiomyocytes were treated with an inhibitor of nuclear factor kappa B (NF-κB), in order to examine the role of this transcription factor in this process. An elevation in the myocardial expression of pro-inflammatory cytokines, together with an increase in the mRNA expression of NF-κB, was observed in Su-treated rats. These results were accompanied by an increase in the expression of pro-fibrotic factors, nitrotyrosine and NOX 2 subunit of NADPH oxidase; and by a decrease in that of collagen degradation factor. Higher blood pressure and heart rate levels were also found in Su-treated rats. All these alterations were inhibited by co-administration of LC. Furthermore, cardiotoxic effects of Su were blocked by NF-κB inhibition. Our results suggest that: (i) inflammatory and fibrotic processes are involved in the cardiac toxicity observed following treatment with Su; (ii) these processes might be mediated by the transcription factor NF-κB; (iii) LC exerts a protective effect against arterial hypertension, cardiac inflammation and fibrosis, which are all observed after Su treatment. PMID:26581635

  14. JunB protects β-cells from lipotoxicity via the XBP1-AKT pathway.

    PubMed

    Cunha, D A; Gurzov, E N; Naamane, N; Ortis, F; Cardozo, A K; Bugliani, M; Marchetti, P; Eizirik, D L; Cnop, M

    2014-08-01

    Diets rich in saturated fats may contribute to the loss of pancreatic β-cells in type 2 diabetes. JunB, a member of the activating protein 1 (AP-1) transcription factor family, promotes β-cell survival and mediates part of the beneficial effects of GLP-1 agonists. In this study we interrogated the molecular mechanisms involved in JunB-mediated β-cell protection from lipotoxicity. The saturated fatty acid palmitate decreased JunB expression, and this loss may contribute to β-cell apoptosis, as overexpression of JunB protected cells from lipotoxicity. Array analysis of JunB-deficient β-cells identified a gene expression signature of a downregulated endoplasmic reticulum (ER) stress response and inhibited AKT signaling. JunB stimulates XBP1 expression via the transcription factor c/EBPδ during ER stress, and forced expression of XBP1s rescued the viability of JunB-deficient cells, constituting an important antiapoptotic mechanism. JunB silencing inhibited AKT activation and activated the proapoptotic Bcl-2 protein BAD via its dephosphorylation. BAD knockdown reversed lipotoxic β-cell death potentiated by JunB siRNA. Interestingly, XBP1s links JunB and AKT signaling as XBP1 knockdown also reduced AKT phosphorylation. GLP-1 agonists induced cAMP-dependent AKT phosphorylation leading to β-cell protection against palmitate-induced apoptosis. JunB and XBP1 knockdown or IRE1 inhibition decreased AKT activation by cAMP, leading to β-cell apoptosis. In conclusion, JunB modulates the β-cell ER stress response and AKT signaling via the induction of XBP1s. The activation of the JunB gene network and the crosstalk between the ER stress and AKT pathway constitute a crucial defense mechanism by which GLP-1 agonists protect against lipotoxic β-cell death. These findings elucidate novel β-cell-protective signal transduction in type 2 diabetes. PMID:24786832

  15. Protective Effects of Astaxanthin on ConA-Induced Autoimmune Hepatitis by the JNK/p-JNK Pathway-Mediated Inhibition of Autophagy and Apoptosis

    PubMed Central

    Liu, Tong; Wang, Junshan; Dai, Weiqi; Wang, Fan; Zheng, Yuanyuan; Chen, Kan; Li, Sainan; Abudumijiti, Huerxidan; Zhou, Zheng; Wang, Jianrong; Lu, Wenxia; Zhu, Rong; Yang, Jing; Zhang, Huawei; Yin, Qin; Wang, Chengfen; Zhou, Yuqing; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-01-01

    Objective Astaxanthin, a potent antioxidant, exhibits a wide range of biological activities, including antioxidant, atherosclerosis and antitumor activities. However, its effect on concanavalin A (ConA)-induced autoimmune hepatitis remains unclear. The aim of this study was to investigate the protective effects of astaxanthin on ConA-induced hepatitis in mice, and to elucidate the mechanisms of regulation. Materials and Methods Autoimmune hepatitis was induced in in Balb/C mice using ConA (25 mg/kg), and astaxanthin was orally administered daily at two doses (20 mg/kg and 40 mg/kg) for 14 days before ConA injection. Levels of serum liver enzymes and the histopathology of inflammatory cytokines and other maker proteins were determined at three time points (2, 8 and 24 h). Primary hepatocytes were pretreated with astaxanthin (80 μM) in vitro 24 h before stimulation with TNF-α (10 ng/ml). The apoptosis rate and related protein expression were determined 24 h after the administration of TNF-α. Results Astaxanthin attenuated serum liver enzymes and pathological damage by reducing the release of inflammatory factors. It performed anti-apoptotic effects via the descending phosphorylation of Bcl-2 through the down-regulation of the JNK/p-JNK pathway. Conclusion This research firstly expounded that astaxanthin reduced immune liver injury in ConA-induced autoimmune hepatitis. The mode of action appears to be downregulation of JNK/p-JNK-mediated apoptosis and autophagy. PMID:25761053

  16. Protective effect of apigenin on Freund's complete adjuvant-induced arthritis in rats via inhibiting P2X7/NF-κB pathway.

    PubMed

    Chang, Xiayun; He, He; Zhu, Lingpeng; Gao, Jin; Wei, Tingting; Ma, Zhanqian; Yan, Tianhua

    2015-07-01

    To evaluate the effect of apigenin (AP) on arthritis in rats stimulated by Freund's complete adjuvant (FCA) was the main purpose of the investigation. Arthritis model was established by the administration of 0.1 ml FCA in the palmar surface. AP and diclofenac sodium (DS) were administered to explore and evidence the protective effects against adjuvant-induced arthritis (AA). Cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) were detected to assess the anti-inflammatory effect of AP. Besides, pathological conditions were examined in rat paws. Related-proteins of nuclear factor kappa B (NF-κB) signal pathway activated by P2X7 were investigated to determine the molecular mechanism of AP and their expressions were measured by western blot. The data showed that AP significantly suppressed the expressions of P2X7/NF-κB signal-related proteins and alleviated inflammatory reactions. Therefore, it was assumed that AP might be a potential therapeutic candidate to treat arthritis. PMID:25935278

  17. A Protective Hsp70-TLR4 Pathway in Lethal Oxidant Lung Injury

    PubMed Central

    Zhang, Yi; Zhang, Xuchen; Shan, Peiying; Hunt, Clayton R.; Pandita, Tej K.; Lee, Patty J.

    2013-01-01

    Administering high levels of inspired oxygen, or hyperoxia, is commonly used as a life-sustaining measure in critically ill patients. However, prolonged exposures can exacerbate respiratory failure. Our previous study showed that toll-like receptor 4 (TLR4) confers protection against hyperoxia-induced lung injury and mortality. Hsp70 has potent cytoprotective properties and has been described as a TLR4 ligand in cell lines. We sought to elucidate the relationship between TLR4 and Hsp70 in hyperoxia-induced lung injury in vitro and in vivo and to define the signaling mechanisms involved. Wild type, TLR4−/− and Trif−/− (a TLR4 adapter protein) murine lung endothelial cells (MLEC) were exposed to hyperoxia. We found markedly elevated levels of intracellular and secreted Hsp70 from mice lung and MLEC after hyperoxia. We confirmed that Hsp70 and TLR4 co-immunoprecipitate in lung tissue and MLEC. Hsp70-mediated NFκB activation appears to depend upon TLR4. In the absence of TLR4, Hsp70 loses its protective effects in endothelial cells. Furthermore, these protective properties of Hsp70 are TLR4 adapter Trif-dependent, MyD88-independent. Hsp70-deficient mice have increased mortality during hyperoxia and lung-targeted adenoviral delivery of Hsp70 effectively rescues both Hsp70-deficient and wild type mice. Our studies are the first to define an Hsp70-TLR4-Trif cytoprotective axis in the lung and endothelial cells. This pathway is a potential therapeutic target against a range of oxidant-induced lung injuries. PMID:23817427

  18. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels.

    PubMed

    Zhu, H-L; Luo, W-Q; Wang, H

    2008-12-10

    The rapid and irreversible brain injury produced by anoxia when stroke occurs is well known. Cumulative evidence suggests that the activation of neuronal ATP-sensitive potassium (KATP) channels may have inherent protective effects during cerebral hypoxia, yet little information regarding the therapeutic effects of KATP channel openers is available. We hypothesized that pretreatment with a KATP channel opener might protect against brain injury induced by cerebral hypoxia. In this study, adult Wistar rats were treated with iptakalim, a new KATP channel opener, which is selective for SUR2 type KATP channels, by intragastric administration at doses of 2, 4, or 8 mg/kg/day for 7 days before being exposed to simulated high altitude equivalent to 8000 m in a decompression chamber for 8 h leading to hypoxic brain injury. By light and electron microscopic images, we observed that hypobaric hypoxia-induced brain injury could be prevented by pretreatment with iptakalim. It was also observed that the permeability of the blood-brain barrier, water content, Na+ and Ca2+ concentration, and activities of Na+,K+-ATPase, Ca2+-ATPase and Mg2+-ATPase in rat cerebral cortex were increased and the gene expression of the occludin or aquaporin-4 was down- or upregulated respectively, which could also be prevented by the pretreatment with iptakalim at doses of 2, 4, or 8 mg/kg in a dose-dependent manner. Furthermore, we found that in an oxygen-and-glucose-deprived model in ECV304 cells and rat cortical astrocytes, pretreatment with iptakalim significantly increased survived cell rates and decreased lactate dehydrogenate release, which were significantly antagonized by glibenclamide, a K(ATP) channel blocker. We conclude that iptakalim is a promising drug that may protect against brain injury induced by acute hypobaric hypoxia through multiple pathways associated with SUR2-type K(ATP) channels, suggesting a new therapeutic strategy for stroke treatment. PMID:18951957

  19. Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling.

    PubMed

    Katsuki, Hiroshi; Kurimoto, Emi; Takemori, Sachiko; Kurauchi, Yuki; Hisatsune, Akinori; Isohama, Yoichiro; Izumi, Yasuhiko; Kume, Toshiaki; Shudo, Koichi; Akaike, Akinori

    2009-07-01

    Functions of retinoic acid receptors (RARs) in adult CNS have been poorly characterized. Here we investigated potential neuroprotective action of tamibarotene (Am80), an RARalpha/beta agonist available for the treatment of acute promyelocytic leukemia, on midbrain dopaminergic neurons. Am80 protected dopaminergic neurons in rat midbrain slice culture from injury mediated by lipopolysaccharide-activated microglia, without affecting production of nitric oxide, a key mediator of cell injury. The effect of Am80 was mimicked by another RAR agonist, TAC-101, but not by a retinoid X receptor agonist, HX630, and HX630 did not synergize with Am80. We observed neuronal expression of RARalpha and RARbeta in midbrain slice culture and also found that Am80 increased tissue level of brain-derived neurotrophic factor (BDNF) mRNA. Exogenous BDNF prevented dopaminergic neurodegeneration, and the neuroprotective effect of Am80 was suppressed by a TrkB inhibitor, K252a, or by anti-BDNF neutralizing antibody. These results reveal a novel action of RARs mediated by enhancement of BDNF expression. Finally, oral administration of Am80 prevented dopaminergic cell loss in the substantia nigra induced by local injection of lipopolysaccharide in mice, indicating that RARs are a promising target of therapeutics for neurodegenerative disorders. PMID:19457078

  20. Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-7 through NFκB and MAPK dependent pathways in rat astrocytes

    PubMed Central

    Thompson, Wendy L.; Eldik, Linda J. Van

    2009-01-01

    The chemokines CCL2 and CCL7 are upregulated in the brain during several neurodegenerative and acute diseases associated with infiltration of peripheral leukocytes. Astrocytes can respond to inflammatory cytokines like IL-1β and TNF-α by producing chemokines. This study aims to test the ability of IL-1β and TNF-α to stimulate CCL2 and CCL7 protein production in rat astrocyte cultures, and to elucidate signaling pathways involved in the cytokine-stimulated chemokine upregulation. Astrocytes were stimulated with IL-1β or TNF-α, and CCL2 and CCL7 levels determined by ELISA. Our results show that IL-1β and TNF-α each stimulate production of the chemokines CCL2 and CCL7 in astrocytes in a concentration- and time-dependent manner, with CCL2 showing a more rapid and robust response to the cytokine treatment than CCL7. As a first step to determine the signaling pathways involved in CCL2 and CCL7 upregulation, we stimulated astrocytes with IL-1β or TNF-α in the presence of selective inhibitors of MAPK pathways (SB203580 and SB202190 for p38, SP600125 for JNK, and U0126 for ERK) or NFκB pathways (MG-132 and SC-514). We found that NFκB pathways are important for the cytokine-stimulated CCL2 and CCL7 production, whereas MAPK pathways involving p38 and JNK, but not ERK, may also contribute but to a lesser extent. These data document for the first time that CCL7 protein production can be stimulated in astrocytes by cytokines, and that the upregulation may involve NFκB- and p38/JNK-regulated pathways. In addition, our results suggest that CCL2 and CCL7 share similarities in the signaling pathways necessary for their upregulation. PMID:19577550

  1. Oral azathioprine leads to higher incorporation of 6-thioguanine in DNA of skin than liver: the protective role of the Keap1/Nrf2/ARE pathway.

    PubMed

    Kalra, Sukirti; Zhang, Ying; Knatko, Elena V; Finlayson, Stewart; Yamamoto, Masayuki; Dinkova-Kostova, Albena T

    2011-10-01

    Azathioprine is a widely used anti-inflammatory, immunosuppressive, and anticancer agent. However, chronic treatment with this drug is associated with a profoundly increased risk (in certain cases by more than 100-fold) of developing squamous cell carcinoma of the skin. Incorporation of its ultimate metabolite, thio-dGTP, in DNA results in partial substitution of guanine with 6-thioguanine which, combined with exposure to UVA radiation, creates a source of synergistic mutagenic damage to DNA. We now report that oral treatment with azathioprine leads to a much greater incorporation of 6-thioguanine in DNA of mouse skin than liver. These higher levels of 6-thioguanine, together with the fact that the skin is constantly exposed to UV radiation from the sun, may be responsible, at least in part, for the increased susceptibility of this organ to tumor development. Genetic upregulation of the Keap1/Nrf2/ARE pathway, a major cellular regulator of the expression of a network of cytoprotective genes, reduces the incorporation of 6-thioguanine in DNA of both skin and liver following treatment with azathioprine. Similarly, pharmacologic activation of the pathway by the potent inducer sulforaphane results in lower 6-thioguanine incorporation in DNA and protects 6-thioguanine-treated cells against oxidative stress following exposure to UVA radiation. Protection is accompanied by increased levels of glutathione and induction of multidrug resistance-associated protein 4, an organic anion efflux pump that also exports nucleoside monophosphate analogues. Our findings suggest that activation of the Keap1/Nrf2/ARE pathway could reduce the risk for skin cancer in patients receiving long-term azathioprine therapy. PMID:21803983

  2. Qishenyiqi Protects Ligation-Induced Left Ventricular Remodeling by Attenuating Inflammation and Fibrosis via STAT3 and NF-κB Signaling Pathway

    PubMed Central

    Shi, Tianjiao; Wu, Yan; Han, Jing; Chai, Xingyun; Wang, Wei

    2014-01-01

    Aim Qi-shen-yi-qi (QSYQ), a formula used for the routine treatment of heart failure (HF) in China, has been demonstrated to improve cardiac function through down-regulating the activation of the Renin-Angiotensin-Aldosterone System (RAAS). However, the mechanisms governing its therapeutic effects are largely unknown. The present study aims to demonstrate that QSYQ treatment can prevent left ventricular remodeling in heart failure by attenuating oxidative stress and inhabiting inflammation. Methods Sprague-Dawley (SD) rats were randomly divided into 6 groups: sham group, model group (LAD coronary artery ligation), QSYQ group with high dosage, middle dosage and low dosage (LAD ligation and treated with QSYQ), and captopril group (LAD ligation and treated with captopril as the positive drug). Indicators of fibrosis (Masson, MMPs, and collagens) and inflammation factors were detected 28 days after surgery. Results Results of hemodynamic alterations (dp/dt value) in the model group as well as other ventricular remodeling (VR) markers, such as MMP-2, MMP-9, collagen I and III elevated compared with sham group. VR was accompanied by activation of RAAS (angiotensin II and NADPHoxidase). Levels of pro-inflammatory cytokines (TNF-α, IL-6) in myocardial tissue were also up-regulated. Treatment of QSYQ improved cardiac remodeling through counter-acting the aforementioned events. The improvement of QSYQ was accompanied with a restoration of angiotensin II-NADPHoxidase-ROS-MMPs pathways. In addition, “therapeutic” QSYQ administration can reduce both TNF-α-NF-B and IL-6-STAT3 pathways, respectively, which further proves the beneficial effects of QSYQ. Conclusions Our study demonstrated that QSYQ protected LAD ligation-induced left VR via attenuating AngII -NADPH oxidase pathway and inhabiting inflammation. These findings provide evidence as to the cardiac protective efficacy of QSYQ to HF and explain the beneficial effects of QSYQ in the clinical application for HF. PMID

  3. Raphanus sativus L. seeds prevent LPS-stimulated inflammatory response through negative regulation of the p38 MAPK-NF-κB pathway.

    PubMed

    Kook, Sung-Ho; Choi, Ki-Choon; Lee, Young-Hoon; Cho, Hyoung-Kwon; Lee, Jeong-Chae

    2014-12-01

    The seeds of Raphanus sativus L. (RSL) have long been used as anti-inflammatory traditional medicine. However, scientific bases for the purported potential of the medicine and the associated mechanisms were barely defined. This study investigated the effects of RSL seeds on lipopolysaccharide (LPS)-stimulated inflammatory responses in vitro and in vivo. Treatment with 100 μg/ml ethyl acetate fraction (REF), which was isolated from water extract of the seeds, significantly inhibited LPS-stimulated production of nitric oxide (P < 0.05), interleukin-6 (P < 0.001), and tumor necrosis factor (TNF)-α (P < 0.001) in RAW264.7 cells. Oral supplementation with 30 mg/kg REF protected mice by 90% against LPS-induced septic death and prevented the increases of serum TNF-α and interferon-γ levels in LPS-injected mice. When REF was divided into four sub-fractions (REF-F1-F4), REF-F3 showed the greatest activity to suppress LPS-stimulated production of inflammatory mediators. We subsequently isolated an active fraction from the REF-F3 and identified sinapic acid as the main constituent. The addition of 50 μg/ml active fraction markedly inhibited LPS-stimulated production of inflammatory mediators by suppressing p38 MAPK and nuclear factor-κB activation. Furthermore, supplementation with the active fraction (10 mg/kg) improved the survival rate of LPS-injected mice by 80% of the untreated control. Additional experiments revealed that sinapic acid was the active component responsible for the anti-inflammatory potential of RSL seeds. Collectively, our current results suggest that both RSL seeds and sinapic acid may be attractive materials for treating inflammatory disorders caused by endotoxins. PMID:25467201

  4. Anti-Inflammatory Activity of Tanshinone IIA in LPS-Stimulated RAW264.7 Macrophages via miRNAs and TLR4-NF-κB Pathway.

    PubMed

    Fan, Guanwei; Jiang, Xiaorui; Wu, Xiaoyan; Fordjour, Patrick Asare; Miao, Lin; Zhang, Han; Zhu, Yan; Gao, Xiumei

    2016-02-01

    Inflammation is a physiological response to infection or injury and involves the innate and adaptive immune system. Tanshinone IIA (Tan IIA) is a well-known flavonoid that elicits an important therapeutic effect by inhibiting inflammatory response. In this study, we examined whether Tan IIA exerts anti-inflammatory activity and investigated the possible mechanisms, including Toll-like receptor 4 (TLR4)-MyD88-nuclear factor kappa B (NF-κB) signaling pathway and microRNA expression in lipopolysaccharide (LPS)-induced RAW264.7 cells. Tan IIA could attenuate the inflammatory reaction via decreasing cytokine, chemokine, and acute-phase protein production, including GM-CSF, sICAM-1, cxcl-1, MIP-1α, and tumor necrosis factor alpha (TNF-α), analyzed by Proteome profile array in LPS-induced RAW264.7 cells. Concurrently, the messenger RNA (mRNA) expressions of IL-1β, TNF-α, and COX-2 were also significantly reduced by Tan IIA. Additionally, Tan IIA decreased LPS-induced NF-κB activation and downregulated TLR4 and MyD88 protein expression levels. We also observed reduced microRNA-155, miR-147, miR-184, miR-29b, and miR-34c expression levels, while LPS-induced microRNA-105, miR-145a, miR-194, miR-383, miR-132, and miR-451a expression levels were upregulated using microRNA (miRNA) qPCR array. Our results indicate that Tan IIA could exert an anti-inflammatory effect on LPS-induced RAW264.7 cells by decreasing TLR4-MyD88-NF-κB signaling pathway and regulating a series of cytokine production and miRNA expression. PMID:26639663

  5. Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway.

    PubMed

    Ramasamy, Selvi; Saez, Borja; Mukhopadhyay, Subhankar; Ding, Daching; Ahmed, Alwiya M; Chen, Xi; Pucci, Ferdinando; Yamin, Rae'e; Wang, Jianfeng; Pittet, Mikael J; Kelleher, Cassandra M; Scadden, David T; Sweetser, David A

    2016-02-16

    Tle1 (transducin-like enhancer of split 1) is a corepressor that interacts with a variety of DNA-binding transcription factors and has been implicated in many cellular functions; however, physiological studies are limited. Tle1-deficient (Tle1(Δ/Δ)) mice, although grossly normal at birth, exhibit skin defects, lung hypoplasia, severe runting, poor body condition, and early mortality. Tle1(Δ/Δ) mice display a chronic inflammatory phenotype with increased expression of inflammatory cytokines and chemokines in the skin, lung, and intestine and increased circulatory IL-6 and G-CSF, along with a hematopoietic shift toward granulocyte macrophage progenitor and myeloid cells. Tle1(Δ/Δ) macrophages produce increased inflammatory cytokines in response to Toll-like receptor (TLR) agonists and lipopolysaccharides (LPS), and Tle1(Δ/Δ) mice display an enhanced inflammatory response to ear skin 12-O-tetradecanoylphorbol-13-acetate treatment. Loss of Tle1 not only results in increased phosphorylation and activation of proinflammatory NF-κB but also results in decreased Hes1 (hairy and enhancer of split-1), a negative regulator of inflammation in macrophages. Furthermore, Tle1(Δ/Δ) mice exhibit accelerated growth of B6-F10 melanoma xenografts. Our work provides the first in vivo evidence, to our knowledge, that TLE1 is a major counterregulator of inflammation with potential roles in a variety of inflammatory diseases and in cancer progression. PMID:26831087

  6. Anti-inflammatory function of arctiin by inhibiting COX-2 expression via NF-κB pathways

    PubMed Central

    2011-01-01

    Background Arctiin, isolated from Forsythia suspensa has been reported to have anti-inflammatory, anti-oxidant, antibacterial, and antiviral effects in vitro. However, there has been a lack of studies regarding its effects on immunological activity. The aim of this study is to investigate the anti-inflammatory potential and possible mechanisms of arctiin in LPS-induced macrophages. Methods We investigated the mRNA and protein levels of proinflammatory cytokines through RT-PCR and western blot analysis, followed by a FACS analysis for surface molecule changes. Results Arctiin dose dependently decreased the production of NO and proinflammatory cytokines such as IL-1β, IL-6, TNF-α, and PGE2, and it reduced the gene and protein levels as determined by RT-PCR and western blot analysis, respectively. The expression of co-stimulatory molecules such as B7-1 and B7-2 were also inhibited by arctiin. Furthermore, the activation of the nuclear transcription factor, NF-κB in macrophages was inhibited by arctiin. Conclusion Taken together these results provide evidence of the bioactivity of arctiin in inflammatory diseases and suggest that arctiin may exert anti-inflammatory effect by inhibiting the pro-inflammatory mediators through the inactivation of NF-kB. PMID:21733191

  7. Rho iso-alpha acids from hops inhibit the GSK-3/NF-κB pathway and reduce inflammatory markers associated with bone and cartilage degradation

    PubMed Central

    Konda, Veera Reddy; Desai, Anuradha; Darland, Gary; Bland, Jeffrey S; Tripp, Matthew L

    2009-01-01

    Background Rho iso-alpha acids (RIAA) from hops have been shown to have anti-inflammatory properties. To understand the mechanisms, we evaluated the effect of RIAA in cell signaling pathways and inflammatory markers using various in vitro models. We also investigated their therapeutic effect in mice with collagen-induced arthritis. Methods The LPS-stimulated RAW 264.7 macrophages were used to evaluate the effect of RIAA on the NF-κB and MAPK signaling pathways; phosphorylation of ERK1/2, p38 and JNK was assessed by western blotting and NF-κB binding by electrophoretic mobility shift assays. Effect on the NF-κB activity was evaluated by the luciferase reporter assays in LPS-stimulated RAW 264.7 cells. GSK-3α/β kinase activity was measured in cell-free assays. The inhibitory effect of RIAA on inflammatory markers was assessed by measuring nitric oxide in LPS-stimulated RAW 264.7 cells, RANKL-mediated TRAP activity in transformed osteoclasts, and TNF-α/IL-1β-mediated MMP-13 expression in SW1353 cells. Mice with collagen-induced arthritis were fed with RIAA for 2 weeks. Symptoms of joint swelling, arthritic index and joint damage were assessed. Results RIAA selectively inhibited the NF-κB pathway while having no effect on ERK1/2, p38 and JNK phosphorylation in LPS-stimulated RAW 264.7 cells. RIAA also inhibited GSK-3α/β kinase activity and GSK-3β dependent phosphorylation of β-catenin in RAW 264.7 cells. In addition, RIAA inhibited NF-κB-mediated inflammatory markers in various cell models, including nitric oxide in LPS-stimulated RAW 264.7 cells, RANKL-mediated TRAP activity in transformed osteoclasts, and TNF-α/IL-1β-mediated MMP-13 expression in SW1353 human chondrosarcoma cells. Finally, in a mouse model of collagen-induced arthritis, RIAA ameliorated joint damage as evidenced by significant reduction of the arthritis index and histology score; at 250 mg/kg-body weight, RIAA had efficacy similar to that of 20 mg/kg-body weight of celecoxib

  8. Hypertensive nephropathy treatment by heart-protecting musk pill: a study of anti-inflammatory therapy for target organ damage of hypertension

    PubMed Central

    Tian, Dengke; Ling, Shuang; Chen, Gangling; Li, Yajuan; Liu, Jun; Ferid, Murad; Bian, Ka

    2011-01-01

    This study was designed to investigate the protective effect of the heart-protecting musk pill (HMP) on inflammatory injury of kidney from spontaneously hypertensive rat (SHR). Male SHRs aged 4 weeks were divided into SHR model group, HMP low-dosage group (13.5 mg/kg), and HMP high-dosage group (40 mg/kg). Age-matched Wistar–Kyoto rats were used as normal control. All rats were killed at 12 weeks of age. Tail-cuff method and enzyme-linked immunosorbent assay were used to determine rat systolic blood pressure and angiotensin II (Ang II) contents, respectively. Renal inflammatory damage was evaluated by the following parameters: protein expressions of inflammatory cytokines, carbonyl protein contents, nitrite concentration, infiltration of monocytes/macrophages in interstitium and glomeruli, kidney pathological changes, and excretion rate of urinary protein. HMP did not prevent the development of hypertension in SHR. However, this Chinese medicinal compound decreased renal Ang II content. Consistent with the change of renal Ang II, all the parameters of renal inflammatory injury were significantly decreased by HMP. This study indicates that HMP is a potent suppressor of renal inflammatory damage in SHR, which may serve as a basis for the advanced preventive and therapeutic investigation of HMP in hypertensive nephropathy. PMID:21475627

  9. Hypertensive nephropathy treatment by heart-protecting musk pill: a study of anti-inflammatory therapy for target organ damage of hypertension.

    PubMed

    Tian, Dengke; Ling, Shuang; Chen, Gangling; Li, Yajuan; Liu, Jun; Ferid, Murad; Bian, Ka

    2011-01-01

    This study was designed to investigate the protective effect of the heart-protecting musk pill (HMP) on inflammatory injury of kidney from spontaneously hypertensive rat (SHR). Male SHRs aged 4 weeks were divided into SHR model group, HMP low-dosage group (13.5 mg/kg), and HMP high-dosage group (40 mg/kg). Age-matched Wistar-Kyoto rats were used as normal control. All rats were killed at 12 weeks of age. Tail-cuff method and enzyme-linked immunosorbent assay were used to determine rat systolic blood pressure and angiotensin II (Ang II) contents, respectively. Renal inflammatory damage was evaluated by the following parameters: protein expressions of inflammatory cytokines, carbonyl protein contents, nitrite concentration, infiltration of monocytes/macrophages in interstitium and glomeruli, kidney pathological changes, and excretion rate of urinary protein. HMP did not prevent the development of hypertension in SHR. However, this Chinese medicinal compound decreased renal Ang II content. Consistent with the change of renal Ang II, all the parameters of renal inflammatory injury were significantly decreased by HMP. This study indicates that HMP is a potent suppressor of renal inflammatory damage in SHR, which may serve as a basis for the advanced preventive and therapeutic investigation of HMP in hypertensive nephropathy. PMID:21475627

  10. Epigallocatechin-3-gallate protects retinal vascular endothelial cells from high glucose stress in vitro via the MAPK/ERK-VEGF pathway.

    PubMed

    Zhang, L; Zhang, Z K; Liang, S

    2016-01-01

    Diabetic retinopathy (DR) is a frequent microvascular complication of diabetes, and one of the most common causes of legal blindness in the world. Epigallocatechin-3-gallate (EGCG) produces an anti-oxidative and anti-inflammatory effect against various human diseases. In this study, we determined the effect of EGCG on a human retinal endothelial cell (HREC) line. The cell viability was determined by a standard MTT assay, while the cell cycle and apoptosis rate were analyzed by flow cytometry. Inflammatory marker expression was detected by enzyme-linked immunosorbent assay. Treatment of HRECs with EGCG (20 and 40 mM) led to a significant decrease in the apoptosis rate (2.35 ± 0.56 and 1.24 ± 0.32%). The culture supernatant of cells treated with high glucose concentrations showed significantly higher levels of TNF-α (598.7 ± 89.7 vs 193.2 ± 38.5 pg/mL; P < 0.001), IL-6 (6.16 ± 0.51 vs 1.61 ± 0.21 ng/mL; P < 0.001), and ICAM-1 (31.6 ± 4.4 vs 14.8 ± 2.9 ng/mL; P < 0.001) compared to the cells in the control group. EGCG decreased the expression level of phosphorylated p38-mitogen activated protein kinase (MAPK) and extracellular regulated kinase (ERK)1/2. Moreover, EGCG was shown to significantly inhibit the expression of vascular endothelial growth factor (VEGF). Therefore, EGCG treatment ameliorated the negative effect of high glucose concentrations on the cell viability and apoptotic rate. The protective effects of EGCG under high glucose conditions may be attributed to the regulation of inflammatory cytokines and inhibition of the MAPK/ERK-VEGF pathway. PMID:27323164

  11. Silencing Angiopoietin-Like Protein 4 (ANGPTL4) Protects Against Lipopolysaccharide-Induced Acute Lung Injury Via Regulating SIRT1 /NF-kB Pathway.

    PubMed

    Guo, Liang; Li, Shaoying; Zhao, Yunfeng; Qian, Pin; Ji, Fuyun; Qian, Lanlan; Wu, Xueling; Qian, Guisheng

    2015-10-01

    Lung inflammation and alveolar epithelial cell death are critical events in the development and progression of acute lung injury (ALI). Although angiopoietin-like protein 4 (ANGPTL4) participates in inflammation, whether it plays important roles in ALI and alveolar epithelial cell inflammatory injury remains unclear. We therefore investigated the role of angptl4 in lipopolysaccharide (LPS)-induced ALI and the associated mechanisms. Lentivirus-mediated short interfering RNA targeted to the mouse angptl4 gene (AngsiRNA) and a negative control lentivirus (NCsiRNA) were intranasally administered to mice. Lung inflammatory injury and the underlying mechanisms for regulation of angptl4 on the LPS-induced ALI were subsequently determined. We reported that angptl4 levels were increased both in human alveolar epithelial A549 cells and lung tissues obtained from a mouse model of LPS-induced ALI. Angptl4 expression was induced by LPS in alveolar epithelial cells, whereas LPS-induced lung inflammation (neutrophils infiltration in the lung tissues, tumor necrosis factor α, interleukin 6), lung permeability (lung wet/dry weight ratio and bronchoalveolar lavage fluid (BALF) protein concentration), tissue damage (caspase3 activation), and mortality rates were attenuated in AngsiRNA-treated mice. The inflammatory reaction (tumor necrosis factor α, interleukin 6) and apoptosis rates were reduced in AngsiRNA(h)-treated A549 cells. Moreover, angptl4 promoted NF-kBp65 expression and suppressed SIRT1 expression both in mouse lungs and A549 cells. Additionally, SIRT1 antagonist nicotinamide (NAM) attenuated the inhibitory effects of AngsiRNA both on LPS-induced NF-kBp65 expression and IL6 expression. These findings suggest that silencing angptl4 protects against LPS-induced ALI via regulating SIRT1/NF-kB signaling pathway. PMID:25727991

  12. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway

    PubMed Central

    Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  13. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway.

    PubMed

    Im, Eun Ju; Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu; Rhee, Man Hee

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  14. Sesquiterpene lactone parthenolide attenuates production of inflammatory mediators by suppressing the Toll-like receptor-4-mediated activation of the Akt, mTOR, and NF-κB pathways.

    PubMed

    Nam, Yoon Jeong; Lee, Da Hee; Lee, Min Sung; Lee, Chung Soo

    2015-09-01

    Microbial product lipopolysaccharide has been shown to be involved in the pathogenesis of inflammatory skin diseases. Parthenolide present in extracts of the herb feverfew has demonstrated an anti-inflammatory effect. However, the effect of parthenolide on the Akt/mTOR and NF-κB pathway activation-induced productions of inflammatory mediators in keratinocytes has not been studied. Using human keratinocytes, we investigated the effect of parthenolide on the inflammatory mediator production in relation to the Toll-like receptor-4-mediated-Akt/mTOR and NF-κB pathways, which regulate the transcription genes involved in immune and inflammatory responses. Parthenolide, Akt inhibitor, Bay 11-7085, and N-acetylcysteine each attenuated the lipopolysaccharide-induced production of IL-1β and PGE2, increase in the levels of cyclooxygenase, formation of reactive oxygen species, increase in the levels of Toll-like receptor-4, and activation of the Akt/mTOR and NF-κB in keratinocytes. The results show that parthenolide appears to attenuate the lipopolysaccharide-stimulated production of inflammatory mediators in keratinocytes by suppressing the Toll-like receptor-4-mediated activation of the Akt, mTOR, and NF-κB pathways. The activation of signaling transduction pathways appear to be regulated by reactive oxygen species. Parthenolide appears to attenuate the microbial product-mediated inflammatory skin diseases. PMID:25971793

  15. [Serum amyloid A promotes the inflammatory response via p38-MAPK/SR-BI pathway in THP-1 macrophages].

    PubMed

    Zhu, Ming-Yan; Wang, Yan; Wang, Yu; Peng, Feng-Ling; Ou, Han-Xiao; Zheng, Xiang; Shi, Jin-Feng; Zeng, Gao-Feng; Mo, Zhong-Cheng

    2016-06-25

    To investigate the effect and mechanism of serum amyloid A (SAA) on the expression of scavenger receptor class B type I (SR-BI) and inflammatory response in THP-1 macrophages, the human THP-1 cells were treated with SAA and p38-MAPK agonist (anisomycin) or p38-MAPK inhibitor (SB203580). Then, the expressions of SR-BI, phosphorylated p38-MAPK and inflammatory factors (MCP-1, TNF-α, IL-1β) were examined by real-time quantitative PCR, Western blotting and ELISA, respectively. The results showed that, compared with control group, SAA increased the levels of inflammatory factors (MCP-1, TNF-α, IL-1β), down-regulated the expressions of SR-BI, and up-regulated the expression of phosphorylated p38-MAPK protein in a concentration- and time-dependent manner in THP-1 cells (P < 0.05). After treatment with SAA and p38-MAPK agonist (anisomycin) in THP-1 cells, the expression of SR-BI was down-regulated, and the levels of inflammatory factors and phosphorylated p38-MAPK protein expression were increased, compared with the group only treated by SAA (P < 0.05). In contrast, the SR-BI expression was up-regulated, whereas inflammatory factors and phosphorylated p38-MAPK protein expressions were decreased after the cells were treated with SAA and p38-MAPK inhibitor (SB203580) (P < 0.05). The results suggest that SAA-promoted inflammatory response in THP-1 macrophages may be through the phosphorylation of p38-MAPK and inhibition of SR-BI expression. PMID:27350202

  16. The inflammatory response of keratinocytes and its modulation by vitamin D: the role of MAPK signaling pathways.

    PubMed

    Miodovnik, Mor; Koren, Ruth; Ziv, Esther; Ravid, Amiram

    2012-05-01

    The hormonal form of vitamin D, calcitriol, and its analogs are known for their beneficial effect in the treatment of inflammatory skin disorders. Keratinocytes play a role in epidermal inflammatory responses invoked by breeching of the epidermal barrier, by infectious agents and by infiltrating immune cells. We studied the role of calcitriol in the initiation of keratinocyte inflammatory response by the viral and injury mimic polyinosinic-polycytidylic acid (poly(I:C)) and in its maintenance by tumor-necrosis-factor α (TNFα) and investigated the role of the mitogen-activated protein kinase cascades in these processes and their regulation by calcitriol. The inflammatory response of human HaCaT keratinocytes to poly(I:C) or TNFα was assessed by measuring mRNA levels of 13 inflammation-related molecules by real-time PCR microarray and by in-depth investigation of the regulation of interleukin 8, intercellular-adhesion-molecule 1, and TNFα expression. We found that while calcitriol had only a minor effect on the keratinocyte response to poly(I:C) and a modest effect on the early response (2 h) to TNFα, it markedly attenuated the later response (16-24 h) to TNFα. The expression of CYP27B1, the enzyme responsible for calcitriol production, was marginally increased by poly(I:C) and markedly by TNFα treatment. This pattern suggests that while allowing the initial keratinocyte inflammatory response to proceed, calcitriol contributes to its timely resolution. Using pharmacological inhibitors we found that while the p38 MAPK and the extracellular signal-regulated kinase have only a minor role, c-Jun N-terminal kinase plays a pivotal role in the induction of the pro-inflammatory genes and its modulation by calcitriol. PMID:21792935

  17. Nurr1 and PPARγ protect PC12 cells against MPP(+) toxicity: involvement of selective genes, anti-inflammatory, ROS generation, and antimitochondrial impairment.

    PubMed

    Jodeiri Farshbaf, Mohammad; Forouzanfar, Mahboobeh; Ghaedi, Kamran; Kiani-Esfahani, Abbas; Peymani, Maryam; Shoaraye Nejati, Alireza; Izadi, Tayebeh; Karbalaie, Khadijeh; Noorbakhshnia, Maryam; Rahgozar, Soheila; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2016-09-01

    Parkinson's disease (PD) can degenerate dopaminergic (DA) neurons in midbrain, substantia-nigra pars compacta. Alleviation of its symptoms and protection of normal neurons against degeneration are the main aspects of researches to establish novel therapeutic strategies. PPARγ as a member of PPARs have shown neuroprotection in a number of neurodegenerative disorders such as Alzheimer's disease and PD. Nuclear receptor related 1 protein (Nurr1) is, respectively, member of NR4A family and has received great attentions as potential target for development, maintenance, and survival of DA neurons. Based on neuroprotective effects of PPARγ and dual role of Nurr1 in anti-inflammatory pathways and development of DA neurons, we hypothesize that PPARγ and Nurr1 agonists alone and in combined form can be targets for neuroprotective therapeutic development for PD in vitro model. 1-Methyl-4-phenylpyridinium (MPP(+)) induced neurotoxicity in PC12 cells as an in vitro model for PD studies. Treatment/cotreatment with PPARγ and Nurr1 agonists 24 h prior to MPP(+) induction enhanced the viability of PC12 cell. The viability of PC12 cells was determined by MTS test. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were detected by flow cytometry. In addition, the relative expression of four genes including TH (the marker of DA neurons), Ephrin A1, Nurr1, and Ferritin light chain were assessed by RT-qPCR. In the MPP(+)-pretreated PC12 cells, PPARγ and Nurr1 agonists and their combined form resulted in a decrease in the cell death rate. Moreover, production of intracellular ROS and MMP modulated by MPP(+) was decreased by PPARγ and Nurr1 agonists' treatment alone and in the combined form. PMID:27435855

  18. Unravelling the theories of pre-eclampsia: are the protective pathways the new paradigm?

    PubMed Central

    Ahmed, Asif; Ramma, Wenda

    2015-01-01

    Pre-eclampsia is a vascular disorder of pregnancy where anti-angiogenic factors, systemic inflammation and oxidative stress predominate, but none can claim to cause pre-eclampsia. This review provides an alternative to the ‘two-stage model’ of pre-eclampsia in which abnormal spiral arteries modification leads to placental hypoxia, oxidative stress and aberrant maternal systemic inflammation. Very high maternal soluble fms-like tyrosine kinase-1 (sFlt-1 also known as sVEGFR) and very low placenta growth factor (PlGF) are unique to pre-eclampsia; however, abnormal spiral arteries and excessive inflammation are also prevalent in other placental disorders. Metaphorically speaking, pregnancy can be viewed as a car with an accelerator and brakes, where inflammation, oxidative stress and an imbalance in the angiogenic milieu act as the ‘accelerator’. The ‘braking system’ includes the protective pathways of haem oxygenase 1 (also referred as Hmox1 or HO-1) and cystathionine-γ-lyase (also known as CSE or Cth), which generate carbon monoxide (CO) and hydrogen sulphide (H2S) respectively. The failure in these pathways (brakes) results in the pregnancy going out of control and the system crashing. Put simply, pre-eclampsia is an accelerator–brake defect disorder. CO and H2S hold great promise because of their unique ability to suppress the anti-angiogenic factors sFlt-1 and soluble endoglin as well as to promote PlGF and endothelial NOS activity. The key to finding a cure lies in the identification of cheap, safe and effective drugs that induce the braking system to keep the pregnancy vehicle on track past the finishing line. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:25303561

  19. Fault kinematics and retro-deformation analysis for prediction of potential leakage pathways - joint project PROTECT

    NASA Astrophysics Data System (ADS)

    Ziesch, Jennifer; Tanner, David C.; Dance, Tess; Beilecke, Thies; Krawczyk, Charlotte M.

    2014-05-01

    Within the context of long-term CO2 storage integrity, we determine the seismic and sub-seismic characteristics of potential fluid migration pathways between reservoir and surface. As a part of the PROTECT project we focus on the sub-seismic faults of the CO2CRC Otway Project pilot site in Australia. We carried out a detailed interpretation of 3D seismic data and have built a geological 3D model of 8 km x 7 km x 4.5 km (depth). The model comprises triangulated surfaces of 8 stratigraphic horizons and 24 large-scale faults with 75 m grid size. We have confirmed the site to comprise a complex system of south-dipping normal faults and north-dipping antithetic normal faults. Good knowledge of the kinematics of the large-scale faults is essential to predict sub-seismic structures. For this reason preconditioning analyses, such as thickness maps, fault curvature, cylindricity and connectivity studies, as well as Allan mapping were carried out. The most important aspect is that two different types of fault kinematics were simultaneously active: Dip-slip and a combination of dip-slip with dextral strike slip movement. Using these input parameters stratigraphic volumes are kinematically restored along the large-scale faults, taking fault topography into account (retro-deformation). The stratigraphic volumes are analyzed at the same time with respect to sub-seismic strain variation. Thereby we produce strain tensor maps to locate highly deformed or fractured zones and their orientation within the stratigraphic volumes. We will discuss the results in the framework of possible fluid/gas migration pathways and communication between storage reservoir and overburden. This will provide a tool to predict CO2 leakage and thus to adapt time-dependent monitoring strategies for subsurface storage in general. Acknowledgement: This work was sponsored in part by the Australian Commonwealth Government through the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC). PROTECT

  20. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway.

    PubMed

    Choy, Ker-Woon; Mustafa, Mohd Rais; Lau, Yeh Siang; Liu, Jian; Murugan, Dharmani; Lau, Chi Wai; Wang, Li; Zhao, Lei; Huang, Yu

    2016-09-15

    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway. PMID:27449753

  1. Total saponins from Aralia taibaiensis protect against myocardial ischemia/reperfusion injury through AMPK pathway

    PubMed Central

    YAN, JIAJIA; DUAN, JIALIN; WU, XIAOXIAO; GUO, CHAO; YIN, YING; ZHU, YANRONG; HU, TIANXIN; WEI, GUO; WEN, AIDONG; XI, MIAOMIAO

    2015-01-01

    It was previously shown that total saponins extracted from Aralia taibaiensis (sAT) have potent antioxidant activities for treating diabetes mellitus and attenuate D-galactose-induced aging. Since diabetes mellitus and aging are closely associated with cardiac dysfunction, particularly ischemic heart disease, sAT may have potential protective activity against myocardial ischemia/reperfusion injury (MI/RI). However, the anti-MI/RI effects of sAT have yet to be examined, and the possible molecular mechanisms remain to be determined. The present study was undertaken to investigate the anti-MI/RI activities of sAT and to elucidate the mechanisms underlying these effects in rats using TUNEL and Hoechst 33258 staining. The results confirmed the cardioprotective effects in vivo and elucidated the potential molecular mechanisms of sAT in vitro. Pretreatment with sAT significantly reduced infarct size, decreased the levels of lactate dehydrogenase and creatine kinase in the serum and blocked apoptosis. In addition, sAT inhibited A/R-induced apoptosis by decreasing DNA strand breaks, caspase-3 activity and cytochrome c release in H9c2 cells. Furthermore, sAT markedly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase and elevated the Bcl2/Bcl-2-associated X protein ratio. These effects were blocked by compound C. The results suggested that sAT pretreatment exerts protective effects on myocardial cells in vitro and in vivo against MI/RI-induced apoptosis by activating AMPK pathway. PMID:26498380

  2. EPO protects Müller cell under high glucose state through BDNF/TrkB pathway

    PubMed Central

    Wang, Ping; Xia, Fei

    2015-01-01

    Neurotrophic factor decreased in the early stage of diabetic retinal nerve cells. Neurons damage brain derived neurotrophic factor (BDNF) and receptor TrkB expression reduced. Erythropoietin (EPO) plays an important role in protecting early diabetic retinopathy. The rats were euthanized at 24 h after EPO vitreous injection and the retina was separated. HE staining was applied to observe the pathological tissue morphology. Immunohistochemistry, immunofluorescence, and Western blot were used to detect BDNF, TrkB, extracellular signal-regulated kinase (ERK), and glial fibrillary acidic portein (GFAP) expression. Retinal structure was clear in group C, while the retinal thickness and RGCs number decreased in group B at 24 w. Retinal thickness in group E was greater than in group B but lower than in group C. GFAP and ERK expression increased in both group B and E, whereas the latter was significantly lower than the former. TrkB protein level was in group E > B > C at 4 w, while it was in group C > group E > group B at 24 w. BDNF expression in group B was higher than in group C at 4 w, whereas it was opposite at 24 w. BDNF expression increased in group E at 4 w, and it was similar in group E compared with group C at 24 w. EPO vitreous injection can increase BDNF and TrkB expression, while reduce GFAP and ERK expression in diabetes rat retina. It could protect Müller cells through BDNF/TrkB pathway to play a role of nerve nutrition. PMID:26339375

  3. EPO protects Müller cell under high glucose state through BDNF/TrkB pathway.

    PubMed

    Wang, Ping; Xia, Fei

    2015-01-01

    Neurotrophic factor decreased in the early stage of diabetic retinal nerve cells. Neurons damage brain derived neurotrophic factor (BDNF) and receptor TrkB expression reduced. Erythropoietin (EPO) plays an important role in protecting early diabetic retinopathy. The rats were euthanized at 24 h after EPO vitreous injection and the retina was separated. HE staining was applied to observe the pathological tissue morphology. Immunohistochemistry, immunofluorescence, and Western blot were used to detect BDNF, TrkB, extracellular signal-regulated kinase (ERK), and glial fibrillary acidic portein (GFAP) expression. Retinal structure was clear in group C, while the retinal thickness and RGCs number decreased in group B at 24 w. Retinal thickness in group E was greater than in group B but lower than in group C. GFAP and ERK expression increased in both group B and E, whereas the latter was significantly lower than the former. TrkB protein level was in group E > B > C at 4 w, while it was in group C > group E > group B at 24 w. BDNF expression in group B was higher than in group C at 4 w, whereas it was opposite at 24 w. BDNF expression increased in group E at 4 w, and it was similar in group E compared with group C at 24 w. EPO vitreous injection can increase BDNF and TrkB expression, while reduce GFAP and ERK expression in diabetes rat retina. It could protect Müller cells through BDNF/TrkB pathway to play a role of nerve nutrition. PMID:26339375

  4. Identification of plumericin as a potent new inhibitor of the NF-κB pathway with anti-inflammatory activity in vitro and in vivo

    PubMed Central

    Fakhrudin, N; Waltenberger, B; Cabaravdic, M; Atanasov, A G; Malainer, C; Schachner, D; Heiss, E H; Liu, R; Noha, S M; Grzywacz, A M; Mihaly-Bison, J; Awad, E M; Schuster, D; Breuss, J M; Rollinger, J M; Bochkov, V; Stuppner, H; Dirsch, V M

    2014-01-01

    BACKGROUND AND PURPOSE The transcription factor NF-κB orchestrates many pro-inflammatory signals and its inhibition is considered a promising strategy to combat inflammation. Here we report the characterization of the natural product plumericin as a highly potent inhibitor of the NF-κB pathway with a novel chemical scaffold, which was isolated via a bioactivity-guided approach, from extracts of Himatanthus sucuuba, an Amazonian plant traditionally used to treat inflammation-related disorders. EXPERIMENTAL APPROACH A NF-κB luciferase reporter gene assay was used to identify NF-κB pathway inhibitors from H. sucuuba extracts. Monitoring of TNF-α-induced expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin by flow cytometry was used to confirm NF-κB inhibition in endothelial cells, and thioglycollate-induced peritonitis in mice to confirm effects in vivo. Western blotting and transfection experiments were used to investigate the mechanism of action of plumericin. KEY RESULTS Plumericin inhibited NF-κB-mediated transactivation of a luciferase reporter gene (IC50 1 μM), abolished TNF-α-induced expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin in endothelial cells and suppressed thioglycollate-induced peritonitis in mice. Plumericin exerted its NF-κB pathway inhibitory effect by blocking IκB phosphorylation and degradation. Plumericin also inhibited NF-κB activation induced by transfection with the constitutively active catalytic subunit of the IκB kinase (IKK-β), suggesting IKK involvement in the inhibitory action of this natural product. CONCLUSION AND IMPLICATIONS Plumericin is a potent inhibitor of NF-κB pathways with a new chemical scaffold. It could be further explored as a novel anti-inflammatory lead compound. PMID:24329519

  5. Anti-inflammatory effects of guggulsterone on murine macrophage by inhibiting LPS-induced inflammatory cytokines in NF-κB signaling pathway

    PubMed Central

    Zhang, Jin-Hua; Shangguan, Zhao-Shui; Chen, Chao; Zhang, Hui-Jie; Lin, Yi

    2016-01-01

    The present study was aimed to investigate the effects of guggulsterone (GS) on proinflammatory responses as well as the underlying molecular mechanisms in macrophage upon lipopolysaccharide (LPS) stimulation. Effects of GS on viability of Raw264.7 cells were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (PCR) was employed to examine the mRNA expression of cytokines, including interleukin 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS). Phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (p38), and inhibitor of nuclear factor kappaB (IκB) were determined using immunoblotting. The results revealed that GS was not toxic to Raw264.7 cells at designated concentrations. We demonstrated that GS significantly suppressed the elevated mRNA expression of proinflammatory cytokines, including IL-1β, TNF-α, and iNOS in a dose-dependent manner. GS treatment reduced the level of IκB phosphorylation in LPS-stimulated macrophages in a dose-dependent manner. Use of BAY 11-7082, an inhibitor of nuclear factor-kappaB (NF-κB), led to significantly suppressing effects on IL-1β and TNF-α expression similar as that of GS-treated cells. Our findings suggest that GS possesses anti-inflammatory activity, which may be attributed to downregulation of iNOS and inhibition of NF-κB activity in LPS-stimulated Raw264.7 cells. PMID:27330276

  6. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    PubMed Central

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  7. Carvacrol protects neuroblastoma SH-SY5Y cells against Fe2+-induced apoptosis by suppressing activation of MAPK/JNK-NF-κB signaling pathway

    PubMed Central

    Cui, Zhen-wen; Xie, Zheng-xing; Wang, Bao-feng; Zhong, Zhi-hong; Chen, Xiao-yan; Sun, Yu-hao; Sun, Qing-fang; Yang, Guo-yuan; Bian, Liu-guan

    2015-01-01

    Aim: Carvacrol (2-methyl-5-isopropylphenol), a phenolic monoterpene in the essential oils of the genera Origanum and Thymus, has been shown to exert a variety of therapeutic effects. Here we examined whether carvacrol protected neuroblastoma SH-SY5Y cells against Fe2+-induced apoptosis and explored the underlying mechanisms. Methods: Neuroblastoma SH-SY5Y cells were incubated with Fe2+ for 24 h, and the cell viability was assessed with CCK-8 assay. TUNEL assay and flow cytometric analysis were performed to evaluate cell apoptosis. The mRNA levels of pro-inflammatory cytokines and NF-κB p65 were determined using qPCR. The expression of relevant proteins was determined using Western blot analysis or immunofluorescence staining. Results: Treatment of SH-SY5Y cells with Fe2+ (50–200 μmol/L) dose-dependently decreased the cell viability, which was significantly attenuated by pretreatment with carvacrol (164 and 333 μmol/L). Treatment with Fe2+ increased the Bax level and caspase-3 activity, and decreased the Bcl-2 level, resulting in cell apoptosis. Furthermore, treatment with Fe2+ significantly increased the gene expression of IL-1β, IL-6 and TNF-α, and induced the nuclear translocation of NF-κB. Treatment with Fe2+ also significantly increased the phosphorylation of p38, ERK, JNK and IKK in the cells. Pretreatment with carvacrol significantly inhibited Fe2+-induced activation of NF-κB, expression of the pro-inflammatory cytokines, and cell apoptosis. Moreover, pretreatment with carvacrol inhibited Fe2+-induced phosphorylation of JNK and IKK, but not p38 and ERK in the cells. Conclusion: Carvacrol protects neuroblastoma SH-SY5Y cells against Fe2+-induced apoptosis, which may result from suppressing the MAPK/JNK-NF-κB signaling pathways. PMID:26592517

  8. Z-ligustilide ameliorated ultraviolet B-induced oxidative stress and inflammatory cytokine production in human keratinocytes through upregulation of Nrf2/HO-1 and suppression of NF-κB pathway.

    PubMed

    Wu, Zhouwei; Uchi, Hiroshi; Morino-Koga, Saori; Shi, Weimin; Furue, Masutaka

    2015-09-01

    Ultraviolet B (UVB), a harmful environmental factor, is responsible for a variety of skin disorders including skin inflammation through reactive oxygen species (ROS) and inflammatory mediator production. Here, we investigated the effect of Z-ligustilide (Z-lig), an active ingredient isolated from the medicinal plants Cnidium officinale and Angelica acutiloba, on UVB-induced ROS generation and inflammatory mediator production in normal human epidermal keratinocytes (NHEKs) as well as its underlying mechanisms. Z-lig significantly rescued UVB-induced NHEKs damage in a dosage-dependent manner. Pretreatment of NHEKs with Z-lig inhibited UVB-induced ROS production in NHEKs. Both silencing the nuclear factor E2-related factor 2 (Nrf2) and the supplement of tin protoporphyrin IX (SnPP), a haeme oxygenase-1 (HO-1) inhibitor, cancelled the inhibitory effect of Z-lig on UVB-induced ROS upregulation in NHEKs. Moreover, pretreatment of NHEKs with Z-lig reduced UVB-induced nuclear factor kappa B (NF-κB)-dependent inflammatory mediators (IL-6, IL-8 and MCP-1) production at both mRNA and protein level. In the presence of Z-lig, UVB-induced NF-κB subunit p65 nuclear translocation was abolished, and the IκBα degradation was suppressed. Taken together, these findings suggest that Z-lig can suppress UVB-induced ROS generation through Nrf2/HO-1 upregulation and inflammation by suppressing the NF-κB pathway, suggesting that Z-lig may be beneficial in protecting skin from UVB exposure. PMID:25977183

  9. Anti-Inflammatory Effects of α-Galactosylceramide Analogs in Activated Microglia: Involvement of the p38 MAPK Signaling Pathway

    PubMed Central

    Chung, Young Sun; Park, Seung Bum; Kim, Hee-Sun

    2014-01-01

    Microglial activation plays a pivotal role in the development and progression of neurodegenerative diseases. Thus, anti-inflammatory agents that control microglial activation can serve as potential therapeutic agents for neurodegenerative diseases. Here, we designed and synthesized α-galactosylceramide (α-GalCer) analogs to exert anti-inflammatory effects in activated microglia. We performed biological evaluations of 25 α-GalCer analogs and observed an interesting preliminary structure-activity relationship in their inhibitory influence on NO release and TNF-α production in LPS-stimulated BV2 microglial cells. After identification of 4d and 4e as hit compounds, we further investigated the underlying mechanism of their anti-inflammatory effects using RT-PCR analysis. We confirmed that 4d and 4e regulate the expression of iNOS, COX-2, IL-1β, and IL-6 at the mRNA level and the expression of TNF-α at the post-transcriptional level. In addition, both 4d and 4e inhibited LPS-induced DNA binding activities of NF-κB and AP-1 and phosphorylation of p38 MAPK without affecting other MAP kinases. When we examined the anti-inflammatory effect of a p38 MAPK-specific inhibitor, SB203580, on microglial activation, we observed an identical inhibitory pattern as that of 4d and 4e, not only on NO and TNF-α production but also on the DNA binding activities of NF-κB and AP-1. Taken together, these results suggest that p38 MAPK plays an important role in the anti-inflammatory effects of 4d and 4e via the modulation of NF-κB and AP-1 activities. PMID:24523867

  10. Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes

    SciTech Connect

    Bhatt, Shweta; Gupta, Manoj; Khamaisi, Mogher; Martinez, Rachael; Gritsenko, Marina A.; Wagner, Bridget; Guye, Patrick; Busskamp, Volker; Shirakawa, Jun; Wu, Gongxiong; Liew, Chong Wee; Clauss, Therese RW; Valdez, Ivan; EL Ouaaman, Abdelfattah; Dirice, Ercument; Takatani, Tomozumi; Keenan, Hillary; Smith, Richard D.; Church, George; Weiss, Ron; Wagers, Amy J.; Qian, Weijun; King, George L.; Kulkami, Rohit N.

    2015-08-04

    Themechanisms underlying the development of complications in type 1 diabetes (T1D) are poorly understood. Disease modeling of induced pluripotent stem cells (iPSCs) from patients with longstanding T1D(disease durationR50 years) with severe (Medalist +C) or absent to mild complications (Medalist *C) revealed impaired growth, reprogramming, and differentiation in Medalist +C. Genomics and proteomics analyses suggested differential regulation of DNA damage checkpoint proteins favoring protection from cellular apoptosis in Medalist *C. In silico analyses showed altered expression patterns of DNA damage checkpoint factors among the Medalist groups to be targets of miR200, whose expression was significantly elevated in Medalist +C serum. Notably, neurons differentiated from Medalist +C iPSCs exhibited enhanced susceptibility to genotoxic stress that worsened upon miR200 overexpression. Furthermore, knockdown of miR200 in Medalist +C fibroblasts and iPSCs rescued checkpoint protein expression and reduced DNA damage.WeproposemiR200-regulated DNA damage checkpoint pathway as a potential therapeutic target for treating complications of diabetes.

  11. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway.

    PubMed

    Tang, Yulong; Li, Jianjun; Li, Fengna; Hu, Chien-An A; Liao, Peng; Tan, Kunrong; Tan, Bie; Xiong, Xia; Liu, Gang; Li, Tiejun; Yin, Yulong

    2015-12-01

    Autophagy is an intracellular process of homeostatic degradation that promotes cell survival under various stressors. Deoxynivalenol (DON), a fungal toxin, often causes diarrhea and disturbs the homeostasis of the intestinal system. To investigate the function of intestinal autophagy in response to DON and associated mechanisms, we firstly knocked out ATG5 (autophagy-related gene 5) in porcine intestinal epithelial cells (IPEC-J2) using CRISPR-Cas9 technology. When treated with DON, autophagy was induced in IPEC-J2 cells but not in IPEC-J2.Atg5ko cells. The deficiency in autophagy increased DON-induced apoptosis in IPEC-J2.atg5ko cells, in part, through the generation of reactive oxygen species (ROS). The cellular stress response can be restored in IPEC-J2.atg5ko cells by overexpressing proteins involved in protein folding. Interestingly, we found that autophagy deficiency downregulated the expression of endoplasmic reticulum folding proteins BiP and PDI when IPEC-J2.atg5ko cells were treated with DON. In addition, we investigated the molecular mechanism of autophagy involved in the IKK, AMPK, and mTOR signaling pathway and found that Bay-117082 and Compound C, specific inhibitors for IKK and AMPK, respectively, inhibited the induction of autophagy. Taken together, our results suggest that autophagy is pivotal for protection against DON in pig intestinal cells. PMID:26456059

  12. The Protective Effect of Gangliosides on Lead (Pb)-Induced Neurotoxicity Is Mediated by Autophagic Pathways.

    PubMed

    Meng, Hongtao; Wang, Lan; He, Junhong; Wang, Zhufeng

    2016-01-01

    Lead (Pb) is a ubiquitous environmental and industrial pollutant and can affect intelligence development and the learning ability and memory of children. Therefore, necessary measures should be taken to protect the central nervous system (CNS) from Pb toxicity. Gangliosides are sialic acid-containing glycosphingolipids that are constituents of mammalian cell membranes and are more abundantly expressed in the CNS. Studies have shown that gangliosides constitute a useful tool in the attempt to promote functional recovery of CNS and can reverse Pb-induced impairments of synaptic plasticity in rats. However, the detailed mechanisms have yet to be fully understood. In our present study, we tried to investigate the role of gangliosides in Pb-induced injury in hippocampus neurons and to further confirm the detailed mechanism. Our results show that Pb-induced injuries in the spatial reference memory were associated with a reduction of cell viability and cell apoptosis, and treatment with gangliosides markedly ameliorated the Pb-induced injury by inhibition of apoptosis action. Gangliosides further attenuated Pb-induced the abnormal autophagic process by regulation of mTOR pathways. In summary, our study establishes the efficacy of gangliosides as neuroprotective agents and provides a strong rationale for further studies on the underlying mechanisms of their neuroprotective functions. PMID:27023584

  13. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection.

    PubMed

    Carr, A C; McCall, M R; Frei, B

    2000-07-01

    Oxidative modification of low density lipoprotein (LDL) appears to play an important role in atherogenesis. Although the precise mechanisms of LDL oxidation in vivo are unknown, several lines of evidence implicate myeloperoxidase and reactive nitrogen species, in addition to ceruloplasmin and 15-lipoxygenase. Myeloperoxidase generates a number of reactive species, including hypochlorous acid, chloramines, tyrosyl radicals, and nitrogen dioxide. These reactive species oxidize the protein, lipid, and antioxidant components of LDL. Modification of apolipoprotein B results in enhanced uptake of LDL by macrophages with subsequent formation of lipid-laden foam cells. Nitric oxide synthases produce nitric oxide and, under certain conditions, superoxide radicals. Numerous other sources of superoxide radicals have been identified in the arterial wall, including NAD(P)H oxidases and xanthine oxidase. Nitric oxide and superoxide readily combine to form peroxynitrite, a reactive nitrogen species capable of modifying LDL. In this review, we examine the reaction pathways involved in LDL oxidation by myeloperoxidase and reactive nitrogen species and the potential protective effects of the antioxidant vitamins C and E. PMID:10894808

  14. Protective effect of relaxin in cardiac anaphylaxis: involvement of the nitric oxide pathway

    PubMed Central

    Masini, E; Zagli, G; Ndisang, J F; Solazzo, M; Mannaioni, P F; Bani, D

    2002-01-01

    Relaxin (RLX) is a multifunctional hormone best known for its role in pregnancy and parturition, that has been also shown to influence coronary perfusion and mast cell activation through the generation of endogenous nitric oxide (NO). In this study we report on the effects of RLX on the biochemical and mechanical changes of ex vivo perfused hearts isolated from ovalbumin-sensitized guinea-pigs induced by challenge with the specific antigen. The possible involvement of NO in the RLX action has been also investigated. A 30-min perfusion with RLX (30 ng ml−1) before ovalbumin challenge fully abated the positive chronotropic and inotropic effects evoked by anaphylactic reaction to the antigen. RLX also blunted the short-term coronary constriction following to antigen challenge. Conversely, perfusion with chemically inactivated RLX had no effect. The release of histamine in the perfusate and the accumulation of calcium in heart tissue induced by antigen challenge were significantly decreased by RLX, while the amounts of nitrites in the perfusate were significantly increased, as were NO synthase activity and expression and cGMP levels in heart tissue. These findings indicate that RLX has a protective effect in cardiac anaphylaxis which involves an up-regulation of the NO biosynthetic pathway. PMID:12237253

  15. The Protective Effect of Gangliosides on Lead (Pb)-Induced Neurotoxicity Is Mediated by Autophagic Pathways

    PubMed Central

    Meng, Hongtao; Wang, Lan; He, Junhong; Wang, Zhufeng

    2016-01-01

    Lead (Pb) is a ubiquitous environmental and industrial pollutant and can affect intelligence development and the learning ability and memory of children. Therefore, necessary measures should be taken to protect the central nervous system (CNS) from Pb toxicity. Gangliosides are sialic acid-containing glycosphingolipids that are constituents of mammalian cell membranes and are more abundantly expressed in the CNS. Studies have shown that gangliosides constitute a useful tool in the attempt to promote functional recovery of CNS and can reverse Pb-induced impairments of synaptic plasticity in rats. However, the detailed mechanisms have yet to be fully understood. In our present study, we tried to investigate the role of gangliosides in Pb-induced injury in hippocampus neurons and to further confirm the detailed mechanism. Our results show that Pb-induced injuries in the spatial reference memory were associated with a reduction of cell viability and cell apoptosis, and treatment with gangliosides markedly ameliorated the Pb-induced injury by inhibition of apoptosis action. Gangliosides further attenuated Pb-induced the abnormal autophagic process by regulation of mTOR pathways. In summary, our study establishes the efficacy of gangliosides as neuroprotective agents and provides a strong rationale for further studies on the underlying mechanisms of their neuroprotective functions. PMID:27023584

  16. Sub-seismic Deformation Prediction of Potential Pathways and Seismic Validation - The Joint Project PROTECT

    NASA Astrophysics Data System (ADS)

    Krawczyk, C. M.; Kolditz, O.

    2013-12-01

    The joint project PROTECT (PRediction Of deformation To Ensure Carbon Traps) aims to determine the existence and characteristics of sub-seismic structures that can potentially link deep reservoirs with the surface in the framework of CO2 underground storage. The research provides a new approach of assessing the long-term integrity of storage reservoirs. The objective is predicting and quantifying the distribution and the amount of sub-/seismic strain caused by fault movement in the proximity of a CO2 storage reservoir. The study is developing tools and workflows which will be tested at the CO2CRC Otway Project Site in the Otway Basin in south-western Victoria, Australia. For this purpose, we are building a geometrical kinematic 3-D model based on 2-D and 3-D seismic data that are provided by the Australian project partner, the CO2CRC Consortium. By retro-deforming the modeled subsurface faults in the inspected subsurface volume we can determine the accumulated sub-seismic deformation and thus the strain variation around the faults. Depending on lithology, the calculated strain magnitude and its orientation can be used as an indicator for fracture density. Furthermore, from the complete 3D strain tensor we can predict the orientation of fractures at sub-seismic scale. In areas where we have preliminary predicted critical deformation, we will acquire in November this year new near- surface, high resolution P- and S-wave 2-D seismic data in order to verify and calibrate our model results. Here, novel and parameter-based model building will especially benefit from extracting velocities and elastic parameters from VSP and other seismic data. Our goal is to obtain a better overview of possible fluid migration pathways and communication between reservoir and overburden. Thereby, we will provide a tool for prediction and adapted time-dependent monitoring strategies for subsurface storage in general including scientific visualization capabilities. Acknowledgement This work

  17. IL17 Functions through the Novel REG3β-JAK2-STAT3 Inflammatory Pathway to Promote the Transition from Chronic Pancreatitis to Pancreatic Cancer.

    PubMed

    Loncle, Celine; Bonjoch, Laia; Folch-Puy, Emma; Lopez-Millan, Maria Belen; Lac, Sophie; Molejon, Maria Inés; Chuluyan, Eduardo; Cordelier, Pierre; Dubus, Pierre; Lomberk, Gwen; Urrutia, Raul; Closa, Daniel; Iovanna, Juan L

    2015-11-15

    Pancreatic ductal adenocarcinoma (PDAC) offers an optimal model for discovering "druggable" molecular pathways that participate in inflammation-associated cancer development. Chronic pancreatitis, a common prolonged inflammatory disease, behaves as a well-known premalignant condition that contributes to PDAC development. Although the mechanisms underlying the pancreatitis-to-cancer transition remain to be fully elucidated, emerging evidence supports the hypothesis that the actions of proinflammatory mediators on cells harboring Kras mutations promote neoplastic transformation. Recent elegant studies demonstrated that the IL17 pathway mediates this phenomenon and can be targeted with antibodies, but the downstream mechanisms by which IL17 functions during this transition are currently unclear. In this study, we demonstrate that IL17 induces the expression of REG3β, a well-known mediator of pancreatitis, during acinar-to-ductal metaplasia and in early pancreatic intraepithelial neoplasia (PanIN) lesions. Furthermore, we found that REG3β promotes cell growth and decreases sensitivity to cell death through activation of the gp130-JAK2-STAT3-dependent pathway. Genetic inactivation of REG3β in the context of oncogenic Kras-driven PDAC resulted in reduced PanIN formation, an effect that could be rescued by administration of exogenous REG3β. Taken together, our findings provide mechanistic insight into the pathways underlying inflammation-associated pancreatic cancer, revealing a dual and contextual pathophysiologic role for REG3β during pancreatitis and PDAC initiation. PMID:26404002

  18. The anti-malarial artemisinin inhibits pro-inflammatory cytokines via the NF-κB canonical signaling pathway in PMA-induced THP-1 monocytes.

    PubMed

    Wang, Yue; Huang, Zhouqing; Wang, Liansheng; Meng, Shu; Fan, Yuqi; Chen, Ting; Cao, Jiatian; Jiang, Rujia; Wang, Changqian

    2011-02-01

    Several kinds of sesquiterpene lactones have been proven to inhibit NF-κB and to retard atherosclerosis by reducing lesion size and changing plaque composition. The anti-malarial artemisinin (Art) is a pure sesquiterpene lactone extracted from the Chinese herb Artemisia annua (qinghao, sweet wormwood). In the present study, we demonstrate that artemisinin inhibits the secretion and the mRNA levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in a dose-dependent manner in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 human monocytes. We also found that the NF-κB specific inhibitor, Bay 11-7082, inhibited the expression of these pro-inflammatory cytokines, suggesting that the NF-κB pathway may be involved in the decreased cytokine release. At all time-points (1-6 h), artemisinin impeded the phosphorylation of IKKα/ß, the phosphorylation and degradation of IκBα and the nuclear translocation of the NF-κB p65 subunit. Additionally, artemisinin inhibited the translocation of the NF-κB p65 subunit as demonstrated by confocal laser scanning microscopic analysis and by NF-κB binding assays. Our data indicate that artemisinin exerts an anti-inflammatory effect on PMA-induced THP-1 monocytes, suggesting the potential role of artemisinin in preventing the inflammatory progression of atherosclerosis. PMID:21165548

  19. Anti-inflammatory effects of secondary metabolites of marine Pseudomonas sp. in human neutrophils are through inhibiting P38 MAPK, JNK, and calcium pathways.

    PubMed

    Yang, Shun-Chin; Sung, Ping-Jyun; Lin, Chwan-Fwu; Kuo, Jimmy; Chen, Chun-Yu; Hwang, Tsong-Long

    2014-01-01

    Activated neutrophils play a significant role in the pathogenesis of many inflammatory diseases. The metabolites of marine microorganisms are increasingly employed as sources for developing new drugs; however, very few marine drugs have been studied in human neutrophils. Herein, we showed that secondary metabolites of marine Pseudomonas sp. (N11) significantly inhibited superoxide anion generation and elastase release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils, with IC50 values of 0.67±0.38 µg/ml and 0.84±0.12 µg/ml, respectively. In cell-free systems, neither superoxide anion-scavenging effect nor inhibition of elastase activity was associated with the suppressive effects of N11. N11 inhibited the phosphorylation of p38 MAP kinase and JNK, but not Erk and Akt, in FMLP-induced human neutrophils. Also, N11 dose-dependently attenuated the transient elevation of intracellular calcium concentration in activated neutrophils. In contrast, N11 failed to alter phorbol myristate acetate-induced superoxide anion generation, and the inhibitory effects of N11 were not reversed by protein kinase A inhibitor. In conclusion, the anti-inflammatory effects of N11 on superoxide anion generation and elastase release in activated human neutrophils are through inhibiting p38 MAP kinase, JNK, and calcium pathways. Our results suggest that N11 has the potential to be developed to treat neutrophil-mediated inflammatory diseases. PMID:25474595

  20. Inhibitory Effects of KP-A159, a Thiazolopyridine Derivative, on Osteoclast Differentiation, Function, and Inflammatory Bone Loss via Suppression of RANKL-Induced MAP Kinase Signaling Pathway

    PubMed Central

    Ihn, Hye Jung; Lee, Doohyun; Lee, Taeho; Kim, Sang-Hyun; Shin, Hong-In; Bae, Yong Chul; Hong, Jung Min; Park, Eui Kyun

    2015-01-01

    Abnormally elevated formation and activation of osteoclasts are primary causes for a majority of skeletal diseases. In this study, we found that KP-A159, a newly synthesized thiazolopyridine derivative, inhibited osteoclast differentiation and function in vitro, and inflammatory bone loss in vivo. KP-A159 did not cause a cytotoxic response in bone marrow macrophages (BMMs), but significantly inhibited the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts induced by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). KP-A159 also dramatically inhibited the expression of marker genes related to osteoclast differentiation, including TRAP (Acp5), cathepsin K (Ctsk), dendritic cell-specific transmembrane protein (Dcstamp), matrix metallopeptidase 9 (Mmp9), and nuclear factor of activated T-cells, cytoplasmic 1 (Nfatc1). Moreover, actin ring and resorption pit formation were inhibited by KP-A159. Analysis of the signaling pathway involved showed that KP-A159 inhibited RANKL-induced activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and mitogen-activated protein kinase kinase1/2 (MEK1/2). In a mouse inflammatory bone loss model, KP-A159 significantly rescued lipopolysaccharide (LPS)-induced bone loss by suppressing osteoclast numbers. Therefore, KP-A159 targets osteoclasts, and may be a potential candidate compound for prevention and/or treatment of inflammatory bone loss. PMID:26536233

  1. Therapeutics targeting innate immune/inflammatory responses through the interleukin-6/JAK/STAT signal transduction pathway in patients with cancer.

    PubMed

    Roxburgh, Campbell S D; McMillan, Donald C

    2016-01-01

    Over the last 15 years, there has been an evolution in the thinking of how tumors grow and disseminate: from the earlier work where it was considered that the intrinsic characteristics of the tumor largely determined the process to more recent work where local and systemic inflammatory responses play a key role in disease progression and survival in patients with cancer. Although the immune/inflammatory responses to cancer are complex, it is clear that targeting the host immune/inflammatory responses (in particular, innate/humoral responses) has considerable potential to improve outcomes in patients with a variety of common solid tumors. There are a wide variety of agents from the nonselective glucocorticoids to the selective Janus Activated Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) inhibitors that has considerable therapeutic potential. They may be considered to act through a main signal transduction mechanism, the interleukin-6/JAK/STAT pathway. This work heralds a new era in which it will be important not only to treat the tumor but also to treat the host, so called oncoimmunology. PMID:26432924

  2. Involvement of mitogen-activated protein kinase and NF-κB signaling pathways in perfluorooctane sulfonic acid-induced inflammatory reaction in BV2 microglial cells.

    PubMed

    Zhu, Jingying; Qian, Wenyi; Wang, Yixin; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-12-01

    Microglial activation is closely related to the pathogenesis of neurodegenerative diseases by producing proinflammatory cytokines. Perfluorooctane sulfonic acid (PFOS), known as an emerging persistent organic pollutant, is reported to disturb human immune homeostasis; however, whether it affects cytokine production or the immune response in the central nervous system remains unclear. The present study was aimed to explore whether PFOS contributed to inflammatory action and to investigate the corresponding mechanisms in BV2 microglia. PFOS-mediated morphologic changes, cytokine responses and signaling events were examined by light microscopy, real-time polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot assays. Our results indicated that PFOS increased BV2 cells activation and simultaneously increased tumor necrosis factor alpha and interleukin-6 expression. In addition, the c-Jun N-terminal protein kinase inhibitor (SP600125), as well as ERK1/2 blocker (PD98059), transcriptionally at least, displayed anti-inflammatory properties on PFOS-elicited cytokine responses. Moreover, the inflammatory transcription factor NF-κB was specifically activated by PFOS as well. These results, taken together, suggested that PFOS exerts its functional effects on the response of microglial cell activation via, in part, the c-Jun N-terminal protein kinase, ERK and NF-κB signaling pathways with its subsequent influence on proinflammatory action. PMID:25677194

  3. Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats.

    PubMed

    Liu, Hui; Liu, Hong-Yang; Jiang, Yi-Nong; Li, Nan

    2016-03-01

    Thymoquinone is the main active monomer extracted from black cumin and has anti‑inflammatory, antioxidant and anti‑apoptotic functions. However, the protective effects of thymoquinone on cardiovascular function in diabetes remain to be fully elucidated. The present study aimed to investigate the molecular mechanisms underling the beneficial effects of thymoquinone on the cardiovascular function in streptozotocin‑induced diabetes mellitus (DM) rats. Supplement thymoquinone may recover the insulin levels and body weight, inhibit blood glucose levels and reduce the heart rate in DM‑induced rats. The results indicated that the heart, liver and lung to body weight ratios, in addition to the blood pressure levels, were similar for each experimental group. Treatment with thymoquinone significantly reduced oxidative stress damage, inhibited the increased endothelial nitric oxide synthase protein expression and suppressed the elevation of cyclooxygenase‑2 levels in DM‑induced rats. In addition, thymoquinone significantly suppressed the promotion of tumor necrosis factor‑α and interleukin‑6 levels in the DM‑induced rats. Furthermore, administration of thymoquinone significantly reduced caspase‑3 activity and the promotion of phosphorylated‑protein kinase B (Akt) protein expression levels in DM‑induced rats. These results suggest that the protective effect of thymoquinone improves cardiovascular function and attenuates oxidative stress, inflammation and apoptosis by mediating the phosphatidylinositol 3‑kinase/Akt pathway in DM‑induced rats. PMID:26820252

  4. Stevioside plays an anti-inflammatory role by regulating the NF-κB and MAPK pathways in S. aureus-infected mouse mammary glands.

    PubMed

    Wang, Tiancheng; Guo, Mengyao; Song, Xiaojing; Zhang, Zecai; Jiang, Haichao; Wang, Wei; Fu, Yunhe; Cao, Yongguo; Zhu, Lianqin; Zhang, Naisheng

    2014-10-01

    Mastitis is an inflammatory disease caused by microbial infection. Staphylococcus aureus is one of the primary bacteria responsible for mastitis. Stevioside is isolated from Stevia rebaudiana and is known to have therapeutic functions. This study was designed to evaluate the effects of stevioside in a mouse model of S. aureus-induced mastitis. In this study, the mouse mammary gland was infected with S. aureus to induce the mastitis model. The stevioside was administered intraperitoneally after the S. aureus infection was established. Hematoxylin-eosin (HE) staining, ELISA, Western blot, and q-PCR methods were used. The results show that stevioside significantly reduced the inflammatory cell infiltration and the levels of TNF-α, IL-1β, and IL-6 and the respective expression of their messenger RNAs (mRNAs). Further studies revealed that stevioside downregulated the TLR2, NF-κB, and (mitogen-activated protein kinase) MAPK signaling pathways in the S. aureus-infected mouse mammary gland. Our results demonstrate that stevioside reduced the expression of TNF-α, IL-1β, and IL-6 by inhibiting the phosphorylation of proteins in the NF-κB and MAPK signaling pathways dose-dependently, but that their mRNA expression was not obviously changed. PMID:24858724

  5. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain.

    PubMed

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2015-08-01

    Spirulina is a widely used health supplement and is a dietary source of C-Phycocyanin (CPC), a potent anti-oxidant. We have previously reported the neurotoxic potential of tributyltin chloride (TBTC), an environmental pollutant and potent biocide. In this study, we have evaluated the protective efficacy of CPC against TBTC induced neurotoxicity. To evaluate the extent of neuroprotection offered by CPC, its efficacy was compared with the degree of protection offered by N-acetylcysteine (NAC) (a well known neuroprotective drug, taken as a positive control). Male Wistar rats (28 day old) were administered with 20mg/kg TBTC (oral) and 50mg/kg CPC or 50mg/kg NAC (i.p.), alone or in combination, and various parameters were evaluated. These include blood-brain barrier (BBB) damage; redox parameters (ROS, GSH, redox pathway associated enzymes, oxidative stress markers); inflammatory, cellular, and stress markers; apoptotic proteins and in situ cell death assay (TUNEL). We observed increased CPC availability in cortical tissue following its administration. Although BBB associated proteins like claudin-5, p-glycoprotein and ZO-1 were restored, CPC/NAC failed to protect against TBTC induced overall BBB permeability (Evans blue extravasation). Both CPC and NAC remarkably reduced oxidative stress and inflammation. NAC effectively modulated redox pathway associated enzymes whereas CPC countered ROS levels efficiently. Interestingly, CPC and NAC were equivalently capable of reducing apoptotic markers, astroglial activation and cell death. This study illustrates the various pathways involved in CPC mediated neuroprotection against this environmental neurotoxicant and highlights its capability to modulate glial cell activity. PMID:26079211

  6. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures

    PubMed Central

    Sakamoto, Yuri; Kanatsu, Junko; Toh, Mariko; Naka, Ayano; Kondo, Kazuo; Iida, Kaoruko

    2016-01-01

    Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue. PMID:26901838

  7. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures.

    PubMed

    Sakamoto, Yuri; Kanatsu, Junko; Toh, Mariko; Naka, Ayano; Kondo, Kazuo; Iida, Kaoruko

    2016-01-01

    Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue. PMID:26901838

  8. Citrulline Protects Streptococcus pyogenes from Acid Stress Using the Arginine Deiminase Pathway and the F1Fo-ATPase

    PubMed Central

    Cusumano, Zachary T.

    2015-01-01

    ABSTRACT A common stress encountered by both pathogenic and environmental bacteria is exposure to a low-pH environment, which can inhibit cell growth and lead to cell death. One major defense mechanism against this stress is the arginine deiminase (ADI) pathway, which catabolizes arginine to generate two ammonia molecules and one molecule of ATP. While this pathway typically relies on the utilization of arginine, citrulline has also been shown to enter into the pathway and contribute to protection against acid stress. In the pathogenic bacterium Streptococcus pyogenes, the utilization of citrulline has been demonstrated to contribute to pathogenesis in a murine model of soft tissue infection, although the mechanism underlying its role in infection is unknown. To gain insight into this question, we analyzed a panel of mutants defective in different steps in the ADI pathway to dissect how arginine and citrulline protect S. pyogenes in a low-pH environment. While protection provided by arginine utilization occurred through the buffering of the extracellular environment, citrulline catabolism protection was pH independent, requiring the generation of ATP via the ADI pathway and a functional F1Fo-ATP synthase. This work demonstrates that arginine and citrulline catabolism protect against acid stress through distinct mechanisms and have unique contributions to virulence during an infection. IMPORTANCE An important aspect of bacterial pathogenesis is the utilization of host-derived nutrients during an infection for growth and virulence. Previously published work from our lab identified a unique role for citrulline catabolism in Streptococcus pyogenes during a soft tissue infection. The present article probes the role of citrulline utilization during this infection and its contribution to protection against acid stress. This work reveals a unique and concerted action between the catabolism of citrulline and the F1Fo-ATPase that function together to provide protection for

  9. Anti-Inflammatory Effects of Water Chestnut Extract on Cytokine Responses via Nuclear Factor-κB-signaling Pathway.

    PubMed

    Kim, Bora; Kim, Jin Eun; Choi, Byung-Kook; Kim, Hyun-Soo

    2015-01-01

    Water chestnut (Trapa japonica Flerov.) is an annual aquatic plant. In the present study, we showed that the treatment of water chestnut extracted with boiling water resulted in a significant increase 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and decrease the intracellular H2O2-induced accumulation of reactive oxygen species. In addition, water chestnut extract (WCE) inhibited lipopolysaccharide (LPS)-induced nitric oxide production and suppressed mRNA and protein expression of the inducible nitric oxide synthase gene. The cytokine array results showed that WCE inhibited inflammatory cytokine secretion. Also, WCE reduced tumor necrosis factor-α-and interleukin-6-induced nuclear factor-αB activity. Furthermore, during sodium lauryl sulfate (SLS)-induced irritation of human skin, WCE reduced SLS-induced skin erythema and improved barrier regeneration. These results indicate that WCE may be a promising topical anti-inflammatory agent. PMID:25593649

  10. Anti-Inflammatory Effects of Water Chestnut Extract on Cytokine Responses via Nuclear Factor-κB-signaling Pathway

    PubMed Central

    Kim, Bora; Kim, Jin Eun; Choi, Byung-Kook; Kim, Hyun-Soo

    2015-01-01

    Water chestnut (Trapa japonica Flerov.) is an annual aquatic plant. In the present study, we showed that the treatment of water chestnut extracted with boiling water resulted in a significant increase 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and decrease the intracellular H2O2-induced accumulation of reactive oxygen species. In addition, water chestnut extract (WCE) inhibited lipopolysaccharide (LPS)-induced nitric oxide production and suppressed mRNA and protein expression of the inducible nitric oxide synthase gene. The cytokine array results showed that WCE inhibited inflammatory cytokine secretion. Also, WCE reduced tumor necrosis factor-α-and interleukin-6-induced nuclear factor-αB activity. Furthermore, during sodium lauryl sulfate (SLS)-induced irritation of human skin, WCE reduced SLS-induced skin erythema and improved barrier regeneration. These results indicate that WCE may be a promising topical anti-inflammatory agent. PMID:25593649

  11. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice.

    PubMed

    Song, Xiaojing; Zhang, Wen; Wang, Tiancheng; Jiang, Haichao; Zhang, Zecai; Fu, Yunhe; Yang, Zhengtao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Geniposide is a medicine isolated from Gardenia jasminoides Ellis, which is a traditional Chinese herb that is widely used in Asia for the treatment of inflammation, brain diseases, and hepatic disorders. Mastitis is a highly prevalent and important infectious disease. In this study, we used a lipopolysaccharide (LPS)-induced mouse mastitis model and LPS-stimulated primary mouse mammary epithelial cells (mMECs) to explore the anti-inflammatory effect and the mechanism of action of geniposide. Using intraductal injection of LPS as a mouse model of mastitis, we found that geniposide significantly reduced the infiltration of inflammatory cells and downregulated the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). To further investigate the anti-inflammatory mechanism, we used LPS-stimulated mMECs as an in vitro mastitis model. The results of enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) showed that geniposide inhibited the expression of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. Western blot analysis demonstrated that geniposide could suppress the phosphorylation of inhibitory kappa B (IκBα), nuclear factor-κB (NF-κB), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Geniposide also inhibited the expression of toll-like receptor 4 (TLR4) in the LPS-stimulated mMECs. In conclusion, geniposide exerted its anti-inflammatory effect by regulating TLR4 expression, which affected the downstream NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Thus, geniposide may be a potential drug for mastitis therapy. PMID:24771071

  12. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway.

    PubMed

    Tan, Woan Sean; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Fakurazi, Sharida

    2015-01-01

    Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest c