Sample records for influence erythrocyte phenotypes

  1. Phenotypic variations in osmotic lysis of Sahel goat erythrocytes in non-ionic glucose media.

    PubMed

    Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi

    2016-03-01

    Erythrocyte osmotic lysis in deionised glucose media is regulated by glucose influx, cation efflux, and changes in cell volume after water diffusion. Transmembrane fluxes may be affected by varied expression of glucose transporter protein and susceptibility of membrane proteins to glucose-induced glycosylation and oxidation in various physiologic states. Variations in haemolysis of Sahel goat erythrocytes after incubation in hyposmotic non-ionic glucose media, associated with sex, age, late pregnancy, and lactation, were investigated. The osmotic fragility curve in glucose media was sigmoidal with erythrocytes from goats in late pregnancy (PRE) or lactation (LAC) or from kid (KGT) or middle-aged (MGT) goats. Non-sigmoidal phenotype occurred in yearlings (YGT) and old (OGT) goats. The composite fragility phenotype for males and non-pregnant dry (NPD) females was non-sigmoidal. Erythrocytes with non-sigmoidal curves were more stable than those with sigmoidal curves because of inflectional shift of the curve to the left. Erythrocytes tended to be more fragile with male than female sex, KGT and MGT than YGT and OGT, and LAC and PRE than NPD. Thus, sex, age, pregnancy, and lactation affected the haemolytic pattern of goat erythrocytes in glucose media. The physiologic state of the goat affected the in vitro interaction of glucose with erythrocytes, causing variations in osmotic stability with variants of fragility phenotype. Variations in the effect of high extracellular glucose concentrations on the functions of membrane-associated glucose transporter, aquaporins, and the cation cotransporter were presumed to be relevant in regulating the physical properties of goat erythrocytes under osmotic stress.

  2. Phenotypic homogeneity with minor deviance in osmotic fragility of Sahel goat erythrocytes in non-ionic sucrose media during various physiologic states.

    PubMed

    Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi

    2016-11-01

    Erythrocyte swelling in non-ionic sucrose media and the subsequent osmotic lysis are influenced by mechanisms of regulatory volume adjustment and osmotic water permeability. Kinetics of transmembrane water and ion fluxes in varied physiologic states may determine the phenotype of erythrocyte osmotic fragility (EOF) and affect estimates of EOF. Effects of sex, age, late pregnancy (third trimester) and lactation on the haemolysis of Sahel goat erythrocytes incubated in a series of hyposmotic non-ionic sucrose media were investigated. The fragiligram was sigmoidal in 72 (97%) out of 74 goats. Two male (3%) goats with low and high extreme median erythrocyte fragilities (MEF), had non-sigmoidal curves. The mean fragilities at osmolarities of 30-300 mosmol/L of sucrose and the mean osmolarities responsible for 10%-90% haemolysis (CH10-CH90) were not significantly different between males and non-pregnant dry (NPD) females, amongst the age groups and between pregnant or lactating and NPD female goats. The MEF (CH50) of the goats were at osmolarities of 126-252 mosmol/L (median of data: 171 mosmol/L) with a mean of 175.24±16.20 mosmol/L. Therefore, phenotypic homogeneity of EOF occurred with minor deviance, since EOF variables were not differentiated by sex, age, late pregnancy or lactation. Physiologic states of the goat did not affect EOF phenotype in non-ionic sucrose media. Sigmoidal fragility phenotype seemed to be homogeneously conserved by osmoregulatory mechanisms not partitioned by sex, age, late pregnancy or lactation, but a minor non-sigmoidal curve might have occurred due to altered erythrocyte osmotic behaviour that would require further investigation.

  3. Analysis of density and epitopes of D antigen on the surface of erythrocytes from DEL phenotypic individuals carrying the RHD1227A allele.

    PubMed

    Gu, Juan; Sun, An-Yuan; Wang, Xue-Dong; Shao, Chao-Peng; Li, Zheng; Huang, Li-Hua; Pan, Zhao-Lin; Wang, Qing-Ping; Sun, Guang-Ming

    2014-04-01

    The characteristics of the D antigen are important as they influence the immunogenicity of D variant cells. Several studies on antigenic sites have been reported in normal D positive, weak D and partial D cases, including a comprehensive analysis of DEL types in Caucasians. The aim of this study was to assess D antigen density and epitopes on the erythrocyte surface of Asian type DEL phenotypic individuals carrying the RHD1227A allele in the Chinese population. A total of 154 DEL phenotypic individuals carrying the RHD1227A allele were identified through adsorption and elution tests and polymerase chain reaction analysis with sequence-specific primers in the Chinese population. D antigen density on the erythrocyte surface of these individuals was detected using a flow cytometric method. An erythrocyte sample with known D antigen density was used as a standard. Blood samples from D-negative and D-positive individuals were used as controls. In addition, D antigen epitopes on the erythrocyte surface of DEL individuals carrying the RHD1227A allele were investigated with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. The means of the median fluorescence intensity of D antigen on the erythrocyte membrane surface of D-negative, D-positive and DEL individuals were 2.14±0.25, 193.61±11.43 and 2.45±0.82, respectively. The DEL samples were estimated to have approximately 22 D antigens per cell. The samples from all 154 DEL individuals reacted positively with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. In this study, D antigen density on the erythrocyte surface of DEL individuals carrying the RHD1227A allele was extremely low, there being only very few antigenic molecules per cell, but the D antigen epitopes were grossly complete.

  4. Influence of styryl dyes on blood erythrocytes

    NASA Astrophysics Data System (ADS)

    Nizomov, Negmat; Barakaeva, Mubaro; Kurtaliev, Eldar N.; Rahimov, Sherzod I.; Khakimova, Dilorom P.; Khodjayev, Gayrat; Yashchuk, Valeriy N.

    2008-08-01

    It was studied the influence of F, Sbt, Sil, Sbo monomer and homodimer Dst-5, Dst-10, Dbt-5, Dbt-10, Dil-10, Dbo-10 styryl dyes on blood erythrocytes of white rats. It was shown that the homodimer styryl dyes Dst-5, Dbt-5 and Dbo-10 decrease the erythrocytes quantity by 1.5-2 times more as compared with monomer dyes Sbt and Sbo. The main cause of dyes different action is the different oxidation degree of intracellular hemoglobin evoked by these dyes. It was established that the observed effects was connected with different penetration of these dyes through membrane of erythrocytes and with interaction of these dyes with albumin localized in membranes of cells.

  5. ABO Blood Groups Influence Macrophage-mediated Phagocytosis of Plasmodium falciparum-infected Erythrocytes

    PubMed Central

    Branch, Donald R.; Hult, Annika K.; Olsson, Martin L.; Liles, W. Conrad; Cserti-Gazdewich, Christine M.; Kain, Kevin C.

    2012-01-01

    Erythrocyte polymorphisms associated with a survival advantage to Plasmodium falciparum infection have undergone positive selection. There is a predominance of blood group O in malaria-endemic regions, and several lines of evidence suggest that ABO blood groups may influence the outcome of P. falciparum infection. Based on the hypothesis that enhanced innate clearance of infected polymorphic erythrocytes is associated with protection from severe malaria, we investigated whether P. falciparum-infected O erythrocytes are more efficiently cleared by macrophages than infected A and B erythrocytes. We show that human macrophages in vitro and mouse monocytes in vivo phagocytose P. falciparum-infected O erythrocytes more avidly than infected A and B erythrocytes and that uptake is associated with increased hemichrome deposition and high molecular weight band 3 aggregates in infected O erythrocytes. Using infected A1, A2, and O erythrocytes, we demonstrate an inverse association of phagocytic capacity with the amount of A antigen on the surface of infected erythrocytes. Finally, we report that enzymatic conversion of B erythrocytes to type as O before infection significantly enhances their uptake by macrophages to observed level comparable to that with infected O wild-type erythrocytes. These data provide the first evidence that ABO blood group antigens influence macrophage clearance of P. falciparum-infected erythrocytes and suggest an additional mechanism by which blood group O may confer resistance to severe malaria. PMID:23071435

  6. [Erythrocytic enzymopathy in Uzbekistan].

    PubMed

    Bakhramov, S M; Ashrabhodzhaeva, K K

    2011-01-01

    Erythrocyte enzymes participate in the main interactions promoting utilization of glucose-glycolytic, pentosophosphate cycles and glutation system. In this report we study on erythrocyte G6PD deficiency which is the impairment related to the gender and expressed with development of acute drug-associated hemolytic anemia. Out of 13187 studied subjects 122 showed carrying of deficiency of erythrocyte G6PD activity, from them 98 (80.3%) subjects were male, and 24 (19.7%) female. As a whole, among the revealed in the population studies, and also verified in clinic of the persons with deficiency of erythrocyte G6PD there were marked different pathological phenotypes: hereditary nonspherecytary hemolytic anemia, acute drug-induced hemolytic anemia, asymptomatic gene carrying and, selected by us disease with few symptoms. As a whole, among the revealed in the population studies, and also verified in clinic of the persons with deficiency of erythrocyte G6PD there were marked different pathological phenotypes: hereditary nonspherecytary hemolytic anemia, acute drug-induced hemolytic anemia, asymptomatic gene carrying and, selected by us disease with few symptoms.

  7. Influence of Erythrocyte Membrane Stability in Atherosclerosis.

    PubMed

    da Silva Garrote-Filho, Mario; Bernardino-Neto, Morun; Penha-Silva, Nilson

    2017-04-01

    The purpose of this study is to show how an excess of cholesterol in the erythrocyte membrane contributes stochastically to the progression of atherosclerosis, leading to damage in blood rheology and O 2 transport, deposition of cholesterol (from trapped erythrocytes) in an area of intraplaque hemorrhage, and local exacerbation of oxidative stress. Cholesterol contained in the membrane of erythrocytes trapped in an intraplaque hemorrhage contributes to the growth of the necrotic nucleus. There is even a relationship between the amount of cholesterol in the erythrocyte membrane and the severity of atherosclerosis. In addition, the volume variability among erythrocytes, measured by RDW, is predictive of a worsening of this disease. Erythrocytes contribute to the development of atherosclerosis in several ways, especially when trapped in intraplate hemorrhage. These erythrocytes are oxidized and phagocytosed by macrophages. The cholesterol present in the membrane of these erythrocytes subsequently contributes to the growth of the atheroma plaque. In addition, when they rupture, erythrocytes release hemoglobin, which leads to the generation of free radicals. Finally, increased RDW may predict the worsening of atherosclerosis, due to the effects of inflammation and oxidative stress on erythropoiesis and erythrocyte volume. A better understanding of erythrocyte participation in atherosclerosis may contribute to the improvement of the prevention and treatment strategies of this disease.

  8. X-chromosomal inactivation directly influences the phenotypic manifestation of X-linked protoporphyria

    PubMed Central

    Brancaleoni, V.; Balwani, M.; Granata, F.; Graziadei, G.; Missineo, P.; Fiorentino, V.; Fustinoni, S.; Cappellini, M.D.; Naik, H.; Desnick, R.J.; Di Pierro, E.

    2015-01-01

    X-linked protoporphyria (XLP), a rare erythropoietic porphyria, results from terminal exon gain-of-function mutations in the ALAS2 gene causing increased ALAS2 activity and markedly increased erythrocyte protoporphyrin levels. Patients present with severe cutaneous photosensitivity and may develop liver dysfunction. XLP was originally reported as X-linked dominant with 100% penetrance in males and females. We characterized 11 heterozygous females from six unrelated XLP families and show markedly varying phenotypic and biochemical heterogeneity, reflecting the degree of X-chromsomal inactivation of the mutant gene. ALAS2 sequencing identified the specific mutation and confirmed heterozygosity among the females. Clinical history, plasma and erythrocyte protoporphyrin levels were determined. Methylation assays of the androgen receptor and zinc-finger MYM type 3 short tandem repeat polymorphisms estimated each heterozygotes X-chromosomal inactivation pattern. Heterozygotes with equal or increased skewing, favoring expression of the wild-type allele had no clinical symptoms and only slightly increased erythrocyte protoporphyrin concentrations and/or frequency of protoporphyrin-containing peripheral blood fluorocytes. When the wild-type allele was preferentially inactivated, heterozygous females manifested the disease phenotype and had both higher erythrocyte protoporphyrin levels and circulating fluorocytes. These findings confirm that the previous dominant classification of XLP is inappropriate and genetically misleading, as the disorder is more appropriately designated XLP. PMID:25615817

  9. The study of the dynamics of erythrocytes under the influence of an external electric field

    NASA Astrophysics Data System (ADS)

    Mamaeva, Sargylana N.; Maksimov, Georgy V.; Antonov, Stepan R.

    2017-11-01

    A mathematical model is considered for the determination of the surface charge of an erythrocyte with its shape approximated by a surface of revolution of the second order, and the investigation of the dynamics of erythrocytes under the influence of an external electric field. In the first part of this work, the electrical surface charge of the erythrocyte of the patient was calculated with the assumption that the change in the shape and size of the red blood cells leads to stabilization of the electric field, providing a normal electrostatic repulsion. In the second part of the work, the research results of dynamics of changes in the morphology of erythrocytes under the influence of an external electric field depending on the values of their surface charge and resistance of blood plasma is presented. In the course of the work, the dependence of the surface charge of red blood cells from their shape and size is presented. The determination of the relationship between the value of the charge field and the surface of erythrocytes in norm and in pathology is shown. The dependence of the velocity of the erythrocytes on the characteristics of the external electric field, surface charge of the erythrocyte and properties of the medium is obtained. The results of this study can be applied indirectly to diagnose diseases and to develop recommendations for experimental studies of hemodynamics under the influence of various external physical factors.

  10. Factors influencing erythrocyte choline concentrations.

    PubMed

    Miller, B L; Jenden, D J; Tang, C; Read, S

    1989-01-01

    Choline concentrations in human erythrocytes increase after freezing and thawing, during incubation in Krebs-phosphate for 30 min or on storage at 0 degrees C for 3-24 hr. The increase is prevented by protein precipitation by 10% perchloric acid, 10% zinc hydroxide, 10% sodium tungstate or boiling in water. It is not prevented by EDTA (10 mM) and is increased by oleate (5 mM). We suggest that the increase is due to the action of phospholipase D on erythrocyte phospholipids.

  11. Influence of linearly polarized near-infrared irradiation on deformability of human stored erythrocytes.

    PubMed

    Yokoyama, Kozo; Sugiyama, Kazuna

    2003-02-01

    To investigate the influence of linearly polarized near-infrared irradiation using the Super Lizer trade mark on deformability of human erythrocytes. Not only low-powered laser but also linearly polarized near-infrared beams have some biostimulation effects on various tissues. There were some reports of erythrocyte deformability improved by low-powered He-Ne laser irradiation. Human erythrocyte samples stored for three weeks were adjusted to 30% hematocrit. Erythrocyte deformability presented as the filter filtration rate was measured. There was no difference of the filter filtration rate between control group without irradiation and the group of 125 mJ/cm(2) exposure level at a wavelength of 830 nm. However, the groups of 625 and 1,250 mJ/cm(2) exposure levels at a wavelength of 830 nm showed higher filter filtration rates compared to the control group. Linearly polarized near-infrared irradiation in a range of 625-1,250 mJ/cm(2) exposure level at a wavelength of 830 nm improved deformability of human stored erythrocytes.

  12. Influence of MLS laser radiation on erythrocyte membrane fluidity and secondary structure of human serum albumin.

    PubMed

    Pasternak, Kamila; Nowacka, Olga; Wróbel, Dominika; Pieszyński, Ireneusz; Bryszewska, Maria; Kujawa, Jolanta

    2014-03-01

    The biostimulating activity of low level laser radiation of various wavelengths and energy doses is widely documented in the literature, but the mechanisms of the intracellular reactions involved are not precisely known. The aim of this paper is to evaluate the influence of low level laser radiation from an multiwave locked system (MLS) of two wavelengths (wavelength = 808 nm in continuous emission and 905 nm in pulsed emission) on the human erythrocyte membrane and on the secondary structure of human serum albumin (HSA). Human erythrocytes membranes and HSA were irradiated with laser light of low intensity with surface energy density ranging from 0.46 to 4.9 J cm(-2) and surface energy power density 195 mW cm(-2) (1,000 Hz) and 230 mW cm(-2) (2,000 Hz). Structural and functional changes in the erythrocyte membrane were characterized by its fluidity, while changes in the protein were monitored by its secondary structure. Dose-dependent changes in erythrocyte membrane fluidity were induced by near-infrared laser radiation. Slight changes in the secondary structure of HSA were also noted. MLS laser radiation influences the structure and function of the human erythrocyte membrane resulting in a change in fluidity.

  13. Influence of the use of statin on the stability of erythrocyte membranes in multiple sclerosis.

    PubMed

    de Freitas, Mariana Vaini; de Oliveira, Marcela Ramos; dos Santos, Diogo Fernandes; de Cássia Mascarenhas Netto, Rita; Fenelon, Sheila Bernardino; Penha-Silva, Nilson

    2010-02-01

    Multiple sclerosis (MS) probably occurs by oxidative, inflammatory and autoimmune mechanisms. This study investigated the influence of statin on the stability of erythrocyte membranes in MS patients. The population was composed of one group with simvastatin therapy (20 mg/day), another group without statin therapy and a healthy control group. The stability of erythrocytes was evaluated by the half-transition points, H(50) and D(50), obtained from the curves of hemolysis induced by hypotonic shock and ethanol action, respectively. Erythrocytes of MS patients were less stable against lysis by both chaotropes. This behavior may be merely a consequence of the lifestyle of MS patients or it may be intrinsically associated with the conjunct of factors responsible for the development of the disease. The use of statin by MS patients was associated with lower levels of LDL and total cholesterol, as expected, and with higher stability of erythrocytes against ethanol compared to the values of untreated MS patients.

  14. Influence of the ionophore A23187 on the plastic behavior of normal erythrocytes.

    PubMed

    Kuettner, J F; Dreher, K L; Rao, G H; Eaton, J W; Blackshear, P L; White, J G

    1977-07-01

    Previous studies have demonstrated that A23187, an ionophore which selectively transports divalent cations across cell membranes, has profound effects on human erythrocytes: it causes red cells to take up calcium; lose potassium, water, and ATP; convert from biconcave discs to echinocytes and spheroechinocytes; and become more rigid. The present study has explored the influence of calcium uptake induced by the ionophore on the behavior of individual erythrocyte membranes by the micropipette aspiration technique. Exposure of erythrocytes to calcium and A23187 for intervals of up to 30 minutes resulted in marked changes in membrane viscoelastic properties, including the development of increased resistance to aspiration. The most striking manifestation of altered membrane mechanics was apparent after 10 minutes on incubation. Cells pulled into the pipette for a few seconds and the extruded back into the medium retained the deformity imposed by the pipette for several seconds to a few minutes before regaining the form they manifested prior to initial aspiration. The calcium-induced changes in erythrocyte behavior observed in this study strongly support the concept that extrinsic proteins located inside the membrane provide mechanical support to the cell wall, and that increased levels of calcium cause precipitation or cross-linking of the proteins responsible for the increased resistence to deformation and recoil observed after aspiration into micropipettes.

  15. [Blood clots in erythrocyte concentrates during transfusion].

    PubMed

    Wagner, T; Drexler, C; Kröll, W; Jüngling, G; Lanzer, G; Gabriel, C

    2008-12-01

    The presence of multiple blood clots in leucocyte-depleted erythrocyte concentrates during a transfusion gave rise to an investigation to find the exact cause. Determination of the various blood group systems was carried out using the gel centrifugation method and also the polymerase chain reaction (PCR) using sequence-specific primers. In addition the human leucocyte antigens (HLA) class 1 and class 2 markers were determined with molecular biological methods. The erythrocytes in the blood bags containing the blood clots showed a mixed-field agglutination in each blood group where the donor and recipient had different phenotypes. The HLA groups, however, could be solely attributed to the patient, since during the preparation of erythrocyte concentrates all leucocytes are removed and only very few residual cells containing DNA are present. To the best of our knowledge, this is the first detailed report on blood clots from patient blood in erythrocyte concentrates, which occurred during a transfusion. The retrograde filling of the blood bag with patient blood during the transfusion led to coagulation in the bag. Therefore, careful attention must be taken when dealing with stored blood and corresponding training must be regularly carried out.

  16. Erythrocyte fluorescence and lead intoxication.

    PubMed Central

    Clark, K G

    1976-01-01

    Blood samples from people exposed to inorganic lead were examined by fluorescence microscopy for excess erythrocyte porphyrin. With continued lead absorption, fluorescent erythrocytes appeared in the circulation of workers handling this metal or its compounds, and they progressively increased in number and brilliance. These changes ensued if the blood lead concentration was maintained above 2-42 mumol/l (50 mug/100 ml), and preceded any material fall in the haemoglobin value. At one factory, 62-5% of 81 symptomless workers showed erythrocyte fluorescence attributable to the toxic effects of lead. Excess fluorocytes were found in blood samples from a child with pica and three of her eight siblings. These four were subsequently shown to have slightly increased blood lead concentrations (2-03 to 2-32 mumol/l). Fluorescence microscopy for excess erythrocyte porphyrin is a sensitive method for the detection of chronic lead intoxication. A relatively slight increase in the blood lead is associated with demonstrabel changes in erythrocyte porphyrin content. The procedure requires little blood, and may be performed upon stored samples collected for lead estimation. The results are not readily influenced by contamination, and provide good confirmatory evidence for the absorption of biochemically active lead. PMID:963005

  17. Influence of a static magnetic field on the slow freezing of human erythrocytes.

    PubMed

    Lin, Chun-Yen; Chang, Wei-Jen; Lee, Sheng-Yang; Feng, Sheng-Wei; Lin, Che-Tong; Fan, Kan-Shin; Huang, Haw-Ming

    2013-01-01

    The aim of this study was to test whether or not a strong static magnetic field (SMF) had a positive effect on the survival rate of frozen erythrocytes. Human erythrocytes were slow freezing at a rate of -1°C/min, to a final temperature of -20°C. During the freezing process, the cells were simultaneously exposed to an SMF with a magnetic induction of 0.2 or 0.4 T. After the cells were thawed, the survival rate, morphology, and function of the thawed erythrocytes were evaluated. Furthermore, tests of membrane fluidity were performed to assess the effect of the SMF on the cell membrane. The slow freezing process coupled with an SMF increased the survival rate of frozen erythrocytes, without any negative effect on the cell morphology or function. The increases in relative survival rates of frozen erythrocytes were 5.7% and 9.1% when the cells were frozen in 0.2 T and 0.4 T groups, respectively. In addition, the 0.4 T group significantly increased the membrane rigidity of the erythrocytes. Slow freezing coupled with a strong SMF produced positive effects on the survival rate of thawed erythrocytes, without changing their normal function.

  18. In vivo influence of extract from Aronia melanocarpa on the erythrocyte membranes in patients with hypercholesterolemia.

    PubMed

    Duchnowicz, Piotr; Nowicka, Agmieszka; Koter-Michalak, Maria; Broncel, Marlena

    2012-09-01

    Hypercholesterolemia increases cholesterol concentration in erythrocyte membranes, which results in decrease of membrane fluidity and decreases the deformability of red blood cells. The fruits of Arona melanocarpa contains many of polyphenols and other compounds that have beneficial health effects. The aim of the study was to estimate the influence of 2-month supplementation of extract from Aronia melanocarpa (100 mg Aronox, three times per day) on cholesterol concentration, lipid peroxidation, membrane fluidity, level of thiol groups and activity of ATPase in erythrocytes from patients with hypercholesterolemia. The study involved 25 patients with hypercholesterolemia without pharmacological treatment and 20 healthy individuals as a control group. Blood samples were collected before, and after 1 and 2 months of Aronia administration. The 2-month Aronia supplementation resulted in a decrease of cholesterol concentration (by 22%) and a decrease of lipid peroxidation (by 40%), and an increase of membrane fluidity. No statistically significant increase of the concentration of thiol groups and of ATPase activity were observed. Our study shows that supplementation of extract from Aronia melanocarpa has a beneficial effect on rheological properties of erythrocytes.

  19. Influence of magnesium sulfate on HCO3/Cl transmembrane exchange rate in human erythrocytes.

    PubMed

    Chernyshova, Ekaterina S; Zaikina, Yulia S; Tsvetovskaya, Galina A; Strokotov, Dmitry I; Yurkin, Maxim A; Serebrennikova, Elena S; Volkov, Leonid; Maltsev, Valeri P; Chernyshev, Andrei V

    2016-03-21

    Magnesium sulfate (MgSO4) is widely used in medicine but molecular mechanisms of its protection through influence on erythrocytes are not fully understood and are considerably controversial. Using scanning flow cytometry, in this work for the first time we observed experimentally (both in situ and in vitro) a significant increase of HCO3(-)/Cl(-) transmembrane exchange rate of human erythrocytes in the presence of MgSO4 in blood. For a quantitative analysis of the obtained experimental data, we introduced and verified a molecular kinetic model, which describes activation of major anion exchanger Band 3 (or AE1) by its complexation with free intracellular Mg(2+) (taking into account Mg(2+) membrane transport and intracellular buffering). Fitting the model to our in vitro experimental data, we observed a good correspondence between theoretical and experimental kinetic curves that allowed us to evaluate the model parameters and to estimate for the first time the association constant of Mg(2+) with Band 3 as KB~0.07mM, which is in agreement with known values of the apparent Mg(2+) dissociation constant (from 0.01 to 0.1mM) that reflects experiments on enrichment of Mg(2+) at the inner erythrocyte membrane (Gunther, 2007). Results of this work partly clarify the molecular mechanisms of MgSO4 action in human erythrocytes. The method developed allows one to estimate quantitatively a perspective of MgSO4 treatment for a patient. It should be particularly helpful in prenatal medicine for early detection of pathologies associated with the risk of fetal hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Kinetics of Cu crossing human erythrocyte membrane].

    PubMed

    Dun, Zhu Ci Ren

    2014-12-01

    This study was aimed to investigate various factors influencing the proceduction of Cu(II) crossing human erythrocyte membrane, including concentration of Cu²⁺, pH value of the medium, temperature and time of incubation, and to derive kinetic equation of Cu(II) crossing human erythrocyte membrane. Suspension red blood cells were incubated by Cu²⁺, then content of Cu²⁺ crossed human erythrocyte membrane was determined by atomic absorption spectrometry under various conditions after digestion. The results showed that content of Cu²⁺ crossed human erythrocyte membrane increased with the increase of extracellular Cu²⁺ and enhancement of incubation temperature, and the content of Cu²⁺ crossed human erythrocyte membrane showed a increasing tendency when pH reached to 6.2-7.4, and to maximum at pH 7.4, then gradually decreased at range of pH 7.4-9.2. It is concluded that the Cu²⁺ crossing human erythrocyte has been confirmed to be the first order kinetics characteristics within 120 min, and the linear equation is 10³ × Y = 0.0497t +6.5992.

  1. In vivo influence of extract from Aronia melanocarpa on the erythrocyte membranes in patients with hypercholesterolemia

    PubMed Central

    Duchnowicz, Piotr; Nowicka, Agnieszka; Koter-Michalak, Maria; Broncel, Marlena

    2012-01-01

    Summary Background Hypercholesterolemia increases cholesterol concentration in erythrocyte membranes, which results in decrease of membrane fluidity and decreases the deformability of red blood cells. The fruits of Arona melanocarpa contains many of polyphenols and other compounds that have beneficial health effects. Material/Methods The aim of the study was to estimate the influence of 2-month supplementation of extract from Aronia melanocarpa (100 mg Aronox, three times per day) on cholesterol concentration, lipid peroxidation, membrane fluidity, level of thiol groups and activity of ATPase in erythrocytes from patients with hypercholesterolemia. The study involved 25 patients with hypercholesterolemia without pharmacological treatment and 20 healthy individuals as a control group. Blood samples were collected before, and after 1 and 2 months of Aronia administration. Results The 2-month Aronia supplementation resulted in a decrease of cholesterol concentration (by 22%) and a decrease of lipid peroxidation (by 40%), and an increase of membrane fluidity. No statistically significant increase of the concentration of thiol groups and of ATPase activity were observed. Conclusions Our study shows that supplementation of extract from Aronia melanocarpa has a beneficial effect on rheological properties of erythrocytes. PMID:22936193

  2. [Effects of simulated hypoxia on dielectric properties of mouse erythrocytes].

    PubMed

    Ma, Qing; Tang, Zhi-Yuan; Wang, Qin-Wen; Zhao, Xin

    2008-02-01

    To explore the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes. Experimental animals were divided into the plain control group(control) and simulated altitude hypoxia group (altitude). The AC impedance of mouse erythrocytes was measured with the Agilent 4294A impedance analyzer, the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes was observed by cell dielectric spectroscopy, Cole-Cole plots, loss factor spectrum, loss tangent spectrum, and curve fitting analysis of Cole-Cole equation. After mice were exposed to hypoxia at simulated 5000 m altitude for 4 weeks, permittivity at low frequency (epsilonl) and dielectric increment (deltaepsilon) increased 57% and 59% than that of control group respectively, conductivity at low frequency (kappal) and conductivity at high frequency (kappah) reduced 49% and 11% than that of control group respectively. The simulated altitude hypoxia could arise to increase dielectric capability and depress conductive performance on mouse erythrocytes.

  3. Monosaccharide uptake by erythrocytes of the embryonic and adult chicken.

    PubMed

    Ingermann, R L; Stock, M K; Metcalfe, J; Bissonnette, J M

    1985-01-01

    Rates of monosaccharide uptake by adult and 10-18 day old embryonic chicken erythrocytes were quantitated. The rate of carrier-mediated, stereospecific transport decreased 28% from day 10 to day 14 of incubation and was unchanged thereafter. At no time, however, did the rate of carrier-mediated transport by embryonic erythrocytes differ significantly from that of the adult cells. The rate of transfer by simple diffusion was 3-5 fold faster in embryonic than in adult erythrocytes. Uptake by simple diffusion decreased slightly as the embryo developed. Chronic hyperoxic incubation (70% O2) had little influence on total monosaccharide uptake by embryonic erythrocytes.

  4. Stimulation of erythrocyte death by phloretin.

    PubMed

    Bissinger, Rosi; Fischer, Salome; Jilani, Kashif; Lang, Florian

    2014-01-01

    Phloretin, a natural component of apples, pears and strawberries, has previously been shown to stimulate apoptosis of nucleated cells. Erythrocytes may similarly enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i), ceramide, ATP depletion, and activation of protein kinase C (PKC) as well as p38 mitogen activated protein kinase (p38 kinase). Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, [Ca(2+)]i from Fluo3-fluorescence, and ceramide abundance from binding of specific antibodies. A 48 h exposure of human erythrocytes to phloretin significantly increased the percentage of annexin-V-binding cells (≥100 µM) without significantly influencing forward scatter. Phloretin did not significantly modify [Ca(2+)]i and the stimulation of annexin-V-binding by phloretin (300 µM) did not require presence of extracellular Ca(2+). Phloretin did not significantly modify erythrocyte ATP levels, and the effect of phloretin on annexin-V-binding was not significantly altered by PKC inhibitor staurosporine (1 µM) or p38 kinase inhibitor SB2203580 (2 µM). However, phloretin significantly increased the ceramide abundance at the cell surface. Phloretin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to up-regulation of ceramide abundance.

  5. Influence of galactose cataract on erythrocytic and lenticular glutathione metabolism in albino rats.

    PubMed

    Jyothi, M; Sanil, R; Shashidhar, S

    2011-01-01

    Glutathione depletion has been postulated to be the prime reason for galactose cataract. The current research seeks the prospect of targeting erythrocytes to pursue the lens metabolism by studying the glutathione system. To study the activity of the glutathione-linked scavenger enzyme system in the erythrocyte and lens of rats with cataract. Experiments were conducted in 36 male albino rats weighing 80 ± 20 g of 28 days of age. The rats were divided into two major groups, viz. experimental and control. Six rats in each group were sacrificed every 10 days, for 30 days. Cataract was induced in the experimental group by feeding the rats 30% galactose (w/w). The involvement of reduced glutathione (GSH) and the linked enzymes was studied in the erythrocytes and lens of cataractous as well as control rats. Parametric tests like one-way ANOVA and Student's 't' test were used for comparison. Correlation linear plot was used to compare the erythrocyte and lens metabolism. The concentration of GSH and the activity of linked enzymes were found decreased with the progression of cataract, and also in comparison to the control. The same linear fashion was also observed in the erythrocytes. Depletion of GSH was the prime factor for initiating galactose cataract in the rat model. This depletion may in turn result in enzyme inactivation leading to cross-linking of protein and glycation. The correlation analysis specifies that the biochemical mechanism in the erythrocytes and lens is similar in the rat model.

  6. Focusing and alignment of erythrocytes in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.

  7. Human erythrocyte band 3 functions as a receptor for the sialic acid-independent invasion of Plasmodium falciparum. Role of the RhopH3-MSP1 complex.

    PubMed

    Baldwin, Michael; Yamodo, Innocent; Ranjan, Ravi; Li, Xuerong; Mines, Gregory; Marinkovic, Marina; Hanada, Toshihiko; Oh, Steven S; Chishti, Athar H

    2014-12-01

    Plasmodium falciparum takes advantage of two broadly defined alternate invasion pathways when infecting human erythrocytes: one that depends on and the other that is independent of host sialic acid residues on the erythrocyte surface. Within the sialic acid-dependent (SAD) and sialic acid-independent (SAID) invasion pathways, several alternate host receptors are used by P. falciparum based on its particular invasion phenotype. Earlier, we reported that two putative extracellular regions of human erythrocyte band 3 termed 5C and 6A function as host invasion receptor segments binding parasite proteins MSP1 and MSP9 via a SAID mechanism. In this study, we developed two mono-specific anti-peptide chicken IgY antibodies to demonstrate that the 5C and 6A regions of band 3 are exposed on the surface of human erythrocytes. These antibodies inhibited erythrocyte invasion by the P. falciparum 3D7 and 7G8 strains (SAID invasion phenotype), and the blocking effect was enhanced in sialic acid-depleted erythrocytes. In contrast, the IgY antibodies had only a marginal inhibitory effect on FCR3 and Dd2 strains (SAD invasion phenotype). A direct biochemical interaction between erythrocyte band 3 epitopes and parasite RhopH3, identified by the yeast two-hybrid screen, was established. RhopH3 formed a complex with MSP119 and the 5ABC region of band 3, and a recombinant segment of RhopH3 inhibited parasite invasion in human erythrocytes. Together, these findings provide evidence that erythrocyte band 3 functions as a major host invasion receptor in the SAID invasion pathway by assembling a multi-protein complex composed of parasite ligands RhopH3 and MSP1. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. EFFECT OF IONIZING RADIATION OF THE HEMOLYSIS OF ERYTHROCYTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belousov, A.P.

    1957-05-01

    The saponin hemolysis method is a very effective way of determining the resistance of erythrocytes to radiolysis. The irradiation of rabbits with a dose of 700 r induces the formation of erythrocytes resistant to chemical hemolysis and the rapid disappearance from the blood stream of non-resistant ones. In the case of burns produced by boiling water, blood cell hemolysis is temporarily increased during a period of acute toxicosis. In rabbits irradiated with a dose of 1000 to 1300 r, intensive hemolysis of erythrocytes starts immediately and continues for up to 30 days. The appearance of resistant erythrocytes in the bloodmore » is preceded by a period of active hemopoiesis and the restoration of hemoglobin. Increased resistance of erythrocytes to saponin hemolysis has been observed in rabbits who suffered loss of blood and were subsequently irradiated. Irradiation of the blood in vitro in large doses, as contrasted to small doses, lowers the resistance of erythrocytes to chemical hemolysis. Changes in the resistance of erythrocytes to saponin hemolysis are conditioned by the direct action of radiation on the blood cells and the secondary effect of hemolysins. Thus, knowing the mechanism of the hemolysis of erythrocytes under the influence of ionizing radiation allows a better insight into the pathogenesis of radiation sickness and helps the development of protective means to prevent the onset of hemolysis. (auth)« less

  9. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.

    PubMed

    Vokurková, M; Rauchová, H; Dobešová, Z; Loukotová, J; Nováková, O; Kuneš, J; Zicha, J

    2016-01-01

    Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.

  10. M-cholinoreactivity of erythrocytes of non-pregnant and pregnant women evaluated by changes in the rate of erythrocyte agglutination under the influence of acetylcholine.

    PubMed

    Strelnikova, A I; Tsirkin, V I; Krysova, A V; Hlybova, S V; Dmitrieva, S L

    2012-12-01

    Acetylcholine (5.5×10(-10)-5.5×10(-6)M) accelerated erythrocyte agglutination in men, non-pregnant women in follicular phase of the menstrual cycle, and pregnant women in the first trimester. The effect was blocked with atropine (5.5×10(-6)M). Acetylcholine had no effect on the rate of erythrocyte agglutination in non-pregnant women in the luteal phase and pregnant women in the second and third trimesters, which coincided with the development of myometrium refractoriness to acetylcholine in pregnant women. The results indicate that erythrocytes can reflect M-cholinoreactivity of internal organs.

  11. Fya/Fyb antigen polymorphism in human erythrocyte Duffy antigen affects susceptibility to Plasmodium vivax malaria

    PubMed Central

    King, Christopher L.; Adams, John H.; Xianli, Jia; Grimberg, Brian T.; McHenry, Amy M.; Greenberg, Lior J.; Siddiqui, Asim; Howes, Rosalind E.; da Silva-Nunes, Monica; Ferreira, Marcelo U.; Zimmerman, Peter A.

    2011-01-01

    Plasmodium vivax (Pv) is a major cause of human malaria and is increasing in public health importance compared with falciparum malaria. Pv is unique among human malarias in that invasion of erythrocytes is almost solely dependent on the red cell's surface receptor, known as the Duffy blood-group antigen (Fy). Fy is an important minor blood-group antigen that has two immunologically distinct alleles, referred to as Fya or Fyb, resulting from a single-point mutation. This mutation occurs within the binding domain of the parasite's red cell invasion ligand. Whether this polymorphism affects susceptibility to clinical vivax malaria is unknown. Here we show that Fya, compared with Fyb, significantly diminishes binding of Pv Duffy binding protein (PvDBP) at the erythrocyte surface, and is associated with a reduced risk of clinical Pv in humans. Erythrocytes expressing Fya had 41–50% lower binding compared with Fyb cells and showed an increased ability of naturally occurring or artificially induced antibodies to block binding of PvDBP to their surface. Individuals with the Fya+b− phenotype demonstrated a 30–80% reduced risk of clinical vivax, but not falciparum malaria in a prospective cohort study in the Brazilian Amazon. The Fya+b− phenotype, predominant in Southeast Asian and many American populations, would confer a selective advantage against vivax malaria. Our results also suggest that efficacy of a PvDBP-based vaccine may differ among populations with different Fy phenotypes. PMID:22123959

  12. Identification of the Molecular and Genetic Basis of PX2, a Glycosphingolipid Blood Group Antigen Lacking on Globoside-deficient Erythrocytes*

    PubMed Central

    Westman, Julia S.; Benktander, John; Storry, Jill R.; Peyrard, Thierry; Hult, Annika K.; Hellberg, Åsa; Teneberg, Susann; Olsson, Martin L.

    2015-01-01

    The x2 glycosphingolipid is expressed on erythrocytes from individuals of all common blood group phenotypes and elevated on cells of the rare P/P1/Pk-negative p blood group phenotype. Globoside or P antigen is synthesized by UDP-N-acetylgalactosamine:globotriaosyl-ceramide 3-β-N-acetylgalactosaminyltransferase encoded by B3GALNT1. It is the most abundant non-acid glycosphingolipid on erythrocytes and displays the same terminal disaccharide, GalNAcβ3Gal, as x2. We encountered a patient with mutations in B3GALNT1 causing the rare P-deficient P1k phenotype and whose pretransfusion plasma was unexpectedly incompatible with p erythrocytes. The same phenomenon was also noted in seven other unrelated P-deficient individuals. Thin-layer chromatography, mass spectrometry, and flow cytometry were used to show that the naturally occurring antibodies made by p individuals recognize x2 and sialylated forms of x2, whereas x2 is lacking on P-deficient erythrocytes. Overexpression of B3GALNT1 resulted in synthesis of both P and x2. Knockdown experiments with siRNA against B3GALNT1 diminished x2 levels. We conclude that x2 fulfills blood group criteria and is synthesized by UDP-N-acetylgalactosamine: globotriaosylceramide 3-β-N-acetylgalactosaminyltransferase. Based on this linkage, we proposed that x2 joins P in the GLOB blood group system (ISBT 028) and is renamed PX2 (GLOB2). Thus, in the absence of a functional P synthase, neither P nor PX2 are formed. As a consequence, naturally occurring anti-P and anti-PX2 can be made. Until the clinical significance of anti-PX2 is known, we also recommend that rare P1k or P2k erythrocyte units are preferentially selected for transfusion to Pk patients because p erythrocytes may pose a risk for hemolytic transfusion reactions due to their elevated PX2 levels. PMID:26055721

  13. Acetylsalicylic acid (aspirin) and salicylic acid interaction with the human erythrocyte membrane bilayer induce in vitro changes in the morphology of erythrocytes.

    PubMed

    Suwalsky, Mario; Belmar, Jessica; Villena, Fernando; Gallardo, María José; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2013-11-01

    Despite the well-documented information, there are insufficient reports concerning the effects of salicylate compounds on the structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of acetylsalicylic acid (ASA) and salicylic acid (SA) with cell membranes, human erythrocyte membranes and molecular models were utilized. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ASA and SA to perturb the multibilayer structures of DMPC and DMPE was evaluated by X-ray diffraction while DMPC unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. Moreover, we took advantage of the capability of differential scanning calorimetry (DSC) to detect the changes in the thermotropic phase behavior of lipid bilayers resulting from ASA and SA interaction with PC and PE molecules. In an attempt to further elucidate their effects on cell membranes, the present work also examined their influence on the morphology of intact human erythrocytes by means of defocusing and scanning electron microscopy, while isolated unsealed human erythrocyte membranes (IUM) were studied by fluorescence spectroscopy. Results indicated that both salicylates interact with human erythrocytes and their molecular models in a concentration-dependent manner perturbing their bilayer structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Microscopic mechanism analyses on influence of metabolism of erythrocyte membrane-lipid etc. by LLLIB

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Zhang, Canbang; Wen, Yuanbin; Liu, Shuxiao; Zhou, Lingyun

    2009-08-01

    Some cases with cerebral infarction were treated by He-Ne laser irradiation on blood. In the treatment before and after, membrane-cholesterol(C)/membrane-phosphatide(P), membrane fluidity(F) and deformability of erythrocyte were determined. The results showed that low level laser irradiation on blood (LLLIB) can sure reduce the ratio of (C)/(P), can heighten fluidity and improve deformability of erythrocyte .Thus the metabolism ability of erythrocyte membrane-lipid ,the blood circulation and the properties of hemorheology can be improved. In this paper, the microscopic mechanism of those aforesaid action effects by low level laser irradiation on blood were analyzed by means of Quantum theory and some corresponding models.

  15. The Influence of Hyperthyroidism and Hypothyroidism on the β-Adrenergic Responsiveness of the Turkey Erythrocyte

    PubMed Central

    Bilezikian, John P.; Loeb, John N.; Gammon, Donald E.

    1979-01-01

    The mechanisms responsible for altered adrenergic tone in hyperthyroidism and hypothyroidism are not fully understood. To investigate these mechanisms, the β-adrenergic receptor-cyclic AMP complex of the turkey erythrocyte was studied among groups of normal, hyperthyroid, and hypothyroid turkeys. In erythrocytes obtained from hypothyroid turkeys, there were fewer β-adrenergic receptors than in normal cells as determined by the specific binding of [125I]iodohydroxybenzylpindolol, as well as associated decreases both in catecholamine-responsive adenylate cyclase activity and in cellular cyclic AMP content. In contrast, erythrocytes obtained from hyperthyroid turkeys contained the same number of β-receptors and had the same catecholamine-responsive adenylate cyclase activity as cells from normal birds. Other characteristics of the β-receptors in cells from hyperthyroid birds were indistinguishable from those present in normal erythrocytes. However, within the range of circulating catecholamine concentrations, 5-50 nM, the erythrocytes of the hyperthyroid turkeys generated substantially more cyclic AMP after exposure to isoproterenol than did normal cells. These results suggest that thyroid hormone affects β-receptor-cyclic AMP interrelationships in the turkey erythrocyte by two distinct mechanisms: (a) In hypothyroidism, both β-receptors and catecholamine-dependent cyclic AMP formation are coordinately decreased; (b) in hyperthyroidism, β-receptors are unchanged but there is an amplification of the hormonal signal so that occupation of a given number of receptors at physiological concentrations of catecholamines leads to increased levels of cyclic AMP. PMID:219032

  16. Taurine flux in chicken erythrocytes.

    PubMed

    Porter, D W; Martin, W G

    1992-05-01

    1. The intracellular taurine concentration in chick erythrocytes increased with age. 2. Erythrocyte taurine influx and efflux rates increased with age. 3. Erythrocyte taurine influx decreased when the extracellular sodium concentration was below normal physiological concentrations. 4. Under hypo-osmotic conditions, taurine efflux from erythrocytes increased. 5. The data suggest that chick erythrocyte taurine metabolism changes during early post-hatch development and that one taurine function may be as an osmoregulator.

  17. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hua; Xing, Xiaobo; Zhao, Hongxia

    2010-01-22

    The pathophysiological changes of erythrocytes are detected at the molecular scale, which is important to reveal the onset of diseases. Type 2 diabetes is an age-related metabolic disorder with high prevalence in elderly (or old) people. Up to now, there are no treatments to cure diabetes. Therefore, early detection and the ability to monitor the progression of type 2 diabetes are very important for developing effective therapies. Type 2 diabetes is associated with high blood glucose in the context of insulin resistance and relative insulin deficiency. These abnormalities may disturb the architecture and functions of erythrocytes at molecular scale. Inmore » this study, the aging- and diabetes-induced changes in morphological and biomechanical properties of erythrocytes are clearly characterized at nanometer scale using atomic force microscope (AFM). The structural information and mechanical properties of the cell surface membranes of erythrocytes are very important indicators for determining the healthy, diseased or aging status. So, AFM may potentially be developed into a powerful tool in diagnosing diseases.« less

  18. Fy(a)/Fy(b) antigen polymorphism in human erythrocyte Duffy antigen affects susceptibility to Plasmodium vivax malaria.

    PubMed

    King, Christopher L; Adams, John H; Xianli, Jia; Grimberg, Brian T; McHenry, Amy M; Greenberg, Lior J; Siddiqui, Asim; Howes, Rosalind E; da Silva-Nunes, Monica; Ferreira, Marcelo U; Zimmerman, Peter A

    2011-12-13

    Plasmodium vivax (Pv) is a major cause of human malaria and is increasing in public health importance compared with falciparum malaria. Pv is unique among human malarias in that invasion of erythrocytes is almost solely dependent on the red cell's surface receptor, known as the Duffy blood-group antigen (Fy). Fy is an important minor blood-group antigen that has two immunologically distinct alleles, referred to as Fy(a) or Fy(b), resulting from a single-point mutation. This mutation occurs within the binding domain of the parasite's red cell invasion ligand. Whether this polymorphism affects susceptibility to clinical vivax malaria is unknown. Here we show that Fy(a), compared with Fy(b), significantly diminishes binding of Pv Duffy binding protein (PvDBP) at the erythrocyte surface, and is associated with a reduced risk of clinical Pv in humans. Erythrocytes expressing Fy(a) had 41-50% lower binding compared with Fy(b) cells and showed an increased ability of naturally occurring or artificially induced antibodies to block binding of PvDBP to their surface. Individuals with the Fy(a+b-) phenotype demonstrated a 30-80% reduced risk of clinical vivax, but not falciparum malaria in a prospective cohort study in the Brazilian Amazon. The Fy(a+b-) phenotype, predominant in Southeast Asian and many American populations, would confer a selective advantage against vivax malaria. Our results also suggest that efficacy of a PvDBP-based vaccine may differ among populations with different Fy phenotypes.

  19. Erythrocyte sedimentation rate and fibrinogen concentration of whole blood influences the cellular composition of platelet-rich plasma obtained from centrifugation methods.

    PubMed

    Yin, Wenjing; Xu, Zhengliang; Sheng, Jiagen; Xie, Xuetao; Zhang, Changqing

    2017-09-01

    Erythrocyte sedimentation rate (ESR), which reflects the sedimentation rate of platelets, leukocytes and erythrocytes in response to centrifugal force, may influence the cellular composition of platelet-rich plasma (PRP) obtained via centrifugation methods. However, no relevant studies have substantiated this. In the present study, blood was collected from 40 healthy volunteers and used to prepare PRP with two plasma-based preparation systems [YinPRP and Plasma Rich in Growth Factor (PRGF) systems] and two buffy coat-based systems (RegenPRP and WEGOPRP systems) in a single-donor model. Volumes of PRP and platelet-poor plasma (PPP) that were removed in the preparation process were recorded. Analyses of ESR, haematocrit, C-reaction protein, coagulation, serum glucose and serum lipid of the whole blood used for PRP preparation were performed to evaluate the levels of ESR and the factors known to influence it. Whole blood analysis was performed to evaluate the cellular composition of PRP. Results demonstrated that there were marked positive correlations between the ESR of the whole blood used for PRP preparation and PPP removal efficiencies, platelet concentrations, platelet capture efficiencies and platelet enrichment factors of PRP formulations obtained from plasma-based systems, and PRP yield efficiency of RegenPRP and PPP removal efficiency of WEGOPRP. Furthermore, there were marked negative correlations between ESR and concentrations and enrichment factors of platelets, leukocytes and erythrocytes of RegenPRP. Fibrinogen concentration of the whole blood, which had a marked positive correlation with ESR, also influenced the cellular composition of PRP. These findings may increase the understanding of PRP preparation and provide substantial evidence for the individualised optimisation of PRP preparation systems used in clinical practice.

  20. Influence of acute exercise on the osmotic stability of the human erythrocyte membrane.

    PubMed

    Paraiso, L F; de Freitas, M V; Gonçalves-E-Oliveira, A F M; de Almeida Neto, O P; Pereira, E A; Mascarenhas Netto, R C; Cunha, L M; Bernardino Neto, M; de Agostini, G G; Resende, E S; Penha-Silva, N

    2014-12-01

    This study evaluated the effects of 2 different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of 2 types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29±0.1 to 2.33±0.09 after MICE and from 2.30±0.08 to 2.23±0.12 after HIIE. During MICE mean corpuscular volume increased, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected erythrocyte stability, which increased after MICE and decreased after HIIE. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Stimulation of ceramide formation and suicidal erythrocyte death by vitamin K(3) (menadione).

    PubMed

    Qadri, Syed M; Eberhard, Matthias; Mahmud, Hasan; Föller, Michael; Lang, Florian

    2009-11-25

    Vitamin K(3) is an essential micronutrient required for the activation of coagulation factors and thus hemostasis. Administration of vitamin K(3) analogues may cause anemia, which at least in theory could be due to stimulation of suicidal erythrocyte death or eryptosis characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane leading to exposure of phosphatidylserine at the erythrocyte surface. Eryptosis is triggered by an increase in the cytosolic Ca(2+) activity, by ceramide and by energy depletion (decrease of cytosolic ATP). The present experiments explored, whether vitamin K(3) may influence eryptosis. Hemolysis was estimated from the supernatant hemoglobin concentration, phosphatidylserine-exposing erythrocytes from annexin V-binding in fluorescence-activated cell sorter (FACS) analysis, erythrocyte volume from forward scatter in FACS analysis, ceramide formation from binding of fluorescent antibodies, and erythrocyte ATP content from a luciferin-luciferase assay. As a result, vitamin K(3) (> or =1microM) caused lysis of an only small fraction of erythrocytes, but significantly increased ceramide formation, significantly increased the percentage of annexin V-binding erythrocytes, significantly decreased forward scatter and, at higher concentrations, significantly decreased the cellular ATP content. In conclusion, vitamin K(3) stimulates suicidal erythrocyte death, an effect at least partially due to ceramide formation and ATP depletion.

  2. Binding of Free and Immune Complex-Associated Hepatitis C Virus to Erythrocytes Is Mediated by the Complement System.

    PubMed

    Salam, Kazi Abdus; Wang, Richard Y; Grandinetti, Teresa; De Giorgi, Valeria; Alter, Harvey J; Allison, Robert D

    2018-05-09

    Erythrocytes bind circulating immune complexes (IC) and facilitate IC clearance from the circulation. Chronic hepatitis C virus (HCV) infection is associated with IC-related disorders. In this study we investigated the kinetics and mechanism of HCV and HCV-IC binding to and dissociation from erythrocytes. Cell culture-produced HCV was mixed with erythrocytes from healthy blood donors and erythrocyte-associated virus particles were quantified. Purified complement proteins, complement-depleted serum, and complement receptor antibodies were used to investigate complement-mediated HCV-erythrocyte binding. Purified HCV-specific immunoglobulin G from a chronic HCV-infected patient was used to study complement-mediated HCV-IC-erythrocyte binding. Binding of HCV to erythrocytes increased 200 to 1,000 fold after adding complement active human serum in the absence of antibody. Opsonization of free HCV occurred within 10 minutes and peak binding to erythrocytes was observed at 20-30 minutes. Complement protein C1 was required for binding, while C2, C3 and C4 significantly enhanced binding. Complement receptor 1 (CR1, CD35) antibodies blocked the binding of HCV to erythrocytes isolated from chronically infected HCV patients and healthy blood donors. HCV-ICs significantly enhanced complement-mediated binding to erythrocytes compared to unbound HCV. Dissociation of complement-opsonized HCV from erythrocytes depended on the presence of Factor I. HCV released by Factor I bound preferentially to CD19+ B cells compared to other leukocytes. These results demonstrate that complement mediates the binding of free and IC-associated HCV to CR1 on erythrocytes, and provide a mechanistic rationale for investigating the differential phenotypic expression of HCV-IC-related disease. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  3. Disorders of erythrocyte hydration.

    PubMed

    Gallagher, Patrick G

    2017-12-21

    The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity. Recent studies have revealed that these disorders are also marked by genetic heterogeneity. They have implicated roles for several proteins, PIEZO1, a mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; KCNN4, the Gardos channel; and ABCB6, an adenosine triphosphate-binding cassette family member, in the maintenance of erythrocyte volume homeostasis. Secondary disorders of erythrocyte hydration include sickle cell disease, thalassemia, hemoglobin CC, and hereditary spherocytosis, where cellular dehydration may be a significant contributor to disease pathology and clinical complications. Understanding the pathways regulating erythrocyte water and solute content may reveal innovative strategies to maintain normal volume in disorders associated with primary or secondary cellular dehydration. These mechanisms will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment beyond the erythrocyte. © 2017 by The American Society of Hematology.

  4. Mapping of hemoglobin in erythrocytes and erythrocyte ghosts using two photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bukara, Katarina; Jovanić, Svetlana; Drvenica, Ivana T.; Stančić, Ana; Ilić, Vesna; Rabasović, Mihailo D.; Pantelić, Dejan; Jelenković, Branislav; Bugarski, Branko; Krmpot, Aleksandar J.

    2017-02-01

    The present study describes utilization of two photon excitation fluorescence (2PE) microscopy for visualization of the hemoglobin in human and porcine erythrocytes and their empty membranes (i.e., ghosts). High-quality, label- and fixation-free visualization of hemoglobin was achieved at excitation wavelength 730 nm by detecting visible autofluorescence. Localization in the suspension and spatial distribution (i.e., mapping) of residual hemoglobin in erythrocyte ghosts has been resolved by 2PE. Prior to the 2PE mapping, the presence of residual hemoglobin in the bulk suspension of erythrocyte ghosts was confirmed by cyanmethemoglobin assay. 2PE analysis revealed that the distribution of hemoglobin in intact erythrocytes follows the cells' shape. Two types of erythrocytes, human and porcine, characterized with discocyte and echinocyte morphology, respectively, showed significant differences in hemoglobin distribution. The 2PE images have revealed that despite an extensive washing out procedure after gradual hypotonic hemolysis, a certain amount of hemoglobin localized on the intracellular side always remains bound to the membrane and cannot be eliminated. The obtained results open the possibility to use 2PE microscopy to examine hemoglobin distribution in erythrocytes and estimate the purity level of erythrocyte ghosts in biotechnological processes.

  5. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation

    PubMed Central

    Hawes, Norman L.; Trantow, Colleen M.; Chang, Bo; John, Simon W.M.

    2010-01-01

    Summary Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among sixteen mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease. PMID:18715234

  6. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation.

    PubMed

    Anderson, Michael G; Hawes, Norman L; Trantow, Colleen M; Chang, Bo; John, Simon W M

    2008-10-01

    Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among 16 mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease.

  7. Erythrocyte shape abnormalities, membrane oxidative damage, and β-actin alterations: an unrecognized triad in classical autism.

    PubMed

    Ciccoli, Lucia; De Felice, Claudio; Paccagnini, Eugenio; Leoncini, Silvia; Pecorelli, Alessandra; Signorini, Cinzia; Belmonte, Giuseppe; Guerranti, Roberto; Cortelazzo, Alessio; Gentile, Mariangela; Zollo, Gloria; Durand, Thierry; Valacchi, Giuseppe; Rossi, Marcello; Hayek, Joussef

    2013-01-01

    Autism spectrum disorders (ASDs) are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs) membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoskeletal membrane proteins and, ultimately, RBCs shape in autism. Here, we investigated RBC morphology by scanning electron microscopy in patients with classical autism, that is, the predominant ASDs phenotype (age range: 6-26 years), nonautistic neurodevelopmental disorders (i.e., "positive controls"), and healthy controls (i.e., "negative controls"). A high percentage of altered RBCs shapes, predominantly elliptocytes, was observed in autistic patients, but not in both control groups. The RBCs altered morphology in autistic subjects was related to increased erythrocyte membrane F2-isoprostanes and 4-hydroxynonenal protein adducts. In addition, an oxidative damage of the erythrocyte membrane β-actin protein was evidenced. Therefore, the combination of erythrocyte shape abnormalities, erythrocyte membrane oxidative damage, and β-actin alterations constitutes a previously unrecognized triad in classical autism and provides new biological markers in the diagnostic workup of ASDs.

  8. Erythrocyte Shape Abnormalities, Membrane Oxidative Damage, and β-Actin Alterations: An Unrecognized Triad in Classical Autism

    PubMed Central

    Ciccoli, Lucia; De Felice, Claudio; Pecorelli, Alessandra; Belmonte, Giuseppe; Guerranti, Roberto; Cortelazzo, Alessio; Durand, Thierry; Valacchi, Giuseppe; Rossi, Marcello; Hayek, Joussef

    2013-01-01

    Autism spectrum disorders (ASDs) are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs) membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoskeletal membrane proteins and, ultimately, RBCs shape in autism. Here, we investigated RBC morphology by scanning electron microscopy in patients with classical autism, that is, the predominant ASDs phenotype (age range: 6–26 years), nonautistic neurodevelopmental disorders (i.e., “positive controls”), and healthy controls (i.e., “negative controls”). A high percentage of altered RBCs shapes, predominantly elliptocytes, was observed in autistic patients, but not in both control groups. The RBCs altered morphology in autistic subjects was related to increased erythrocyte membrane F2-isoprostanes and 4-hydroxynonenal protein adducts. In addition, an oxidative damage of the erythrocyte membrane β-actin protein was evidenced. Therefore, the combination of erythrocyte shape abnormalities, erythrocyte membrane oxidative damage, and β-actin alterations constitutes a previously unrecognized triad in classical autism and provides new biological markers in the diagnostic workup of ASDs. PMID:24453417

  9. The erythrocyte acid phosphatase isoenzyme distribution among the negroid population of Rhodesia.

    PubMed

    Kobus, H J; Fowler, J C

    1979-01-01

    The value of the erythrocyte acid phosphatase isoenzyme system as a method for blood typing in forensic science in Rhodesia has been evaluated. Three hundred and three blood samples from negroid people were examined. The high incidence of the B phenotype (72%) results in a poor division of the population using this system. The R allele which has been found in other negroid peoples also occurs in the Rhodesian population.

  10. Erythrocyte and blood antibacterial defense

    PubMed Central

    2014-01-01

    It is an axiom that blood cellular immunity is provided by leukocytes. As to erythrocytes, it is generally accepted that their main function is respiration. Our research provides objective video and photo evidence regarding erythrocyte bactericidal function. Phase-contrast immersion vital microscopy of the blood of patients with bacteremia was performed, and the process of bacteria entrapping and killing by erythrocytes was shot by means of video camera. Video evidence demonstrates that human erythrocytes take active part in blood bactericidal action and can repeatedly engulf and kill bacteria of different species and size. Erythrocytes are extremely important integral part of human blood cellular immunity. Compared with phagocytic leukocytes, the erythrocytes: a) are more numerous; b) are able to entrap and kill microorganisms repeatedly without being injured; c) are more resistant to infection and better withstand the attacks of pathogens; d) have longer life span and are produced faster; e) are inauspicious media for proliferation of microbes and do not support replication of chlamidiae, mycoplasmas, rickettsiae, viruses, etc.; and f) are more effective and uncompromised bacterial killers. Blood cellular immunity theory and traditional view regarding the function of erythrocytes in human blood should be revised. PMID:24883200

  11. Erythrocyte phosphofructokinase in rat strains with genetically determined differences in 2,3-diphosphoglycerate levels.

    PubMed

    Noble, N A; Tanaka, K R

    1981-02-01

    We have studied the erythrocyte enzyme phosphofructokinase (PFK) from two strains of Long-Evans rats with genetically determined differences in erythrocyte 2,3-diphosphoglycerate (DPG) levels. The DPG difference is due to two alleles at one locus. With one probable exception, the genotype at this locus is always associated with the hemoglobin (Hb) electrophoretic phenotype, due to a polymorphism at the III beta-globin locus. The enzyme PFK has been implicated in the DPG difference because glycolytic intermediate levels suggest that this enzyme has a higher in vivo activity in High-DPG strain rats, although the total PFK activity does not differ. We report here that partially purified erythrocyte PFK from Low-DPG strain cells is inhibited significantly more at physiological levels of DPG (P less than 0.01) than PFK from High-DPG strain erythrocytes. Citrate and adenosine triphosphate also inhibit the Low-DPG enzyme more than the High-DPG enzyme. Therefore, a structurally different PFK, with a greater sensitivity to inhibitors, may explain the lower DPG and ATP levels observed in Low-DPG strain animals. These data support a two-locus (Hb and PFK) hypothesis and provide a gene marker to study the underlying genetic and physiologic relationships of these loci.

  12. A perforin-like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes.

    PubMed

    Deligianni, Elena; Morgan, Rhiannon N; Bertuccini, Lucia; Wirth, Christine C; Silmon de Monerri, Natalie C; Spanos, Lefteris; Blackman, Michael J; Louis, Christos; Pradel, Gabriele; Siden-Kiamos, Inga

    2013-08-01

    Successful gametogenesis of the malaria parasite depends on egress of the gametocytes from the erythrocytes within which they developed. Egress entails rupture of both the parasitophorous vacuole membrane and the erythrocyte plasma membrane, and precedes the formation of the motile flagellated male gametes in a process called exflagellation. We show here that egress of the male gametocyte depends on the function of a perforin-like protein, PPLP2. A mutant of Plasmodium berghei lacking PPLP2 displayed abnormal exflagellation; instead of each male gametocyte forming eight flagellated gametes, it produced gametocytes with only one, shared thicker flagellum. Using immunofluorescence and transmission electron microscopy analysis, and phenotype rescue with saponin or a pore-forming toxin, we conclude that rupture of the erythrocyte membrane is blocked in the mutant. The parasitophorous vacuole membrane, on the other hand, is ruptured normally. Some mutant parasites are still able to develop in the mosquito, possibly because the vigorous motility of the flagellated gametes eventually leads to escape from the persisting erythrocyte membrane. This is the first example of a perforin-like protein in Plasmodium parasites having a role in egress from the host cell and the first parasite protein shown to be specifically required for erythrocyte membrane disruption during egress. © 2013 John Wiley & Sons Ltd.

  13. Fetal-maternal erythrocyte distribution

    MedlinePlus

    ... under the skin) Infection (a slight risk any time the skin is broken) Alternative Names Kleihauer-Betke stain; Flow cytometry - fetal-maternal erythrocyte distribution; Rh incompatibility - erythrocyte distribution References Chernecky CC, Berger ...

  14. [The 2,3-diphosphoglycerate shunt and stabilization of the ATP level in mammalian erythrocytes].

    PubMed

    Ataullakhanov, A I; Ataullakhanov, F I; Vitvitskiĭ, V M; Zhabotinskiĭ, A M; Pichugin, A V

    1985-06-01

    The mechanisms of regulation of energy metabolism in erythrocytes of various mammalian species were investigated. In native erythrocytes of man, sheep, cow, dog and mouse the dependencies of the rates of glucose uptake on ATP concentration (i.e., regulatory parameters of glycolysis) were measured. These parameters plotted in normalized coordinates are not species-specific (invariant). The dependence of the rate of ATP-consuming processes on ATP concentration has been studied for the first time in intact mammalian erythrocytes. This dependence was found to be linear only in the species, in whose erythrocytes the activity of 2,3-diphosphoglycerate shunt is practically zero. In all species under study, the stabilization of ATP level is provided for mainly by the hexokinase-phosphofructokinase system. A comparison of regulatory mechanisms of energy metabolism in mammalian (sheep, cow) erythrocytes, in which the 2,3-diphosphoglycerate shunt is absent, with human and animal erythrocytes, in which this pathway is active, points to the important role of the 2,3-diphosphoglycerate shunt in regulation of energy conversion in erythrocytes. This shunt operates as an additional stabilizer protecting the cell from extremal influences.

  15. Micro-Raman spectroscopy study of the effect of Mid-Ultraviolet radiation on erythrocyte membrane.

    PubMed

    Li, N; Li, S X; Guo, Z Y; Zhuang, Z F; Li, R; Xiong, K; Chen, S J; Liu, S H

    2012-07-02

    Mid-Ultraviolet (UVB) has a significant influence on human health. In this study, human erythrocytes were exposed to UVB to investigate the effects of UVB radiation on erythrocytes membrane. And Micro-Raman spectroscopy was employed to detect the damage. Principal component analysis (PCA) was used to classify the control erythrocytes and the irradiated erythrocytes. Results showed that the erythrocytes membrane was damaged by Mid-Ultraviolet (UVB) radiation. The intensity of the Raman peaks at 1126 cm(-1) and 1082 cm(-1) were used to calculate the Longitudinal Order-Parameters in Chains (S(trans)) which can present the liquidity and ionic permeability of erythrocyte membrane. After UVB radiation for 30 min, both the liquidity and ionic permeability decreased. At the same time, the intensity of the peaks at 1302 cm(-1) (α-helix), 1254 cm(-1) (random coil), 1452 cm(-1) and 1430 cm(-1) (CH(2)/CH(3) stretch) have also changed which indicated the membrane protein also been damaged by UVB. In the whole process of radiation, the more UVB radiation dose the more damage on the erythrocyte membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype mediated by distinct P. falciparum erythrocyte membrane protein 1 domains.

    PubMed

    Adams, Yvonne; Kuhnrae, Pongsak; Higgins, Matthew K; Ghumra, Ashfaq; Rowe, J Alexandra

    2014-03-01

    Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (<10 μg/ml of total IgG). Surface plasmon resonance experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 μM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.

  17. Selenium Deficiency Influences the mRNA Expression of Selenoproteins and Cytokines in Chicken Erythrocytes.

    PubMed

    Luan, Yilin; Zhao, Jinxin; Yao, Haidong; Zhao, Xia; Fan, Ruifeng; Zhao, Wenchao; Zhang, Ziwei; Xu, Shiwen

    2016-06-01

    Selenium (Se) deficiency induces hemolysis in chickens, but the molecular mechanism for this effect remains unclear. Se primarily elicits its function through the activity of selenoproteins, which contain the unique amino acid selenocysteine (Sec). In this study, we aimed to investigate the effect of Se deficiency on the expression of 24 selenoproteins and 10 cytokines. One hundred eighty chickens were randomly divided into 2 groups (90 chickens per group). During the entire experimental period, chickens were allowed ad libitum consumption of feed and water. The chickens were fed either a Se-deficient diet (0.008 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a Se-supplemented diet (as sodium selenite) at 0.2 mg/kg for 35 days. At the 35th day, the messenger RNA (mRNA) levels of 24 selenoproteins and 10 cytokines were examined in erythrocytes of 5 chickens per group, and the correlation was analyzed. The results showed that the expression of 24 selenoproteins and 7 cytokines (IL-2, IL-4, IL-8, IL-10, IL-12β, TGF-β4, and IFN-γ) decreased (P < 0.05), and the expression of 3 cytokines (IL-1γ, IL-6 and IL-7) was higher in the Se-deficient group. In both groups, glutathione peroxidase (GPX), thioredoxin 1 (Txnrd1), selenoprotein P1 (SELP), and selenoprotein synthetase (SPS2) were highly expressed compared to the other selenoproteins in chicken erythrocytes (P < 0.05). These data suggest that GPXs, Txnrd1, SELP, and SPS2 possibly play a more important role than the other selenoproteins. The increase of pro-inflammatory cytokines (IL-1γ, IL-6, and IL-7) suggested that the immune system of chickens was damaged by the Se deficiency. Correlation analysis suggested that although the expression of 24 selenoproteins and 7 cytokines decreased and that of 3 cytokines increased, there was a close correlation between their expression levels and a Se diet. These results suggested that Se deficiency influenced the expressions of 24 selenoproteins

  18. Descriptive parameters of the erythrocyte aggregation phenomenon using a laser transmission optical chip

    NASA Astrophysics Data System (ADS)

    Toderi, Martín A.; Castellini, Horacio V.; Riquelme, Bibiana D.

    2017-01-01

    The study of red blood cell (RBC) aggregation is of great interest because of its implications for human health. Altered RBC aggregation can lead to microcirculatory problems as in vascular pathologies, such as hypertension and diabetes, due to a decrease in the erythrocyte surface electric charge and an increase in the ligands present in plasma. The process of erythrocyte aggregation was studied in stasis situation (free shear stresses), using an optical chip based on the laser transmission technique. Kinetic curves of erythrocyte aggregation under different conditions were obtained, allowing evaluation and characterization of this process. Two main characteristics of blood that influence erythrocyte aggregation were analyzed: the erythrocyte surface anionic charge (EAC) after digestion with the enzyme trypsin and plasmatic protein concentration in suspension medium using plasma dissolutions in physiological saline with human albumin. A theoretical approach was evaluated to obtain aggregation and disaggregation ratios by syllectograms data fitting. Sensible parameters (Amp100, t) regarding a reduced erythrocyte EAC were determined, and other parameters (AI, M-Index) resulted that are representative of a variation in the plasmatic protein content of the suspension medium. These results are very useful for further applications in biomedicine.

  19. Acute dark chocolate ingestion is beneficial for hemodynamics via enhancement of erythrocyte deformability in healthy humans.

    PubMed

    Radosinska, Jana; Horvathova, Martina; Frimmel, Karel; Muchova, Jana; Vidosovicova, Maria; Vazan, Rastislav; Bernatova, Iveta

    2017-03-01

    Erythrocyte deformability is an important property of erythrocytes that considerably affects blood flow and hemodynamics. The high content of polyphenols present in dark chocolate has been reported to play a protective role in functionality of erythrocytes. We hypothesized that chocolate might influence erythrocytes not only after repeated chronic intake, but also immediately after its ingestion. Thus, we determined the acute effect of dark chocolate and milk (with lower content of biologically active substances) chocolate intake on erythrocyte deformability. We also focused on selected factors that may affect erythrocyte deformability, specifically nitric oxide production in erythrocytes and total antioxidant capacity of plasma. We determined posttreatment changes in the mentioned parameters 2hours after consumption of chocolate compared with their levels before consumption of chocolate. In contrast to milk chocolate intake, the dark chocolate led to a significantly higher increase in erythrocyte deformability. Nitric oxide production in erythrocytes was not changed after dark chocolate intake, but significantly decreased after milk chocolate. The plasma total antioxidant capacity remained unaffected after ingestion of both chocolates. We conclude that our hypothesis was confirmed. Single ingestion of dark chocolate improved erythrocyte deformability despite unchanged nitric oxide production and antioxidant capacity of plasma. Increased deformability of erythrocytes may considerably improve rheological properties of blood and thus hemodynamics in humans, resulting in better tissue oxygenation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Dielectric inspection of erythrocyte morphology.

    PubMed

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-05-21

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  1. Erythrocyte and blood antibacterial defense.

    PubMed

    Minasyan, Hayk

    2014-06-01

    It is an axiom that blood cellular immunity is provided by leukocytes. As to erythrocytes, it is generally accepted that their main function is respiration. Our research provides objective video and photo evidence regarding erythrocyte bactericidal function. Phase-contrast immersion vital microscopy of the blood of patients with bacteremia was performed, and the process of bacteria entrapping and killing by erythrocytes was shot by means of video camera. Video evidence demonstrates that human erythrocytes take active part in blood bactericidal action and can repeatedly engulf and kill bacteria of different species and size. Erythrocytes are extremely important integral part of human blood cellular immunity. a) are more numerous; b) are able to entrap and kill microorganisms repeatedly without being injured; c) are more resistant to infection and better withstand the attacks of pathogens; d) have longer life span and are produced faster; e) are inauspicious media for proliferation of microbes and do not support replication of chlamidiae, mycoplasmas, rickettsiae, viruses, etc.; and f) are more effective and uncompromised bacterial killers. Blood cellular immunity theory and traditional view regarding the function of erythrocytes in human blood should be revised.

  2. [Principles of changes of structural organization of cell membranes and functional properties of erythrocytes in neurotic disorders].

    PubMed

    Riazantseva, N V; Novitskiĭ, V V

    2003-02-01

    Investigation into structural, metabolic, and functional conditions of red blood cells was performed in 24 patients with a neurosis (neurasthenia, disturbance of asaptation) with the aid of electrophoretic division of proteins of the erythrocyte membrane, thin-layer chromatography, fluorescent probing of membranes, evaluation of peroxidative oxidation process, scanning and transmission electron microscopy, laser diphractometry, photometry. The patients with neurotic disorders at the early period after the influence of psychogenic factors (up to 3 months) revealed disorganization of lipid and protein composition of the red cell membrane, increase in microviscosity of its lipid phase, impairment of surface architectonics and ultrastructure of red cells, decrease of a deformation ability and increase of aggregate properties of erythrocytes. The authors treat stability of erythrocytes' homeostasis under the long-term influence of psychogenic factors from a viewpoint of adaptive changes in organism under the influence of neurogenic factors.

  3. A Demonstration of Erythrocyte Membrane Asymmetry.

    ERIC Educational Resources Information Center

    Pederson, Philip; And Others

    1985-01-01

    A three-period experiment was developed to help students visualize asymmetric distribution of proteins within membranes. It includes: (1) isolating erythrocyte membranes; (2) differential labeling of intact erythrocytes and isolated erythrocyte membranes with an impermeable fluorescent dye; and (3) separating proteins by polyacrylamide gel…

  4. P-gp expression in brown trout erythrocytes: evidence of a detoxification mechanism in fish erythrocytes.

    PubMed

    Valton, Emeline; Amblard, Christian; Wawrzyniak, Ivan; Penault-Llorca, Frederique; Bamdad, Mahchid

    2013-12-05

    Blood is a site of physiological transport for a great variety of molecules, including xenobiotics. Blood cells in aquatic vertebrates, such as fish, are directly exposed to aquatic pollution. P-gp are ubiquitous "membrane detoxification proteins" implicated in the cellular efflux of various xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), which may be pollutants. The existence of this P-gp detoxification system inducible by benzo [a] pyrene (BaP), a highly cytotoxic PAH, was investigated in the nucleated erythrocytes of brown trout. Western blot analysis showed the expression of a 140-kDa P-gp in trout erythrocytes. Primary cultures of erythrocytes exposed to increasing concentrations of BaP showed no evidence of cell toxicity. Yet, in the same BaP-treated erythrocytes, P-gp expression increased significantly in a dose-dependent manner. Brown trout P-gp erythrocytes act as membrane defence mechanism against the pollutant, a property that can be exploited for future biomarker development to monitor water quality.

  5. Skeletal muscle calcineurin: influence of phenotype adaptation and atrophy

    NASA Technical Reports Server (NTRS)

    Spangenburg, E. E.; Williams, J. H.; Roy, R. R.; Talmadge, R. J.; Spangenberg, E. E. (Principal Investigator)

    2001-01-01

    Calcineurin (CaN) has been implicated as a signaling molecule that can transduce physiological stimuli (e.g., contractile activity) into molecular signals that initiate slow-fiber phenotypic gene expression and muscle growth. To determine the influence of muscle phenotype and atrophy on CaN levels in muscle, the levels of soluble CaN in rat muscles of varying phenotype, as assessed by myosin heavy chain (MHC)-isoform proportions, were determined by Western blotting. CaN levels were significantly greater in the plantaris muscle containing predominantly fast (IIx and IIb) MHC isoforms, compared with the soleus (predominantly type I MHC) or vastus intermedius (VI, contains all 4 adult MHC isoforms). Three months after a complete spinal cord transection (ST), the CaN levels in the VI muscle were significantly reduced, despite a significant increase in fast MHC isoforms. Surprisingly, the levels of CaN in the VI were highly correlated with muscle mass but not MHC isoform proportions in ST and control rats. These data demonstrate that CaN levels in skeletal muscle are highly correlated to muscle mass and that the normal relationship with phenotype is lost after ST.

  6. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  7. Tocopherol transport in the rat erythrocyte

    PubMed Central

    Silber, R.; Winter, R.; Kayden, H. J.

    1969-01-01

    The transport of vitamin E (α-tocopherol) has been studied in the rat erythrocyte in vivo and in vitro. Uptake and efflux are independent of energy, but sensitive to temperature. Tocopherol is localized to the cell membrane. Rapid exchange takes place between erythrocytes and serum with an hourly fractional tocopherol efflux of 26%. The vitamin is transferred from the erythrocyte to the low density lipoproteins. These experiments indicate that tocopherol, like cholesterol, is a constituent of the erythrocyte membrane which is in dynamic equilibrium with the corresponding plasma compound. PMID:5824074

  8. Erythrocyte acetylcholinesterase as biomarker of pesticide exposure: new and forgotten insights.

    PubMed

    Assis, Caio R D; Linhares, Amanda G; Cabrera, Mariana P; Oliveira, Vagne M; Silva, Kaline C C; Marcuschi, Marina; Maciel Carvalho, Elba V M; Bezerra, Ranilson S; Carvalho, Luiz B

    2018-05-24

    Acetylcholinesterase (AChE) acts on the hydrolysis of acetylcholine, rapidly removing this neurotransmitter at cholinergic synapses and neuromuscular junctions as well as in neuronal growth and differentiation, modulation of cell adhesion ("electrotactins") and aryl-acylamidase activity (AAA). This enzyme is also found in erythrocyte, as 160 kDa dimer that anchors to the plasma membrane via glycophosphatidylinositol. The function of this enzyme in erythrocytes has not yet been elucidated; however, it is suspected to participate in cell-to-cell interactions. Here, a review on erythrocyte AChE characteristics and use as biomarker for organophosphorus and carbamate insecticides is presented since it is the first specific target/barrier of the action of these pesticides, besides plasma butyrylcholinesterase (BChE). However, some past and current methods have disadvantages: (a) not discriminating the activities of AChE and BChE; (b) low accuracy due to interference of hemoglobin in whole blood samples. On the other hand, extraction methods of hemoglobin-free erythrocyte AChE allows: (a) the freezing and transporting of samples; (b) samples free of colorimetric interference; (c) data from only erythrocyte AChE activity; (d) erythrocyte AChE specific activity presents higher correlation with the central nervous system AChE than other peripheral ChEs; (e) slow spontaneous regeneration against anti-ChEs agents of AChE in comparison to BChE, thus increasing the chances of detecting such compounds following longer interval after exposure. As monitoring perspectives, hemoglobin-free methodologies may be promising alternatives to assess the degree of exposure since they are not influenced by this interfering agent.

  9. Parasite Sequestration in Plasmodium falciparum Malaria: Spleen and Antibody Modulation of Cytoadherence of Infected Erythrocytes

    NASA Astrophysics Data System (ADS)

    David, Peter H.; Hommel, Marcel; Miller, Louis H.; Udeinya, Iroka J.; Oligino, Lynette D.

    1983-08-01

    Sequestration, the adherence of infected erythrocytes containing late developmental stages of the parasite (trophozoites and schizonts) to the endothelium of capillaries and venules, is characteristic of Plasmodium falciparum infections. We have studied two host factors, the spleen and antibody, that influence sequestration of P. falciparum in the squirrel monkey. Sequestration of trophozoite/schizont-infected erythrocytes that occurs in intact animals is reduced in splenectomized animals; in vitro, when infected blood is incubated with monolayers of human melanoma cells, trophozoite/schizont-infected erythrocytes from intact animals but not from splenectomized animals bind to the melanoma cells. The switch in cytoadherence characteristics of the infected erythrocytes from nonbinding to binding occurs with a cloned parasite. Immune serum can inhibit and reverse in vitro binding to melanoma cells of infected erythrocytes from intact animals. Similarly, antibody can reverse in vivo sequestration as shown by the appearance of trophozoite/schizont-infected erythrocytes in the peripheral blood of an intact animal after inoculation with immune serum. These results indicate that the spleen modulates the expression of parasite alterations of the infected erythrocyte membrane responsible for sequestration and suggest that the prevention and reversal of sequestration could be one of the effector mechanisms involved in antibody-mediated protection against P. falciparum malaria.

  10. Phenotypes and enviromental factors: their influence in PCOS.

    PubMed

    Diamanti-Kandarakis, Evanthia; Christakou, Charikleia; Marinakis, Evangelos

    2012-01-01

    Polycystic ovary syndrome (PCOS) is a complex syndrome of unclear etiopathogenesis characterized by heterogeneity in phenotypic manifestations. The clinical phenotype of PCOS includes reproductive and hormonal aberrations, namely anovulation and hyperandrogenism, which coexist with metabolic disturbances. Reflecting the crosstalk between the reproductive system and metabolic tissues, obesity not only deteriorates the metabolic profile but also aggravates ovulatory dysfunction and hyperandrogenism. Although the pathogenesis of PCOS remains unclear, the syndrome appears to involve environmental and genetic components. Starting from early life and extending throughout lifecycle, environmental insults may affect susceptible women who finally demonstrate the clinical phenotype of PCOS. Diet emerges as the major environmental determinant of PCOS. Overnutrition leading to obesity is widely recognized to have an aggravating impact, while another detrimental dietary factor may be the high content of food in advanced glycated end products (AGEs). Environmental exposure to industrial products, particularly Bisphenol A (BPA), may also exacerbate the clinical course of PCOS. AGEs and BPA may act as endocrine disruptors in the pathogenesis of the syndrome. PCOS appears to mirror the harmful influence of the modern environment on the reproductive and metabolic balance of inherently predisposed individuals.

  11. [Ceruloplasmin receptor on human erythrocytes].

    PubMed

    Saenko, E L; Basevich, V V; Iaropolov, A I

    1988-08-01

    The structural fragments of the human ceruloplasmin (CP) molecule and of erythrocyte receptors which provide for the specific interaction of CP with erythrocytes were identified, and their properties were investigated. The interaction of CP with erythrocytes, both intact and treated with neuroaminidase and proteolytic enzymes (trypsin, chymotrypsin, papaine, pronase E) is described. Experiments with CP reception were performed at 4 degrees C, using [125I]CP and [125I]asialo-CP. The parameters of binding were determined in Scatchard plots. It was demonstrated that the specific binding of CP to erythrocyte receptors is determined by its interaction with two structural sites of the carbohydrate moiety of the CP molecule, i.e., the terminal residues of sialic acids and a site, (formula; see text) located at a large distance from the chain terminus.

  12. Genetic and Environmental Influences on Obesity-Related Phenotypes in Chinese Twins Reared Apart and Together.

    PubMed

    Zhou, Bin; Gao, Wenjing; Lv, Jun; Yu, Canqing; Wang, Shengfeng; Liao, Chunxiao; Pang, Zengchang; Cong, Liming; Dong, Zhong; Wu, Fan; Wang, Hua; Wu, Xianping; Jiang, Guohong; Wang, Xiaojie; Wang, Binyou; Cao, Weihua; Li, Liming

    2015-07-01

    The relative importance of genetic and environmental influences on obesity-related phenotypes remains unclear, and few studies have targeted the Chinese population. Here, we used Chinese twins reared apart and together to explore genetic and environmental influences on body mass index (BMI), waist circumference (WC) and waist-height ratio (WHtR), further to differentiate phenotype heritability between different age groups and genders separately and to differentiate influences of rearing environment and correlated environment. Phenotype heritability was calculated using the structural equation model in 11,401 twin pairs aged 25-85 years. BMI (0.70, 95 % confidence interval (CI) 0.66-0.74) of the total population was highly heritable, while WC (0.53, 95 %CI 0.50-0.57) and WHtR (0.48, 95 %CI 0.45-0.51) were moderately heritable. Age and gender stratified analyses found higher heritability in the younger group and males than the older group and females. The correlated environment had a greater influence on the phenotypes than the rearing environment, especially on WC and WHtR, indicating that more correlated environment actions should be taken to prevent the rising trend of abdominal obesity.

  13. The mechanism of erythrocyte sedimentation. Part 2: The global collapse of settling erythrocyte network.

    PubMed

    Pribush, A; Meyerstein, D; Meyerstein, N

    2010-01-01

    Results reported in the companion paper showed that erythrocytes in quiescent blood are combined into a network followed by the formation of plasma channels within it. This study is focused on structural changes in the settling dispersed phase subsequent to the channeling and the effect of the structural organization on the sedimentation rate. It is suggested that the initial, slow stage of erythrocyte sedimentation is mainly controlled by the gravitational compactness of the collapsed network. The lifetime of RBC network and hence the duration of the slow regime of erythrocyte sedimentation decrease with an increase in the intercellular pair potential and with a decrease in Hct. The gravitational compactness of the collapsed network causes its rupture into individual fragments. The catastrophic collapse of the network transforms erythrocyte sedimentation from slow to fast regime. The size of RBC network fragment is insignificantly affected by Hct and is mainly determined by the intensity of intercellular attractive interactions. When cells were suspended in the weak aggregating medium, the Stokes radius of fragments does not differ measurably from that of individual RBCs. The proposed mechanism provides a reasonable explanation of the effects of RBC aggregation, Hct and the initial height of the blood column on the delayed erythrocyte sedimentation.

  14. Erythrocyte ion channels in regulation of apoptosis.

    PubMed

    Lang, Florian; Birka, Christina; Myssina, Svetlana; Lang, Karl S; Lang, Philipp A; Tanneur, Valerie; Duranton, Christophe; Wieder, Thomas; Huber, Stephan M

    2004-01-01

    Erythrocytes lack mitochondria and nuclei, key organelles in the regulation of apoptosis. Until recently, erythrocytes were thus not considered subject to this type of cell death. However, exposure of erythrocytes to the Ca2+ ionophore ionomycin was shown to induce cell shrinkage, cell membrane blebbing and breakdown of phosphatidylserine asymmetry with subsequent phosphatidylserine exposure at the cell surface, all typical features of apoptosis. Further studies revealed the participation of ion channels in the regulation of erythrocyte "apoptosis." Osmotic shock, oxidative stress and energy depletion all activate a Ca2(+)-permeable non-selective cation channel in the erythrocyte cell membrane. The subsequent increase of Ca2+ concentration stimulates a scramblase leading to breakdown of cell membrane phosphatidylserine asymmetry and activates Ca2+ sensitive K+ (Gardos) channels leading to KCl loss and (further) cell shrinkage. Phosphatidylserine exposure and cell shrinkage are blunted in the nominal absence of extracellular Ca2+, in the presence of the cation channel inhibitors amiloride or ethylisopropylamiloride, at increased extracellular K+ or in the presence of the Gardos channel inhibitors clotrimazole or charybdotoxin. Thus, increase of cytosolic Ca2+ and cellular loss of K+ participate in the triggering of erythrocyte scramblase. Nevertheless, phosphatidylserine exposure is not completely abrogated in the nominal absence of Ca2+, pointing to additional Ca2(+)-independent pathways. One of those is activation of sphingomyelinase with subsequent formation of ceramide which in turn leads to stimulation of erythrocyte scramblase. The exposure of phosphatidylserine at the extracellular face of the cell membrane stimulates phagocytes to engulf the apoptotic erythrocytes. Thus, sustained activation of the cation channels eventually leads to clearance of affected erythrocytes from peripheral blood. Erythropoietin inhibits the non-selective cation channel and thus

  15. Loss of the clock protein PER2 shortens the erythrocyte life span in mice.

    PubMed

    Sun, Qi; Zhao, Yue; Yang, Yunxia; Yang, Xiao; Li, Minghui; Xu, Xi; Wen, Dan; Wang, Junsong; Zhang, Jianfa

    2017-07-28

    Cell proliferation and release from the bone marrow have been demonstrated to be controlled by circadian rhythms in both humans and mice. However, it is unclear whether local circadian clocks in the bone marrow influence physiological functions and life span of erythrocytes. Here, we report that loss of the clock gene Per2 significantly decreased erythrocyte life span. Mice deficient in Per2 were more susceptible to acute stresses in the erythrocytes, becoming severely anemic upon phenylhydrazine, osmotic, and H 2 O 2 challenges. 1 H NMR-based metabolomics analysis revealed that the Per2 depletion causes significant changes in metabolic profiles of erythrocytes, including increased lactate and decreased ATP levels compared with wild-type mice. The lower ATP levels were associated with hyperfunction of Na + /K + -ATPase activity in Per2 -null erythrocytes, and inhibition of Na + /K + -ATPase activity by ouabain efficiently rescued ATP levels. Per2 -null mice displayed increased levels of Na + /K + -ATPase α1 (ATP1A1) in the erythrocyte membrane, and transfection of Per2 cDNA into the erythroleukemic cell line TF-1 inhibited Atp1a1 expression. Furthermore, we observed that PER2 regulates Atp1a1 transcription through interacting with trans-acting transcription factor 1 (SP1). Our findings reveal that Per2 function in the bone marrow is required for the regulation of life span in circulating erythrocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Erythrocyte isozymes of phosphofructokinase in genetically high- and low-2,3-diphosphoglycerate rats.

    PubMed

    Noble, N A; Kuwashima, L H; Togioka, T T; Tanaka, K R

    1982-12-01

    A major locus (Dpg) with two alleles (d and D) controls erythrocyte 2,3-diphosphoglycerate (DPG) levels in Long-Evans rats and is closely linked to a locus (Hbb) determining a hemoglobin electrophoretic polymorphism. Glycolytic intermediate levels and phosphofructokinase (PFK) kinetic studies suggest that in vivo PFK activity differences underlie the differences in DPG levels. We report here chromatographic and immunologic evidence that rat erythrocyte PFK is composed of two isozymes which elute from DEAE-Sephadex at positions identical to those of the isozymes in platelets and liver, respectively. The percentage of platelet-type PFK is significantly (P less than 0.05) smaller in low-DPG (dd) hemolysates than in DD hemolysates regardless of hemoglobin phenotype. When hemolysates were prepared in a stabilizing buffer, PFK specific activity was significantly (P less than 0.005) higher in DD rats. These data suggest that the PFK kinetic differences may result from alterations in the isozyme composition of active PFK.

  17. Chronic cigarette smoking alters erythrocyte membrane lipid composition and properties in male human volunteers.

    PubMed

    Padmavathi, Pannuru; Reddy, Vaddi Damodara; Kavitha, Godugu; Paramahamsa, Maturu; Varadacharyulu, Nallanchakravarthula

    2010-11-01

    Cigarette smoking is a major lifestyle factor influencing the health of human beings. The present study investigates smoking induced alterations on the erythrocyte membrane lipid composition, fluidity and the role of nitric oxide. Thirty experimental and control subjects (age 35+/-8) were selected for the study. Experimental subjects smoke 12+/-2 cigarettes per day for 7-10 years. In smokers elevated nitrite/nitrate levels in plasma and red cell lysates were observed. Smokers showed increased hemolysis, erythrocyte membrane lipid peroxidation, protein carbonyls, C/P ratio (cholesterol and phospholipid ratio), anisotropic (gamma) value with decreased Na(+)/K(+)-ATPase activity and sulfhydryl groups. Alterations in smokers erythrocyte membrane individual phospholipids were also evident from the study. Red cell lysate nitric oxide positively correlated with C/P ratio (r=0.565) and fluorescent anisotropic (gamma) value (r=0.386) in smokers. Smoking induced generation of reactive oxygen/nitrogen species might have altered erythrocyte membrane physico-chemical properties. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Optimization and inhibition of the adherent ability of Plasmodium falciparum-infected erythrocytes.

    PubMed

    Smith, H; Crandall, I; Prudhomme, J; Sherman, I W

    1992-01-01

    The vast majority of the 1-2 million malaria associated deaths that occur each year are due to anemia and cerebral malaria (the attachment of erythrocytes containing mature forms of Plasmodium falciparum to the endothelial cells that line the vascular beds of the brain). A "model system" for the study of cerebral malaria employs amelanotic melanoma cells as the "target" cells in an in vitro cytoadherence assay. Using this model system we determined that the optimum pH for adherence is 6.6 to 6.8, that high concentrations of Ca2+ (50mM) result in increased levels of binding, and that the type of buffer used influences adherence (Bis Tris > MOPS > HEPES > PIPES). We also observed that the ability of infected erythrocytes to cytoadhere varied from (erythrocyte) donor to donor. We have produced murine monoclonal antibodies against P. falciparum-infected red cells which recognize modified forms of human band 3; these inhibit the adherence of infected erythrocytes to melanoma cells in a dose-responsive fashion. Antimalarials (chloroquine, quinacrine, mefloquine, artemisinin), on the other hand, affected adherence in an indirect fashion i.e. since cytoadherence is due, in part, to the presence of knobs on the surface of the infected erythrocyte, and knob formation is dependent on intracellular parasite growth, when plasmodial development is inhibited so is knob production, and consequently adherence is ablated.

  19. Agglutination of Mouse Erythrocytes by Eperythrozoon coccoides

    PubMed Central

    Iralu, Vichazelhu; Ganong, Kevin D.

    1983-01-01

    Erythrocytes from blood of mice infected with Eperythrozoon coccoides for 3 or 4 days agglutinated spontaneously. Washed E. coccoides particles agglutinated washed erythrocytes of uninfected mice. E. coccoides-mediated agglutination of normal mouse erythrocytes would be an excellent system for studies of bacterial adhesion. Images PMID:6832825

  20. Alterations of erythrocyte rheology and cellular susceptibility in end stage renal disease: Effects of peritoneal dialysis.

    PubMed

    Ertan, Nesrin Zeynep; Bozfakioglu, Semra; Ugurel, Elif; Sinan, Mukaddes; Yalcin, Ozlem

    2017-01-01

    In this study, we investigated the effects of peritoneal dialysis on hemorheological and hematological parameters and their relations with oxidant and antioxidant status of uremic patients. Hemorheological parameters (erythrocyte deformability, erythrocyte aggregation, osmotic deformability, blood and plasma viscosity) were measured in patients with renal insufficiency undergoing peritoneal dialysis (PD) and volunteers. Erythrocyte deformability, osmotic deformability and aggregation in both autologous plasma and 3% dextran 70 were measured by laser diffraction ektacytometry. Enzyme activities of glutathione peroxidase, superoxide dismutase and catalase were studied in erythrocytes; lipid peroxidation was studied by measuring the amount of malondialdehyde in both erythrocytes and plasma samples. Blood viscosity at native hematocrit was significantly lower in PD patients at all measured shear rates compared to controls, but it was high in PD patients at corrected (45%) hematocrit. Erythrocyte deformability did not show any difference between the two groups. Osmotic deformability was significantly lower in PD patients compared to controls. Aggregation index values were significantly high in PD patients in plasma Catalase and glutathione peroxidase activities in erythrocytes were decreased in PD patients whereas superoxide dismutase activity was increased compared to controls. Malondialdehyde was significantly increased in erythrocytes and plasma samples of PD patients which also shows correlations with aggregation parameters. It has been concluded that erythrocytes in PD patients are more prone to aggregation and this tendency could be influenced by lipid peroxidation activity in patient's plasma. These results imply that uremic conditions, loss of plasma proteins and an increased risk of oxidative stress because of decreasing levels of antioxidant enzymes affect erythrocyte rheology during peritoneal dialysis. This level of distortion may have crucial effects

  1. [Comparative investigation of the non-histone proteins of chromatin from pigeon erythroblasts and erythrocytes].

    PubMed

    Fedina, A B; Gazarian, G G

    1976-01-01

    Chromosomal non-histone proteins are obtained from nuclei of two types of pigeon erythroid cells: erythroblasts (cells active in RNA synthesis) and erythrocytes (cells with repressed RNA synthesis). They are well soluble in solutions of low ionic strength. Electrophoretic separation of the obtained non-histone proteins in polyacrylamide gels with urea and SDS shows the presence of qualitative differences in the pattern of non-histone proteins of chromatine from erythroblasts and erythrocytes. By electrophoresis in urea some protein bands of non-histone proteins of chromatine from erythroblasts were found which disappear with the aging of cells. At the same time two protein fractions were observed in chromatine from erythrocytes which were absent in that of erythroblasts. Disappearance of some high molecular weight protein fractions from erythrocyte chromatine as compared to erythroblasts was observed by separation of the non-histone proteins in the presence of SDS. These fractions of the non-histone proteins disappearing during aging of cells are well extractable from erythroblast chromatine by 0.35 M NaCl solution. In the in vitro system with E. coli RNA polymerase addition of non-histone proteins of chromatine from erythroblasts to chromatine from erythrocytes increases RNA synthesis 2--3 times. At the same time addition of non-histone proteins from erythrocytes is either without any influence on this process or somewhat inhibiting.

  2. Determinants of Erythrocyte Hydration In Current Opinion in Hematology

    PubMed Central

    Rinehart, Jesse; Gulcicek, Erol E.; Joiner, Clinton H.; Lifton, Richard P.; Gallagher, Patrick G.

    2012-01-01

    Purpose of Review Maintenance of cellular water and solute homeostasis is critical for survival of the erythrocyte. Inherited or acquired disorders that perturb this homeostasis jeopardize the erythrocyte, leading to its premature destruction. This report reviews recent progress in our understanding the determinants of erythrocyte hydration and its related disorders. Recent Findings The molecular and genetic bases of primary disorders of erythrocyte hydration are poorly understood. Recent studies have implicated roles for the anion transporter, SLC4A1, and the Rh-associated glycoprotein, RhAG. The most common secondary disorder associated with perturbed hydration of the erythrocyte is sickle cell disease, where dehydration contributes to disease pathology and clinical complications. Advances in understanding the mechanisms regulating erythrocyte solute and water content, particularly associated with KCl cotransport and Gardos channel activation, have revealed novel signaling mechanisms controlling erythrocyte hydration. These signaling pathways may provide innovative strategies to prevent erythrocyte dehydration in sickle cell disease. Summary Clinical, translational and biologic studies all contribute to our knowledge of erythrocyte hydration. Understanding the mechanisms controlling erythrocyte water and solute homeostasis will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment. PMID:20182354

  3. Conjugated Bilirubin Triggers Anemia by Inducing Erythrocyte Death

    PubMed Central

    Lang, Elisabeth; Gatidis, Sergios; Freise, Noemi F; Bock, Hans; Kubitz, Ralf; Lauermann, Christian; Orth, Hans Martin; Klindt, Caroline; Schuier, Maximilian; Keitel, Verena; Reich, Maria; Liu, Guilai; Schmidt, Sebastian; Xu, Haifeng C; Qadri, Syed M; Herebian, Diran; Pandyra, Aleksandra A; Mayatepek, Ertan; Gulbins, Erich; Lang, Florian; Häussinger, Dieter; Lang, Karl S; Föller, Michael; Lang, Philipp A

    2015-01-01

    Hepatic failure is commonly associated with anemia, which may result from gastrointestinal bleeding, vitamin deficiency, or liver-damaging diseases, such as infection and alcohol intoxication. At least in theory, anemia during hepatic failure may result from accelerated clearance of circulating erythrocytes. Here we show that bile duct ligation (BDL) in mice leads to severe anemia despite increased reticulocyte numbers. Bilirubin stimulated suicidal death of human erythrocytes. Mechanistically, bilirubin triggered rapid Ca2+ influx, sphingomyelinase activation, formation of ceramide, and subsequent translocation of phosphatidylserine to the erythrocyte surface. Consistent with our in vitro and in vivo findings, incubation of erythrocytes in serum from patients with liver disease induced suicidal death of erythrocytes in relation to their plasma bilirubin concentration. Consistently, patients with hyperbilirubinemia had significantly lower erythrocyte and significantly higher reticulocyte counts compared to patients with low bilirubin levels. Conclusion: Bilirubin triggers suicidal erythrocyte death, thus contributing to anemia during liver disease. (Hepatology 2015;61:275–284) PMID:25065608

  4. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease

    PubMed Central

    van Beers, Eduard J.; Schaap, Marianne C.L.; Berckmans, René J.; Nieuwland, Rienk; Sturk, Augueste; van Doormaal, Frederiek F.; Meijers, Joost C.M.; Biemond, Bart J.

    2009-01-01

    Background Sickle cell disease is characterized by a hypercoagulable state as a result of multiple factors, including chronic hemolysis and circulating cell-derived microparticles. There is still no consensus on the cellular origin of such microparticles and the exact mechanism by which they may enhance coagulation activation in sickle cell disease. Design and Methods In the present study, we analyzed the origin of circulating microparticles and their procoagulant phenotype during painful crises and steady state in 25 consecutive patients with sickle cell disease. Results The majority of microparticles originated from platelets (GPIIIa,CD61) and erythrocytes (glycophorin A,CD235), and their numbers did not differ significantly between crisis and steady state. Erythrocyte-derived microparticles strongly correlated with plasma levels of markers of hemolysis, i.e. hemoglobin (r=−0.58, p<0.001) and lactate dehydrogenase (r=0.59, p<0.001), von Willebrand factor as a marker of platelet/endothelial activation (r=0.44, p<0.001), and D-dimer and prothrombin fragment F1+2 (r=0.52, p<0.001 and r=0.59, p<0.001, respectively) as markers of fibrinolysis and coagulation activation. Thrombin generation depended on the total number of microparticles (r=0.63, p<0.001). Anti-human factor XI inhibited thrombin generation by about 50% (p<0.001), whereas anti-human factor VII was ineffective (p>0.05). The extent of factor XI inhibition was associated with erythrocyte-derived microparticles (r=0.50, p=0.023). Conclusions We conclude that the procoagulant state in sickle cell disease is partially explained by the factor XI-dependent procoagulant properties of circulating erythrocyte-derived microparticles. PMID:19815831

  5. Protection, pathogenesis and phenotypic plasticity in Plasmodium falciparum malaria.

    PubMed

    Roberts, D J; Biggs, B A; Brown, G; Newbold, C I

    1993-08-01

    Why does Plasmodium falciparum cause severe illness in some but not all infections? How is clinical immunity acquired? These questions have intrigued investigators since the clinical epidemiology of malaria was first described. The search for answers to both questions has highlighted the changes that take place at the surface of infected red blood cells during the last half of the erythrocytic cycle. These changes specify the antigenic and adhesive or cytoadherence phenotypes for the infected cell. Now the antigenic and adhesive phenotypes appear to be linked and together undergo clonal variation. In this article David Roberts, Beverley-Ann Biggs, Graham Brown and Christopher Newbold explain how clonal phenotypic variation and the linkage between adhesive and antigenic types contribute to our understanding of naturally acquired immunity and of pathogenesis of severe malaria.

  6. Differential actions of proteinases and neuraminidase on mammalian erythrocyte surface and its impact on erythrocyte agglutination by concanavalin A.

    PubMed

    Sharma, Savita; Gokhale, Sadashiv M

    2012-12-01

    Action of proteinases viz. trypsin and chymotrypsin, and neuraminidase on intact erythrocyte membrane proteins and glycophorins (sialoglycoproteins) exposed to cell surface and its impact on lectin (concanavalin A)-mediated agglutination were studied in Homo sapiens (human), Capra aegagrus hircus (goat) and Bubalus bubalis (buffalo). Membrane proteins and glycophorins analysis by SDS-PAGE as visualized by coomassie brilliant blue and periodic acid-schiff stains, respectively, and agglutination behaviour revealed marked differences: 1) there were prominent dissimilarities in the number and molecular weights of glycophorins in human, goat and buffalo erythrocyte membranes; 2) proteinase action(s) on human and buffalo erythrocyte surface membrane proteins and glycophorins showed similarity but was found different in goat; 3) significant differences in erythrocyte agglutinability with concanavalin A can be attributed to differences in membrane composition and alterations in the surface proteins after enzyme treatment; 4) a direct correlation was found between degradation of glycophorins and concanavalin A agglutinability; 5) action of neuraminidase specifically indicated the negative role of cell surface sialic acids in determining concanavalin A agglutinability of goat and buffalo erythrocytes, similar to human. Present studies clearly indicate that there are some basic differences in human, goat and buffalo erythrocyte membrane proteins, especially with respect to glycophorins, which determine the concanavalin A-mediated agglutination in enzyme treated erythrocytes.

  7. Python erythrocytes are resistant to α-hemolysin from Escherichia coli.

    PubMed

    Larsen, Casper K; Skals, Marianne; Wang, Tobias; Cheema, Muhammad U; Leipziger, Jens; Praetorius, Helle A

    2011-12-01

    α-Hemolysin (HlyA) from Escherichia coli lyses mammalian erythrocytes by creating nonselective cation pores in the membrane. Pore insertion triggers ATP release and subsequent P2X receptor and pannexin channel activation. Blockage of either P2X receptors or pannexin channels reduces HlyA-induced hemolysis. We found that erythrocytes from Python regius and Python molurus are remarkably resistant to HlyA-induced hemolysis compared to human and Trachemys scripta erythrocytes. HlyA concentrations that induced maximal hemolysis of human erythrocytes did not affect python erythrocytes, but increasing the HlyA concentration 40-fold did induce hemolysis. Python erythrocytes were more resistant to osmotic stress than human erythrocytes, but osmotic stress tolerance per se did not confer HlyA resistance. Erythrocytes from T. scripta, which showed higher osmotic resistance than python erythrocytes, were as susceptible to HlyA as human erythrocytes. Therefore, we tested whether python erythrocytes lack the purinergic signalling known to amplify HlyA-induced hemolysis in human erythrocytes. P. regius erythrocytes increased intracellular Ca²⁺ concentration and reduced cell volume when exposed to 3 mM ATP, indicating the presence of a P2X₇-like receptor. In addition, scavenging extracellular ATP or blocking P2 receptors or pannexin channels reduced the HlyA-induced hemolysis. We tested whether the low HlyA sensitivity resulted from low affinity of HlyA to the python erythrocyte membrane. We found comparable incorporation of HlyA into human and python erythrocyte membranes. Taken together, the remarkable HlyA resistance of python erythrocytes was not explained by increased osmotic resistance, lack of purinergic hemolysis amplification, or differences in HlyA affinity.

  8. Influence of age on the correlations of hematological and biochemical variables with the stability of erythrocyte membrane in relation to sodium dodecyl sulfate.

    PubMed

    de Freitas, Mariana V; Marquez-Bernardes, Liandra F; de Arvelos, Letícia R; Paraíso, Lara F; Gonçalves E Oliveira, Ana Flávia M; Mascarenhas Netto, Rita de C; Neto, Morun Bernardino; Garrote-Filho, Mario S; de Souza, Paulo César A; Penha-Silva, Nilson

    2014-10-01

    To evaluate the influence of age on the relationships between biochemical and hematological variables and stability of erythrocyte membrane in relation to the sodium dodecyl sulfate (SDS) in population of 105 female volunteers between 20 and 90 years. The stability of RBC membrane was determined by non-linear regression of the dependency of the absorbance of hemoglobin released as a function of SDS concentration, represented by the half-transition point of the curve (D50) and the variation in the concentration of the detergent to promote lysis (dD). There was an age-dependent increase in the membrane stability in relation to SDS. Analyses by multiple linear regression showed that this stability increase is significantly related to the hematological variable red cell distribution width (RDW) and the biochemical variables blood albumin and cholesterol. The positive association between erythrocyte stability and RDW may reflect one possible mechanism involved in the clinical meaning of this hematological index.

  9. Bivariate and multivariate analyses of the influence of blood variables of patients submitted to Roux-en-Y gastric bypass on the stability of erythrocyte membrane against the chaotropic action of ethanol.

    PubMed

    de Arvelos, Leticia Ramos; Rocha, Vanessa Custódio Afonso; Felix, Gabriela Pereira; da Cunha, Cleine Chagas; Bernardino Neto, Morun; da Silva Garrote Filho, Mario; de Fátima Pinheiro, Conceição; Resende, Elmiro Santos; Penha-Silva, Nilson

    2013-03-01

    The stability of the erythrocyte membrane, which is essential for the maintenance of cell functions, occurs in a critical region of fluidity, which depends largely on its composition and the composition and characteristics of the medium. As the composition of the erythrocyte membrane is influenced by several blood variables, the stability of the erythrocyte membrane must have relations with them. The present study aimed to evaluate, by bivariate and multivariate statistical analyses, the correlations and causal relationships between hematologic and biochemical variables and the stability of the erythrocyte membrane against the chaotropic action of ethanol. The validity of this type of analysis depends on the homogeneity of the population and on the variability of the studied parameters, conditions that can be filled by patients who undergo bariatric surgery by the technique of Roux-en-Y gastric bypass since they will suffer feeding restrictions that have great impact on their blood composition. Pathway analysis revealed that an increase in hemoglobin leads to decreased stability of the cell, probably through a process mediated by an increase in mean corpuscular volume. Furthermore, an increase in the mean corpuscular hemoglobin (MCH) leads to an increase in erythrocyte membrane stability, probably because higher values of MCH are associated with smaller quantities of red blood cells and a larger contact area between the cell membrane and ethanol present in the medium.

  10. Bivariate and multivariate analyses of the correlations between stability of the erythrocyte membrane, serum lipids and hematological variables.

    PubMed

    Bernardino Neto, M; de Avelar, E B; Arantes, T S; Jordão, I A; da Costa Huss, J C; de Souza, T M T; de Souza Penha, V A; da Silva, S C; de Souza, P C A; Tavares, M; Penha-Silva, N

    2013-01-01

    The observation that the fluidity must remain within a critical interval, outside which the stability and functionality of the cell tends to decrease, shows that stability, fluidity and function are related and that the measure of erythrocyte stability allows inferences about the fluidity or functionality of these cells. This study determined the biochemical and hematological variables that are directly or indirectly related to erythrocyte stability in a population of 71 volunteers. Data were evaluated by bivariate and multivariate analysis. The erythrocyte stability showed a greater association with hematological variables than the biochemical variables. The RDW stands out for its strong correlation with the stability of erythrocyte membrane, without being heavily influenced by other factors. Regarding the biochemical variables, the erythrocyte stability was more sensitive to LDL-C. Erythrocyte stability was significantly associated with RDW and LDL-C. Thus, the level of LDL-C is a consistent link between stability and functionality, suggesting that a measure of stability could be more one indirect parameter for assessing the risk of degenerative processes associated with high levels of LDL-C.

  11. Erythrocyte membrane skeleton inhibits nanoparticle endocytosis

    NASA Astrophysics Data System (ADS)

    Gao, Xinli; Yue, Tongtao; Tian, Falin; Liu, Zhiping; Zhang, Xianren

    2017-06-01

    Red blood cells (RBCs), also called erythrocytes, have been experimentally proposed in recent decades as the biological drug delivery systems through entrapping certain drugs by endocytosis. However, the internalization pathway of endocytosis seems to conflict with the robust mechanical properties of RBCs that is induced by the spectrin-actin network of erythrocyte membrane skeleton. In this work, we employed a minimum realistic model and the dissipative particle dynamics method to investigate the influence of the spectrin-actin membrane skeleton on the internalization of nanoparticles (NPs). Our simulations show that the existence of skeleton meshwork indeed induces an inhibiting effect that effectively prevents NPs from internalization. The inhibiting effect is found to depend on the membrane-NP attraction, skeleton tension and relative size of the NP to the membrane skeleton mesh. However, our simulations also demonstrate that there are two possibilities for successful internalization of NPs in the presence of the membrane skeleton. The first case is for NPs that has a much smaller size than the dimension of skeleton meshes, and the other is that the skeleton tension is rather weak so that the formed vesicle can still move inward for NP internalization.

  12. Sex Differences Influencing Micro- and Macrovascular Endothelial Phenotype In Vitro.

    PubMed

    Huxley, Virginia H; Kemp, Scott S; Schramm, Christine; Sieveking, Steve; Bingaman, Susan; Yu, Yang; Zaniletti, Isabella; Stockard, Kevin; Wang, Jianjie

    2018-06-09

    Endothelial dysfunction is an early hallmark of multiple disease states that also display sex differences with respect to age of onset, frequency, and severity. Results of in vivo studies of basal and stimulated microvascular barrier function revealed sex differences difficult to ascribe to specific cells or environmental factors. The present study evaluated endothelial cells (EC) isolated from macro- and/or microvessels of reproductively mature rats under the controlled conditions of low-passage culture to test the assumption that EC phenotype would be sex-independent. The primary finding was that EC, regardless of where they are derived, retain a sex-bias in low-passage culture, independent of varying levels of reproductive hormones. Implications of the work include the fallacy of expecting a universal set of mechanisms derived from study of EC from one sex and/or one vascular origin to apply uniformly to all EC under unstimulated conditions no less in the disease state. Vascular endothelial cells (EC) are heterogeneous with respect to phenotype reflecting at least organ of origin, location within the vascular network, and physical forces. Sex, as an independent influence on EC functions in health or etiology, susceptibility, and progression of dysfunction in numerous disease states, has been largely ignored. The current study focussed on EC isolated from aorta (macrovascular) and skeletal muscle vessels (microvascular) of age-matched male and female rats under identical conditions of short term (passage 4) culture. We tested the hypothesis that genomic sex would not influence endothelial growth, wound healing, morphology, lactate production, or messenger RNA and protein expression of key proteins (sex hormone receptors for androgen (AR) and oestrogen (ERα and ERβ); PECAM-1 and VE-CAD mediating barrier function; α v β 3 and N-Cadherin influencing matrix interactions; ICAM-1 and VCAM-1 mediating EC/white cell adhesion). The hypothesis was rejected as EC origin

  13. Effect of aluminum (Al) speciation on erythrocytic antioxidant defense process: Correlations between lipid membrane peroxidation and morphological characteristics.

    PubMed

    Cheng, Dai; Tang, Jinlei; Wang, Xuerui; Zhang, Xinyu; Wang, Shuo

    2018-08-15

    Al contamination becomes a growing problem in human society. Accumulation of Al in blood could destroy the structure and disorder function of erythrocyte, and finally cause blood diseases. In the present study, AlCl 3 and Al(malt) 3 are respectively used in the erythrocyte system, in order to investigate the comparative toxic effect on erythrocyte fragility, the influence on cellular biochemical components and lipid peroxidation level. We find that the osmotic fragility, the number of Heinz bodies, the content of MDA and advanced oxidation protein product of the AlCl 3 treated erythrocytes were higher than the Al(malt) 3 treated erythrocytes at the same concentrations of Al(Ⅲ). The morphological and membrane protein changes of the AlCl 3 treated group show superior to the Al(malt) 3 treated group. In summary, we conclude that the comparative effect on the erythrocyte between organic aluminum and inorganic aluminum is significantly different, and the prime comparative difference between the toxic effects of both the compounds is oxidative stress. Further research should focus on in vivo experiments to confirm the differential toxicity and to elucidate the molecular mechanisms underlying Al-induced erythrocyte toxicity in order to prevent hematological disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    PubMed

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Patterns of purine nucleotides in fish erythrocytes.

    PubMed

    Leray, C

    1979-01-01

    1. The purine nucleotides were determined in the whole blood of 9 fresh water teleosts and 2 marine selachians. 2. GTP and ATP accounted for 88-99% of the total erythrocytes purines. 3. The ATP/ADP ratio ranged from 11 to 60 in the erythrocytes of the fish examined. 4. GTP is widely distributed in fish erythrocytes but its level ranged from 1 to 33 nmol/mg Hb (0.4 to 9 mumol/ml erythrocyte). 5. Lepomis and Esox exhibited a GTP/ATP ratio as elevated as in Anguilla; moreover the concentration of GTP per mol of Hb (physiologically most indicative) is higher in Lepomis, Esox, Ictalurus and Silurus than in Anguilla.

  16. Mechanisms of Human Erythrocytic Bioactivation of Nitrite*

    PubMed Central

    Liu, Chen; Wajih, Nadeem; Liu, Xiaohua; Basu, Swati; Janes, John; Marvel, Madison; Keggi, Christian; Helms, Christine C.; Lee, Amber N.; Belanger, Andrea M.; Diz, Debra I.; Laurienti, Paul J.; Caudell, David L.; Wang, Jun; Gladwin, Mark T.; Kim-Shapiro, Daniel B.

    2015-01-01

    Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood. PMID:25471374

  17. Characterization of carrier erythrocytes for biosensing applications

    NASA Astrophysics Data System (ADS)

    Bustamante López, Sandra C.; Meissner, Kenith E.

    2017-09-01

    Erythrocyte abundance, mobility, and carrying capacity make them attractive as a platform for blood analyte sensing as well as for drug delivery. Sensor-loaded erythrocytes, dubbed erythrosensors, could be reinfused into the bloodstream, excited noninvasively through the skin, and used to provide measurement of analyte levels in the bloodstream. Several techniques to load erythrocytes, thus creating carrier erythrocytes, exist. However, their cellular characteristics remain largely unstudied. Changes in cellular characteristics lead to removal from the bloodstream. We hypothesize that erythrosensors need to maintain native erythrocytes' (NEs) characteristics to serve as a long-term sensing platform. Here, we investigate two loading techniques and the properties of the resulting erythrosensors. For loading, hypotonic dilution requires a hypotonic solution while electroporation relies on electrical pulses to perforate the erythrocyte membrane. We analyze the resulting erythrosensor signal, size, morphology, and hemoglobin content. Although the resulting erythrosensors exhibit morphological changes, their size was comparable with NEs. The hypotonic dilution technique was found to load erythrosensors much more efficiently than electroporation, and the sensors were loaded throughout the volume of the erythrosensors. Finally, both techniques resulted in significant loss of hemoglobin. This study points to the need for continued development of loading techniques that better preserve NE characteristics.

  18. The calcium content of human erythrocytes

    PubMed Central

    Harrison, D. G.; Long, C.

    1968-01-01

    1. The calcium content of human erythrocytes, after removal of the buffy coat and washing free from plasma with isotonic sodium chloride, has been determined by atomic absorption spectrophotometry. The mean value found for normal subjects was 0·634 μg/ml. of packed erythrocytes (0·0158 μg-atom/ml.). The corresponding values for magnesium and zinc were 79·7 and 20·1 μg/ml., respectively. 2. The calcium is considered to be mostly and perhaps exclusively located in the erythrocyte membrane, since, after osmotic haemolysis, the same amount was found in the ghost cells as was present in the erythrocytes from which they were prepared. By contrast, magnesium and zinc, which are essentially intracellular, were lost to the extent of about 96 and 92%, respectively. 3. About 90% of the calcium was removed from erythrocytes by washing with isotonic sodium chloride containing 5 mM ethylenediaminetetraacetate (EDTA), or other complexing agents of high stability constant for calcium. A small fraction of the magnesium but none of the zinc was removed by this treatment. 4. Other complexing agents of lower stability constant removed somewhat less calcium from the erythrocytes. Citrate was totally ineffective. 5. The buffy coat had a high calcium content, but this could not be removed by washing with EDTA. 6. Calcium was also determined in trichloroacetic acid extracts of ghost cells after ashing and treatment with bis-(o-hydroxyphenylimino)-ethane and measuring the red complex spectrophotometrically. The values obtained confirmed the atomic absorption measurements. PMID:4972779

  19. Metabolism of acetylcholine in human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, E.S.

    1990-01-01

    In order to examine the possible role of erythrocyte acetylcholinesterase in the maintenance of membrane phospholipid content and membrane fluidity, experiments were performed to monitor the activity of the enzyme and follow the fate of one of its hydrolytic products, choline. Intact human erythrocytes were incubated with acetylcholine (choline methyl-{sup 14}C). The incubation resulted in the hydrolysis of acetylcholine to acetate and choline; the reaction was catalyzed by membrane acetylcholinesterase. The studies demonstrate the further metabolism of choline. Experiments were carried out to determine rate of hydrolysis of acetylcholine, uptake of choline, identification of intracellular metabolites of choline, and identificationmore » of radiolabeled membrane components. Erythrocytes at a 25% hematocrit were incubated in an isoosmotic bicarbonate buffer pH 7.4, containing glucose, adenosine, streptomycin and penicillin with 0.3 {mu}Ci of acetylcholine (choline methyl-{sup 14}C), for 24 hours. Aliquots of the erythrocyte suspension were taken throughout for analysis. Erythrocytes were washed free of excess substrate, lysed, and the hemolysate was extracted for choline and its metabolites. Blank samples containing incubation buffer and radiolabeled acetylcholine only, and erythrocyte hemolysate extracts were analyzed for choline content, the difference between blank samples and hemolysate extracts was the amount of choline originating from acetylcholine and attributable to acetylcholinesterase activity. The conversion of choline to {sup 14}C-betaine is noted after several minutes of incubation; at 30 minutes, more than 80% of {sup 14}C-choline is taken up and after several hours, detectable levels of radiolabeled S-adenosylmethionine were present in the hemolysate extract.« less

  20. On the cellular autoimmune mechanism for eliminating erythrocytes normally and under extreme influences

    NASA Technical Reports Server (NTRS)

    Pukhova, Y. I.; Terskov, I. A.; Anikina, A. Y.; Shashkin, A. V.

    1980-01-01

    The presence of an autoimmune cellular mechanism for destroying erythrocytes on the basis of results of experiments in vivo is demonstrated in the blood and the organs. This mechanism is made up of a population of immunocompetent killer-lymphocytes which originates in the bone marrow and the thymus, and which is manifested in the local hemolysis effect.

  1. Calpain-1 knockout reveals broad effects on erythrocyte deformability and physiology

    PubMed Central

    Wieschhaus, Adam; Khan, Anwar; Zaidi, Asma; Rogalin, Henry; Hanada, Toshihiko; Liu, Fei; De Franceschi, Lucia; Brugnara, Carlo; Rivera, Alicia; Chishti, Athar H.

    2014-01-01

    Pharmacological inhibitors of cysteine proteases have provided useful insights into the regulation of calpain activity in erythrocytes. However, the precise biological function of calpain activity in erythrocytes remains poorly understood. Erythrocytes express calpain-1, an isoform regulated by calpastatin, the endogenous inhibitor of calpains. In the present study, we investigated the function of calpain-1 in mature erythrocytes using our calpain-1-null [KO (knockout)] mouse model. The calpain-1 gene deletion results in improved erythrocyte deformability without any measurable effect on erythrocyte lifespan in vivo. The calcium-induced sphero-echinocyte shape transition is compromised in the KO erythrocytes. Erythrocyte membrane proteins ankyrin, band 3, protein 4.1R, adducin and dematin are degraded in the calcium-loaded normal erythrocytes but not in the KO erythrocytes. In contrast, the integrity of spectrin and its state of phosphorylation are not affected in the calcium-loaded erythrocytes of either genotype. To assess the functional consequences of attenuated cytoskeletal remodelling in the KO erythrocytes, the activity of major membrane transporters was measured. The activity of the K+–Cl− co-transporter and the Gardos channel was significantly reduced in the KO erythrocytes. Similarly, the basal activity of the calcium pump was reduced in the absence of calmodulin in the KO erythrocyte membrane. Interestingly, the calmodulin-stimulated calcium pump activity was significantly elevated in the KO erythrocytes, implying a wider range of pump regulation by calcium and calmodulin. Taken together, and with the atomic force microscopy of the skeletal network, the results of the present study provide the first evidence for the physiological function of calpain-1 in erythrocytes with therapeutic implications for calcium imbalance pathologies such as sickle cell disease. PMID:22870887

  2. Calpain-1 knockout reveals broad effects on erythrocyte deformability and physiology.

    PubMed

    Wieschhaus, Adam; Khan, Anwar; Zaidi, Asma; Rogalin, Henry; Hanada, Toshihiko; Liu, Fei; De Franceschi, Lucia; Brugnara, Carlo; Rivera, Alicia; Chishti, Athar H

    2012-11-15

    Pharmacological inhibitors of cysteine proteases have provided useful insights into the regulation of calpain activity in erythrocytes. However, the precise biological function of calpain activity in erythrocytes remains poorly understood. Erythrocytes express calpain-1, an isoform regulated by calpastatin, the endogenous inhibitor of calpains. In the present study, we investigated the function of calpain-1 in mature erythrocytes using our calpain-1-null [KO (knockout)] mouse model. The calpain-1 gene deletion results in improved erythrocyte deformability without any measurable effect on erythrocyte lifespan in vivo. The calcium-induced sphero-echinocyte shape transition is compromised in the KO erythrocytes. Erythrocyte membrane proteins ankyrin, band 3, protein 4.1R, adducin and dematin are degraded in the calcium-loaded normal erythrocytes but not in the KO erythrocytes. In contrast, the integrity of spectrin and its state of phosphorylation are not affected in the calcium-loaded erythrocytes of either genotype. To assess the functional consequences of attenuated cytoskeletal remodelling in the KO erythrocytes, the activity of major membrane transporters was measured. The activity of the K+-Cl- co-transporter and the Gardos channel was significantly reduced in the KO erythrocytes. Similarly, the basal activity of the calcium pump was reduced in the absence of calmodulin in the KO erythrocyte membrane. Interestingly, the calmodulin-stimulated calcium pump activity was significantly elevated in the KO erythrocytes, implying a wider range of pump regulation by calcium and calmodulin. Taken together, and with the atomic force microscopy of the skeletal network, the results of the present study provide the first evidence for the physiological function of calpain-1 in erythrocytes with therapeutic implications for calcium imbalance pathologies such as sickle cell disease.

  3. Potassium transport in monkey erythrocytes.

    PubMed

    Stewart, G W; Blackstock, E J; Hall, A C; Ellory, J C

    1989-01-01

    K transport in Rhesus and Cynomolgus monkey erythrocytes has been characterised and compared to that in human erythrocytes. Transport due to the NaK pump, residual (diffusional) leak, volume-, pressure- and N-ethyl-maleimide-stimulated KCl system and internal Ca2+-stimulated K channel were similar to that in man but in the monkey it differed, in lacking the loop-diuretic-sensitive NaKCl cotransport system.

  4. Artemisinin-Resistant Plasmodium falciparum Parasites Exhibit Altered Patterns of Development in Infected Erythrocytes

    PubMed Central

    Hott, Amanda; Casandra, Debora; Sparks, Kansas N.; Morton, Lindsay C.; Castanares, Geocel-Grace; Rutter, Amanda

    2015-01-01

    Artemisinin derivatives are used in combination with other antimalarial drugs for treatment of multidrug-resistant malaria worldwide. Clinical resistance to artemisinin recently emerged in southeast Asia, yet in vitro phenotypes for discerning mechanism(s) of resistance remain elusive. Here, we describe novel phenotypic resistance traits expressed by artemisinin-resistant Plasmodium falciparum. The resistant parasites exhibit altered patterns of development that result in reduced exposure to drug at the most susceptible stage of development in erythrocytes (trophozoites) and increased exposure in the most resistant stage (rings). In addition, a novel in vitro delayed clearance assay (DCA) that assesses drug effects on asexual stages was found to correlate with parasite clearance half-life in vivo as well as with mutations in the Kelch domain gene associated with resistance (Pf3D7_1343700). Importantly, all of the resistance phenotypes were stable in cloned parasites for more than 2 years without drug pressure. The results demonstrate artemisinin-resistant P. falciparum has evolved a novel mechanism of phenotypic resistance to artemisinin drugs linked to abnormal cell cycle regulation. These results offer insights into a novel mechanism of drug resistance in P. falciparum and new tools for monitoring the spread of artemisinin resistance. PMID:25779582

  5. The effects of some tumor markers on human erythrocyte (HCA-I and HCA-II), bovine erythrocyte (BCA) and bovine lung (CA-IV) carbonic anhydrase enzyme activities in vitro.

    PubMed

    Demir, N; Nadaroglu, H; Gungor, A A; Demir, Y

    2015-01-01

    The influence of prostatic acid phosphatase (PAP) and human chorionic gonadotropin (HCG), tumor markers have been investigated on human erythrocyte carbonic anhydrase (HCA-I and HCA-II) and bovine erythrocyte (BCA) and bovine lung carbonic anhydrase (CA-IV) in vitro. Tumor markers are substances that can often be detected in higher-than-normal amounts in the blood, urine, or body tissues of some patients with certain types of cancer. Tumor markers are produced either by the tumor itself or by the body in response to the presence of cancer or certain benign (noncancerous) conditions. In addition to their role in cancer diagnosis, some tumor marker levels are measured before treatment to help doctors plan appropriate therapy. All of the tumor markers were determined to have inhibition effect, on human CA-I, CA-II, bovine erythrocyte CA (BCA) and bovine lung CA-IV isoenzymes. The effect of each tumor marker on CA was investigated by Wilbur-Andersen method modified by Rickly et al Inhibition effects of two different tumor markers on human CA-I, CA-II, bovine erythrocyte CA (BCA) and bovine lung CA-IV isoenzymes were determined by using the CO2-Hydratase method by plotting activity % vs (tumor markers). I50 values of tumor markers exhibiting inhibition effects were found by means of these graphs (Tab.1, Fig. 2, Ref. 20).

  6. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.

    PubMed Central

    Dong, C; Chadwick, R S; Schechter, A N

    1992-01-01

    The rheological properties of normal erythrocytes appear to be largely determined by those of the red cell membrane. In sickle cell disease, the intracellular polymerization of sickle hemoglobin upon deoxygenation leads to a marked increase in intracellular viscosity and elastic stiffness as well as having indirect effects on the cell membrane. To estimate the components of abnormal cell rheology due to the polymerization process and that due to the membrane abnormalities, we have developed a simple mathematical model of whole cell deformability in narrow vessels. This model uses hydrodynamic lubrication theory to describe the pulsatile flow in the gap between a cell and the vessel wall. The interior of the cell is modeled as a Voigt viscoelastic solid with parameters for the viscous and elastic moduli, while the membrane is assigned an elastic shear modulus. In response to an oscillatory fluid shear stress, the cell--modeled as a cylinder of constant volume and surface area--undergoes a conical deformation which may be calculated. We use published values of normal and sickle cell membrane elastic modulus and of sickle hemoglobin viscous and elastic moduli as a function of oxygen saturation, to estimate normalized tip displacement, d/ho, and relative hydrodynamic resistance, Rr, as a function of polymer fraction of hemoglobin for sickle erythrocytes. These results show the transition from membrane to internal polymer dominance of deformability as oxygen saturation is lowered. More detailed experimental data, including those at other oscillatory frequencies and for cells with higher concentrations of hemoglobin S, are needed to apply fully this approach to understanding the deformability of sickle erythrocytes in the microcirculation. The model should be useful for reconciling the vast and disparate sets of data available on the abnormal properties of sickle cell hemoglobin and sickle erythrocyte membranes, the two main factors that lead to pathology in patients

  7. Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor

    PubMed Central

    Bierings, Ruben; Meems, Henriet; Mul, Frederik P. J.; Geerts, Dirk; Vlaar, Alexander P. J.; Voorberg, Jan; Hordijk, Peter L.

    2017-01-01

    Adhesion of erythrocytes to endothelial cells lining the vascular wall can cause vaso-occlusive events that impair blood flow which in turn may result in ischemia and tissue damage. Adhesion of erythrocytes to vascular endothelial cells has been described in multiple hemolytic disorders, especially in sickle cell disease, but the adhesion of normal erythrocytes to endothelial cells has hardly been described. It was shown that calcium-loaded erythrocytes can adhere to endothelial cells. Because sickle erythrocyte adhesion to ECs can be enhanced by ultra-large von Willebrand factor multimers, we investigated whether calcium loading of erythrocytes could promote binding to endothelial cells via ultra-large von Willebrand factor multimers. We used (immunofluorescent) live-cell imaging of washed erythrocytes perfused over primary endothelial cells at venular flow rate. Using this approach, we show that calcium-loaded erythrocytes strongly adhere to histamine-stimulated primary human endothelial cells. This adhesion is mediated by ultra-large von Willebrand factor multimers. Von Willebrand factor knockdown or ADAMTS13 cleavage abolished the binding of erythrocytes to activated endothelial cells under flow. Platelet depletion did not interfere with erythrocyte binding to von Willebrand factor. Our results reveal platelet-independent adhesion of calcium-loaded erythrocytes to endothelium-derived von Willebrand factor. Erythrocyte adhesion to von Willebrand factor may be particularly relevant for venous thrombosis, which is characterized by the formation of erythrocyte-rich thrombi. PMID:28249049

  8. Response of the rat erythrocyte to ozone exposure

    NASA Technical Reports Server (NTRS)

    Larkin, E. C.; Kimzey, S. L.; Siler, K.

    1978-01-01

    Sprague-Dawley rats were exposed to high (6-8 ppm) and moderate (1.5 ppm) amounts of ozone (O3) for various time periods. Response of the rat erythrocyte to ozone was monitored with red blood cell potassium (rubidium) influx studies, with storage stress combined with ultrastructural studies and with levels of erythrocyte glutathione peroxidase and superoxide dismutase. Erythrocytes of rats exposed to O3 showed no significant changes either in their potassium influx or in their glutathione peroxidase and superoxide dismutase activities compared to controls. Erythrocyte differential counts on O3-exposed animals showed significant changes initially as well as following storage stress compared to controls. Rats exposed to 8 ppm O3 for 4 h showed a marked increase in echinocytes. These consistent transformations from discocytes to echinocytes following O3 exposure suggest latent erythrocyte damage has occurred.

  9. Platelet and not erythrocyte microparticles are procoagulant in transfused thalassaemia major patients.

    PubMed

    Agouti, Imane; Cointe, Sylvie; Robert, Stéphane; Judicone, Coralie; Loundou, Anderson; Driss, Fathi; Brisson, Alain; Steschenko, Dominique; Rose, Christian; Pondarré, Corinne; Bernit, Emmanuelle; Badens, Catherine; Dignat-George, Françoise; Lacroix, Romaric; Thuret, Isabelle

    2015-11-01

    The level of circulating platelet-, erythrocyte-, leucocyte- and endothelial-derived microparticles detected by high-sensitivity flow cytometry was investigated in 37 β-thalassaemia major patients receiving a regular transfusion regimen. The phospholipid procoagulant potential of the circulating microparticles and the microparticle-dependent tissue factor activity were evaluated. A high level of circulating erythrocyte- and platelet-microparticles was found. In contrast, the number of endothelial microparticles was within the normal range. Platelet microparticles were significantly higher in splenectomized than in non-splenectomized patients, independent of platelet count (P < 0·001). Multivariate analysis indicated that phospholipid-dependent procoagulant activity was influenced by both splenectomy (P = 0·001) and platelet microparticle level (P < 0·001). Erythrocyte microparticles were not related to splenectomy, appear to be devoid of proper procoagulant activity and no relationship between their production and haemolysis, dyserythropoiesis or oxidative stress markers could be established. Intra-microparticle labelling with anti-HbF antibodies showed that they originate only partially (median of 28%) from thalassaemic erythropoiesis. In conclusion, when β-thalassaemia major patients are intensively transfused, the procoagulant activity associated with thalassaemic erythrocyte microparticles is probably diluted by transfusions. In contrast, platelet microparticles, being both more elevated and more procoagulant, especially after splenectomy, may contribute to the residual thrombotic risk reported in splenectomized multi-transfused β-thalassaemia major patients. © 2015 John Wiley & Sons Ltd.

  10. Electron paramagnetic resonance investigation on modulatory effect of benidipine on membrane fluidity of erythrocytes in essential hypertension.

    PubMed

    Tsuda, Kazushi

    2008-03-01

    It has been shown that benidipine, a long-lasting calcium (Ca) channel blocker, may exert its protective effect against vascular disorders by increasing nitric oxide (NO) production. The purpose of the present study was to investigate whether orally administered benidipine might influence the membrane function in patients with essential hypertension. We measured the membrane fluidity of erythrocytes by using an electron paramagnetic resonance (EPR) and spin-labeling method. In the preliminary study using erythrocytes obtained from healthy volunteers, benidipine decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS in the EPR spectra in vitro. The finding indicated that benidipine increased the membrane fluidity and improved the microviscosity of erythrocytes. In addition, it was demonstrated that the effect of benidipine on membrane fluidity of erythrocytes was significantly potentiated by the NO-substrate, L-arginine. In the separate series of the study, we observed that orally administered benidipine for 4 weeks significantly increased the membrane fluidity of erythrocytes with a concomitant increase in plasma NO metabolite levels in hypertensive subjects. The results of the present study demonstrated that benidipine might increase the membrane fluidity and improve the microviscosity of erythrocytes both in vitro and in vivo, to some extent, by the NO-dependent mechanism. Furthermore, it is strongly suggested that orally administered benidipine might have a beneficial effect on the rheologic behavior of erythrocytes and the improvement of the microcirculation in hypertensive subjects.

  11. Apoptotic cell death in erythrocytes of p53-deficient medaka (Oryzias latipes) after γ-irradiation.

    PubMed

    Sayed, Alaa El-Din Hamid; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi

    2016-10-01

    Previous studies have examined the effects of γ-irradiation (γ-IR) on wild-type and p53 mutant Medaka (Oryzias latipes) 24 hours after irradiation and in the present work, apoptosis and alterations in erythrocytes of 4, 8 and 24 h and 14 days after gamma-ray irradiation were reported as genotoxic biomarkers of γ-irradiation. Sexually mature wild-type, WT (Hd-rR) and p53(-/-) adult female medaka (O. latipes) were exposed to 4 Gy dose of γ-IR and sampling were collected after 4, 8 and 24 h and 14 days. Apoptosis and morphological alterations were observed from 4 h after irradiation and remarkably increased 8 h after irradiation in the wild-type. Apoptotic cell death has been observed 8 h after irradiation most prominently but subtle in p53 mutant medaka. All these phenotypes were recovered 14 days after irradiation in both strains. Although no micronuclei were seen in any group, nuclear abnormalities were observed in red blood cells. Both apoptosis and morphological alterations in erythrocytes were decreased after 24 and 14 days after γ-irradiation. We conclude that apoptosis and malformations caused by 4 Gy γ-irradiation in the erythrocytes of medaka fish occurs from 4-24 h and the initial response until 8 h was p53-dependent.

  12. Levels of Text Comprehension in Children with Autism Spectrum Disorders (ASD): The Influence of Language Phenotype

    ERIC Educational Resources Information Center

    Lucas, Rebecca; Norbury, Courtenay Frazier

    2014-01-01

    Many children with autism spectrum disorders (ASD) have reading comprehension difficulties, but the level of processing at which comprehension is most vulnerable and the influence of language phenotype on comprehension skill is currently unclear. We explored comprehension at sentence and passage levels across language phenotypes. Children with ASD…

  13. [Morphological characteristic of erythrocytes in experimental hypervitaminosis A].

    PubMed

    Minashkina, T A

    2011-01-01

    This investigation was aimed at the analysis of the shape and morpho-densitometric parameters of the erythrocytes in rats with experimental hypervitaminosis A. Male Wistar rats received 0.64 mg/g (1167 IU/g) of retinol palmitate (RP) in oil solution orally for 11 consecutive days. Rats fed oil alone and intact animals were used as control groups. At days 5 and 6 of the experiment, the first manifestations of hypervitaminosis A were observed (body mass loss, localized erythema and hemorrhages). In contrast to control groups, in rats with hypervitaminosis A, the area of erythrocyte cytoplasm decreased gradually in response to RP administration. Discocyte/spherocyte/stomatocyte ratio also changed dynamically: the proportion of discocytes progressively decreased, while the amount of spherocytes and stomatocytes increased. These results show that excess of the vitamin A alters the erythrocyte membrane structure. Integral optical density of erythrocyte cytoplasm in RP-treated rats as well as in oil-fed rats was lower than in intact animals. This may be an indirect evidence of the fall in erythrocyte hemoglobin content. The changes observed in erythrocytes of RP-treated rats may serve as an additional criterion for evaluation of hypervitaminosis A severity.

  14. Effect of solution non-ideality on erythrocyte volume regulation.

    PubMed

    Levin, R L; Cravalho, E G; Huggins, C E

    1977-03-01

    A non-ideal, hydrated, non-dilute pseudo-binary salt-protein-water solution model of the erythrocyte intracellular solution is presented to describe the osmotic behavior of human erythrocytes. Existing experimental activity data for salts and proteins in aqueous solutions are used to formulate van Laar type expressions for the solvent and solute activity coefficients. Reasonable estimates can therefore be made of the non-ideality of the erythrocyte intracellular solution over a wide range of osmolalities. Solution non-ideality is shown to affect significantly the degree of solute polarization within the erythrocyte intracellular solution during freezing. However, the non-ideality has very little effect upon the amount of water retained within erythrocytes cooled at sub-zero temperatures.

  15. Direct monitoring of erythrocytes aggregation under the effect of the low-intensity magnetic field by measuring light transmission at wavelength 800 nm

    NASA Astrophysics Data System (ADS)

    Elblbesy, Mohamed A.

    2017-12-01

    Interacting electromagnetic field with the living organisms and cells became of the great interest in the last decade. Erythrocytes are the most common types of the blood cells and have unique rheological, electrical, and magnetic properties. Aggregation is one of the important characteristics of the erythrocytes which has a great impact in some clinical cases. The present study introduces a simple method to monitor the effect of static magnetic field on erythrocytes aggregation using light transmission. Features were extracted from the time course curve of the light transmission through the whole blood under different intensities of the magnetic field. The findings of this research showed that static magnetic field could influence the size and the rate of erythrocytes aggregation. The strong correlations confirmed these results between the static magnetic field intensity and both the time of aggregation and sedimentation of erythrocytes. From this study, it can be concluded that static magnetic field can be used to modify the mechanisms of erythrocytes aggregation.

  16. Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors.

    PubMed

    Walker, Britta; Towhid, Syeda T; Schmid, Evi; Hoffmann, Sascha M; Abed, Majed; Münzer, Patrick; Vogel, Sebastian; Neis, Felix; Brucker, Sara; Gawaz, Meinrad; Borst, Oliver; Lang, Florian

    2014-02-01

    Glucose depletion of erythrocytes triggers suicidal erythrocyte death or eryptosis, which leads to cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptotic erythrocytes adhere to endothelial cells by a mechanism involving phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 at the endothelial cell membrane. Nothing has hitherto been known about an interaction between eryptotic erythrocytes and platelets, the decisive cells in primary hemostasis and major players in thrombotic vascular occlusion. The present study thus explored whether and how glucose-depleted erythrocytes adhere to platelets. To this end, adhesion of phosphatidylserine-exposing erythrocytes to platelets under flow conditions was examined in a flow chamber model at arterial shear rates. Platelets were immobilized on collagen and further stimulated with adenosine diphosphate (ADP, 10 μM) or thrombin (0.1 U/ml). As a result, a 48-h glucose depletion triggered phosphatidylserine translocation to the erythrocyte surface and augmented the adhesion of erythrocytes to immobilized platelets, an effect significantly increased upon platelet stimulation. Adherence of erythrocytes to platelets was blunted by coating of erythrocytic phosphatidylserine with annexin V or by neutralization of platelet phosphatidylserine receptors CXCL16 and CD36 with respective antibodies. In conclusion, glucose-depleted erythrocytes adhere to platelets. The adhesive properties of platelets are augmented by platelet activation. Erythrocyte adhesion to immobilized platelets requires phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 expression on platelets. Thus platelet-mediated erythrocyte adhesion may foster thromboocclusive complications in diseases with stimulated phosphatidylserine exposure of erythrocytes.

  17. The Effect of Sepsis on the Erythrocyte

    PubMed Central

    Bateman, Ryon M.; Sharpe, Michael D.; Singer, Mervyn; Ellis, Christopher G.

    2017-01-01

    Sepsis induces a wide range of effects on the red blood cell (RBC). Some of the effects including altered metabolism and decreased 2,3-bisphosphoglycerate are preventable with appropriate treatment, whereas others, including decreased erythrocyte deformability and redistribution of membrane phospholipids, appear to be permanent, and factors in RBC clearance. Here, we review the effects of sepsis on the erythrocyte, including changes in RBC volume, metabolism and hemoglobin’s affinity for oxygen, morphology, RBC deformability (an early indicator of sepsis), antioxidant status, intracellular Ca2+ homeostasis, membrane proteins, membrane phospholipid redistribution, clearance and RBC O2-dependent adenosine triphosphate efflux (an RBC hypoxia signaling mechanism involved in microvascular autoregulation). We also consider the causes of these effects by host mediated oxidant stress and bacterial virulence factors. Additionally, we consider the altered erythrocyte microenvironment due to sepsis induced microvascular dysregulation and speculate on the possible effects of RBC autoxidation. In future, a better understanding of the mechanisms involved in sepsis induced erythrocyte pathophysiology and clearance may guide improved sepsis treatments. Evidence that small molecule antioxidants protect the erythrocyte from loss of deformability, and more importantly improve septic patient outcome suggest further research in this area is warranted. While not generally considered a critical factor in sepsis, erythrocytes (and especially a smaller subpopulation) appear to be highly susceptible to sepsis induced injury, provide an early warning signal of sepsis and are a factor in the microvascular dysfunction that has been associated with organ dysfunction. PMID:28885563

  18. The Effect of Sepsis on the Erythrocyte.

    PubMed

    Bateman, Ryon M; Sharpe, Michael D; Singer, Mervyn; Ellis, Christopher G

    2017-09-08

    Sepsis induces a wide range of effects on the red blood cell (RBC). Some of the effects including altered metabolism and decreased 2,3-bisphosphoglycerate are preventable with appropriate treatment, whereas others, including decreased erythrocyte deformability and redistribution of membrane phospholipids, appear to be permanent, and factors in RBC clearance. Here, we review the effects of sepsis on the erythrocyte, including changes in RBC volume, metabolism and hemoglobin's affinity for oxygen, morphology, RBC deformability (an early indicator of sepsis), antioxidant status, intracellular Ca 2+ homeostasis, membrane proteins, membrane phospholipid redistribution, clearance and RBC O₂-dependent adenosine triphosphate efflux (an RBC hypoxia signaling mechanism involved in microvascular autoregulation). We also consider the causes of these effects by host mediated oxidant stress and bacterial virulence factors. Additionally, we consider the altered erythrocyte microenvironment due to sepsis induced microvascular dysregulation and speculate on the possible effects of RBC autoxidation. In future, a better understanding of the mechanisms involved in sepsis induced erythrocyte pathophysiology and clearance may guide improved sepsis treatments. Evidence that small molecule antioxidants protect the erythrocyte from loss of deformability, and more importantly improve septic patient outcome suggest further research in this area is warranted. While not generally considered a critical factor in sepsis, erythrocytes (and especially a smaller subpopulation) appear to be highly susceptible to sepsis induced injury, provide an early warning signal of sepsis and are a factor in the microvascular dysfunction that has been associated with organ dysfunction.

  19. Erythrocyte membrane stability to hydrogen peroxide is decreased in Alzheimer disease.

    PubMed

    Gilca, Marilena; Lixandru, Daniela; Gaman, Laura; Vîrgolici, Bogdana; Atanasiu, Valeriu; Stoian, Irina

    2014-01-01

    The brain and erythrocytes have similar susceptibility toward free radicals. Therefore, erythrocyte abnormalities might indicate the progression of the oxidative damage in Alzheimer disease (AD). The aim of this study was to investigate erythrocyte membrane stability and plasma antioxidant status in AD. Fasting blood samples (from 17 patients with AD and 14 healthy controls) were obtained and erythrocyte membrane stability against hydrogen peroxide and 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH), serum Trolox equivalent antioxidant capacity (TEAC), residual antioxidant activity or gap (GAP), erythrocyte catalase activity (CAT), erythrocyte superoxide dismutase (SOD) activity, erythrocyte nonproteic thiols, and total plasma thiols were determined. A significant decrease in erythrocyte membrane stability to hydrogen peroxide was found in AD patients when compared with controls (P<0.05). On the contrary, CAT activity (P<0.0001) and total plasma thiols (P<0.05) were increased in patients with AD compared with controls. Our results indicate that the most satisfactory measurement of the oxidative stress level in the blood of patients with AD is the erythrocyte membrane stability to hydrogen peroxide. Reduced erythrocyte membrane stability may be further evaluated as a potential peripheral marker for oxidative damage in AD.

  20. Erythrocyte and platelet fatty acids in retinitis pigmentosa.

    PubMed

    Stanzial, A M; Bonomi, L; Cobbe, C; Olivieri, O; Girelli, D; Trevisan, M T; Bassi, A; Ferrari, S; Corrocher, R

    1991-05-01

    The fatty acid composition and the glutathione-peroxidase activity (GSH-Px) of erythrocytes and platelets, the production of malondialdehyde (MDA) by platelets and the activity of the main systems of transmembrane cation transport in erythrocyte have been studied in 12 patients (5 males and 7 females) affected by retinitis pigmentosa (RP). A remarkable increase of saturated fatty acids (SFA), particularly of stearic acid (C18:0), has been noted in these patients. The reduced unsaturated/saturated fatty acids ratio (PUFA/SFA) observed in both erythrocytes and platelets and the decrease of arachidonic acid in platelets may depend by an active peroxidation process as documented by the increase of MDA. Platelet glutathione-peroxidase (PTL-GSH-PX) and plasma retinol were in the normal range, whereas erythrocyte glutathione-peroxidase (E-GSH-PX), MDA and plasma alfa-toco-pherol were increased in patients with RP. The activities of Na(+)-K+ pump, cotransport and Na(+)-Li+ countertransport were normal in RP erythrocytes.

  1. Structural and compositional changes in erythrocyte membrane of obese compared to normal-weight adolescents.

    PubMed

    Perona, Javier S; González-Jiménez, Emilio; Aguilar-Cordero, María J; Sureda, Antonio; Barceló, Francisca

    2013-12-01

    Unhealthy dietary habits are key determinants of obesity in adolescents. Assuming that dietary fat profile influences membrane lipid composition, the aim of this study was to analyze structural changes in the erythrocyte membrane of obese compared to normal-weight adolescents. The study was conducted in a group of 11 obese and 11 normal-weight adolescent subjects. The lipid profile, lipid peroxidation and acetylcholinesterase enzyme (AChE) activity were analyzed by conventional methods. The structural properties of reconstituted erythrocyte membrane were characterized by X-ray diffraction. Erythrocyte membrane from obese adolescents had a lipid profile characterized by a higher cholesterol/phospholipid ratio, an increase in saturated fatty acid and a decrease in monounsaturated and n-6 polyunsaturated fatty acid concentrations. Differences in lipid content were associated with changes in the structural properties of reconstituted membranes and the oxidative damage of erythrocyte membrane. The lower oxidative level shown in the obese group (0.15 ± 0.04 vs. 0.20 ± 0.06 nmol/mg for conjugated diene concentrations and 2.43 ± 0.25 vs. 2.83 ± 0.31 nmol/mg protein for malondialdehyde levels) was related to a lower unsaturation index. These changes in membrane structural properties were accompanied by a lower AChE activity (1.64 ± 0.13 vs. 1.91 ± 0.24 nmol AChE/[min mg protein]) in the obese group. The consequences of unhealthy dietary habits in adolescents are reflected in the membrane structural properties and may influence membrane-associated protein activities and functions.

  2. Kinetics of viral load and erythrocytic inclusion body formation in pacific herring artificially infected with erythrocytic necrosis virus

    USGS Publications Warehouse

    Glenn, Jolene A.; Emmenegger, Eveline J.; Grady, Courtney A.; Roon, Sean R.; Gregg, Jacob L.; Conway, Carla M.; Winton, James R.; Hershberger, Paul K.

    2012-01-01

    Viral erythrocytic necrosis (VEN) is a condition that affects marine and anadromous fish species, including herrings and salmonids, in the Atlantic and Pacific oceans. Infection is frequently associated with severe anemia and causes episodic mortality among wild and hatchery fish when accompanied by additional stressors; VEN can be presumptively diagnosed by (1) light microscopic identification of a single characteristic—a round, magenta-colored, 0.8-μm-diameter inclusion body (IB) within the cytoplasm of erythrocytes and their precursors on Giemsa-stained blood films; or (2) observation (via transmission electron microscopy [TEM]) of the causative iridovirus, erythrocytic necrosis virus (ENV), within erythrocytes or their precursors. To better understand the kinetics of VEN, specific-pathogen-free Pacific herring Clupea pallasii were infected with ENV by intraperitoneal injection. At 1, 4, 7, 10, 14, 21, and 28 d postexposure, samples of blood, spleen, and kidney were collected and assessed (1) via light microscopy for the number of intracytoplasmic IBs in blood smears and (2) via TEM for the number of virions within erythrocytes. The mean prevalence of intracytoplasmic IBs in the blood cells increased from 0% at 0–4 d postexposure to 94% at 28 d postexposure. Viral load within circulating red blood cells peaked at 7 d postexposure, fell slightly, and then reached a plateau. However, blood cells observed within the kidney and spleen tissues demonstrated high levels of ENV between 14 and 28 d postexposure. The results indicate that the viral load within erythrocytes does not correlate well with IB prevalence and that the virus can persist in infected fish for more than 28 d.

  3. The Ratio of Docosahexaenoic Acid and Arachidonic Acid in Infant Formula Influences the Fatty Acid Composition of the Erythrocyte Membrane in Low-Birth-Weight Infants.

    PubMed

    Kitamura, Tomohiro; Kitamura, Yohei; Hamano, Hirokazu; Shoji, Hiromichi; Shimizu, Takashi; Shimizu, Toshiaki

    2016-01-01

    The arachidonic acid (ARA) and docosahexaenoic acid (DHA) contents in the infant formula influence on the growth and development of low-birth-weight infants (LBWI). In Japan, many infant formulas are fortified only with DHA. We investigated the safety and efficacy of an infant formula (H2025A) fortified with DHA and ARA (DHA/ARA ratio of 2:1, the same as that in Japanese breast milk). In this randomized double-blind trial, 35 LBWI were randomly allocated to 2 groups fed with H2025A or an infant formula fortified only with DHA (control formula) after discharge from the NICU. The duration of this study was one month, and the growth and fatty acid composition of the erythrocyte membrane were compared between the 2 groups. No difference was found in the body weight gain, height gain and head circumstance gain development between the 2 groups, and no adverse event occurred in both groups. The ARA content of the erythrocyte membrane after feeding for 1 month was significantly higher in the H2025A group than in the control group. On analysis adjusted with the breast-fed ratio, the ARA and DHA contents were significantly higher in the H2025A group. It was suggested that H2025A significantly increased the ARA and DHA contents of the erythrocyte membrane of LBWI compared to the contents of the control formula. © 2016 S. Karger AG, Basel.

  4. Response of the iron-deficient erythrocyte in the rat to hyperoxia

    NASA Technical Reports Server (NTRS)

    Larkin, E. C.; Kimzey, S. L.; Siler, K.

    1978-01-01

    Normal and iron-deficient rats were exposed to 90% O2 at 760 Torr for 24 or 48 h. Erythrocyte response to hyperoxia was monitored by potassium (rubidium) influx studies, by storage stress, and by ultrastructural studies. Normal rat erythrocytes exhibited morphological changes and decrease of ouabain-sensitive potassium influx compared to unexposed controls. Both components of erythrocyte potassium influx were affected by iron deficiency. Erythrocytes from unexposed iron-deficient rats showed a 50% increase in ouabain-sensitive potassium influx compared to controls. Iron-deficient rats exposed to hyperoxia for 24 or 48 h, had erythrocytes with morphological changes. Erythrocytes of iron-deficient rats exposed for 24 h showned no influx change; those exposed for 48 h showed a decrease of ouabain-sensitive influx compared to erythrocytes of controls.

  5. Agglutination Assays of the Plasmodium falciparum-Infected Erythrocyte.

    PubMed

    Tan, Joshua; Bull, Peter C

    2015-01-01

    The agglutination assay is used to determine the ability of antibodies to recognize parasite variant antigens on the surface of Plasmodium falciparum-infected erythrocytes. In this technique, infected erythrocytes are selectively labelled with a DNA-binding fluorescent dye and mixed with antibodies of interest to allow antibody-surface antigen binding. Recognition of surface antigens by the antibodies can result in the formation of agglutinates containing multiple parasite-infected erythrocytes. These can be viewed and quantified using a fluorescence microscope.

  6. Association of erythrocyte deformability with red blood cell distribution width in metabolic diseases and thalassemia trait.

    PubMed

    Vayá, Amparo; Alis, Rafael; Suescún, Marta; Rivera, Leonor; Murado, Julian; Romagnoli, Marco; Solá, Eva; Hernandez-Mijares, Antonio

    2015-01-01

    Increased red blood distribution width (RDW) in anemia is related to disturbances in the cellular surface/volume ratio, usually accompanied by morphological alterations, while it has been shown in inflammatory diseases that the activity of pro-inflammatory cytokines disturbing erythropoiesis increases RDW. Recently it has been reported that higher RDW is related with decreased erythrocyte deformability, and that it could be related with the association of RDW and increased risk of cardiovascular diseases. In order to analyze the influence of morphological alterations and proinflammatory status on the relationship between RDW and erythrocyte deformability, we analyzed erythrocyte deformability along with RDW and other hematological and biochemical parameters in 36 α-thalassemia, 20 β-thalassemia, 20 δβ-thalassemia trait carriers, 61 metabolic syndrome patients and 76 morbidly obese patients. RDW correlated inversely with erythrocyte deformability in minor β-thalassemia (r =-0.530, p <  0.05), and directly in both metabolic syndrome and morbidly obese patients (ρ= 0.270, p <  0.05 and ρ= 0.258, p <  0.05, respectively). Minor β-thalassemia is often accompanied by more marked cell-shaped perturbations than other thalassemia traits. This could be the reason for this negative association only in this setting. Higher anisocytosis seems to be associated with greater morphologic alterations (shape/volume), which reduce erythrocyte deformability. The proinflammatory profile in metabolic patients can be related to the positive association of RDW with erythrocyte deformability found in these patients. However, further research is needed to explain the mechanisms underlying this association.

  7. The Duffy binding protein (PkDBPαII) of Plasmodium knowlesi from Peninsular Malaysia and Malaysian Borneo show different binding activity level to human erythrocytes.

    PubMed

    Lim, Khai Lone; Amir, Amirah; Lau, Yee Ling; Fong, Mun Yik

    2017-08-11

    The zoonotic Plasmodium knowlesi is a major cause of human malaria in Malaysia. This parasite uses the Duffy binding protein (PkDBPαII) to interact with the Duffy antigen receptor for chemokines (DARC) receptor on human and macaque erythrocytes to initiate invasion. Previous studies on P. knowlesi have reported distinct Peninsular Malaysia and Malaysian Borneo PkDBPαII haplotypes. In the present study, the differential binding activity of these haplotypes with human and macaque (Macaca fascicularis) erythrocytes was investigated. The PkDBPαII of Peninsular Malaysia and Malaysian Borneo were expressed on the surface of COS-7 cells and tested with human and monkey erythrocytes, with and without anti-Fy6 (anti-Duffy) monoclonal antibody treatment. Binding activity level was determined by counting the number of rosettes formed between the transfected COS-7 cells and the erythrocytes. Anti-Fy6 treatment was shown to completely block the binding of human erythrocytes with the transfected COS-7 cells, thus verifying the specific binding of human DARC with PkDBPαII. Interestingly, the PkDBPαII of Peninsular Malaysia displayed a higher binding activity with human erythrocytes when compared with the Malaysian Borneo PkDBPαII haplotype (mean number of rosettes formed = 156.89 ± 6.62 and 46.00 ± 3.57, respectively; P < 0.0001). However, no difference in binding activity level was seen in the binding assay using M. fascicularis erythrocytes. This study is the first report of phenotypic difference between PkDBPαII haplotypes. The biological implication of this finding is yet to be determined. Therefore, further studies need to be carried out to determine whether this differential binding level can be associated with severity of knowlesi malaria in human.

  8. RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes

    PubMed Central

    Morera, Davinia; Roher, Nerea; Ribas, Laia; Balasch, Joan Carles; Doñate, Carmen; Callol, Agnes; Boltaña, Sebastian; Roberts, Steven; Goetz, Giles; Goetz, Frederick W.; MacKenzie, Simon A.

    2011-01-01

    Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems. PMID:22046430

  9. The erythrocyte sodium and potassium in patients treated with digoxin.

    PubMed Central

    Morgan, D B; Cumberbatch, M; Cohn, S; Scott, D; Gunasuntharam, T; Davidson, C; Chapman, C

    1980-01-01

    1 Four healthy persons and ten patients with heart failure were studied for 5 to 20 days after they started taking digoxin. The sodium content of their erythrocytes increased and there was an equimolar decrease in potassium content. 2 The increase in erythrocyte sodium for a given increase in plasma digoxin during this acute digitalization was less on average and varied more in the patients than in the healthy persons, that is the patients' erythrocytes were less responsive to digoxin. 3 The average erythrocyte sodium was greater in 183 patients who had been taking digoxin for at least 2 months than in 100 healthy persons not taking digoxin but there was no significant correlation between the plasma digoxin concentrations and erythrocyte sodium concentration in the patients. Indeed, there was no apparent change in the erythrocyte sodium in many of the patients taking digoxin. 4 If the erythrocyte sodium concentration is a reliable guide to the tissue effects of digoxin then the results suggest that there is a wide variation in the response to digoxin between patients both during acute digitalization and during chronic treatment with digoxin. PMID:7426274

  10. Transformation of Human Erythrocyte Shape by Endotoxic Lipopolysaccharide

    PubMed Central

    Warren, John R.; Harris, Alan S.; Wallas, Charles H.

    1983-01-01

    Human erythrocytes were observed to undergo a discocyte to echinocyte to spheroechinocyte shape transformation during brief incubation with endotoxic lipopolysaccharide. It was concluded that lipopolysaccharide-membrane interactions alter the curvature of erythrocyte membranes. Images PMID:6822423

  11. Erythrocyte survival time in Greyhounds as assessed by use of in vivo biotinylation.

    PubMed

    Garon, Catherine L; Cohn, Leah A; Scott, Michael A

    2010-09-01

    To determine erythrocyte survival time in Greyhounds. 6 Greyhounds used as blood donors and 3 privately owned non-Greyhound dogs. In vivo biotinylation of erythrocytes was performed by infusion of biotin-N-hydroxysuccinimide into each dog via a jugular vein catheter. Blood samples were collected 12 hours later and then at weekly intervals and were used to determine the percentage of biotin-labeled erythrocytes at each time point. Erythrocytes were washed, incubated with avidin-fluorescein isothiocyanate, and washed again before the percentage of biotinylated erythrocytes was measured by use of flow cytometry. Survival curves for the percentage of biotinylated erythrocytes were generated, and erythrocyte survival time was defined as the x-intercept of a least squares best-fit line for the linear portion of each curve. The R2 for survival curves ranged from 0.93 to 0.99 during the first 10 weeks after infusion of erythrocytes. Erythrocyte survival time for the 3 non-Greyhound dogs was 94, 98, and 116 days, respectively, which was consistent with previously reported values. Erythrocyte survival time for the 6 Greyhounds ranged from 83 to 110 days (mean, 93 days; median, 88 days). As determined by use of in vivo biotinylation, erythrocyte survival times in Greyhounds were similar to those determined for non-Greyhound dogs and did not differ significantly from erythrocyte survival times reported previously for non-Greyhound dogs. Erythrocyte survival time was similar in Greyhounds and non-Greyhound dogs. Greyhounds can be used as erythrocyte donors without concerns about inherently shorter erythrocyte survival time.

  12. Anti-Self Phosphatidylserine Antibodies Recognize Uninfected Erythrocytes Promoting Malarial Anemia.

    PubMed

    Fernandez-Arias, Cristina; Rivera-Correa, Juan; Gallego-Delgado, Julio; Rudlaff, Rachel; Fernandez, Clemente; Roussel, Camille; Götz, Anton; Gonzalez, Sandra; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel; Buffet, Pierre; Ndour, Papa Alioune; Rodriguez, Ana

    2016-02-10

    Plasmodium species, the parasitic agents of malaria, invade erythrocytes to reproduce, resulting in erythrocyte loss. However, a greater loss is caused by the elimination of uninfected erythrocytes, sometimes long after infection has been cleared. Using a mouse model, we found that Plasmodium infection induces the generation of anti-self antibodies that bind to the surface of uninfected erythrocytes from infected, but not uninfected, mice. These antibodies recognize phosphatidylserine, which is exposed on the surface of a fraction of uninfected erythrocytes during malaria. We find that phosphatidylserine-exposing erythrocytes are reticulocytes expressing high levels of CD47, a "do-not-eat-me" signal, but the binding of anti-phosphatidylserine antibodies mediates their phagocytosis, contributing to anemia. In human patients with late postmalarial anemia, we found a strong inverse correlation between the levels of anti-phosphatidylserine antibodies and plasma hemoglobin, suggesting a similar role in humans. Inhibition of this pathway may be exploited for treating malarial anemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effect of calcium on the hemolytic activity of Stichodactyla helianthus toxin sticholysin II on human erythrocytes.

    PubMed

    Celedón, Gloria; González, Gustavo; Lissi, Eduardo; Cerda, Tania; Martinez, Diana; Soto, Carmen; Pupo, Mario; Pazos, Fabiola; Lanio, Maria E; Alvarez, Carlos

    2009-11-01

    Sticholysin II (St II) is a toxin from the sea anemona Stichodactyla helianthus that produces erythrocytes lysis at low concentration and its activity depends on the presence of calcium. Calcium may act modifying toxin interaction with erythrocyte membranes or activating cellular processes which may result in a modified St II lytic action. In this study we are reporting that, in the presence of external K(+), extracellular calcium decreased St II activity on erythrocytes. On the other hand an increase of intracellular calcium promotes Sty II lytic activity. The effect of intracellular calcium was specifically studied in relation to membrane lipid translocation elicited by scramblases and how this action influence St II lytic activity on erythrocytes. We used 0.5 mmol/L calcium and 10 mmol/L A23187, as calcium ionophore, for scramblases activation and found increased St II activity associated to increase of intracellular calcium. N-ethyl maleimide (activator) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (inhibitor) were used as scramblases modulators in the assays which produced an increase and a decrease of the calcium effect, respectively. Results reported suggest an improved St II membrane pore-forming capacity promoted by intracellular calcium associated to membrane phospholipids translocation.

  14. The influence of medium elasticity on the prediction of histotripsy-induced bubble expansion and erythrocyte viability

    NASA Astrophysics Data System (ADS)

    Bader, Kenneth B.

    2018-05-01

    Histotripsy is a form of therapeutic ultrasound that liquefies tissue mechanically via acoustic cavitation. Bubble expansion is paramount in the efficacy of histotripsy therapy, and the cavitation dynamics are strongly influenced by the medium elasticity. In this study, an analytic model to predict histotripsy-induced bubble expansion in a fluid was extended to include the effects of medium elasticity. Good agreement was observed between the predictions of the analytic model and numerical computations utilizing highly nonlinear excitations (shock-scattering histotripsy) and purely tensile pulses (microtripsy). No bubble expansion was computed for either form of histotripsy when the elastic modulus was greater than 20 MPa and the peak negative pressure was less than 50 MPa. Strain in the medium due to the expansion of a single bubble was also tabulated. The viability of red blood cells was calculated as a function of distance from the bubble wall based on empirical data of impulsive stretching of erythrocytes. Red blood cells remained viable at distances further than 44 µm from the bubble wall. As the medium elasticity increased, the distance over which bubble expansion-induced strain influenced red blood cells was found to decrease sigmoidally. These results highlight the relationship between tissue elasticity and the efficacy of histotripsy. In addition, an upper medium elasticity limit was identified, above which histotripsy may not be effective for tissue liquefaction.

  15. Morphometric analysis of erythrocytes from patients with thalassemia using tomographic diffractive microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Yang-Hsien; Huang, Shin-Shyang; Wu, Shang-Ju; Sung, Kung-Bin

    2017-11-01

    Complete blood count is the most common test to detect anemia, but it is unable to obtain the abnormal shape of erythrocytes, which highly correlates with the hematologic function. Tomographic diffractive microscopy (TDM) is an emerging technique capable of quantifying three-dimensional (3-D) refractive index (RI) distributions of erythrocytes without labeling. TDM was used to characterize optical and morphological properties of 172 erythrocytes from healthy volunteers and 419 erythrocytes from thalassemic patients. To efficiently extract and analyze the properties of erythrocytes, we developed an adaptive region-growing method for automatically delineating erythrocytes from 3-D RI maps. The thalassemic erythrocytes not only contained lower hemoglobin content but also showed doughnut shape and significantly lower volume, surface area, effective radius, and average thickness. A multi-indices prediction model achieved perfect accuracy of diagnosing thalassemia using four features, including the optical volume, surface-area-to-volume ratio, sphericity index, and surface area. The results demonstrate the ability of TDM to provide quantitative, hematologic measurements and to assess morphological features of erythrocytes to distinguish healthy and thalassemic erythrocytes.

  16. New prodrugs of metformin do not influence the overall haemostasis potential and integrity of the erythrocyte membrane.

    PubMed

    Markowicz-Piasecka, Magdalena; Sikora, Joanna; Mateusiak, Łukasz; Mikiciuk-Olasik, Elżbieta; Huttunen, Kristiina M

    2017-09-15

    Although metformin, an oral anti-diabetic drug, has been found to have multidirectional effects over the past decade, it is characterised by unfavourable pharmacokinetic properties. This study discusses the effects of metformin, phenformin and three prodrugs of metformin on the haemostasis and integrity of Red Blood Cells (RBCs). The influence of examined biguanide derivatives on haemostasis was evaluated spectrophotometrically by clot formation and lysis test (CL-test) at 405nm. The extrinsic and intrinsic coagulation pathway were examined by measuring the PT (Prothrombin Time) and aPTT (Activated Partial Tromboplastin Time). Haemolysis assay, microscopy and flow cytometry studies were used to assess the effect of the tested compounds on RBCs. Although none of the tested biguanide derivatives significantly influenced the overall potential of clot formation and fibrinolysis (CL AUC constants), statistically significant changes were seen in the values of the kinetic parameters of fibrinolysis. Furthermore, only prodrug 2, with an 8-carbon alkyl chain, unfavourably affected RBCs by interaction with the erythrocyte membrane leading to significant haemolysis. Our results provide a further insight into the effects of metformin and its prodrugs on haemostasis and RBCs and underscore the necessity for further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Hemolytic activity in Flavobacterium psychrophilum is a contact-dependent, two-step mechanism and differently expressed in smooth and rough phenotypes.

    PubMed

    Högfors-Rönnholm, Eva; Wiklund, Tom

    2010-12-01

    The hemolytic activity of cells of smooth and rough phenotypic variants of the Gram-negative fish pathogen Flavobacterium psychrophilum was investigated in two different assays, a microplate and an agarose hemolysis assay, using rainbow trout erythrocytes. The smooth cells showed a high and the rough cells a negligible, concentration dependent, hemolytic activity in the microplate assay. Both smooth and rough cells showed a rather weak hemolytic activity, with two distinct hemolytic patterns, in the agarose assay. The hemolytic activity of the cells was not regulated by iron availability and cell-free extracellular products did not show any hemolytic activity. The smooth cells, in contrast to the rough cells, showed a high ability to agglutinate erythrocytes and both hemagglutination and hemolytic activity was impaired by treatment of the cells with sialic acid. The hemolytic activity was furthermore reduced after proteolytic and heat treatment of the cells. The results from the present study suggest that the hemolytic activity in F. psychrophilum is highly expressed in the smooth phenotype, and that it is a contact-dependent and two-step mechanism that is initiated by the binding of the bacterial cells to the erythrocytes through sialic acid-binding lectins and then executed by thermolabile proteinaceous hemolysins. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Tolerance of Erythrocytes in Poultry: Induction and Specificity

    PubMed Central

    Mitchison, N. A.

    1962-01-01

    Measurement of the rate of elimination of 51Cr-labelled erythrocytes provides a reliable test of immunity in fowls. Chickens can be rendered tolerant of homologous and turkey erythrocytes, as judged by this test, by receiving a series of transfusions of irradiated blood. The series were arranged so that foreign cells remained present in the circulation from the time of hatching. Tolerance induced by this treatment is generally incomplete, but can last indefinitely. In some chickens the manifestation of tolerance of turkey erythrocytes is delayed, probably because of passive transmission of antibody from the dam. Chickens old enough to react against small transfusions of homologous blood can still be rendered tolerant by massive transfusions. Tolerance of the erythrocytes from an individual donor extends only slightly to those from other donors. Tolerance acquired in this way, through transfusion of irradiated blood, stands in contrast to the more stable and complete tolerance that can be acquired through administration of viable cells. Viable cells, on the other hand, provide a less sensitive test, for birds which tolerate skin homografts often eliminate rapidly erythrocytes from the same donor. PMID:14474652

  19. Light-induced protoporphyrin release from erythrocytes in erythropoietic protoporphyria.

    PubMed Central

    Sandberg, S; Brun, A

    1982-01-01

    The photohemolysis of normal erythrocytes incubated with protoporphyrin is reduced in the presence of albumin. When globin is added to normal erythrocytes loaded with protoporphyrin, protoporphyrin is bound to globin. During irradiation protoporphyrin moves from globin to the erythrocyte membrane and photohemolysis is initiated. Erythrocytes in patients with erythropoietic protoporphyria contain large amounts of protoporphyrin bound to hemoglobin. Upon irradiation of these cells in the absence of albumin, 40% of protoporphyrin and 80% of hemoglobin is released after 240 kJ/m2. The released protoporphyrin is hemoglobin bound. In contrast, when albumin is present only 8% of hemoglobin is released whereas protoporphyrin is released to 76%. The released protoporphyrin is albumin bound. A hypothesis for the release of erythrocyte protoporphyrin in erythropoietic protoporphyria without simultaneous hemolysis is proposed. Upon irradiation protoporphyrin photodamages its binding sites on hemoglobin, moves through the plasma membrane, and is bound to albumin in plasma. PMID:7107898

  20. Experiment study and FEM simulation on erythrocytes under linear stretching of optical micromanipulation

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Song, Huadong; Zhu, Panpan; Lu, Hao; Tang, Qi

    2017-08-01

    The elasticity of erythrocytes is an important criterion to evaluate the quality of blood. This paper presents a novel research on erythrocytes' elasticity with the application of optical tweezers and the finite element method (FEM) during blood storage. In this work, the erythrocytes with different in vitro times were linearly stretched by trapping force using optical tweezers and the time dependent elasticity of erythrocytes was investigated. The experimental results indicate that the membrane shear moduli of erythrocytes increased with the increasing in vitro time, namely the elasticity was decreasing. Simultaneously, an erythrocyte shell model with two parameters (membrane thickness h and membrane shear modulus H) was built to simulate the linear stretching states of erythrocytes by the FEM, and the simulations conform to the results obtained in the experiment. The evolution process was found that the erythrocytes membrane thicknesses were decreasing. The analysis assumes that the partial proteins and lipid bilayer of erythrocyte membrane were decomposed during the in vitro preservation of blood, which results in thin thickness, weak bending resistance, and losing elasticity of erythrocyte membrane. This study implies that the FEM can be employed to investigate the inward mechanical property changes of erythrocyte in different environments, which also can be a guideline for studying the erythrocyte mechanical state suffered from different diseases.

  1. Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.

    PubMed

    Basu, Avik; Harper, Sandra; Pesciotta, Esther N; Speicher, Kaye D; Chakrabarti, Abhijit; Speicher, David W

    2015-10-14

    Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton

  2. The Role and Mechanism of Erythrocyte Invasion by Francisella tularensis.

    PubMed

    Schmitt, Deanna M; Barnes, Rebecca; Rogerson, Taylor; Haught, Ashley; Mazzella, Leanne K; Ford, Matthew; Gilson, Tricia; Birch, James W-M; Sjöstedt, Anders; Reed, Douglas S; Franks, Jonathan M; Stolz, Donna B; Denvir, James; Fan, Jun; Rekulapally, Swanthana; Primerano, Donald A; Horzempa, Joseph

    2017-01-01

    Francisella tularensis is an extremely virulent bacterium that can be transmitted naturally by blood sucking arthropods. During mammalian infection, F. tularensis infects numerous types of host cells, including erythrocytes. As erythrocytes do not undergo phagocytosis or endocytosis, it remains unknown how F. tularensis invades these cells. Furthermore, the consequence of inhabiting the intracellular space of red blood cells (RBCs) has not been determined. Here, we provide evidence indicating that residing within an erythrocyte enhances the ability of F. tularensis to colonize ticks following a blood meal. Erythrocyte residence protected F. tularensis from a low pH environment similar to that of gut cells of a feeding tick. Mechanistic studies revealed that the F. tularensis type VI secretion system (T6SS) was required for erythrocyte invasion as mutation of mglA (a transcriptional regulator of T6SS genes), dotU , or iglC (two genes encoding T6SS machinery) severely diminished bacterial entry into RBCs. Invasion was also inhibited upon treatment of erythrocytes with venom from the Blue-bellied black snake ( Pseudechis guttatus ), which aggregates spectrin in the cytoskeleton, but not inhibitors of actin polymerization and depolymerization. These data suggest that erythrocyte invasion by F. tularensis is dependent on spectrin utilization which is likely mediated by effectors delivered through the T6SS. Our results begin to elucidate the mechanism of a unique biological process facilitated by F. tularensis to invade erythrocytes, allowing for enhanced colonization of ticks.

  3. The Role and Mechanism of Erythrocyte Invasion by Francisella tularensis

    PubMed Central

    Schmitt, Deanna M.; Barnes, Rebecca; Rogerson, Taylor; Haught, Ashley; Mazzella, Leanne K.; Ford, Matthew; Gilson, Tricia; Birch, James W.-M.; Sjöstedt, Anders; Reed, Douglas S.; Franks, Jonathan M.; Stolz, Donna B.; Denvir, James; Fan, Jun; Rekulapally, Swanthana; Primerano, Donald A.; Horzempa, Joseph

    2017-01-01

    Francisella tularensis is an extremely virulent bacterium that can be transmitted naturally by blood sucking arthropods. During mammalian infection, F. tularensis infects numerous types of host cells, including erythrocytes. As erythrocytes do not undergo phagocytosis or endocytosis, it remains unknown how F. tularensis invades these cells. Furthermore, the consequence of inhabiting the intracellular space of red blood cells (RBCs) has not been determined. Here, we provide evidence indicating that residing within an erythrocyte enhances the ability of F. tularensis to colonize ticks following a blood meal. Erythrocyte residence protected F. tularensis from a low pH environment similar to that of gut cells of a feeding tick. Mechanistic studies revealed that the F. tularensis type VI secretion system (T6SS) was required for erythrocyte invasion as mutation of mglA (a transcriptional regulator of T6SS genes), dotU, or iglC (two genes encoding T6SS machinery) severely diminished bacterial entry into RBCs. Invasion was also inhibited upon treatment of erythrocytes with venom from the Blue-bellied black snake (Pseudechis guttatus), which aggregates spectrin in the cytoskeleton, but not inhibitors of actin polymerization and depolymerization. These data suggest that erythrocyte invasion by F. tularensis is dependent on spectrin utilization which is likely mediated by effectors delivered through the T6SS. Our results begin to elucidate the mechanism of a unique biological process facilitated by F. tularensis to invade erythrocytes, allowing for enhanced colonization of ticks. PMID:28536678

  4. Erythrocyte Membrane Failure by Electromechanical Stress.

    PubMed

    Du, E; Qiang, Yuhao; Liu, Jia

    2018-01-01

    We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  5. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance.

    PubMed

    Barvitenko, Nadezhda N; Adragna, Norma C; Weber, Roy E

    2005-01-01

    Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate. Copyright 2005 S. Karger AG, Basel.

  6. Bio-field array: a dielectrophoretic electromagnetic toroidal excitation to restore and maintain the golden ratio in human erythrocytes.

    PubMed

    Purnell, Marcy C; Butawan, Matthew B A; Ramsey, Risa D

    2018-06-01

    Erythrocytes must maintain a biconcave discoid shape in order to efficiently deliver oxygen (O 2 ) molecules and to recycle carbon dioxide (CO 2 ) molecules. The erythrocyte is a small toroidal dielectrophoretic (DEP) electromagnetic field (EMF) driven cell that maintains its zeta potential (ζ) with a dielectric constant (ԑ) between a negatively charged plasma membrane surface and the positively charged adjacent Stern layer. Here, we propose that zeta potential is also driven by both ferroelectric influences (chloride ion) and ferromagnetic influences (serum iron driven). The Golden Ratio, a function of Phi φ, offers a geometrical mathematical measure within the distinct and desired curvature of the red blood cell that is governed by this zeta potential and is required for the efficient recycling of CO 2 in our bodies. The Bio-Field Array (BFA) shows potential to both drive/fuel the zeta potential and restore the Golden Ratio in human erythrocytes thereby leading to more efficient recycling of CO 2 . Live Blood Analyses and serum CO 2 levels from twenty human subjects that participated in immersion therapy sessions with the BFA for 2 weeks (six sessions) were analyzed. Live Blood Analyses (LBA) and serum blood analyses performed before and after the BFA immersion therapy sessions in the BFA pilot study participants showed reversal of erythrocyte rheological alterations (per RBC metric; P = 0.00000075), a morphological return to the Golden Ratio and a significant decrease in serum CO 2 (P = 0.017) in these participants. Immersion therapy sessions with the BFA show potential to modulate zeta potential, restore this newly defined Golden Ratio and reduce rheological alterations in human erythrocytes. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. The influence of the microenvironment on the malignant phenotype

    NASA Technical Reports Server (NTRS)

    Park, C. C.; Bissell, M. J.; Barcellos-Hoff, M. H.

    2000-01-01

    Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. As tissue becomes cancerous, there are reciprocal interactions between neoplastic cells, adjacent normal cells such as stroma and endothelium, and their microenvironments. The current dominant paradigm wherein multiple genetic lesions provide both the impetus for, and the Achilles heel of, cancer might be inadequate to understand cancer as a disease process. In the following brief review, we will use selected examples to illustrate the influence of the microenvironment in the evolution of the malignant phenotype. We will also discuss recent studies that suggest novel therapeutic interventions might be derived from focusing on microenvironment and tumor cells interactions.

  8. Peroxiredoxin 2 and peroxide metabolism in the erythrocyte.

    PubMed

    Low, Felicia M; Hampton, Mark B; Winterbourn, Christine C

    2008-09-01

    Peroxiredoxin 2 (Prx2) is an antioxidant enzyme that uses cysteine residues to decompose peroxides. Prx2 is the third most abundant protein in erythrocytes, and competes effectively with catalase and glutathione peroxidase to scavenge low levels of hydrogen peroxide, including that derived from hemoglobin autoxidation. Low thioredoxin reductase activity in the erythrocyte is able to keep up with this basal oxidation and maintain the Prx2 in its reduced form, but exposure to exogenous hydrogen peroxide causes accumulation of the disulfide-linked dimer. The high cellular concentration means that although turnover is slow, erythrocyte Prx2 can act as a noncatalytic scavenger of hydrogen peroxide and a sink for hydrogen peroxide before turnover becomes limiting. The consequences of Prx2 oxidation for the erythrocyte are not well characterized, but mice deficient in this protein develop severe hemolytic anemia associated with Heinz body formation. Prx2, also known as calpromotin, regulates ion transport by associating with the membrane and activating the Gárdos channel. How Prx2 redox transformations are linked to membrane association and channel activation is yet to be established. In this review, we discuss the functional properties of Prx2 and its role as a major component of the erythrocyte antioxidant system.

  9. In Vitro Protective Effect of Phikud Navakot Extraction on Erythrocyte

    PubMed Central

    2016-01-01

    Phikud Navakot (PN), Thai herbal remedy in National List of Essential Medicines, has been claimed to reduce many cardiovascular symptoms especially dizziness and fainting. Apart from blood supply, erythrocyte morphology, in both shape and size, is one of the main consideration factors in cardiovascular diseases and may be affected by vascular oxidative stress. However, little is known about antioxidative property of PN on erythrocyte to preserve red blood cell integrity. In this study, 1,000 μM hydrogen peroxide-induced oxidative stress was conducted on sheep erythrocyte. Three doses of PN (1, 0.5, and 0.25 mg/mL) and 10 μM of ascorbic acid were compared. The released hemoglobin absorbance was measured to demonstrate hemolysis. Electron microscopic and immunohistochemical studies were also performed to characterize dysmorphic erythrocyte and osmotic ability in relation to aquaporin- (AQP-) 1 expression, respectively. The results revealed that all doses of PN and ascorbic acid decreased the severity of dysmorphic erythrocyte, particularly echinocyte, acanthocyte, knizocyte, codocyte, clumping, and other malformations. However, the most effective was 0.5 mg/mL PN dosage. In addition, hydrostatic pressure may be increased in dysmorphic erythrocyte in association with AQP-1 upregulation. Our results demonstrated that PN composes antioxidative effect to maintain the integrity and osmotic ability on sheep erythrocyte. PMID:28003847

  10. Circadian blood pressure variability in type 1 diabetes subjects and their nondiabetic siblings - influence of erythrocyte electron transfer.

    PubMed

    Matteucci, Elena; Consani, Cristina; Masoni, Maria Chiara; Giampietro, Ottavio

    2010-10-05

    Normotensive non-diabetic relatives of type 1 diabetes (T1D) patients have an abnormal blood pressure response to exercise testing that is associated with indices of metabolic syndrome and increased oxidative stress. The primary aim of this study was to investigate the circadian variability of blood pressure and the ambulatory arterial stiffness index (AASI) in healthy siblings of T1D patients vs healthy control subjects who had no first-degree relative with T1D. Secondary aims of the study were to explore the influence of both cardiovascular autonomic function and erythrocyte electron transfer activity as oxidative marker on the ambulatory blood pressure profile. Twenty-four hour ambulatory blood pressure monitoring (ABPM) was undertaken in 25 controls, 20 T1D patients and 20 siblings. In addition to laboratory examination (including homeostasis model assessment of insulin sensitivity) and clinical testing of autonomic function, we measured the rate of oxidant-induced erythrocyte electron transfer to extracellular ferricyanide (RBC vfcy). Systolic blood pressure (SBP) midline-estimating statistic of rhythm and pulse pressure were higher in T1D patients and correlated positively with diabetes duration and RBC vfcy; autonomic dysfunction was associated with diastolic BP ecphasia and increased AASI. Siblings had higher BMI, lower insulin sensitivity, larger SBP amplitude, and higher AASI than controls. Daytime SBP was positively, independently associated with BMI and RBC vfcy. Among non-diabetic people, there was a significant correlation between AASI and fasting plasma glucose. Siblings of T1D patients exhibited a cluster of sub-clinical metabolic abnormalities associated with consensual perturbations in BP variability. Moreover, our findings support, in a clinical setting, the proposed role of transplasma membrane electron transport systems in vascular pathobiology.

  11. Electrophoretic mobilities of erythrocytes in various buffers

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.

  12. Engineering antigens for in situ erythrocyte binding induces T-cell deletion.

    PubMed

    Kontos, Stephan; Kourtis, Iraklis C; Dane, Karen Y; Hubbell, Jeffrey A

    2013-01-02

    Antigens derived from apoptotic cell debris can drive clonal T-cell deletion or anergy, and antigens chemically coupled ex vivo to apoptotic cell surfaces have been shown correspondingly to induce tolerance on infusion. Reasoning that a large number of erythrocytes become apoptotic (eryptotic) and are cleared each day, we engineered two different antigen constructs to target the antigen to erythrocyte cell surfaces after i.v. injection, one using a conjugate with an erythrocyte-binding peptide and another using a fusion with an antibody fragment, both targeting the erythrocyte-specific cell surface marker glycophorin A. Here, we show that erythrocyte-binding antigen is collected much more efficiently than free antigen by splenic and hepatic immune cell populations and hepatocytes, and that it induces antigen-specific deletional responses in CD4(+) and CD8(+) T cells. We further validated T-cell deletion driven by erythrocyte-binding antigens using a transgenic islet β cell-reactive CD4(+) T-cell adoptive transfer model of autoimmune type 1 diabetes: Treatment with the peptide antigen fused to an erythrocyte-binding antibody fragment completely prevented diabetes onset induced by the activated, autoreactive CD4(+) T cells. Thus, we report a translatable modular biomolecular approach with which to engineer antigens for targeted binding to erythrocyte cell surfaces to induce antigen-specific CD4(+) and CD8(+) T-cell deletion toward exogenous antigens and autoantigens.

  13. [INFLUENCE OF MEDICINAL PLANT EXTRACTS ON THE FUNCTIONS AND ANTIOXIDANT PROTECTION OF ERYTHROCYTES IN RATS WITH EXPERIMENTAL DIABETES MELLITUS].

    PubMed

    Vengerovskii, A I; Yakimova, T V; Nasanova, O N

    2016-01-01

    Experiments on rats with diabetes mellitus model induced by streptosotocin and high (30%) fat diet showed that the daily treatment with aqueous extracts of great nettle leaves (100 mg/kg) and common burdock roots (25 mg/kg) for a period of 10 days led to a decrease in the glycemic index and triglyceride level and produced protective action on erythrocytes both in animals kept on a fat-rich diet and on the background of a low-caloric ration. Both medicinal plant extracts were comparable with reference drug metformin in reducing the concentration of glycosylated hemoglobin (by 12-31%) and ectoglobular hemoglobin (1.7-1.8 times, p <0.05), decreasing the content of malonic dialdehyde in erythrocytes (1.3 times, p < 0.05), and increasing erythrocyte deformability (1.3-1.4 times, p < 0.05) and activity of their antioxidant enzymes glutathione peroxidase, glutathione reductase, glutathione-S-transferase, catalase, and supe- roxide dismutase (1.2-2.6 times, p < 0.05). A diet with usual (8%) fat content improved the metabolic indices to a lower degree (on the average by 13-21%, p < 0.05) than did the proposed phytotherapy.

  14. Abnormalities of the erythrocyte membrane.

    PubMed

    Gallagher, Patrick G

    2013-12-01

    Primary abnormalities of the erythrocyte membrane are characterized by clinical, laboratory, and genetic heterogeneity. Among this group, hereditary spherocytosis patients are more likely to experience symptomatic anemia. Treatment of hereditary spherocytosis with splenectomy is curative in most patients. Growing recognition of the long-term risks of splenectomy has led to re-evaluation of the role of splenectomy. Management guidelines acknowledge these considerations and recommend discussion between health care providers, patient, and family. The hereditary elliptocytosis syndromes are the most common primary disorders of erythrocyte membrane proteins. However, most elliptocytosis patients are asymptomatic and do not require therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Electron paramagnetic resonance investigation on modulatory effect of 17beta-estradiol on membrane fluidity of erythrocytes in postmenopausal women.

    PubMed

    Tsuda, K; Kinoshita, Y; Kimura, K; Nishio, I; Masuyama, Y

    2001-08-01

    Many studies have shown that estrogen may exert cardioprotective effects and reduce the risk of hypertension and coronary events. On the other hand, it has been proposed that cell membrane abnormalities play a role in the pathophysiology of hypertension, although it is not clear whether estrogen would influence membrane function in essential hypertension. The present study was performed to investigate the effects of 17beta-estradiol (E(2)) on membrane fluidity of erythrocytes in normotensive and hypertensive postmenopausal women. We determined the membrane fluidity of erythrocytes by means of an electron paramagnetic resonance and spin-labeling method. In an in vitro study, E(2) significantly decreased the order parameter for 5-nitroxide stearate and the peak height ratio for 16-nitroxide stearate obtained from electron paramagnetic resonance spectra of erythrocyte membranes in normotensive postmenopausal women. The finding indicates that E(2) might increase the membrane fluidity of erythrocytes. The effect of E(2) was significantly potentiated by the NO donor, S-nitroso-N-acetylpenicillamine, and a cGMP analogue, 8-bromo-cGMP. In contrast, the change in the membrane fluidity evoked by E(2) was attenuated in the presence of the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester, and asymmetric dimethyl-L-arginine. In hypertensive postmenopausal women, the membrane fluidity of erythrocytes was significantly lower than that in normotensive postmenopausal women. The effect of E(2) on membrane fluidity was significantly more pronounced in the erythrocytes of hypertensive postmenopausal women than in the erythrocytes of normotensive postmenopausal women. The results of the present study showed that E(2) significantly increased the membrane fluidity and improved the microviscosity of erythrocyte membranes, partially mediated by an NO- and cGMP-dependent pathway. Furthermore, the greater action of E(2) in hypertension might be consistent with the hypothesis that E

  16. Autoantibodies against the inner aspect of erythrocyte membranes in NZB mice.

    PubMed Central

    Linder, E

    1977-01-01

    Erythrocyte autoantibodies in NZB mice react by hemagglutination methods with exposed and hidden red cell antigens. The hidden antigens can be exposed by treatment with proteolytic enzymes. By indirect immunofluorescence one antibody population can be shown to react with modified red cells. In the present study the location of the corresponding autoantigen within the membrane was studied. Mechanical or hypotonic lysis of the red cells exposed the antigen. Proteolytic digestion known to expose other erythrocyte autoantigens had no effect. The autoantigen was exposed on 'inside out' erythrocyte membrane vesicles, but not on 'right-side out' vesicles, prepared from isolated erythrocyte ghosts. Frezzing and thawing as well as mechanical disintergration of red cells liberated antigenically active material as saline-insuluble fibrillar material. The observations indicate that the autoantigen studied is located at the inner aspect of the erythrocyte membrane and suggest that it is associated with fibril-forming structural components. The observed reactivity distinguishes the described antibodies from previously identified erythrocyte autoantibodies. PMID:862240

  17. The binding of calcium ions by erythrocytes and `ghost'-cell membranes

    PubMed Central

    Long, C.; Mouat, Barbara

    1971-01-01

    1. Washed human erythrocytes, suspended in iso-osmotic sucrose containing 2.5mm-calcium chloride, bind about 400μg-atoms of calcium/litre of packed cells. Sucrose may be replaced by other sugars. 2. Partial replacement of sucrose by iso-osmotic potassium chloride diminishes the uptake of calcium, 50% inhibition occurring at about 50mm-potassium chloride. 3. Other univalent cations behave like potassium, whereas bivalent cations are much more inhibitory. The tervalent cations, yttrium and lanthanum, however, are the most effective inhibitors of calcium uptake. 4. An approximate correlation exists between the calcium uptake and the sialic acid content of erythrocytes of various species and of human erythrocytes that have been partially depleted of sialic acid by treatment with neuraminidase. However, even after complete removal of sialic acid, human erythrocytes still bind about 140μg-atoms of calcium/litre of packed cells. 5. A Scatchard (1949) plot of calcium uptake at various Ca2+ concentrations in the suspending media shows the presence of three different binding sites on the external surface of the human erythrocyte membrane. 6. Erythrocyte `ghost' cells, the membranes of which appear to be permeable to Ca2+ ions, can bind about 1000μg-atoms of calcium per `ghost'-cell equivalent of 1 litre of packed erythrocytes. This indicates that there are also binding sites for calcium on the internal surface of the erythrocyte membrane. PMID:5124387

  18. Erythrocyte deformability and oxidative stress in inflammatory bowel disease.

    PubMed

    Akman, Tulay; Akarsu, Mesut; Akpinar, Hale; Resmi, Halil; Taylan, Ebru; Sezer, Ebru

    2012-02-01

    Oxidative stress and reduced microvascular flow are important factors in the pathogenesis of inflammatory bowel disease (IBD). The increased oxidative stress reduces the erythrocyte deformability. However, in IBD, there are no studies in the literature which evaluate erythrocyte deformability. In our study, we investigated the effect of oxidative stress and erythrocyte deformability in IBD. Forty-three patients with active IBD, 48 patients with inactive IBD and 45 healthy controls were included. The erytrocyte deformability, malonyldialdehyde levels, glutation peroxidase and sulfhydryl levels were measured in peripheral venous blood samples. Erytrocyte malonyldialdehyde levels in both active and inactive IBD were significantly increased compared with control groups. Plasma glutation peroxidase levels did not show statistically significant difference between all groups. The decreased plasma sulfhydryl levels in active IBD were statistically significant compared with both the inactive IBD and the control group, but plasma sulfhydryl levels in inactive IBD group did not show statistically significant differences when compared with the control group. Elongation index values in both active and inactive IBD increased significantly compared with the control group. Statistically significant correlations were not found between the elongation index and glutation peroxidase, malonyldialdehyde, sulfhydryl levels in all groups. Our study is the first to evaluate the erythrocyte deformability in IBD. In our study, increased erytrocyte malonyldialdehyde levels and decreased plasma sulfhydryl levels manifested the role of oxidative stress in the pathogenesis of the disease. It is thought that the increased erythrocyte malonyldialdehyde values cause the reduction in erythrocyte deformability.

  19. Whole blood of mammalian species in the oscillating shear field: influence of erythrocyte aggregation

    NASA Astrophysics Data System (ADS)

    Windberger, U.; Pöschl, Ch; Peters, S.; Huber, J.; van den Hoven, R.

    2017-02-01

    This is the rheologicalanalysis of mammalian blood of species with a high (horse), medium (man), and low (sheep) erythrocyte (RBC) aggregability by small amplitude oscillation technique. Amplitude and frequency sweep tests in linear mode were performed with blood from healthy adult volunteers, horses, and sheep in CSS-mode. Blood samples were hematocrit (HCT) adjusted (40%, 50%, 60%) and tested at 7°C, 22°C, and 37°C. Storage modulus (G‧) increased with HCT and decreased with temperature in each species, but the gradient of this increase was species-specific. The lower dependency of G‧ on the equine HCT value could be a benefit during physical performance when high numbers of RBCs are released from the spleen in the horse. In sheep, a HCT-threshold had to be overcome before elasticity of the blood sample could be measured, suggesting that the cohesive forces between RBCs, and between RBCs and plasma molecules must be very low. The frequencies for tests under quasi-staticcondition were in a narrow range around the physiologic heart rate of the species. In horse, time-dependent influences concurred at frequencies lower than 3 rad.s-1 probably due to sedimentation of RBC aggregates. In conclusion, elasticity of blood depends not only on the amount of blood cells, but also on their mechanical and functional properties.

  20. Amodiaquine failure associated with erythrocytic glutathione in Plasmodium falciparum malaria

    PubMed Central

    Zuluaga, Lina; Pabón, Adriana; López, Carlos; Ochoa, Aleida; Blair, Silvia

    2007-01-01

    Objective To establish the relationship between production of glutathione and the therapeutic response to amodiaquine (AQ) monotherapy in Plasmodium falciparum non-complicated malaria patients. Methodology Therapeutic response to AQ was evaluated in 32 patients with falciparum malaria in two townships of Antioquia, Colombia, and followed-up for 28 days. For every patient, total glutathione and enzymatic activity (glutathione reductase, GR, and γ-glutamylcysteine synthetase, γ-GCS) were determined in parasitized erythrocytes, non-infected erythrocytes and free parasites, on the starting day (day zero, before ingestion of AQ) and on the day of failure (in case of occurrence). Results There was found an AQ failure of 31.25%. Independent of the therapeutic response, on the starting day and on the day of failure, lower total glutathione concentration and higher GR activities in parasitized erythrocytes were found, compared with non-infected erythrocytes (p < 0.003). In addition, only on the day of failure, γ-GCS activity of parasitized erythrocytes was higher, compared with that of healthy erythrocytes (p = 0.01). Parasitized and non-parasitized erythrocytes in therapeutic failure patients (TF) had higher total glutathione on the starting day compared with those of adequate clinical response (ACR) (p < 0.02). Parasitized erythrocytes of TF patients showed lower total glutathione on the failure day, compared with starting day (p = 0.017). No differences was seen in the GR and γ-GCS activities by compartment, neither between the two therapeutic response groups nor between the two treatment days. Conclusion This study is a first approach to explaining P. falciparum therapeutic failure in humans through differences in glutathione metabolism in TF and ACR patients. These results suggest a role for glutathione in the therapeutic failure to antimalarials. PMID:17451604

  1. Increased calcium deposits and decreased Ca2+ -ATPase in erythrocytes of ascitic broiler chickens.

    PubMed

    Li, Kai; Zhao, Lihong; Geng, Guangrui; Ma, Liqin; Dong, Shishan; Xu, Tong; Wang, Jianlin; Wang, Huiyu; Tian, Yong; Qiao, Jian

    2011-06-01

    The decrease of erythrocyte deformability may be one of the predisposing factors for pulmonary hypertension and ascites in broiler chickens. In mammals, the cytoplasmic calcium is a major regulator of erythrocyte deformability. In this study, the erythrocyte deformability was measured, and the precise locations of Ca2+ and Ca2+ -ATPase in the erythrocytes were investigated in chickens with ascites syndrome induced by low ambient temperature. The results showed that ascitic broilers had higher filtration index of erythrocyte compared with control groups, indicating a decrease in erythrocyte deformability in ascitic broilers. The more calcium deposits were observed in the erythrocytes of ascitic broilers compared with those of the age-matched control birds. The Ca2+ -ATPase reactive grains were significantly decreased on the erythrocyte membranes of ascitic broilers. Our data suggest that accumulation of intracellular calcium and inhibition of Ca2+ -ATPase might be important factors for the reduced deformability of the erythrocytes of ascitic broilers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.

    PubMed

    Dinkla, S; Wessels, K; Verdurmen, W P R; Tomelleri, C; Cluitmans, J C A; Fransen, J; Fuchs, B; Schiller, J; Joosten, I; Brock, R; Bosman, G J C G M

    2012-10-18

    Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions.

  3. Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity.

    PubMed

    Mao, Tso-Yen; Fu, Li-Lan; Wang, Jong-Shyan

    2011-08-01

    Despite enhancing cardiopulmonary and muscular fitness, the effect of hypoxic exercise training (HE) on hemorheological regulation remains unclear. This study investigates how HE modulates erythrocyte rheological properties and further explores the underlying mechanisms in the hemorheological alterations. Twenty-four sedentary males were randomly divided into hypoxic (HE; n = 12) and normoxic (NE; n = 12) exercise training groups. The subjects were trained on 60% of maximum work rate under 15% (HE) or 21% (NE) O(2) condition for 30 min daily, 5 days weekly for 5 wk. The results demonstrated that HE 1) downregulated CD47 and CD147 expressions on erythrocytes, 2) decreased actin and spectrin contents in erythrocytes, 3) reduced erythrocyte deformability under shear flow, and 4) diminished erythrocyte volume changed by hypotonic stress. Treatment of erythrocytes with H(2)O(2) that mimicked in vivo prooxidative status resulted in the cell shrinkage, rigidity, and phosphatidylserine exposure, whereas HE enhanced the eryptotic responses to H(2)O(2). However, HE decreased the degrees of clotrimazole to blunt ionomycin-induced shrinkage, rigidity, and cytoskeleton breakdown of erythrocytes, referred to as Gardos effects. Reduced erythrocyte deformability by H(2)O(2) was inversely related to the erythrocyte Gardos effect on the rheological function. Conversely, NE intervention did not significantly change resting and exercise erythrocyte rheological properties. Therefore, we conclude that HE rather than NE reduces erythrocyte deformability and volume regulation, accompanied by an increase in the eryptotic response to oxidative stress. Simultaneously, this intervention depresses Gardos channel-modulated erythrocyte rheological functions. Results of this study provide further insight into erythrocyte senescence induced by HE.

  4. Erythrocyte antioxidant enzyme activities and lipid peroxidation in the erythrocyte membrane of stainless-steel welders exposed to welding fumes and gases.

    PubMed

    Imamoglu, Nalan; Yerer, Mükerrem-Betül; Donmez-Altuntas, Hamiyet; Saraymen, Recep

    2008-03-01

    The erythrocyte antioxidant system (superoxide dismutase, SOD; catalase, CAT) and lipid peroxidation (malondialdehyde, MDA) in the erythrocyte membrane were studied in workers continously exposed to welding fumes and gases, which are thought to be oxidant pollutants. Thirty-five welders using the manual metal arc method on stainless steel and 30 controls were studied. Plasma chromium (Cr), manganese (Mn), and cupper (Cu) levels were determined by atomic absorption spectrophotometer (AAS). The erythrocyte antioxidant system activity and lipid peroxidation in the erythrocyte membrane were evaluated. Not only the possible effects of welding fumes but also the effects of smoking were considered. The plasma concentrations of Cr, Mn, and Cu for the exposed welders were significantly higher compared to the control subjects (p<0.001, p<0.01, p<0.001, respectively,). The erythrocyte CAT (p<0.05) and SOD (p<0.05) enzyme activities were significantly higher in the welders but there were not any significant changes in the MDA levels which reflect the lipid peroxidation in the erythrocyte membrane (p>0.05). Smoking has increased the SOD activity in both controls (p<0.05) and welders (p<0.01) and increased the CAT activity in control subjects (p<0.05). Moreover, regardless of smoking, there were some significant correlations between the duration of the exposure to welding fumes and antioxidant defence system (SOD: p<0.05; CAT: p<0.05). The synergistic effects of smoking and other risk factors (welding fumes and gases), which had been shown previously by some clinical data should also be taken into account. As a consequence, the welders should be warned and informed of the synergistic effects of smoking on the adverse effect of welding fumes and gases.

  5. Nanotopographic Substrates of Poly (Methyl Methacrylate) Do Not Strongly Influence the Osteogenic Phenotype of Mesenchymal Stem Cells In Vitro

    PubMed Central

    Janson, Isaac A.; Kong, Yen P.; Putnam, Andrew J.

    2014-01-01

    The chemical, mechanical, and topographical features of the extracellular matrix (ECM) have all been documented to influence cell adhesion, gene expression, migration, proliferation, and differentiation. Topography plays a key role in the architecture and functionality of various tissues in vivo, thus raising the possibility that topographic cues can be instructive when incorporated into biomaterials for regenerative applications. In the literature, there are discrepancies regarding the potential roles of nanotopography to enhance the osteogenic phenotype of mesenchymal stem cells (MSC). In this study, we used thin film substrates of poly(methyl methacrylate) (PMMA) with nanoscale gratings to investigate the influence of nanotopography on the osteogenic phenotype of MSCs, focusing in particular on their ability to produce mineral similar to native bone. Topography influenced focal adhesion size and MSC alignment, and enhanced MSC proliferation after 14 days of culture. However, the osteogenic phenotype was minimally influenced by surface topography. Specifically, alkaline phosphatase (ALP) expression was not increased on nanotopographic films, nor was calcium deposition improved after 21 days in culture. Ca: P ratios were similar to native mouse bone on films with gratings of 415 nm width and 200 nm depth (G415) and 303 nm width and 190 nm depth (G303). Notably, all surfaces had Ca∶P ratios significantly lower than G415 films. Collectively, these data suggest that, PMMA films with nanogratings are poor drivers of an osteogenic phenotype. PMID:24594848

  6. Physiological variations in levels of 2,3-diphosphoglycerate in horse erythrocytes.

    PubMed

    Lewis, I M; McLan, J G

    1975-03-01

    The levels of 2,3-diphosphoglycerate (2,3-DPG), which affects the transport of oxygen by haemoglobin, were examined in horse blood. Resting levels of erythrocyte 2,3-DPG were established in thoroughbred horses, and levels of 2,3-DPG together with haemoglobin levels, were examined in a variety of conditions. A negative correlation was observed between erythrocyte 2,3-DPG and haemoglobin levels. Mares had higher erythrocyte 2,3-DPG levels was observed during training, and this variation may have a significant effect on haemoglobin oxygen transport. Erythrocyte 2,3-DPG levels were not affected by age or exercise.

  7. Desickling of Sickle Cell Erythrocytes by Pulsed RF Fields.

    DTIC Science & Technology

    1986-09-16

    spectrophotometery. Field induced menbrane potential which causes the L partyl breakdown of the memrbrane and the formation of pores was calculated... plasma . Fig.5 shows the photographs of sickled and desickled SS erythrocytes which are suspended in Hank’s solution. As shown, desickled erythrocytes

  8. The effect of phosphate loading on erythrocyte 2,3-bisphosphoglycerate levels.

    PubMed

    Bremner, Kyla; Bubb, William A; Kemp, Graham J; Trenell, Michael I; Thompson, Campbell H

    2002-09-01

    Phosphate supplementation has been used in an effort to enhance athletic performance by increasing erythrocyte 2,3-bisphosphoglycerate levels ([2,3-BPG]) and hence improve oxygen offloading from haemoglobin. Claimed effects of phosphate loading upon both exercise performance and erythrocyte [2,3-BPG] are inconsistent, and the basis of any change in [2,3-BPG] is unknown. We analysed plasma inorganic phosphate concentration ([P(i)]) and erythrocyte [P(i)] and [2,3-BPG] in venous blood samples from 12 healthy subjects. We re-examined a subset of five of these subjects after 7 days of phosphate loading. There were significant positive correlations between plasma [P(i)] and erythrocyte [P(i)] (r(2)=0.51, p=0.009) and between erythrocyte [P(i)] and [2,3-BPG] (r(2)=0.68, p<0.001). Following phosphate loading, there was a 30% increase in plasma [P(i)] (1.02+/-0.22 to 1.29+/-0.15 mmol/l (mean+/-S.D.), p=0.03) and a 25% increase in erythrocyte [2,3-BPG] (6.77+/-1.12 to 9.11+/-1.87 mmol/l cells, p=0.03). There is no relation between [2,3-BPG] and plasma [P(i)]. Phosphate loading increases both plasma and erythrocyte phosphate pools and the rise in [2,3-BPG] is probably a consequence of the rise in cell [P(i)].

  9. Targeting malaria parasite proteins to the erythrocyte.

    PubMed

    Templeton, Thomas J; Deitsch, Kirk W

    2005-09-01

    The intraerythrocytic stages of the protozoan parasite Plasmodium falciparum reside within a parasitophorous vacuole (PV) and set up unique "extraparasite, intraerythrocyte" protein-trafficking pathways that target parasite-encoded proteins to the erythrocyte cytoplasm and cell surface. Two recent articles report the identification of trafficking motifs that regulate the transport of parasite-encoded proteins across the PV. These articles greatly aid the annotation of the parasite "secretome" catalog of proteins that are targeted to the erythrocyte cytoplasm or cell membrane.

  10. Origins and function of 3-ribosylurate in bovid erythrocytes.

    PubMed

    Davids, V; Blackhurst, D M; Katz, A A; Harley, E H

    2012-06-01

    3-Ribosylurate is a dominant feature on high performance liquid chromatography (HPLC) profiles of acid extracts of erythrocytes from cows and buffalo, but is HPLC-undetectable in acid extracts of erythrocytes from all other species examined to date. Various aspects of this unique low molecular weight substance remain unexplored since it was first identified. In this study, the mutation(s) responsible for the appearance of ribosylurate in these cells is shown to be specific to members of both tribes of the Bovinae subfamily (Bovidae family), being detectable in the erythrocytes of both the cow and the buffalo (Bovini tribe) as well as in the kudu (Strepsicerotini tribe), but not in representative species from the other subfamilies of the Bovidae family. More specifically, expression of the mutation(s) seems to be restricted to the erythrocyte lineage of these species, ribosylurate being undetectable in cow white blood cells and primary cultures of fibroblasts. Novel evidence is presented that ribosylurate has antioxidant activity. Accumulation of high levels specifically within the haemoglobin-rich milieu of circulating erythrocytes may serve to protect perfused tissues by removing pathophysiological levels of hydrogen peroxide from plasma. Maintenance of ribosylurate levels may be important in conditions associated with oxidative stress in Bovinae. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.

    PubMed

    Shi, Hui; Liu, Zhuo; Li, Ang; Yin, Jing; Chong, Alvin G L; Tan, Kevin S W; Zhang, Yong; Lim, Chwee Teck

    2013-01-01

    Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.

  12. Profiling the repertoire of phenotypes influenced by environmental cues that occur during asexual reproduction.

    PubMed

    Dombrovsky, Aviv; Arthaud, Laury; Ledger, Terence N; Tares, Sophie; Robichon, Alain

    2009-11-01

    The aphid Acyrthosiphon pisum population is composed of different morphs, such as winged and wingless parthenogens, males, and sexual females. The combined effect of reduced photoperiodicity and cold in fall triggers the apparition of sexual morphs. In contrast they reproduce asexually in spring and summer. In our current study, we provide evidence that clonal individuals display phenotypic variability within asexual morph categories. We describe that clones sharing the same morphological features, which arose from the same founder mother, constitute a repertoire of variants with distinct behavioral and physiological traits. Our results suggest that the prevailing environmental conditions influence the recruitment of adaptive phenotypes from a cohort of clonal individuals exhibiting considerable molecular diversity. However, we observed that the variability might be reduced or enhanced by external factors, but is never abolished in accordance with a model of stochastically produced phenotypes. This overall mechanism allows the renewal of colonies from a few adapted individuals that survive drastic episodic changes in a fluctuating environment.

  13. Profiling the repertoire of phenotypes influenced by environmental cues that occur during asexual reproduction

    PubMed Central

    Dombrovsky, Aviv; Arthaud, Laury; Ledger, Terence N.; Tares, Sophie; Robichon, Alain

    2009-01-01

    The aphid Acyrthosiphon pisum population is composed of different morphs, such as winged and wingless parthenogens, males, and sexual females. The combined effect of reduced photoperiodicity and cold in fall triggers the apparition of sexual morphs. In contrast they reproduce asexually in spring and summer. In our current study, we provide evidence that clonal individuals display phenotypic variability within asexual morph categories. We describe that clones sharing the same morphological features, which arose from the same founder mother, constitute a repertoire of variants with distinct behavioral and physiological traits. Our results suggest that the prevailing environmental conditions influence the recruitment of adaptive phenotypes from a cohort of clonal individuals exhibiting considerable molecular diversity. However, we observed that the variability might be reduced or enhanced by external factors, but is never abolished in accordance with a model of stochastically produced phenotypes. This overall mechanism allows the renewal of colonies from a few adapted individuals that survive drastic episodic changes in a fluctuating environment. PMID:19635846

  14. Effect of Stimulation of Neurotransmitter Systems on Heart Rate Variability and β-Adrenergic Responsiveness of Erythrocytes in Outbred Rats.

    PubMed

    Kur'yanova, E V; Tryasuchev, A V; Stupin, V O; Teplyi, D L

    2017-05-01

    We studied heart rate variability and β-adrenergic responsiveness of erythrocytes and changes in these parameters in response to single administration of β-adrenoblocker propranolol (2 mg/kg) in outbred male rats against the background of activation of the noradrenergic, serotonergic, and dopaminergic neurotransmitter systems achieved by 4-fold injections maprotiline (10 mg/kg), 5-hydroxytryptophan (50 mg/kg) combined with fluoxetine (3 mg/kg), and L-DOPA (20 mg/kg) with amantadine (20 mg/kg), respectively. Stimulation of the noradrenergic system moderately enhanced the heart rhythm rigidity and β-adrenergic responsiveness of erythrocytes. In addition, it markedly augmented the moderating effect of subsequently administered propranolol on LF and VLF components in the heart rate variability and reversed the effect of propranolol on β-adrenergic responsiveness of erythrocytes. Stimulation of the serotonergic system dramatically decreased all components in the heart rate variability and pronouncedly enhanced β-adrenergic responsiveness of erythrocytes. Subsequent injection of propranolol slightly restored all components in the heart rate variability and decreased β-adrenergic responsiveness of erythrocytes to the control level. Stimulation of the dopaminergic system made the heart rate more rigid due to decrease of all components in the heart rate variability; in addition, it slightly but significantly enhanced β-adrenergic responsiveness of erythrocytes. Subsequent injection of propranolol produced no significant effects on all components in the heart rate variability and on β-adrenergic responsiveness of erythrocytes. Stimulation of noradrenergic, serotonergic, and dopaminergic neurotransmitter systems produced unidirectional and consorted effects on heart rate variability and β-adrenergic responsiveness of erythrocytes, although the magnitudes of these effects were different. Probably, the changes in the heart rate variability in rats with stimulated

  15. Chlorpyrifos and lambda cyhalothrin-induced oxidative stress in human erythrocytes.

    PubMed

    Deeba, Farah; Raza, Irum; Muhammad, Noor; Rahman, Hazir; Ur Rehman, Zia; Azizullah, Azizullah; Khattak, Baharullah; Ullah, Farman; Daud, M K

    2017-04-01

    Pesticides are one of the most potentially harmful chemicals introduced into the environment, and their adverse impacts on non-target organisms can be significant. The present study was conducted to shed light on effects of locally used insecticides chlorpyrifos (CPF) and lambda cyhalothrin (LCT) on oxidative stress biomarkers in human erythrocytes. The activity of catalase (CAT), superoxide dismutase (SOD), and protein contents as well as the levels of malondialdehyde (MDA) and osmotic fragility (OF) were measured in human erythrocytes exposed to CPF at concentrations of 0, 100, 500, 1000, and 2000 ppm and LCT at concentrations of 0, 100, 300, 600, and 800 ppm for 1 h and 3 h at 37°C. MDA levels and OF of erythrocytes were significantly higher in erythrocytes incubated with CPF and LCT at increasing concentrations of both insecticides and increased incubation time. However, erythrocyte CAT and SOD activities were decreased at all concentrations of CPF and LCT tested. Protein oxidation products were decreased at lower doses of CPF (100 and 500 ppm); at higher doses (1000 and 2000 ppm), total protein content was increased compared with control. In contrast LCT was associated with decreased in protein contents at all the concentrations. These results clearly demonstrated that CPF and LCT can induce oxidative stress in human erythrocytes ( in vitro).

  16. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure

    PubMed Central

    Dinkla, S; Wessels, K; Verdurmen, W P R; Tomelleri, C; Cluitmans, J C A; Fransen, J; Fuchs, B; Schiller, J; Joosten, I; Brock, R; Bosman, G J C G M

    2012-01-01

    Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane–cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane–cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions. PMID:23076218

  17. Use of erythrocyte indicators of health and condition in vertebrate ecophysiology: a review and appraisal.

    PubMed

    Johnstone, Christopher P; Lill, Alan; Reina, Richard D

    2017-02-01

    We review evidence for and against the use of erythrocyte indicators of health status and condition, parasite infection level and physiological stress in free-living vertebrates. The use of indicators that are measured directly from the blood, such as haemoglobin concentration, haematocrit and erythrocyte sedimentation rate, and parameters that are calculated from multiple measured metrics, such as mean cell volume, mean cell haemoglobin content or mean cell haemoglobin concentration is evaluated. The evidence for or against the use of any given metric is equivocal when the relevant research is considered in total, although there is sometimes strong support for using a particular metric in a particular taxon. Possibly the usefulness of these metrics is taxon, environment or condition specific. Alternatively, in an uncontrolled environment where multiple factors are influencing a metric, its response to environmental change will sometimes, but not always, be predictable. We suggest that (i) researchers should validate a metricfres utility before use, (ii) multiple metrics should be used to construct an overall erythrocyte profile for an individual or population, (iii) there is a need for researchers to compile reference ranges for free-living species, and (iv) some metrics which are useful under controlled, clinical conditions may not have the same utility or applicability for free-living vertebrates. Erythrocyte metrics provide useful information about health and condition that can be meaningfully interpreted in free-living vertebrates, but their use requires careful forethought about confounding factors. © 2015 Cambridge Philosophical Society.

  18. Stimulation of suicidal erythrocyte death by sulforaphane.

    PubMed

    Alzoubi, Kousi; Calabrò, Salvatrice; Faggio, Caterina; Lang, Florian

    2015-03-01

    Sulforaphane, an isothiocyanate from cruciferous vegetable, counteracts malignancy. The effect is at least in part due to the stimulation of suicidal death or apoptosis of tumour cells. Mechanisms invoked in sulforaphane-induced apoptosis include mitochondrial depolarization and altered gene expression. Despite the lack of mitochondria and nuclei, erythrocytes may, similar to apoptosis of nucleated cells, enter eryptosis, a suicidal cell death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). This study explored whether sulforaphane stimulates eryptosis. Cell volume was estimated from forward scatter, phosphatidylserine exposure at the cell surface from annexin V binding and [Ca(2+)]i from Fluo-3 fluorescence. A 48-hr treatment of human erythrocytes with sulforaphane (50-100 μM) significantly decreased forward scatter, significantly increased the percentage of annexin V binding cells and significantly increased [Ca(2+)]i. The effect of sulforaphane (100 μM) on annexin V binding was significantly blunted but not abrogated by the removal of extracellular Ca(2+). Sulforaphane (100 μM) significantly increased ceramide formation. In conclusion, sulforaphane stimulates suicidal erythrocyte death or eryptosis, an effect at least partially, but not exclusively, due to the stimulation of Ca(2+) entry and ceramide formation. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  19. Erythrocyte migration and gap formation in rabbit blood clots in vitro.

    PubMed

    Ueki, T; Yazama, F; Horiuchi, T; Yamada, M

    2008-04-01

    Thrombolytic agents must be carried by the blood circulation to thrombi to exert their functions. Structural gaps exist between blood vessels and thrombi or in the area surrounding thrombi. Therefore, information about fundamental gap formation at thrombotic areas is critically important for thrombolytic therapy. We previously reported that t-PA accelerates the activities of bovine erythrocytes and hemoglobin (Hb) towards bovine plasminogen activation. Here, we examined gap generation by observing morphological changes during thrombolytic processes in rabbit blood clots deformation of erythrocytes from blood clots and Hb transfer from erythrocytes to serum in vitro. Rabbit venous blood samples (1 ml) were stored under sterile conditions in glass tubes at 37 degrees C for 2, 24, 48 h, 1, and 2 weeks. We examined clot diameter, erythrocyte diameter and number as well as Hb volume in the serum, as well as histological changes in the clots. The diameter of blood clots did not change until 2 weeks after sampling. Erythrocyte diameter decreased within 48 h and at 2 weeks after sampling at the clot surface (p < 0.001) and interior (p < 0.001). The number of erythrocytes in the serum started to increase starting from 24 h after sampling (p < 0.01). Serum Hb volume also gradually increased from 24 h until 2 weeks after sampling (p < 0.01). The erythrocyte envelope became disrupted and cytoplasm started to flow through pores into the serum at 24 h. The results indicated that blood clots are reduced due to clot retraction, erythrocyte dissociation and cytoplasm leakage without a distinct fibrinolytic reaction. These results indicated that gaps start to form between 2 and 24 h after blood clotting.

  20. Decreased calcium pump expression in human erythrocytes is connected to a minor haplotype in the ATP2B4 gene.

    PubMed

    Zámbó, Boglárka; Várady, György; Padányi, Rita; Szabó, Edit; Németh, Adrienn; Langó, Tamás; Enyedi, Ágnes; Sarkadi, Balázs

    2017-07-01

    Plasma membrane Ca 2+ -ATPases are key calcium exporter proteins in most tissues, and PMCA4b is the main calcium transporter in the human red blood cells (RBCs). In order to assess the expression level of PMCA4b, we have developed a flow cytometry and specific antibody binding method to quantitatively detect this protein in the erythrocyte membrane. Interestingly, we found several healthy volunteers showing significantly reduced expression of RBC-PMCA4b. Western blot analysis of isolated RBC membranes confirmed this observation, and indicated that there are no compensatory alterations in other PMCA isoforms. In addition, reduced PMCA4b levels correlated with a lower calcium extrusion capacity in these erythrocytes. When exploring the potential genetic background of the reduced PMCA4b levels, we found no missense mutations in the ATP2B4 coding regions, while a formerly unrecognized minor haplotype in the predicted second promoter region closely correlated with lower erythrocyte PMCA4b protein levels. In recent GWA studies, SNPs in this ATP2B4 haplotype have been linked to reduced mean corpuscular hemoglobin concentrations (MCHC), and to protection against malaria infection. Our data suggest that an altered regulation of gene expression is responsible for the reduced RBC-PMCA4b levels that is probably linked to the development of human disease-related phenotypes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Adenosine signaling in normal and sickle erythrocytes and beyond.

    PubMed

    Zhang, Yujin; Xia, Yang

    2012-08-01

    Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A(2B) receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O(2) release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A(2A) receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and

  2. Erythrocyte deformability and nitric oxide mobilization under pannexin-1 and PKC dependence.

    PubMed

    Silva-Herdade, A S; Freitas, T; Almeida, J Pedro; Saldanha, C

    2015-01-01

    The erythrocyte adenosine triphosphate (ATP) is utilised for protein phosphorylation and exported through the pannexin 1 hemichannel (Px1) in the microcirculation. The physiological stimuli for ATP release are dependent of blood shear rate level and of the tissue oxygen content. The deoxygenated and oxygenated states of haemoglobin are respectively bound and unbound to N terminal domain of the protein band 3 of the erythrocyte membrane in dependence of its degree of phosphorylation. The protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) contribute to the phosphorylation degree of band 3 and are modulated by protein kinase C (PKC). Chelerythrine (Che) is a competitive inhibitor of ATP for PKC and a negative modulator of erythrocyte deformability. The aim of this study was to assess the mobilization of nitric oxide (NO) in erythrocyte in absence and presence of Che and Px1 inhibitor (carbenoxolone). Erythrocyte deformability was evaluated in presence of carbenoxolone (Carb). Regarding the effects observed in the erythrocyte by presence of Che or Carb, the values of efflux of NO and the concentration of nitrosogluthatione are similar and with no changes in relation to their absence. Px1inhibition by Carb 10 μM ameliorates the erythrocyte deformability at a shear force of 0.6 and 1.2 Pa. The PKC inhibitor shows similar effects to the Carb on the mobilization of nitric oxide in erythrocyte. The blockage of ATP release by Carb from erythrocytes suggests a possible benefit to develop in ischemia reperfusion or in inflammatory response where will be needed to rescue the excess of NO present and ameliorate the red blood cell deformability at low shear rates.

  3. Tropomyosin modulates erythrocyte membrane stability

    PubMed Central

    An, Xiuli; Salomao, Marcela; Guo, Xinhua; Gratzer, Walter; Mohandas, Narla

    2007-01-01

    The ternary complex of spectrin, actin, and 4.1R (human erythrocyte protein 4.1) defines the nodes of the erythrocyte membrane skeletal network and is inseparable from membrane stability under mechanical stress. These junctions also contain tropomyosin (TM) and the other actin-binding proteins, adducin, protein 4.9, tropomodulin, and a small proportion of capZ, the functions of which are poorly defined. Here, we have examined the consequences of selective elimination of TM from the membrane. We have shown that the mechanical stability of the membranes of resealed ghosts devoid of TM is grossly, but reversibly, impaired. That the decreased membrane stability of TM-depleted membranes is the result of destabilization of the ternary complex of the network junctions is demonstrated by the strongly facilitated entry into the junctions in situ of a β-spectrin peptide, containing the actin- and 4.1R-binding sites, after extraction of the TM. The stabilizing effect of TM is highly specific, in that it is only the endogenous isotype, and not the slightly longer muscle TM that can bind to the depleted membranes and restore their mechanical stability. These findings have enabled us identify a function for TM in elevating the mechanical stability of erythrocyte membranes by stabilizing the spectrin-actin-4.1R junctional complex. PMID:17008534

  4. Evaluation of Intravascular Hemolysis With Erythrocyte Creatine in Patients With Aortic Stenosis.

    PubMed

    Sugiura, Tetsuro; Okumiya, Toshika; Kubo, Toru; Takeuchi, Hiroaki; Matsumura, Yoshihisa

    2016-07-27

    Chronic intravascular hemolysis has been identified in patients with cardiac valve prostheses, but only a few case reports have evaluated intravascular hemolysis in patients with native valvular heart disease. To detect intravascular hemolysis in patients with aortic stenosis, erythrocyte creatine was evaluated with hemodynamic indices obtained by echocardiography.Erythrocyte creatine, a marker of erythrocyte age, was assayed in 30 patients with aortic stenosis and 10 aged matched healthy volunteers. Peak flow velocity of the aortic valve was determined by continuous-wave Doppler echocardiography. Twenty of 30 patients with aortic stenosis had high erythrocyte creatine levels (> 1.8 µmol/g Hb) and erythrocyte creatine was significantly higher as compared with control subjects (1.98 ± 0.49 versus 1.52 ± 0.19 µmol/g Hb, P = 0.007). Peak transvalvular pressure gradient ranged from 46 to 142 mmHg and peak flow velocity ranged from 3.40 to 5.95 m/second. Patients with aortic stenosis had a significantly lower erythrocyte count (387 ± 40 versus 436 ± 42 × 10(4) µL, P = 0.002) and hemoglobin (119 ± 11 versus 135 ± 11 g/L, P < 0.001) as compared with control subjects. Erythrocyte creatine had a fair correlation with peak flow velocity (r = 0.55, P = 0.002).In conclusion, intravascular hemolysis due to destruction of erythrocytes was detected in patients with moderate to severe aortic stenosis and the severity of intravascular hemolysis was related to valvular flow velocity of the aortic valve.

  5. 31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes.

    PubMed

    Petersen, A; Kristensen, S R; Jacobsen, J P; Hørder, M

    1990-08-17

    Absolute 31P-NMR measurements of ATP, ADP and 2,3-diphosphoglycerate (2,3-DPG) in oxygenated and partly deoxygenated human erythrocytes, compared to measurements by standard assays after acid extraction, show that ATP is only 65% NMR visible, ADP measured by NMR is unexpectedly 400% higher than the enzymatic measurement and 2,3-DPG is fully NMR visible, regardless of the degree of oxygenation. These results show that binding to hemoglobin is unlikely to cause the decreased visibility of ATP in human erythrocytes as deoxyhemoglobin binds the phosphorylated metabolites more tightly than oxyhemoglobin. The high ADP visibility is unexplained. The levels of free Mg2+ [( Mg2+]free) in human erythrocytes are 225 mumol/l at an oxygen saturation of 98.6% and instead of the expected increase, the level decreased to 196 mumol/l at an oxygen saturation of 38.1% based on the separation between the alpha- and beta-ATP peaks. [Mg2+]free in the erythrocytes decreased to 104 mumol/l at a high 2,3-DPG concentration of 25.4 mmol/l red blood cells (RBC) and a normal ATP concentration of 2.05 mmol/l RBC. By increasing the ATP concentration to 3.57 mmol/l RBC, and with a high 2,3-DPG concentration of 24.7 mmol/l RBC, the 31P-NMR measured [Mg2+]free decreased to 61 mumol/l. These results indicate, that the 31P-NMR determined [Mg2+]free in human erythrocytes, based solely on the separation of the alpha- and beta-ATP peaks, does not give a true measure of intracellular free Mg2+ changes with different oxygen saturation levels. Furthermore the measurement is influenced by the concentration of the Mg2+ binding metabolites ATP and 2,3-DPG. Failure to take these factors into account when interpreting 31P-NMR data from human erythrocytes may explain some discrepancies in the literature regarding [Mg2+]free.

  6. Oxidative Hemolysis of Erythrocytes

    ERIC Educational Resources Information Center

    Wlodek, Lidia; Kusior, Dorota

    2006-01-01

    This exercise for students will allow them to simultaneously observe lipid peroxidation and consequent hemolysis of rat erythrocytes and the effect of sodium azide, a catalase inhibitor, on these processes. It will also demonstrate a protective action of antioxidants, the therapeutically used N-acetylcysteine and albumins present in plasma.

  7. Effects of an angelica extract on human erythrocyte aggregation, deformation and osmotic fragility.

    PubMed

    Wang, X; Wei, L; Ouyang, J P; Muller, S; Gentils, M; Cauchois, G; Stoltz, J F

    2001-01-01

    In Chinese traditional medicine, angelica is widely used for its known clinical effects of ameliorating blood microcirculation. But the mechanism of these beneficial effects still remains unclear. In this work the rheological behaviour of human erythrocytes treated by angelica was studied in vitro. Normal RBCs incubated with an angelica extract at different concentrations (5, 10 or 20 mg/ml) for 60 min at 37 degrees C and then their aggregation, deformation and osmotic fragility were measured with different recently developed optical techniques, namely Erythroaggregometer (Regulest, Florange, France), LORCA (Mechatronics, Amsterdam) and Fragilimeter (Regulest, Florange, France). Experimental results show that angelica (20 mg/ml) significantly decreased normal RBCs' aggregation speed (p<0.01) and could inhibit the hyperaggregability caused by dextran 500. However, the strength of normal RBCs aggregates were not influenced by angelica. When a calcium ionophore A23187 (1.9 microM) was used to harden cell membrane, angelica (20 mg/ml) could significantly (p<0.01) protect erythrocytes against the loss of their deformability even it had no effects on normal RBCs deformation. Finally angelica (5 and 10 mg/ml) decreased significantly (p<0.01) normal RBCs osmotic fragility. In conclusion angelica plays a rheologically active role on human erythrocytes, and this study suggests a possible mechanism for angelica's positive effects against certain cardiovascular diseases.

  8. Platelet-mediated clumping of Plasmodium falciparum infected erythrocytes is associated with high parasitemia but not severe clinical manifestations of malaria in African children

    PubMed Central

    Arman, Mònica; Raza, Ahmed; Tempest, Louisa J.; Lyke, Kirsten E.; Thera, Mahamadou A.; Koné, Abdoulaye; Plowe, Christopher V.; Doumbo, Ogobara K.; Rowe, J. Alexandra

    2009-01-01

    Platelet-mediated clumping of Plasmodium falciparum infected erythrocytes is an adhesive phenotype commonly found in field isolates that has previously been associated with severe malaria. Here, clumping was assessed in 131 isolates from Malian children. The clumping phenotype was seen in 6% (n=51) of uncomplicated malaria, 24% (n=51) of severe malaria, and 45% (n=29) of high parasitemia non-severe malaria isolates. Multivariate analysis indicated that clumping was strongly positively associated with parasitemia (F1,122=24.1, p<0.001) but not with disease category (F2,122=1.8, p=0.17). Therefore platelet-mediated clumping in Malian P. falciparum isolates is primarily associated with high parasitemia and not with severe clinical manifestations of malaria. PMID:17984358

  9. [Effects of methomyl on acetylcholinesterase in erythrocyte membrane and various brain areas].

    PubMed

    Zhao, Fei; Li, Tao; Zhang, Changchun; Xu, Yiping; Xu, Hangong; Shi, Nian

    2015-06-01

    To study the toxicity of methomyl to acetylcholinesterase (AChE) in different regions. The optimal temperature and time for measurement of AChE activity were determined in vitro. The dose- and time-response relationships of methomyl with AChE activity in human erythrocyte membrane, rat erythrocyte membrane, cortical synapses, cerebellar synapses, hippocampal synapses, and striatal synapses were evaluated. The half maximal inhibitory concentration (IC50) and bimolecular rate constant (K) of methomyl for AChE activity in different regions were calculated, and the type of inhibition of AChE activity by methomyl was determined. AChE achieved the maximum activity at 370 °C, and the optimal time to determine initial reaction velocity was 0-17 min. There were dose- and time-response relationships between methomyl and AChE activity in the erythrocyte membrane and various brain areas. The IC50 value of methomyl for AChE activity in human erythrocyte membrane was higher than that in rat erythrocyte membrane, while the Ki value of methomyl for AChE activity in rat erythrocyte membrane was higher than that in human erythrocyte membrane. Among synapses in various brain areas, the striatum had the highest IC50 value, followed by the cerebellum, cerebral cortex, and hippocampus, while the cerebral cortex had the highest Ki value, followed by the hippocampus, striatum, and cerebellum. Lineweaver-Burk diagram demonstrated that with increasing concentration of methomyl, the maximum reaction velocity (Vmax) of AChE decreased, and the Michaelis constant (Km) remained the same. Methomyl is a reversible non-competitive inhibitor of AChE. AChE of rat erythrocyte membrane is more sensitive to methomyl than that of human erythrocyte membrane; the cerebral cortical synapses have the most sensitive AChE to methomyl among synapses in various brain areas.

  10. An ex vivo study of nitric oxide efflux from human erythrocytes in both genders.

    PubMed

    Duarte, Catarina; Napoleão, Patrícia; Freitas, Teresa; Saldanha, Carlota

    2016-01-01

    Acetylcholinesterase (AChE) is located on outer surface of erythrocyte membrane. Gender-related differences in erythrocyte AChE enzyme activity had been verified in young adults. It is also known that binding of acetylcholine (ACh) with AChE on erythrocyte membrane initiates a signal transduction mechanism that stimulates nitric oxide (NO) efflux. This ex vivo study was done to compare the amount of NO efflux obtained from erythrocytes of healthy donors in males and females. We included 66 gender age-matched healthy donors (40-60 years old). We performed quantification of erythrocyte NO efflux from erythrocytes and of the membrane AChE enzyme activity. There are no significant differences in NO efflux from erythrocytes between men and women. Regarding AChE enzyme activity values, in this range of age, no differences between genders were obtained. However, the values of AChE enzyme activity in the third quartile of NO efflux values were significantly higher (p < 0.05) in women than in men. The efflux of NO from erythrocyte of healthy humans did not change with gender. For the same range of values of NO efflux from erythrocytes, in both gender, it was verified higher values of AChE enzyme activity in women.

  11. Role of aminotransferases in glutamate metabolism of human erythrocytes.

    PubMed

    Ellinger, James J; Lewis, Ian A; Markley, John L

    2011-04-01

    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from α-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional (1)H-(13)C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  12. Triggering of Erythrocyte Cell Membrane Scrambling by Emodin.

    PubMed

    Mischitelli, Morena; Jemaà, Mohamed; Almasry, Mustafa; Faggio, Caterina; Lang, Florian

    2016-01-01

    The natural anthraquinone derivative emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a component of several Chinese medicinal herbal preparations utilized for more than 2000 years. The substance has been used against diverse disorders including malignancy, inflammation and microbial infection. The substance is effective in part by triggering suicidal death or apoptosis. Similar to apoptosis of nucleated cells erythrocytes may enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study aimed to test, whether emodin induces eryptosis and, if so, to elucidate underlying cellular mechanisms. Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Exposure of human erythrocytes for 48 hours to emodin (≥ 10 µM) significantly increased the percentage of annexin-V-binding cells, and at higher concentrations (≥ 50 µM) significantly increased forward scatter. Emodin significantly increased Fluo3-fluorescence (≥ 10 µM), DCFDA fluorescence (75 µM) and ceramide abundance (75 µM). The effect of emodin on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Emodin triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to stimulation of Ca2+ entry and paralleled by oxidative stress and ceramide appearance at the erythroctye surface. © 2016 The Author(s) Published by S. Karger AG, Basel.

  13. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisele, Kerstin; Lang, Philipp A.; Kempe, Daniela S.

    2006-01-15

    The sequelae of mercury intoxication include induction of apoptosis. In nucleated cells, Hg{sup 2+}-induced apoptosis involves mitochondrial damage. The present study has been performed to elucidate effects of Hg{sup 2+} in erythrocytes which lack mitochondria but are able to undergo apoptosis-like alterations of the cell membrane. Previous studies have documented that activation of a Ca{sup 2+}-sensitive erythrocyte scramblase leads to exposure of phosphatidylserine at the erythrocyte surface, a typical feature of apoptotic cells. The erythrocyte scramblase is activated by osmotic shock, oxidative stress and/or energy depletion which increase cytosolic Ca{sup 2+} activity and/or activate a sphingomyelinase leading to formation ofmore » ceramide. Ceramide sensitizes the scramblase to Ca{sup 2+}. The present experiments explored the effect of Hg{sup 2+} ions on erythrocytes. Phosphatidylserine exposure after mercury treatment was estimated from annexin binding as determined in FACS analysis. Exposure to Hg{sup 2+} (1 {mu}M) indeed significantly increased annexin binding from 2.3 {+-} 0.5% (control condition) to 23 {+-} 6% (n = 6). This effect was paralleled by activation of a clotrimazole-sensitive K{sup +}-selective conductance as measured by patch-clamp recordings and by transient cell shrinkage. Further experiments revealed also an increase of ceramide formation by {approx}66% (n = 7) after challenge with mercury (1 {mu}M). In conclusion, mercury ions activate a clotrimazole-sensitive K{sup +}-selective conductance leading to transient cell shrinkage. Moreover, Hg{sup 2+} increases ceramide formation. The observed mechanisms could similarly participate in the triggering of apoptosis in nucleated cells by Hg{sup 2+}.« less

  14. Plasma and erythrocyte phospholipid fatty acid profile in professional basketball and football players.

    PubMed

    Tepsic, Jasna; Vucic, Vesna; Arsic, Aleksandra; Blazencic-Mladenovic, Vera; Mazic, Sanja; Glibetic, Marija

    2009-10-01

    The effect of intensive long-term physical activity on phospholipid fatty acid (FA) composition has not been studied thoroughly. We determined plasma and erythrocyte phospholipid FA status of professional basketball and football players. Our results showed differences in plasma FA profile not only between sportsmen and sedentary subjects, but also between two groups of sportsmen. Plasma FA profile in basketball players showed significantly higher proportion of n-6 FA (20:3, 20:4, and 22:4) and total polyunsaturated FA (PUFA) than controls, while football players had higher palmitoleic acid (16:1) than basketball players and controls. Total PUFA and 22:4 were also higher in basketball than in football players. Erythrocyte FA profile showed no differences between football players and controls. However, basketball players had higher proportion of 18:0 than controls, higher saturated FA and lower 18:2 than two other groups, and higher 22:4 than football players. These findings suggest that long-term intensive exercise and type of sport influence FA profile.

  15. Comparison of three optical methods to study erythrocyte aggregation.

    PubMed

    Zhao, H; Wang, X; Stoltz, J F

    1999-01-01

    The aim of this work was to evaluate three optical methods designed to determine erythrocyte aggregation: Erythroaggregometer (EA; Regulest, France), Laser-assisted Optical Rotational Cell Analyzer (LORCA; Mechatronics, Netherlands) and Fully Automatic Erythrocyte Aggregometer (FAEA; Myrenne, GmbH, Germany). Blood samples were taken from fifty donors (26 males and 24 females). The aggregation of normal red blood cell (RBC) and RBCs suspended in three normo- and hyperaggregating suspending media was studied. The results revealed some significant correlations between parameters measured by these instruments, in particular, between the indexes of aggregation of EA and LORCA. Further, RBC aggregation of multiple myeloma patients was also studied and a hyper erythrocyte aggregation state was found by EA and LORCA.

  16. Erythrocyte antioxidant protection of rose hips (Rosa spp.).

    PubMed

    Widén, C; Ekholm, A; Coleman, M D; Renvert, S; Rumpunen, K

    2012-01-01

    Rose hips are popular in health promoting products as the fruits contain high content of bioactive compounds. The aim of this study was to investigate whether health benefits are attributable to ascorbic acid, phenols, or other rose-hip-derived compounds. Freeze-dried powder of rose hips was preextracted with metaphosphoric acid and the sample was then sequentially eluted on a C(18) column. The degree of amelioration of oxidative damage was determined in an erythrocyte in vitro bioassay by comparing the effects of a reducing agent on erythrocytes alone or on erythrocytes pretreated with berry extracts. The maximum protection against oxidative stress, 59.4 ± 4.0% (mean ± standard deviation), was achieved when incubating the cells with the first eluted meta-phosphoric extract. Removal of ascorbic acid from this extract increased the protection against oxidative stress to 67.9 ± 1.9%. The protection from the 20% and 100% methanol extracts was 20.8 ± 8.2% and 5.0 ± 3.2%, respectively. Antioxidant uptake was confirmed by measurement of catechin by HPLC-ESI-MS in the 20% methanol extract. The fact that all sequentially eluted extracts studied contributed to protective effects on the erythrocytes indicates that rose hips contain a promising level of clinically relevant antioxidant protection.

  17. Erythrocytes are the major intravascular storage sites of nitrite in human blood

    PubMed Central

    Dejam, André; Hunter, Christian J.; Pelletier, Mildred M.; Hsu, Lewis L.; Machado, Roberto F.; Shiva, Sruti; Power, Gordon G.; Kelm, Malte; Gladwin, Mark T.; Schechter, Alan N.

    2005-01-01

    Plasma levels of nitrite ions have been used as an index of nitric oxide synthase (NOS) activity in vivo. Recent data suggest that nitrite is a potential intravascular repository for nitric oxide (NO), bioactivated by a nitrite reductase activity of deoxyhemoglobin. The precise levels and compartmentalization of nitrite within blood and erythrocytes have not been determined. Nitrite levels in whole blood and erythrocytes were determined using reductive chemiluminescence in conjunction with a ferricyanide-based hemoglobin oxidation assay to prevent nitrite destruction. This method yields sensitive and linear measurements of whole blood nitrite over 24 hours at room temperature. Nitrite levels measured in plasma, erythrocytes, and whole blood from 15 healthy volunteers were 121 plus or minus 9, 288 plus or minus 47, and 176 plus or minus 17 nM, indicating a surprisingly high concentration of nitrite within erythrocytes. The majority of nitrite in erythrocytes is located in the cytosol unbound to proteins. In humans, we found a significant artery-to-vein gradient of nitrite in whole blood and erythrocytes. Shear stress and acetylcholine-mediated stimulation of endothelial NOS significantly increased venous nitrite levels. These studies suggest a dynamic intravascular NO metabolism in which endothelial NOS-derived NO is stabilized as nitrite, transported by erythrocytes, and consumed during arterial-to-venous transit. (Blood. 2005;106:734-739) PMID:15774613

  18. Decreased erythrocyte nucleoside transport and hENT1 transporter expression in glucose 6-phosphate dehydrogenase deficiency.

    PubMed

    Al-Ansari, Mohammad; Craik, James D

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with erythrocyte sensitivity to oxidative damage and hemolytic crises. In β-thalassemia major, where hemoglobin instability imposes oxidative stress, erythrocytes show reduced hENT1 nucleoside transporter expression and decreased nucleoside uptake. This study investigated hENT1 expression and nucleoside transport in G6PD-deficient erythrocytes to determine if decreased hENT1 activity might be a contributory feature in the variable pathology of this enzymopathy. Uptake of (3)H-uridine was measured at room temperature using an inhibitor-oil stop protocol and 5-s incubations. Erythrocyte membranes were analyzed by SDS-PAGE and nucleoside (hENT1), glucose (GLUT-1), and anion exchange (Band 3) transporter polypeptides quantitated on immunoblots. In G6PD-deficient cells, uridine uptake (mean 8.18, 95 % CI 5.6-10.7 vs controls mean 12.35, 95 % CI 9.2-15.5, pmol uridine/gHb/min; P = 0.031) and expression of hENT1 (mean 50.4 %, 95 % CI 38.1-62.7 %, arbitrary units n = 11 vs controls mean 95.23 %, 95 % CI 88.38-102.1 % arbitrary units, n = 8; P < 0.001) were significantly lower; expression of GLUT-1 (mean 106.9 %, vs control mean 99.75 %; P = 0.308) and Band 3 polypeptides (mean 100.1 %, vs control mean 102.84 %; P = 0.329) were unchanged. Nucleoside transporter activity in human erythrocytes sustains intracellular purine nucleotide levels and assists in control of plasma adenosine levels; decreased hENT1 expression and activity in G6PD-deficiency could affect red metabolism and influence a wide spectrum of responses mediated by adenosine receptors.

  19. Zebrafish numb and numblike are involved in primitive erythrocyte differentiation.

    PubMed

    Bresciani, Erica; Confalonieri, Stefano; Cermenati, Solei; Cimbro, Simona; Foglia, Efrem; Beltrame, Monica; Di Fiore, Pier Paolo; Cotelli, Franco

    2010-12-13

    Notch signaling is an evolutionarily conserved regulatory circuitry implicated in cell fate determination in various developmental processes including hematopoietic stem cell self-renewal and differentiation of blood lineages. Known endogenous inhibitors of Notch activity are Numb-Nb and Numblike-Nbl, which play partially redundant functions in specifying and maintaining neuronal differentiation. Nb and Nbl are expressed in most tissues including embryonic and adult hematopoietic tissues in mice and humans, suggesting possible roles for these proteins in hematopoiesis. We employed zebrafish to investigate the possible functional role of Numb and Numblike during hematopoiesis, as this system allows a detailed analysis even in embryos with severe defects that would be lethal in other organisms. Here we describe that nb/nbl knockdown results in severe reduction or absence of embryonic erythrocytes in zebrafish. Interestingly, nb/nbl knocked-down embryos present severe downregulation of the erythroid transcription factor gata1. This results in erythroblasts which fail to mature and undergo apoptosis. Our results indicate that Notch activity is increased in embryos injected with nb/nbl morpholino, and we show that inhibition of Notch activation can partially rescue the hematopoietic phenotype. Our results provide the first in vivo evidence of an involvement of Numb and Numblike in zebrafish erythroid differentiation during primitive hematopoiesis. Furthermore, we found that, at least in part, the nb/nbl morphant phenotype is due to enhanced Notch activation within hematopoietic districts, which in turn results in primitive erythroid differentiation defects.

  20. The first case of a complete deficiency of diphosphoglycerate mutase in human erythrocytes.

    PubMed

    Rosa, R; Prehu, M O; Beuzard, Y; Rosa, J

    1978-11-01

    An inherited and complete deficiency of diphosphoglycerate mutase was discovered in the erythrocytes of a 42-yr-old man of French origin whose blood hemoglobin concentration was 19.0 g/dl. Upon physical examination he was normal with the exception of a ruddy cyanosis. The morphology of his erythrocytes was also normal and there was no evidence of hemolysis. The erythrocyte 2,3-diphosphoglycerate level was below 3% of normal values and, as a consequence, the affinity of the cells for oxygen was increased. Diphosphoglycerate mutase activity was undetectable in erythrocytes as was that of diphosphoglycerate phosphatase. The activities of all the other erythrocyte enzymes that were tested were normal except for nomophosphoglycerate mutase which was diminished to 50% of the normal value. The levels of reduced glutathione, ATP, fructose 1,6-diphosphate, and of triose phosphates were elevated, whereas those of glucose 6-phosphate and fructose 6-phosphate were decreased. This report sheds new light on the role of diphosphoglycerate mutase in the metabolism of erythrocytes.

  1. Clotrimazole enhances lysis of human erythrocytes induced by t-BHP.

    PubMed

    Lisovskaya, Irene L; Shcherbachenko, Irina M; Volkova, Rimma I; Ataullakhanov, Fazoil I

    2009-08-14

    Clotrimazole (CLT) is an antifungal and antimalarial agent also effective as a Gardos channel inhibitor. In addition, CLT possesses antitumor properties. Recent data provide evidence that CLT forms a complex with heme (hemin), which produces a more potent lytic effect than heme alone. This study addressed the effect of CLT on the lysis of normal human erythrocytes induced by tert-butyl hydroperoxide (t-BHP). For the first time, it was shown that 10 microM CLT significantly enhanced the lytic effect of t-BHP on erythrocytes in both Ca(2+)-containing and Ca(2+)-free media, suggesting that the effect is not related to Gardos channels. CLT did not affect the rate of free radical generation, the kinetics of GSH degradation, methemoglobin formation and TBARS generation; therefore, we concluded that CLT does not cause additional oxidative damage to erythrocytes treated with t-BHP. It is tempted to speculate that CLT enhances t-BHP-induced changes in erythrocyte volume and lysis largely by forming a complex with hemin released during hemoglobin oxidation in erythrocytes: the CLT-hemin complex destabilizes the cell membrane more potently than hemin alone. If so, the effect of CLT on cell membrane damage during free-radical oxidation may be used to increase the efficacy of antitumor therapy.

  2. Sonidegib, a Novel Inhibitor of Suicidal Erythrocyte Death.

    PubMed

    Al Mamun Bhuyan, Abdulla; Sahu, Itishri; Cao, Hang; Lang, Florian

    2018-06-19

    The Hedgehog pathway disrupting drug sonidegib is used in the treatment of basal cell carcinoma. Side effects of sonidegib include anemia, which could result either from impaired erythropoiesis or from loss of erythrocytes e.g. due to suicidal erythrocyte death or eryptosis, which is characterized by cell membrane scrambling with phosphatidylserine translocation to the cell surface and by cell shrinkage. Eryptosis is stimulated by cell stress, including energy depletion, hyperosmotic shock, oxidative stress and excessive increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored, whether sonidegib exerts an effect on eryptosis. Human erythrocytes have been treated with energy depletion (glucose withdrawal for 48 hours), hyperosmotic shock (addition of 550 mM sucrose for 6 hours), oxidative stress (addition of 0.3 mM tert-butylhydroperoxide [tBOOH] for 50 min) or Ca2+ ionophore ionomycin (1 µM for 60 min) in absence and presence of sonidegib (2-6 µg/ ml). After treatment flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding, and cell volume from forward scatter. Hemolysis was estimated from the hemoglobin concentration in the supernatant. In the absence of cell stress exposure to sonidegib did not significantly modify annexin-V-binding or forward scatter, but triggered hemolysis. Energy depletion, hyperosmotic shock, oxidative stress and ionomycin, all markedly and significantly increased the percentage of annexin-V-binding erythrocytes, and decreased the forward scatter. Sonidegib significantly blunted the effect of energy depletion, hyperosmotic shock, and oxidative stress, but not of ionomycin on annexin-V-binding. Sonidegib further significantly blunted the effect of energy depletion, but not of hyperosmotic shock, oxidative stress, and ionomycin on forward scatter. Sonidegib is a novel inhibitor of erythrocyte cell membrane scrambling following energy depletion, hyperosmotic shock and

  3. Intra-erythrocytic sodium content in normotensive offspring of normotensive and hypertensive subjects: an epidemiological study.

    PubMed

    Semplicini, A; Ambrosio, G B; Rigon, E; Dissegna, L; Zamboni, S; Rossi, G; Pessina, A C; Dal Palù, C

    1985-12-01

    An increase in intra-erythrocytic sodium (IENa) content has been proposed as a genetic marker of essential hypertension. Intra-erythrocytic sodium was studied using hypotonic lysis and flame photometry after four washings with isotonic MgCl2 in 240 normotensive subjects (aged 10-45 years) on a free diet with (F+, 121 patients) or without (F-, 119 patients) hypertensive parents, recruited from a random sample of the general population. Systolic blood pressure was significantly higher in males F+ than in males F- (130 +/- 2 versus 125 +/- 2 mmHg, mean +/- s.e.m., P < 0.05), while IENa did not differ. In contrast, intra-erythrocytic potassium content (IEK) was significantly lower and red cell sodium potassium (Na:K) ratio significantly higher in F+ than F-. This might reflect decreased NaK pump activity, or increased membrane permeability to cations which causes increased K leakage. No differences in blood pressure, IENa or IEK showed in female F+ versus F-. It is concluded that IENa is not a genetic marker of hypertension, and that it is probably influenced by exogenous factors. Being associated with differences in blood pressure, the abnormalities of IEK and Na:K ratio might be pathogenetically linked to an early increase in blood pressure.

  4. Temperature-dependent changes in erythrocytes' cytosol state during natural and artificial hypobiosis.

    PubMed

    Repina, S V; Nardid, O A; Marchenko, V S; Shilo, A V

    2004-05-01

    At present, the question of how the structural state of the erythrocyte cytosol is arranged to maintain essential permeabilities successfully both at normal temperature and during periods with a significant body temperature reduction during hypobiosis remains unanswered. In the present work, we performed comparative investigations of temperature-dependent changes in the cytosol state of erythrocytes from animals subjected to natural (winter hibernating ground squirrels) or artificial hypobiosis. The cytosol state was evaluated by the ESR method of spin probes (TEMPON) within the temperature range of 0-50 degrees C. Erythrocyte resistance to acid hemolysis, which is limited by the permeability of membranes for protons and the state of the anion channel, were determined using the method described by Terskov and Getelson [Biofizika 2 (1957) 259]. A change in cytosol microviscosity of erythrocytes was found as well as a temperature-dependent increase in acid resistance of erythrocytes. Our investigations allow us to conclude that physiological changes occurring in a mammalian organism during natural and artificial hypobiosis are accompanied by structural modifications of the erythrocyte cytosol. The temperature range where these modifications are observed (8, 15, 40 degrees C) suggests that the most probable modifying link is spectrin and/or the sites of its interaction with membrane. The interaction of cytoskeletal components with the cell membrane plays a key role in regulation of membrane permeability, suggesting an important role of this interaction in the adaptive reactions of erythrocytes.

  5. [Paternity study in Chilean families using DNA fingerprints and erythrocyte blood markers].

    PubMed

    Aguirre, R; Blanco, R; Cifuentes, L; Chiffelle, I; Armanet, L; Vargas, J; Jara, L

    1992-10-01

    In the last decade, the electromorphic phenotype corresponding to extremely polymorphic zones of DNA, that include variable number of tandem repeat loci (VNTR) of oligonucleotide sequences, have been added to classical markers to elucidate the problems of parenthood identification and ascription in human beings. Using VNTR of several loci, a band profile practically unique for each individual is obtained (DNA-fingerprints). Since the pattern of VNTR electrophoretic bands is inherited from parents in a proportion of 50% from each one, this system is extremely useful for paternity ascription or exclusion. Nine nuclear families were studied, randomly selected from a group of 170 families that were analyzed using 5 erythrocyte genetic markers and with VNTRs detected using the multi locus probe (CAC)5, aiming to explore the concordance of both methods. Results were similar for both methods; however for VNTR, there is no information available on population frequency of polymorphisms.

  6. Basic Fibroblast Growth Factor Influences Epidermal Homeostasis of Living Skin Equivalents through Affecting Fibroblast Phenotypes and Functions.

    PubMed

    Yang, Lujun; Zhang, Dangui; Wu, Hongjuan; Xie, Sitian; Zhang, Mingjun; Zhang, Bingna; Tang, Shijie

    2018-05-30

    To elucidate the possible mechanisms of how basic fibroblast growth factor (bFGF) influences epidermal homeostasis in a living skin equivalent (LSE) model. Several wound healing-related growth factors were analyzed at protein and mRNA levels for dermal fibroblasts of induced alpha-smooth muscle actin (α-SMA)-positive or α-SMA-negative phenotypes. During culturing an LSE model by seeding normal human keratinocytes on a fibroblast-populated type I collagen gel, bFGF or neutralizing antibody for keratinocyte growth factor (KGF) was added to investigate its effects on fibroblast phenotypes and, subsequently, epidermal homeostasis by histology and immunohistochemistry. The α-SMA-positive phenotype of fibroblasts induced by transforming growth factor beta-1 (TGF-β1) markedly suppressed the expression of KGF and hepatocyte growth factor (HGF), and slightly upregulated vascular endothelial growth factor (VEGF) and TGF-β1 at mRNA and protein levels, compared with α-SMA-negative fibroblasts treated with bFGF. α-SMA expression of fibroblasts at the epidermal-mesenchymal junction of the LSEs was suppressed by the addition of bFGF, and a better-differentiated epidermis was presented. The abrogation of KGF from fibroblasts by the addition of the KGF neutralizing antibody disenabled the LSE culturing system to develop an epidermis. bFGF, through affecting the phenotypes and functions of fibroblasts, especially KGF expression, influenced epidermal homeostasis in an LSE model. © 2018 S. Karger AG, Basel.

  7. Genotoxic evaluation of pirfenidone using erythrocyte rodent micronucleus assay.

    PubMed

    Alcántar-Díaz, Blanca E; Gómez-Meda, Belinda C; Zúñiga-González, Guillermo M; Zamora-Perez, Ana L; González-Cuevas, Jaime; Alvarez-Rodríguez, Bertha A; Sánchez-Parada, María Guadalupe; García-Bañuelos, Jesús J; Armendáriz-Borunda, Juan

    2012-08-01

    Pirfenidone is a non-steroidal antifibrotic compound that has been proposed in clinical protocols and experimental studies as a pharmacological treatment for fibroproliferative diseases. The objective of this study was to determine the genotoxicity or cytotoxicity of three doses of pirfenidone using the micronuclei test in peripheral blood erythrocytes of rodent models. Pirfenidone was administered orally to Balb-C mice for 3 days, and also was administered topically to hairless Sprague Dawley rats during the final stage of gestation. Mice were sampled every 24 h over the course of 6 days; pregnant rats were sampled every 24 h during the last 6 days of gestation, and pups were sampled at birth. Blood smears were analyzed and the frequencies of micronucleated erythrocytes (MNEs), micronucleated polychromatic erythrocytes (MNPCEs), and the proportion of polychromatic erythrocytes (PCEs), were recorded in samples from mice, pregnant rats and rat neonates. Increases in MN frequencies (p<0.03) were noted only in the positive control groups. No genotoxic effects or decreased PCE values were observed neither in newborn rats transplacentally exposed to pirfenidone, or in two adult rodent models when pirfenidone was administered orally or topically. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Integrity of erythrocytes of hypercholesterolemic rats during spices treatment.

    PubMed

    Kempaiah, R K; Srinivasan, K

    2002-07-01

    In rats rendered hypercholesterolemic by maintaining them on a cholesterol-enriched diet (0.5%) for 8 weeks, inclusion of spice principles--curcumin (0.2%) or capsaicin (0.015%) or the spice--garlic powder (2.0%) in the diet, produced the expected hypolipidemic effect. Plasma cholesterol which was more than 200% that of basal control in hypercholesterolemic rats, was decreased by these dietary spice principles and garlic by 25-39%. Erythrocyte membranes of hypercholesterolemic rats were relatively enriched in cholesterol, which was about 120% of basal control, while membrane phospholipid was unaffected. This resulted in a significant alteration in cholesterol to phospholipid ratio of RBC membranes. Dietary curcumin, capsaicin and garlic were observed to counter this altered lipid profile of erythrocyte membranes in hypercholesterolemic situation by producing a significant 10-14% decrease in membrane cholesterol content. As a result of alteration in membrane structural lipids, the structural integrity of RBCs was also affected. An examination of the osmotic fragility of erythrocytes in various groups, indicated that RBCs of hypercholesterolemic rats were relatively fragile compared to normal controls. Dietary curcumin, capsaicin and garlic appeared to correct this increased fragility of erythrocytes.

  9. Effect of Vibrio parahaemolyticus haemolysin on human erythrocytes.

    PubMed

    Lang, Philipp A; Kaiser, Stephanie; Myssina, Swetlana; Birka, Christina; Weinstock, Christof; Northoff, Hinnak; Wieder, Thomas; Lang, Florian; Huber, Stephan M

    2004-04-01

    Haemolysin Kanagawa, a toxin from Vibrio parahaemolyticus, is known to trigger haemolysis. Flux studies indicated that haemolysin forms a cation channel. In the present study, channel properties were elucidated by patch clamp and functional significance of ion fluxes by fluorescence-activated cell sorting (FACS) analysis. Treatment of human erythrocytes with 1 U ml-1 haemolysin within minutes induces a non-selective cation permeability. Moreover, haemolysin activates clotrimazole-sensitive K+ channels, pointing to stimulation of Ca2+-sensitive Gardos channels. Haemolysin (1 U ml-1) leads within 5 min to slight cell shrinkage, which is reversed in Ca2+-free saline. Erythrocytes treated with haemolysin (0.1 U ml-1) do not undergo significant haemolysis within the first 60 min. Replacement of extracellular Na+ with NMDG+ leads to slight cell shrinkage, which is potentiated by 0.1 U ml-1 haemolysin. According to annexin binding, treatment of erythrocytes with 0.1 U ml-1 haemolysin leads within 30 min to breakdown of phosphatidylserine asymmetry of the cell membrane, a typical feature of erythrocyte apoptosis. The annexin binding is significantly blunted at increased extracellular K+ concentrations and by K+ channel blocker clotrimazole. In conclusion, haemolysin Kanagawa induces cation permeability and activates endogenous Gardos K+ channels. Consequences include breakdown of phosphatidylserine asymmetry, which depends at least partially on cellular loss of K+.

  10. PMCA activity and membrane tubulin affect deformability of erythrocytes from normal and hypertensive human subjects.

    PubMed

    Monesterolo, Noelia E; Nigra, Ayelen D; Campetelli, Alexis N; Santander, Verónica S; Rivelli, Juan F; Arce, Carlos A; Casale, Cesar H

    2015-11-01

    Our previous studies demonstrated formation of a complex between acetylated tubulin and brain plasma membrane Ca(2+)-ATPase (PMCA), and the effect of the lipid environment on structure of this complex and on PMCA activity. Deformability of erythrocytes from hypertensive human subjects was reduced by an increase in membrane tubulin content. In the present study, we examined the regulation of PMCA activity by tubulin in normotensive and hypertensive erythrocytes, and the effect of exogenously added diacylglycerol (DAG) and phosphatidic acid (PA) on erythrocyte deformability. Some of the key findings were that: (i) PMCA was associated with tubulin in normotensive and hypertensive erythrocytes, (ii) PMCA enzyme activity was directly correlated with erythrocyte deformability, and (iii) when tubulin was present in the erythrocyte membrane, treatment with DAG or PA led to increased deformability and associated PMCA activity. Taken together, our findings indicate that PMCA activity is involved in deformability of both normotensive and hypertensive erythrocytes. This rheological property of erythrocytes is affected by acetylated tubulin and its lipid environment because both regulate PMCA activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Erythrocyte sialic acid content during aging in humans: correlation with markers of oxidative stress.

    PubMed

    Mehdi, Mohammad Murtaza; Singh, Prabhakar; Rizvi, Syed Ibrahim

    2012-01-01

    Sialic acids are substituted neuraminic acid derivatives which are typically found at the outermost end of glycan chains on the membrane in all cell types. The role of erythrocyte membrane sialic acids during aging has been established however the relationship between sialic acid and oxidative stress is not fully understood. The present work was undertaken to analyze the relationship between erythrocyte membrane sialic acid with its plasma level, membrane and plasma lipid hydroperoxide levels and plasma total antioxidant capacity. Results show that sialic acid content decreases significantly (P< 0.001) in RBC membrane (r= -0.901) and increases in plasma (r=0.860) as a function of age in humans. Lipid peroxidation measured in the form of hydroperoxides increases significantly (P<0.001) in plasma (r=0.830) and RBC membranes (r=0.875) with age in humans. The Trolox Equivalent Total Antioxidant Capacity (TETAC) of plasma was found to be significantly decreased (P< 0.001, r=-0.844). We observe significant correlations between decrease of erythrocyte membrane sialic acid and plasma lipid hydroperoxide and TETAC. Based on the observed correlations, we hypothesize that increase in oxidative stress during aging may influence the sialic acid decomposition from membrane thereby altering the membrane configuration affecting many enzymatic and transporter activities. Considering the importance of plasma sialic acid as a diagnostic parameter, it is important to establish age-dependent reference.

  12. Studies on the role of goat heart galectin-1 as an erythrocyte membrane perturbing agent

    PubMed Central

    Ashraf, Ghulam Md; Perveen, Asma; Zaidi, Syed Kashif; Tabrez, Shams; Kamal, Mohammad A.; Banu, Naheed

    2014-01-01

    Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology. PMID:25561893

  13. Studies on the role of goat heart galectin-1 as an erythrocyte membrane perturbing agent.

    PubMed

    Ashraf, Ghulam Md; Perveen, Asma; Zaidi, Syed Kashif; Tabrez, Shams; Kamal, Mohammad A; Banu, Naheed

    2015-01-01

    Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology.

  14. Low toxicity method of inhibiting sickling of sickle erythrocytes

    DOEpatents

    Packer, Lester; Bymun, Edwin N.

    1977-01-01

    A low toxicity method of inhibiting sickling of sickle erythrocytes which comprises intermixing the erythrocytes with an effective anti-sickling amount of a water-soluble imidoester of the formula RC(=NH)OR' wherein R is an alkyl group of 1 - 8 carbon atoms, particularly 1 - 4 carbon atoms, and R' is an alkyl group of 1 - 4 carbon atoms, specifically methyl or ethyl acetimidate.

  15. Thermal dielectroscopy - A new method for studying the membrane skeleton of human erythrocytes

    NASA Astrophysics Data System (ADS)

    Paarvanova, Boyana; Tacheva, Bilyana; Karabaliev, Miroslav; Ivanov, Ivan T.

    2017-11-01

    The structure and mechanical properties of erythrocyte plasma membrane are strongly affected by both the dephosphorylation and thermal denaturation (49.5°C) of erythrocyte under-membrane spectrin skeleton. Here, the dielectric loss (DL) of suspensions, containing native erythrocytes or erythrocyte ghost membranes (EGMs), was determined applying a mathematical method to remove the conductive loss from the imaginary capacitance, Cim, of the suspensions. The DL frequency profile of spectrin skeleton was obtained subtracting the DL data collected prior to, and after the denaturation of spectrin at 49.5°C. Spectrin skeleton exhibited narrow bell-shaped DL frequency curve, centered at 1.5 MHz, presumably reflecting the segmental mobility of spectrin. The area of this curve was reduced by 30 % after mild dephosphorylation (starvation of erythrocytes at 37°C for 5 h) and reduced to zero at EGMs resealed with alkaline phosphatase (full dephosphorylation). These results, combined with others, indicate the relevance of dielectric analysis for the study of dynamics and separation of membrane skeleton from the lipid membrane of erythrocytes.

  16. The first case of a complete deficiency of diphosphoglycerate mutase in human erythrocytes.

    PubMed Central

    Rosa, R; Prehu, M O; Beuzard, Y; Rosa, J

    1978-01-01

    An inherited and complete deficiency of diphosphoglycerate mutase was discovered in the erythrocytes of a 42-yr-old man of French origin whose blood hemoglobin concentration was 19.0 g/dl. Upon physical examination he was normal with the exception of a ruddy cyanosis. The morphology of his erythrocytes was also normal and there was no evidence of hemolysis. The erythrocyte 2,3-diphosphoglycerate level was below 3% of normal values and, as a consequence, the affinity of the cells for oxygen was increased. Diphosphoglycerate mutase activity was undetectable in erythrocytes as was that of diphosphoglycerate phosphatase. The activities of all the other erythrocyte enzymes that were tested were normal except for nomophosphoglycerate mutase which was diminished to 50% of the normal value. The levels of reduced glutathione, ATP, fructose 1,6-diphosphate, and of triose phosphates were elevated, whereas those of glucose 6-phosphate and fructose 6-phosphate were decreased. This report sheds new light on the role of diphosphoglycerate mutase in the metabolism of erythrocytes. Images PMID:152321

  17. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*

    PubMed Central

    Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.

    2008-01-01

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466

  18. Erythrocytic adenosine monophosphate as an alternative purine source in Plasmodium falciparum.

    PubMed

    Cassera, María B; Hazleton, Keith Z; Riegelhaupt, Paul M; Merino, Emilio F; Luo, Minkui; Akabas, Myles H; Schramm, Vern L

    2008-11-21

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.

  19. In Vitro Induction of Erythrocyte Phosphatidylserine Translocation by the Natural Naphthoquinone Shikonin

    PubMed Central

    Lupescu, Adrian; Bissinger, Rosi; Jilani, Kashif; Lang, Florian

    2014-01-01

    Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation. PMID:24828755

  20. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract.

    PubMed

    Okoko, Tebekeme; Ere, Diepreye

    2012-06-01

    To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.

  1. Structural relationships between human erythrocyte sialoglycoproteins beta and gamma and abnormal sialoglycoproteins found in certain rare human erythrocyte variants lacking the Gerbich blood-group antigen(s).

    PubMed Central

    Reid, M E; Anstee, D J; Tanner, M J; Ridgwell, K; Nurse, G T

    1987-01-01

    The human erythrocyte membrane sialoglycoproteins beta and gamma are important for the maintenance of the discoid shape of the normal erythrocyte. In this paper we show that the human erythrocyte sialoglycoproteins beta and gamma (hereafter called beta and gamma) are structurally related. Rabbit antisera produced against purified beta and beta 1 and rendered specific to the cytoplasmic portion of these proteins also react with the cytoplasmic portion of gamma. Some human anti-Gerbich (Ge) sera react with the extracellular portion of both beta and gamma. This reactivity is shown to be directed towards a common epitope on beta and gamma. However, most anti-Ge sera do not react with beta, but react with an extracellular epitope only present on gamma. All individuals who lack the Ge antigens lack beta and gamma. In some cases abnormal sialoglycoproteins are present in the erythrocytes, and these are shown to be structurally related to beta and gamma. Rabbit antisera raised against the purified abnormal sialoglycoprotein from a Ge-negative erythrocyte type reacted with the cytoplasmic portion of both beta and gamma. Unlike normal beta and gamma, the abnormal sialoglycoproteins found in Ge-negative erythrocytes migrate as a diffuse band on SDS/polyacrylamide-gel electrophoresis. Studies using endoglycosidases suggest that the diffuse nature of these bands results from carbohydrate heterogeneity and that the abnormal sialoglycoproteins contain N-glycosidically linked oligosaccharides with repeating lactosamine units. Such polylactosamine chains are not present on normal beta or gamma. Images Fig. 1. Fig. 2. Fig. 3. PMID:2444210

  2. Biophysical Properties of Plasmodium falciparum-Infected Erythrocytes from Novel Analysis of the Flicker Phenomena

    NASA Astrophysics Data System (ADS)

    Arie, Takayuki; Jin, Albert; Dvorak, James

    2002-03-01

    Infectious processes often modulate the intrinsic properties of vertebrate cells. We studied the modulation of human erythrocyte flicker during the intra-erythrocytic cycle of Plasmodium falciparum malaria using video microscopy imaging and a data analysis system of our design to extract flicker spectra and lateral cell edge undulations of individual erythrocytes at various stages of infection. The total flicker power, the power weighted mean flicker frequency, the mode amplitudes of lateral undulations, and the time correlation of translation mode was quantified by infectious stage and modeled theoretically. Our results suggest that malaria-infected erythrocytes become increasingly more rigid following infection and provide an insight into the modulation of erythrocyte cytoplasmic viscosity by the parasites. These studies of malaria-infected erythrocytes elucidate the kinetics of both membrane and cellular changes that are relevant to blood microcirculation and improve our understanding of the malaria disease process.

  3. Integrated phenotypic-genotypic approach to understand the influence of ultrasound on metabolic response of Lactobacillus sakei.

    PubMed

    Ojha, K Shikha; Burgess, Catherine M; Duffy, Geraldine; Kerry, Joseph P; Tiwari, Brijesh K

    2018-01-01

    The lethal effects of soundwaves on a range of microorganisms have been known for almost a century whereas, the use of ultrasound to promote or control their activity is much more recent. Moreover, the fundamental molecular mechanism influencing the behaviour of microorganisms subjected to ultrasonic waves is not well established. In this study, we investigated the influence of ultrasonic frequencies of 20, 45, 130 and 950 kHz on growth kinetics of Lactobacillus sakei. A significant increase in the growth rate of L. sakei was observed following ultrasound treatment at 20 kHz despite the treatment yielding a significant reduction of ca. 3 log cfu/mL in cells count. Scanning electron microscopy showed that ultrasound caused significant changes on the cell surface of L. sakei culture with the formation of pores "sonoporation". Phenotypic microarrays showed that all ultrasound treated L. sakei after exposure to various carbon, nitrogen, phosphorus and sulphur sources had significant variations in nutrient utilisation. Integration of this phenotypic data with the genome of L. sakei revealed that various metabolic pathways were being influenced by the ultrasound treatments. Results presented in this study showed that the physiological response of L. sakei in response to US is frequency dependent and that it can influence metabolic pathways. Hence, ultrasound treatments can be employed to modulate microbial activity for specialised applications.

  4. Integrated phenotypic-genotypic approach to understand the influence of ultrasound on metabolic response of Lactobacillus sakei

    PubMed Central

    Ojha, K. Shikha; Burgess, Catherine M.; Duffy, Geraldine; Kerry, Joseph P.

    2018-01-01

    The lethal effects of soundwaves on a range of microorganisms have been known for almost a century whereas, the use of ultrasound to promote or control their activity is much more recent. Moreover, the fundamental molecular mechanism influencing the behaviour of microorganisms subjected to ultrasonic waves is not well established. In this study, we investigated the influence of ultrasonic frequencies of 20, 45, 130 and 950 kHz on growth kinetics of Lactobacillus sakei. A significant increase in the growth rate of L. sakei was observed following ultrasound treatment at 20 kHz despite the treatment yielding a significant reduction of ca. 3 log cfu/mL in cells count. Scanning electron microscopy showed that ultrasound caused significant changes on the cell surface of L. sakei culture with the formation of pores “sonoporation”. Phenotypic microarrays showed that all ultrasound treated L. sakei after exposure to various carbon, nitrogen, phosphorus and sulphur sources had significant variations in nutrient utilisation. Integration of this phenotypic data with the genome of L. sakei revealed that various metabolic pathways were being influenced by the ultrasound treatments. Results presented in this study showed that the physiological response of L. sakei in response to US is frequency dependent and that it can influence metabolic pathways. Hence, ultrasound treatments can be employed to modulate microbial activity for specialised applications. PMID:29370210

  5. The associations between leukocyte, erythrocyte or platelet, and metabolic syndrome in different genders of Chinese

    PubMed Central

    Zhou, Pingping; Meng, Zhaowei; Liu, Ming; Ren, Xiaojun; Zhu, Mei; He, Qing; Zhang, Qing; Liu, Li; Song, Kun; Jia, Qiang; Tan, Jian; Li, Xue; Liu, Na; Hu, Tianpeng; Upadhyaya, Arun

    2016-01-01

    Abstract Leukocyte, erythrocyte or platelet and metabolic syndrome (MS) are closely correlated, and there exist gender differences. We aimed to explore the associations between the hematological parameters and MS in different genders of Chinese. This cross-sectional study included 32,900 participants (20,733 males, 12,167 females) who were enrolled in a health examination. Clinical data including anthropometric measurements and serum parameters were collected. The associations between hematological parameters and MS of both genders were analyzed separately. Odds ratio (OR) of MS was calculated by binary logistic regression models. All hematological parameters were related to MS. With leukocyte and erythrocyte counts rising, the risks of developing MS increased in both genders, which was more obvious in women. For instance, in model 3, the ORs of MS in leukocyte quartiles in females were from 1.333 to 2.045 (P < 0.01), while in males, from 1.238 to 1.675 (P < 0.01). Platelet seemed as a protective factor in males. Model 1 and model 3 in quartile 2 demonstrated ORs of 0.922 (P < 0.05) and 0.912 (P < 0.05). However, platelet acted as risk factor in female. For instance, the ORs were 1.253 (P < 0.01), 1.461 (P < 0.01), and 1.322 (P < 0.01) in platelet quartile 4 of all 3 models in female. Gender has influences on the associations between leukocyte, erythrocyte or platelet, and MS. In both genders, higher levels of leukocyte and erythrocyte increased risks of MS. For men, platelet was a protective factor, but for women, platelet seemed as a risk factor. PMID:27858856

  6. The associations between leukocyte, erythrocyte or platelet, and metabolic syndrome in different genders of Chinese.

    PubMed

    Zhou, Pingping; Meng, Zhaowei; Liu, Ming; Ren, Xiaojun; Zhu, Mei; He, Qing; Zhang, Qing; Liu, Li; Song, Kun; Jia, Qiang; Tan, Jian; Li, Xue; Liu, Na; Hu, Tianpeng; Upadhyaya, Arun

    2016-11-01

    Leukocyte, erythrocyte or platelet and metabolic syndrome (MS) are closely correlated, and there exist gender differences. We aimed to explore the associations between the hematological parameters and MS in different genders of Chinese. This cross-sectional study included 32,900 participants (20,733 males, 12,167 females) who were enrolled in a health examination. Clinical data including anthropometric measurements and serum parameters were collected. The associations between hematological parameters and MS of both genders were analyzed separately. Odds ratio (OR) of MS was calculated by binary logistic regression models. All hematological parameters were related to MS. With leukocyte and erythrocyte counts rising, the risks of developing MS increased in both genders, which was more obvious in women. For instance, in model 3, the ORs of MS in leukocyte quartiles in females were from 1.333 to 2.045 (P < 0.01), while in males, from 1.238 to 1.675 (P < 0.01). Platelet seemed as a protective factor in males. Model 1 and model 3 in quartile 2 demonstrated ORs of 0.922 (P < 0.05) and 0.912 (P < 0.05). However, platelet acted as risk factor in female. For instance, the ORs were 1.253 (P < 0.01), 1.461 (P < 0.01), and 1.322 (P < 0.01) in platelet quartile 4 of all 3 models in female. Gender has influences on the associations between leukocyte, erythrocyte or platelet, and MS. In both genders, higher levels of leukocyte and erythrocyte increased risks of MS. For men, platelet was a protective factor, but for women, platelet seemed as a risk factor.

  7. Plasmodium falciparum FIKK Kinase Members Target Distinct Components of the Erythrocyte Membrane

    PubMed Central

    Scheidig-Benatar, Christine; Cooke, Brian M.; Scherf, Artur

    2010-01-01

    Background Modulation of infected host cells by intracellular pathogens is a prerequisite for successful establishment of infection. In the human malaria parasite Plasmodium falciparum, potential candidates for erythrocyte remodelling include the apicomplexan-specific FIKK kinase family (20 members), several of which have been demonstrated to be transported into the erythrocyte cytoplasm via Maurer's clefts. Methodology In the current work, we have knocked out two members of this gene family (Pf fikk7.1 and Pf fikk12), whose products are localized at the inner face of the erythrocyte membrane. Both mutant parasite lines were viable and erythrocytes infected with these parasites showed no detectable alteration in their ability to adhere in vitro to endothelial receptors such as chondroitin sulfate A and CD36. However, we observed sizeable decreases in the rigidity of infected erythrocytes in both knockout lines. Mutant parasites were further analyzed using a phospho-proteomic approach, which revealed distinct phosphorylation profiles in ghost preparations of infected erythrocytes. Knockout parasites showed a significant reduction in the level of phosphorylation of a protein of approximately 80 kDa for FIKK12-KO in trophozoite stage and a large protein of about 300 kDa for FIKK7.1-KO in schizont stage. Conclusions Our results suggest that FIKK members phosphorylate different membrane skeleton proteins of the infected erythrocyte in a stage-specific manner, inducing alterations in the mechanical properties of the parasite-infected red blood cell. This suggests that these host cell modifications may contribute to the parasites' survival in the circulation of the human host. PMID:20668526

  8. Plasmodium falciparum FIKK kinase members target distinct components of the erythrocyte membrane.

    PubMed

    Nunes, Marta C; Okada, Mami; Scheidig-Benatar, Christine; Cooke, Brian M; Scherf, Artur

    2010-07-23

    Modulation of infected host cells by intracellular pathogens is a prerequisite for successful establishment of infection. In the human malaria parasite Plasmodium falciparum, potential candidates for erythrocyte remodelling include the apicomplexan-specific FIKK kinase family (20 members), several of which have been demonstrated to be transported into the erythrocyte cytoplasm via Maurer's clefts. In the current work, we have knocked out two members of this gene family (Pf fikk7.1 and Pf fikk12), whose products are localized at the inner face of the erythrocyte membrane. Both mutant parasite lines were viable and erythrocytes infected with these parasites showed no detectable alteration in their ability to adhere in vitro to endothelial receptors such as chondroitin sulfate A and CD36. However, we observed sizeable decreases in the rigidity of infected erythrocytes in both knockout lines. Mutant parasites were further analyzed using a phospho-proteomic approach, which revealed distinct phosphorylation profiles in ghost preparations of infected erythrocytes. Knockout parasites showed a significant reduction in the level of phosphorylation of a protein of approximately 80 kDa for FIKK12-KO in trophozoite stage and a large protein of about 300 kDa for FIKK7.1-KO in schizont stage. Our results suggest that FIKK members phosphorylate different membrane skeleton proteins of the infected erythrocyte in a stage-specific manner, inducing alterations in the mechanical properties of the parasite-infected red blood cell. This suggests that these host cell modifications may contribute to the parasites' survival in the circulation of the human host.

  9. A Lectin-Like Receptor is Involved in Invasion of Erythrocytes by Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Jungery, M.; Pasvol, G.; Newbold, C. I.; Weatherall, D. J.

    1983-02-01

    Glycophorin both in solution and inserted into liposomes blocks invasion of erythrocytes by the malaria parasite Plasmodium falciparum. Furthermore, one sugar, N-acetyl-D-glucosamine (GlcNAc), completely blocks invasion of the erythrocyte by this parasite. GlcNAc coupled to bovine serum albumin to prevent the sugar entering infected erythrocytes was at least 100,000 times more effective than GlcNAc alone. Bovine serum albumin coupled to lactose or bovine serum albumin alone had no effect on invasion. These results suggest that the binding of P. falciparum to erythrocytes is lectin-like and is determined by carbohydrates on glycophorin.

  10. Infrared spectroscopic investigation of erythrocyte membrane-smoke interactions due to chronic cigarette smoking.

    PubMed

    Sherif, Mahmoud S; Mervat, Ali A; Eman, Aly M

    2017-07-01

    Cigarette smoking is a serious health problem throughout the world, with a complicated and not totally clear bio-effect. In this study, erythrocytes were obtained from healthy male volunteers aged 22 ± 2 years and, the possible effects of three cigarette smoking rates namely 10, 15 and 20 cigarette/day on erythrocytes membrane characteristics were examined by Fourier transform infrared spectroscopy (FTIR). The results of this study indicate many smoking-dependent variations on erythrocytes membrane without an obvious dose-response relationship. There was disruption in the acyl chain packing; changes in membrane order and phases as well as membrane proteins becoming more folded. These physico-chemical changes should have an impact on the function of erythrocytes and may explain the complex interaction of cigarette smoke mainstream with erythrocyte membrane and to some extent clarify the pathological processes associated with cigarette smoking.

  11. Photodynamic effects on human and chicken erythrocytes

    NASA Astrophysics Data System (ADS)

    Kimel, Sol; Koenig, Karsten; Berns, Michael W.

    1995-02-01

    The intracellular accumulation of a variety of photosensitizers in human (non-nucleated) and chicken (nucleated) erythrocytes, as well as the photodynamically induced hemolysis were studied using 488 nm laser microirradiation (15 (mu) W, 100X) and confocal laser scanning fluorescence microscopy. Cells incubated with the negatively charged hydrophilic compounds TPPS4 and Pd-TPPS4 exhibited no significant fluorescence before irradiation, but developed strong fluorescence in the cellular and nuclear membranes following photoinduced membrane damage. In contrast, microirradiation of Photofrin-incubated erythrocytes showed instantaneous fluorescence which decreased due to photodegradation. For the cationic, hydrophilic dye Methylene Blue, significant fluorescence was detected in the nucleus only. Following ALA incubation, large intercellular differences were observed in fluorescence in the red spectral region. These differences are probably due to the differential ability of individual erythrocytes to biosynthesize protoporphyrin IX. Photofrin was the most efficient photosensitizer to induce hemolysis. Higher radiant exposures were required for lysis of nucleated than of human red blood cells, except in the case of Methylene Blue. Irradiation was more efficient for unwashed cell suspensions than for washed suspensions, indicating the non-negligible role of extracellular photosensitizing molecules.

  12. NMR investigation of the influence of procaine and its metabolites on the water exchange through human erythrocyte membranes.

    PubMed

    Morariu, V V; Ionescu, M S; Frangopol, M; Grosescu, R; Lupu, M; Frangopol, P T

    1987-06-12

    The effect of procaine hydrochloride and its metabolites on the diffusional water exchange through erythrocyte membranes was investigated at 37 degrees C and at concentrations ranging between 5 X 10(-5) M and 5 X 10(-1) M by using the NMR manganese doping method. Procaine hydrochloride and 2-diethylaminoethanol have a moderate stimulating effect on the water exchange, of up to 20% at concentrations ranging between 10(-3) and 10(-2) M, while an increasing inhibitory effect was found at higher concentrations. The p-aminobenzoic acid has no effect on the water exchange up to 10(-2) M and, at higher concentrations, and apparent decreasing inhibition was noticed which is thought to be an artefact due to the uptake of Mn2+ by the cells. The temperature dependence studies suggest that procaine HCl enhances the uptake of Mn2+ by the cells. An opposite effect was found for rigid erythrocytes. The p-aminobenzoic acid and 2-diethylaminoethanol appeared to be more effective than procaine hydrochloride in increasing the uptake of Mn2+.

  13. [Physical essence of erythrocytic sedimentation rate in the gravitation field of the earth].

    PubMed

    Cherniĭ, A N

    2009-01-01

    The erythrocytic sedimentation rate method has been long known in medicine and extensively used in laboratory practice in tuberculosis facilities. However, many authors note that the erythrocytic sedimentation rate phenomenon has not clearly understood. By applying the total theory of relativity and quantum mechanics, the author discloses the physical essence of erythrocytic sedimentation in the gravitation field of the Earth.

  14. [Changes of protein tyrosine phosphorylation in erythrocyte band 3 glucose-6-phosphate dehydrogenase deficiency].

    PubMed

    Yu, Guoyu; Li, Jialin; Tian, Xingya; Lin, Hong; Wang, Xiaoying

    2002-11-01

    To explore the hemolytic mechanism of glucose-6-phosphate dehydrogenase (G6PD) deficient erythrocytes in the view of phosphorylation of membrane protein. The alternation of membrane protein phosphorylation and the effect of dithiothreitol (DTT) on protein phosphorylation were analysed by Western blot technique. The activity of phosphotyrosine phosphatase (PTPs) was determined by using p-nitrophenyl phosphate as substrate. Tyrosine phosphorylation of band 3 protein was obviously enhanced in G6PD-deficient erythrocytes. The activity of PTPs was low compared to the normal erythrocytes. The level of phosphotyrosine in G6PD-deficient erythrocytes incubated with DTT was almost the same as in those without DTT. The results were consistent with the activity of PTPs. PTPs activity reduction and tyrosine phosphorylation enhancement induced by oxidation in G6PD deficiency play an important role in erythrocytes hemolysis. However, the alternation of thiol group is not the only factor affecting the activity of PTPs in G6PD-deficient erythrocytes.

  15. Augmented water binding and low cellular water content in erythrocytes of camel and camelids.

    PubMed

    Bogner, P; Csutora, P; Cameron, I L; Wheatley, D N; Miseta, A

    1998-12-01

    We investigated a link between hemoglobin primary structure, hemoglobin hydrophobicity-hydrophilicity, and erythrocyte water content in various mammalian species. Some hemoglobin molecules, particularly those of the camel and camelids, contain more charged amino acid residues and are more hydrophilic than the hemoglobins of human and a number of other mammalian species. To test the in vivo significance of these alterations of hemoglobin primary structure, we determined the osmotically unresponsive erythrocyte water fractions in mannit solutions of various osmolarities at 4 degreesC. Among the species investigated, the size of the osmotically unresponsive erythrocyte water fraction relates in a positive linear way to hemoglobin hydrophilicity. The extreme low total erythrocyte water content of camel erythrocytes (1.1-1.3 g water/g dry mass) may be explained by a comparatively high osmotically unresponsive erythrocyte water fraction. It is proposed that alterations of hemoglobin sequences of camel and camelids may be the part of a natural selection process aimed at protecting these animals against osmotic dehydration in arid environments.

  16. Fluorescence triggering: A general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry.

    PubMed

    Arraud, Nicolas; Gounou, Céline; Turpin, Delphine; Brisson, Alain R

    2016-02-01

    Plasma contains cell-derived extracellular vesicles (EVs) which participate in various physiopathological processes and have potential biomedical applications. Despite intense research activity, knowledge on EVs is limited mainly due to the difficulty of isolating and characterizing sub-micrometer particles like EVs. We have recently reported that a simple flow cytometry (FCM) approach based on triggering the detection on a fluorescence signal enabled the detection of 50× more Annexin-A5 binding EVs (Anx5+ EVs) in plasma than the conventional FCM approach based on light scattering triggering. Here, we present the application of the fluorescence triggering approach to the enumeration and phenotyping of EVs from platelet free plasma (PFP), focusing on CD41+ and CD235a+ EVs, as well as their sub-populations which bind or do not bind Anx5. Higher EV concentrations were detected by fluorescence triggering as compared to light scattering triggering, namely 40× for Anx5+ EVs, 75× for CD41+ EVs, and 15× for CD235a+ EVs. We found that about 30% of Anx5+ EVs were of platelet origin while only 3% of them were of erythrocyte origin. In addition, a majority of EVs from platelet and erythrocyte origin do not expose PS, in contrast to the classical theory of EV formation. Furthermore, the same PFP samples were analyzed fresh and after freeze-thawing, showing that freeze-thawing processes induce an increase, of about 35%, in the amount of Anx5+ EVs, while the other EV phenotypes remain unchanged. The method of EV detection and phenotyping by fluorescence triggering is simple, sensitive and reliable. We foresee that its application to EV studies will improve our understanding on the formation mechanisms and functions of EVs in health and disease and help the development of EV-based biomarkers. © 2015 International Society for Advancement of Cytometry.

  17. Spray drying for preservation of erythrocytes: effect of atomization on hemolysis.

    PubMed

    McLean, Mary; Han, Xiao-Yue; Higgins, Adam Z

    2013-04-01

    Spray drying has the potential to enable storage of erythrocytes at room temperature in the dry state. The spray drying process involves atomization of a liquid into small droplets and drying of the droplets in a gas stream. In this short report, we focus on the atomization process. To decouple atomization from drying, erythrocyte suspensions were sprayed with a two-fluid atomizer nozzle using humid nitrogen as the atomizing gas. The median droplet size was less than 100 μm for all of the spray conditions investigated, indicating that the suspensions were successfully atomized. Hemolysis was significantly affected by the hematocrit of the erythrocyte suspension, the suspension flow rate, and the atomizing gas flow rate (p<0.01 in all cases). Under appropriate conditions, it was possible to achieve less than 2% hemolysis, suggesting that spray drying may be a feasible option for erythrocyte biopreservation.

  18. Strain-specific variations in cation content and transport in mouse erythrocytes

    PubMed Central

    Rivera, Alicia; Zee, Robert Y. L.; Alper, Seth L.; Peters, Luanne L.

    2013-01-01

    Studies of ion transport pathophysiology in hematological disorders and tests of possible new therapeutic agents for these disorders have been carried out in various mouse models because of close functional similarities between mouse and human red cells. We have explored strain-specific differences in erythrocyte membrane physiology in 10 inbred mouse strains by determining erythrocyte contents of Na+, K+, and Mg2+, and erythrocyte transport of ions via the ouabain-sensitive Na-K pump, the amiloride-sensitive Na-H exchanger (NHE1), the volume and chloride-dependent K-Cl cotransporter (KCC), and the charybdotoxin-sensitive Gardos channel (KCNN4). Our data reveal substantial strain-specific and sex-specific differences in both ion content and trans-membrane ion transport in mouse erythrocytes. These differences demonstrate the feasibility of identifying specific quantitative trait loci for erythroid ion transport and content in genetically standardized inbred mouse strains. PMID:23482811

  19. Strain-specific variations in cation content and transport in mouse erythrocytes.

    PubMed

    Rivera, Alicia; Zee, Robert Y L; Alper, Seth L; Peters, Luanne L; Brugnara, Carlo

    2013-05-01

    Studies of ion transport pathophysiology in hematological disorders and tests of possible new therapeutic agents for these disorders have been carried out in various mouse models because of close functional similarities between mouse and human red cells. We have explored strain-specific differences in erythrocyte membrane physiology in 10 inbred mouse strains by determining erythrocyte contents of Na(+), K(+), and Mg(2+), and erythrocyte transport of ions via the ouabain-sensitive Na-K pump, the amiloride-sensitive Na-H exchanger (NHE1), the volume and chloride-dependent K-Cl cotransporter (KCC), and the charybdotoxin-sensitive Gardos channel (KCNN4). Our data reveal substantial strain-specific and sex-specific differences in both ion content and trans-membrane ion transport in mouse erythrocytes. These differences demonstrate the feasibility of identifying specific quantitative trait loci for erythroid ion transport and content in genetically standardized inbred mouse strains.

  20. Hemin-induced suicidal erythrocyte death.

    PubMed

    Gatidis, Sergios; Föller, Michael; Lang, Florian

    2009-08-01

    Several diseases, such as malaria, sickle cell disease, and ischemia/reperfusion may cause excessive formation of hemin, which may in turn trigger hemolysis. A variety of drugs and diseases leading to hemolysis triggers suicidal erythrocyte death or eryptosis, i.e., cell membrane scrambling and cell shrinkage. Eryptosis is elicited by increased cytosolic Ca(2+) activity and by ceramide. The present study explored whether hemin stimulates eryptosis. Cell membrane scrambling was estimated from annexin V-binding to phosphatidylserine exposed at the cell surface, cell shrinkage from forward scatter in fluorescence-activated cell sorter analysis, cytosolic Ca(2+) activity from Fluo3 fluorescence and ceramide formation from fluorescence-labeled antibody binding. Exposure to hemin (1-10 microM) within 48 h significantly increased annexin V-binding, decreased forward scatter, increased cytosolic Ca(2+) activity, and stimulated ceramide formation. In conclusion, hemin stimulates suicidal cell death, which may in turn contribute to the clearance of circulating erythrocytes and thus to anemia.

  1. Ex vivo effects of ibogaine on the activity of antioxidative enzymes in human erythrocytes.

    PubMed

    Nikolić-Kokić, Aleksandra; Oreščanin-Dušić, Zorana; Spasojević, Ivan; Slavić, Marija; Mijušković, Ana; Paškulin, Roman; Miljević, Čedo; Spasić, Mihajlo B; Blagojević, Duško P

    2015-04-22

    Ibogaine is a naturally occurring alkaloid with psychotropic and metabotropic effects, derived from the bark of the root of the West African Tabernanthe iboga plant. The tribes of Kongo basin have been using iboga as a stimulant, for medicinal purposes, and in rite of passage ceremonies, for centuries. Besides, it has been found that this drug has anti-addictive effects. Previous studies have demonstrated that ibogaine changed the quantity of ATP and energy related enzymes as well as the activity of antioxidant enzymes in cells thus altering redox equilibrium in a time manner. In this work, the mechanism of its action was further studied by measuring the effects of ibogaine in human erythrocytes in vitro on ATP liberation, membrane fluidity and antioxidant enzymes activity. Heparinized human blood samples were incubated with ibogaine (10 and 20 μM) at 37°C for 1h. Blood plasma was separated by centrifugation and the levels of ATP and uric acid were measured 10 min after the addition of ibogaine using standard kits. The activity of copper-zinc superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were measured in erythrocytes after incubation period. The stability of SOD1 activity was further tested through in vitro incubation with H2O2 and scanning of its electrophoretic profiles. Membrane fluidity was determined using an electron paramagnetic resonance spin-labelling method. Results showed that ibogaine treatment of erythrocytes in vitro increased ATP concentration in the blood plasma without changes in neither erythrocytes membrane fluidity nor uric acid concentration. Ibogaine also increased SOD1 activity in erythrocytes at both doses applied here. Treatment with 20 μM also elevated GR activity after in vitro incubation at 37°C. Electrophoretic profiles revealed that incubation with ibogaine mitigates H2O2 mediated suppression of SOD1 activity. Some of the effects of ibogaine seem to be mediated through

  2. Evaluation of immunohematologic routine methods using the new erythrocyte-magnetized technology on the QWALYS 2 system.

    PubMed

    Schoenfeld, Helge; Bulling, Katia; von Heymann, Christian; Neuner, Bruno; Kalus, Ulrich; Kiesewetter, Holger; Pruss, Axel

    2009-07-01

    QWALYS 2 is a fully automated system for ABO/D grouping, Rh phenotyping, K typing, and antibody screening (ABS). Its new erythrocyte-magnetized technology (EMT) is based on the use of magnetic nanoparticles and avoids centrifugation and washing steps. Overall 499 blood samples were tested with our routine blood bank methods for ABO/D grouping, 313 samples for Rh phenotyping and K typing (microtiter plates; Olympus PK 7200), and 478 samples for ABS (gel centrifugation technique, DiaMed). All samples were tested in parallel with the EMT. In 496 of 499 samples (99.4%), a complete concordance between the observed (QWALYS 2) and the expected results for ABO/D grouping was found. One sample with a weak A in an AB blood group and 2 samples with a weak D were not detected by the QWALYS system. Rh phenotyping and K tests revealed a 100% concordance. In the two ABS techniques, 427 samples were negative in both and 15 samples showed the same antibody specificity in both. Three immunoglobulin M antibodies were as expected negative in EMT and positive by DiaMed. In 32 cases (6.7%), false-positive reactions were observed by EMT due to 22 unspecific reactions (4.6%) and 10 lipemic or fibrinic plasmas (2.1%). One autoantibody was found by EMT only. The EMT is reliably suited to ABO/D grouping, Rh phenotyping, and K testing and is suitable to detect immunoglobulin G red blood cell alloantibodies as well. The rate of false-positive reactions in ABS due to lipemic and fibrinic samples needs to be reduced.

  3. Mediterranean-style diet effect on the structural properties of the erythrocyte cell membrane of hypertensive patients: the Prevencion con Dieta Mediterranea Study.

    PubMed

    Barceló, Francisca; Perona, Javier S; Prades, Jesús; Funari, Sérgio S; Gomez-Gracia, Enrique; Conde, Manuel; Estruch, Ramon; Ruiz-Gutiérrez, Valentina

    2009-11-01

    A currently ongoing randomized trial has revealed that the Mediterranean diet, rich in virgin olive oil or nuts, reduces systolic blood pressure in high-risk cardiovascular patients. Here, we present a structural substudy to assess the effect of a Mediterranean-style diet supplemented with nuts or virgin olive oil on erythrocyte membrane properties in 36 hypertensive participants after 1 year of intervention. Erythrocyte membrane lipid composition, structural properties of reconstituted erythrocyte membranes, and serum concentrations of inflammatory markers are reported. After the intervention, the membrane cholesterol content decreased, whereas that of phospholipids increased in all of the dietary groups; the diminishing cholesterol:phospholipid ratio could be associated with an increase in the membrane fluidity. Moreover, reconstituted membranes from the nuts and virgin olive oil groups showed a higher propensity to form a nonlamellar inverted hexagonal phase structure that was related to an increase in phosphatidylethanolamine lipid class. These data suggest that the Mediterranean-style diet affects the lipid metabolism that is altered in hypertensive patients, influencing the structural membrane properties. The erythrocyte membrane modulation described provides insight in the structural bases underlying the beneficial effect of a Mediterranean-style diet in hypertensive subjects.

  4. Exo-erythrocytic development of avian malaria and related haemosporidian parasites.

    PubMed

    Valkiūnas, Gediminas; Iezhova, Tatjana A

    2017-03-03

    Avian malaria parasites (Plasmodium spp.) and related haemosporidians (Haemosporida) are responsible for diseases which can be severe and even lethal in avian hosts. These parasites cause not only blood pathology, but also damage various organs due to extensive exo-erythrocytic development all over the body, which is not the case during Plasmodium infections in mammals. However, exo-erythrocytic development (tissue merogony or schizogony) remains the most poorly investigated part of life cycle in all groups of wildlife haemosporidian parasites. In spite of remarkable progress in studies of genetic diversity, ecology and evolutionary biology of avian haemosporidians during the past 20 years, there is not much progress in understanding patterns of exo-erythrocytic development in these parasites. The purpose of this review is to overview the main information on exo-erythrocytic development of avian Plasmodium species and related haemosporidian parasites as a baseline for assisting academic and veterinary medicine researchers in morphological identification of these parasites using tissue stages, and to define future research priorities in this field of avian malariology. The data were considered from peer-reviewed articles and histological material that was accessed in zoological collections in museums of Australia, Europe and the USA. Articles describing tissue stages of avian haemosporidians were included from 1908 to the present. Histological preparations of various organs infected with the exo-erythrocytic stages of different haemosporidian parasites were examined. In all, 229 published articles were included in this review. Exo-erythrocytic stages of avian Plasmodium, Fallisia, Haemoproteus, Leucocytozoon, and Akiba species were analysed, compared and illustrated. Morphological characters of tissue stages that can be used for diagnostic purposes were specified. Recent molecular studies combined with histological research show that avian haemosporidians are more

  5. Modification of Erythrocyte Membrane Fatty Acid Contents After Kidney Transplantation: A Prospective Study.

    PubMed

    Son, Y K; Kwon, H; Lee, H W; Jeong, E G; Lee, S M; Kim, S E; Park, Y; An, W S

    2018-06-01

    Modifications of erythrocyte membrane fatty acid (FA) contents may affect cellular function or transmembrane receptors. One cross-sectional study has shown that kidney transplant (KTP) recipients have lower erythrocyte membrane oleic acid content than dialysis patients do. Therefore, we prospectively tested whether erythrocyte membrane contents of FA including oleic acid change after KTP. We recruited 23 KTP recipients (September 2011 through May 2014). Blood samples were obtained immediately before KTP and 6 months after. Erythrocyte membrane FA contents were measured by gas chromatography. Mean age of the enrolled KTP recipients was 45.3 ± 10.9 years, and men represented 66.7% of the cases. ABO-incompatible KTPs constituted 14.3% and cadaver donors 42.9% of the cases. Steroids, mycophenolate mofetil, and tacrolimus were used as immunosuppressive treatment. There was no significant difference in dietary consumption between time points before and 6 months after KTP. Total cholesterol and low-density lipoprotein cholesterol levels were significantly higher at 6 months after KTP as compared with baseline. Erythrocyte membrane contents of polyunsaturated FA, ω-3 FA, ω-6 FA, and the ω-3 index were significantly higher, but erythrocyte membrane contents of total saturated FAs, total monounsaturated FAs, including oleic acid, total trans-FA, palmitoleic acid, and the ω-6-to-ω-3 ratio were significantly lower at 6 months after KTP. Erythrocyte membrane FA contents significantly changed toward a more favorable cardiovascular profile after KTP. These changes in erythrocyte membrane FA contents may be related to improved renal function because of the absence of significant dietary changes. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. N-ethylmaleimide activates a Cl−-independent component of K+ flux in mouse erythrocytes

    PubMed Central

    Shmukler, Boris E.; Hsu, Ann; Alves, Jessica; Trudel, Marie; Rust, Marco B.; Hubner, Christian A.; Rivera, Alicia; Alper, Seth L.

    2013-01-01

    The K-Cl cotransporters (KCCs) of mouse erythrocytes exhibit higher basal activity than those of human erythrocytes, but are similarly activated by cell swelling, by hypertonic urea, and by staurosporine. However, the dramatic stimulation of human erythroid KCCs by N-ethylmaleimide (NEM) is obscured in mouse erythrocytes by a prominent NEM-stimulated K+ efflux that lacks Cl−-dependence. The NEM-sensitivity of Cl−-independent K+ efflux of mouse erythrocytes is lower than that of KCC. The genetically engineered absence of the K-Cl cotransporters KCC3 and KCC1 from mouse erythrocytes does not modify Cl−-independent K+ efflux. Mouse erythrocytes genetically devoid of the Gardos channel KCNN4 show increased NEM-sensitivity of both Cl−-independent K+ efflux and K-Cl cotransport. The increased NEM-sensitivity and stimulation magnitude of Cl−-independent K+ efflux in mouse erythrocytes expressing transgenic hypersickling human hemoglobin SAD (HbSAD) is independent of the presence of KCC3 and KCC1, but absence of KCNN4 reduces the stimulatory effect of HbSAD. NEM-stimulated Cl−-independent K+ efflux of mouse red cells is insensitive to ouabain and bumetanide, but partially inhibited by chloroquine, barium, and amiloride. The NEM-stimulated activity is modestly reduced at pH 6.0, but not significantly altered at pH 8.0, and abolished at 0°C. Although the molecular identity of this little-studied K+ efflux pathway of mouse erythrocytes remains unknown, it’s potential role in the pathophysiology of sickle red cell dehydration will be important for extrapolation of studies in mouse models of sickle cell disease to our understanding of humans with sickle cell anemia. PMID:23481459

  7. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  8. Surface properties of Entamoeba: increased rates of human erythrocyte phagocytosis in pathogenic strains

    PubMed Central

    1978-01-01

    The assertion that ingestion of human erythrocytes is restricted to invasive strains of Entamoeba histolytica has not been evaluated previously by comparative studies. In this report we describe the in vitro ingestion of human erythrocytes by pathogenic and nonpathogenic Entamoeba. Microscopic evaluation of erythrophagocytosis by eight different Entamoeba grown in culture revealed that strains of E. histolytica isolated from cases of human dysentery show a much higher rate of erythrocyte ingestion than nonpathogenic strains. However, all strains are able to phagocytize erythrocytes. The extremely high rate of phagocytic activity shown by pathogenic E. histolytica could be one of the properties related to the pathogenicity of this parasitic protozoan. PMID:722237

  9. Very Deep Convolutional Neural Networks for Morphologic Classification of Erythrocytes.

    PubMed

    Durant, Thomas J S; Olson, Eben M; Schulz, Wade L; Torres, Richard

    2017-12-01

    Morphologic profiling of the erythrocyte population is a widely used and clinically valuable diagnostic modality, but one that relies on a slow manual process associated with significant labor cost and limited reproducibility. Automated profiling of erythrocytes from digital images by capable machine learning approaches would augment the throughput and value of morphologic analysis. To this end, we sought to evaluate the performance of leading implementation strategies for convolutional neural networks (CNNs) when applied to classification of erythrocytes based on morphology. Erythrocytes were manually classified into 1 of 10 classes using a custom-developed Web application. Using recent literature to guide architectural considerations for neural network design, we implemented a "very deep" CNN, consisting of >150 layers, with dense shortcut connections. The final database comprised 3737 labeled cells. Ensemble model predictions on unseen data demonstrated a harmonic mean of recall and precision metrics of 92.70% and 89.39%, respectively. Of the 748 cells in the test set, 23 misclassification errors were made, with a correct classification frequency of 90.60%, represented as a harmonic mean across the 10 morphologic classes. These findings indicate that erythrocyte morphology profiles could be measured with a high degree of accuracy with "very deep" CNNs. Further, these data support future efforts to expand classes and optimize practical performance in a clinical environment as a prelude to full implementation as a clinical tool. © 2017 American Association for Clinical Chemistry.

  10. Parathyroid hormone ablation alters erythrocyte parameters that are rescued by calcium-sensing receptor gene deletion

    PubMed Central

    Romero, Jose R.; Youte, Rodeler; Brown, Edward M.; Pollak, Martin R.; Goltzman, David; Karaplis, Andrew; Pong, Lie-Chin; Chien, Lawrence; Chattopadhyay, Naibedya; Rivera, Alicia

    2013-01-01

    The mechanisms by which parathyroid hormone (PTH) produces anemia, are unclear. Parathyroid hormone secretion is regulated by the extracellular Ca2+-sensing receptor. We investigated the effects of ablating PTH on hematological indices and erythrocytes volume regulation in wild-type, PTH-null and Ca2+-sensing receptor-null/PTH-null mice. The erythrocyte parameters were measured in whole mouse blood and volume regulatory systems were determined by plasma membrane K+ fluxes and osmotic fragility was measured by hemoglobin determination at varying osmolarities. We observed that the absence of PTH significantly increases mean erythrocyte volume and reticulocyte counts, while decreasing erythrocyte counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration. These changes were accompanied by increases in erythrocyte cation content, a denser cell population and increased K+ permeability, which were in part mediated by activation of the K+/Cl− cotransporter and Gardos channel. In addition we observed that erythrocyte osmotic fragility in PTH-null compared with wild-type mice was enhanced. When Ca2+-sensing receptor gene was deleted on the background of PTH-null mice, we observed that several of the alterations in erythrocyte parameters of PTH-null mice were largely rescued, particularly those related to erythrocyte volume, K+ fluxes and osmotic fragility, and became similar to those observed in wild-type mice. Our results demonstrate that Ca2+-sensing receptor and parathyroid hormone are functionally coupled to maintain erythrocyte homeostasis. PMID:23528155

  11. Parathyroid hormone ablation alters erythrocyte parameters that are rescued by calcium-sensing receptor gene deletion.

    PubMed

    Romero, Jose R; Youte, Rodeler; Brown, Edward M; Pollak, Martin R; Goltzman, David; Karaplis, Andrew; Pong, Lie-Chin; Chien, Lawrence; Chattopadhyay, Naibedya; Rivera, Alicia

    2013-07-01

    The mechanisms by which parathyroid hormone (PTH) produces anemia are unclear. Parathyroid hormone secretion is regulated by the extracellular Ca2+ -sensing receptor. We investigated the effects of ablating PTH on hematological indices and erythrocytes volume regulation in wild-type, PTH-null, and Ca2+ -sensing receptor-null/PTH-null mice. The erythrocyte parameters were measured in whole mouse blood, and volume regulatory systems were determined by plasma membrane K+ fluxes, and osmotic fragility was measured by hemoglobin determination at varying osmolarities. We observed that the absence of PTH significantly increases mean erythrocyte volume and reticulocyte counts, while decreasing erythrocyte counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration. These changes were accompanied by increases in erythrocyte cation content, a denser cell population, and increased K+ permeability, which were in part mediated by activation of the K+ /Cl- cotransporter and Gardos channel. In addition we observed that erythrocyte osmotic fragility in PTH-null compared with wild-type mice was enhanced. When Ca2+ -sensing receptor gene was deleted on the background of PTH-null mice, we observed that several of the alterations in erythrocyte parameters of PTH-null mice were largely rescued, particularly those related to erythrocyte volume, K+ fluxes and osmotic fragility, and became similar to those observed in wild-type mice. Our results demonstrate that Ca2+ -sensing receptor and parathyroid hormone are functionally coupled to maintain erythrocyte homeostasis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. [Age-related change in the alpha-tocopherolquinone/alpha-tocopherol ratio in the rat erythrocyte membrane].

    PubMed

    Yanagawa, K; Takeda, H; Matsumiya, T; Takasaki, M

    1999-05-01

    alpha-Tocopherol (alpha-Toc), a lipophilic phenolic antioxidant that is localized mainly in the biomembrane, protects cells against oxidation-associated cytotoxicity by prevention of membrane lipid peroxidation, maintenance of the redox balance intracellular thiols and stabilization of the membrane structure. We investigated the age-related changes in redox dynamics of alpha-Toc in plasma and erythrocyte membrane of an elderly (66 weeks old) and young group (10 weeks old). Total, alpha-, beta + gamma-, delta-Toc and alpha-tocopherolquinone (alpha-TocQ) in plasma and erythrocyte membrane were determined by high-performance liquid chromatography (HPLC) with a series of multiple coulometric working electrodes (CWE). Rat venous blood sample was divided into plasma and erythrocyte layers by centrifugation, and then erythrocyte membrane sample was prepared according to the method of Dodge et al. under a stream of nitrogen. In plasma, total and alpha-Toc concentrations were increased, and beta + gamma-, delta-Toc and alpha-TocQ concentrations were decreased age-dependently. In the erythrocyte membrane, total, alpha-TocQ concentrations and three fractions of tocopherols decreased age-dependently. Also, a decrease in the alpha-TocQ/alpha-Toc ratio in erythrocyte membrane was observed in the elderly group. These findings suggest that the alpha-Toc uptake in erythrocyte membrane and utilization rate of alpha-Toc in erythrocyte membrane decline age-dependently. This decline may promote membrane lipid peroxidation. alpha-Toc redox dynamics in erythrocyte membrane were useful to investigate the pathophysiology of aging mechanisms related to oxidative stress.

  13. Cannibalism as an interacting phenotype: precannibalistic aggression is influenced by social partners in the endangered Socorro Isopod (Thermosphaeroma thermophilum).

    PubMed

    Bleakley, B H; Welter, S M; McCauley-Cole, K; Shuster, S M; Moore, A J

    2013-04-01

    Models for the evolution of cannibalism highlight the importance of asymmetries between individuals in initiating cannibalistic attacks. Studies may include measures of body size but typically group individuals into size/age classes or compare populations. Such broad comparisons may obscure the details of interactions that ultimately determine how socially contingent characteristics evolve. We propose that understanding cannibalism is facilitated by using an interacting phenotypes perspective that includes the influences of the phenotype of a social partner on the behaviour of a focal individual and focuses on variation in individual pairwise interactions. We investigated how relative body size, a composite trait between a focal individual and its social partner, and the sex of the partners influenced precannibalistic aggression in the endangered Socorro isopod, Thermosphaeroma thermophilum. We also investigated whether differences in mating interest among males and females influenced cannibalism in mixed sex pairs. We studied these questions in three populations that differ markedly in range of body size and opportunities for interactions among individuals. We found that relative body size influences the probability of and latency to attack. We observed differences in the likelihood of and latency to attack based on both an individual's sex and the sex of its partner but found no evidence of sexual conflict. The instigation of precannibalistic aggression in these isopods is therefore a property of both an individual and its social partner. Our results suggest that interacting phenotype models would be improved by incorporating a new conditional ψ, which describes the strength of a social partner's influence on focal behaviour. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  14. Slow Freezing Coupled Static Magnetic Field Exposure Enhances Cryopreservative Efficiency—A Study on Human Erythrocytes

    PubMed Central

    Lin, Chun-Yen; Wei, Po-Li; Chang, Wei-Jen; Huang, Yung-Kai; Feng, Sheng-Wei; Lin, Che-Tong; Lee, Sheng-Yang; Huang, Haw-Ming

    2013-01-01

    The aim of this study was to assess the cryoprotective effect of static magnetic fields (SMFs) on human erythrocytes during the slow cooling procedure. Human erythrocytes suspended in 20% glycerol were slowly frozen with a 0.4-T or 0.8-T SMF and then moved to a −80°C freezer for 24 hr. The changes in survival rate, morphology, and metabolites of the thawed erythrocytes were examined. To understand possible cryoprotective mechanisms of SMF, membrane fluidity and dehydration stability of SMF-exposed erythrocytes were tested. For each test, sham-exposed erythrocytes were used as controls. Our results showed that freezing coupled with 0.4-T or 0.8-T SMFs significantly increased the relative survival ratios of the frozen-thawed erythrocytes by 10% and 20% (p<0.001), respectively. The SMFs had no effect on erythrocyte morphology and metabolite levels. However, membrane fluidity of the samples exposed to 0.8-T SMF decreased significantly (p<0.05) in the hydrophobic regions. For the dehydration stability experiments, the samples exposed to 0.8-T SMF exhibited significantly lower (p<0.05) hemolysis. These results demonstrate that a 0.8-T SMF decreases membrane fluidity and enhances erythrocyte membrane stability to resist dehydration damage caused by slow cooling procedures. PMID:23520546

  15. Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia

    PubMed Central

    Sun, Kaiqi; Zhang, Yujin; D'Alessandro, Angelo; Nemkov, Travis; Song, Anren; Wu, Hongyu; Liu, Hong; Adebiyi, Morayo; Huang, Aji; Wen, Yuan E.; Bogdanov, Mikhail V.; Vila, Alejandro; O'Brien, John; Kellems, Rodney E.; Dowhan, William; Subudhi, Andrew W.; Jameson-Van Houten, Sonja; Julian, Colleen G.; Lovering, Andrew T.; Safo, Martin; Hansen, Kirk C.; Roach, Robert C.; Xia, Yang

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive signalling lipid highly enriched in mature erythrocytes, with unknown functions pertaining to erythrocyte physiology. Here by employing nonbiased high-throughput metabolomic profiling, we show that erythrocyte S1P levels rapidly increase in 21 healthy lowland volunteers at 5,260 m altitude on day 1 and continue increasing to 16 days with concurrently elevated erythrocyte sphingonisne kinase 1 (Sphk1) activity and haemoglobin (Hb) oxygen (O2) release capacity. Mouse genetic studies show that elevated erythrocyte Sphk1-induced S1P protects against tissue hypoxia by inducing O2 release. Mechanistically, we show that intracellular S1P promotes deoxygenated Hb anchoring to the membrane, enhances the release of membrane-bound glycolytic enzymes to the cytosol, induces glycolysis and thus the production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific glycolytic intermediate, which facilitates O2 release. Altogether, we reveal S1P as an intracellular hypoxia-responsive biolipid promoting erythrocyte glycolysis, O2 delivery and thus new therapeutic opportunities to counteract tissue hypoxia. PMID:27417539

  16. Detailed methodology for high resolution scanning electron microscopy (SEM) of murine malaria parasitized-erythrocytes.

    PubMed

    Hayakawa, Eri H; Matsuoka, Hiroyuki

    2016-10-01

    Scanning electron microscopy (SEM) is a powerful tool used to investigate object surfaces and has been widely applied in both material science and biology. With respect to the study of malaria, SEM revealed that erythrocytes infected with Plasmodium falciparum, a human parasite, display 'knob-like' structures on their surface comprising parasitized proteins. However, detailed methodology for SEM studies of malaria parasites is lacking in the literature making such studies challenging. Here, we provide a step-by-step guide to preparing Plasmodium-infected erythrocytes from two mouse strains for SEM analysis with minimal structural deterioration. We tested three species of murine malaria parasites, P. berghei, P. yoelii, and P. chabaudi, as well as non-parasitized human erythrocytes and P. falciparum-infected erythrocytes for comparisons. Our data demonstrated that the surface structures of parasitized erythrocytes between the three species of murine parasites in the two different strains of mice were indistinguishable and no surface alterations were observed in P. falciparum-erythrocytes. Our SEM observations contribute towards an understanding of the molecular mechanisms of parasite maturation in the erythrocyte cytoplasm and, along with future studies using our detailed methodology, may help to gain insight into the clinical phenomena of human malaria. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Magnetic measurements on human erythrocytes: Normal, beta thalassemia major, and sickle

    NASA Astrophysics Data System (ADS)

    Sakhnini, Lama

    2003-05-01

    In this article magnetic measurements were made on human erythrocytes at different hemoglobin states (normal and reduced hemoglobin). Different blood samples: normal, beta thalassemia major, and sickle were studied. Beta thalassemia major and sickle samples were taken from patients receiving lifelong blood transfusion treatment. All samples examined exhibited diamagnetic behavior. Beta thalassemia major and sickle samples showed higher diamagnetic susceptibilities than that for the normal, which was attributed to the increase of membrane to hemoglobin volume ratio of the abnormal cells. Magnetic measurements showed that the erythrocytes in the reduced state showed less diamagnetic response in comparison with erythrocytes in the normal state. Analysis of the paramagnetic component of magnetization curves gave an effective magnetic moment of μeff=7.6 μB per reduced hemoglobin molecule. The same procedure was applied to sickle and beta thalassemia major samples and values for μeff were found to be comparable to that of the normal erythrocytes.

  18. N-ethylmaleimide activates a Cl(-)-independent component of K(+) flux in mouse erythrocytes.

    PubMed

    Shmukler, Boris E; Hsu, Ann; Alves, Jessica; Trudel, Marie; Rust, Marco B; Hubner, Christian A; Rivera, Alicia; Alper, Seth L

    2013-06-01

    The K-Cl cotransporters (KCCs) of mouse erythrocytes exhibit higher basal activity than those of human erythrocytes, but are similarly activated by cell swelling, by hypertonic urea, and by staurosporine. However, the dramatic stimulation of human erythroid KCCs by N-ethylmaleimide (NEM) is obscured in mouse erythrocytes by a prominent NEM-stimulated K(+) efflux that lacks Cl(-)-dependence. The NEM-sensitivity of Cl(-)-independent K(+) efflux of mouse erythrocytes is lower than that of KCC. The genetically engineered absence of the K-Cl cotransporters KCC3 and KCC1 from mouse erythrocytes does not modify Cl(-)-independent K(+) efflux. Mouse erythrocytes genetically devoid of the Gardos channel KCNN4 show increased NEM-sensitivity of both Cl(-)-independent K(+) efflux and K-Cl cotransport. The increased NEM-sensitivity and stimulation magnitude of Cl(-)-independent K(+) efflux in mouse erythrocytes expressing transgenic hypersickling human hemoglobin SAD (HbSAD) are independent of the presence of KCC3 and KCC1, but absence of KCNN4 reduces the stimulatory effect of HbSAD. NEM-stimulated Cl(-)-independent K(+) efflux of mouse red cells is insensitive to ouabain and bumetanide, but partially inhibited by chloroquine, barium, and amiloride. The NEM-stimulated activity is modestly reduced at pH6.0 but not significantly altered at pH8.0, and is abolished at 0°C. Although the molecular identity of this little-studied K(+) efflux pathway of mouse erythrocytes remains unknown, its potential role in the pathophysiology of sickle red cell dehydration will be important for the extrapolation of studies in mouse models of sickle cell disease to our understanding of humans with sickle cell anemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The Trw Type IV Secretion System of Bartonella Mediates Host-Specific Adhesion to Erythrocytes

    PubMed Central

    Vayssier-Taussat, Muriel; Le Rhun, Danielle; Deng, Hong Kuan; Biville, Francis; Cescau, Sandra; Danchin, Antoine; Marignac, Geneviève; Lenaour, Evelyne; Boulouis, Henri Jean; Mavris, Maria; Arnaud, Lionel; Yang, Huanming; Wang, Jing; Quebatte, Maxime; Engel, Philipp; Saenz, Henri; Dehio, Christoph

    2010-01-01

    Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The α-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host

  20. A case of paternity testing influenced by the silent allele of Rh erythrocyte groups.

    PubMed

    Ota, M; Yonemura, I; Fukushima, H; Hasekura, H; Ishimoto, G; Mizutani, Y; Yamada, T

    1987-11-01

    A paternity test is presented in which a father and his two children possessed an extremely rare amorphic gene R-29 (r,---). One of the children was determined to be illegitimate at the first trial as her Rh phenotype was R2R2(ccDEE) and the father's phenotype was R1R1(CCDee). At the Court of Appeal, however, the rare Rh gene r(---) was shown to be inherited from the father to the appellant child through extended tests including her brother whose phenotype was also R2R2(ccDEE). She was acknowledged to be legitimate.

  1. Erythrocyte Sialic Acid Content during Aging in Humans: Correlation with Markers of Oxidative Stress

    PubMed Central

    Mehdi, Mohammad Murtaza; Singh, Prabhakar; Rizvi, Syed Ibrahim

    2012-01-01

    Sialic acids are substituted neuraminic acid derivatives which are typically found at the outermost end of glycan chains on the membrane in all cell types. The role of erythrocyte membrane sialic acids during aging has been established however the relationship between sialic acid and oxidative stress is not fully understood. The present work was undertaken to analyze the relationship between erythrocyte membrane sialic acid with its plasma level, membrane and plasma lipid hydroperoxide levels and plasma total antioxidant capacity. Results show that sialic acid content decreases significantly (P < 0.001) in RBC membrane (r = −0.901) and increases in plasma (r = 0.860) as a function of age in humans. Lipid peroxidation measured in the form of hydroperoxides increases significantly (P < 0.001) in plasma (r = 0.830) and RBC membranes (r = 0.875) with age in humans. The Trolox Equivalent Total Antioxidant Capacity (TETAC) of plasma was found to be significantly decreased (P < 0.001, r = −0.844). We observe significant correlations between decrease of erythrocyte membrane sialic acid and plasma lipid hydroperoxide and TETAC. Based on the observed correlations, we hypothesize that increase in oxidative stress during aging may influence the sialic acid decomposition from membrane thereby altering the membrane configuration affecting many enzymatic and transporter activities. Considering the importance of plasma sialic acid as a diagnostic parameter, it is important to establish age-dependent reference. PMID:22377734

  2. Augmented water binding and low cellular water content in erythrocytes of camel and camelids.

    PubMed Central

    Bogner, P; Csutora, P; Cameron, I L; Wheatley, D N; Miseta, A

    1998-01-01

    We investigated a link between hemoglobin primary structure, hemoglobin hydrophobicity-hydrophilicity, and erythrocyte water content in various mammalian species. Some hemoglobin molecules, particularly those of the camel and camelids, contain more charged amino acid residues and are more hydrophilic than the hemoglobins of human and a number of other mammalian species. To test the in vivo significance of these alterations of hemoglobin primary structure, we determined the osmotically unresponsive erythrocyte water fractions in mannit solutions of various osmolarities at 4 degreesC. Among the species investigated, the size of the osmotically unresponsive erythrocyte water fraction relates in a positive linear way to hemoglobin hydrophilicity. The extreme low total erythrocyte water content of camel erythrocytes (1.1-1.3 g water/g dry mass) may be explained by a comparatively high osmotically unresponsive erythrocyte water fraction. It is proposed that alterations of hemoglobin sequences of camel and camelids may be the part of a natural selection process aimed at protecting these animals against osmotic dehydration in arid environments. PMID:9826628

  3. A novel approach for assessments of erythrocyte sedimentation rate.

    PubMed

    Pribush, A; Hatskelzon, L; Meyerstein, N

    2011-06-01

    Previous studies have shown that the dispersed phase of sedimenting blood undergoes dramatic structural changes: Discrete red blood cell (RBC) aggregates formed shortly after a settling tube is filled with blood are combined into a continuous network followed by its collapse via the formation of plasma channels, and finally, the collapsed network is dispersed into individual fragments. Based on this scheme of structural transformation, a novel approach for assessments of erythrocyte sedimentation is suggested. Information about erythrocyte sedimentation is extracted from time records of the blood conductivity measured after a dispersion of RBC network into individual fragments. It was found that the sedimentation velocity of RBC network fragments correlates positively with the intensity of attractive intercellular interactions, whereas no effect of hematocrit (Hct) was observed. Thus, unlike Westergren erythrocyte sedimentation rate, sedimentation data obtained by the proposed method do not require correction for Hct. © 2010 Blackwell Publishing Ltd.

  4. The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations.

    PubMed

    Salgueiro, Andréia C F; Leal, Carina Q; Bianchini, Matheus C; Prado, Ianeli O; Mendez, Andreas S L; Puntel, Robson L; Folmer, Vanderlei; Soares, Félix A; Avila, Daiana S; Puntel, Gustavo O

    2013-06-21

    Bauhinia forficata (BF) has been traditionally used as tea in folk medicine of Brazil for treatment of Diabetes mellitus (DM). To evaluate the effects of BF leaf tea on markers of oxidative damage and antioxidant levels in an experimental model of hyperglycemia in human erythrocytes in vitro. Human erythrocytes were incubated with high glucose concentrations or glucose and BF tea for 24h and 48h. After incubation lipid peroxidation and non-protein SH levels were analyzed. Moreover, quantification of polyphenols and flavonoids, iron chelating property, scavenging of DPPH, and prevention of lipid peroxidation in isolated lipids were also assessed. A significant amount of polyphenols and flavonoids was observed. The main components found by LC-MS analysis were quercetin-3-O-(2-rhamnosyl) rutinoside, kaempferol-3-O-(2-rhamnosyl) rutinoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside. BF tea presents important antioxidant and chelating properties. Moreover, BF tea was effective to increase non-protein SH levels and reduce lipid peroxidation induced by high glucose concentrations in human erythrocytes. The antioxidant effects of BF tea could be related to the presence of different phenolic and flavonoids components. We believe that these components can be responsible to protect human erythrocytes exposed to high glucose concentrations against oxidative damage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Erythrocyte aggregation under high pressure studied by laser photometry and mathematical analysis.

    PubMed

    Toyama, Yoshiharu; Yoshida, Hisashi; Yamamoto, Takao; Dobashi, Toshiaki

    2016-04-01

    The effects of hydrostatic pressure on erythrocyte aggregation have been studied by laser photometry and analysis based on a phenomenological theory. Samples were prepared by suspending swine erythrocytes in their own plasma. A high-pressure vessel consisting of a stainless-steel block with a hole to hold a sample cell and two sapphire windows to allows the passage of a He-Ne laser beam was used in the experimental setup. The suspension was stirred at 1500 rpm to disperse the erythrocytes homogeneously. Immediately after reducing the stirring rate from 1500 rpm to 300 rpm, the transmitted light intensity (I) was recorded every 10 ms under a high pressure of 40-200 MPa. The value of I increased with time (t) owing to erythrocyte aggregation. From the phenomenological theory, the equation ΔI(t)=ΔIeq[1-e(-Kt)/(1-B(1-e(-Kt)))] was derived for the change in the transmitted light intensity (ΔI) due to erythrocyte aggregation, where ΔIeq is the transmitted light intensity in the steady state, K is a time constant and B is a constant that represents the ratio of the number of interaction sites on erythrocyte aggregates at time t to that in the steady state. The observed time courses of ΔI obtained at all pressures could be closely fitted to the theoretical equation. ΔIeq roughly increased with increasing pressure. On the other hand, K and B abruptly decreased above 120 MPa. The growth rate of aggregates decreased above 120 MPa. These results suggest a change in the mechanism of erythrocyte aggregation at approximately 120 MPa. We discuss the physical meaning of the parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system.

    PubMed

    Tsukada, K; Sekizuka, E; Oshio, C; Minamitani, H

    2001-05-01

    To measure erythrocyte deformability in vitro, we made transparent microchannels on a crystal substrate as a capillary model. We observed axisymmetrically deformed erythrocytes and defined a deformation index directly from individual flowing erythrocytes. By appropriate choice of channel width and erythrocyte velocity, we could observe erythrocytes deforming to a parachute-like shape similar to that occurring in capillaries. The flowing erythrocytes magnified 200-fold through microscopy were recorded with an image-intensified high-speed video camera system. The sensitivity of deformability measurement was confirmed by comparing the deformation index in healthy controls with erythrocytes whose membranes were hardened by glutaraldehyde. We confirmed that the crystal microchannel system is a valuable tool for erythrocyte deformability measurement. Microangiopathy is a characteristic complication of diabetes mellitus. A decrease in erythrocyte deformability may be part of the cause of this complication. In order to identify the difference in erythrocyte deformability between control and diabetic erythrocytes, we measured erythrocyte deformability using transparent crystal microchannels and a high-speed video camera system. The deformability of diabetic erythrocytes was indeed measurably lower than that of erythrocytes in healthy controls. This result suggests that impaired deformability in diabetic erythrocytes can cause altered viscosity and increase the shear stress on the microvessel wall. Copyright 2001 Academic Press.

  7. PUFA levels in erythrocyte membrane phospholipids are differentially associated with colorectal adenoma risk.

    PubMed

    Rifkin, Samara B; Shrubsole, Martha J; Cai, Qiuyin; Smalley, Walter E; Ness, Reid M; Swift, Larry L; Zheng, Wei; Murff, Harvey J

    2017-06-01

    Dietary intake of PUFA has been associated with colorectal neoplasm risk; however, results from observational studies have been inconsistent. Most prior studies have utilised self-reported dietary measures to assess fatty acid exposure which might be more susceptible to measurement error and biases compared with biomarkers. The purpose of this study was to determine whether erythrocyte phospholipid membrane PUFA percentages are associated with colorectal adenoma risk. We included data from 904 adenoma cases and 835 polyp-free controls who participated in the Tennessee Colorectal Polyp Study, a large colonoscopy-based case-control study. Erythrocyte membrane PUFA percentages were measured using GC. Conditional logistic regression was used to calculate adjusted OR for risk of colorectal adenomas with erythrocyte membrane PUFA. Higher erythrocyte membrane percentages of arachidonic acid was associated with an increased risk of colorectal adenomas (adjusted OR 1·66; 95 % CI 1·05, 2·62, P trend=0·02) comparing the highest tertile to the lowest tertile. The effect size for arachidonic acid was more pronounced when restricting the analysis to advanced adenomas only. Higher erythrocyte membrane EPA percentages were associated with a trend towards a reduced risk of advanced colorectal adenomas (P trend=0·05). Erythrocyte membrane arachidonic acid percentages are associated with an increased risk of colorectal adenomas.

  8. Tirilazad mesylate protects stored erythrocytes against osmotic fragility.

    PubMed

    Epps, D E; Knechtel, T J; Bacznskyj, O; Decker, D; Guido, D M; Buxser, S E; Mathews, W R; Buffenbarger, S L; Lutzke, B S; McCall, J M

    1994-12-01

    The hypoosmotic lysis curve of freshly collected human erythrocytes is consistent with a single Gaussian error function with a mean of 46.5 +/- 0.25 mM NaCl and a standard deviation of 5.0 +/- 0.4 mM NaCl. After extended storage of RBCs under standard blood bank conditions the lysis curve conforms to the sum of two error functions instead of a possible shift in the mean and a broadening of a single error function. Thus, two distinct sub-populations with different fragilities are present instead of a single, broadly distributed population. One population is identical to the freshly collected erythrocytes, whereas the other population consists of osmotically fragile cells. The rate of generation of the new, osmotically fragile, population of cells was used to probe the hypothesis that lipid peroxidation is responsible for the induction of membrane fragility. If it is so, then the antioxidant, tirilazad mesylate (U-74,006f), should protect against this degradation of stored erythrocytes. We found that tirilazad mesylate, at 17 microM (1.5 mol% with respect to membrane lecithin), retards significantly the formation of the osmotically fragile RBCs. Concomitantly, the concentration of free hemoglobin which accumulates during storage is markedly reduced by the drug. Since the presence of the drug also decreases the amount of F2-isoprostanes formed during the storage period, an antioxidant mechanism must be operative. These results demonstrate that tirilazad mesylate significantly decreases the number of fragile erythrocytes formed during storage in the blood bank.

  9. [Comparison of long-chain polyunsaturated fatty acids in plasma and erythrocyte phospholipids for biological monitoring].

    PubMed

    Kawabata, Terue; Nakai, Kunihiko; Hagiwara, Chie; Kurokawa, Naoyuki; Murata, Katsuyuki; Yaginuma, Kozue; Satoh, Hiroshi

    2011-01-01

    Previous data have indicated that the erythrocyte membrane may be the preferred sample type for assessing long-chain polyunsaturated fatty acid (LCPUFA) contents in cardiac and cerebral membranes. In this epidemiological study, we examined whether plasma phospholipids can be used for accurate biological monitoring of the LCPUFA state or whether analysis of erythrocyte membrane phospholipids is indispensable. (1) The analysis of LCPUFA contents in erythrocyte membrane phospholipids was conducted at baseline and after 1 and 3 days at 4°C, and 21 days at -40°C, after blood drawing, and the changes in LCPUFA content were examined. (2) The LCPUFA compositions of plasma and erythrocyte phospholipids in 133 young women (18-30 years old) were examined and the relationships between the sample type and the levels of LCPUFAs were determined. Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and DHA/arachidonic acid (AA) and (EPA+DHA)/AA ratios in erythrocyte membrane phospholipids after 21 days of blood drawing significantly decreased compared with the corresponding baseline data. Regarding AA, EPA and DHA, a significant positive correlation was shown between levels of erythrocyte membrane phospholipids and plasma phospholipids (AA, r=0.364; EPA, r=0.709; DHA, r=0.653). The predictive value of plasma phospholipids for determining the highest concentration quartile in erythrocyte phospholipids was better in EPA (70%) than in DHA (55%) and AA (42%). The measurement of LCPUFA content in erythrocyte membrane phospholipids is necessary for accurate biological monitoring. We also found that LCPUFA in erythrocyte membrane phospholipids is stable in cold storage (4°C) for 3 days after blood drawing.

  10. Identification of erythrocyte membrane proteins interacting with Mycoplasma suis GAPDH and OSGEP.

    PubMed

    Song, Qiqi; Song, Weijiao; Zhang, Weijing; He, Lan; Fang, Rui; Zhou, Yanqin; Shen, Bang; Hu, Min; Zhao, Junlong

    2018-05-05

    Mycoplasma suis (M. suis) is an uncultivable haemotrophic mycoplasma that parasitizes the red blood cells of a wide range of domestic and wild animals. Adhesion of M. suis to host erythrocytes is crucial for its unique RBC-dependent lifecycle. MSG1 protein (now named as GAPDH) with homology to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was the first identified adhesion protein of M. suis. In this study, we found that O-sialoglycoprotein endopeptidase (OSGEP) is another M. suis protein capable of binding porcine erythrocytes. Recombinant OSGEP expressed in E. coli demonstrated surface localization similar to GAPDH. Purified rOSGEP bound to erythrocyte membrane preparations in a dose-dependent manner and this adhesion could be specifically inhibited by anti-rOSGEP antibodies. E. coli transformants expressing OSGEP on their surface were able to adhere to porcine erythrocytes. Furthermore, using far-western and pull-down assays, we determined the host membrane proteins that interacted with OSGEP and GAPDH were Band3 and glycophorin A (GPA). In conclusion, our studies indicated that OSGEP and GAPDH could interact with both Band3 and GPA to mediate adhesion of M. suis to porcine erythrocytes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The effects of erythrocyte deformability upon hematocrit assessed by the conductance method.

    PubMed

    Hayashi, Yoshihito; Katsumoto, Yoichi; Oshige, Ikuya; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2009-04-21

    A comparative study of centrifugation and conductance methods for the estimation of cell volume fraction (phi) was performed to examine whether the strong forces exerted upon erythrocytes during centrifugation affect their volume, and the results are discussed in terms of erythrocyte deformability. Rabbit erythrocytes of four shapes (spherocytes, echinocytes, stomatocyte-like enlarged erythrocytes and discocytes) were prepared by controlling the pH of the suspending media. The packed cell volumes of the suspensions were measured by standard hematocrit determination methods using centrifugation in capillary tubes. Simultaneously, the same suspensions and their supernatants were used in dielectric spectroscopy measurements, and the low-frequency limits of their conductivities were used for the numerical estimation of phi. The hematocrit values of spherocytes and echinocytes were markedly less than the volume fractions obtained by the conductance method. Namely, the centrifugation reduced the cell volume. For enlarged erythrocytes and discocytes, however, the reduction of cell volume was not observed. These findings showed that phi obtained by the centrifugation method can be greatly affected by the deformability of the cells, but the level of the effect depends on the cell types. Consequently, phi obtained by the centrifugation method should be carefully interpreted.

  12. Zeta potential response of human erythrocyte membranes to the modulators of Gardos channel activity under low rate β-radiation.

    PubMed

    Zhirnov, V V; Iakovenko, I N; Voitsitskiy, V M; Khyzhnyak, S V; Zubrikova-Chugainova, O G; Gorobetz, V A

    2015-12-01

    Study of human erythrocyte DP response under modification by activators and blockers of the functional state of Ca2+-dependent K+ channels under low rate β-radiation. Erythrocytes were isolated from the donor blood. The zeta potential was computed from the value of the cell electrophoretic mobility. The investigated drugs preliminary introduced in cellular suspensions, and then aliquote of 90Sr(NO3)2 solution to get the final activity concentration of 44,4kBq⋅l-1. The radioisotope radiation of 90Sr/90Y (RR, 15 μGy⋅h-1) increases an absolute value of erythrocyte membranes DP (DPab), and its action is reversible. It specifies the effect is mediated by non-ionizing part of the RR. Dibutyril-cAMP dose-independent increases DPab of erythrocyte membranes in the concentration range of 1-100 мкМ, but RR does not amplify this effect. Anaprilin increases dose-independent DPab in concentrations 10 and 100 μМ. The effect of maximal concentration of anaprilin (100 μМ) decreases by RR. Clotrimazol increases DPab of erythrocyte membranes in the concentration range of 0,1-10 μМ relatively control, while its maximal concentration - decreases, and the minimal level does not reliably influence on this index The action of сlotrimazol on DP in concentrations of 10-100 μМ is abolished by RR, and is not changed in the range of 0,1-1,0 μМ. Nitrendipine raises DPab of erythrocyte membranes in all of range of concentrations, and RR amplifies the effect of the drug. 1. There is a threshold of the biological action on cells for the ionizing component of radioisotope radiation determined by efficiency of operation their antioxidant system.2. At dose rates below a threshold, the action of ionizing radiation is mediated by its non-ionizing component, and is reversible, and therefore is determined only in the field of radiation. V. V. Zhirnov, I. N. Iakovenko, V.M. Voitsitskiy, S. V. Khyzhnyak, О. G. Zubrikova-Chugainova, V.A. Gorobetz.

  13. Comparative studies on osmosis based encapsulation of sodium diclofenac in porcine and outdated human erythrocyte ghosts.

    PubMed

    Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko

    2016-12-20

    The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Long-term physiological effects of enhanced O/sub 2/ release by inositol hexaphosphate-loaded erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teisseire, B.; Ropars, C.; Villereal, M.C.

    1987-10-01

    A continuous lysing and resealing procedure with erythrocytes permitted incorporation in these cells of inositol hexaphosphate (InsP/sub 6/), a strong allosteric effector of Hb. This leads to significant rightward shifts of the HbO/sub 2/ dissociation curves with in vitro P/sub 50/, values increasing from 32.2 +/- 1.8 torr for control erythrocytes to 86 +/- 60 torr. The shape of the dissociation curve was still sigmoidal, although the Hill coefficient was decreased. The life span of InsP/sub 6/-loaded erythrocytes equaled that of control erythrocytes. Erythrocyte-survival studies were done using /sub 51/Cr labeling of cells. The long-term physiological effects of the InsP/submore » 6/-loaded erythrocytes on piglets were increased O/sub 2/ release and reduced cardiac output. The reduced O/sub 2/ affinity of the InsP/sub 6/-loaded erythrocytes was still effective 20 days after transfusion in awake piglets. The electrolyte concentration appeared stable over the 5-day observation period except for a transient, but significant, hyperkalemia immediately after transfusion. The reductions in the O/sub 2/ affinity of Hb reported here are large compared with previously reported values. Introduction of InsP/sub 6/ into viable erythrocytes improves tissue oxygenation when, for any reason, normal blood flow is impaired.« less

  15. Action of Cortisol on Sodium Transport in Canine Erythrocytes

    PubMed Central

    Streeten, David H. P.; Moses, Arnold M.

    1968-01-01

    Incubation of blood from deoxycorticosterone-treated, adrenalectomized dogs with glucose, 22NaCl, and cortisol, added in vitro, revealed log dose-related acceleration of sodium influx, of glucose utilization, and of lactate formation by cortisol in concentrations between 150 and 1000 µg/liter. Addition of 2-deoxyglucose, or preincubation of the blood until blood glucose concentration had fallen below 2.0 mg per 100 ml, reduced or abolished the acceleratory action of added cortisol on sodium influx but had no effect on sodium influx in the absence of added cortisol. Cortisol did not change the ATP or ATPase content of erythrocytes, or the metabolism of glucose via the pentose phosphate pathway, or the rate of efflux of 22Na from the erythrocytes. The acceleratory actions of cortisol on sodium, influx, glucose utilization, and lactate formation were significantly correlated. Cortisol (1000 µg/liter) enhanced sodium influx by approximately 8.7 mmole per liter erythrocytes per hour for each 1 mmole cortisol-induced increment in ATP production. It is concluded that sodium influx in canine erythrocytes comprises a passive component, unchanged by cellular metabolism, and a second component which is accelerated and inhibited in proportion to prevailing plasma concentrations of cortisol and aldosterone, and which (for cortisol) depends upon accelerated ATP production via glycolysis. These steroid actions probably result from effects on enzyme activity rather than on new enzyme induction. PMID:4233676

  16. Influence of oral contraceptive pills on phenotype expression in women with polycystic ovary syndrome.

    PubMed

    Mulders, Annemarie G M; ten Kate-Booij, Marianne; Pal, Richard; De Kruif, Marjolijn; Nekrui, Lizka; Oostra, Ben A; Fauser, Bart C J M; Laven, Joop S E

    2005-12-01

    Polycystic ovarian syndrome (PCOS) is characterized by a heterogeneous phenotype including chronic anovulation, hyperandrogenism and polycystic ovaries. The use of oral contraceptive pills (OCP) alters features characteristic for the syndrome. In the present study, PCOS features were compared between women using or not using OCP at the time of the study. One hundred and one women diagnosed with normogonadotrophic anovulatory infertility were included. A total of 81 (80%) women were diagnosed with PCOS (revised 2003 criteria). From these women, a total of 54 did not use OCP, whereas 27 women did. Corrected for age, women taking OCP had increased serum concentrations of sex hormone-binding globulin (P < 0.001). Serum concentrations of testosterone (P = 0.04) and androstenedione (P = 0.01) were decreased. These differences resulted in a decreased free androgen index for women currently taking OCP compared with women without (P < 0.001). The mean ovarian volume/ovary and the mean follicle number/ovary were not different. Use of OCP influences phenotype expression (the observable trait) of individual women known to suffer from PCOS by reducing hyperandrogenism. Despite taking OCP, women still fulfilled the revised 2003 criteria for the syndrome, as PCO morphology was still present. Hence, OCP use does not appreciably affect the PCOS phenotype.

  17. Plasmodium falciparum: a simplified technique for obtaining singly infected erythrocytes.

    PubMed

    Puthia, Manoj K; Tan, Kevin S W

    2005-02-01

    We report the development of a simple technique involving 15 ml polypropylene tubes and a rotatory incubator for obtaining erythrocytes singly infected with Plasmodium falciparum. This technique will be useful for cloning of the parasite. Our finding that P. falciparum merozoite invasion is inhibited during rotation suggests that this method may also be useful for the study of parasite-erythrocyte interactions under dynamic circulatory conditions.

  18. Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis

    PubMed Central

    Moore, Lee R.; Fujioka, Hisashi; Williams, P. Stephen; Chalmers, Jeffrey J.; Grimberg, Brian; Zimmerman, Peter; Zborowski, Maciej

    2013-01-01

    During intra-erythrocytic development, malaria trophozoites digest hemoglobin, which leads to parasite growth and asexual replication while accumulating toxic heme. To avoid death, the parasite synthesizes insoluble hemozoin crystals in the digestive vacuole through polymerization of β-hematin dimers. In the process, the heme is converted to a high-spin ferriheme whose magnetic properties were studied as early as 1936 by Pauling et al. Here, by magnetophoretic cell motion analysis, we provide evidence for a graduated increase of live cell magnetic susceptibility with developing blood-stage parasites, compatible with the increase in hemozoin content and the mechanism used by P. falciparum to avoid heme toxicity. The measured magnetophoretic mobility of the erythrocyte infected with a late-stage schizont form was m = 2.94 × 10−6 mm3 s/kg, corresponding to the net volume magnetic susceptibility (relative to water) of Δχ = 1.80 × 10−6, significantly higher than that of the oxygenated erythrocyte (−0.18×10−6) but lower than that of the fully deoxygenated erythrocyte (3.33×10−6). The corresponding fraction of hemoglobin converted to hemozoin, calculated based on the known magnetic susceptibilities of hemoglobin heme and hemozoin ferriheme, was 0.50, in agreement with the published biochemical and crystallography data. Magnetophoretic analysis of live erythrocytes could become significant for antimalarial drug susceptibility and resistance determination. PMID:16461330

  19. Erythrocyte-derived optical nano-vesicles as theranostic agents

    NASA Astrophysics Data System (ADS)

    Mac, Jenny T.; Nunez, Vicente; Bahmani, Baharak; Guerrero, Yadir; Tang, Jack; Vullev, Valentine I.; Anvari, Bahman

    2015-07-01

    We have engineered nano-vesicles, derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETS) since in response to NIR photo-excitation they can generate heat or emit fluorescent light. Using biochemical methods based on reduction amination, we have functionalized the surface of NET with antibodies to target specific biomolecules. We present results that demonstrate the effectiveness of NETs in targeted imaging of cancer cells that over-express the human epidermal growth factor receptor-2 (HER2).

  20. Erythrocyte Stiffness during Morphological Remodeling Induced by Carbon Ion Radiation

    PubMed Central

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  1. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation.

    PubMed

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  2. Aluminum Trichloride Induces Hypertension and Disturbs the Function of Erythrocyte Membrane in Male Rats.

    PubMed

    Zhang, Qiuyue; Cao, Zheng; Sun, Xudong; Zuang, Cuicui; Huang, Wanyue; Li, Yanfei

    2016-05-01

    Aluminum (Al) is the most abundant metal in the earth's crust. Al accumulates in erythrocyte and causes toxicity on erythrocyte membrane. The dysfunction of erythrocyte membrane is a potential risk to hypertension. The high Al content in plasma was associated with hypertension. To investigate the effect of AlCl3 on blood pressure and the function of erythrocyte membrane, the rats were intragastrically exposed to 0, 64(1/20 LD50), 128(1/10 LD50), and 256(1/5 LD50) mg/kg body weight AlCl3 in double distilled water for 120 days, respectively. Then, we determined the systolic and mean arterial blood pressures of rats, the osmotic fragility, the percentage of membrane proteins, the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, Ca(2+)-ATPase, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-pX), and malondialdehyde (MDA) content of the erythrocyte membrane in this experiment. The results showed that AlCl3 elevated the systolic and mean arterial blood pressure of rats, increased the osmotic fragility, decreased the percentage of membrane protein, inhibited the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, Ca(2+)-ATPase, CAT, SOD and GSH-pX, and increased the MDA content of erythrocyte membrane. These results indicate that AlCl3 may induce hypertension by disturbing the function of erythrocyte membrane.

  3. Insulin binding to erythrocytes after acute 16-methyleneprednisolone ingestion.

    PubMed

    Dwenger, A; Holle, W; Zick, R; Trautschold, I

    1982-10-01

    The binding of [125I]insulin to erythrocytes, glucose and insulin were determined before and 1, 7 and 35 days after ingestion of 2 X 60-methyleneprednisolone. None of two groups of volunteers (7 males, 4 females showed clear alterations of the insulin binding parameters (Ka and R0), or of the fasting cortisol, glucose and insulin concentrations. These results exclude the possibility that the diabetogenic effect of glucocorticoides is accompanied by an alteration of the insulin receptor characteristics of erythrocytes.

  4. Membrane transport in the malaria parasite and its host erythrocyte.

    PubMed

    Kirk, Kiaran; Lehane, Adele M

    2014-01-01

    As it grows and replicates within the erythrocytes of its host the malaria parasite takes up nutrients from the extracellular medium, exports metabolites and maintains a tight control over its internal ionic composition. These functions are achieved via membrane transport proteins, integral membrane proteins that mediate the passage of solutes across the various membranes that separate the biochemical machinery of the parasite from the extracellular environment. Proteins of this type play a key role in antimalarial drug resistance, as well as being candidate drug targets in their own right. This review provides an overview of recent work on the membrane transport biology of the malaria parasite-infected erythrocyte, encompassing both the parasite-induced changes in the membrane transport properties of the host erythrocyte and the cell physiology of the intracellular parasite itself.

  5. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models

    PubMed Central

    O’Brien, William G.; Ling, Han Shawn; Lee, Cheng Chi

    2017-01-01

    The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release. PMID:28746349

  6. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models.

    PubMed

    O'Brien, William G; Ling, Han Shawn; Zhao, Zhaoyang; Lee, Cheng Chi

    2017-01-01

    The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release.

  7. Mutational robustness accelerates the origin of novel RNA phenotypes through phenotypic plasticity.

    PubMed

    Wagner, Andreas

    2014-02-18

    Novel phenotypes can originate either through mutations in existing genotypes or through phenotypic plasticity, the ability of one genotype to form multiple phenotypes. From molecules to organisms, plasticity is a ubiquitous feature of life, and a potential source of exaptations, adaptive traits that originated for nonadaptive reasons. Another ubiquitous feature is robustness to mutations, although it is unknown whether such robustness helps or hinders the origin of new phenotypes through plasticity. RNA is ideal to address this question, because it shows extensive plasticity in its secondary structure phenotypes, a consequence of their continual folding and unfolding, and these phenotypes have important biological functions. Moreover, RNA is to some extent robust to mutations. This robustness structures RNA genotype space into myriad connected networks of genotypes with the same phenotype, and it influences the dynamics of evolving populations on a genotype network. In this study I show that both effects help accelerate the exploration of novel phenotypes through plasticity. My observations are based on many RNA molecules sampled at random from RNA sequence space, and on 30 biological RNA molecules. They are thus not only a generic feature of RNA sequence space but are relevant for the molecular evolution of biological RNA. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Hematopoietic Protein-1 Regulates the Actin Membrane Skeleton and Membrane Stability in Murine Erythrocytes

    PubMed Central

    Chan, Maia M.; Wooden, Jason M.; Tsang, Mark; Gilligan, Diana M.; Hirenallur-S, Dinesh K.; Finney, Greg L.; Rynes, Eric; MacCoss, Michael; Ramirez, Julita A.; Park, Heon; Iritani, Brian M.

    2013-01-01

    Hematopoietic protein-1 (Hem-1) is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein) complex, which regulates filamentous actin (F-actin) polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1−/− erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1−/− erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A), which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes. PMID:23424621

  9. Ablation of the Kell/Xk complex alters erythrocyte divalent cation homeostasis

    PubMed Central

    Rivera, Alicia; Kam, Siok Yuen; Ho, Mengfatt; Romero, Jose R.; Lee, Soohee

    2012-01-01

    XK is a putative transporter of unknown function that is ubiquitously expressed and linked through disulfide bonds to Kell protein, an endothelin-3 (ET-3)-converting enzyme. We generated three knockout (KO) mice that lacked either Xk, Kell or both proteins and characterized erythrocyte cation levels, transport and hematological parameters. Absence of Xk or Kell was accompanied by changes in erythrocyte K+, Mg2+, Na+ and Ca2+ transport that were associated with changes in mean cellular volume and corpuscular hemoglobin concentration mean. Baseline Ca2+-ATPase activity was undetected in erythrocytes from all three mouse types but was restored upon pre-incubation with ET-3. Consistent with these alterations in Ca2+ handling, we observed increased Gardos channel activity in Kel and Xk KO mice. In addition Kel deletion was associated with increased Mg2+ permeability while Xk deletion blocked Na/Mg exchanger activity. Our results provide evidence that cellular divalent cation regulation is functionally coupled to the Kell/XK system in erythrocytes and loss of this complex may contribute to acanthocytosis formation in McLeod syndrome. PMID:23122227

  10. Standardization of stain used for diagnosing erythrocytic inclusion body syndrome (EIBS)

    USGS Publications Warehouse

    1987-01-01

    Erythrocytic inclusion body syndrome (EIBS), a viral erythrocytic necrosis (VEN)-like disease, has been observed in several areas in the Northwest. This virus disease is clinically diagnosed by microscopic examination of blood smears for intracytoplasmic erythrocytic inclusion bodies. Fish biologists involved in EIBS diagnostic work have been using several types of hematological stains. It became apparent that standardization of the staining procedure was needed. Comparative tests were conducted on blood smears and kidney imprints with the following commonly used blood stains: (1) Leishman-Giesma, (2) Pinacyanol chloride, (3) Powell 's Giemsa, (4) Harleco's Giemsa, (5) Diff Quik differential stain, (6) Wright's.Pinacyanol chloride stain was found to be the most consistent. The following staining procedure is recommended.

  11. Plasma lipids profile and erythrocytes system in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Tuchin, Valery V.; Denisova, Tatyana P.

    2006-08-01

    Erythrocytes system study can provide a framework for detailed exploration of blood cell-cell and cell-vessel wall interactions, one of the key patterns in blood and vascular pathophysiology. Our objective was to explore erythrocytes system in patients with stable angina pectoris II f.c. (Canadian classification). The participants (N = 56, age 40 - 55 years) without obesity, glucose tolerance violations, lipid lowering drugs treating, heart failure of II and more functional classes (NYHA), coronary episode at least 6 months before study were involved in the study. Blood samples were incubated with glucose solutions of increasing concentrations (from 2.5% to 20% with 2.5% step) during 60 mm (36° C). In prepared blood smears erythrocyte's sizes were studied. Plasma total cholesterol, triglyceride and glucose levels were also measured. Received data were approximated by polynomials of high degree, with after going first and second derivations. Erythrocytes system "behavior" was studied by means of phase pattern constructing. By lipids levels all the patient were divided into five groups: 1) patients with normal lipids levels, 2) patients with borderline total cholesterol level, 3) patients with isolated hypercholesterolemia, 4) patients with isolated hypertriglyceridemia and 5) patients with combined hyperlipidemia. Erythrocytes size lowering process was of set of "stages", which characteristics differ significantly (p > 0.05) in all five groups. Their rate and acceleration characteristics allow us to detect type of lipid profile in patients. Erythrocyte system disturbing by glucose concentration increase show to be most resistant in group of patients with isolated hypercholesterolemia.

  12. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies.

    PubMed

    Wright, Katherine E; Hjerrild, Kathryn A; Bartlett, Jonathan; Douglas, Alexander D; Jin, Jing; Brown, Rebecca E; Illingworth, Joseph J; Ashfield, Rebecca; Clemmensen, Stine B; de Jongh, Willem A; Draper, Simon J; Higgins, Matthew K

    2014-11-20

    Invasion of host erythrocytes is essential to the life cycle of Plasmodium parasites and development of the pathology of malaria. The stages of erythrocyte invasion, including initial contact, apical reorientation, junction formation, and active invagination, are directed by coordinated release of specialized apical organelles and their parasite protein contents. Among these proteins, and central to invasion by all species, are two parasite protein families, the reticulocyte-binding protein homologue (RH) and erythrocyte-binding like proteins, which mediate host-parasite interactions. RH5 from Plasmodium falciparum (PfRH5) is the only member of either family demonstrated to be necessary for erythrocyte invasion in all tested strains, through its interaction with the erythrocyte surface protein basigin (also known as CD147 and EMMPRIN). Antibodies targeting PfRH5 or basigin efficiently block parasite invasion in vitro, making PfRH5 an excellent vaccine candidate. Here we present crystal structures of PfRH5 in complex with basigin and two distinct inhibitory antibodies. PfRH5 adopts a novel fold in which two three-helical bundles come together in a kite-like architecture, presenting binding sites for basigin and inhibitory antibodies at one tip. This provides the first structural insight into erythrocyte binding by the Plasmodium RH protein family and identifies novel inhibitory epitopes to guide design of a new generation of vaccines against the blood-stage parasite.

  13. Metabolomics-Based Elucidation of Active Metabolic Pathways in Erythrocytes and HSC-Derived Reticulocytes.

    PubMed

    Srivastava, Anubhav; Evans, Krystal J; Sexton, Anna E; Schofield, Louis; Creek, Darren J

    2017-04-07

    A detailed analysis of the metabolic state of human-stem-cell-derived erythrocytes allowed us to characterize the existence of active metabolic pathways in younger reticulocytes and compare them to mature erythrocytes. Using high-resolution LC-MS-based untargeted metabolomics, we found that reticulocytes had a comparatively much richer repertoire of metabolites, which spanned a range of metabolite classes. An untargeted metabolomics analysis using stable-isotope-labeled glucose showed that only glycolysis and the pentose phosphate pathway actively contributed to the biosynthesis of metabolites in erythrocytes, and these pathways were upregulated in reticulocytes. Most metabolite species found to be enriched in reticulocytes were residual pools of metabolites produced by earlier erythropoietic processes, and their systematic depletion in mature erythrocytes aligns with the simplification process, which is also seen at the cellular and the structural level. Our work shows that high-resolution LC-MS-based untargeted metabolomics provides a global coverage of the biochemical species that are present in erythrocytes. However, the incorporation of stable isotope labeling provides a more accurate description of the active metabolic processes that occur in each developmental stage. To our knowledge, this is the first detailed characterization of the active metabolic pathways of the erythroid lineage, and it provides a rich database for understanding the physiology of the maturation of reticulocytes into mature erythrocytes.

  14. Measurement of whole blood of different mammalian species in the oscillating shear field: influence of erythrocyte aggregation

    NASA Astrophysics Data System (ADS)

    Windberger, U.; Pöschl, Ch; Peters, S.; Huber, J.; van den Hoven, R.

    2017-01-01

    This is the first systematic analysis of mammalian blood of species with a high (horse), medium (man), and low (sheep) erythrocyte (RBC) aggregability by small amplitude oscillation technique. Amplitude and frequency sweep tests (linear viscoelastic mode) were performed with blood from healthy adult volunteers, horses, and sheep in CSS-mode. Blood samples were hematocrit (HCT) adjusted (40%, 50%, 60%) and tested at 7°C, 22°C, and 37°C. Generally, storage modulus (G´) increased with HCT and decreased with temperature in each species, but the gradient of this increase was species-specific. The lower dependency of G´ on the equine HCT value could be a benefit during physical performance when high numbers of RBCs are released from the spleen. In sheep, an HCT-threshold had to be overcome before the desired quasi-static condition of the blood sample could be achieved, suggesting that the contact between RBCs, and between RBCs and plasma molecules must be very low. The frequencies for tests under linear viscoelastic condition were in a narrow range around the physiologic heart rate of the species. In horse, time-dependent influences concurred at frequencies lower than 3 rad.s-1probably due to sedimentation of RBC aggregates. In conclusion, blood is a fragile suspension that shows its best stability around the resting heart rate of the species.

  15. Comparison of erythrocyte membrane fatty acid contents in renal transplant recipients and dialysis patients.

    PubMed

    Oh, J S; Kim, S M; Sin, Y H; Kim, J K; Park, Y; Bae, H R; Son, Y K; Nam, H K; Kang, H J; An, W S

    2012-12-01

    Alterations of erythrocyte membrane fatty acid (FA) composition play important roles in cellular function because they change the membrane microenvironment, including transmembrane receptors. The erythrocyte membrane oleic acid content is higher among patients with acute coronary syndrome and also in dialysis patients. However, available data are limited concerning erythrocyte membrane FA content in kidney transplant recipients (KTP). We sought to test the hypothesis that erythrocyte membrane FA content among KTP were different from those in dialysis patients. In this cross-sectional study, we recruited 35 hemodialysis, 33 peritoneal dialysis 49 KTP, and 33 normal control subjects (CTL). Their erythrocyte membrane FA content were measured by gas chromatography. The mean ages of the enrolled dialysis patients, KTP, and CTL were 56.4 ± 10.1, 48.9 ± 10.4, and 49.5 ± 8.3 years, respectively. Mean kidney transplant duration was 89.8 ± 64.8 months and mean dialysis duration, 49.0 ± 32.6 months. The intakes of vegetable lipid and vegetable protein including total calories were significantly increased among KTP versus dialysis patients. Total cholesterol (P < .001) and high density lipoprotein cholesterol (HDL; P < .001) levels were significantly higher and C-reactive protein was significantly lower among KTP compared with dialysis patients. The erythrocyte membrane content of palmitoleic acid (P < .001) was significantly higher but oleic acid (P < .001) significantly lower in KTP compared with dialysis patients. The erythrocyte membrane contents of arachidonic acid and docosahexaenoic acid were significantly higher, and linoleic acid and the omega-6 FA to omega-3 FA ratio (P < .001) significantly lower in KTP compared with dialysis patients. The erythrocyte membrane content of oleic acid was independently associated with monounsaturated fatty acid (beta = 0.771, P < .001), eicosapentaeonic acid (beta = -0.244, P = .010), and HDL (beta = -0.139, P = .049) in KTP. FA

  16. Stimulation of Phospholipid Scrambling of the Erythrocyte Membrane by 9-Cis-Retinoic Acid.

    PubMed

    Abed, Majed; Alzoubi, Kousi; Lang, Florian; Al Mamun Bhuayn, Abdulla

    2017-01-01

    The endogenous retinoid 9-cis-retinoic acid has previously been shown to trigger apoptosis in a wide variety of cells including several tumor cells and has thus been suggested for the treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms participating in the accomplishment of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i) and formation of ceramide. The present study explored, whether 9-cis-retinoic acid induces eryptosis and whether the effect involves Ca2+ and/or ceramide. Flow cytometry was employed to estimate erythrocyte volume from forward scatter, phosphatidylserine exposure at the cell surface from annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from hemoglobin concentration in the supernatant. A 48 hours exposure of human erythrocytes to 9-cis-retinoic acid (≥ 0.5 µg/ml) significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. Exposure to 9-cis-retinoic acid (≥ 0.5 µg/ml) significantly increased Fluo3-fluorescence, and the effect of 9-cis-retinoic acid on annexin-V-binding was significantly blunted by removal of extracellular Ca2+. Exposure to 9-cis-retinoic acid (1 µg/ml) further significantly increased the ceramide abundance at the erythrocyte surface and significantly increased hemolysis. 9-cis-retinoic acid triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part downstream of Ca2+ and ceramide. © 2017 The Author(s)Published by S. Karger AG, Basel.

  17. Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suwalsky, Mario, E-mail: msuwalsk@udec.cl; Zambrano, Pablo; Mennickent, Sigrid

    Research highlights: {yields} PPA is a common ingredient in cough-cold medication and appetite suppressants. {yields} Reports on its effects on human erythrocytes are very scarce. {yields} We found that PPA induced in vitro morphological changes to human erythrocytes. {yields} PPA interacted with isolated unsealed human erythrocyte membranes. {yields} PPA interacted with class of lipid present in the erythrocyte membrane outer monolayer. -- Abstract: Norephedrine, also called phenylpropanolamine (PPA), is a synthetic form of the ephedrine alkaloid. After reports of the occurrence of intracranial hemorrhage and other adverse effects, including several deaths, PPA is no longer sold in USA and Canada.more » Despite the extensive information about PPA toxicity, reports on its effects on cell membranes are scarce. With the aim to better understand the molecular mechanisms of the interaction of PPA with cell membranes, ranges of concentrations were incubated with intact human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of cell membranes. The latter consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of most plasmatic cell membranes, respectively. The capacity of PPA to perturb the bilayer structures of DMPC and DMPE was assessed by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). This study presents evidence that PPA affects human red cell membranes as follows: (a) in SEM studies on human erythrocytes it was observed that 0.5 mM PPA induced shape changes; (b) in IUM PPA induced a sharp decrease in the fluorescence anisotropy in the lipid bilayer acyl chains in a concentration range lower than 100 {mu}M; (c) X-ray diffraction studies showed that PPA in the 0

  18. Delivery route determines the presence of immune complexes on umbilical cord erythrocytes.

    PubMed

    de Lima, Andrés; Franco, Luis C; Sarmiento, Andrés; González, John M

    2017-11-01

    Umbilical cord blood offers a unique opportunity to study the basal level of immunoglobulin complexes. This study aims to determine the presence of immune complexes and complement deposition on erythrocytes from umbilical cord blood from normal, full-term pregnancies. In vitro pre-formed IgA, IgG, and IgM complexes were used as positive control for flow cytometry detection, and for C3d deposition. Blood samples (34) of umbilical cord blood taken from vaginal and cesarean deliveries were tested for the presence of immunoglobulin complexes. Fourteen samples from vaginal deliveries and 20 samples from cesarean deliveries were assessed. IgG and IgM complexes were detected on erythrocytes, whereas no IgA complexes or complement deposition was observed. Interestingly, the percentage of IgG complexes was higher on erythrocytes from vaginal delivery samples compared to those from cesarean deliveries. No other associations between immune complexes and other maternal or newborn variables were found. IgG and IgM complexes seem to be normally present on umbilical cord erythrocytes. Erythrocytes from vaginal deliveries have a higher percentage of IgG complexes present compared to that from cesarean deliveries. Since no C3d activity was detected, these complexes are non-pathological and should be part of the newborn's initial innate immune response.

  19. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of /sup 125/I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of /sup 125/I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes.more » By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen.« less

  20. Fatty acids of erythrocyte membrane in acute pancreatitis patients.

    PubMed

    Kuliaviene, Irma; Gulbinas, Antanas; Cremers, Johannes; Pundzius, Juozas; Kupcinskas, Limas; Dambrauskas, Zilvinas; Jansen, Eugene

    2013-09-14

    To evaluate changes in the fatty acid composition of erythrocyte membrane phospholipids during severe and mild acute pancreatitis (AP) of alcoholic and nonalcoholic etiology. All consecutive patients with a diagnosis of AP and onset of the disease within the last 72 h admitted to the Hospital of Lithuanian University of Health Sciences between June and December 2007 were included. According to the Acute Physiology and Chronic Health Evaluation (APACHE II) scale, the patients were subdivided into the mild (APACHE II score < 7, n = 22) and severe (APACHE II score ≥ 7, n = 17) AP groups. Healthy individuals (n = 26) were enrolled as controls. Blood samples were collected from patients on admission to the hospital. Fatty acids (FAs) were extracted from erythrocyte phospholipids and expressed as percentages of the total FAs present in the chromatogram. The concentrations of superoxide dismutase and glutathione peroxidase were measured in erythrocytes. We found an increase in the percentages of saturated and monounsaturated FAs, a decrease in the percentages of total polyunsaturated FAs (PUFAs) and n-3 PUFAs in erythrocyte membrane phospholipids of AP patients compared with healthy controls. Palmitic (C16:0), palmitoleic (C16:1n7cis), arachidonic (C20:4n6), docosahexaenoic (DHA, C22:6n3), and docosapentaenoic (DPA, C22:5n3) acids were the major contributing factors. A decrease in the peroxidation and unsaturation indexes in AP patients as well as the severe and mild AP groups as compared with controls was observed. The concentrations of antioxidant enzymes in the mild AP group were lower than in the control group. In severe AP of nonalcoholic etiology, the percentages of arachidic (C20:0) and arachidonic (C20:4n6) acids were decreased as compared with the control group. The patients with mild AP of nonalcoholic etiology had the increased percentages of total saturated FAs and gama linoleic acid (C18:3n6) and the decreased percentages of elaidic (C18:1n9t

  1. Fatty acids of erythrocyte membrane in acute pancreatitis patients

    PubMed Central

    Kuliaviene, Irma; Gulbinas, Antanas; Cremers, Johannes; Pundzius, Juozas; Kupcinskas, Limas; Dambrauskas, Zilvinas; Jansen, Eugene

    2013-01-01

    AIM: To evaluate changes in the fatty acid composition of erythrocyte membrane phospholipids during severe and mild acute pancreatitis (AP) of alcoholic and nonalcoholic etiology. METHODS: All consecutive patients with a diagnosis of AP and onset of the disease within the last 72 h admitted to the Hospital of Lithuanian University of Health Sciences between June and December 2007 were included. According to the Acute Physiology and Chronic Health Evaluation (APACHE II) scale, the patients were subdivided into the mild (APACHE II score < 7, n = 22) and severe (APACHE II score ≥ 7, n = 17) AP groups. Healthy individuals (n = 26) were enrolled as controls. Blood samples were collected from patients on admission to the hospital. Fatty acids (FAs) were extracted from erythrocyte phospholipids and expressed as percentages of the total FAs present in the chromatogram. The concentrations of superoxide dismutase and glutathione peroxidase were measured in erythrocytes. RESULTS: We found an increase in the percentages of saturated and monounsaturated FAs, a decrease in the percentages of total polyunsaturated FAs (PUFAs) and n-3 PUFAs in erythrocyte membrane phospholipids of AP patients compared with healthy controls. Palmitic (C16:0), palmitoleic (C16:1n7cis), arachidonic (C20:4n6), docosahexaenoic (DHA, C22:6n3), and docosapentaenoic (DPA, C22:5n3) acids were the major contributing factors. A decrease in the peroxidation and unsaturation indexes in AP patients as well as the severe and mild AP groups as compared with controls was observed. The concentrations of antioxidant enzymes in the mild AP group were lower than in the control group. In severe AP of nonalcoholic etiology, the percentages of arachidic (C20:0) and arachidonic (C20:4n6) acids were decreased as compared with the control group. The patients with mild AP of nonalcoholic etiology had the increased percentages of total saturated FAs and gama linoleic acid (C18:3n6) and the decreased percentages of elaidic

  2. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    PubMed

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D

    2015-01-01

    The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  3. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi

    PubMed Central

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd. Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K.; Sharma, Yagya D.

    2015-01-01

    Background The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Methods Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Results Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Conclusions Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host. PMID:26393350

  4. P. falciparum Modulates Erythroblast Cell Gene Expression in Signaling and Erythrocyte Production Pathways

    PubMed Central

    Tamez, Pamela A.; Liu, Hui; Wickrema, Amittha; Haldar, Kasturi

    2011-01-01

    Global, genomic responses of erythrocytes to infectious agents have been difficult to measure because these cells are e-nucleated. We have previously demonstrated that in vitro matured, nucleated erythroblast cells at the orthochromatic stage can be efficiently infected by the human malaria parasite Plasmodium falciparum. We now show that infection of orthochromatic cells induces change in 609 host genes. 592 of these transcripts are up-regulated and associated with metabolic and chaperone pathways unique to P. falciparum infection, as well as a wide range of signaling pathways that are also induced in related apicomplexan infections of mouse hepatocytes or human fibroblast cells. Our data additionally show that polychromatophilic cells, which precede the orthochromatic stage and are not infected when co-cultured with P. falciparum, up-regulate a small set of genes, at least two of which are associated with pathways of hematopoiesis and/or erythroid cell development. These data support the idea that P. falciparum affects erythropoiesis at multiple stages during erythroblast differentiation. Further P. falciparum may modulate gene expression in bystander erythroblasts and thus influence pathways of erythrocyte development. This study provides a benchmark of the host erythroblast cell response to infection by P. falciparum. PMID:21573240

  5. Effect of complete protein 4.1R deficiency on ion transportproperties of murine erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera, Alicia; De Franceschi, Lucia; Peters, Luanne L.

    2006-06-02

    Moderate hemolytic anemia, abnormal erythrocyte morphology(spherocytosis), and decreased membrane stability are observed in micewith complete deficiency of all erythroid protein 4.1 protein isoforms(4.1-/-; Shi TS et al., J. Clin. Invest. 103:331,1999). We have examinedthe effects of erythroid protein 4.1 (4.1R) deficiency on erythrocytecation transport and volume regulation. 4.1-/- mice exhibited erythrocytedehydration that was associated with reduced cellular K and increased Nacontent. Increased Na permeability was observed in these mice, mostlymediated by Na/H exchange with normal Na-K pump and Na-K-2Cl cotransportactivities. The Na/H exchange of 4.1-/- erythrocytes was markedlyactivated by exposure to hypertonic conditions (18.2+- 3.2 in 4.1 -/- vs.9.8 +-more » 1.3 mmol/1013 cell x h in control mice), with an abnormaldependence on osmolarity, (K0.5=417 +- 42 in 4.1 -/- vs. 460 +- 35 mOsmin control mice) suggestive of an up-regulated functional state. Whilethe affinity for internal protons was not altered (K0.5= 489.7 +- 0.7 vs.537.0+- 0.56 nM in control mice), the Vmax of the H-induced Na/H exchangeactivity was markedly elevated in 4.1-/- erythrocytes (Vmax 91.47Moderatehemolytic anemia, abnormal erythrocyte morphology (spherocytosis), anddecreased membrane stability are observed in mice with completedeficiency of all erythroid protein 4.1 protein isoforms (4.1-/-; Shi TSet al., J. Clin. Invest. 103:331,1999). We have examined the effects oferythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transportand volume regulation. 4.1-/- mice exhibited erythrocyte dehydration thatwas associated with reduced cellular K and increased Na content.Increased Na permeability was observed in these mice, mostly mediated byNa/H exchange with normal Na-K pump and Na-K-2Cl cotransport activities.The Na/H exchange of 4.1-/- erythrocytes was markedly activated byexposure to hypertonic conditions (18.2 +- 3.2 in 4.1 -/- vs. 9.8 +- 1.3mmol/1013 cell x h in control mice

  6. Influence of Lewy Pathology on Alzheimer's Disease Phenotype: A Retrospective Clinico-Pathological Study.

    PubMed

    Roudil, Jennifer; Deramecourt, Vincent; Dufournet, Boris; Dubois, Bruno; Ceccaldi, Mathieu; Duyckaerts, Charles; Pasquier, Florence; Lebouvier, Thibaud

    2018-01-01

    Studies have shown the frequent coexistence of Lewy pathology (LP) in Alzheimer's Disease (AD). The aim of this study was to determine the influence of LP on the clinical and cognitive phenotype in a cohort of patients with a neuropathological diagnosis of AD. We reviewed neuropathologically proven AD cases, reaching Braak stages V and VI in the brain banks of Lille and Paris between 1993 and 2016, and classified them according to LP extension (amygdala, brainstem, limbic, or neocortical). We then searched patient files for all available clinical and neuropsychiatric features and neuropsychological data. Thirty-three subjects were selected for this study, among which 16 were devoid of LP and 17 presented AD with concomitant LP. The latter were stratified into two subgroups according to LP distribution: 7 were AD with amygdala LP and 10 were AD with 'classical' (brainstem, limbic or neocortical) LP. When analyzing the incidence of each clinical feature at any point during the disease course, we found no significant difference in symptom frequency between the three groups. However, fluctuations appeared significantly earlier in patients with classical LP (2±3.5 years) than in patients without LP (7±1.7 years) or with amygdala LP (8±2.8 years; p < 0.01). There was no significant difference in cognitive profiles. Our findings suggest that the influence of LP on the clinical phenotype of AD is subtle. Core features of dementia with Lewy bodies do not allow clinical diagnosis of a concomitant LP on a patient-to-patient basis.

  7. Interaction of Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) with erythrocyte ankyrin R is required for its attachment to the erythrocyte membrane.

    PubMed

    Weng, Haibo; Guo, Xinhua; Papoin, Julien; Wang, Jie; Coppel, Ross; Mohandas, Narla; An, Xiuli

    2014-01-01

    The malaria parasite Plasmodium falciparum exports a large number of proteins into the erythrocyte cytoplasm during the asexual intraerythrocytic stage of its life cycle. A subset of these proteins interacts with erythrocyte membrane skeletal proteins and grossly alters the structure and function of the membrane. Several of the exported proteins, such as PfEMP1, PfEMP3, RESA and KAHRP, interact with the preponderant erythrocyte skeleton protein, spectrin. Here we have searched for possible interaction of these four malaria proteins with another major erythrocyte skeleton protein, ankyrin R. We have shown that KAHRP, but none of the other three, binds to ankyrin R. We have mapped the binding site for ankyrin R to a 79-residue segment of the KAHRP sequence, and the reciprocal binding site for KAHRP in ankyrin R to a subdomain (D3) of the 89kDa ankyrin R membrane-binding domain. Interaction of intact ankyrin R with KAHRP was inhibited by the free D3 subdomain. When, moreover, red cells loaded with the soluble D3 subdomain were infected with P. falciparum, KAHRP secreted by the intraerythrocytic parasite no longer migrated to the host cell membrane, but remained diffusely distributed throughout the cytosol. Our findings suggest a potentially important role for interaction of KAHRP with red cell membrane skeleton in promoting the adhesion of malaria-infected red cells to endothelial surfaces, a central element in the pathophysiology of malaria. © 2013.

  8. Recruitment of human aquaporin 3 to internal membranes in the Plasmodium falciparum infected erythrocyte.

    PubMed

    Bietz, Sven; Montilla, Irine; Külzer, Simone; Przyborski, Jude M; Lingelbach, Klaus

    2009-09-01

    The molecular mechanisms underlying the formation of the parasitophorous vacuolar membrane in Plasmodium falciparum infected erythrocytes are incompletely understood, and the protein composition of this membrane is still enigmatic. Although the differentiated mammalian erythrocyte lacks the machinery required for endocytosis, some reports have described a localisation of host cell membrane proteins at the parasitophorous vacuolar membrane. Aquaporin 3 is an abundant plasma membrane protein of various cells, including mammalian erythrocytes where it is found in distinct oligomeric states. Here we show that human aquaporin 3 is internalized into infected erythrocytes, presumably during or soon after invasion. It is integrated into the PVM where it is organized in novel oligomeric states which are not found in non-infected cells.

  9. Stimulation of Suicidal Erythrocyte Death by Tafenoquine.

    PubMed

    Al Mamun Bhuyan, Abdulla; Bissinger, Rosi; Stockinger, Katja; Lang, Florian

    2016-01-01

    The 8-aminoquinoline tafenoquine has been shown to be effective against Plasmodia, Leishmania and Trypanosoma. The substance is at least in part effective by triggering apoptosis of the parasites. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the regulation of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, zVAD sensitive caspases, SB203580 sensitive p38 kinase, staurosporine sensitive protein kinase C as well as D4476 sensitive casein kinase. The present study explored, whether tafenoquine induces eryptosis and aimed to possibly identify cellular mechanisms involved. Flow cytometry was employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) dependent fluorescence, and ceramide abundance utilizing specific antibodies. A 48 hours exposure of human erythrocytes to tafenoquine (500 ng/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo3-fluorescence, and significantly increased DCFDA fluorescence. Tafenoquine did not significantly modify ceramide abundance. The effect of tafenoquine on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. The effect of tafenoquine on annexin-V-binding was not significantly blunted by zVAD (10 µM), SB203580 (2 µM) or staurosporine (1 µM). The effect of tafenoquine on annexin-V-binding was significantly blunted but not abolished by D4476 (10 µM). Tafenoquine triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to stimulation of Ca2+ entry

  10. The AMP-activated protein kinase beta 1 subunit modulates erythrocyte integrity.

    PubMed

    Cambridge, Emma L; McIntyre, Zoe; Clare, Simon; Arends, Mark J; Goulding, David; Isherwood, Christopher; Caetano, Susana S; Reviriego, Carmen Ballesteros; Swiatkowska, Agnieszka; Kane, Leanne; Harcourt, Katherine; Adams, David J; White, Jacqueline K; Speak, Anneliese O

    2017-01-01

    Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that acts as a critical regulator of cellular energy balance. Previous roles for the alpha 1 and gamma 1 subunits in the control of erythrocyte survival have been reported. In the work described here, we studied the role of the beta 1 subunit in erythrocytes and observed microcytic anemia with compensatory extramedullary hematopoiesis together with splenomegaly and increased osmotic resistance. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  11. Selective accumulation of cytosol CDP-choline as an isolated erythrocyte defect in chronic hemolysis.

    PubMed Central

    Paglia, D E; Valentine, W N; Nakatani, M; Rauth, B J

    1983-01-01

    Erythrocytes from a young woman with chronic hemolytic anemia were found to contain 0.31-0.45 mM CDP-choline, concentrations that are 15-25 times those in normal erythrocytes and equivalent to 20-30% of the total adenine nucleotide content. Accumulation of CDP-choline has been reported only in erythrocytes from subjects with severe (homozygous) pyrimidine nucleotidase deficiency. In the latter syndrome, however, pyrimidine nucleotidase activity is very low and a spectrum of uridine- and cytidine-containing nucleotides is present along with epiphenomena involving glutathione and ribosephosphate pyrophosphokinase. By contrast, selective accumulation of CDP-choline was the only abnormality demonstrable in proband erythrocytes. Membrane phospholipids were quantitatively and qualitatively normal, compatible with the observation that mature erythrocytes maintain membrane phospholipids largely by passive exchange with plasma components or by acylation of lysophospholipids. Although the presence of small amounts of other CDP-containing cofactors, such as CDP-ethanolamine, could not be entirely excluded, the cytidine/choline ratio closely approximated 1:1 in all studies. These data are compatible with the view that choline phosphotransferase and ethanolamine phosphotransferase are separate enzymes in erythroid cells. Selective accumulation of CDP-choline in proband erythrocytes is also compatible with an inherited deficiency of choline phosphotransferase in erythroid precursors, though this hypothesis remains unproved. PMID:6574471

  12. Profiling the erythrocyte membrane proteome isolated from patients diagnosed with chronic obstructive pulmonary disease.

    PubMed

    Alexandre, Bruno M; Charro, Nuno; Blonder, Josip; Lopes, Carlos; Azevedo, Pilar; Bugalho de Almeida, António; Chan, King C; Prieto, DaRue A; Issaq, Haleem; Veenstra, Timothy D; Penque, Deborah

    2012-12-05

    Structural and metabolic alterations in erythrocytes play an important role in the pathophysiology of Chronic Obstructive Pulmonary Disease (COPD). Whether these dysfunctions are related to the modulation of erythrocyte membrane proteins in patients diagnosed with COPD remains to be determined. Herein, a comparative proteomic profiling of the erythrocyte membrane fraction isolated from peripheral blood of smokers diagnosed with COPD and smokers with no COPD was performed using differential (16)O/(18)O stable isotope labeling. A total of 219 proteins were quantified as being significantly differentially expressed within the erythrocyte membrane proteomes of smokers with COPD and healthy smokers. Functional pathway analysis showed that the most enriched biofunctions were related to cell-to-cell signaling and interaction, hematological system development, immune response, oxidative stress and cytoskeleton. Chorein (VPS13A), a cytoskeleton related protein whose defects had been associated with the presence of cell membrane deformation of circulating erythrocytes was found to be down-regulated in the membrane fraction of erythrocytes obtained from COPD patients. Methemoglobin reductase (CYB5R3) was also found to be underexpressed in these cells, suggesting that COPD patients may be at higher risk for developing methemoglobinemia. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. THE PRODUCTION OF ERYTHROCYTE AUTOANTIBODIES IN CHIMPANZEES

    PubMed Central

    Zmijewski, Chester M.

    1965-01-01

    Young adult chimpanzees immunized with human blood products produced circulating antibodies which reacted with human red cells of a certain proportion of chimpanzees. In addition, agglutinins were formed which reacted with the animals' own erythrocytes. That these agglutinins were true autoantibodies was demonstrated by: (a) their ability to sensitize the animals' own erythrocytes at 37°C both in vivo and in intro; (b) the iso-specificity which they displayed toward other chimpanzee red cells; and (c) the fact that they belonged to the γG-class of immunoglobulins. Complement appeared to be bound to the in vivo sensitized cells but no evidence of increased cell destruction was observed. It seemed most likely that these autoagglutinins were produced as a result of active immunization with closely related antigens. PMID:14278223

  14. Nuclear abnormalities in erythrocytes of parrots (Aratinga canicularis) related to genotoxic damage.

    PubMed

    Gómez-Meda, Belinda C; Zamora-Perez, Ana L; Luna-Aguirre, Jaime; González-Rodríguez, Andrés; Ramos-Ibarra, M Luisa; Torres-Bugarín, Olivia; Batista-González, Cecilia M; Zúñiga-González, Guillermo M

    2006-06-01

    Nuclear abnormalities in erythrocytes, as micronuclei and nuclear buds (BE), are considered potential biomarkers of genotoxic exposure. We described previously the frequency of spontaneous micronucleated erythrocytes (MNE) in the species Aratinga canicularis. Here, we have used this species to evaluate the induction of MNE and BE by mitomycin-C. Animals were given a single intracoelomic injection of 0, 2, 3 or 4 mg/kg mitomycin-C on two consecutive days. A drop of blood was obtained after 0, 24, 48 and 72 h, and stained smears were used to count micronucleated polychromatic erythrocytes (MNPCE) and polychromatic erythrocytes with buds (BPCE)/1000 polychromatic erythrocytes. The number of MNE and BE in 10 000 total erythrocytes was also counted. MNPCE and BPCE frequencies were elevated at 24, 48, and 72 h after the administration of the lower dose (P<0.03). At a 3 mg/kg dose, the frequency of MNPCE increased at 48 and 72 h (P<0.04) whereas the number of BPCE increased, but not significantly. Administration of 4 mg/kg mitomycin-C increased the number of MNE observed at 72 h (P<0.03), the number of MNPCE at 48 h (P<0.01) and 72 h (P<0.006), the BE frequency at 72 h (P<0.05), and the frequency of BPCE at 48 and 72 h (P<0.001). While mitomycin-C appears to produce a parallel increase in MNPCE and BPCE frequencies, the MNE seemed to be a more sensitive indicator of genotoxicity than the BE. This suggests that evaluating BE and MNE in routine haematological analysis should be considered to evaluate environmental genotoxic exposure.

  15. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Debabrata; Banerjee, Mayukh; Sen, Gargi

    2008-07-01

    Arsenic contamination in drinking water is one of the biggest natural calamities, which has become an imperative threat to human health throughout the world. Abbreviation of erythrocyte lifespan leading to the development of anemia is a common sequel in arsenic exposed population. This study was undertaken to explore the mechanism of cell death in human erythrocytes during chronic arsenic exposure. Results revealed transformation of smooth discoid red cells into evaginated echinocytic form in the exposed individuals. Further distortion converted reversible echinocytes to irreversible spheroechinocytes. Arsenic toxicity increased membrane microviscosity along with an elevation of cholesterol/phospholipid ratio, which hampered the flexibilitymore » of red cell membrane and made them less deformable. Significant increase in the binding of merocyanine 540 with erythrocyte membrane due to arsenic exposure indicated disruption of lipid packing in the outer leaflet of the cell membrane resulting from altered transbilayer phospholipid asymmetry. Arsenic induced eryptosis was characterized by cell shrinkage and exposure of phosphatidylserine at the cell surface. Furthermore, metabolic starvation with depletion of cellular ATP triggered apoptotic removal of erythrocytes from circulation. Significant decrease in reduced glutathione content indicating defective antioxidant capacity was coupled with enhancement of malondialdehyde and protein carbonyl levels, which pointed to oxidative damage to erythrocyte membrane. Arsenic toxicity intervened into red cell membrane integrity eventually leading to membrane destabilization and hemoglobin release. The study depicted the involvement of both erythrophagocytosis and hemolysis in the destruction of human erythrocytes during chronic arsenic exposure.« less

  16. Low erythrocyte Na/K-pump activity and number in northeast Thailand adults: evidence suggesting an acquired disorder.

    PubMed

    Tosukhowong, P; Tungsanga, K; Kittinantavorakoon, C; Chaitachawong, C; Pansin, P; Sriboonlue, P; Sitprija, V

    1996-07-01

    Healthy northeastern Thais have a higher erythrocyte sodium concentration and a lower erythrocyte membrane Na,K-adenosine triphosphatase (ATPase) activity than central Thais. To elucidate whether the defect is hereditary or acquired, we studied plasma sodium and potassium and erythrocyte sodium, potassium, Na,K-ATPase activity, and ouabain-binding sites (OBS) in the following groups: healthy newborns of ethnic central Thais (group 1), healthy newborns of ethnic northeast Thais (group 2), healthy adults of central Thailand ethnicity who lived in the rural central region (group 3) or in Bangkok (group 4), healthy adults of northeast Thailand ethnicity who lived in the rural northeast region (group 5) or who migrated to work in Bangkok for at least 1 year (group 6). Erythrocyte Na was higher in group 2 than in group 1. Group 3 had lower erythrocyte Na,K-ATPase activity than group 4, and it was lower in group 5 than in group 6. Among all groups, group 5 had the highest erythrocyte Na (11.6 mmol/L,F < 0.0001) and the lowest Na,K-ATPase activity (63 mmol Pi/mg x h, F < 0.0001) and erythrocyte OBS (397 sites per cell, F < 0.05) than the other adult groups. There was a positive correlation between erythrocyte Na,K-ATPase and erythrocyte OBS (r = .416, P < .0001). Multiple regression analysis demonstrated a correlation between erythrocyte Na as a dependent variable and erythrocyte OBS, plasma potassium, erythrocyte potassium, and erythrocyte Na,K-ATPase (r = .517, P < .0001). The erythrocyte Na,K-ATPase/OBS ratio, an expression of Na,K-ATPase activity equalized for the number of Na,K-pump units, was lowest among rural adults of the central region (group 3) and the northeast region (group 5) (F < 0.0002). Our data suggest that rural dwellers in Thailand tend to have lower erythrocyte Na,K-ATPase activity than urban dwellers and that this is probably acquired after birth. It was more severe among those from the northeast versus the central region, and was less severe among

  17. A rapid method for counting nucleated erythrocytes on stained blood smears by digital image analysis

    USGS Publications Warehouse

    Gering, E.; Atkinson, C.T.

    2004-01-01

    Measures of parasitemia by intraerythrocytic hematozoan parasites are normally expressed as the number of infected erythrocytes per n erythrocytes and are notoriously tedious and time consuming to measure. We describe a protocol for generating rapid counts of nucleated erythrocytes from digital micrographs of thin blood smears that can be used to estimate intensity of hematozoan infections in nonmammalian vertebrate hosts. This method takes advantage of the bold contrast and relatively uniform size and morphology of erythrocyte nuclei on Giemsa-stained blood smears and uses ImageJ, a java-based image analysis program developed at the U.S. National Institutes of Health and available on the internet, to recognize and count these nuclei. This technique makes feasible rapid and accurate counts of total erythrocytes in large numbers of microscope fields, which can be used in the calculation of peripheral parasitemias in low-intensity infections.

  18. Hemorheological changes and hematometric erythrocyte characteristics in rats after sodium nitrite intoxication

    NASA Astrophysics Data System (ADS)

    Ivanov, Ivan; Gluhcheva, Yordanka; Petrova, Emilia; Antonova, Nadia

    2014-05-01

    Sodium nitrite (NaNO2) is a precursor to a variety of organic compounds (pharmaceuticals, dyes and pesticides), but it is best known as a food additive. The aim of the study is to investigate the influence of acute (i.p.) treatment of Wistar rats with NaNO2 (at the dose of 50 mg/kg b.w.) on the blood rheological properties and erythrocyte hematometric indices (Hb, HCT, RBC, MCV, RDW, MCH, MCHC). The significant differences were not found in the whole blood viscosity (WBV) values of the control and NaNO2-treated groups. The changes in the erythrocyte hematometric indices were statistically significant for RDW, MCHC and MCH at the 1st hour, five- and ten days after NaNO2 administration. Interestingly, at the day 5th of the NaNO2 treatment we obtained statistically significant lower values for the RBC count, Hb, HCT, RDW, as well as elevated indices MCV (no statistically significant), MCH, MCHC. The results obtained indicate that hemorheological and hematometric parameters examined should be monitored in cases of acute exposure to nitrites — for the purposes of clinical toxicology. The quantitative values of hematometric indices reported in our experimental model could be suitable for predicting NaNO2 intoxication and methemoglobinemia in animals and humans.

  19. Hereditary spherocytosis and elliptocytosis associated with prosthetic heart valve replacement: rheological study of erythrocyte modifications.

    PubMed

    Caprari, Patrizia; Tarzia, Anna; Mojoli, Giorgio; Cianciulli, Paolo; Mannella, Emilio; Martorana, Maria Cristina

    2009-04-01

    The implantation of a prosthetic heart valve (HVP) in patients with hereditary spherocytosis (HS) and hereditary elliptocytosis (HE) is rare, and the changes in the structure and deformability of erythrocytes that follow implantation in these patients have been poorly described. In the present study, the erythrocytes in HS and HE patients with mechanical HVP were compared to the erythrocytes in patients with only congenital membrane defects, in terms of biochemical modifications and rheological behaviour. Integral and cytoskeletal erythrocyte membrane proteins were studied, and blood viscosity (shear rate/shear stress ratio), aggregation ratio [eta(1 s(-1))/eta(200 s(-1))], and red cell visco-elasticity were determined. Valve replacement with a mechanical prosthesis worsened anaemia and resulted in a change in haemolysis, from sub-clinical to evident. The rheological investigation of erythrocytes from HS patients confirmed the characteristic increased viscosity and aggregation ratio and the decreased deformability. The rheological behaviour of erythrocytes from patients with HVP showed a decrease in viscosity and an increase in elastic modulus. In these patients, the prosthesis seems to have induced traumatic damage to the erythrocyte membrane, leading to fragmentation and lysis, which in turn modified rheological parameters. The biochemical and rheological investigation allowed us to understand the clinical and haematological pictures of the patients and to describe the role played by different factors in haemolytic anaemia.

  20. Comparison of Zebrafish tmem88a mutant and morpholino knockdown phenotypes

    PubMed Central

    Place, Elsie S.; Smith, James C.

    2017-01-01

    Tmem88a is a transmembrane protein that is thought to be a negative regulator of the Wnt signalling pathway. Several groups have used antisense morpholino oligonucleotides in an effort to characterise the role of tmem88a in zebrafish cardiovascular development, but they have not obtained consistent results. Here, we generate an 8 bp deletion in the coding region of the tmem88a locus using TALENs, and we have gone on to establish a viable homozygous tmem88aΔ8 mutant line. Although tmem88aΔ8 mutants have reduced expression of some key haematopoietic genes, differentiation of erythrocytes and neutrophils is unaffected, contradicting our previous study using antisense morpholino oligonucleotides. We find that expression of the tmem88a paralogue tmem88b is not significantly changed in tmem88aΔ8 mutants and injection of the tmem88a splice-blocking morpholino oligonucleotide into tmem88aΔ8 mutants recapitulates the reduction of erythrocytes observed in morphants using o-Dianisidine. This suggests that there is a partial, but inessential, requirement for tmem88a during haematopoiesis and that morpholino injection exacerbates this phenotype in tmem88a morpholino knockdown embryos. PMID:28192479

  1. Exhaustive Exercise-induced Oxidative Stress Alteration of Erythrocyte Oxygen Release Capacity.

    PubMed

    Xiong, Yanlian; Xiong, Yanlei; Wang, Yueming; Zhao, Yajin; Li, Yaojin; Ren, Yang; Wang, Ruofeng; Zhao, Mingzi; Hao, Yitong; Liu, Haibei; Wang, Xiang

    2018-05-24

    The aim of the present study is to explore the effect of exhaustive running exercise (ERE) in the oxygen release capacity of rat erythrocytes. Rats were divided into sedentary control (C), moderate running exercise (MRE) and exhaustive running exercise groups. The thermodynamics and kinetics properties of the erythrocyte oxygen release process of different groups were tested. We also determined the degree of band-3 oxidative and phosphorylation, anion transport activity and carbonic anhydrase isoform II(CAII) activity. Biochemical studies suggested that exhaustive running significantly increased oxidative injury parameters in TBARS and methaemoglobin levels. Furthermore, exhaustive running significantly decreased anion transport activity and carbonic anhydrase isoform II(CAII) activity. Thermodynamic analysis indicated that erythrocytes oxygen release ability also significantly increased due to elevated 2,3-DPG level after exhaustive running. Kinetic analysis indicated that exhaustive running resulted in significantly decreased T50 value. We presented evidence that exhaustive running remarkably impacted thermodynamics and kinetics properties of RBCs oxygen release. In addition, changes in 2,3-DPG levels and band-3 oxidation and phosphorylation could be the driving force for exhaustive running induced alterations in erythrocytes oxygen release thermodynamics and kinetics properties.

  2. Ablation of the Kell/Xk complex alters erythrocyte divalent cation homeostasis.

    PubMed

    Rivera, Alicia; Kam, Siok Yuen; Ho, Mengfatt; Romero, Jose R; Lee, Soohee

    2013-02-01

    XK is a putative transporter of unknown function that is ubiquitously expressed and linked through disulfide bonds to Kell protein, an endothelin-3 (ET-3)-converting enzyme. We generated three knockout (KO) mice that lacked either Xk, Kell or both proteins and characterized erythrocyte cation levels, transport and hematological parameters. Absence of Xk or Kell was accompanied by changes in erythrocyte K(+), Mg(2+), Na(+) and Ca(2+) transport that were associated with changes in mean cellular volume and corpuscular hemoglobin concentration mean. Baseline Ca(2+)-ATPase activity was undetected in erythrocytes from all three mouse types but was restored upon pre-incubation with ET-3. Consistent with these alterations in Ca(2+) handling, we observed increased Gardos channel activity in Kel and Xk KO mice. In addition Kel deletion was associated with increased Mg(2+) permeability while Xk deletion blocked Na/Mg exchanger activity. Our results provide evidence that cellular divalent cation regulation is functionally coupled to the Kell/XK system in erythrocytes and loss of this complex may contribute to acanthocytosis formation in McLeod syndrome. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Transport of 3-bromopyruvate across the human erythrocyte membrane.

    PubMed

    Sadowska-Bartosz, Izabela; Soszyński, Mirosław; Ułaszewski, Stanisław; Ko, Young; Bartosz, Grzegorz

    2014-06-01

    3-Bromopyruvic acid (3-BP) is a promising anticancer compound because it is a strong inhibitor of glycolytic enzymes, especially glyceraldehyde 3-phosphate dehydrogenase. The Warburg effect means that malignant cells are much more dependent on glycolysis than normal cells. Potential complications of anticancer therapy with 3-BP are side effects due to its interaction with normal cells, especially erythrocytes. Transport into cells is critical for 3-BP to have intracellular effects. The aim of our study was the kinetic characterization of 3-BP transport into human erythrocytes. 3-BP uptake by erythrocytes was linear within the first 3 min and pH-dependent. The transport rate decreased with increasing pH in the range of 6.0-8.0. The Km and Vm values for 3-BP transport were 0.89 mM and 0.94 mmol/(l cells x min), respectively. The transport was inhibited competitively by pyruvate and significantly inhibited by DIDS, SITS, and 1-cyano-4-hydroxycinnamic acid. Flavonoids also inhibited 3-BP transport: the most potent inhibition was found for luteolin and quercetin.

  4. Drug-loaded erythrocytes: on the road toward marketing approval

    PubMed Central

    Bourgeaux, Vanessa; Lanao, José M; Bax, Bridget E; Godfrin, Yann

    2016-01-01

    Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available. PMID:26929599

  5. Drug-loaded erythrocytes: on the road toward marketing approval.

    PubMed

    Bourgeaux, Vanessa; Lanao, José M; Bax, Bridget E; Godfrin, Yann

    2016-01-01

    Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available.

  6. Erythrocyte membrane fatty acids in multiple myeloma patients.

    PubMed

    Jurczyszyn, Artur; Czepiel, Jacek; Gdula-Argasińska, Joanna; Czapkiewicz, Anna; Biesiada, Grażyna; Dróżdż, Mirosław; Perucki, William; Castillo, Jorge J

    2014-10-01

    Mounting data show that fatty acids (FA) and fatty acid synthase (FAS) function could be potential targets for multiple myeloma (MM) therapy. Our study aimed at comparing the FA composition of erythrocyte membranes of MM patients and healthy controls. MM patients had higher saturated FA and n-6 polyunsaturated FA (PUFA) and lower monounsaturated, n-3 PUFA and trans-FA indices than controls. The n-3/n-6 PUFA ratio was lower in MM patients and there was distinct clustering of variants of individual FA in MM patients. The FA content of erythrocyte membrane could serve as a diagnostic and/or predictive biomarker in MM. Copyright © 2014. Published by Elsevier Ltd.

  7. Changes in erythrocytic deformability and plasma viscosity in neonatal ictericia.

    PubMed

    Bonillo-Perales, A; Muñoz-Hoyos, A; Martínez-Morales, A; Molina-Carballo, A; Uberos-Fernández, J; Puertas-Prieto, A

    1999-01-01

    We studied 45 full-term newborns divided into 3 groups. Group 1: 17 newborns with bilirubin <10 mg/dL; Group 2: 18 newborns with hemolytic ictericia (bilirubin 11-20 mg/dL) and Group 3: 10 newborns with moderate hemolytic ictericia needing exchange transfusion. The following were studied: erythrocytic deformability, plasma viscosity, plasmatic osmolarity, seric bilirubin, bilirubin/albumin ratio, free fatty acids and corpuscular volume of the erythrocytes. In full-term newborns, the following are risk factors for increased erythrocytic rigidity: neonatal hemolytic illness (p = 0.004, odds ratio: 7.02), increases in total bilirubin (p = 0.02, odds ratio: 4.3) and increases in the bilirubin/albumin ratio (p = 0.025, odds ratio: 4.25). Furthermore, the most important risk factor for high plasma viscosity is also neonatal hemolytic illness (p = 0.01, odds ratio: 2.30). The role of total bilirubin is also important (p = 0.09, odds ratio: 2.10), while that of the bilirubin/albumin ratio (p = 0.012, NS) is less so. The greater the hemolysis, the greater the erythrocytic rigidity and plasma viscosity (p < 0.01). In full-term newborns with moderate ictericia, hemolytic illness and increases in the bilirubin/albumin ratio are accompanied by rheological alterations that could affect cerebral microcirculation and cause a neurological deficit not exclusively related to the levels of bilirubin in plasma.

  8. Impairment of the Plasmodium falciparum erythrocytic cycle induced by angiotensin peptides.

    PubMed

    Saraiva, Victor Barbosa; de Souza Silva, Leandro; Ferreira-DaSilva, Claudio Teixeira; da Silva-Filho, João Luiz; Teixeira-Ferreira, André; Perales, Jonas; Souza, Mariana Conceição; Henriques, Maria das Graças; Caruso-Neves, Celso; de Sá Pinheiro, Ana Acacia

    2011-02-18

    Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1-7). Parasite infection decreased Ang-(1-7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1-7) decreased the level of infection in an A779 (specific antagonist of Ang-(1-7) receptor, MAS)-sensitive manner. 10(-7) M PD123319, an AT(2) receptor antagonist, partially reversed the effects of Ang-(1-7) and Ang II. However, 10(-6) M losartan, an antagonist of the AT(1) receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10(-8) M Ang II or 10(-8) M Ang-(1-7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10(-7) M A779. 10(-6) M dibutyryl-cAMP increased the level of infection and 10(-7) M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1-7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1-7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus.

  9. Purification of zebrafish erythrocytes as a means of identifying a novel regulator of haematopoiesis.

    PubMed

    Kulkeaw, Kasem; Inoue, Tomoko; Ishitani, Tohru; Nakanishi, Yoichi; Zon, Leonard I; Sugiyama, Daisuke

    2018-02-01

    Zebrafish embryos are useful to study haematopoietic gene function in vertebrates, although lack of antibodies to zebrafish proteins has limited the purification of specific cell populations. Here, we purified primitive zebrafish erythrocytes using 1, 5-bis{[2-(di-methylamino)ethyl]amino}-4, 8-dihydroxyanthracene-9, 10-dione (DRAQ5 TM ), a DNA-staining fluorescent dye. At 48-h post-fertilization, we sorted small-sized cells from embryos using forward scatter and found that they consisted of DRAQ5 high and DRAQ5 low populations. DRAQ5 high cells contained haemoglobin, lacked myeloperoxidase activity and expressed high levels of embryonic globin (hbae3 and hbbe1.1) mRNA, all characteristics of primitive erythrocytes. Following DRAQ5 TM analysis of gata1:dsRed transgenic embryos, we purified primitive DRAQ5 high dsRed+ erythrocytes from haematopoietic progenitor cells. Using this method, we identified docking protein 2 (Dok2) as functioning in differentiation of primitive erythrocytes. We conclude that DRAQ5 TM -based flow cytometry enables purification of primitive zebrafish erythrocytes. © 2017 John Wiley & Sons Ltd.

  10. Formation of 5-Oxoproline from Glutathione in Erythrocytes by the γ-Glutamyltranspeptidase-Cyclotransferase Pathway

    PubMed Central

    Palekar, Anil G.; Tate, Suresh S.; Meister, Alton

    1974-01-01

    γ-Glutamyltranspeptidase activity was demonstrated in the membrane fraction of rabbit erythrocytes. The activity observed (with glutathione and various amino-acid acceptors) was similar in magnitude to that of the γ-glutamylcyclotransferase and γ-glutamylcysteine synthetase activities found in the soluble fraction of the cell. No transpeptidase activity was observed with either γ-glutamyl p-nitroanilide or oxidized glutathione in contrast to the rabbit-kidney enzyme for which these compounds and glutathione serve as substrates. Erythrocyte suspensions and hemolysates formed 5-oxoproline (pyroglutamate; pyrrolidone carboxylate); the rate of 5-oxoproline formation from glutathione by hemolysates was increased by addition of methionine. The findings indicate that 5-oxoproline is an end-product of glutathione metabolism in erythrocytes, and that 5-oxoproline passes out of the erythrocyte and is metabolized in other tissues. The observed rate of 5-oxoproline formation is consistent with the conclusion that the γ-glutamyltranspeptidase-cyclotransferase pathway, together with the synthesis of glutathione from glycine, cysteine, and glutamate, account for a large fraction of the observed amino-acid turnover of erythrocyte glutathione. PMID:4150022

  11. Erythrocyte Saturation with IgG Is Required for Inducing Antibody-Mediated Immune Suppression and Impacts Both Erythrocyte Clearance and Antigen-Modulation Mechanisms.

    PubMed

    Cruz-Leal, Yoelys; Marjoram, Danielle; Lazarus, Alan H

    2018-02-15

    Anti-D prevents hemolytic disease of the fetus and newborn, and this mechanism has been referred to as Ab-mediated immune suppression (AMIS). Anti-D, as well as other polyclonal AMIS-inducing Abs, most often induce both epitope masking and erythrocyte clearance mechanisms. We have previously observed that some Abs that successfully induce AMIS effects could be split into those that mediate epitope masking versus those that induce erythrocyte clearance, allowing the ability to analyze these mechanisms separately. In addition, AMIS-inducing activity has recently been shown to induce Ag modulation (Ag loss from the erythrocyte surface). To assess these mechanisms, we immunized mice with transgenic murine RBCs expressing a single Ag protein comprising a recombinant Ag composed of hen egg lysozyme, OVA sequences comprising aa 251-349, and the human Duffy transmembrane protein (HOD-Ag) with serial doses of polyclonal anti-OVA IgG as the AMIS-inducing Ab. The anti-OVA Ab induced AMIS in the absence of apparent epitope masking. AMIS occurred only when the erythrocytes appeared saturated with IgG. This Ab was capable of inducing HOD-RBC clearance, as well as loss of the OVA epitope at doses of Ab that caused AMIS effects. HOD-RBCs also lost reactivity with Abs specific for the hen egg lysozyme and Duffy portions of the Ag consistent with the initiation of Ag modulation and/or trogocytosis mechanisms. These data support the concept that an AMIS-inducing Ab that does not cause epitope masking can induce AMIS effects in a manner consistent with RBC clearance and/or Ag modulation. Copyright © 2018 by The American Association of Immunologists, Inc.

  12. New insights on hereditary erythrocyte membrane defects.

    PubMed

    Andolfo, Immacolata; Russo, Roberta; Gambale, Antonella; Iolascon, Achille

    2016-11-01

    After the first proposed model of the red blood cell membrane skeleton 36 years ago, several additional proteins have been discovered during the intervening years, and their relationship with the pathogenesis of the related disorders have been somewhat defined. The knowledge of erythrocyte membrane structure is important because it represents the model for spectrin-based membrane skeletons in all cells and because defects in its structure underlie multiple hemolytic anemias. This review summarizes the main features of erythrocyte membrane disorders, dividing them into structural and altered permeability defects, focusing particularly on the most recent advances. New proteins involved in alterations of the red blood cell membrane permeability were recently described. The mechanoreceptor PIEZO1 is the largest ion channel identified to date, the fundamental regulator of erythrocyte volume homeostasis. Missense, gain-of-function mutations in the PIEZO1 gene have been identified in several families as causative of dehydrated hereditary stomatocytosis or xerocytosis. Similarly, the KCNN4 gene, codifying the so called Gardos channel, has been recently identified as a second causative gene of hereditary xerocytosis. Finally, ABCB6 missense mutations were identified in different pedigrees of familial pseudohyperkalemia. New genomic technologies have improved the quality and reduced the time of diagnosis of these diseases. Moreover, they are essential for the identification of the new causative genes. However, many questions remain to solve, and are currently objects of intensive studies. Copyright© Ferrata Storti Foundation.

  13. New insights on hereditary erythrocyte membrane defects

    PubMed Central

    Andolfo, Immacolata; Russo, Roberta; Gambale, Antonella; Iolascon, Achille

    2016-01-01

    After the first proposed model of the red blood cell membrane skeleton 36 years ago, several additional proteins have been discovered during the intervening years, and their relationship with the pathogenesis of the related disorders have been somewhat defined. The knowledge of erythrocyte membrane structure is important because it represents the model for spectrin-based membrane skeletons in all cells and because defects in its structure underlie multiple hemolytic anemias. This review summarizes the main features of erythrocyte membrane disorders, dividing them into structural and altered permeability defects, focusing particularly on the most recent advances. New proteins involved in alterations of the red blood cell membrane permeability were recently described. The mechanoreceptor PIEZO1 is the largest ion channel identified to date, the fundamental regulator of erythrocyte volume homeostasis. Missense, gain-of-function mutations in the PIEZO1 gene have been identified in several families as causative of dehydrated hereditary stomatocytosis or xerocytosis. Similarly, the KCNN4 gene, codifying the so called Gardos channel, has been recently identified as a second causative gene of hereditary xerocytosis. Finally, ABCB6 missense mutations were identified in different pedigrees of familial pseudohyperkalemia. New genomic technologies have improved the quality and reduced the time of diagnosis of these diseases. Moreover, they are essential for the identification of the new causative genes. However, many questions remain to solve, and are currently objects of intensive studies. PMID:27756835

  14. Effect of sterol esters on lipid composition and antioxidant status of erythrocyte membrane of hypercholesterolemic rats.

    PubMed

    Sengupta, Avery; Ghosh, Mahua

    2014-01-01

    Hypercholesterolemia is a major cause of coronary heart disease. Erythrocyte membrane is affected during hypercholesterolemia. The effect of EPA-DHA rich sterol ester and ALA rich sterol ester on erythrocyte membrane composition, osmotic fragility in normal and hypercholesterolemic rats and changes in antioxidant status of erythrocyte membrane were studied. Erythrocyte membrane composition, osmotic fragility of the membrane and antioxidant enzyme activities was analyzed. Osmotic fragility data suggested that the erythrocyte membrane of hypercholesterolemia was relatively more fragile than that of the normal rats' membrane which could be reversed with the addition of sterol esters in the diet. The increased plasma cholesterol in hypercholesterolemic rats could also be lowered by the sterol ester administration. There was also marked changes in the antioxidant enzyme activities of the erythrocyte membrane. Antioxidant enzyme levels decreased in the membrane of the hypercholesterolemic subjects were increased with the treatment of the sterol esters. The antioxidative activity of ALA rich sterol ester was better in comparison to EPA-DHA rich sterol ester. In conclusion, rat erythrocytes appear to be deformed and became more fragile in cholesterol rich blood. This deformity and fragility was partially reversed by sterol esters by virtue of their ability to lower the extent of hypercholesterolemia.

  15. Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes

    PubMed Central

    Sherling, Emma S.; van Ooij, Christiaan

    2016-01-01

    Malaria is caused by infection of erythrocytes by parasites of the genus Plasmodium. To survive inside erythrocytes, these parasites induce sweeping changes within the host cell, one of the most dramatic of which is the formation of multiple membranous compartments, collectively referred to as the exomembrane system. As an uninfected mammalian erythrocyte is devoid of internal membranes, the parasite must be the force and the source behind the formation of these compartments. Even though the first evidence of the presence these of internal compartments was obtained over a century ago, their functions remain mostly unclear, and in some cases completely unknown, and the mechanisms underlying their formation are still mysterious. In this review, we provide an overview of the different parts of the exomembrane system, describing the parasitophorous vacuole, the tubovesicular network, Maurer's clefts, the caveola-vesicle complex, J dots and other mobile compartments, and the small vesicles that have been observed in Plasmodium-infected cells. Finally, we combine the data into a simplified view of the exomembrane system and its relation to the alterations of the host erythrocyte. PMID:27587718

  16. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform

    PubMed Central

    Hu, Che-Ming J.; Zhang, Li; Aryal, Santosh; Cheung, Connie; Fang, Ronnie H.; Zhang, Liangfang

    2011-01-01

    Efforts to extend nanoparticle residence time in vivo have inspired many strategies in particle surface modifications to bypass macrophage uptake and systemic clearance. Here we report a top-down biomimetic approach in particle functionalization by coating biodegradable polymeric nanoparticles with natural erythrocyte membranes, including both membrane lipids and associated membrane proteins for long-circulating cargo delivery. The structure, size and surface zeta potential, and protein contents of the erythrocyte membrane-coated nanoparticles were verified using transmission electron microscopy, dynamic light scattering, and gel electrophoresis, respectively. Mice injections with fluorophore-loaded nanoparticles revealed superior circulation half-life by the erythrocyte-mimicking nanoparticles as compared to control particles coated with the state-of-the-art synthetic stealth materials. Biodistribution study revealed significant particle retention in the blood 72 h following the particle injection. The translocation of natural cellular membranes, their associated proteins, and the corresponding functionalities to the surface of synthetic particles represents a unique approach in nanoparticle functionalization. PMID:21690347

  17. DNA content of hepatocyte and erythrocyte nuclei of the spined loach (Cobitis taenia L.) and its polyploid forms.

    PubMed

    Juchno, Dorota; Lackowska, Bozena; Boron, Alicja; Kilarski, Wincenty

    2010-09-01

    We analyzed the DNA content of hepatocyte and erythrocyte nuclei of the spined loach Cobitis taenia (diploid) and its allopolyploid forms. Twenty triploid females and one tetraploid were used. At least 20,000 hepatocyte and erythrocyte nuclei were acquired and analyzed by flow cytometry. C. taenia erythrocyte nuclei contain 3.15 +/- 0.21 pg of DNA and the hepatocyte nuclei 4.45 +/- 0.46 pg of DNA. Triploid Cobitis have 5.08 +/- 0.41 pg of DNA in erythrocyte nuclei and 6.11 +/- 0.40 pg of DNA in hepatocyte nuclei, whereas the tetraploid erythrocyte and hepatocyte nuclei contained 6.60 and 7.40 pg of DNA, respectively. In general, the DNA contents correlate positively with the ploidy level of the fish investigated. The DNA content variation in the hepatocyte and erythrocyte nuclei may be due to differences in extent of chromatin condensation, which is more pronounced in the erythrocyte than hepatocyte nuclei, or to the several orders of ploidy that occur in the parenchymal liver cells.

  18. Recognition and invasion of human erythrocytes by malarial parasites: contribution of sialoglycoproteins to attachment and host specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, M.J.; Blankenberg, T.; Sensabaugh, G.

    1984-05-01

    The receptivity of human erythrocytes to invasion by Plasmodium falciparum merozoites can be decreased by neuraminidase or trypsin treatment, an observation that supports a role for the erythrocyte sialoglycoproteins (glycophorins) in invasion. We have found that ..cap alpha../sub 1/-acid glycoprotein (AGP), added to in vitro cultures, can restore invasion of enzyme-treated human erythrocytes. AGP is structurally different from the glycophorins although it does carry 12% sialic acid. Its ability to restore receptivity to desialylated cells is dependent on its sialic acid complement, its concentration, and its binding to the erythrocyte surface. We present evidence that AGP forms a bridge betweenmore » the merozoite and the enzyme-treated erythrocyte that allows the stronger and more complex interactions of invasion to proceed. We suggest that the glycophorins play the same role on the surface of the intact erythrocyte. 31 references, 3 figures, 6 tables.« less

  19. Biological Activity of Blackcurrant Extracts (Ribes nigrum L.) in Relation to Erythrocyte Membranes

    PubMed Central

    Cyboran, Sylwia; Żyłka, Romuald; Oszmiański, Jan; Kleszczyńska, Halina

    2014-01-01

    Compounds contained in fruits and leaves of blackcurrant (Ribes nigrum L.) are known as agents acting preventively and therapeutically on the organism. The HPLC analysis showed they are rich in polyphenol anthocyanins in fruits and flavonoids in leaves, that have antioxidant activity and are beneficial for health. The aim of the research was to determine the effect of blackcurrant fruit and leaf extracts on the physical properties of the erythrocyte membranes and assess their antioxidant properties. The effect of the extracts on osmotic resistance, shape of erythrocytes and hemolytic and antioxidant activity of the extracts were examined with spectrophotometric methods. The FTIR investigation showed that extracts modify the erythrocyte membrane and protect it against free radicals induced by UV radiation. The results show that the extracts do not induce hemolysis and even protect erythrocytes against the harmful action of UVC radiation, while slightly strengthening the membrane and inducing echinocytes. The compounds contained in the extracts do not penetrate into the hydrophobic region, but bind to the membrane surface inducing small changes in the packing arrangement of the polar head groups of membrane lipids. The extracts have a high antioxidant activity. Their presence on the surface of the erythrocyte membrane entails protection against free radicals. PMID:24527456

  20. Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds.

    PubMed

    Thomas, Gavin H; Freckleton, Robert P; Székely, Tamás

    2006-07-07

    Phenotypic diversity is not evenly distributed across lineages. Here, we describe and apply a maximum-likelihood phylogenetic comparative method to test for different rates of phenotypic evolution between groups of the avian order Charadriiformes (shorebirds, gulls and alcids) to test the influence of a binary trait (offspring demand; semi-precocial or precocial) on rates of evolution of parental care, mating systems and secondary sexual traits. In semi-precocial species, chicks are reliant on the parents for feeding, but in precocial species the chicks feed themselves. Thus, where the parents are emancipated from feeding the young, we predict that there is an increased potential for brood desertion, and consequently for the divergence of mating systems. In addition, secondary sexual traits are predicted to evolve faster in groups with less demanding young. We found that precocial development not only allows rapid divergence of parental care and mating behaviours, but also promotes the rapid diversification of secondary sexual characters, most notably sexual size dimorphism (SSD) in body mass. Thus, less demanding offspring appear to facilitate rapid evolution of breeding systems and some sexually selected traits.

  1. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma.

    PubMed

    Lu, Ying; Ahmed, Sultan; Harari, Florencia; Vahter, Marie

    2015-01-01

    Ficoll density gradient centrifugation is widely used to separate cellular components of human blood. We evaluated the suitability to use erythrocytes and blood plasma obtained from Ficoll centrifugation for assessment of elemental concentrations. We determined 22 elements (from Li to U) in erythrocytes and blood plasma separated by direct or Ficoll density gradient centrifugation, using inductively coupled plasma mass spectrometry. Compared with erythrocytes and blood plasma separated by direct centrifugation, those separated by Ficoll had highly elevated iodine and Ba concentration, due to the contamination from the Ficoll-Paque medium, and about twice as high concentrations of Sr and Mo in erythrocytes. On the other hand, the concentrations of Ca in erythrocytes and plasma were markedly reduced by the Ficoll separation, to some extent also Li, Co, Cu, and U. The reduced concentrations were probably due to EDTA, a chelator present in the Ficoll medium. Arsenic concentrations seemed to be lowered by Ficoll, probably in a species-specific manner. The concentrations of Mg, P, S, K, Fe, Zn, Se, Rb, and Cs were not affected in the erythrocytes, but decreased in plasma. Concentrations of Mn, Cd, and Pb were not affected in erythrocytes, but in plasma affected by EDTA and/or pre-analytical contamination. Ficoll separation changed the concentrations of Li, Ca, Co, Cu, As, Mo, I, Ba, and U in erythrocytes and blood plasma, Sr in erythrocytes, and Mg, P, S, K, Fe, Zn, Se, Rb and Cs in blood plasma, to an extent that will invalidate evaluation of deficiencies or excess intakes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Morphological Effects and Antioxidant Capacity of Solanum crispum (Natre) In Vitro Assayed on Human Erythrocytes.

    PubMed

    Suwalsky, Mario; Ramírez, Patricia; Avello, Marcia; Villena, Fernando; Gallardo, María José; Barriga, Andrés; Manrique-Moreno, Marcela

    2016-06-01

    In order to gain insight into the molecular mechanism of the antioxidant properties of Solanum crispum, aqueous extracts of its leaves were assayed on human erythrocytes and molecular models of its membrane. Phenolics and alkaloids were detected by HPLC-MS. Scanning electron and defocusing microscopy showed that S. crispum changed erythrocytes from the normal shape to echinocytes. These results imply that molecules present in the aqueous extracts were located in the outer monolayer of the erythrocyte membrane. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were chosen as representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction showed that S. crispum preferentially interacted with DMPC bilayers. Experiments regarding its antioxidant properties showed that S. crispum neutralized the oxidative capacity of HClO on DMPE bilayers; defocusing microscopy and hemolysis assays demonstrated the protective effect of S. crispum against the oxidant effects of HClO on human erythrocytes.

  3. Erythrocyte creatine as a marker of intravascular hemolysis due to left ventricular outflow tract obstruction in hypertrophic cardiomyopathy.

    PubMed

    Kubo, Toru; Okumiya, Toshika; Baba, Yuichi; Hirota, Takayoshi; Tanioka, Katsutoshi; Yamasaki, Naohito; Sugiura, Tetsuro; Doi, Yoshinori L; Kitaoka, Hiroaki

    2016-03-01

    Erythrocyte creatine, a marker of erythrocyte age that increases with shortening of erythrocyte survival, has been reported to be a quantitative and reliable marker for intravascular hemolysis. We hypothesized that hemolysis could also occur due to intraventricular obstruction in patients with hypertrophic cardiomyopathy (HCM). The purpose of this study was to examine the presence of subclinical hemolysis and the relation between intravascular hemolysis and intraventricular pressure gradient (IVPG). We measured erythrocyte creatine in 92 HCM patients. Twelve patients had left ventricular outflow tract obstruction (LVOTO), 4 had midventricular obstruction (MVO), and the remaining 76 were non-obstructive. Erythrocyte creatine levels ranged from 0.92 to 4.36μmol/g hemoglobin. Higher levels of erythrocyte creatine were associated with higher IVPG (r=0.437, p<0.001). If erythrocyte creatine levels are high (≥1.8μmol/g hemoglobin), subclinical hemolysis is considered to be present. Half of LVOTO patients and no MVO patients showed high erythrocyte creatine levels. Although non-obstructive patients did not show significant intraventricular obstruction at rest, some showed high erythrocyte creatine levels. When LVOT-PG was measured during the strain phase of the Valsalva maneuver in 20 non-obstructive patients, 7 of those 20 patients showed LVOTO. In the 20 patients, there was no relation between erythrocyte creatine levels and LVOT-PG before the Valsalva maneuver (r=0.125, p=0.600), whereas there was a significant correlation between erythrocyte creatine and LVOT-PG provoked by the Valsalva maneuver (r=0.695, p=0.001). There is biochemical evidence of subclinical hemolysis in patients with HCM, and this hemolysis seems to be associated with LVOTO provoked by daily physical activities. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  4. Levels of text comprehension in children with autism spectrum disorders (ASD): the influence of language phenotype.

    PubMed

    Lucas, Rebecca; Norbury, Courtenay Frazier

    2014-11-01

    Many children with autism spectrum disorders (ASD) have reading comprehension difficulties, but the level of processing at which comprehension is most vulnerable and the influence of language phenotype on comprehension skill is currently unclear. We explored comprehension at sentence and passage levels across language phenotypes. Children with ASD and age-appropriate language skills (n = 25) demonstrated similar syntactic and semantic facilitation to typically developing peers. In contrast, few children with ASD and language impairments (n = 25) could read beyond the single word level. Those who could read sentences benefited from semantic coherence, but were less sensitive to syntactic coherence. At the passage level, the strongest predictor of comprehension was vocabulary knowledge. This emphasizes that the intimate relationship between language competence and both decoding skill and comprehension is evident at the sentence, as well as the passage level, for children with ASD.

  5. Decreased erythrocyte CCS content is a biomarker of copper overload in rats.

    PubMed

    Bertinato, Jesse; Sherrard, Lindsey; Plouffe, Louise J

    2010-07-02

    Copper (Cu) is an essential trace metal that is toxic in excess. It is therefore important to be able to accurately assess Cu deficiency or overload. Cu chaperone for Cu/Zn superoxide dismutase (CCS) protein expression is elevated in tissues of Cu-deficient animals. Increased CCS content in erythrocytes is particularly sensitive to decreased Cu status. Given the lack of a non-invasive, sensitive and specific biomarker for the assessment of Cu excess, we investigated whether CCS expression in erythrocytes reflects Cu overload. Rats were fed diets containing normal or high levels of Cu for 13 weeks. Diets contained 6.3 +/- 0.6 (Cu-N), 985 +/- 14 (Cu-1000) or 1944 +/- 19 (Cu-2000) mg Cu/kg diet. Rats showed a variable response to the high Cu diets. Some rats showed severe Cu toxicity, while other rats showed no visible signs of toxicity and grew normally. Also, some rats had high levels of Cu in liver, whereas others had liver Cu concentrations within the normal range. Erythrocyte CCS protein expression was 30% lower in Cu-2000 rats compared to Cu-N rats (P < 0.05). Notably, only rats that accumulated high levels of Cu in liver had lower erythrocyte CCS (47% reduction, P < 0.05) compared to rats fed normal levels of Cu. Together, these data indicate that decreased erythrocyte CCS content is associated with Cu overload in rats and should be evaluated further as a potential biomarker for assessing Cu excess in humans.

  6. Association between alcohol-induced erythrocyte membrane alterations and hemolysis in chronic alcoholics

    PubMed Central

    Bulle, Saradamma; Reddy, Vaddi Damodara; Padmavathi, Pannuru; Maturu, Paramahamsa; Puvvada, Pavan Kumar; Nallanchakravarthula, Varadacharyulu

    2017-01-01

    The present study aimed to understand the association between erythrocyte membrane alterations and hemolysis in chronic alcoholics. Study was conducted on human male volunteers aged between 35–45 years with a drinking history of 8–10 years. Results showed that plasma marker enzymes AST, ALT, ALP and γGT were increased in alcoholic subjects. Plasma and erythrocyte membrane lipid peroxidation, erythrocyte lysate nitric oxide (NOx) levels were also increased significantly in alcoholics. Furthermore, erythrocyte membrane protein carbonyls, total cholesterol, phospholipid and cholesterol/phospholipid (C/P) ratio were increased in alcoholics. SDS-PAGE analysis of erythrocyte membrane proteins revealed that increased density of band 3, protein 4.2, 4.9, actin and glycophorins, whereas glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glycophorin A showed slight increase, however, decreased ankyrin with no change in spectrins (α and β) and protein 4.1 densities were observed in alcoholics. Moreover, alcoholics red blood cells showed altered morphology with decreased resistance to osmotic hemolysis. Increased hemolysis showed strong positive association with lipid peroxidation (r = 0.703, p<0.05), protein carbonyls (r = 0.754, p<0.05), lysate NOx (r = 0.654, p<0.05) and weak association with C/P ratio (r = 0.240, p<0.05). Bottom line, increased lipid and protein oxidation, altered membrane C/P ratio and membrane cytoskeletal protein profile might be responsible for the increased hemolysis in alcoholics. PMID:28163384

  7. Association between alcohol-induced erythrocyte membrane alterations and hemolysis in chronic alcoholics.

    PubMed

    Bulle, Saradamma; Reddy, Vaddi Damodara; Padmavathi, Pannuru; Maturu, Paramahamsa; Puvvada, Pavan Kumar; Nallanchakravarthula, Varadacharyulu

    2017-01-01

    The present study aimed to understand the association between erythrocyte membrane alterations and hemolysis in chronic alcoholics. Study was conducted on human male volunteers aged between 35-45 years with a drinking history of 8-10 years. Results showed that plasma marker enzymes AST, ALT, ALP and γGT were increased in alcoholic subjects. Plasma and erythrocyte membrane lipid peroxidation, erythrocyte lysate nitric oxide (NOx) levels were also increased significantly in alcoholics. Furthermore, erythrocyte membrane protein carbonyls, total cholesterol, phospholipid and cholesterol/phospholipid (C/P) ratio were increased in alcoholics. SDS-PAGE analysis of erythrocyte membrane proteins revealed that increased density of band 3, protein 4.2, 4.9, actin and glycophorins, whereas glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glycophorin A showed slight increase, however, decreased ankyrin with no change in spectrins (α and β) and protein 4.1 densities were observed in alcoholics. Moreover, alcoholics red blood cells showed altered morphology with decreased resistance to osmotic hemolysis. Increased hemolysis showed strong positive association with lipid peroxidation ( r  = 0.703, p <0.05), protein carbonyls ( r  = 0.754, p <0.05), lysate NOx ( r  = 0.654, p <0.05) and weak association with C/P ratio ( r  = 0.240, p <0.05). Bottom line, increased lipid and protein oxidation, altered membrane C/P ratio and membrane cytoskeletal protein profile might be responsible for the increased hemolysis in alcoholics.

  8. Micro determination of plasma and erythrocyte copper by atomic absorption spectrophotometry

    PubMed Central

    Blomfield, Jeanette; Macmahon, R. A.

    1969-01-01

    The free and total plasma copper and total erythrocyte copper levels have been determined by simple, yet sensitive and highly specific methods, using atomic absorption spectrophotometry. For total copper determination, the copper was split from its protein combination in plasma or red cells by the action of hydrochloric acid at room temperature. The liberated copper was chelated by ammonium pyrrolidine dithiocarbamate and extracted into n-butyl acetate by shaking and the organic extract was aspirated into the atomic absorption spectrophotometer flame. The entire procedure was carried out in polypropylene centrifuge tubes, capped during shaking. For the free plasma copper measurement the hydrochloric acid step was omitted. Removal of the plasma or erythrocyte proteins was found to be unnecessary, and, in addition, the presence of trichloracetic acid caused an appreciable lowering of absorption. Using a double-beam atomic absorption spectrophotometer and scale expansion × 10, micro methods have been derived for determining the total copper of plasma or erythrocytes with 0·1 ml of sample, and the free copper of plasma with 0·5 ml. The macro plasma copper method requires 2 ml of plasma and is suitable for use with single-beam atomic absorption spectrophotometers. With blood from 50 blood donors, normal ranges of plasma and erythrocyte copper have been determined. PMID:5776543

  9. Erythrocytes of uranium miners: the activity of the pentose phosphate pathway

    PubMed Central

    Vích, Z.; Novosad, F.; Brychtová, V.

    1970-01-01

    Vích, Z., Novosad, F., and Brychtová, V. (1970).Brit. J. industr. Med.,27, 287-290. Erythrocytes of uranium miners: the activity of the pentose phosphate pathway. The functioning of erythrocytes was studied by determination of the activity of the pentose phosphate pathway in 431 individuals - 221 uranium miners, 42 employees of a uranium ore trimming station (30 of whom were exposed), 36 former uranium miners, 32 coal miners, and 100 persons not working in mines and with no previous exposure. In the groups exposed to long-term occupational radiation, the activity of the pentose phosphate cycle was found to be enhanced. This finding was interpreted as evidence for a change in the functional state of the erythrocytes in exposed persons due to the effects of radiation on the genesis of red cells in the bone marrow. PMID:5448126

  10. Daddy issues: paternal effects on phenotype

    PubMed Central

    Rando, Oliver J.

    2012-01-01

    The once-popular, then heretical, idea that ancestral environment can affect the phenotype of future generations is coming back into vogue, due to advances in the field of epigenetic inheritance. How paternal environmental conditions influence the phenotype of progeny is now a tractable question, and researchers are exploring potential mechanisms underlying such effects. PMID:23141533

  11. Erythrocyte Enrichment in Hematopoietic Progenitor Cell Cultures Based on Magnetic Susceptibility of the Hemoglobin

    PubMed Central

    Jin, Xiaoxia; Abbot, Stewart; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Zhao, Rui; Kameneva, Marina V.; Moore, Lee R.; Chalmers, Jeffrey J.; Zborowski, Maciej

    2012-01-01

    Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+ cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and decreasing cell volume that results in increased cell magnetophoretic mobility (MM) when exposed to high magnetic fields and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free) magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin A), hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry) to test for mature erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS) was used for magnetic separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes) that showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs. The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes. PMID:22952572

  12. What is the Efficiency of ATP Signaling from Erythrocytes to Regulate Distribution of O2 Supply within the Microvasculature?

    PubMed Central

    C.G., Ellis; S., Milkovich; D., Goldman

    2012-01-01

    Erythrocytes appear to be ideal sensors for regulating microvascular O2 supply since they release the potent vasodilator adenosine 5′-triphosphate (ATP) in an O2 saturation dependent manner. Whether erythrocytes play a significant role in regulating O2 supply in the complex environment of diffusional O2 exchange among capillaries, arterioles and venules, depends on the efficiency with which erythrocytes signal the vascular endothelium. If one assumes that the distribution of purinergic receptors is uniform throughout the microvasculature, then the most efficient site for signaling should occur in capillaries, where the erythrocyte membrane is in close proximity to the endothelium. ATP released from erythrocytes would diffuse a short distance to P2y receptors inducing an increase in blood flow possibly the result of endothelial hyperpolarization. We hypothesize that this hyperpolarization varies across the capillary bed dependent upon erythrocyte supply rate and the flux of O2 from these erythrocytes to support O2 metabolism. This would suggest that the capillary bed would be the most effective site for erythrocytes to communicate tissue oxygen needs. Electrically coupled endothelial cells conduct the integrated signal upstream where arterioles adjust vascular resistance, thus enabling ATP released from erythrocytes to regulate the magnitude and distribution of O2 supply to individual capillary networks. PMID:22587367

  13. Increased rate of adenine incorporation into adenine nucleotide pool in erythrocytes of patients with chronic renal failure.

    PubMed

    Marlewski, M; Smolenski, R T; Szolkiewicz, M; Aleksandrowicz, Z; Rutkowski, B; Swierczynski, J

    2000-11-01

    Elevated purine nucleotide pool (mainly ATP) in erythrocytes of patients with chronic renal failure (CRF) is a known phenomenon, however the mechanism responsible for this abnormality is far from being clear. We hypothesize that the increased rate of adenine incorporation into adenine nucleotide pool is responsible for the elevated level of ATP in uremic erythrocytes. In chronically uremic patients we evaluated using HPLC technique: (a) plasma adenine concentration; (b) the rate of adenine incorporation into adenine nucleotide pool in uremic erythrocytes. Additionally, the effect of higher than physiological phosphate concentration (2.4 mM) and lower than physiological pH (7.1) on adenine incorporation into erythrocytes adenine nucleotide pool was investigated. Healthy volunteers with normal renal function served as control. The concentration of adenine in plasma of CRF patients was found to be significantly higher than in plasma of healthy subjects. In contrast, adenosine concentration was similar both in healthy humans and in CRF patients. In isolated erythrocytes of uremic patients (incubated in the medium pH 7.4, containing 1.2 mM inorganic phosphate) adenine was incorporated into adenine nucleotide pool at a rate approximately 2-fold higher than in erythrocytes from healthy subjects. The rate of adenosine incorporation into adenine nucleotide pool was similar in erythrocytes of both studied groups. Incubation of erythrocytes obtained from healthy subjects in the medium pH 7.4, containing 2.4 mM inorganic phosphate, caused the increase of adenine incorporation into adenine nucleotide pool by about 60%. Incubation of the cells in the pH 7.1 buffer containing 2. 4 mM inorganic phosphate increased the rate of adenine incorporation into adenylate approximately 2-fold as compared to erythrocytes incubated in the medium pH 7.4 containing 1.2 mM inorganic phosphate. Erythrocytes obtained from uremic patients and incubated in the pH 7.1 medium containing 2.4 m

  14. The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase.

    PubMed Central

    Haggarty, N W; Dunbar, B; Fothergill, L A

    1983-01-01

    The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase, comprising 239 residues, was determined. The sequence was deduced from the four cyanogen bromide fragments, and from the peptides derived from these fragments after digestion with a number of proteolytic enzymes. Comparison of this sequence with that of the yeast glycolytic enzyme, phosphoglycerate mutase, shows that these enzymes are 47% identical. Most, but not all, of the residues implicated as being important for the activity of the glycolytic mutase are conserved in the erythrocyte diphosphoglycerate mutase. PMID:6313356

  15. Behavior of lead and zinc in plasma, erythrocytes, and urine and ALAD in erythrocytes following intravenous infusion of CaEDTA in lead workers.

    PubMed

    Araki, S; Aono, H; Fukahori, M; Tabuki, K

    1984-01-01

    To evaluate the effect of calcium disodium ethylenediamine tetraacetate (CaEDTA) on concentrations of lead and zinc in plasma, erythrocytes, whole blood, and urine, we administered CaEDTA by intravenous infusion for 1 hr to seven lead workers with blood lead concentrations of 46-67 micrograms/100 g (mean 54 micrograms/100 g). The plasma lead concentration (PPb) and the mobilization yield of lead in urine by CaEDTA were highest during the period between 1 and 2 hr after the infusion was started. In contrast, the lead concentration in erythrocytes (EPb) and in whole blood (BPb) remained unchanged during the 24 hr following infusion. Plasma zinc concentration (PZn) also fell rapidly following CaEDTA infusion; the decline was followed by a gradual rise in the zinc concentration in erythrocytes (EZn) without alteration in the zinc in whole blood. The mobilization yield of zinc in urine by CaEDTA (MZn) reached its highest level within 1 hr after the start of the infusion. Delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocytes gradually increased for 5 hr following CaEDTA infusion. These observations suggest that (1) PPb concentration is a more sensitive indicator of the body burden of chelatable lead than is either BPb or EPb; (2) MZn is mobilized mostly from plasma during the first several hours following the start of CaEDTA infusion, and the fall in PZn concentration following infusion is compensated first by a rise in EZn concentration and then by an immediate redistribution of zinc in other organs to the blood; and (3) Pb-inhibited ALAD activity is reactivated by the increased EZn during and shortly after CaEDTA infusion.

  16. Spectroscopic analysis of irradiated erythrocytes

    NASA Astrophysics Data System (ADS)

    Selim, Nabila S.; Desouky, Omar S.; Ismail, Nagla M.; Dakrory, Amira Z.

    2011-12-01

    The aim of the present work is to study the effect of gamma radiation on the lipid part of the erythrocyte membrane, and to test the efficiency of lipoic acid as a radioprotector. This effect was evaluated using electron paramagnetic resonance (EPR), and Fourier transform infrared (FT-IR) spectroscopy. The results showed an increase in the number of spin density by 14%, 22% and 65% after exposure to 25, 50 and 100 Gy respectively; whereas there was a decline in the obtained density after incubation with lipoic acid by a factor of approximately 32%. The FT-IR spectra of the irradiated erythrocytes samples showed a marked decrease in the intensity of all characteristic peaks, which increased as the irradiation dose increased. The second-derivative of these spectra, allow the conformationally sensitive membrane acyl chain methylene stretching modes to be separated from the protein (mostly hemoglobin) vibrations that dominate the spectra of intact cells. The 2850 cm -1 band showed changes in the band shape and position after exposure to 50 and 100 Gy. Therefore it can be concluded that the band at 2850 cm -1 only is useful in monitoring the radiation effect of the lipids cell membrane intact cells.

  17. PH-dependence of detergent-induced hemolysis and vesiculation of erythrocytes.

    PubMed

    Chernitsky, E A; Rozin, V V; Senkovich, O A

    2001-01-01

    The influence of pH of the medium on the parameters of detergent-induced fast hemolysis and vesiculation of human erythrocytes was studied. In the range of pH 6.3-7.2 neither the extent nor the rate of the vesiculation induced by 25 microM sodium dodecyl sulfate (SDS) changed. However, a decrease of pH from 8.0 to 5.8 strongly modified both the extent and the rate of the hemolysis induced by SDS. Within the range of pH 8.0-6.4, the effect can be ascribed to the increase of the positive charge of the membrane. This could lead to the accumulation of the membrane-bound anion detergent and, hence, to the change of the hemolysis parameters. Non-charged detergent Triton X-100 did not display any pH-dependence. At pH between 6.4 and 5.8 the extent and rate of hemolysis changed in a complicated manner. The kinetic curves of hemolysis could be approximated by a single exponential within the pH range between 8.0 and 7.2. Upon further reduction of pH, a second exponential component, with a larger time constant, appeared in the kinetic curves. At 5.8 < pH < 7.2, the contribution of the "fast" hemolysis dropped virtually to zero, with pK about 6.0. This points to a structural transition of the membrane, possibly involving histidine. We suggest that the parameters of the detergent-induced hemolysis are sensitive to the changes of the charge and structural state of erythrocyte membrane.

  18. Vitrification of erythrocytes, cryoprotective solutions and pure water by rapid solidification

    NASA Astrophysics Data System (ADS)

    Schedgick, David J.

    2003-06-01

    Vitrification has been used successfully in the past to cryopreserve biologically active materials in the presence of high concentrations of cryoprotectants. Rapid cooling and rapid rewarming were investigated to reduce or eliminate the concentrations of cryoprotectant necessary for cryopreservation. Glycerol based cryoprotectants were unidirectionally quenched and rewarmed to determine the depth at which a glass could form upon quenching while also avoiding subsequent crystallization upon rewarming. It was determined that, at sufficient cooling rates, pure water could be vitrified in thicknesses of 700 microns by quenching on free standing diamond wafers, and that solutions of greater than 50% glycerol are required to vitrify thicknesses equivalent to that of a human kidney. This process has been adapted to cryopreserve erythrocytes resuspended in isotonic saline. The cell suspensions were either drawn into small diameter glass tubes (500 micron inner diameter), loaded between thin glass plates (130--170 micron plate thickness), or formed into thin discs by shearing a drop of the suspension on a diamond film. The tubes, plates and sheared droplets were then quenched by immersion into liquid nitrogen. Erythrocyte survival after rewarming was measured at up to 97% of the unfrozen controls. Additionally, erythrocyte intracellular 2,3-DPG, ATP, and K+ were measured for the quenched cells and compared to the unfrozen controls. 2,3-DPG levels dropped 17.9% +/- 16.3%, ATP decreased 46.8% +/- 13.4%, and 52.8% +/- 3.4% of intracellular K+ remained after cryopreservation. The changes in intracellular indicators were similar to the changes observed in erythrocytes cryopreserved using the conventional glycerolized cryopreservation technique. Glass formation in erythrocyte suspensions upon cooling has been confirmed by differential scanning calorimetry (DS). Samples quenched in tubes, plates and on diamond films showed glass transition endotherms and crystallization exotherms

  19. Morphological and functional alteration of erythrocyte ghosts and giant unilamellar vesicles caused by Vipera latifi venom.

    PubMed

    Kirakosyan, Gayane; Mohamadvarzi, Maryam; Ghulikyan, Lusine; Zaqaryan, Naira; Kishmiryan, Arsen; Ayvazyan, Naira

    2016-12-01

    Snake bites are an endemic public health problem in Iran, both in rural and urban area. Viper venom as a hemolytic biochemical "cocktail" of toxins, primarily cause to the systemic alteration of blood cells. In the sixties and seventies, human erythrocytes were extensively studied, but the mechanical and chemical stresses commonly exerted on red blood cells continue to attract interest of scientists for the study of membrane structure and function. Here, we monitor the effect of Vipera latifi venom on human erythrocytes ghost membranes using phase contrast and fluorescent microscopy and changes in ATPase activity under snake venom influence in vitro. The ion pumps [Na + ,K + ]-ATPase and (Ca 2+ +Mg 2+ )-ATPase plays a pivotal role in the active transport of certain cations and maintenance of intracellular electrolyte homeostasis. We also describe the interaction of Vipera latifi (VL) venom with giant unilamellar vesicles (GUVs) composed of the native phospholipid mixtures visualized by the membrane fluorescence probe, ANS, used to assess the state of membrane and specifically mark the phospholipid domains. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Decreased nitrite levels in erythrocytes of children with β-thalassemia/hemoglobin E.

    PubMed

    Suvachananonda, Thitiwat; Wankham, Amara; Srihirun, Sirada; Tanratana, Pansakorn; Unchern, Supeenun; Fucharoen, Suthat; Chuansumrit, Ampaiwan; Sirachainan, Nongnuch; Sibmooh, Nathawut

    2013-09-01

    Nitrite anion is bioactive nitric oxide (NO) species circulating in blood, and represents the NO bioavailability and endothelial function. In this study, we aimed to investigate the nitrite levels and the correlation with hemolysis and severity in β-thalassemia/hemoglobin E (β-thal/HbE). 38 Children (12.0±1.9 years of age) with a diagnosis of mild, moderate and severe β-thalassemia were enrolled in the study. The blood nitrite levels and potential plasma NO consumption were measured by the chemiluminescence method. The nitrite levels in whole blood and erythrocytes of the severe thalassemia subjects were lower than those of the control subjects. At day 7 after transfusion of packed erythrocytes, the nitrite levels in erythrocytes increased. The plasma hemoglobin and NO consumption increased in the severe thalassemia subjects. The nitrite levels in erythrocytes inversely correlated with plasma hemoglobin, lactate dehydrogenase activity, potential NO consumption, and lipid peroxidation. Our studies demonstrate the decreased NO bioavailability in thalassemia, which could result from endothelial dysfunction, the increased potential NO consumption in plasma by cell-free hemoglobin and oxidative stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Erythrocyte CuZn superoxide dismutase activity is decreased in iron-deficiency anemia.

    PubMed

    Olivares, M; Araya, M; Pizarro, F; Letelier, A

    2006-09-01

    Iron and copper are essential microminerals that are intimately related. The present study was performed to determine the effect of iron-deficiency anemia (IDA) and treatment with iron on laboratory indicators of copper status. Hemoglobin, mean corpuscular volume erythrocyte Zn protoporphyrin, serum ferritin, serum copper, serum ceruloplasmin, and erythrocyte CuZn-superoxide dismutase (SOD) activity were studied in 12 adult women with IDA before and after iron treatment for 60-90 d (100 mg/d Fe, as ferric polymaltose) and in 27 women with normal iron status. Prior to treatment with iron, serum copper and ceruloplasmin were not different between the groups and treatment with iron did not affect these measures. IDA women, before and after treatment with iron, presented a 2.9- and 2-fold decrease in erythrocyte CuZn-SOD activity compared to women with normal iron status (p < 0.001). Treatment with iron increased erythrocyte CuZn-SOD activity of the IDA group; however, this change was not statistically significant. In conclusion, CuZn-SOD activity is decreased in IDA. Measurement of this enzyme activity is not useful for evaluating copper nutrition in iron-deficient subjects.

  2. Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3

    PubMed Central

    Ferru, Emanuela; Giger, Katie; Pantaleo, Antonella; Campanella, Estela; Grey, Jesse; Ritchie, Ken; Vono, Rosa; Low, Philip S.

    2011-01-01

    The cytoplasmic domain of band 3 serves as a center of erythrocyte membrane organization and constitutes the major substrate of erythrocyte tyrosine kinases. Tyrosine phosphorylation of band 3 is induced by several physiologic stimuli, including malaria parasite invasion, cell shrinkage, normal cell aging, and oxidant stress (thalassemias, sickle cell disease, glucose-6-phosphate dehydrogenase deficiency, etc). In an effort to characterize the biologic sequelae of band 3 tyrosine phosphorylation, we looked for changes in the polypeptide's function that accompany its phosphorylation. We report that tyrosine phosphorylation promotes dissociation of band 3 from the spectrin-actin skeleton as evidenced by: (1) a decrease in ankyrin affinity in direct binding studies, (2) an increase in detergent extractability of band 3 from ghosts, (3) a rise in band 3 cross-linkability by bis-sulfosuccinimidyl-suberate, (4) significant changes in erythrocyte morphology, and (5) elevation of the rate of band 3 diffusion in intact cells. Because release of band 3 from its ankyrin and adducin linkages to the cytoskeleton can facilitate changes in multiple membrane properties, tyrosine phosphorylation of band 3 is argued to enable adaptive changes in erythrocyte biology that permit the cell to respond to the above stresses. PMID:21474668

  3. Erythrocytes L-arginine y+ transporter inhibition by N-ethylmaleimide in ice-bath.

    PubMed

    Pinheiro da Costa, Bartira Ercília; de Almeida, Priscilla Barcellos; Conceição, Ioná Rosine; Antonello, Ivan Carlos Ferreira; d'Avila, Domingos O; Poli-de-Figueiredo, Carlos Eduardo

    2010-11-01

    Erythrocytes L: -arginine uptake is conveyed by y+ and y+L membrane transport systems. Pre-incubation with N-ethylmaleimide for 10 min at 37°C inhibits the y+ system. The aim of this study was to determine the ideal pre-incubation temperature in evaluating y+ and y+L systems. Cells were pre-incubated with or without N-ethylmaleimide for 10 min at 4°C and 37°C. L: -Arginine uptake was quantified by radioisotope and standard erythrocytes membrane flux methodology. Results demonstrate that erythrocytes L: -arginine content is depleted by pre-incubation at 37°C for 10 min, thus changing the V (max) measurement. The inhibitory effect of N-ethylmaleimide pre-incubation was temperature independent and already complete after 1 min of incubation. No significant difference in kinetic parameters was detected between cells pre-incubated at 37°C or 4°C, under zero-trans conditions. In conclusion, we suggest that measurement of erythrocytes L: -arginine uptake by y+ and y+L systems could be carried out without N-ethylmaleimide pre-incubation at 37°C.

  4. Effects of Radiographic Contrast Media on the Micromorphology of the Junctional Complex of Erythrocytes Visualized by Immunocytology

    PubMed Central

    Franke, Ralf-Peter; Krüger, Anne; Scharnweber, Tim; Wenzel, Folker; Jung, Friedrich

    2014-01-01

    Effects of radiographic contrast media (RCM) application were demonstrated in vitro and in vivo where the injection of RCM into the A. axillaris of patients with coronary artery disease was followed by a significant and RCM-dependent decrease of erythrocyte velocity in downstream skin capillaries. Another study in pigs revealed that the deceleration of erythrocytes coincided with a significant reduction of the oxygen partial pressure in the myocardium—supplied by the left coronary artery—after the administration of RCM into this artery. Further reports showed RCM dependent alterations of erythrocytes like echinocyte formation and exocytosis, sequestration of actin or band 3 and the buckling of endothelial cells coinciding with a formation of interendothelial fenestrations leading to areas devoid of endothelial cells. Key to morphological alterations of erythrocytes is the membrane cytoskeleton, which is linked to the band 3 in the erythrocyte membrane via the junctional complex. Fundamental observations regarding the cell biological and biochemical aspects of the structure and function of the cell membrane and the membrane cytoskeleton of erythrocytes have been reported. This review focuses on recent results gained, e.g., by advanced confocal laser scanning microscopy of different double-stained structural elements of the erythrocyte membrane cytoskeleton. PMID:25222553

  5. Nuclear magnetic resonance investigation of erythrocyte membranes in chronic myeloproliferative disorders.

    PubMed

    Morariu, V V; Petrov, L

    1986-07-01

    The temperature dependence of the apparent water diffusional exchange through erythrocyte membranes in cases of policitemia vera, chronic granulocytic leukemia and primary myelofibrosis was measured by using a nuclear magnetic resonance method in the presence of Mn2+. The thermal transition shifted to lower temperatures in all cases, regardless of the stage of the disease, suggesting a structural alteration of the membrane. The shift of transition indirectly suggests a lower penetration of the erythrocytes by Mn2+. The water exchange time at 37 degrees C also increased, mainly in the blast crisis; it seems to have a prognostic value of some clinical interest. No simple correlation of the water exchange and the following clinical investigations was observed: the white count, the percentage of promyelocites and myeloblasts, the sedimentation rate of blood, the osmotic fragility of erythrocytes, the total concentration of proteins, albumin and immunoglobulins, respectively, in plasma.

  6. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  7. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes

    PubMed Central

    Clafshenkel, William P.; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Russell, Alan J.

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system. PMID:27331401

  8. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    PubMed

    Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  9. Erythrocytes from patients with myeloproliferative neoplasms and splanchnic venous thrombosis show greater expression of Lu/BCAM.

    PubMed

    Novitzky-Basso, I; Spring, F; Anstee, D; Tripathi, D; Chen, F

    2018-05-13

    Lutheran/BCAM protein (Lu) on the surface of erythrocytes is key for their adhesion to the endothelium, and erythrocytes from individuals with JAK2V617F-mutated myeloproliferative neoplasms (MPN) have increased endothelial adhesion. Splanchnic vein thrombosis (SVT) is a devastating thrombotic complication of MPN, and frequently, the only diagnostic feature is the JAK2V617F mutation. We sought to examine whether erythrocytes from patients with JAK2V617F mutated SVT (MPN-SVT) exhibited increased Lu expression, thereby supporting a mechanistic contribution to the development of thrombosis. We report the validation of a novel flow cytometry assay for Lu expression on erythrocytes. We examined the expression of Lu on erythrocytes from a cohort of MPN patients with and without SVT, and healthy controls. Samples were obtained from 20 normal individuals, 22 with MPN (both JAK2V617F-mutated and wild-type) and 8 with JAK2V617F-mutated MPN-SVT. Lu expression by erythrocytes from patients with MPN and MPN-SVT is significantly increased compared to erythrocytes from healthy individuals (P < .05), but there was no significant difference between patients with MPN-SVT and MPN. Patients with MPN have increased expression of the red cell Lu/BCAM adhesion molecule. Further work is required to determine the role of the increased Lu/BCAM adhesion to the endothelium in the development of thrombosis in MPN of all genotypes. © 2018 John Wiley & Sons Ltd.

  10. A new method for culturing Plasmodium falciparum shows replication at the highest erythrocyte densities

    NASA Technical Reports Server (NTRS)

    Li, Tao; Glushakova, Svetlana; Zimmerberg, Joshua

    2003-01-01

    Plasmodium falciparum replicates poorly in erythrocyte densities greater than a hematocrit of 20%. A new method to culture the major malaria parasite was developed by using a hollow fiber bioreactor that preserves healthy erythrocytes at hematocrit up to 100%. P. falciparum replicated equally well at all densities studied. This method proved advantageous for large-scale preparation of parasitized erythrocytes (and potentially immunogens thereof), because high yields ( approximately 10(10) in 4 days) could be prepared with less cost and labor. Concomitantly, secreted proteins were concentrated by molecular sieving during culture, perhaps contributing to the parasitemic limit of 8%-12% with the 3D7 strain. The finding that P. falciparum can replicate at packed erythrocyte densities suggests that this system may be useful for study of the pathogenesis of fatal cerebral malaria, of which one feature is densely packed blood cells in brain microvasculature.

  11. Nitric oxide improves membrane fluidity of erythrocytes in essential hypertension: An electron paramagnetic resonance investigation.

    PubMed

    Tsuda, K; Kimura, K; Nishio, I; Masuyama, Y

    2000-09-07

    It has been shown that rheological abnormality might be an etiological factor in hypertension. Recent studies have revealed that human erythrocytes possess a nitric oxide (NO) synthase and that this activation might be involved in the regulation of rheological properties of erythrocytes. The present study was undertaken to investigate the role of NO in the regulation of membrane functions of erythrocytes in patients with essential hypertension by means of an electron paramagnetic resonance (EPR) and spin-labeling method. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (h(0)/h(-1)) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner. The finding indicated that the NO donor increased the membrane fluidity of erythrocytes. In addition, the effect of SNAP was significantly potentiated by 8-bromo-cyclic guanosine monophosphate. By contrast, the change of the fluidity induced by SNAP was reversed in the presence of L-N(G)-nitroarginine methyl ester and asymmetric dimethyl L-arginine. In patients with essential hypertension, the membrane fluidity of erythrocytes was significantly lower than in the normotensive subjects. The effect of SNAP was more pronounced in essential hypertension than in normotensive subjects. These results showed that NO increased the membrane fluidity and decreased the rigidity of cell membranes. Furthermore, the greater effect of NO on the fluidity in essential hypertension suggests that NO might actively participate in the regulation of rheological behavior of erythrocytes and have a crucial role in the improvement of microcirculation in hypertension. Copyright 2000 Academic Press.

  12. Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte

    PubMed Central

    Dasgupta, Sabyasachi; Auth, Thorsten; Gov, Nir S.; Satchwell, Timothy J.; Hanssen, Eric; Zuccala, Elizabeth S.; Riglar, David T.; Toye, Ashley M.; Betz, Timo; Baum, Jake; Gompper, Gerhard

    2014-01-01

    The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells. PMID:24988340

  13. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features.

    PubMed

    Ghezzo, Alessandro; Visconti, Paola; Abruzzo, Provvidenza M; Bolotta, Alessandra; Ferreri, Carla; Gobbi, Giuseppe; Malisardi, Gemma; Manfredini, Stefano; Marini, Marina; Nanetti, Laura; Pipitone, Emanuela; Raffaelli, Francesca; Resca, Federica; Vignini, Arianna; Mazzanti, Laura

    2013-01-01

    It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD). Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities) were unchanged. A very significant reduction of Na(+)/K(+)-ATPase activity (-66%, p<0.0001), a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio) were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD.

  14. Occupational exposure to Cr(VI): comparison between chromium levels in lymphocytes, erythrocytes, and urine.

    PubMed

    Lukanova, A; Toniolo, P; Zhitkovich, A; Nikolova, V; Panev, T; Popov, T; Taioli, E; Costa, M

    1996-01-01

    The relationships between chromium (Cr) levels in lymphocytes, erythrocytes, urine, and ambient air were compared among 14 chrome-platers from a metallurgic plant in Bulgaria and two groups of local controls, one from the same heavily polluted industrial town as the chrome-platers (n = 11) and one from a seaside resort town 100 km away (n = 6). Among the chrome-platers, the Cr concentration in peripheral lymphocytes was positively correlated with total Cr and Cr(VI) levels in ambient air and with Cr excretion in urine. As compared to the controls, the chrome-platers had mean Cr levels in lymphocytes twice as high, in erythrocytes ninefold higher, and in urine fourfold to eightfold higher. Although Cr levels in urine and lymphocytes were similar between the two control groups, levels in erythrocytes were 3 times higher among subjects from the industrial area than among those from the seaside town. The study suggests that lymphocyte Cr could be a good indicator of the Cr body burden caused by high exposures to Cr(VI), such as in electroplating operations. In these conditions, erythrocyte Cr may be less useful, possibly owing to increased toxicity due to the high affinity of erythrocytes for Cr. However, when exposure is lower, such as in most environmental situations, erythrocyte Cr should provide a better and more sensitive index than lymphocyte Cr. By contrast, urinary Cr, which provides information on total Cr exposure, including Cr(III) from dietary and environmental sources, does not seem to be of value for studying occupational exposure to Cr(VI).

  15. Genetic Characterization of Escherichia coli Type 1 Pilus Adhesin Mutants and Identification of a Novel Binding Phenotype

    PubMed Central

    Hamrick, Terri S.; Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Horton, John R.; Russell, Perry W.; Orndorff, Paul E.

    2000-01-01

    Five Escherichia coli type 1 pilus mutants that had point mutations in fimH, the gene encoding the type 1 pilus adhesin FimH, were characterized. FimH is a minor component of type 1 pili that is required for the pili to bind and agglutinate guinea pig erythrocytes in a mannose-inhibitable manner. Point mutations were located by DNA sequencing and deletion mapping. All mutations mapped within the signal sequence or in the first 28% of the predicted mature protein. All mutations were missense mutations except for one, a frameshift lesion that was predicted to cause the loss of approximately 60% of the mature FimH protein. Bacterial agglutination tests with polyclonal antiserum raised to a LacZ-FimH fusion protein failed to confirm that parental amounts of FimH cross-reacting material were expressed in four of the five mutants. The remaining mutant, a temperature-sensitive (ts) fimH mutant that agglutinated guinea pig erythrocytes after growth at 31°C but not at 42°C, reacted with antiserum at both temperatures in a manner similar to the parent. Consequently, this mutant was chosen for further study. Temperature shift experiments revealed that new FimH biosynthesis was required for the phenotypic change. Guinea pig erythrocyte and mouse macrophage binding experiments using the ts mutant grown at the restrictive and permissive temperatures revealed that whereas erythrocyte binding was reduced to a level comparable to that of a fimH insertion mutant at the restrictive temperature, mouse peritoneal macrophages were bound with parental efficiency at both the permissive and restrictive temperatures. Also, macrophage binding by the ts mutant was insensitive to mannose inhibition after growth at 42°C but sensitive after growth at 31°C. The ts mutant thus binds macrophages with one receptor specificity at 31°C and another at 42°C. PMID:10869080

  16. Derivativation of the human erythrocyte glucose transporter using a novel forskolin photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadzinski, B.; Shanahan, M.; Ruoho, A.

    1987-05-01

    An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-0-succinyldeacetyl-forskolin (IAPS-Fsk), has been synthesized, purified, and characterized. The K/sub i/ for inhibition of 3-0-methylglucose transport by TAPS-Fsk in human erythrocytes was found to be 0.1 uM. The carrier-free radioiodinated label has been shown to be a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes with 1-10 nM (I-125)IAPS-Fsk and analysis by SDS-PAGE showed specific derivatization of a broad band with an apparent molecular weight of 40-70 kDa. Photoincorporation using 2 nM (I-125)IAPS-Fsk was protected with D-glucose, cytochalasin B, and forskolin. No protection was observed withmore » L-glucose. Endo-B-galactosidase digestion and trypsinization of (I-125)IAPS-Fsk labelled erythrocytes reduced the specifically radiolabelled transporter to 40 kDa and 18 kDa respectively. (I-125)-IAPS-Fsk will be used to study the structural aspects of the glucose transporter.« less

  17. Characterization of iron metabolism and erythropoiesis in erythrocyte membrane defects and thalassemia traits.

    PubMed

    Sulovska, Lucie; Holub, Dusan; Zidova, Zuzana; Divoka, Martina; Hajduch, Marian; Mihal, Vladimir; Vrbkova, Jana; Horvathova, Monika; Pospisilova, Dagmar

    2016-06-01

    Erythropoiesis is closely related to iron metabolism in a balanced homeostasis. Analyses of diverse erythroid and iron metabolism disorders have shown that disrupted erythropoiesis negatively affects iron homeostasis and vice versa. The aim of this study was to characterize the relationship between erythropoietic activity and iron homeostasis in pediatric patients with erythrocyte membrane defects and thalassemia traits. Selected markers of erythropoietic activity (erythropoietin, soluble transferrin receptor - sTfR and growth differentiation factor 15) and iron status parameters (serum iron, ferritin and hepcidin) were evaluated in pediatric patients with erythrocyte membrane defects and thalassemia traits. The patients with erythrocyte membrane defects and thalassemia traits had altered iron homeostasis due to disturbed erythropoiesis. In comparison with healthy controls, they had a normal to low hepcidin/ferritin ratio and concomitantly elevated sTfR. The findings suggest that pediatric patients with erythrocyte membrane defects and thalassemia traits are more susceptible to iron overload than the general population and that the (hepcidin/ferritin)/sTfR ratio can be used to monitor any worsening of the disease.

  18. Daddy issues: paternal effects on phenotype.

    PubMed

    Rando, Oliver J

    2012-11-09

    The once popular and then heretical idea that ancestral environment can affect the phenotype of future generations is coming back into vogue due to advances in the field of epigenetic inheritance. How paternal environmental conditions influence the phenotype of progeny is now a tractable question, and researchers are exploring potential mechanisms underlying such effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Analysis of Receptor for Vibrio cholerae El Tor Hemolysin with a Monoclonal Antibody That Recognizes Glycophorin B of Human Erythrocyte Membrane

    PubMed Central

    Zhang, Dongyan; Takahashi, Junko; Seno, Taiko; Tani, Yoshihiko; Honda, Takeshi

    1999-01-01

    El Tor hemolysin (ETH), a pore-forming toxin secreted by Vibrio cholerae O1 biotype El Tor and most Vibrio cholerae non-O1 isolates, is able to lyse erythrocytes and other mammalian cells. To study the receptor for this toxin or the related molecule(s) on erythrocyte, we first isolated a monoclonal antibody, B1, against human erythrocyte membrane, which not only blocks the binding of ETH to human erythrocyte but also inhibits the hemolytic activity of ETH. Biochemical characterization and immunoblotting revealed that this antibody recognized an epitope on the extracellular domain of glycophorin B, a sialoglycoprotein of erythrocyte membrane. Erythrocytes lacking glycophorin B but not glycophorin A were less sensitive to the toxin than were normal human erythrocytes. These results indicate that glycophorin B is a receptor for ETH or at least an associated molecule of the receptor for ETH on human erythrocytes. PMID:10496913

  20. THE CONTENT OF MICROELEMENTS IN BLOOD SERUM AND ERYTHROCYTES IN CHILDREN WITH DIABETES MELLITUS TYPE I DEPENDING ON LEVEL OF GLYCEMIC CONTROL.

    PubMed

    Gluschenko, N; Vasylyshyn, Kh; Roschupkin, A; Lekishvili, S; Gladchenko, O

    2016-01-01

    The aim of this paper is to investigate the content of chromium, cobalt and nickel in serum and erythrocytes in children with type 1 diabetes mellitus, depending on the level of glycemic control. The study was conducted on 68 children with type 1 diabetes mellitus. The patients were divided into four groups based on glycemic control. Group I was composed of 9 children with optimal level of glycemic control. Group II - 25 children with suboptimal level of glycemic control. Group III - 34 children with a high risk to life level of glycemic control. Group IV (control group) consisted of 30 healthy children. Compensation state of type 1 diabetes was evaluated according to ISPAD (Consensus for the Management of Type 1 Diabetes Mellitus in Children and Adolescens 2000). The content of trace elements in biological agents was determined by atomic absorbtion spectrophotometry method with C-115M1 mass-spectrophotometer, manufactured by «Selmi» enterprise (Ukraine). It is found that there is a decrease in serum concentrations of chromium and erythrocyte content of cobalt in patients with optimal level of glycemic control. The deficiency of chromium is accompanied by the deficiency of cobalt in patients with suboptimal level of glycemic control. The lower levels of cobalt and nickel are recorded simultaneously, but there is theexcess of chromium in the erythrocytes of these patients. Patients, who suffer from 1 type diabetes mellitus and high risk for life level of glycemic control have considerable polideficiency of cobalt, nickel and chromium in serum.The increasing level of chromium was recorded only in the erythrocytes. The level of glycemic control and the duration of 1 type diabetes mellitus are important in the forecasting of the development of chronic diabetic complications. It is found that the duration of 1 type diabetes mellitus influences the levels of cobalt and nickel in serum mostly, while the level of glycemic control influences the chromium content.

  1. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M. B.; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-02-01

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.

  2. Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds

    PubMed Central

    Thomas, Gavin H; Freckleton, Robert P; Székely, Tamás

    2006-01-01

    Phenotypic diversity is not evenly distributed across lineages. Here, we describe and apply a maximum-likelihood phylogenetic comparative method to test for different rates of phenotypic evolution between groups of the avian order Charadriiformes (shorebirds, gulls and alcids) to test the influence of a binary trait (offspring demand; semi-precocial or precocial) on rates of evolution of parental care, mating systems and secondary sexual traits. In semi-precocial species, chicks are reliant on the parents for feeding, but in precocial species the chicks feed themselves. Thus, where the parents are emancipated from feeding the young, we predict that there is an increased potential for brood desertion, and consequently for the divergence of mating systems. In addition, secondary sexual traits are predicted to evolve faster in groups with less demanding young. We found that precocial development not only allows rapid divergence of parental care and mating behaviours, but also promotes the rapid diversification of secondary sexual characters, most notably sexual size dimorphism (SSD) in body mass. Thus, less demanding offspring appear to facilitate rapid evolution of breeding systems and some sexually selected traits. PMID:16769632

  3. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent

    PubMed Central

    Song, Anren; Zhang, Yujin; Han, Leng; Yegutkin, Gennady G.; Liu, Hong; Sun, Kaiqi; D'Alessandro, Angelo; Li, Jessica; Karmouty-Quintana, Harry; Iriyama, Takayuki; Weng, Tingting; Zhao, Shushan; Wang, Wei; Wu, Hongyu; Nemkov, Travis; Subudhi, Andrew W.; Jameson-Van Houten, Sonja; Julian, Colleen G.; Lovering, Andrew T.; Hansen, Kirk C.; Zhang, Hong; Bogdanov, Mikhail; Dowhan, William; Jin, Jianping; Kellems, Rodney E.; Eltzschig, Holger K.; Blackburn, Michael; Roach, Robert C.; Xia, Yang

    2017-01-01

    Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation. PMID:28169986

  4. [The physiologic significance of 2,3-diphosphoglycerate and changes in its erythrocyte levels in an experiment].

    PubMed

    Béder, I; Orgonásová, M; Brozman, B; Horecký, J; Mataseje, A

    1990-05-01

    The regulatory effect of 2,3-DPG on oxygen transport and binding to hemoglobin was analyzed. Under conditions of substitution hemodilution by isooncotic 3.4% Rheodextran (Spofa), changes in the content of 2,3-DPG in arterial and venous blood were enzymatically determined over several days. Reference values of 2,3-DPG were obtained in the studied series of dogs (2.05 +/- 0.74 x 10(-6) mol.ml-1 in whole blood 4.69 +/- 1.52 x 10(-6) mol.g-1 of erythrocyte volume, and 13.39 +/- 2.82 x 10(-6) mol.ml-1 of hemoglobin). In anesthetized animals the content of 2,3-DPG in arterial blood was significantly higher (6.28 +/- 0.84 x 10(-6) mol.ml-1 of erythrocyte volume) than in venous blood (6.01 +/- 0.80 x 10(-6) mol.ml-1 of erythrocyte volume). At substitution hemodilution the 2,3-DPG content in erythrocytes of venous blood decreased from 5.46 +/- 0.67 to 4.97 +/- 1.31 x 10(-6) mol.ml-1 of erythrocyte volume. The subsequent increase to 6.04 +/- 0.71 x 10(-6) mol.ml-1 of erythrocyte volume was achieved by nonlinear increase over the following days, at persisting low hemoglobin content in blood.

  5. Erythrocytes Functional Features in the 11-YEAR Solar Cycle

    NASA Astrophysics Data System (ADS)

    Parshina, S. S.; Tokayeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Samsonov, S. N.; Petrova, V. D.; Vodolagina, E. S.; Kaplanova, T. I.; Potapova, M. V.

    There had been studied features of rheological blood failures in patients with unstable angina (UA) in periods of the high (HSA) and low solar activity (LSA) in the 23rd 11-year solar cycle. This category of patients is characterized by prethrombotic blood state, although they don't have coronary thrombosis. The research aimed to study compensatory mechanisms which block thrombosis development at the solar activity increase. There had been established that the period of the solar activity increasing in the 11-year solar cycle is characterized by an increase of a blood viscosity, comparing with the period of a low solar activity. Though, erythrocytes functional features in this case are compensatory mechanisms - erythrocyte aggregation paradoxically reduced and their deformability increases. It is probably connected with the revealed fibrinogen decrease in the period of the high solar activity. We can see that the change of a solar activity is accompanied not only by the progressing of pathologic processes, but also by an activation of adaptive changes in erythrocyte membrane so0 as to prevent thrombosis. Though, the required compensatory mechanisms were found invalid, which were shown in the decrease of an oxygen delivery to tissues, and the effectiveness decrease of the medical treatment in the period of a HSA.

  6. Translating plasma and whole blood fatty acid compositional data into the sum of eicosapentaenoic and docosahexaenoic acid in erythrocytes.

    PubMed

    Stark, Ken D; Aristizabal Henao, Juan J; Metherel, Adam H; Pilote, Louise

    2016-01-01

    Specific blood levels of eicosapentaenoic plus docosahexaenoic acid (EPA+DHA, wt% of total) in erythrocytes or "the omega-3 index" have been recommended for cardio-protection, but fatty acids are often measured in different blood fractions. The ability to estimate the % of EPA+DHA in erythrocytes from the fatty acid composition of other blood fractions would enable clinical assessments of omega-3 status when erythrocyte fractions are not available and increase the ability to compare blood levels of omega-3 fatty acids across clinical studies. The fatty acid composition of baseline plasma, erythrocytes and whole blood samples from participants (n=1104) in a prospective, multicenter study examining acute coronary syndrome were determined. The ability to predict the % of EPA+DHA in erythrocytes from other blood fractions were examined using bivariate and multiple linear regression modelling. Concordance analysis was also used to compare the actual erythrocytes EPA+DHA values to values estimated from other blood fractions. EPA+DHA in erythrocytes was significantly (p<0.001) correlated EPA+DHA in plasma (r(2)=0.54) and whole blood (r(2)=0.79). Using multiple linear regression to predict EPA+DHA in erythrocytes resulted in stronger coefficients of determination in both plasma (R(2)=0.70) and whole blood (R(2)=0.84). Concordance analyses indicated agreement between actual and estimated EPA+DHA in erythrocytes, although estimating from plasma fatty acids appears to require translation by categorization rather than by translation as continuous data. This study shows that the fatty acid composition of different blood fractions can be used to estimate erythrocyte EPA+DHA in a population with acute coronary syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Erythrocyte permeability to urea and water: comparative study in rodents, ruminants, carnivores, humans, and birds.

    PubMed

    Liu, Lifeng; Lei, Tianluo; Bankir, Lise; Zhao, Dan; Gai, Xiaodong; Zhao, Xuejian; Yang, Baoxue

    2011-01-01

    Mammalian erythrocytes exhibit high urea permeability (P (urea)) due to UT-B expression in their cytoplasmic membrane. This high P (urea) allows fast equilibration of urea in erythrocytes during their transit in the hyperosmotic renal medulla. It also allows more urea (in addition to that in plasma) to participate in counter-current exchange between ascending and descending vasa recta, thus improving the trapping of urea in the medulla and improving urine concentrating ability. To determine if P (urea) in erythrocytes is related to diet and urine concentrating ability, we measured P (urea) in erythrocytes from 11 different mammals and 5 birds using stopped-flow light scattering. Carnivores (dog, fox, cat) exhibited high P (urea) (in x10(-5) cm/s, 5.3 ± 0.6, 3.8 ± 0.5 and 2.8 ± 0.7, respectively). In contrast, herbivores (cow, donkey, sheep) showed much lower P (urea) (0.8 ± 0.2, 0.7 ± 0.2, 1.0 ± 0.1, respectively). Erythrocyte P (urea) in human (1.1 ± 0.2), and pig (1.5 ± 0.1), the two omnivores, was intermediate. Rodents and lagomorphs (mouse, rat, rabbit) had P (urea) intermediate between carnivores and omnivores (3.3 ± 0.4, 2.5 ± 0.3 and 2.4 ± 0.3, respectively). Birds that do not excrete urea and do not express UT-B in their erythrocytes had very low values (<0.1 × 10(-5) cm/s). In contrast to P (urea), water permeability, measured simultaneously, was relatively similar in all mammals. The species differences in erythrocytes P (urea) most probably reflect adaptation to the different types of diet and resulting different needs for concentrating urea in the urine.

  8. Cytopathology and coagulopathy associated with viral erythrocytic necrosis in chum salmon

    USGS Publications Warehouse

    MacMillian, John R.; Mulcahy, D.; Landolt, M.L.

    1989-01-01

    The 8-month cytopathologic progression of viral erythrocytic necrosis (VEN) disease in chum salmon Oncorhynchus keta is described. Single to multiple acidophilic, cytoplasmic viral inclusion bodies developed first in mature erythrocytes and then, within 1–2 months, all morphologically identifiable hemopoietic cell types contained VEN inclusions. Cytologic analysis indicated that multinucleate giant erythroblasts, ineffective erythropoiesis, and abnormal erythroid cell maturation occurred. A significant increase in blood coagulation time occurred concomitantly. This severe and chronic blood dyscrasia accounts for some of the pathophysiologic sequelae previously observed.

  9. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features

    PubMed Central

    Visconti, Paola; Bolotta, Alessandra; Ferreri, Carla; Gobbi, Giuseppe; Malisardi, Gemma; Manfredini, Stefano; Marini, Marina; Nanetti, Laura; Pipitone, Emanuela; Raffaelli, Francesca; Resca, Federica; Mazzanti, Laura

    2013-01-01

    It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD). Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities) were unchanged. A very significant reduction of Na+/K+-ATPase activity (−66%, p<0.0001), a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio) were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD. PMID:23840462

  10. [Results of a study of the diagnostic qualities of brucellosis and tularemic antigenic erythrocytic diagnostica].

    PubMed

    Tsybin, B P; Taran, I F; Tinker, A I

    1975-09-01

    The authors elaborated methods of preparation of brucella and tularemia antigenic erythrocytic diagnostic agents which were characterized as highly specific, specific and stable preparations in mass examination of humans and animals at various stages of the vaccinal and infectous processes. The simplicity of obtaining specific antigens intended for the sensitization of formalinized erythrocytes and stability of the results of results of reproduction of the methods of preparation of the antigenic erythrocytic diagnostic agents offered a possibility of recommending the mentioned methods of industrial preparation of the diagnostic agents.

  11. Increased erythrocyte deformability in fetal erythropoiesis and in erythrocytes deficient in glucose-6-phosphate dehydrogenase and other glycolytic enzymes.

    PubMed

    Johnson, R M; Panchoosingh, H; Goyette, G; Ravindranath, Y

    1999-01-01

    Erythrocyte deformability was determined in more than 500 clinical samples, and was found to be elevated in conditions in which fetal-like red cells are produced: aplastic anemia (3/3 cases), myelodysplastic syndromes, polycythemias, sickle cell anemia during treatment with hydroxyurea, paroxysmal nocturnal hemoglobinuria, and recovery from B12 deficiency. Elevated deformability was observed in neonatal erythrocytes, and during recovery from transient erythroblastopenia of childhood, when fetal-like red cells are known to be produced. Increased deformability appears to be a feature of fetal and fetal-like red cells. Forty-eight cases of enzymatically verified glucose-6-phosphate (G-6-PD) deficiency were also examined. Thirty out of 32 G-6-PD(A-) individuals, including both heterozygotes and hemizygotes, exhibited increased deformability during the steady state. In contrast, G-6-PD(Med) hemizygotes had normal deformability. Increased deformability was also found in G-6-PD(Huron) (n=3), G-6-PD(Wayne) (n=4), triose phosphate isomerase deficiency (n=2), and pyruvate kinase deficiency (n=2). An elevated osmoscan was found in more than 90% of female G-6-PD heterozygotes, affording a simple screening test for heterozygotes. Deformability remained high during hemolytic episodes, when older enzyme deficient cells are removed from the circulation. In four cases of G-6-PD deficiency with normal deformability, evidence for co-existing hereditary spherocytosis was found. The combination of conditions with opposing effects on deformability resulted in nearly normal deformability. Because increased red cell deformability is a feature of fetal erythrocytes, these results suggest that the red cells in many cases of glycolytic enzyme deficiency are fetal-like.

  12. Effects of Red Wine Tannat on Oxidative Stress Induced by Glucose and Fructose in Erythrocytes in Vitro

    PubMed Central

    Pazzini, Camila Eliza Fernandes; Colpo, Ana Ceolin; Poetini, Márcia Rósula; Pires, Cauê Ferreira; de Camargo, Vanessa Brum; Mendez, Andreas Sebastian Loureiro; Azevedo, Miriane Lucas; Soares, Júlio César Mendes; Folmer, Vanderlei

    2015-01-01

    The literature indicates that red wine presents in its composition several substances that are beneficial to health. This study has investigated the antioxidant effects of Tannat red wine on oxidative stress induced by glucose and fructose in erythrocytes in vitro, with the purpose to determine some of its majoritarian phenolic compounds and its antioxidant capacity. Erythrocytes were incubated using different concentrations of glucose and fructose in the presence or absence of wine. From these erythrocytes were determined the production of thiobarbituric acid reactive species (TBARS), glucose consumption, and osmotic fragility. Moreover, quantification of total phenolic, gallic acid, caffeic acid, epicatechin, resveratrol, and DPPH scavenging activity in wine were also assessed. Red wine showed high levels of polyphenols analyzed, as well as high antioxidant potential. Erythrocytes incubated with glucose and fructose had an increase in lipid peroxidation and this was prevented by the addition of wine. The wine increased glucose uptake into erythrocytes and was able to decrease the osmotic fragility of erythrocytes incubated with fructose. Altogether, these results suggest that wine leads to a reduction of the oxidative stress induced by high concentrations of glucose and fructose. PMID:26078708

  13. Borderline maintenance of erythrocyte 2,3-diphosphoglycerate concentrations in normoxic type 1 (insulin dependent) diabetic subjects.

    PubMed

    Story, C J; Roberts, A P; Ryall, R G

    1986-02-01

    Erythrocyte 2,3-diphosphoglycerate and haemoglobin A1c concentrations were measured in 26 clinically normoxic patients with type 1 (insulin dependent) diabetes mellitus. The concentration of 2,3-diphosphoglycerate theoretically required to maintain normal erythrocyte oxygen delivery function in each subject was calculated and compared with the measured concentrations. In the majority of diabetic patients 2,3-diphosphoglycerate concentrations were sufficient to keep the erythrocyte oxygen dissociation curve within the normal range under otherwise normal blood conditions. There was, however, a minority of patients in which this was not true. It is concluded that the increased erythrocyte 2,3-diphosphoglycerate concentrations in clinically normoxic diabetic subjects are generally less than compensatory for the effect of haemoglobin A1c formation on the haemoglobin-oxygen dissociation curve.

  14. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier

    PubMed Central

    Villa, Carlos H; Pan, Daniel C; Zaitsev, Sergei; Cines, Douglas B; Siegel, Donald L; Muzykantov, Vladimir R

    2015-01-01

    For several decades, researchers have used erythrocytes for drug delivery of a wide variety of therapeutics in order to improve their pharmacokinetics, biodistribution, controlled release and pharmacodynamics. Approaches include encapsulation of drugs within erythrocytes, as well as coupling of drugs onto the red cell surface. This review focuses on the latter approach, and examines the delivery of red blood cell (RBC)-surface-bound anti-inflammatory, anti-thrombotic and anti-microbial agents, as well as RBC carriage of nanoparticles. Herein, we discuss the progress that has been made in surface loading approaches, and address in depth the issues relevant to surface loading of RBC, including intrinsic features of erythrocyte membranes, immune considerations, potential surface targets and techniques for the production of affinity ligands. PMID:26228773

  15. Vitamin E supplement improves erythrocyte membrane fluidity of thalassemia: an ESR spin labeling study.

    PubMed

    Sutipornpalangkul, Werasak; Morales, Noppawan Phumala; Unchern, Supeenun; Sanvarinda, Yupin; Chantharaksri, Udom; Fucharoen, Suthat

    2012-01-01

    Beta-thalassemia/Hemoglobin E (beta-thal/Hb E) is prevalent in Thailand. The imbalance of globin chains in red blood cells is the primary cause of this anemic disease. The excess alpha-globin in beta-thal/Hb E causes typical damage(s) to membrane of erythroblasts and erythrocytes. By using three paramagnetic labeled compounds (5-, 12-, and 16-spin labeled stearic acids, SLS), the changes of the molecular motion in the lipid bilayer of thalassemic RBCs that have structural modification can be detected. to investigate erythrocyte membrane fluidity and the effect of vitamin E treatment in beta-thalassemia/Hemoglobin E patients by using spin labeling techniques. The erythrocyte membrane fluidity was investigated in nine splenectomized and five non-splenectomized beta-thalassemia/hemoglobin E (beta-thal/Hb E) patients using EPR spin labeling techniques. To determine the effect of vitamin E on erythrocyte membrane fluidity, only the splenectomized patients were enrolled. Patients were divided into two groups. The first group received 350 mg vitamin E daily for a period of 1 month (n = 5) and the second group received placebo for an equal period (n = 4). Three paramagnetic fatty acid, 5-, 12-, and 16-doxyl stearic acids, (5-, 12- and 16-DS) were used to label phospholipids layer near both the surface (5-DS) and the deeper hydrophobic region of membrane (12-and 16-DS). Lipid peroxidation (TBARs) was measured using a colorimetric method. Vitamin E was measured with high performance liquid chromatography (HPLC). Significantly higher values of erythrocyte membrane fluidity were revealed with 12-, 16-DS in splenectomized patients, as compared with non-splenectomized patients and normal subjects. In 3-thal/Hb E patients, fluidity values, both outer hyperfine splitting (2T(//)) and order parameter (S) of 12-DS showed inverse correlation with serum TBARs. There was no significant difference between the fluidity values measured with 5-DS. After vitamin E supplementation, the

  16. Meta-analysis of erythrocyte polyunsaturated fatty acid biostatus in bipolar disorder.

    PubMed

    McNamara, Robert K; Welge, Jeffrey A

    2016-05-01

    Dietary deficiency in polyunsaturated fatty acids (PUFAs), including the omega-3 fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), and excesses in omega-6 fatty acids, including linoleic acid (LA; 18:2n-6) and arachidonic acid (AA; 20:4n-6), may be associated with the pathophysiology of bipolar disorder. In an effort to provide clarification regarding the relationship between PUFA biostatus and bipolar disorder, this meta-analysis investigated studies comparing erythrocyte (red blood cell) membrane PUFA composition in patients with bipolar disorder and healthy controls. A meta-analysis was performed on case-control studies comparing erythrocyte PUFA (EPA, DHA, LA and AA) levels in patients with bipolar I disorder and healthy controls. Standardized effect sizes were calculated and combined using a random effects model. Six eligible case-control studies comprising n = 118 bipolar I patients and n = 147 healthy controls were included in the analysis. Compared with healthy controls, patients with bipolar I disorder exhibited robust erythrocyte DHA deficits (p = 0.0008) and there was a trend for lower EPA (p = 0.086). There were no significant differences in LA (p = 0.42) or AA (p = 0.64). Bipolar I disorder is associated with robust erythrocyte DHA deficits. These findings add to a growing body of evidence implicating omega-3 PUFA deficiency in the pathophysiology of bipolar disorder. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Effects of flaxseed oil on anti-oxidative system and membrane deformation of human peripheral blood erythrocytes in high glucose level

    PubMed Central

    2012-01-01

    Background The erythrocyte membrane lesion is a serious diabetic complication. A number of studies suggested that n-3 fatty acid could reduce lipid peroxidation and elevate α- or γ-tocopherol contents in membrane of erythrocytes. However, evidence regarding the protective effects of flaxseed oil, a natural product rich in n-3 fatty acid, on lipid peroxidation, antioxidative capacity and membrane deformation of erythrocytes exposed to high glucose is limited. Methods Human peripheral blood erythrocytes were isolated and treated with 50 mM glucose to mimic hyperglycemia in the absence or presence of three different doses of flaxseed oil (50, 100 or 200 μM) in the culture medium for 24 h. The malondialdehyde (MDA) and L-glutathione (GSH) were measured by HPLC and LC/MS respectively. The phospholipids symmetry and membrane fatty acid composition of human erythrocytes were detected by flow cytometry and gas chromatograph (GC). The morphology of human erythrocyte was illuminated by ultra scanning electron microscopy. Results Flaxseed oil attenuated hyperglycemia-induced increase of MDA and decrease of GSH in human erythrocytes. Human erythrocytes treated with flaxseed oil contained higher C22:5 and C22:6 than those in the 50 mM glucose control group, indicating that flaxseed oil could reduce lipid asymmetric distribution and membrane perturbation. The ultra scanning electron microscopy and flow cytometer have also indicated that flaxseed oil could protect the membrane of human erythrocytes from deformation at high glucose level. Conclusion The flaxseed oil supplementation may prevent lipid peroxidation and membrane dysfunction of human erythrocytes in hyperglycemia. PMID:22768971

  18. Effects of flaxseed oil on anti-oxidative system and membrane deformation of human peripheral blood erythrocytes in high glucose level.

    PubMed

    Yang, Wei; Fu, Juan; Yu, Miao; Huang, Qingde; Wang, Di; Xu, Jiqu; Deng, Qianchun; Yao, Ping; Huang, Fenghong; Liu, Liegang

    2012-07-08

    The erythrocyte membrane lesion is a serious diabetic complication. A number of studies suggested that n-3 fatty acid could reduce lipid peroxidation and elevate α- or γ-tocopherol contents in membrane of erythrocytes. However, evidence regarding the protective effects of flaxseed oil, a natural product rich in n-3 fatty acid, on lipid peroxidation, antioxidative capacity and membrane deformation of erythrocytes exposed to high glucose is limited. Human peripheral blood erythrocytes were isolated and treated with 50 mM glucose to mimic hyperglycemia in the absence or presence of three different doses of flaxseed oil (50, 100 or 200 μM) in the culture medium for 24 h. The malondialdehyde (MDA) and L-glutathione (GSH) were measured by HPLC and LC/MS respectively. The phospholipids symmetry and membrane fatty acid composition of human erythrocytes were detected by flow cytometry and gas chromatograph (GC). The morphology of human erythrocyte was illuminated by ultra scanning electron microscopy. Flaxseed oil attenuated hyperglycemia-induced increase of MDA and decrease of GSH in human erythrocytes. Human erythrocytes treated with flaxseed oil contained higher C22:5 and C22:6 than those in the 50 mM glucose control group, indicating that flaxseed oil could reduce lipid asymmetric distribution and membrane perturbation. The ultra scanning electron microscopy and flow cytometer have also indicated that flaxseed oil could protect the membrane of human erythrocytes from deformation at high glucose level. The flaxseed oil supplementation may prevent lipid peroxidation and membrane dysfunction of human erythrocytes in hyperglycemia.

  19. Antioxidant capacity of Ugni molinae fruit extract on human erythrocytes: an in vitro study.

    PubMed

    Suwalsky, Mario; Avello, Marcia

    2014-08-01

    Ugni molinae is an important source of molecules with strong antioxidant activity widely used as a medicinal plant in Southern Chile-Argentina. Total phenol concentration from its fruit extract was 10.64 ± 0.04 mM gallic acid equivalents. Analysis by means of HPLC/MS indicated the presence of the anthocyanins cyanidin and peonidin, and the flavonol quercitin, all in glycosylated forms. Its antioxidant properties were assessed in human erythrocytes in vitro exposed to HClO oxidative stress. Scanning electron microscopy showed that HClO induced an alteration in erythrocytes from a normal shape to echinocytes; however, this change was highly attenuated in samples containing U. molinae extracts. It also had a tendency in order to reduce the hemolytic effect of HClO. In addition, X-ray diffraction experiments were performed in dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine bilayers, classes of lipids preferentially located in the outer and inner monolayers, respectively, of the human erythrocyte membrane. It was observed that U. molinae only interacted with DMPC. Results by fluorescence spectroscopy on DMPC large unilamellar vesicles and isolated unsealed human erythrocyte membranes also showed that it interacted with the erythrocyte membrane and DMPC. It is possible that the location of U. molinae components into the membrane outer monolayer might hinder the diffusion of HClO and of free radicals into cell membranes and the consequent decrease of the kinetics of free radical reactions.

  20. In vivo reduction of erythrocyte oxidant stress in a murine model of beta-thalassemia.

    PubMed

    de Franceschi, Lucia; Turrini, Franco; Honczarenko, Marek; Ayi, Kojio; Rivera, Alicia; Fleming, Mark D; Law, Terry; Mannu, Franca; Kuypers, Frans A; Bast, Aalt; van der Vijgh, Wim J F; Brugnara, Carlo

    2004-11-01

    Oxidant damage is an important contributor to the premature destruction of erythrocytes and anemia in thalassemias. To assess the extent of oxidant damage of circulating erythrocytes and the effects of antioxidant therapy on erythrocyte characteristics and anemia, we used a mouse model of human beta-thalassemia intermedia (b1/b2 deletion). Several parameters indicative of oxidant damage were measured at baseline and following administration of the semi-synthetic flavonoid antioxidant, 7-monohydroxyethylrutoside (monoHER), to beta-thalassemic mice at a dose of either 500 mg/kg i.p. once a day (n=6) or 250 mg/kg i.p. twice a day (n=6) for 21 days. Significant erythrocyte oxidant damage at baseline was indicated by: (i) dehydration, reduced cell K content, and up-regulated K-Cl co-transport; (ii) marked membrane externalization of phosphatidylserine; (iii) reduced plasma and membrane content of vitamin E; and (iv) increased membrane bound IgG. MonoHER treatment increased erythrocyte K content, and markedly improved all cellular indicators of oxidant stress and of lipid membrane peroxidation. While anemia did not improve, monoHER therapy reduced reticulocyte counts, improved survival of a fraction of red cells, and reduced ineffective erythropoiesis with decreased total bilirubin, lactate dehydrogenase and plasma iron. Antioxidant therapy reverses several indicators of oxidant damage in vivo. These promising antioxidant effects of monoHER should be investigated further.

  1. Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants.

    PubMed

    El-Demerdash, Fatma M

    2007-04-01

    Erythrocytes are a convenient model to understand the membrane oxidative damage induced by various xenobiotic-prooxidants. This study was designed to investigate (1) the possibility of lambda-cyhalothrin (LC), a type II pyrethroid, to induce oxidative stress response in rabbit erythrocytes in vitro and its effect on selected antioxidant enzymes and (2) the role of vitamin C (VC; 20mM) and vitamin E (VE; 2mM) in alleviating the cytotoxic effects of LC. Erythrocytes were divided into three groups. The first group, previously prepared erythrocytes was incubated for 4h at 37 degrees C with different concentrations (0, 0.1, 0.5, 1, 2.5, 5mM) of LC. The second and third groups were preincubated with VC or VE, respectively for 20 min and followed by LC incubation for 4h. Following in vitro exposure, LC caused a significant induction of oxidative damage in erythrocytes at different concentrations as evidenced by increased thiobarbituric acid reactive substances (TBARS) levels. However, a significant decrease in the content of sulfhydryl groups (SH-groups), and the activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) were observed. The response was concentration dependent. VC or VE pretreated erythrocytes showed a significant protection against the cytotoxic effects induced by LC on the studied parameters. In conclusion, antioxidant vitamins especially VE could be able to ameliorate LC-induced oxidative stress by decreasing lipid peroxidation and altering antioxidant defense system in erythrocytes.

  2. Application of Controlled Shear Stresses on the Erythrocyte Membrane as a New Approach to Promote Molecule Encapsulation.

    PubMed

    Casagrande, Giustina; Arienti, Flavio; Mazzocchi, Arabella; Taverna, Francesca; Ravagnani, Fernando; Costantino, MariaLaura

    2016-10-01

    Human red blood cells (RBCs) have a remarkable capacity to undergo reversible membrane swelling. Resealed erythrocytes have been proposed as carriers and bioreactors to be used in the treatment of various diseases. This work is aimed at developing a setup allowing the encapsulation of test molecules into erythrocytes by inducing reversible pore formation on the RBC membrane through the application of controlled mechanical shear stresses. The designed setup consists of two reservoirs connected by a glass capillary. Each reservoir is connected to a compressor; during the tests, the reservoirs were in turn pressurized to promote erythrocyte flow through the capillary. The setup was filled with a suspension of erythrocytes, phosphate buffer, and FITC-dextran. Dextran was chosen as the diffusive molecule to check membrane pore dimensions. Samples of the suspension were withdrawn at scheduled times while the setup was operating. Flow cytometry and stereo-optical microscopy analyses were used to evaluate the erythrocyte dextran uptake. The setup was shown to be safe, well controlled, and adjustable. The outcomes of the experimental tests showed significant dextran uptake by RBCs up to 8%. Microscopy observations highlighted the formation of echinocytes in the analyzed samples. Erythrocytes from different donors showed different reactions to mechanical stresses. The experimental outcomes proved the possibility to encapsulate test molecules into erythrocytes by applying controlled mechanical shear stresses on the RBC membrane, encouraging further studies. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. The influence of gene flow and drift on genetic and phenotypic divergence in two species of Zosterops in Vanuatu

    PubMed Central

    Clegg, Sonya M.; Phillimore, Albert B.

    2010-01-01

    Colonization of an archipelago sets the stage for adaptive radiation. However, some archipelagos are home to spectacular radiations, while others have much lower levels of diversification. The amount of gene flow among allopatric populations is one factor proposed to contribute to this variation. In island colonizing birds, selection for reduced dispersal ability is predicted to produce changing patterns of regional population genetic structure as gene flow-dominated systems give way to drift-mediated divergence. If this transition is important in facilitating phenotypic divergence, levels of genetic and phenotypic divergence should be associated. We consider population genetic structure and phenotypic divergence among two co-distributed, congeneric (Genus: Zosterops) bird species inhabiting the Vanuatu archipelago. The more recent colonist, Z. lateralis, exhibits genetic patterns consistent with a strong influence of distance-mediated gene flow. However, complex patterns of asymmetrical gene flow indicate variation in dispersal ability or inclination among populations. The endemic species, Z. flavifrons, shows only a partial transition towards a drift-mediated system, despite a long evolutionary history on the archipelago. We find no strong evidence that gene flow constrains phenotypic divergence in either species, suggesting that levels of inter-island gene flow do not explain the absence of a radiation across this archipelago. PMID:20194170

  4. A study of the uptake of chloroquine in malaria-infected erythrocytes. High and low affinity uptake and the influence of glucose and its analogues.

    PubMed

    Diribe, C O; Warhurst, D C

    1985-09-01

    A study of concentration- and substrate-dependence of chloroquine uptake has been carried out on mouse erythrocytes infected with the chloroquine-sensitive NK65 and the chloroquine-resistant RC strains of Plasmodium berghei. The presence of drug binding sites of high and low affinity in such strains of P. berghei was confirmed. High affinity uptake sites in cells parasitized with chloroquine-sensitive and chloroquine-resistant parasites have similar characteristics, but in the sensitive strain the major component of chloroquine-uptake is at high affinity and dependent on the availability of ATP whilst in the resistant strain the major component of uptake is at low affinity and independent of energy. An absolute increase in the quantity of the low affinity site in erythrocytes parasitized with chloroquine-resistant P. berghei was noted, which may be related to an increase in quantity of parasite membrane.

  5. Physiological and hematological changes in Chum Salmon artificially infected with Erythrocytic Necrosis virus

    USGS Publications Warehouse

    Haney, D.C.; Hursh, D.A.; Mix, M.C.; Winton, J.R.

    1992-01-01

    Chum salmon Oncorhynchus keta were injected with erythrocytic necrosis virus (ENV) to study the physiological and hematological consequences of ENV infection. Infected and control fish were held in pathogen-free seawater and sampled for 5 weeks. Physiological tests included measures of plasma cortisol, glucose, protein, and osmolality; blood lactic acid; and liver glycogen. In general, ENV-infected fish had lower plasma glucose and blood lactic acid, and higher liver glycogen concentrations than did control fish. Hematological tests included red and white blood cell (RBC and WBC) counts, hematocrit, measurement of blood hemoglobin concentration, and a determination of erythrocyte fragility. Infected fish had lower RBC counts, hematocrits, and hemoglobin concentrations; higher WBC counts; and less fragile erythrocytes than did control fish. The hematology data indicated that erythrocytes of infected fish had higher mean corpuscular volume, depressed mean corpuscular hemoglobin concentration, and slightly lower mean corpuscular hemoglobin. Erythrocytic inclusions were observed in the cytoplasm of RBCs from infected fish. The infection progressed steadily through week 4, after which the fish appeared to begin recovering. In a second study, fish were infected with ENV for 3 weeks, and recovery from a stress challenge test was measured. Plasma glucose concentrations and osmclality were higher in infected fish, whereas plasma cortisol and blood lactate were only slightly elevated. These studies indicate that chum salmon withstood the effects of ENV infection without in-eversible physiological consequences. However, when subjected to a stress challenge test, infected fish recovered more slowly than control fish and had increased osmoregulatory difficulties.

  6. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  7. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity.

    PubMed

    Skedina, M A; Katuntsev, V P; Buravkova, L B; Naidina, V P

    1998-01-01

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p<0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  8. Effect of Sodium Fluoride Ingestion on Malondialdehyde Concentration and the Activity of Antioxidant Enzymes in Rat Erythrocytes

    PubMed Central

    Morales-González, José A.; Gutiérrez-Salinas, José; García-Ortiz, Liliana; del Carmen Chima-Galán, María; Madrigal-Santillán, Eduardo; Esquivel-Soto, Jaime; Esquivel-Chirino, César; González-Rubio, Manuel García-Luna y

    2010-01-01

    Fluoride intoxication has been shown to produce diverse deleterious metabolic alterations within the cell. To determine the effects of sodium fluoride (NaF) treatment on malondialdehyde (MDA) levels and on the activity of antioxidant enzymes in rat erythrocytes, Male Wistar rats were treated with 50 ppm of NaF or were untreated as controls. Erythrocytes were obtained from rats sacrificed weekly for up to eight weeks and the concentration of MDA in erythrocyte membrane was determined. In addition, the activity of the enzymes superoxide, dismutase, catalase, and glutathione peroxidase were determined. Treatment with NaF produces an increase in the concentration of malondialdehyde in the erythrocyte membrane only after the eight weeks of treatment. On the other hand, antioxidant enzyme activity was observed to increase after the fourth week of NaF treatment. In conclusion, intake of NaF produces alterations in the erythrocyte of the male rat, which indicates induction of oxidative stress. PMID:20640162

  9. Erythrocyte Membrane Fatty Acid Composition in Premenopausal Patients with Iron Deficiency Anemia.

    PubMed

    Aktas, Mehmet; Elmastas, Mahfuz; Ozcicek, Fatih; Yilmaz, Necmettin

    2016-01-01

    Iron deficiency anemia (IDA) is one of the most common nutritional disorders in the world. In the present study, we evaluated erythrocyte membrane fatty acid composition in premenopausal patients with IDA. Blood samples of 102 premenopausal women and 88 healthy control subjects were collected. After the erythrocytes were separated from the blood samples, the membrane lipids were carefully extracted, and the various membrane fatty acids were measured by gas chromatography (GC). Statistical analyses were performed with the SPSS software program. We used blood ferritin concentration <15 ng/mL as cut-off for the diagnosis of IDA. The five most abundant individual fatty acids obtained were palmitic acid (16:0), oleic acid (18:1, n-9c), linoleic acid (18:2, n-6c), stearic acid (18:0), and erucic acid (C22:1, n-9c). These compounds constituted about 87% of the total membrane fatty acids in patients with IDA, and 79% of the total membrane fatty acids in the control group. Compared with control subjects, case patients had higher percentages of palmitic acid (29.9% case versus 25.3% control), oleic acid (16.8% case versus 15.1% control), and stearic acid (13.5% case versus 10.5% control), and lower percentages of erucic acid (11.5% case versus 13.6% control) and linoleic acid (15.2% case versus 15.4% control) in their erythrocyte membranes. In conclusion, the total-erythrocyte-membrane saturated fatty acid (SFA) composition in premenopausal women with IDA was found to be higher than that in the control group; however, the total-erythrocyte-membrane unsaturated fatty acid (UFA) composition in premenopausal women with IDA was found to be lower than that in the control group. The differences in these values were statistically significant.

  10. Cytochrome P{sub 450}-dependent toxic effects of primaquine on human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shobana; Department of Pharmacology, School of Pharmacy, University of Mississippi, University MS 38677; Tekwani, Babu L., E-mail: btekwani@olemiss.ed

    Primaquine, an 8-aminoquinoline, is the drug of choice for radical cure of relapsing malaria. Use of primaquine is limited due to its hemotoxicity, particularly in populations with glucose-6-phosphate dehydrogenase deficiency [G6PD(-)]. Biotransformation appears to be central to the anti-infective and hematological toxicities of primaquine, but the mechanisms are still not well understood. Metabolic studies with primaquine have been hampered due to the reactive nature of potential hemotoxic metabolites. An in vitro metabolism-linked hemotoxicity assay has been developed. Co-incubation of the drug with normal or G6PD(-) erythrocytes, microsomes or recombinant cytochrome P{sub 450} (CYP) isoforms has allowed in situ generation ofmore » potential hemotoxic metabolite(s), which interact with the erythrocytes to generate hemotoxicity. Methemoglobin formation, real-time generation of reactive oxygen intermediates (ROIs) and depletion of reactive thiols were monitored as multiple biochemical end points for hemotoxicity. Primaquine alone did not produce any hemotoxicity, while a robust increase was observed in methemoglobin formation and generation of ROIs by primaquine in the presence of human or mouse liver microsomes. Multiple CYP isoforms (CYP2E1, CYP2B6, CYP1A2, CYP2D6 and CYP3A4) variably contributed to the hemotoxicity of primaquine. This was further confirmed by significant inhibition of primaquine hemotoxicity by the selective CYP inhibitors, namely thiotepa (CYP2B6), fluoxetine (CYP2D6) and troleandomycin (CYP3A4). Primaquine caused similar methemoglobin formation in G6PD(-) and normal human erythrocytes. However, G6PD(-) erythrocytes suffered higher oxidative stress and depletion of thiols than normal erythrocytes due to primaquine toxicity. The results provide significant insights regarding CYP isoforms contributing to hemotoxicity and may be useful in controlling toxicity of primaquine to increase its therapeutic utility.« less

  11. Characterization of carbonic anhydrase XIII in the erythrocytes of the Burmese python, Python molurus bivittatus.

    PubMed

    Esbaugh, A J; Secor, S M; Grosell, M

    2015-09-01

    Carbonic anhydrase (CA) is one of the most abundant proteins found in vertebrate erythrocytes with the majority of species expressing a low activity CA I and high activity CA II. However, several phylogenetic gaps remain in our understanding of the expansion of cytoplasmic CA in vertebrate erythrocytes. In particular, very little is known about isoforms from reptiles. The current study sought to characterize the erythrocyte isoforms from two squamate species, Python molurus and Nerodia rhombifer, which was combined with information from recent genome projects to address this important phylogenetic gap. Obtained sequences grouped closely with CA XIII in phylogenetic analyses. CA II mRNA transcripts were also found in erythrocytes, but found at less than half the levels of CA XIII. Structural analysis suggested similar biochemical activity as the respective mammalian isoforms, with CA XIII being a low activity isoform. Biochemical characterization verified that the majority of CA activity in the erythrocytes was due to a high activity CA II-like isoform; however, titration with copper supported the presence of two CA pools. The CA II-like pool accounted for 90 % of the total activity. To assess potential disparate roles of these isoforms a feeding stress was used to up-regulate CO2 excretion pathways. Significant up-regulation of CA II and the anion exchanger was observed; CA XIII was strongly down-regulated. While these results do not provide insight into the role of CA XIII in the erythrocytes, they do suggest that the presence of two isoforms is not simply a case of physiological redundancy. Copyright © 2015. Published by Elsevier Inc.

  12. Rapamycin alleviates oxidative stress-induced damage in rat erythrocytes.

    PubMed

    Singh, Abhishek Kumar; Singh, Sandeep; Garg, Geetika; Rizvi, Syed Ibrahim

    2016-10-01

    An imbalanced cellular redox system promotes the production of reactive oxygen species (ROS) that may lead to oxidative stress-mediated cell death. Erythrocytes are the best-studied model of antioxidant defense mechanism. The present study was undertaken to investigate the effect of the immunosuppressant drug rapamycin, an inducer of autophagy, on redox balance of erythrocytes and blood plasma of oxidatively challenged rats. Male Wistar rats were oxidatively challenged with HgCl 2 (5 mg/kg body mass (b.m.)). A significant (p < 0.05) induction in ROS production, plasma membrane redox system (PMRS), intracellular Ca 2+ influx, lipid peroxidation (LPO), osmotic fragility, plasma protein carbonyl (PCO) content, and plasma advanced oxidation protein products (AOPP) and simultaneously significant reduction in glutathione (GSH) level and ferric reducing ability of plasma (FRAP) were observed in rats exposed to HgCl 2 . Furthermore, rapamycin (0.5 mg/kg b.m.) provided significant protection against HgCl 2 -induced alterations in rat erythrocytes and plasma by reducing ROS production, PMRS activity, intracellular Ca 2+ influx, LPO, osmotic fragility, PCO content, and AOPP and also restored the level of antioxidant GSH and FRAP. Our observations provide evidence that rapamycin improves redox status and attenuates oxidative stress in oxidatively challenged rats. Our data also demonstrate that rapamycin is a comparatively safe immunosuppressant drug.

  13. The influence of short-term endurance training on the insulin blood level, binding, and degradation of 125I-insulin by erythrocyte receptors in patients after myocardial infarction.

    PubMed

    Dylewicz, P; Przywarska, I; Szcześniak, L; Rychlewski, T; Bieńkowska, S; Długiewicz, I; Wilk, M

    1999-01-01

    This study was directed toward establishing whether and to what extent, short-term endurance training influences the insulin blood level, and the binding and degradation of 125I-insulin by erythrocyte receptors in patients undergoing rehabilitation after myocardial infarction. The study was conducted in a group of 60 patients who had had myocardial infarction within the past 1.5 to 3 months and who did not have arterial hypertension and diabetes mellitus. All the patients took a symptom-limited cardiopulmonary exercise test. Before and after the test, venous blood was collected to determine lactic acid and insulin blood levels as well as the binding and degradation of 125I-insulin. The study group was randomized into two subgroups. One subgroup entered into a 3-week in-patient rehabilitation course. The control group was discharged from the hospital and was given no recommendations for physical exercise. The same investigation was repeated 3 weeks later. In the patients (50%) with hyperinsulinemia (insulin resistance index, > 10 microIU/mL), which was detected during the first investigation, insulin blood level decreased from 23.9 +/- 4.4 to 15.0 +/- 1.9 microIU/mL (P < 0.05) after rehabilitation, whereas insulin binding increased from 0.67 +/- 0.05 to 0.85 +/- 0.08 pg 125I/10(11) erythrocytes (P < 0.05). In the control group, which included normal subjects and those with hyperinsulinemia, the results obtained during the first and second investigations showed no statistically significant changes when compared. The results suggest that a 3-week endurance training period during rehabilitation after myocardial infarction reduces insulin resistance in patients with hyperinsulinemia.

  14. Cattle phenotypes can disguise their maternal ancestry.

    PubMed

    Srirattana, Kanokwan; McCosker, Kieren; Schatz, Tim; St John, Justin C

    2017-06-26

    Cattle are bred for, amongst other factors, specific traits, including parasite resistance and adaptation to climate. However, the influence and inheritance of mitochondrial DNA (mtDNA) are not usually considered in breeding programmes. In this study, we analysed the mtDNA profiles of cattle from Victoria (VIC), southern Australia, which is a temperate climate, and the Northern Territory (NT), the northern part of Australia, which has a tropical climate, to determine if the mtDNA profiles of these cattle are indicative of breed and phenotype, and whether these profiles are appropriate for their environments. A phylogenetic tree of the full mtDNA sequences of different breeds of cattle, which were obtained from the NCBI database, showed that the mtDNA profiles of cattle do not always reflect their phenotype as some cattle with Bos taurus phenotypes had Bos indicus mtDNA, whilst some cattle with Bos indicus phenotypes had Bos taurus mtDNA. Using D-loop sequencing, we were able to contrast the phenotypes and mtDNA profiles from different species of cattle from the 2 distinct cattle breeding regions of Australia. We found that 67 of the 121 cattle with Bos indicus phenotypes from NT (55.4%) had Bos taurus mtDNA. In VIC, 92 of the 225 cattle with Bos taurus phenotypes (40.9%) possessed Bos indicus mtDNA. When focusing on oocytes from cattle with the Bos taurus phenotype in VIC, their respective oocytes with Bos indicus mtDNA had significantly lower levels of mtDNA copy number compared with oocytes possessing Bos taurus mtDNA (P < 0.01). However, embryos derived from oocytes with Bos indicus mtDNA had the same ability to develop to the blastocyst stage and the levels of mtDNA copy number in their blastocysts were similar to blastocysts derived from oocytes harbouring Bos taurus mtDNA. Nevertheless, oocytes originating from the Bos indicus phenotype exhibited lower developmental potential due to low mtDNA copy number when compared with oocytes from cattle with a Bos

  15. Plasmodium falciparum erythrocyte membrane protein-1 specifically suppresses early production of host interferon-gamma.

    PubMed

    D'Ombrain, Marthe C; Voss, Till S; Maier, Alexander G; Pearce, J Andrew; Hansen, Diana S; Cowman, Alan F; Schofield, Louis

    2007-08-16

    Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a variable antigen expressed by P. falciparum, the malarial parasite. PfEMP-1, present on the surface of infected host erythrocytes, mediates erythrocyte binding to vascular endothelium, enabling the parasite to avoid splenic clearance. In addition, PfEMP-1 is proposed to regulate host immune responses via interactions with the CD36 receptor on antigen-presenting cells. We investigated the immunoregulatory function of PfEMP-1 by comparing host cell responses to erythrocytes infected with either wild-type parasites or transgenic parasites lacking PfEMP-1. We showed that PfEMP-1 suppresses the production of the cytokine interferon-gamma by human peripheral blood mononuclear cells early after exposure to P. falciparum. Suppression of this rapid proinflammatory response was CD36 independent and specific to interferon-gamma production by gammadelta-T, NK, and alphabeta-T cells. These data demonstrate a parasite strategy for downregulating the proinflammatory interferon-gamma response and further establish transgenic parasites lacking PfEMP-1 as powerful tools for elucidating PfEMP-1 functions.

  16. Effect of pH on molecular constitution and distribution of hemoglobin in living erythrocyte.

    PubMed

    Wu, Yue; Huang, Yao-Xiong; Kang, Li-Li; Wu, Zheng-Jie; Luo, Man

    2010-04-01

    The molecular constitution of in situ hemoglobin (Hb) and their distribution in living erythrocyte were investigated versus pH using the technique of confocal Raman microscopy. Both Raman point spectra and line mapping measurements were performed on living erythrocytes in suspensions with pH values from 4.82 to 9.70. It was found that the Hb inside a living erythrocyte would dissociate into monomer/dimer when the cells are in low and high pH environments. In contrast to the homogeneous distribution of the Hbs in the cells in neutral suspension, there are more Hbs distributing around the cell membrane or binding to the membrane as pH increases. While in low pH, as the cell become spherical, most of the Hbs distribute to the central part of the cell. In summary, our investigation suggests that the variation of the external pH not only brings changes in the morphology and membrane structure of an erythrocyte, but also affects the constitution and distribution of its intracellular Hbs, thereby the flexibility of the cell membrane and the oxygenation ability of the Hb.

  17. An Improved 2-Dimensional Gel Electrophoresis Method for Resolving Human Erythrocyte Membrane Proteins

    PubMed Central

    Kumar, Manoj; Singh, Rajendra; Meena, Anil; Patidar, Bhagwan S; Prasad, Rajendra; Chhabra, Sunil K; Bansal, Surendra K

    2017-01-01

    The 2-dimensional gel electrophoresis (2-DE) technique is widely used for the analysis of complex protein mixtures extracted from biological samples. It is one of the most commonly used analytical techniques in proteomics to study qualitative and quantitative protein changes between different states of a cell or an organism (eg, healthy and diseased), conditionally expressed proteins, posttranslational modifications, and so on. The 2-DE technique is used for its unparalleled ability to separate thousands of proteins simultaneously. The resolution of the proteins by 2-DE largely depends on the quality of sample prepared during protein extraction which increases results in terms of reproducibility and minimizes protein modifications that may result in artifactual spots on 2-DE gels. The buffer used for the extraction and solubilization of proteins influences the quality and reproducibility of the resolution of proteins on 2-DE gel. The purification by cleanup kit is another powerful process to prevent horizontal streaking which occurs during isoelectric focusing due to the presence of contaminants such as salts, lipids, nucleic acids, and detergents. Erythrocyte membrane proteins serve as prototypes for multifunctional proteins in various erythroid and nonerythroid cells. In this study, we therefore optimized the selected major conditions of 2-DE for resolving various proteins of human erythrocyte membrane. The modification included the optimization of conditions for sample preparation, cleanup of protein sample, isoelectric focusing, equilibration, and storage of immobilized pH gradient strips, which were further carefully examined to achieve optimum conditions for improving the quality of protein spots on 2-DE gels. The present improved 2-DE analysis method enabled better detection of protein spots with higher quality and reproducibility. Therefore, the conditions established in this study may be used for the 2-DE analysis of erythrocyte membrane proteins for

  18. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin

    PubMed Central

    Cines, Douglas B.; Lebedeva, Tatiana; Nagaswami, Chandrasekaran; Hayes, Vincent; Massefski, Walter; Litvinov, Rustem I.; Rauova, Lubica; Lowery, Thomas J.

    2014-01-01

    Contraction of blood clots is necessary for hemostasis and wound healing and to restore flow past obstructive thrombi, but little is known about the structure of contracted clots or the role of erythrocytes in contraction. We found that contracted blood clots develop a remarkable structure, with a meshwork of fibrin and platelet aggregates on the exterior of the clot and a close-packed, tessellated array of compressed polyhedral erythrocytes within. The same results were obtained after initiation of clotting with various activators and also with clots from reconstituted human blood and mouse blood. Such close-packed arrays of polyhedral erythrocytes, or polyhedrocytes, were also observed in human arterial thrombi taken from patients. The mechanical nature of this shape change was confirmed by polyhedrocyte formation from the forces of centrifugation of blood without clotting. Platelets (with their cytoskeletal motility proteins) and fibrin(ogen) (as the substrate bridging platelets for contraction) are required to generate the forces necessary to segregate platelets/fibrin from erythrocytes and to compress erythrocytes into a tightly packed array. These results demonstrate how contracted clots form an impermeable barrier important for hemostasis and wound healing and help explain how fibrinolysis is greatly retarded as clots contract. PMID:24335500

  19. A portable microfluidic system for rapid measurement of the erythrocyte sedimentation rate.

    PubMed

    Isiksacan, Ziya; Erel, Ozcan; Elbuken, Caglar

    2016-11-29

    The erythrocyte sedimentation rate (ESR) is a frequently used 30 min or 60 min clinical test for screening of several inflammatory conditions, infections, trauma, and malignant diseases, as well as non-inflammatory conditions including prostate cancer and stroke. Erythrocyte aggregation (EA) is a physiological process where erythrocytes form face-to-face linear structures, called rouleaux, at stasis or low shear rates. In this work, we proposed a method for ESR measurement from EA. We developed a microfluidic opto-electro-mechanical system, using which we experimentally showed a significant correlation (R 2 = 0.86) between ESR and EA. The microfluidic system was shown to measure ESR from EA using fingerprick blood in 2 min. 40 μl of whole blood is filled in a disposable polycarbonate cartridge which is illuminated with a near infrared emitting diode. Erythrocytes were disaggregated under the effect of a mechanical shear force using a solenoid pinch valve. Following complete disaggregation, transmitted light through the cartridge was measured using a photodetector for 1.5 min. The intensity level is at its lowest at complete disaggregation and highest at complete aggregation. We calculated ESR from the transmitted signal profile. We also developed another microfluidic cartridge specifically for monitoring the EA process in real-time during ESR measurement. The presented system is suitable for ultrafast, low-cost, and low-sample volume measurement of ESR at the point-of-care.

  20. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging

    NASA Astrophysics Data System (ADS)

    Ebner, Andreas; Nikova, Dessy; Lange, Tobias; Häberle, Johannes; Falk, Sabine; Dübbers, Angelika; Bruns, Reimer; Hinterdorfer, Peter; Oberleithner, Hans; Schillers, Hermann

    2008-09-01

    CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl-) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.

  1. S-allyl cysteine in combination with clotrimazole downregulates Fas induced apoptotic events in erythrocytes of mice exposed to lead.

    PubMed

    Mandal, Samir; Mukherjee, Sudip; Chowdhury, Kaustav Dutta; Sarkar, Avik; Basu, Kankana; Paul, Soumosish; Karmakar, Debasish; Chatterjee, Mahasweta; Biswas, Tuli; Sadhukhan, Gobinda Chandra; Sen, Gargi

    2012-01-01

    Chronic lead (Pb(2+)) exposure leads to the reduced lifespan of erythrocytes. Oxidative stress and K(+) loss accelerate Fas translocation into lipid raft microdomains inducing Fas mediated death signaling in these erythrocytes. Pathophysiological-based therapeutic strategies to combat against erythrocyte death were evaluated using garlic-derived organosulfur compounds like diallyl disulfide (DADS), S allyl cysteine (SAC) and imidazole based Gardos channel inhibitor clotrimazole (CLT). Morphological alterations in erythrocytes were evaluated using scanning electron microscopy. Events associated with erythrocyte death were evaluated using radio labeled probes, flow cytometry and activity gel assay. Mass spectrometry was used for detection of GSH-4-hydroxy-trans-2-nonenal (HNE) adducts. Fas redistribution into the lipid rafts was studied using immunoblotting technique and confocal microscopy. Combination of SAC and CLT was better than DADS and CLT combination and monotherapy with these agents in prolonging the survival of erythrocytes during chronic Pb(2+) exposure. Combination therapy with SAC and CLT prevented redistribution of Fas into the lipid rafts of the plasma membrane and downregulated Fas-dependent death events in erythrocytes of mice exposed to Pb(2+). Ceramide generation was a critical component of Fas receptor-induced apoptosis, since inhibition of acid sphingomyelinase (aSMase) interfered with Fas-induced apoptosis during Pb(2+) exposure. Combination therapy with SAC and CLT downregulated apoptotic events in erythrocytes by antagonizing oxidative stress and Gardos channel that led to suppression of ceramide-initiated Fas aggregation in lipid rafts. Hence, combination therapy with SAC and CLT may be a potential therapeutic option for enhancing the lifespan of erythrocytes during Pb(2+) toxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells?

    PubMed

    Bajek, Anna; Gurtowska, Natalia; Gackowska, Lidia; Kubiszewska, Izabela; Bodnar, Magdalena; Marszałek, Andrzej; Januszewski, Rafał; Michalkiewicz, Jacek; Drewa, Tomasz

    2015-05-14

    Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from healthy donors, due to mechanical and ultrasound-assisted liposuction and cultured in standard medium to the second passage. Differentiation potential and markers expression was evaluated to confirm the mesenchymal nature of cells. Then, the BD LyoplateTM Human Cell Surface Marker Screening Panel was used. Results shown that both population of ASCs are characterized by high expression of markers specific for ASCs: cluster of differentiation (CD)9, CD10, CD34, CD44, CD49d, CD54, CD55, CD59, CD71 and low expression of CD11a, CD11c and CD144. Moreover, we have noticed significant differences in antigen expression in 58 markers from the 242 studied. Presented study shows for the first time that different liposuction methods are not a significant factor which can influence the expression of human ASCs surface markers. © 2015 The Authors.

  3. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis.

    PubMed

    Barretto, O C de O; Oshiro, M; Oliveira, R A G; Fedullo, J D L; Nonoyama, K

    2006-05-01

    In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD) of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 +/- 38 IU g-1 Hb-1 min-1 at 37 degrees C, compared to the human erythrocyte activity of 12 +/- 2 IU g-1 Hb-1 min-1 at 37 degrees C. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH) in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa). The Michaelis-Menten constants (Km: 55 microM) for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 microM) were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively). A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  4. The Gárdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes.

    PubMed

    Maher, Anthony D; Kuchel, Philip W

    2003-08-01

    Ca(2+)-dependent K(+) efflux from human erythrocytes was first described in the 1950s. Subsequent studies revealed that a K(+)-specific membrane protein (the Gárdos channel) was responsible for this phenomenon (the Gárdos effect). In recent years several types of Ca-activated K(+) channel have been identified and studied in a wide range of cells, with the erythrocyte Gárdos channel serving as both a model for a broader physiological perspective, and an intriguing component of erythrocyte function. The existence of this channel has raised a number of questions. For example, what is its role in the establishment and maintenance of ionic distribution across the red cell membrane? What role might it play in erythrocyte development? To what extent is it active in circulating erythrocytes? What are the cell-physiological implications of its dysfunction?This review summarises current knowledge of this membrane protein with respect to its function and structure, its physiological roles (some putative) and its contribution to various disease states, and it provides an introduction to adaptable NMR methods, which is our own area of technical expertise, for such ion transport analysis.

  5. Biophotonics of the interaction of low-intensity laser radiation with blood erythrocytes

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.; Asimov, R. M.; Batyan, A. N.; Trusevich, M. O.; Rubinov, A. N.

    2013-06-01

    We have studied experimentally how optical radiation affects the neutralization of the toxic action of heavy metals and harmful chemical compounds (ecotoxicants) on the oxygen-transport function of blood erythrocytes. It has been found that the optical radiation has a stabilizing effect and prevents lowering the erythrocyte concentration in the presence of phenol and heavy metals in blood. We have studied the neutralization efficiency of the toxic action of ecotoxicants in relation to the laser irradiation time. The obtained data on the effect of the laser radiation on the thermal denaturation of hemoglobin and erythrocytes yield the scientific substantiation to the development of the optical method for the use in medicine upon drawing and conserving donor blood. We have shown that the obtained data can be used in medicine for improving the reliability of conditions of conservation and storage of donor blood, as well as for preventing the toxic action of harmful chemical compounds in the environment.

  6. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membranes

    PubMed Central

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2009-01-01

    Nonenzymatic glycation of peptides and proteins by d-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this work, we report the first proteomics-based characterization of nonenzymatically glycated proteins in human plasma and erythrocyte membranes from individuals with normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes mellitus. Phenylboronate affinity chromatography was used to enrich glycated proteins and glycated tryptic peptides from both human plasma and erythrocyte membranes. The enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation-tandem mass spectrometry, resulting in the confident identification of 76 and 31 proteins from human plasma and erythrocyte membranes, respectively. Although most of the glycated proteins could be identified in samples from individuals with normal glucose tolerance, slightly higher numbers of glycated proteins and more glycation sites were identified in samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus. PMID:18396901

  7. Biopsychosocial influence on exercise-induced injury: genetic and psychological combinations are predictive of shoulder pain phenotypes.

    PubMed

    George, Steven Z; Parr, Jeffrey J; Wallace, Margaret R; Wu, Samuel S; Borsa, Paul A; Dai, Yunfeng; Fillingim, Roger B

    2014-01-01

    Chronic pain is influenced by biological, psychological, social, and cultural factors. The current study investigated potential roles for combinations of genetic and psychological factors in the development and/or maintenance of chronic musculoskeletal pain. An exercise-induced shoulder injury model was used, and a priori selected genetic (ADRB2, COMT, OPRM1, AVPR1 A, GCH1, and KCNS1) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, and kinesiophobia) factors were included as predictors. Pain phenotypes were shoulder pain intensity (5-day average and peak reported on numerical rating scale), upper extremity disability (5-day average and peak reported on the QuickDASH), and shoulder pain duration (in days). After controlling for age, sex, and race, the genetic and psychological predictors were entered as main effects and interaction terms in separate regression models for the different pain phenotypes. Results from the recruited cohort (N = 190) indicated strong statistical evidence for interactions between the COMT diplotype and 1) pain catastrophizing for 5-day average upper extremity disability and 2) depressive symptoms for pain duration. There was moderate statistical evidence for interactions for other shoulder pain phenotypes between additional genes (ADRB2, AVPR1 A, and KCNS1) and depressive symptoms, pain catastrophizing, or kinesiophobia. These findings confirm the importance of the combined predictive ability of COMT with psychological distress and reveal other novel combinations of genetic and psychological factors that may merit additional investigation in other pain cohorts. Interactions between genetic and psychological factors were investigated as predictors of different exercise-induced shoulder pain phenotypes. The strongest statistical evidence was for interactions between the COMT diplotype and pain catastrophizing (for upper extremity disability) or depressive symptoms (for pain duration). Other novel

  8. Biochemical and developmental characterization of carbonic anhydrase II from chicken erythrocytes.

    PubMed

    Nishita, Toshiho; Tomita, Yuichiro; Imanari, Takao; Ichihara, Nobutsune; Orito, Kensuke; Arishima, Kazuyoshi

    2011-03-07

    Carbonic anhydrase (CA) of the chicken has attracted attention for a long time because it has an important role in the eggshell formation. The developmental profile of CA-II isozyme levels in chicken erythrocytes has not been determined or reported. Furthermore, the relations with CA-II in erythrocyte and egg production are not discussed. In the present study, we isolated CA-II from erythrocytes of chickens and determined age-related changes of CA-II levels in erythrocytes. Chicken CA-II was purified by a combination of column chromatography. The levels of CA-II in the hemolysate of the chicken were determined using the ELISA system in blood samples from 279 female chickens, ages 1 to 93 weeks, 69 male chickens, ages 3 to 59 weeks and 52 weeks female Araucana-chickens. The mean concentration of CA-II in hemolysate from 1-week-old female was 50.8 ± 11.9 mg/g of Hb. The mean levels of CA-II in 25-week-old (188.1 ± 82.6 mg/g of Hb), 31-week-old (193.6 ± 69.7 mg/g of Hb) and 49-week-old (203.8 ± 123.5 mg/g of Hb) female-chickens showed the highest level of CA-II. The levels of CA-II in female WL-chickens significantly decreased at 63 week (139.0 ± 19.3 mg/g of Hb). The levels of CA-II in female WL-chicken did not change from week 63 until week 93.The mean level of CA-II in hemolysate of 3-week-old male WL-chickens was 78.3 ± 20.7 mg/g of Hb. The levels of CA-II in male WL-chickens did not show changes in the week 3 to week 59 timeframe. The mean level of CA-II in 53-week-old female Araucana-chickens was 23.4 ± 1.78 mg/g of Hb. These levels of CA-II were about 11% of those of 49-week-old female WL-chickens. Simple linear regression analysis showed significant associations between the level of CA-II and egg laying rate from 16 week-old at 63 week-old WL-chicken (p<0.01). Developmental changes and sexual differences of CA-II concentration in WL-chicken erythrocytes were observed. The concentration of CA-II in the erythrocyte of WL-chicken was much higher than that

  9. Ameliorative effect of Opuntia ficus indica juice on ethanol-induced oxidative stress in rat erythrocytes.

    PubMed

    Alimi, Hichem; Hfaeidh, Najla; Bouoni, Zouhour; Sakly, Mohsen; Rhouma, Khémais Ben

    2013-05-01

    The aim of the present study was to investigate the efficacy of Opuntia ficus indica f. inermis fruit juice (OFIj) on reversing oxidative damages induced by chronic ethanol intake in rat erythrocytes. OFIj was firstly analyzed with HPLC for phenolic and flavonoids content. Secondly, 40 adult male Wistar rats were equally divided into five groups and treated for 90 days as follows: control (C), ethanol-only 3 g/kg body weight (b.w) (E), low dose of OFIj 2 ml/100 g b.w+ethanol (Ldj+E), high dose of OFIj 4 ml/100 g b.w+ethanol (Hdj+E), and only a high dose of OFIj 4 ml/100g b.w (Hdj). HPLC analysis indicated high concentrations of phenolic acids and flavonoids in OFIj. Ethanol treatment markedly decreased the activities of erythrocyte superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and the level of reduced glutathione (GSH). Changes in the erythrocyte's antioxidant ability were accompanied by enhanced oxidative modification of lipids (increase of malondialdeyde level) and proteins (increase in carbonyl groups). Interestingly, pre-administration of either 2 ml/100 g b.w or 4 ml/100 g b.w of OFIj to ethanol-intoxicated rats significantly reversed decreases in enzymatic as well as non enzymatic antioxidants parameters in erythrocytes. Also, the administration of OFIj significantly protected lipids and proteins against ethanol-induced oxidative modifications in rat erythrocytes. The beneficial effect of OFIj can result from the inhibition of ethanol-induced free radicals chain reactions in rat erythrocytes or from the enhancement of the endogenous antioxidants activities. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Insulin binding and glycolytic activity in erythrocytes from dialyzed and nondialyzed uremic patients.

    PubMed

    Weisinger, J R; Contreras, N E; Cajias, J; Bellorin-Font, E; Amair, P; Guitierrez, L; Sylva, V; Paz-Martínez, V

    1988-01-01

    Insulin resistance in uremia has been attributed to impaired hormone-receptor binding or to postbinding defects. Oral glucose tolerance tests, insulin binding, and in vitro glycolytic activity were studied in purified red blood cells from normal control subjects (C) and from uremic patients belonging to three groups: nondialyzed (U), on chronic hemodialysis (HD), and on continuous ambulatory peritoneal dialysis (CAPD). Glucose intolerance and hyperinsulinemia were demonstrated in all groups of patients. Maximal specific binding of 125I-insulin to erythrocytes, kinetically derived receptor numbers per cell, and affinity constants for insulin binding did not differ between control and patient groups. No correlation was found between the degree of glucose intolerance and insulin binding parameters. Basal lactate production by erythrocytes incubated in vitro was significantly higher in U and HD patients than in C, whereas CAPD patients did not differ from C in this respect. Addition of 1 mM dibutyryl-cAMP and 0.5 mM isobutyl-methyl-xanthine during incubation of erythrocytes caused an increase in the rate of lactate production that was similar in magnitude in the U, HD and C groups, whereas cells from CAPD subjects showed a significantly larger absolute response to these compounds after 1 h of incubation. There was no evidence of impairment of glycolytic capacity in red blood cells from uremic patients. In addition, no correlation was found between the degree of glucose intolerance and basal or stimulated lactate production by erythrocytes. Our results obtained in human erythrocytes suggest that the insulin resistance observed in uremia does not involve a defect in hormone binding or in the intracellular capacity to utilize glucose through glycolysis.

  11. Erythrocyte transfusions and serum prohepcidin levels in premature newborns with anemia of prematurity.

    PubMed

    Yapakçi, Ece; Ecevit, Ayşe; Gökmen, Zeynel; Tarcan, Aylin; Ozbek, Namik

    2009-11-01

    Hepcidin is a regulatory peptide hormone acts by limiting intestinal iron absorption and promoting iron retention. Determining the level of hepcidin in anemia of prematurity might be important in preventing iron overload. This study aimed to determine serum levels of prohepcidin in newborns with anemia of prematurity, to assess the effect of a single erythrocyte transfusion on serum prohepcidin levels, and to determine the possible relationships between prohepcidin levels and serum iron and complete blood count parameters. Nineteen premature newborns with anemia of prematurity who had been treated with erythrocyte transfusions were included in this study. Just before, and 48 hours after, each transfusion, venous blood samples were collected from patients. Serum prohepcidin levels before and after erythrocyte transfusion were 206.5+/-27.3 and 205.7+/-47.1 ng/mL, respectively; no statistically significant differences were found. No significant differences existed before or after transfusion regarding serum total iron and ferritin levels, iron-binding capacity, or mean corpuscular hemoglobin concentration. No significant correlations existed between serum prohepcidin levels and other parameters, either before or after transfusions. Our results showed that there were no statistically significant differences between serum prohepcidin levels before and after a single erythrocyte transfusion in premature newborns.

  12. The influence of vitamin B2 intake on the activation coefficient of erythrocyte glutation reductase in the elderly.

    PubMed

    López-Sobaler, A M; Ortega, R M; Quintas, M E; Navarro, A R; Aparicio, A; Gomez-Rodriguez, N; Cocho, M; Requejo, A M

    2002-01-01

    To evaluate the influence of dietetic vitamin B2 on the activation coefficient of erythrocyte glutation reductase (alpha-EGR) of a group of elderly people. The study subjects were 133, independently-living elderly people, between 65 and 90 years of age. A dietetic study was performed using a 7-day food record. Riboflavin status was measured by determining the alpha-EGR. Some 23.9% of subjects had riboflavin intakes lower than those recommended. At the biochemical level, 9.8% of subjects (7.7% of men and of 10.6% women) showed alpha-EGR>1.2. Those subjects with riboflavin intakes below 90% of those recommended showed significantly higher alpha-EGR levels (1.15+/-0.16), an indication of a poorer riboflavin status at the biochemical level. Those with greater intakes showed lower alpha-EGR values (1.05+/-0.10). Furthermore, the mean consumption of dairy products (an important source of this vitamin) by subjects is insuficiente (341.1+/-159.8 g/day, 2.1+/-1 servings/day). The data show that those with riboflavin intakes below those recommended took 204.7+/-89.4 g/day of milk products (1.3+/-0.5 servings/day) compared to the 384+/-153.1 g/day (2.4+/-1 servings/day) (p<0.001) consumed by those with higher riboflavin intakes. Although the mean riboflavin intake is acceptable, there remain some insufficiencies that require attention. It would seem advisable to recommend the elderly increase their intake of milk products. This would be especially important for subjects who take less than two rations per day.

  13. Functional significance of the intermediate conductance Ca2+-activated K+ channel for the short-term survival of injured erythrocytes.

    PubMed

    Föller, Michael; Bobbala, Diwakar; Koka, Saisudha; Boini, Krishna M; Mahmud, Hasan; Kasinathan, Ravi S; Shumilina, Ekaterina; Amann, Kerstin; Beranek, Golo; Sausbier, Ulrike; Ruth, Peter; Sausbier, Matthias; Lang, Florian; Huber, Stephan M

    2010-11-01

    Increased cytosolic Ca(2+) concentrations activate Gardos K(+) channels in human erythrocytes with membrane hyperpolarization, efflux of K(+), Cl⁻, and osmotically obliged H₂O resulting in cell shrinkage, a phenomenon referred to as Gardos effect. We tested whether the Gardos effect delays colloid osmotic hemolysis of injured erythrocytes from mice lacking the Ca(2+)-activated K(+) channel K(Ca)3.1. To this end, we applied patch clamp and flow cytometry and determined in vitro as well as in vivo hemolysis. As a result, erythrocytes from K(Ca)3.1-deficient (K(Ca)3.1(-/-)) mice lacked Gardos channel activity and the Gardos effect. Blood parameters, reticulocyte count, or osmotic erythrocyte resistance, however, did not differ between K(Ca)3.1(-/-) mice and their wild-type littermates, suggesting low or absent Gardos channel activity in unstressed erythrocytes. Oxidative stress-induced Ca(2+) entry and phospholipid scrambling were significantly less pronounced in K(Ca)3.1(-/-) than in wild-type erythrocytes. Moreover, in vitro treatment with α-toxin from Staphylococcus aureus, which forms pores in the cellular membrane, resulted in significantly stronger hemolysis of K(Ca)3.1(-/-) than of wild-type erythrocytes. Intravenous injection of α-toxin induced more profound hemolysis in K(Ca)3.1(-/-) than in wild-type mice. Similarly, intra-peritoneal application of the redox-active substance phenylhydrazine, an agent for the induction of hemolytic anemia, was followed by a significantly stronger decrease of hematocrit in K(Ca)3.1(-/-) than in wild-type mice. Finally, malaria infection triggered the activation of K(Ca)3.1 and transient shrinkage of the infected erythrocytes. In conclusion, K(Ca)3.1 channel activity and Gardos effect counteract hemolysis of injured erythrocytes, thus decreasing hemoglobin release into circulating blood.

  14. Micronucleated erythrocytes in newborn rats exposed to raltegravir placental transfer.

    PubMed

    Torres-Mendoza, Blanca Miriam; Coronado-Medina, Damharis Elizabeth; Gómez-Meda, Belinda Claudia; Vázquez-Valls, Eduardo; Zamora-Perez, Ana Lourdes; Lemus-Varela, María de Lourdes; Zúñiga-González, Guillermo Moisés

    2014-01-01

    The use of raltegravir in treating HIV/AIDS has been proposed due to its effectiveness in suppressing high loads of HIV RNA in pregnant women, thus preventing infection of the fetus. However, administration of raltegravir during pregnancy produces a compound which is transferred to high concentrations to the offspring. The objective of this study is to evaluate the transplacental genotoxic effect of raltegravir in newborn rats. We evaluated the number of micronucleated erythrocytes (MNE), micronucleated polychromatic erythrocytes (MNPCE), and polychromatic erythrocytes (PCE) in the peripheral blood samples of the offspring of Wistar rats treated 6 days before birth with oral administration of raltegravir. The animals were randomly assigned to five groups as follows: raltegravir at doses of 15, 30, or 60 mg/day, cyclophosphamide 10 mg/kg (positive control), or 0.5 ml of sterile water (negative control). In addition, the effect of these drugs on the weight and height of newborns was assessed. There were no differences in the number of MNE, MNPCE, and PCE, and a slight decrease in the weight and height was observed in the offspring of the rat mothers treated with raltegravir. Genotoxicity studies are required in pregnant women to determine the risk of using raltegravir to the fetuses.

  15. Micronucleated Erythrocytes in Newborn Rats Exposed to Raltegravir Placental Transfer

    PubMed Central

    Torres-Mendoza, Blanca Miriam; Coronado-Medina, Damharis Elizabeth; Vázquez-Valls, Eduardo; Zamora-Perez, Ana Lourdes; Lemus-Varela, María de Lourdes

    2014-01-01

    The use of raltegravir in treating HIV/AIDS has been proposed due to its effectiveness in suppressing high loads of HIV RNA in pregnant women, thus preventing infection of the fetus. However, administration of raltegravir during pregnancy produces a compound which is transferred to high concentrations to the offspring. The objective of this study is to evaluate the transplacental genotoxic effect of raltegravir in newborn rats. We evaluated the number of micronucleated erythrocytes (MNE), micronucleated polychromatic erythrocytes (MNPCE), and polychromatic erythrocytes (PCE) in the peripheral blood samples of the offspring of Wistar rats treated 6 days before birth with oral administration of raltegravir. The animals were randomly assigned to five groups as follows: raltegravir at doses of 15, 30, or 60 mg/day, cyclophosphamide 10 mg/kg (positive control), or 0.5 ml of sterile water (negative control). In addition, the effect of these drugs on the weight and height of newborns was assessed. There were no differences in the number of MNE, MNPCE, and PCE, and a slight decrease in the weight and height was observed in the offspring of the rat mothers treated with raltegravir. Genotoxicity studies are required in pregnant women to determine the risk of using raltegravir to the fetuses. PMID:24977162

  16. On the minor gangliosides of erythrocyte membranes of Japanese cats.

    PubMed

    Ando, N; Yamakawa, T

    1982-03-01

    Seven ganglioside species were isolated and purified from erythrocyte membranes of Japanese cats by DEAE-Sephadex and Iatrobeads column chromatographies. The structures of these gangliosides were determined as Gmi(NeuGc), Gm3(NeuAc), GM3(NeuGc), GD3(NeuGc), GD3(NeuGc comes from NeuAc), GT3(NeuGc), and another GM3 containing a sialic acid of unidentified nature. The occurrence of GT3 suggested the probable presence of a biosynthetic pathway of GM3 leads to GD3 leads to GT3 in erythropoietic cells of Japanese cats. The presence of GD3 having one penultimate N-glycolylneuraminic acid and one terminal N-acetylneuraminic acid, GD3(NeuGc comes from NeuAc) would indicate that this GD3 acts as an intermediate in a possible pathway from GM3(NeuGc) to GD3(NeuGc). Thin layer chromatographic patterns of total erythrocyte membrane gangliosides were compared among Japanese cats (n = 3), lions (n = 3), a serval and a racoon dog. The three species of felid showed similar patterns to each other and contained N-glycolylneuraminic acid as the major sialic acid. On the other hand, erythrocytes of racoon dog, a member of canidae, contained neither GD3 nor GT3, but only GM3.

  17. Epigenetic Silencing of Plasmodium falciparum Genes Linked to Erythrocyte Invasion

    PubMed Central

    Cortés, Alfred; Carret, Celine; Kaneko, Osamu; Yim Lim, Brian Y. S.; Ivens, Alasdair; Holder, Anthony A

    2007-01-01

    The process of erythrocyte invasion by merozoites of Plasmodium falciparum involves multiple steps, including the formation of a moving junction between parasite and host cell, and it is characterised by the redundancy of many of the receptor–ligand interactions involved. Several parasite proteins that interact with erythrocyte receptors or participate in other steps of invasion are encoded by small subtelomerically located gene families of four to seven members. We report here that members of the eba, rhoph1/clag, acbp, and pfRh multigene families exist in either an active or a silenced state. In the case of two members of the rhoph1/clag family, clag3.1 and clag3.2, expression was mutually exclusive. Silencing was clonally transmitted and occurred in the absence of detectable DNA alterations, suggesting that it is epigenetic. This was demonstrated for eba-140. Our data demonstrate that variant or mutually exclusive expression and epigenetic silencing in Plasmodium are not unique to genes such as var, which encode proteins that are exported to the surface of the erythrocyte, but also occur for genes involved in host cell invasion. Clonal variant expression of invasion-related ligands increases the flexibility of the parasite to adapt to its human host. PMID:17676953

  18. A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images.

    PubMed

    Díaz, Gloria; González, Fabio A; Romero, Eduardo

    2009-04-01

    Visual quantification of parasitemia in thin blood films is a very tedious, subjective and time-consuming task. This study presents an original method for quantification and classification of erythrocytes in stained thin blood films infected with Plasmodium falciparum. The proposed approach is composed of three main phases: a preprocessing step, which corrects luminance differences. A segmentation step that uses the normalized RGB color space for classifying pixels either as erythrocyte or background followed by an Inclusion-Tree representation that structures the pixel information into objects, from which erythrocytes are found. Finally, a two step classification process identifies infected erythrocytes and differentiates the infection stage, using a trained bank of classifiers. Additionally, user intervention is allowed when the approach cannot make a proper decision. Four hundred fifty malaria images were used for training and evaluating the method. Automatic identification of infected erythrocytes showed a specificity of 99.7% and a sensitivity of 94%. The infection stage was determined with an average sensitivity of 78.8% and average specificity of 91.2%.

  19. CD73 and AMPD3 deficiency enhance metabolic performance via erythrocyte ATP that decreases hemoglobin oxygen affinity.

    PubMed

    O'Brien, William G; Berka, Vladimir; Tsai, Ah-Lim; Zhao, Zhaoyang; Lee, Cheng Chi

    2015-08-07

    Erythrocytes are the key target in 5'-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3(-/-) mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism.

  20. Survival of rats subjected to acute anemia at different levels of erythrocyte 2,3-diphosphoglycerate.

    PubMed

    Arturson, G; Westman, M

    1975-12-01

    An experimental procedure was worked out in which rats were subjected to an exchange of erythrocytes, followed by acute anemia by means of hemodilution. One group of rats received erythrocytes with a high concentration of 2,3-diphosphoglycerate (DPG), and the other group was given erythrocytes with a low DPG concentration. The survival rate was equal in the two groups. Irrespective of DPG concentration, the rats whose hemoglobin concentration reached the lowest level died. The rats that died were also more acidotic than the others. The results indicate that the hemoglobin concentration and the pH value were more important determinants for survival than the DPG concentrations.

  1. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning.

    PubMed

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2018-04-30

    Cell types of erythrocytes should be identified because they are closely related to their functionality and viability. Conventional methods for classifying erythrocytes are time consuming and labor intensive. Therefore, an automatic and accurate erythrocyte classification system is indispensable in healthcare and biomedical fields. In this study, we proposed a new label-free sensor for automatic identification of erythrocyte cell types using a digital in-line holographic microscopy (DIHM) combined with machine learning algorithms. A total of 12 features, including information on intensity distributions, morphological descriptors, and optical focusing characteristics, is quantitatively obtained from numerically reconstructed holographic images. All individual features for discocytes, echinocytes, and spherocytes are statistically different. To improve the performance of cell type identification, we adopted several machine learning algorithms, such as decision tree model, support vector machine, linear discriminant classification, and k-nearest neighbor classification. With the aid of these machine learning algorithms, the extracted features are effectively utilized to distinguish erythrocytes. Among the four tested algorithms, the decision tree model exhibits the best identification performance for the training sets (n = 440, 98.18%) and test sets (n = 190, 97.37%). This proposed methodology, which smartly combined DIHM and machine learning, would be helpful for sensing abnormal erythrocytes and computer-aided diagnosis of hematological diseases in clinic. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cytoplasmic remodeling of erythrocyte raft lipids during infection by the human malaria parasite Plasmodium falciparum

    PubMed Central

    Murphy, Sean C.; Fernandez-Pol, Sebastian; Chung, Paul H.; Prasanna Murthy, S. N.; Milne, Stephen B.; Salomao, Marcela; Brown, H. Alex; Lomasney, Jon W.; Mohandas, Narla

    2007-01-01

    Studies of detergent-resistant membrane (DRM) rafts in mature erythrocytes have facilitated identification of proteins that regulate formation of endovacuolar structures such as the parasitophorous vacuolar membrane (PVM) induced by the malaria parasite Plasmodium falciparum. However, analyses of raft lipids have remained elusive because detergents interfere with lipid detection. Here, we use primaquine to perturb the erythrocyte membrane and induce detergent-free buoyant vesicles, which are enriched in cholesterol and major raft proteins flotillin and stomatin and contain low levels of cytoskeleton, all characteristics of raft microdomains. Lipid mass spectrometry revealed that phosphatidylethanolamine and phosphatidylglycerol are depleted in endovesicles while phosphoinositides are highly enriched, suggesting raft-based endovesiculation can be achieved by simple (non–receptor-mediated) mechanical perturbation of the erythrocyte plasma membrane and results in sorting of inner leaflet phospholipids. Live-cell imaging of lipid-specific protein probes showed that phosphatidylinositol (4,5) bisphosphate (PIP2) is highly concentrated in primaquine-induced vesicles, confirming that it is an erythrocyte raft lipid. However, the malarial PVM lacks PIP2, although another raft lipid, phosphatidylserine, is readily detected. Thus, different remodeling/sorting of cytoplasmic raft phospholipids may occur in distinct endovacuoles. Importantly, erythrocyte raft lipids recruited to the invasion junction by mechanical stimulation may be remodeled by the malaria parasite to establish blood-stage infection. PMID:17526861

  3. Biopsychosocial influence on exercise-induced injury: genetic and psychological combinations are predictive of shoulder pain phenotypes

    PubMed Central

    George, Steven Z.; Parr, Jeffrey J.; Wallace, Margaret R.; Wu, Samuel S.; Borsa, Paul A.; Dai, Yunfeng; Fillingim, Roger B.

    2014-01-01

    Chronic pain is influenced by biological, psychological, social, and cultural factors. The current study investigated potential roles for combinations of genetic and psychological factors in the development and/or maintenance of chronic musculoskeletal pain. An exercise-induced shoulder injury model was used and a priori selected genetic (ADRB2, COMT, OPRM1, AVPR1A, GCH1, and KCNS1) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, and kinesiophobia) factors were included as predictors. Pain phenotypes were shoulder pain intensity (5-day average and peak reported on numerical rating scale), upper-extremity disability (5-day average and peak reported on the QuickDASH), and shoulder pain duration (in days). After controlling for age, sex, and race the genetic and psychological predictors were entered as main effects and interaction terms in separate regression models for the different pain phenotypes. Results from the recruited cohort (n = 190) indicated strong statistical evidence for interactions between the COMT diplotype and 1) pain catastrophizing for 5-day average upper-extremity disability and 2) depressive symptoms for pain duration. There was moderate statistical evidence for interactions for other shoulder pain phenotypes between additional genes (ADRB2, AVPR1A, and KCNS1) and depressive symptoms, pain catastrophizing, or kinesiophobia. These findings confirm the importance of the combined predictive ability of COMT with psychological distress, and reveal other novel combinations of genetic and psychological factors that may merit additional investigation in other pain cohorts. PMID:24373571

  4. Vitamin E supplementation protects erythrocyte membranes from oxidative stress in healthy Chinese middle-aged and elderly people.

    PubMed

    Sun, Yongye; Ma, Aiguo; Li, Yong; Han, Xiuxia; Wang, Qiuzhen; Liang, Hui

    2012-05-01

    Elderly people are subject to higher levels of oxidative stress than are young people. Vitamin E, as a powerful antioxidant residing mainly in biomembranes, may provide effective protection against oxidative membrane damage and resultant age-related deterioration, especially in the elderly. We hypothesized that appropriate levels of vitamin E supplementation would protect erythrocyte membranes from oxidative stress and thus improve membrane fluidity in healthy middle-aged and elderly people. To test this, we conducted a 4-month double-blind, randomized trial in which 180 healthy subjects (55-70 years old) were randomly divided into 4 groups: group C (control), and 3 treatment groups in which daily doses of 100 mg (VE1), 200 mg (VE2), and 300 mg (VE3) dl-α-tocopheryl acetate were administered. We measured plasma α-tocopherol concentration, malondialdehyde, and superoxide dismutase levels, erythrocyte hemolysis, and erythrocyte membrane fluidity at the beginning and end of the trial. After 4 months supplementation, plasma α-tocopherol concentrations in the 3 treatment groups had increased by 71%, 78%, and 95%, respectively (all P < .01), and significant decreases in plasma malondialdehyde concentrations were observed in these groups (all P < .05). Erythrocyte hemolysis was decreased by 20% to 38% after vitamin E supplementation (all P < .05), and in addition, groups VE2 and VE3 showed dramatic improvements in erythrocyte membrane fluidity (P < .01). Surprisingly, superoxide dismutase activity also decreased significantly in the treatment groups (all P < .05). In summary, vitamin E supplementation apparently alleviates oxidative stress in healthy middle-aged to elderly people, at least in part by improving erythrocyte membrane fluidity and reducing erythrocyte hemolysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Unchanged Erythrocyte Profile After Exposure to Cryogenic Temperatures in Elder Marathon Runners

    PubMed Central

    Szymura, Jadwiga; Wiecek, Magdalena; Maciejczyk, Marcin; Gradek, Joanna; Kantorowicz, Malgorzata; Szygula, Zbigniew

    2018-01-01

    Objective: Endurance runners may experience “sports anemia” resulting from intravascular hemolysis. In addition, aging has negative impact on hematopoiesis and rheological properties of blood, and erythrocyte membranes in older people are more vulnerable to oxidative damage, which together can lead to anemia. Whole-body cryostimulation (WBCST) is increasingly used in the elderly as a method of biological regeneration of athletes or therapy and preventive treatment. That is why the aim of the study was to determine whether repeated WBCST had an effect on the erythrocyte system in master marathon runners, compared to non-training men. Methods: Ten marathon runners (men aged 55.9 ± 5.5 years, training experience 6.71 ± 5.79 years) and 10 non-training (men aged 62.0 ± 5.8 years) were subjected to a series of 24 WBCST (3 min, -130°C) performed every other day. Erythrocyte levels, interleukin-3 (IL-3), erythropoietin (EPO), haptoglobin, bilirubin, and extracellular hemoglobin (HGBecf) concentrations were determined in the blood before and after 12, 24 WBCST, as well as 7 days after their completion. Results: The concentrations of EPO and IL-3 were significantly increased 7 days after the completion of WBCST in both groups (P < 0.05). The erythrocyte content and indicators, the bilirubin, haptoglobin, and HGBecf levels in each group did not change as a result of WBCST. In order to document hemolytic changes and/or factors affecting the severity of erythropoiesis, correlations between growth erythropoietic factors, erythrocyte and hemolytic factors as well as mutual correlations between hemolytic indexes were calculated. There was a positive correlation (P < 0.05) between the EPO and IL-3, bilirubin, mean corpuscular hemoglobin, and red blood cell distribution width – standard deviation. There was also a positive correlation between the concentrations of bilirubin and HGBecf, and a negative correlation between haptoglobin and HGBecf as well as bilirubin

  6. Unchanged Erythrocyte Profile After Exposure to Cryogenic Temperatures in Elder Marathon Runners.

    PubMed

    Szymura, Jadwiga; Wiecek, Magdalena; Maciejczyk, Marcin; Gradek, Joanna; Kantorowicz, Malgorzata; Szygula, Zbigniew

    2018-01-01

    Objective: Endurance runners may experience "sports anemia" resulting from intravascular hemolysis. In addition, aging has negative impact on hematopoiesis and rheological properties of blood, and erythrocyte membranes in older people are more vulnerable to oxidative damage, which together can lead to anemia. Whole-body cryostimulation (WBCST) is increasingly used in the elderly as a method of biological regeneration of athletes or therapy and preventive treatment. That is why the aim of the study was to determine whether repeated WBCST had an effect on the erythrocyte system in master marathon runners, compared to non-training men. Methods: Ten marathon runners (men aged 55.9 ± 5.5 years, training experience 6.71 ± 5.79 years) and 10 non-training (men aged 62.0 ± 5.8 years) were subjected to a series of 24 WBCST (3 min, -130°C) performed every other day. Erythrocyte levels, interleukin-3 (IL-3), erythropoietin (EPO), haptoglobin, bilirubin, and extracellular hemoglobin (HGB ecf ) concentrations were determined in the blood before and after 12, 24 WBCST, as well as 7 days after their completion. Results: The concentrations of EPO and IL-3 were significantly increased 7 days after the completion of WBCST in both groups ( P < 0.05). The erythrocyte content and indicators, the bilirubin, haptoglobin, and HGB ecf levels in each group did not change as a result of WBCST. In order to document hemolytic changes and/or factors affecting the severity of erythropoiesis, correlations between growth erythropoietic factors, erythrocyte and hemolytic factors as well as mutual correlations between hemolytic indexes were calculated. There was a positive correlation ( P < 0.05) between the EPO and IL-3, bilirubin, mean corpuscular hemoglobin, and red blood cell distribution width - standard deviation. There was also a positive correlation between the concentrations of bilirubin and HGB ecf , and a negative correlation between haptoglobin and HGB ecf as well as bilirubin

  7. In vitro effects of the anti-Alzheimer drug memantine on the human erythrocyte membrane and molecular models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambrano, Pablo; Suwalsky, Mario; Villena, Fernando

    Memantine is a NMDA antagonist receptor clinically used for treating Alzheimer's disease. NMDA receptors are present in the human neurons and erythrocyte membranes. The aim of the present study was to investigate the effects of memantine on human erythrocytes. With this purpose, the drug was developed to in vitro interact with human red cells and bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). The latter represent lipids respectively present in both outer and inner monolayers of the red cell membrane. Results obtained by scanning electron microscopy (SEM) showed that memantine changed the normal biconcave shape of red cells to cup-shaped stomatocytes.more » According to the bilayer-couple hypothesis the drug intercalated into the inner monolayer of the erythrocyte membrane. Experimental results obtained by X-ray diffraction on multibilayers of DMPC and DMPE, and by differential scanning calorimetry on multilamellar vesicles indicated that memantine preferentially interacted with DMPC in a concentration-dependent manner. Thus, it can be concluded that in the low therapeutic plasma concentration of circa 1 μM memantine is located in NMDA receptor channel without affecting the erythrocyte shape. However, at higher concentrations, once the receptors became saturated excess of memantine molecules (20 μM) would interact with phosphoinositide lipids present in the inner monolayer of the erythrocyte membrane inducing the formation of stomatocytes. However, 40–50 μM memantine was required to interact with isolated phosphatidylcholine bilayers. - Highlights: • The interaction of memantine with human erythrocytes and lipid bilayers were assessed. • Memantine induced morphological changes to human erythrocytes. • Memantine interacted with classes of phospholipids present in the erythrocyte membrane. • Results support the hypothesis that memantine interacts with NMDA receptors.« less

  8. Low-Level Mercury Can Enhance Procoagulant Activity of Erythrocytes: A New Contributing Factor for Mercury-Related Thrombotic Disease

    PubMed Central

    Lim, Kyung-Min; Kim, Sujin; Noh, Ji-Yoon; Kim, Keunyoung; Jang, Won-Hee; Bae, Ok-Nam; Chung, Seung-Min; Chung, Jin-Ho

    2010-01-01

    Background Associations between cardiovascular diseases and mercury have been frequently described, but underlying mechanisms are poorly understood. Objectives We investigate the procoagulant activation of erythrocytes, an important contributor to thrombosis, by low-level mercury to explore the roles of erythrocytes in mercury-related cardiovascular diseases. Methods We used freshly isolated human erythrocytes and ex vivo and in vivo thrombosis models in rats to investigate mercury-induced procoagulant activity. Results Prolonged exposure to low-dose mercuric ion (Hg2+; 0.25–5 μM for 1–48 hr) induced erythrocyte shape changes from discocytes to echinocytes to spherocytes, accompanied by microvesicle (MV) generation. These MVs and remnant erythrocytes expressed phosphatidylserine (PS), an important mediator of procoagulant activation. Hg2+ inhibited flippase, an enzyme that recovers PS into the inner leaflet of the cell membrane, and activated scramblase, an enzyme that alters lipid asymmetry in the cell membrane. Consistent with these activity changes, Hg2+ increased intracellular calcium and depleted ATP and protein thiol. A thiol supplement reversed Hg2+-induced MV generation and PS exposure and inhibited the increase in calcium ion (Ca2+) and depletion of ATP, indicating that free-thiol depletion was critical to Hg2+-mediated procoagulant activity. The procoagulant activity of Hg2+-treated erythrocytes was demonstrated by increased thrombin generation and endothelial cell adhesion. We further confirmed Hg2+-mediated procoagulant activation of erythrocytes in ex vivo and in vivo rat thrombosis models, where Hg2+ treatment (0.5–2.5 mg/kg) increased PS exposure and thrombus formation significantly. Conclusion This study demonstrated that mercury could provoke procoagulant activity in erythrocytes through protein-thiol depletion–mediated PS exposure and MV generation, ultimately leading to enhanced thrombosis. PMID:20308036

  9. The antiepileptic drug diphenylhydantoin affects the structure of the human erythrocyte membrane.

    PubMed

    Suwalsky, Mario; Mennickent, Sigrid; Norris, Beryl; Villena, Fernando; Cuevas, Francisco; Sotomayor, Carlos P

    2004-01-01

    Phenytoin (diphenylhydantoin) is an antiepileptic agent effective against all types of partial and tonic-clonic seizures. Phenytoin limits the repetitive firing of action potentials evoked by a sustained depolarization of mouse spinal cord neurons maintained in vitro. This effect is mediated by a slowing of the rate of recovery of voltage activated Na+ channels from inactivation. For this reasons it was thought of interest to study the binding affinities of phenytoin with cell membranes and their perturbing effects upon membrane structures. The effects of phenytoin on the human erythrocyte membrane and molecular models have been investigated in the present work. This report presents the following evidence that phenytoin interacts with cell membranes: a) X-ray diffraction and fluorescence spectroscopy of phospholipid bilayers showed that phenytoin perturbed a class of lipids found in the outer moiety of cell membranes; b) in isolated unsealed human erythrocyte membranes (IUM) the drug induced a disordering effect on the polar head groups and acyl chains of the erythrocyte membrane lipid bilayer; c) in scanning electron microscopy (SEM) studies on human erythrocytes the formation of echinocytes was observed, due to the insertion of phenytoin in the outer monolayer of the red cell membrane. This is the first time that an effect of phenytoin on the red cell shape is described. However, the effects of the drug were observed at concentrations higher than those currently found in plasma when phenytoin is therapeutically administered.

  10. Erythrocyte membrane antigen frequencies in patients with Type II congenital smell loss.

    PubMed

    Stateman, William A; Henkin, Robert I; Knöppel, Alexandra B; Flegel, Willy A

    2015-01-01

    The objective of this study was to determine whether there are genetic factors associated with Type II congenital smell loss. The expression frequencies of 16 erythrocyte antigens among patients with Type II congenital smell loss were determined and compared to those of a large control group. Blood samples were obtained from 99 patients with Type II congenital smell loss. Presence of the erythrocyte surface antigens A, B, M, N, S, s, Fy(a), Fy(b), D, C, c, E, e, K, Jk(a), and Jk(b) was analyzed by blood group serology. Comparisons of expression frequencies of these antigens were made between the patients and a large control group. Patients tested for the Duffy b antigen (Fy(b) haplotype) exhibited a statistically significant 11% decrease in expression frequency compared to the controls. There were no significant differences between patients and controls in the expression frequencies for all other erythrocyte antigens (A, B, M, N, S, s, Fy(a), D, C, c, E, e, K, Jk(a), or Jk(b)). These findings describe the presence of a previously unrevealed genetic tendency among patients with Type II congenital smell loss related to erythrocyte surface antigen expression. The deviation in expression rate of Duffy b suggests a target gene and chromosome region in which future research into this form of congenital smell loss may reveal a more specific genetic basis for Type II congenital smell loss. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Pravastatin chitosan nanogels-loaded erythrocytes as a new delivery strategy for targeting liver cancer.

    PubMed

    Harisa, Gamaleldin I; Badran, Mohamed M; AlQahtani, Saeed A; Alanazi, Fars K; Attia, Sabry M

    2016-01-01

    Chitosan nanogels (CNG) are developed as one of the most promising carriers for cancer targeting. However, these carriers are rapidly eliminated from circulation by reticuloendothelial system (RES), which limits their application. Therefore, erythrocytes (ER) loaded CNG as multifunctional carrier may overcome the massive elimination of nanocarriers by RES. In this study, erythrocytes loaded pravastatin-chitosan nanogels (PR-CNG-ER) were utilized as a novel drug carrier to target liver cancer. Thus, PR-CNG formula was developed in nanosize, with good entrapment efficiency, drug loading and sustained release over 48 h. Then, PR-CNG loaded into ER were prepared by hypotonic preswelling technique. The resulting PR-CNG-ER showed 36.85% of entrapment efficiency, 66.82% of cell recovery and release consistent to that of hemoglobin over 48 h. Moreover, PR-CNG-ER exhibited negative zeta potential, increasing of hemolysis percent, marked phosphatidylserine exposure and stomatocytes shape compared to control unloaded erythrocytes. PR-CNG-ER reduced cells viability of HepG2 cells line by 28% compared to unloaded erythrocytes (UER). These results concluded that PR-CNG-ER are promising drug carriers to target liver cancer.

  12. Pravastatin chitosan nanogels-loaded erythrocytes as a new delivery strategy for targeting liver cancer

    PubMed Central

    Harisa, Gamaleldin I.; Badran, Mohamed M.; AlQahtani, Saeed A.; Alanazi, Fars K.; Attia, Sabry M.

    2015-01-01

    Chitosan nanogels (CNG) are developed as one of the most promising carriers for cancer targeting. However, these carriers are rapidly eliminated from circulation by reticuloendothelial system (RES), which limits their application. Therefore, erythrocytes (ER) loaded CNG as multifunctional carrier may overcome the massive elimination of nanocarriers by RES. In this study, erythrocytes loaded pravastatin–chitosan nanogels (PR–CNG–ER) were utilized as a novel drug carrier to target liver cancer. Thus, PR–CNG formula was developed in nanosize, with good entrapment efficiency, drug loading and sustained release over 48 h. Then, PR–CNG loaded into ER were prepared by hypotonic preswelling technique. The resulting PR–CNG–ER showed 36.85% of entrapment efficiency, 66.82% of cell recovery and release consistent to that of hemoglobin over 48 h. Moreover, PR–CNG–ER exhibited negative zeta potential, increasing of hemolysis percent, marked phosphatidylserine exposure and stomatocytes shape compared to control unloaded erythrocytes. PR–CNG–ER reduced cells viability of HepG2 cells line by 28% compared to unloaded erythrocytes (UER). These results concluded that PR–CNG–ER are promising drug carriers to target liver cancer. PMID:26903771

  13. Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA

    USGS Publications Warehouse

    Braham, Ryan P.; Blazer, Vicki S.; Shaw, Cassidy H.; Mazik, Patricia M.

    2017-01-01

    Biological markers (biomarkers) sensitive to genotoxic and mutagenic contamination in fishes are widely used to identify exposure effects in aquatic environments. The micronucleus assay was incorporated into a suite of indicators to assess exposure to genotoxic and mutagenic contamination at five Great Lakes Areas of Concern (AOCs), as well as one non-AOC (reference) site. The assay allowed enumeration of micronuclei as well as other nuclear abnormalities for both site and species comparisons. Erythrocyte abnormality data was also compared to skin and liver tumor prevalence and hepatic transcript abundance. Erythrocyte abnormalities were observed at all sites with variable occurrence and severity among sites and species. Benthic-oriented brown bullhead (Ameiurus nebulosus) and white sucker (Catostomus commersonii) expressed lower rates of erythrocyte abnormalities, but higher rates of skin and liver neoplasms, when compared to pelagic-oriented largemouth bass (Micropterus salmoides) or smallmouth bass (Micropterus dolomieu) at the same site. The reduced erythrocyte abnormalities, increased transcript abundance associated with Phase I and II toxicant responsive pathways, and increased neoplastic lesions among benthic-oriented taxa may indicate the development of contaminant resistance of these species to more acute effects.

  14. The Impact of "Possible Patients" on Phenotyping Algorithms: Electronic Phenotype Algorithms Can Only Be Reproduced by Sharing Detailed Annotation Criteria.

    PubMed

    Kagawa, Rina; Kawazoe, Yoshimasa; Shinohara, Emiko; Imai, Takeshi; Ohe, Kazuhiko

    2017-01-01

    Phenotyping is an automated technique for identifying patients diagnosed with a particular disease based on electronic health records (EHRs). To evaluate phenotyping algorithms, which should be reproducible, the annotation of EHRs as a gold standard is critical. However, we have found that the different types of EHRs cannot be definitively annotated into CASEs or CONTROLs. The influence of such "possible patients" on phenotyping algorithms is unknown. To assess these issues, for four chronic diseases, we annotated EHRs by using information not directly referring to the diseases and developed two types of phenotyping algorithms for each disease. We confirmed that each disease included different types of possible patients. The performance of phenotyping algorithms differed depending on whether possible patients were considered as CASEs, and this was independent of the type of algorithms. Our results indicate that researchers must share annotation criteria for classifying the possible patients to reproduce phenotyping algorithms.

  15. The Aotus nancymaae erythrocyte proteome and its importance for biomedical research.

    PubMed

    Moreno-Pérez, D A; García-Valiente, R; Ibarrola, N; Muro, A; Patarroyo, M A

    2017-01-30

    The Aotus nancymaae species has been of great importance in researching the biology and pathogenesis of malaria, particularly for studying Plasmodium molecules for including them in effective vaccines against such microorganism. In spite of the forgoing, there has been no report to date describing the biology of parasite target cells in primates or their biomedical importance. This study was thus designed to analyse A. nancymaae erythrocyte protein composition using MS data collected during a previous study aimed at characterising the Plasmodium vivax proteome and published in the pertinent literature. Most peptides identified were similar to those belonging to 1189 Homo sapiens molecules; >95% of them had orthologues in New World primates. GO terms revealed a correlation between categories having the greatest amount of proteins and vital cell function. Integral membrane molecules were also identified which could be possible receptors facilitating interaction with Plasmodium species. The A. nancymaae erythrocyte proteome is described here for the first time, as a starting point for more in-depth/extensive studies. The data reported represents a source of invaluable information for laboratories interested in carrying out basic and applied biomedical investigation studies which involve using this primate. An understanding of the proteomics characteristics of A. nancymaae erythrocytes represents a fascinating area for research regarding the study of the pathogenesis of malaria since these are the main target for Plasmodium invasion. However, and even though Aotus is one of the non-human primate models considered most appropriate for biomedical research, knowledge of its proteome, particularly its erythrocytes, remains unknown. According to the above and bearing in mind the lack of information about the A. nancymaae species genome and transcriptome, this study involved a search for primate proteins for comparing their MS/MS spectra with the available information for

  16. Dimethoate-induced oxidative stress in human erythrocytes and the protective effect of vitamins C and E in vitro.

    PubMed

    Abdallah, Fatma Ben; Gargouri, Bochra; Bejaoui, Hafedh; Lassoued, Saloua; Ammar-Keskes, Leila

    2011-06-01

    Organophosphorus insecticides may induce oxidative stress leading to the generation of free radicals and alteration in the antioxidant system. The aim of this study was to examine the potency of Dimethoate (Dim) to induce oxidative stress response in human erythrocyte in vitro and the role of Vitamins C (Vit C) and E (Vit E) in alleviating the cytotoxic effects. Erythrocytes were divided into three groups. The first group, erythrocytes were incubated for 4 h at 37 °C with different concentrations (0, 20, 40, 60, 80, and 100 mM) of Dim. The second and third groups were preincubated with Vit C or Vit E, respectively, for 30 min and followed by Dim incubation for 4 h at 37 °C. Following in vitro exposure, Dim caused a significant increase in malondialdehyde (MDA) levels, superoxide dismutase (SOD), and catalase (CAT) in erythrocytes at different concentrations. Vit E or Vit C pretreated erythrocytes showed a significant protection against the cytotoxic effects inducted by Dim on the studied parameters. In conclusion, antioxidant Vit E and C could protect against Dim-induced oxidative stress by decreasing lipid peroxidation and hyperactivity of SOD and CAT in human erythrocytes. Copyright © 2010 Wiley Periodicals, Inc.

  17. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration.

    PubMed Central

    Discher, D E; Boal, D H; Boey, S K

    1998-01-01

    Coarse-grained molecular models of the erythrocyte membrane's spectrin cytoskeleton are presented in Monte Carlo simulations of whole cells in micropipette aspiration. The nonlinear chain elasticity and sterics revealed in more microscopic cytoskeleton models (developed in a companion paper; Boey et al., 1998. Biophys. J. 75:1573-1583) are faithfully represented here by two- and three-body effective potentials. The number of degrees of freedom of the system are thereby reduced to a range that is computationally tractable. Three effective models for the triangulated cytoskeleton are developed: two models in which the cytoskeleton is stress-free and does or does not have internal attractive interactions, and a third model in which the cytoskeleton is prestressed in situ. These are employed in direct, finite-temperature simulations of erythrocyte deformation in a micropipette. All three models show reasonable agreement with aspiration measurements made on flaccid human erythrocytes, but the prestressed model alone yields optimal agreement with fluorescence imaging experiments. Ensemble-averaging of nonaxisymmetrical, deformed structures exhibiting anisotropic strain are thus shown to provide an answer to the basic question of how a triangulated mesh such as that of the red cell cytoskeleton deforms in experiment. PMID:9726959

  18. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration.

    PubMed

    Discher, D E; Boal, D H; Boey, S K

    1998-09-01

    Coarse-grained molecular models of the erythrocyte membrane's spectrin cytoskeleton are presented in Monte Carlo simulations of whole cells in micropipette aspiration. The nonlinear chain elasticity and sterics revealed in more microscopic cytoskeleton models (developed in a companion paper; Boey et al., 1998. Biophys. J. 75:1573-1583) are faithfully represented here by two- and three-body effective potentials. The number of degrees of freedom of the system are thereby reduced to a range that is computationally tractable. Three effective models for the triangulated cytoskeleton are developed: two models in which the cytoskeleton is stress-free and does or does not have internal attractive interactions, and a third model in which the cytoskeleton is prestressed in situ. These are employed in direct, finite-temperature simulations of erythrocyte deformation in a micropipette. All three models show reasonable agreement with aspiration measurements made on flaccid human erythrocytes, but the prestressed model alone yields optimal agreement with fluorescence imaging experiments. Ensemble-averaging of nonaxisymmetrical, deformed structures exhibiting anisotropic strain are thus shown to provide an answer to the basic question of how a triangulated mesh such as that of the red cell cytoskeleton deforms in experiment.

  19. Effects of ICG concentration on the optical properties of erythrocyte-derived nano-vectors

    NASA Astrophysics Data System (ADS)

    Tang, Jack; Bahmani, Baharak; Burns, Joshua; Nuñez, Vicente; Mac, Jenny; Bacon, Danielle; Vullev, Valentine; Sun, Victor; Jia, Wangcun; Nelson, J. S.; Anvari, Bahman

    2015-03-01

    Erythrocyte-based nanoparticle platforms can offer long circulation times not offered by traditional drug delivery methods. We have developed a novel erythrocyte-based nanoparticle doped with indocyanine green (ICG), the only FDA-approved near-infrared chromophore. Here, we report on the absorption and fluorescence emission characteristics of these nanoparticles fabricated using ICG concentrations in the range of 161-323 μM. These nanoparticles may serve as biocompatible optical materials for various clinical imaging and phototherapeutic applications.

  20. Anemia and mechanism of erythrocyte destruction in ducks with acute Leucocytozoon infections

    USGS Publications Warehouse

    Kocan, R.M.

    1968-01-01

    In the anemia which accompanies infection by Leucocytozoon simondi in Pekin ducks there was a far greater loss of erythrocytes than could be accounted for as a result of direct physical rupture by the parasite. Erythrocyte loss began at the same time the 1st parasites appeared in the blood and was severest just prior to maximum parasitemia. Blood replacement and parasite loss occurred simultaneously. Examination of the spleen and bone marrow revealed that erythrophagocytosis was not the cause of anemia as reported for infections of Plasmodium, Babesia and Anaplasma. An anti-erythrocyte (A-E) factor was found in the serum of acutely infected ducks which agglutinated and hemolyzed normal untreated duck erythrocytes as well as infected cells. This A-E factor appeared when the 1st red cell loss was detected and reached its maximum titer just prior to the greatest red cell loss. Titers of the A-E factor were determined using normal uninfected erythrocytes at temperatures between 4 and 42 C. Cells agglutinated below 25 C and hemolyzed at 37 and 42 C. These results indicated that the A-E factor could be responsible for loss of cells other than those which were infected and could thus produce an excess loss of red cells. Attempts to implicate the A-E factor as an autoantibody were all negative. The A-E factor was present in the gamma fraction of acute serum but no anamnestic response could be detected when recovered ducks were reinfected. Anemia was never as severe in reinfections as in primary infections. The A-E factor also never reached as high a titer and was removed from the circulation very rapidly in reinfected ducks. It is concluded that red cell loss in ducks with acute Leucocytozoon disease results from intravascular hemolysis rather than erythrophagocytosis. The A-E factor responsible for hemolysis is more likely a parasite product rather than autoantibody.

  1. Alterations of thalassemic erythrocytes detected by wavelet entropy

    NASA Astrophysics Data System (ADS)

    Korol, A. M.; Rasia, R. J.; Rosso, O. A.

    2007-02-01

    A quantitative analysis of erythrocytes deformation under shear stress (the viscoelastic properties) observed on healthy donors as well as thalassemic patients are made by means of the normalized total wavelet entropy (NTWS). The results suggest that NTWS quantifier could be useful for characterizing pathological disturbances for the sake of clinical treatment.

  2. Impact evaluation of α-lipoic acid in gamma-irradiated erythrocytes

    NASA Astrophysics Data System (ADS)

    Desouky, Omar S.; Selim, Nabila S.; Elbakrawy, Eman M.; Rezk, Rezk A.

    2011-03-01

    This work is intended to study in vitro the ability of lipoic acid to protect erythrocytes against the oxidative damage resulting from exposure to gamma radiation through measurement of their rheological properties and to study the effects of detergent on their membrane solubility and permeability. Different doses of gamma radiation were applied: the most recommended and applied dose (25 Gy), and two higher doses, namely 50 and 100 Gy. The effect of addition of lipoic acid as well as its effect as a radioprotector was tested. The obtained results show changes in structural integrity of the erythrocyte cell membrane components as a result of oxidative damage due to gamma radiation that could be improved by pre-treatment with the antioxidant lipoic acid.

  3. Effects of acute and chronic exercise on the osmotic stability of erythrocyte membrane of competitive swimmers.

    PubMed

    Paraiso, Lara Ferreira; Gonçalves-E-Oliveira, Ana Flávia Mayrink; Cunha, Lucas Moreira; de Almeida Neto, Omar Pereira; Pacheco, Adriana Garcia; Araújo, Karinne Beatriz Gonçalves; Garrote-Filho, Mário da Silva; Bernardino Neto, Morun; Penha-Silva, Nilson

    2017-01-01

    This study aimed to evaluate the influence of acute and chronic exercise on erythrocyte membrane stability and various blood indices in a population consisting of five national-level male swimmers, over 18 weeks of training. The evaluations were made at the beginning and end of the 1st, 7th, 13th and 18th weeks, when volume and training intensity have changed. The effects manifested at the beginning of those weeks were considered due to chronic adaptations, while the effects observed at the end of the weeks were considered due to acute manifestations of the exercise load of that week. Acute changes resulting from the exercise comprised increases in creatine kinase activity (CK) and leukocyte count (Leu), and decrease in hematocrit (Ht) and mean corpuscular volume (MCV), at the end of the first week; increase in the activities of CK and lactate dehydrogenase (LDH), in the uric acid (UA) concentration and Leu count, at the end of the seventh week; increases in CK and LDH activities and in the mean corpuscular hemoglobin concentration (MCHC), at the end of the 13th week; and decrease in the value of the osmotic stability index 1/H50 and increases in the CK activity and platelets (Plt) count, at the end of the 18th week. Chronic changes due to training comprised increase in the values of 1/H50, CK, LDH, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), serum iron (Fe), MCV and Plt. Although acute training has resulted in decrease in the osmotic stability of erythrocytes, possibly associated with exacerbation of the oxidative processes during intense exercise, chronic training over 18 weeks resulted in increased osmotic stability of erythrocytes, possibly by modulation in the membrane cholesterol content by low and high density lipoproteins.

  4. Elevated 2,3-diphosphoglycerate concentrations and alteration of structural integrity in the erythrocytes of Indian cases of visceral leishmaniasis.

    PubMed

    Biswas, T; Ghosh, D K; Mukherjee, N; Ghosal, J

    1995-08-01

    The visceral leishmaniasis (VL) known as kala-azar in India is characterized by severe anaemia. The anaemia seems to be the result, at least in part, of the relatively short life-time of the erythrocytes, which have weakened cell membranes, possibly because of elevated concentrations of 2,3-diphosphoglycerate (2,3-DPG). There is a negative correlation (r = 0.91; P < 0.01) between erythrocytic 2,3-DPG concentrations and the blood concentration of haemoglobin, and the erythrocytes from infected patients display higher osmotic fragility than those from uninfected controls. Spectrofluorometry, using 1,6-diphenyl 1,3,5-hexatriene as a probe, indicated that fluorescence depolarization and microviscosity are also higher in the erythrocytic membranes from VL cases than in those from the controls. The cholesterol/phospholipid ratio is also relatively high in the membranes from the VL cases and there is degradation of the skeletal components and the major integral protein (band 3). The enhanced concentration of 2,3-DPG may be related to the altered structural integrity of the erythrocytes and this may lead to anisocytosis and the reduction in the erythrocytic half life.

  5. Sesquicentennial of the birth of Edmund Faustinus Biernacki, a discoverer of the erythrocyte sedimentation rate.

    PubMed

    Kucharz, Eugeniusz J

    2017-01-01

    Edmund Faustinus Biernacki (1866-1911) was a Polish physician and philosopher of medicine. He described erythrocyte sedimentation, designed equipment to measure the erythrocyte sedimentation rate, and applied it to clinical practice. His contribution to the development of one of the most commonly used medical laboratory tests is forgotten, and the test is attributed to other scientists.

  6. Effects of lornoxicam and intravenous ibuprofen on erythrocyte deformability and hepatic and renal blood flow in rats.

    PubMed

    Arpacı, Hande; Çomu, Faruk Metin; Küçük, Ayşegül; Kösem, Bahadır; Kartal, Seyfi; Şıvgın, Volkan; Turgut, Hüseyin Cihad; Aydın, Muhammed Enes; Koç, Derya Sebile; Arslan, Mustafa

    2016-01-01

    Change in blood supply is held responsible for anesthesia-related abnormal tissue and organ perfusion. Decreased erythrocyte deformability and increased aggregation may be detected after surgery performed under general anesthesia. It was shown that nonsteroidal anti-inflammatory drugs decrease erythrocyte deformability. Lornoxicam and/or intravenous (iv) ibuprofen are commonly preferred analgesic agents for postoperative pain management. In this study, we aimed to investigate the effects of lornoxicam (2 mg/kg, iv) and ibuprofen (30 mg/kg, iv) on erythrocyte deformability, as well as hepatic and renal blood flows, in male rats. Eighteen male Wistar albino rats were randomly divided into three groups as follows: iv lornoxicam-treated group (Group L), iv ibuprofen-treated group (Group İ), and control group (Group C). Drug administration was carried out by the iv route in all groups except Group C. Hepatic and renal blood flows were studied by laser Doppler, and euthanasia was performed via intra-abdominal blood uptake. Erythrocyte deformability was measured using a constant-flow filtrometry system. Lornoxicam and ibuprofen increased the relative resistance, which is an indicator of erythrocyte deformability, of rats (P=0.016). Comparison of the results from Group L and Group I revealed no statistically significant differences (P=0.694), although the erythrocyte deformability levels in Group L and Group I were statistically higher than the results observed in Group C (P=0.018 and P=0.008, respectively). Hepatic and renal blood flows were significantly lower than the same in Group C. We believe that lornoxicam and ibuprofen may lead to functional disorders related to renal and liver tissue perfusion secondary to both decreased blood flow and erythrocyte deformability. Further studies regarding these issues are thought to be essential.

  7. L-Sorbose but not D-tagatose induces hemolysis of dog erythrocytes in vitro.

    PubMed

    Bär, A; Leeman, W R

    1999-04-01

    Previous investigations have demonstrated that L-sorbose induces hemolysis of dog erythrocytes. This effect is probably the consequence of an ATP depletion of the red blood cells subsequent to inhibition of hexokinase, and thus the glycolytic pathway, by sorbose 1-phosphate. In the present study, the susceptibility of dog erythrocytes to D-tagatose, a stereoisomer of L-sorbose, was examined. Washed dog erythrocytes were suspended in Hanks' balanced salt solution (HBSS, containing 5.6 mM glucose) with or without the addition of 0.6, 6, and 60 mM L-sorbose or D-tagatose, or in HBSS with total glucose concentrations of 5.6, 6 and 60 mM D-glucose. After incubation for 24 h at 34 degrees C, the suspensions were centrifuged, and the percentage of hemolysis was determined by measuring the hemoglobin in the sediment and the supernatant. The amount of hemoglobin released in the medium did not differ significantly between the control (HBSS) and the test incubations with glucose or D-tagatose supplementation. In contrast, the addition of 6 and 60 mM L-sorbose resulted in significant hemolysis. At the low dose (0.6 mM), L-sorbose did not have an adverse effect. It is concluded that D-tagatose, unlike L-sorbose, does not have a hemolytic effect on canine erythrocytes. Copyright 1999 Academic Press.

  8. Cl- channel blockers NPPB and niflumic acid blunt Ca(2+)-induced erythrocyte 'apoptosis'.

    PubMed

    Myssina, Svetlana; Lang, Philipp A; Kempe, Daniela S; Kaiser, Stefanie; Huber, Stephan M; Wieder, Thomas; Lang, Florian

    2004-01-01

    Exposure to Ca2+ ionophore ionomycin, osmotic shock, oxidative stress and glucose depletion trigger cell shrinkage and scramblase-mediated phosphatidylserine exposure at the outer leaflet of the erythrocyte cell membrane. The effects are partially due to activation of GARDOS channels and subsequent cellular K+ loss leading not only to cell shrinkage but also participating in the triggering of erythrocyte scramblase. As conductive loss of K+ would depend on the parallel loss of anions we hypothesised that activation of scramblase is similarly dependent on the activity of Cl- channels. To test this hypothesis, we used Cl- channel blockers NPPB and niflumic acid. It is shown here that treatment of erythrocytes with 1 microM ionomycin leads to cellular K+ loss, decrease of hematocrit and decrease of forward scatter in FACS analysis reflecting cell shrinkage as well as increase of annexin positive cells reflecting phosphatidylserine exposure. Those events were significantly blunted in the presence of 100 microM NPPB by 34% (K+ loss), 45% (hematocrit), 32% (forward scatter) and 69% (annexin binding), or in the presence of 100 microM niflumic acid by 15% (forward scatter) and 45% (annexin binding), respectively. Moreover, oxidative stress triggered annexin binding which was again significantly inhibited (by 51%) in the presence of 100 microM NPPB. In conclusion, Cl- channels presumably participate in the regulation of erythrocyte 'apoptosis'. Copyright 2004 S. Karger AG, Basel

  9. [Effect of hypertonic saline solution on the viscoelasticities of erythrocyte membrane in rats subjected to hemorrhagic shock].

    PubMed

    Zhou, X; Hu, D; Liu, L; Wu, Z; Qin, J; Cai, S

    2001-12-01

    We have studied the effect of hypertonic saline solution on the viscoelasticities of erythrocyte membrane in hemorrhage-shocked rats using micropippette aspiration technique. Wistar rats were randomly divided into three groups of 0.9% NaCl(NS), 7.5% NaCl (HS) and 5% NaCl-3.5% NaAc (HSA), respectively. The animals were bled to reach a mean arterial pressure of 5.3 kPa in 10 minutes and maintained in shock for 90 minutes. 4 ml/kg NS, HS and HSA was given intravenously and respectively in 5 minutes following hemorrhagic shock. The blood was collected to determine the viscoelasticities of erythrocyte membrane at baseline, shock and after treatment. The results showed that the elastic moduli and viscous coefficients of erythrocyte membrane were increased obviously following hemorrhagic shock. HS raised elastic moduli and reduced viscous coefficients significantly compared with NS after treatment. The elastic moduli and viscous coefficients of erythrocyte membrane were decreased remarkably in HSA group than in NS and HS group. These data suggested that HSA could improve the viscoelasticities of erythrocyte membrane significantly in rats subjected to hemorrhagic shock.

  10. Hereditary and acquired abnormalities in erythrocyte phosphofructokinase activity: the close association with altered 2,3-diphosphoglycerate levels.

    PubMed

    Tarui, S; Kono, N; Kuwajima, M; Kitani, T

    1980-01-01

    Specific deficiency of erythrocyte phosphofructokinase (PFK) activity in Type VII glycogenosis presents a good model for the analysis of the relationship between 2,3 diphosphoglycerate (2,3 DPG) level and glycolysis in erythrocytes since glycolytic flow is partially blocked at the regulatory step. Enzymatic analyses of glycolytic intermediates of erythrocytes from a patient with Type VII glycogenosis demonstrated that 2,3 DPG is markedly decreased in parallel with fructose-1,6-phosphate (FDP). In acidosis including diabetic ketoacidosis and uremic acidosis a fall in 2,3 DPG is also associated with a marked reduction in FDP. On the other hand, in respiratory alkalosis glycolytic intermediates shift to the opposite direction and forward crossover at PFK step appears, being associated with an elevation of 2,3 DPG. These data indicate a close relationship between 2,3 DPG level and PFK activity in erythrocytes. At least in acidosis and alkalosis the alteration in 2,3 DPG level may well be explained by changes in PFK activity caused mainly through allosteric mechanism. In addition, twelve cases with hereditary PFK deficiency in muscle and erythrocytes reported in the world are reviewed and discussed briefly.

  11. [Impact of oxygen toxic action on the erythrocyte membrane and possibility of estimating central nervous system function disturbances].

    PubMed

    Belić, Branislava; Cincović, Marko R

    2011-07-01

    BACKGROUND/AIM; Prolonged exposure to hyperbaric oxygen leads to changes of erythrocytes shape as a consequence of toxic effects of oxygen on the erythrocyte membrane. The aim of this study was to examine the association between occurance of pathological forms of erythrocytes at different time from the start of hyperbaric oxygenation and the moment of convulsions occurrence, an interrelationship of different pathological forms of erythrocytes during exposure to hyperbaric oxygenation, as well as the correlation between the presence of ruptured erythrocytes and function of central nervous system (CNS) after completion of hyperbaric treatment. Sixty laboratory mice, Mus musculus, were exposed to the wholly-oxygen pressure of 3.5 absolute atmospheres (ATA). Blood was collected at the 32nd, 34th, 36th, 38th and 40th minutes after the exposure to oxygen. Pathological forms of erythrocytes were examined by electron microscopy. A moment of convulsions occurrence was registered in all animals. After decompression neurological examinations of experimental animals were perfomed. The Pearson's coefficient of correlation, and linear regression equations for the parameters outlined in the aim of the study were calculated. Hyperbaric oxygen caused damages of erythrocytes at the 34th minute after beginning of the treatment. Various forms of abnormal red blood cells occured, and immediately before the occurrence of irreversible changes (erythrocyte membrane rupture) echinocyte shape was dominated. A significant correlation between the number of damaged red blood cells at 34th minute and their number at the 36th, 38th and 40th minute was found. Convulsions were diagnosed significantly earlier in mice with a greater number of damaged red blood cells (p < 0.01). There was a negative correlation between the number of irreversiblly damaged red blood cells (ruptured) at the 40th minute and neurological score in the studied animals (p < 0.05). The analysis of altered erythrocytes during

  12. Erythrocyte Osmotic Fragility Testing and the Prediction of Canine Malignant Hyperthermia Susceptibility

    PubMed Central

    Cribb, Peter H.; Olfert, Ernest A.; Reynolds, F. Barry

    1986-01-01

    A Doberman-German Shepherd cross-bred male dog, previously diagnosed as malignant hyperthermia susceptible, was mated to an unrelated nonsusceptible German Shepherd cross-bred female. The resultant litter was subjected to hematological, biochemical and erythrocyte osmotic fragility testing in an endeavor to predict the susceptibility of individuals to malignant hyperthermia. Laboratory evaluations were repeated at one year of age and the litter subjected to the halothane challenge test. No significant difference in erythrocyte osmotic fragility was found between malignant hyperthermia susceptible and nonsusceptible siblings at six weeks or at one year of age. Erythrocyte osmotic fragility, in both malignant hyperthermia susceptible and nonsusceptible animals, increased between six weeks and one year of age. Dantrolene sodium was an effective treatment for malignant hyperthermia in the dog when administered early in an episode and in adequate dosage. The initial sign of a malignant hyperthermia episode was a very rapid increase in end tidal partial pressure of carbon dioxide. This finding reinforces the value of capnographic monitoring in anesthesia. PMID:17422730

  13. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sedimentation rate test. (a) Identification. An erythrocyte sedimentation rate test is a device that measures the length of time required for the red cells in a blood sample to fall a specified distance or a... device is exempt from the premarket notification procedures in subpart E of part 807 of this chapter...

  14. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sedimentation rate test. (a) Identification. An erythrocyte sedimentation rate test is a device that measures the length of time required for the red cells in a blood sample to fall a specified distance or a... device is exempt from the premarket notification procedures in subpart E of part 807 of this chapter...

  15. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sedimentation rate test. (a) Identification. An erythrocyte sedimentation rate test is a device that measures the length of time required for the red cells in a blood sample to fall a specified distance or a... device is exempt from the premarket notification procedures in subpart E of part 807 of this chapter...

  16. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sedimentation rate test. (a) Identification. An erythrocyte sedimentation rate test is a device that measures the length of time required for the red cells in a blood sample to fall a specified distance or a... device is exempt from the premarket notification procedures in subpart E of part 807 of this chapter...

  17. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sedimentation rate test. (a) Identification. An erythrocyte sedimentation rate test is a device that measures the length of time required for the red cells in a blood sample to fall a specified distance or a... device is exempt from the premarket notification procedures in subpart E of part 807 of this chapter...

  18. Phenotypes of organ involvement in sarcoidosis.

    PubMed

    Schupp, Jonas Christian; Freitag-Wolf, Sandra; Bargagli, Elena; Mihailović-Vučinić, Violeta; Rottoli, Paola; Grubanovic, Aleksandar; Müller, Annegret; Jochens, Arne; Tittmann, Lukas; Schnerch, Jasmin; Olivieri, Carmela; Fischer, Annegret; Jovanovic, Dragana; Filipovic, Snežana; Videnovic-Ivanovic, Jelica; Bresser, Paul; Jonkers, René; O'Reilly, Kate; Ho, Ling-Pei; Gaede, Karoline I; Zabel, Peter; Dubaniewicz, Anna; Marshall, Ben; Kieszko, Robert; Milanowski, Janusz; Günther, Andreas; Weihrich, Anette; Petrek, Martin; Kolek, Vitezslav; Keane, Michael P; O'Beirne, Sarah; Donnelly, Seamas; Haraldsdottir, Sigridur Olina; Jorundsdottir, Kristin B; Costabel, Ulrich; Bonella, Francesco; Wallaert, Benoît; Grah, Christian; Peroš-Golubičić, Tatjana; Luisetti, Mauritio; Kadija, Zamir; Pabst, Stefan; Grohé, Christian; Strausz, János; Vašáková, Martina; Sterclova, Martina; Millar, Ann; Homolka, Jiří; Slováková, Alena; Kendrick, Yvonne; Crawshaw, Anjali; Wuyts, Wim; Spencer, Lisa; Pfeifer, Michael; Valeyre, Dominique; Poletti, Venerino; Wirtz, Hubertus; Prasse, Antje; Schreiber, Stefan; Krawczak, Michael; Müller-Quernheim, Joachim

    2018-01-01

    Sarcoidosis is a highly variable, systemic granulomatous disease of hitherto unknown aetiology. The GenPhenReSa (Genotype-Phenotype Relationship in Sarcoidosis) project represents a European multicentre study to investigate the influence of genotype on disease phenotypes in sarcoidosis.The baseline phenotype module of GenPhenReSa comprised 2163 Caucasian patients with sarcoidosis who were phenotyped at 31 study centres according to a standardised protocol.From this module, we found that patients with acute onset were mainly female, young and of Scadding type I or II. Female patients showed a significantly higher frequency of eye and skin involvement, and complained more of fatigue. Based on multidimensional correspondence analysis and subsequent cluster analysis, patients could be clearly stratified into five distinct, yet undescribed, subgroups according to predominant organ involvement: 1) abdominal organ involvement, 2) ocular-cardiac-cutaneous-central nervous system disease involvement, 3) musculoskeletal-cutaneous involvement, 4) pulmonary and intrathoracic lymph node involvement, and 5) extrapulmonary involvement.These five new clinical phenotypes will be useful to recruit homogenous cohorts in future biomedical studies. Copyright ©ERS 2018.

  19. Effects of high temperature and noise on erythrocyte membrane ATPase activity in pilots during flight.

    PubMed

    Qin, S Z; Yu, Q F; Ma, G X; Hao, W W; Li, M G; Zhao, H

    1999-12-01

    Objective. To determine the effect of heat and noise on erythrocyte membrane ATPase activities in pilots during flying. Method. Twenty-four pilots performing bombing for 3 h (45-53 degrees C, 122-97 dB in the cabin) served as the subjects. 21 ground personnel served as control (27 degrees C in the room). Blood samples were taken from both groups before flying (6:00 a.m.), and immediately (12:00 a.m.) and 8 h (8:00 p.m.) after flying. Na(+)-K+ ATPase, and Ca2(+)-Mg2+ ATPase activities in erythrocyte membrane were determined with colorimetry. Result. The Na(+)-K+ ATPase activity in erythrocyte membrane at 6:00 a.m. in pilots was higher than that in control group at the same time (P<0.01). The Ca2(+)-Mg2+ ATPase activities in erythrocyte membrane at 12:00 a.m. and 8:00 p.m. in pilots were significantly higher, compared with those in control group at the same time (P<0.01). Conclusion. The ATPase values obtained in our study were all within normal range, and the daytime variation of both groups are the same. Exposure of human body to heat and noise for long time may be harmful, the higher ATPase activity is, the more catabolism of ATP will be. ATP exhaustion will lead to Ca2+ overload in erythrocyte thus stiffen the red cell membrane.

  20. Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase.

    PubMed

    Ferru, Emanuela; Pantaleo, Antonella; Carta, Franco; Mannu, Franca; Khadjavi, Amina; Gallo, Valentina; Ronzoni, Luisa; Graziadei, Giovanna; Cappellini, Maria Domenica; Turrini, Francesco

    2014-03-01

    High counts of circulating microparticles, originated from the membrane of abnormal erythrocytes, have been associated with increased thrombotic risk in hemolytic disorders. Our studies indicate that in thalassemia intermedia patients the number of circulating microparticles correlates with the capability of the thalassemic erythrocytes to release microparticles. The microparticles are characteristically loaded with hemichromes formed by denatured α-chains. This finding was substantiated by the positive correlation observed in thalassemia intermedia patients between the amount of hemichromes measured in erythrocytes, their capability to release microparticles and the levels of plasma hemichromes. We observed that hemichromes, following their binding to the cytoplasmic domain of band 3, induce the formation of disulfide band 3 dimers that are subsequently phosphorylated by p72Syk kinase. Phosphorylation of oxidized band 3 appears to be relevant for the formation of large hemichromes/band 3 clusters that, in turn, induce local membrane instability and the release of microparticles. Proteomic analysis of microparticles released from thalassemia intermedia erythrocytes indicated that, besides hemichromes and clustered band 3, the microparticles contain a characteristic set of proteins that includes catalase, heat shock protein 70, peroxiredoxin 2 and carbonic anhydrase. High amounts of immunoglobulins and C3 have also been found to be associated with microparticles, accounting for their intense phagocytosis. The effect of p72Syk kinase inhibitors on the release of microparticles from thalassemia intermedia erythrocytes may indicate new perspectives for controlling the release of circulating microparticles in hemolytic anemias.

  1. [Clinical significance of 2,3-biphosphoglyceric acid content in erythrocytes of patients with chronic pulmonary heart disease].

    PubMed

    Remennik, O I

    2006-01-01

    The author gives in the article obtained data reflecting the content of 2,3-biphosphoglyceric acid in erythrocytes of patients with chronic lung heart. A comparative analysis of the content of 2,3-biphosphoglyceric acid in erythrocytes of healthy volunteers and patients with chronic lung heart was carried out. The author detected the correlation of changes of 2,3-biphosphoglyceric acid in erythrocytes and histamines in blood plasma in chronic lung heart patients with chronic lun diseases and it may be used in assessment and diagnostics of severity of secondary metabolic deran gements.

  2. Can ginsenosides protect human erythrocytes against free-radical-induced hemolysis?

    PubMed

    Liu, Zai-Qun; Luo, Xu-Yang; Sun, Yun-Xiu; Chen, Yan-Ping; Wang, Zhi-Cai

    2002-08-15

    Many studies have focused on the free-radical-initiated peroxidation of membrane lipid, which is associated with a variety of pathological events. Panax ginseng is used in traditional Chinese medicine to enhance stamina and capacity to deal with fatigue and physical stress. Many reports have been devoted to the effects of ginsenosides, the major active components in P. ginseng, on the lipid metabolism, immune function and cardiovascular system. The results, however, are usually contradictory since the usage of mixture of ginsenosides cannot identify the function of every individual ginsenosides on the experimental system. On the other hand, every individual ginsenosides is not compared under the same experimental condition. These facts motivate us to evaluate the antioxidant effect of various individual ginsenosides on the experimental system of free-radical-initiated peroxidation: the hemolysis of human erythrocyte induced thermally by water-soluble initiator, 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). The inhibitory concentration of 50% inhibition (IC(50)) of AAPH-induced hemolysis of the erythrocyte has been studied firstly and found that the order of IC(50) is Rb3 - Rb1influence the lag time of hemolysis. The R1 with the concentration ranging from 10 to 20 microM decreases the lag time of hemolysis. These results suggest that there is a mutual interaction that existed in the molecule of ginsenosides since the difference of the structure of ginsenosides is only due to the connective position and type of sugar moieties to the ring of a triterpene dammarane. Moreover, the synergistic antioxidative properties of various individual ginsenosides with alpha-tocopherol (TOH) are also discussed

  3. The macroevolutionary consequences of phenotypic integration: from development to deep time.

    PubMed

    Goswami, A; Smaers, J B; Soligo, C; Polly, P D

    2014-08-19

    Phenotypic integration is a pervasive characteristic of organisms. Numerous analyses have demonstrated that patterns of phenotypic integration are conserved across large clades, but that significant variation also exists. For example, heterochronic shifts related to different mammalian reproductive strategies are reflected in postcranial skeletal integration and in coordination of bone ossification. Phenotypic integration and modularity have been hypothesized to shape morphological evolution, and we extended simulations to confirm that trait integration can influence both the trajectory and magnitude of response to selection. We further demonstrate that phenotypic integration can produce both more and less disparate organisms than would be expected under random walk models by repartitioning variance in preferred directions. This effect can also be expected to favour homoplasy and convergent evolution. New empirical analyses of the carnivoran cranium show that rates of evolution, in contrast, are not strongly influenced by phenotypic integration and show little relationship to morphological disparity, suggesting that phenotypic integration may shape the direction of evolutionary change, but not necessarily the speed of it. Nonetheless, phenotypic integration is problematic for morphological clocks and should be incorporated more widely into models that seek to accurately reconstruct both trait and organismal evolution.

  4. The macroevolutionary consequences of phenotypic integration: from development to deep time

    PubMed Central

    Goswami, A.; Smaers, J. B.; Soligo, C.; Polly, P. D.

    2014-01-01

    Phenotypic integration is a pervasive characteristic of organisms. Numerous analyses have demonstrated that patterns of phenotypic integration are conserved across large clades, but that significant variation also exists. For example, heterochronic shifts related to different mammalian reproductive strategies are reflected in postcranial skeletal integration and in coordination of bone ossification. Phenotypic integration and modularity have been hypothesized to shape morphological evolution, and we extended simulations to confirm that trait integration can influence both the trajectory and magnitude of response to selection. We further demonstrate that phenotypic integration can produce both more and less disparate organisms than would be expected under random walk models by repartitioning variance in preferred directions. This effect can also be expected to favour homoplasy and convergent evolution. New empirical analyses of the carnivoran cranium show that rates of evolution, in contrast, are not strongly influenced by phenotypic integration and show little relationship to morphological disparity, suggesting that phenotypic integration may shape the direction of evolutionary change, but not necessarily the speed of it. Nonetheless, phenotypic integration is problematic for morphological clocks and should be incorporated more widely into models that seek to accurately reconstruct both trait and organismal evolution. PMID:25002699

  5. Urea inhibits NaK2Cl cotransport in human erythrocytes.

    PubMed Central

    Lim, J; Gasson, C; Kaji, D M

    1995-01-01

    We examined the effect of urea on NaK2Cl cotransport in human erythrocytes. In erythrocytes from nine normal subjects, the addition of 45 mM urea, a concentration commonly encountered in uremic subjects, inhibited NaK2Cl cotransport by 33 +/- 7%. Urea inhibited NaK2Cl cotransport reversibly, and in a concentration-dependent fashion with half-maximal inhibition at 63 +/- 10 mM. Acute cell shrinkage increased, and acute cell swelling decreased NaK2Cl cotransport in human erythrocytes. Okadaic acid (OA), a specific inhibitor of protein phosphatase 1 and 2A, increased NaK2Cl cotransport by nearly 80%, suggesting an important role for these phosphatases in the regulation of NaK2Cl cotransport. Urea inhibited bumetanide-sensitive K influx even when protein phosphatases were inhibited with OA, suggesting that urea acted by inhibiting a kinase. In cells subjected to shrinking and OA pretreatment, maneuvers expected to increase the net phosphorylation, urea inhibited cotransport only minimally, suggesting that urea acted by causing a net dephosphorylation of the cotransport protein, or some key regulatory protein. The finding that concentrations of urea found in uremic subjects inhibited NaK2Cl cotransport, a widespread transport pathway with important physiological functions, suggests that urea is not only a marker for accumulation of other uremic toxins, but may be a significant uremic toxin itself. PMID:7593597

  6. Dielectric relaxations on erythrocyte membrane as revealed by spectrin denaturation.

    PubMed

    Ivanov, I T; Paarvanova, B

    2016-08-01

    We studied the effect of spectrin denaturation at 49.5°C (TA) on the dielectric relaxations and related changes in the complex impedance, Z*, complex capacitance, C*, and dielectric loss curve of suspensions containing human erythrocytes, erythrocyte ghost membranes (EMs) and Triton-X-100 residues of EMs. The loss curve prior to, minus the loss curve after TA, resulted in a bell-shaped peak at 1.5MHz. The changes in the real and imaginary components of Z* and C* at TA, i.e., ΔZre, ΔZim, ΔCre and ΔCim, calculated in the same way, strongly varied with frequency. Between 1.0 and 12MHz the -ΔZim vs ΔZre, and ΔCim vs ΔCre plots depicted semicircles with critical frequencies, fcr, at 2.5MHz expressing recently reported relaxation of spectrin dipoles. Between 0.02 and 1.0MHz the -ΔZim vs ΔZre plot exhibited another relaxation whose fcr mirrored that of beta relaxation. This relaxation was absent on Triton-X-shells, while on erythrocytes and EMs it was inhibited by selective dissociation of either attachment sites between spectrin and bilayer. Considering above findings and inaccessibility of cytosole to outside field at such frequencies, the latter relaxation was assumed originating from a piezoelectric effect on the highly deformable spectrin filaments. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Protection of Clitoria ternatea flower petal extract against free radical-induced hemolysis and oxidative damage in canine erythrocytes.

    PubMed

    Phrueksanan, Wathuwan; Yibchok-anun, Sirinthorn; Adisakwattana, Sirichai

    2014-10-01

    The present study assessed the antioxidant activity and protective ability of Clitoria ternatea flower petal extract (CTE) against in vitro 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH)-induced hemolysis and oxidative damage of canine erythrocytes. From the phytochemical analysis, CTE contained phenolic compounds, flavonoids, and anthocyanins. In addition, CTE showed antioxidant activity as measured by oxygen radical absorbance capacity (ORAC) method and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. CTE (400 µg/ml) remarkably protected erythrocytes against AAPH-induced hemolysis at 4 h of incubation. Moreover, CTE (400 µg/ml) reduced membrane lipid peroxidation and protein carbonyl group formation and prevented the reduction of glutathione concentration in AAPH-induced oxidation of erythrocytes. The AAPH-induced morphological alteration of erythrocytes from a smooth discoid to an echinocytic form was effectively protected by CTE. The present results contribute important insights that CTE may have the potential to act as a natural antioxidant to prevent free radical-induced hemolysis, protein oxidation and lipid peroxidation in erythrocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A role of erythrocytes in adenosine monophosphate initiation of hypometabolism in mammals.

    PubMed

    Daniels, Isadora Susan; Zhang, Jianfa; O'Brien, William G; Tao, Zhenyin; Miki, Tomoko; Zhao, Zhaoyang; Blackburn, Michael R; Lee, Cheng Chi

    2010-07-02

    Biochemical and mechanistic aspects into how various hypometabolic states are initiated in mammals are poorly understood. Here, we show how a state of hypometabolism is initiated by 5'-AMP uptake by erythrocytes. Wild type, ecto-5'-nucleotidase-deficient, and adenosine receptor-deficient mice undergo 5'-AMP-induced hypometabolism in a similar fashion. Injection of 5'-AMP leads to two distinct declining phases of oxygen consumption (VO(2)). The phase I response displays a rapid and steep decline in VO(2) that is independent of body temperature (T(b)) and ambient temperature (T(a)). It is followed by a phase II decline that is linked to T(b) and moderated by T(a). Altering the dosages of 5'-AMP from 0.25- to 2-fold does not change the phase I response. For mice, a T(a) of 15 degrees C is effective for induction of DH with the appropriate dose of 5'-AMP. Erythrocyte uptake of 5'-AMP leads to utilization of ATP to synthesize ADP. This is accompanied by increased glucose but decreased lactate levels, suggesting that glycolysis has slowed. Reduction in glycolysis is known to stimulate erythrocytes to increase intracellular levels of 2,3-bisphosphoglycerate, a potent allosteric inhibitor of hemoglobin's affinity for oxygen. Our studies showed that both 2,3-bisphosphoglycerate and deoxyhemoglobin levels rose following 5'-AMP administration and is in parallel with the phase I decline in VO(2). In summary, our investigations reveal that 5'-AMP mediated hypometabolism is probably triggered by reduced oxygen transport by erythrocytes initiated by uptake of 5'-AMP.

  9. Retention of Plasmodium falciparum ring-infected erythrocytes in the slow, open microcirculation of the human spleen.

    PubMed

    Safeukui, Innocent; Correas, Jean-Michel; Brousse, Valentine; Hirt, Déborah; Deplaine, Guillaume; Mulé, Sébastien; Lesurtel, Mickael; Goasguen, Nicolas; Sauvanet, Alain; Couvelard, Anne; Kerneis, Sophie; Khun, Huot; Vigan-Womas, Inès; Ottone, Catherine; Molina, Thierry Jo; Tréluyer, Jean-Marc; Mercereau-Puijalon, Odile; Milon, Geneviève; David, Peter H; Buffet, Pierre A

    2008-09-15

    The current paradigm in Plasmodium falciparum malaria pathogenesis states that young, ring-infected erythrocytes (rings) circulate in peripheral blood and that mature stages are sequestered in the vasculature, avoiding clearance by the spleen. Through ex vivo perfusion of human spleens, we examined the interaction of this unique blood-filtering organ with P falciparum-infected erythrocytes. As predicted, mature stages were retained. However, more than 50% of rings were also retained and accumulated upstream from endothelial sinus wall slits of the open, slow red pulp microcirculation. Ten percent of rings were retained at each spleen passage, a rate matching the proportion of blood flowing through the slow circulatory compartment established in parallel using spleen contrast-enhanced ultrasonography in healthy volunteers. Rings displayed a mildly but significantly reduced elongation index, consistent with a retention process, due to their altered mechanical properties. This raises the new paradigm of a heterogeneous ring population, the less deformable subset being retained in the spleen, thereby reducing the parasite biomass that will sequester in vital organs, influencing the risk of severe complications, such as cerebral malaria or severe anemia. Cryptic ring retention uncovers a new role for the spleen in the control of parasite density, opening novel intervention opportunities.

  10. On the size of pores arising in erythrocytes under the action of detergents.

    PubMed

    Senkovich, O A; Chernitsky, E A

    1998-01-01

    The size of pores arising in human erythrocytes under the action of two detergents (Triton X-100 and sodium dodecyl sulfate) and causing the slow component of hemolysis was estimated by the method of osmotic protectors. The pore diameters were found to be about 40 A. The pores responsible for the fast component of hemolysis induced by sodium dodecyl sulfate were shown to be of greater size and even molecules of polyethylene glycol 4000 could pass through them. The unusual decrease. In the rate and percentage of this hemolytic component was caused by the side action of the protectors, i.e., by the acceleration of erythrocyte vesiculation, a process that competed with pore formation. Vesiculation protected erythrocytes against fast and slow detergent-induced hemolysis. It is shown that the method of osmotic protectors can not be used for estimation of pore size in fast hemolysis by sodium dodecyl sulfate. The application of this method for hemolysis by other amphiphilic compounds is discussed.

  11. Cholesterol segregates into submicrometric domains at the living erythrocyte membrane: evidence and regulation.

    PubMed

    Carquin, Mélanie; Conrard, Louise; Pollet, Hélène; Van Der Smissen, Patrick; Cominelli, Antoine; Veiga-da-Cunha, Maria; Courtoy, Pierre J; Tyteca, Donatienne

    2015-12-01

    Although cholesterol is essential for membrane fluidity and deformability, the level of its lateral heterogeneity at the plasma membrane of living cells is poorly understood due to lack of appropriate probe. We here report on the usefulness of the D4 fragment of Clostridium perfringens toxin fused to mCherry (theta*), as specific, non-toxic, sensitive and quantitative cholesterol-labeling tool, using erythrocyte flat membrane. By confocal microscopy, theta* labels cholesterol-enriched submicrometric domains in coverslip-spread but also gel-suspended (non-stretched) fresh erythrocytes, suggesting in vivo relevance. Cholesterol domains on spread erythrocytes are stable in time and space, restricted by membrane:spectrin anchorage via 4.1R complexes, and depend on temperature and sphingomyelin, indicating combined regulation by extrinsic membrane:cytoskeleton interaction and by intrinsic lipid packing. Cholesterol domains partially co-localize with BODIPY-sphingomyelin-enriched domains. In conclusion, we show that theta* is a useful vital probe to study cholesterol organization and demonstrate that cholesterol forms submicrometric domains in living cells.

  12. Rapamycin mitigates erythrocyte membrane transport functions and oxidative stress during aging in rats.

    PubMed

    Singh, Abhishek Kumar; Singh, Sandeep; Garg, Geetika; Rizvi, Syed Ibrahim

    2018-02-01

    Erythrocyte membrane is a suitable model to study various metabolic and physiological functions as it undergoes variety of biochemical changes during aging. An age-dependent modulatory effect of rapamycin on erythrocyte membrane functions is completely unknown. Therefore, the present study was undertaken to investigate the effect of rapamycin on age-dependent impaired activities of transporters/exchangers, altered levels of redox biomarkers, viz. protein carbonyl (PC), lipid hydroperoxides (LHs), total thiol (-SH), sialic acid (SA) and intracellular calcium ion [Ca 2+ ]i, and osmotic fragility of erythrocyte membrane. A significant reduction in membrane-bound activities of Na + /K + -ATPase (NKA) and Ca 2+ -ATPase (PMCA), and levels of -SH and SA was observed along with a simultaneous induction in Na + /H + exchanger (NHE) activity and levels of [Ca 2+ ]i, PC, LH and osmotic fragility in old-aged rats. Rapamycin was found to be a promising age-delaying drug that significantly reversed the aging-induced impaired activities of membrane-bound ATPases and altered levels of redox biomarkers.

  13. Gender and body size affect the response of erythrocyte folate to folic acid treatment.

    PubMed

    Winkels, Renate M; Brouwer, Ingeborg A; Verhoef, Petra; van Oort, Floor V A; Durga, Jane; Katan, Martijn B

    2008-08-01

    The recommended dietary allowance (RDA) differs between men and women for some vitamins, but not for folate. The RDA for folate is derived mainly from metabolic studies in women. We assessed if men differ from women in their response of erythrocyte folate to folic acid supplementation. We used data from 2 randomized placebo-controlled trials with folic acid: a 3-y trial in which subjects ingested 800 mug/d of folic acid (294 men and 112 women) and a 12-wk trial in which 187 men and 129 women ingested 0, 50, 100, 200, 400, 600, or 800 microg/d of folic acid in a parallel design (n = 38-42 per treatment group). In the 3-y trial, the erythrocyte folate concentration increased 10% (143 nmol/L, [95%CI 46, 241]) less in men than in women. In the 12-wk trial, regression analysis showed that the response of erythrocyte folate upon folic acid intake for men was 47 nmol/L lower than for women (P for beta(gender) = 0.022); for an intake of 800 microg/d folic acid, this resulted in a 5% lower response in men than in women. Differences in lean body size explained 56% of the difference in response of erythrocyte folate between men and women in the 3-y trial and 70% in the 12-wk trial. Men need more folic acid than women to achieve the same erythrocyte folate concentration, mainly because men have a larger lean body mass. This could be an indication that the RDA for folate should be higher for men than for women, or that the RDA should be expressed per kilogram of lean body mass.

  14. Trafficking of the signature protein of intra-erythrocytic Plasmodium berghei-induced structures, IBIS1, to P. falciparum Maurer's clefts.

    PubMed

    Petersen, Wiebke; Matuschewski, Kai; Ingmundson, Alyssa

    2015-01-01

    Remodeling of the host red blood cell by Plasmodium falciparum is well established and crucial for infection and parasite virulence. Host cell modifications are not exclusive to human Plasmodium parasites and also occur in hepatocytes and erythrocytes infected with murine Plasmodium parasites. The recently described intra-erythrocytic P. berghei-induced structures (IBIS) share similarities to P. falciparum Maurer's clefts. It is shown here that a potential candidate IBIS1 homologue in P. falciparum, PfHYP12 (PF3D7_1301400), is partially exported into the erythrocyte cytoplasm. To analyze a potential similarity between IBIS and Maurer's clefts we expressed the signature protein of IBIS in P. falciparum parasites. Visualization of the tagged protein revealed that PbIBIS1 can be exported by P. falciparum and localizes to Maurer's clefts in P. falciparum-infected erythrocytes, which indicates that IBIS and Maurer's clefts may be evolutionarily conserved parasite-induced structures in infected erythrocytes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Erythrocyte Sedimentation Rate Levels among a Sample of Pregnant Women Attending Health Centers in Erbil-Iraq

    ERIC Educational Resources Information Center

    Khazal, Suhad Ali; Zangana, Jwan M. Sabir

    2016-01-01

    There are so many significant hematological changes occurring in pregnancy, erythrocyte sedimentation rate (ESR) is one of them. The objectives of this study were to determine the range of erythrocyte sedimentation rate values obtained in healthy pregnant women and to examine the effect of gestational age and hemoglobin concentration on…

  16. Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane.

    PubMed

    Bayer, Simone B; Low, Felicia M; Hampton, Mark B; Winterbourn, Christine C

    2016-12-01

    Peroxiredoxin 2 (Prx2) is an abundant antioxidant protein in erythrocytes that protects against hemolytic anemia resulting from hemoglobin oxidation and Heinz body formation. A small fraction of Prx2 is bound to the cell membrane, but the mechanism and relevance of binding are not clear. We have investigated Prx2 interactions with the erythrocyte membrane and oxidized hemoglobin and whether these interactions are dependent on Prx2 redox state. Membrane binding of Prx2 in erythrocytes decreased when the cells were treated with H 2 O 2 , but studies with purified Prx2 and isolated ghosts showed that the interaction was independent of Prx2 redox state. Hemoglobin oxidation leads to the formation of hemichrome, a denatured form of the protein that binds to Band3 protein in the cell membrane as part of the senescence process and is a precursor of Heinz bodies. Hemichrome competed with Prx2 and decreased Prx2 binding to the membrane, potentially explaining the decreased binding in oxidant-exposed cells. The increased membrane binding of Prx2 seen with increasing intracellular calcium was less sensitive to H 2 O 2 or hemichrome, suggesting an alternative mode of binding. Prx2 was also shown to exhibit chaperone-like activity by retarding the precipitation of pre-formed hemichrome. Our results suggest that Prx2, by restricting membrane binding of hemichrome, could impede Band3 clustering and exposure of senescence antigens. This mechanism, plus the observed chaperone activity for oxidized hemoglobin, may help protect against hemolytic anemia.

  17. The impact of hemodialysis on erythrocyte membrane cytoskeleton proteins.

    PubMed

    Olszewska, Maria; Bober, Joanna; Wiatrow, Jerzy; Stępniewska, Joanna; Dołęgowska, Barbara; Chlubek, Dariusz

    2015-02-03

    Hemodialysis (HD) is one of the methods of renal replacement therapy, but it also contributes to an increase in oxidative stress. Hemodialysis leads to changes in the erythrocyte cytoskeleton structure, whilst the presence of glucose in the dialysis fluid which activates the pentose phosphate pathway contributes to the intensification of oxidative stress. Available literature lacks reports on the effect of glucose in the dialytic fluid on the composition of proteins of the cell membrane cytoskeleton. Red blood cells for this analysis were collected from patients with chronic renal failure treated with hemodialysis using both glucose-containing and glucose-free dialysis fluid. Following the preparation of membranes, the electrophoretic separation of proteins was performed in denaturing conditions according to Laemmli. The level of tryptophan in membranes was determined by spectrofluorimetry, whilst the activity of glucose-6-phosphate dehydrogenase was determined by measuring the reduction of oxidated NADP. Hemodialysis in both groups of patients resulted in a statistically significant reduction of tryptophan as an oxidative stress indicator when compared to the control group. Moreover, the activity of glucose-6-phosphate dehydrogenase in the group of patients was higher than in the control group, and following the HD procedure it decreased, which may have been caused by a reduced concentration of dialyzed glucose. The HD procedure affects the structure of the erythrocyte membrane cytoskeleton, which is reflected in the concentration changes in individual proteins and in their mutual relationships corresponding to vertical and horizontal interactions stabilizing the structure of the erythrocyte membrane cytoskeleton. These changes may contribute to the shortening of cell lifespan.

  18. Serodiagnosis of infectious mononucleosis with a bovine erythrocyte glycoprotein.

    PubMed

    Fletcher, M A; Klimas, N G; Latif, Z A; Caldwell, K E

    1983-09-01

    A glycoprotein from bovine erythrocyte membrane was evaluated in two immunoassays as a reagent for the serodiagnosis of infectious mononucleosis (IM). We previously reported that a partially purified preparation of this glycoprotein, when attached to latex beads, agglutinated in the presence of IM heterophile antibody. In the present study, we used a highly purified form of the glycoprotein both as an agglutinating reagent, covalently bound to latex, and in a solid-phase sandwich-type radioimmunoassay (RIA) for IM antibody detection in a larger population of patients. We tested serum samples from college students with symptoms suggestive of IM with the latex reagent (143 samples) and with the RIA (245 samples). Correlation of these two tests, both with each other and with the classical differentially absorbed, agglutination tests for Paul-Bunnell antibody in IM sera, using fresh sheep or horse cells, was excellent (greater than 97% agreement). The new tests also corresponded in most cases with a rapid, unabsorbed preserved horse erythrocyte slide test. However, in this study of 245 samples, both apparent false-positives (5 samples) and apparent false-negatives (3 samples) were observed with this slide test. In conclusion, we found that the bovine glycoprotein as a reagent can facilitate the diagnosis of IM, giving results comparable to those with erythrocyte agglutination tests on differentially absorbed sera. The advantages are ease and speed of performance (latex test), potential for automation (RIA test), stability and uniformity of the glycoprotein reagent (latex and RIA tests), and most importantly, the ability to use unabsorbed sera (latex and RIA tests).

  19. Biophysics of malarial parasite exit from infected erythrocytes.

    PubMed

    Chandramohanadas, Rajesh; Park, YongKeun; Lui, Lena; Li, Ang; Quinn, David; Liew, Kingsley; Diez-Silva, Monica; Sung, Yongjin; Dao, Ming; Lim, Chwee Teck; Preiser, Peter Rainer; Suresh, Subra

    2011-01-01

    Upon infection and development within human erythrocytes, P. falciparum induces alterations to the infected RBC morphology and bio-mechanical properties to eventually rupture the host cells through parasitic and host derived proteases of cysteine and serine families. We used previously reported broad-spectrum inhibitors (E64d, EGTA-AM and chymostatin) to inhibit these proteases and impede rupture to analyze mechanical signatures associated with parasite escape. Treatment of late-stage iRBCs with E64d and EGTA-AM prevented rupture, resulted in no major RBC cytoskeletal reconfiguration but altered schizont morphology followed by dramatic re-distribution of three-dimensional refractive index (3D-RI) within the iRBC. These phenotypes demonstrated several-fold increased iRBC membrane flickering. In contrast, chymostatin treatment showed no 3D-RI changes and caused elevated fluctuations solely within the parasitophorous vacuole. We show that E64d and EGTA-AM supported PV breakdown and the resulting elevated fluctuations followed non-Gaussian pattern that resulted from direct merozoite impingement against the iRBC membrane. Optical trapping experiments highlighted reduced deformability of the iRBC membranes upon rupture-arrest, more specifically in the treatments that facilitated PV breakdown. Taken together, our experiments provide novel mechanistic interpretations on the role of parasitophorous vacuole in maintaining the spherical schizont morphology, the impact of PV breakdown on iRBC membrane fluctuations leading to eventual parasite escape and the evolution of membrane stiffness properties of host cells in which merozoites were irreversibly trapped, recourse to protease inhibitors. These findings provide a comprehensive, previously unavailable, body of information on the combined effects of biochemical and biophysical factors on parasite egress from iRBCs.

  20. Chinese children with autism: A multiple chemical elements profile in erythrocytes.

    PubMed

    Wu, Jing; Liu, Duo-Jian; Shou, Xiao-Jing; Zhang, Ji-Shui; Meng, Fan-Chao; Liu, Ya-Qiong; Han, Song-Ping; Zhang, Rong; Jia, Jin-Zhu; Wang, Jing-Yu; Han, Ji-Sheng

    2018-06-01

    Several lines of evidence suggested that abnormal levels of certain chemical elements may contribute to the development of autism spectrum disorders (ASD). The present work aimed to investigate the multiple chemical elements profile in the erythrocytes of autistic versus typically developing children (TDC) of China. Analyses were carried out to explore the possible association between levels of elements and the risk as well as the severity of ASD. Erythrocyte levels of 11 elements (32%) among 34 detected elements in autistic group were significantly different from those in the TDC group. To our knowledge, this is the first study which compared the levels of rare earth elements in erythrocytes between children with or without ASD. Five elements including Pb, Na, Ca, Sb, and La are associated with the Childhood Autism Rating Scale (CARS) total score. Also, a series of tendencies were found in this research which was believed to affect auditory response, taste, smell, and touch, as well as fear or nervousness. It can be concluded that Chinese autistic children suffer from multi-chemical element imbalances which involves a complex combination of genetic and environmental factors. The results showed a significant correlation between abnormal levels of several chemical elements and the severity of the autistic syndrome. It is suggested that abnormal levels of some chemical elements may contribute to the development of autism spectrum disorders (ASD). In this work, the impact of element imbalances on the risk and severity of ASD was investigated, focusing on the analysis of abnormal levels of the multi-chemical elements profile in erythrocytes compared with typically developing children. Furthermore, the results showed a significant correlation between abnormal levels of several chemical elements and the severity of the autistic syndrome. Autism Res 2018, 11: 834-845. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. © 2018 International Society