Science.gov

Sample records for influence functional motifs

  1. Detecting correlations among functional-sequence motifs

    NASA Astrophysics Data System (ADS)

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.

  2. Detecting correlations among functional-sequence motifs.

    PubMed

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features. PMID:23005179

  3. Glycine-Spacers Influence Functional Motifs Exposure and Self-Assembling Propensity of Functionalized Substrates Tailored for Neural Stem Cell Cultures

    PubMed Central

    Taraballi, Francesca; Natalello, Antonino; Campione, Marcello; Villa, Omar; Doglia, Silvia M.; Paleari, Alberto; Gelain, Fabrizio

    2009-01-01

    The understanding of phenomena involved in the self-assembling of bio-inspired biomaterials acting as three-dimensional scaffolds for regenerative medicine applications is a necessary step to develop effective therapies in neural tissue engineering. We investigated the self-assembled nanostructures of functionalized peptides featuring four, two or no glycine-spacers between the self-assembly sequence RADA16-I and the functional biological motif PFSSTKT. The effectiveness of their biological functionalization was assessed via in vitro experiments with neural stem cells (NSCs) and their molecular assembly was elucidated via atomic force microscopy, Raman and Fourier Transform Infrared spectroscopy. We demonstrated that glycine-spacers play a crucial role in the scaffold stability and in the exposure of the functional motifs. In particular, a glycine-spacer of four residues leads to a more stable nanostructure and to an improved exposure of the functional motif. Accordingly, the longer spacer of glycines, the more effective is the functional motif in both eliciting NSCs adhesion, improving their viability and increasing their differentiation. Therefore, optimized designing strategies of functionalized biomaterials may open, in the near future, new therapies in tissue engineering and regenerative medicine. PMID:20162033

  4. Functional Motifs in Biochemical Reaction Networks

    PubMed Central

    Tyson, John J.; Novák, Béla

    2013-01-01

    The signal-response characteristics of a living cell are determined by complex networks of interacting genes, proteins, and metabolites. Understanding how cells respond to specific challenges, how these responses are contravened in diseased cells, and how to intervene pharmacologically in the decision-making processes of cells requires an accurate theory of the information-processing capabilities of macromolecular regulatory networks. Adopting an engineer’s approach to control systems, we ask whether realistic cellular control networks can be decomposed into simple regulatory motifs that carry out specific functions in a cell. We show that such functional motifs exist and review the experimental evidence that they control cellular responses as expected. PMID:20055671

  5. Interconnected Network Motifs Control Podocyte Morphology and Kidney Function

    PubMed Central

    Azeloglu, Evren U.; Hardy, Simon V.; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y.; Fang, Wei; Xiong, Huabao; Neves, Susana R.; Jain, Mohit R.; Li, Hong; Ma’ayan, Avi; Gordon, Ronald E.; He, John Cijiang; Iyengar, Ravi

    2014-01-01

    Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3′,5′-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element–binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor–driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609

  6. Composite motifs integrating multiple protein structures increase sensitivity for function prediction.

    PubMed

    Chen, Brian Y; Bryant, Drew H; Cruess, Amanda E; Bylund, Joseph H; Fofanov, Viacheslav Y; Kristensen, David M; Kimmel, Marek; Lichtarge, Olivier; Kavraki, Lydia E

    2007-01-01

    The study of disease often hinges on the biological function of proteins, but determining protein function is a difficult experimental process. To minimize duplicated effort, algorithms for function prediction seek characteristics indicative of possible protein function. One approach is to identify substructural matches of geometric and chemical similarity between motifs representing known active sites and target protein structures with unknown function. In earlier work, statistically significant matches of certain effective motifs have identified functionally related active sites. Effective motifs must be carefully designed to maintain similarity to functionally related sites (sensitivity) and avoid incidental similarities to functionally unrelated protein geometry (specificity). Existing motif design techniques use the geometry of a single protein structure. Poor selection of this structure can limit motif effectiveness if the selected functional site lacks similarity to functionally related sites. To address this problem, this paper presents composite motifs, which combine structures of functionally related active sites to potentially increase sensitivity. Our experimentation compares the effectiveness of composite motifs with simple motifs designed from single protein structures. On six distinct families of functionally related proteins, leave-one-out testing showed that composite motifs had sensitivity comparable to the most sensitive of all simple motifs and specificity comparable to the average simple motif. On our data set, we observed that composite motifs simultaneously capture variations in active site conformation, diminish the problem of selecting motif structures, and enable the fusion of protein structures from diverse data sources. PMID:17951837

  7. Linear motifs confer functional diversity onto splice variants

    PubMed Central

    Weatheritt, Robert J.; Davey, Norman E.; Gibson, Toby J.

    2012-01-01

    The pre-translational modification of messenger ribonucleic acids (mRNAs) by alternative promoter usage and alternative splicing is an important source of pleiotropy. Despite intensive efforts, our understanding of the functional implications of this dynamically created diversity is still incomplete. Using the available knowledge of interaction modules, particularly within intrinsically disordered regions (IDRs), we analysed the occurrences of protein modules within alternative exons. We find that regions removed or included by pre-translational variation are enriched in linear motifs suggesting that the removal or inclusion of exons containing these interaction modules is an important regulatory mechanism. In particular, we observe that PDZ-, PTB-, SH2- and WW-domain binding motifs are more likely to occur within alternative exons. We also determine that regions removed or included by alternative promoter usage are enriched in IDRs suggesting that protein isoform diversity is tightly coupled to the modulation of IDRs. This study, therefore, demonstrates that short linear motifs are key components for establishing protein diversity between splice variants. PMID:22638587

  8. Functional analysis of the putative integrin recognition motif on adeno-associated virus 9.

    PubMed

    Shen, Shen; Berry, Garrett E; Castellanos Rivera, Ruth M; Cheung, Roland Y; Troupes, Andrew N; Brown, Sarah M; Kafri, Tal; Asokan, Aravind

    2015-01-16

    Adeno-associated viruses (AAVs) display a highly conserved NGR motif on the capsid surface. Earlier studies have established this tripeptide motif as being essential for integrin-mediated uptake of recombinant AAV serotype 2 (AAV2) in cultured cells. However, functional attributes of this putative integrin recognition motif in other recombinant AAV serotypes displaying systemic transduction in vivo remain unknown. In this study, we dissect the biology of an integrin domain capsid mutant derived from the human isolate AAV9 in mice. The AAV9/NGA mutant shows decreased systemic transduction in mice. This defective phenotype was accompanied by rapid clearance of mutant virions from the blood circulation and nonspecific sequestration by the spleen. Transient vascular hyperpermeability, induced by histamine coinjection, exacerbated AAV9/NGA uptake by the spleen but not the liver. However, such treatment did not affect AAV9 virions, suggesting a potential entry/post-entry defect for the mutant in different tissues. Further characterization revealed modestly decreased cell surface binding but a more pronounced defect in the cellular entry of mutant virions. These findings were corroborated by the observation that blocking multiple integrins adversely affected recombinant AAV9 transduction in different cell types, albeit with variable efficiencies. From a structural perspective, we observed that the integrin recognition motif is located in close proximity to the galactose binding footprint on AAV9 capsids and postulate that this feature could influence cell surface attachment, cellular uptake at the tissue level, and systemic clearance by the reticuloendothelial system. PMID:25404742

  9. Bacteria-mimicking nanoparticle surface functionalization with targeting motifs

    NASA Astrophysics Data System (ADS)

    Lai, Mei-Hsiu; Clay, Nicholas E.; Kim, Dong Hyun; Kong, Hyunjoon

    2015-04-01

    In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various diagnostic, sensing and therapeutic molecular cargo to desired sites of interest in in vitro bioengineering platforms and in vivo pathologic tissue. However, most surface functionalization approaches are often plagued by complex chemical modifications and effortful purifications. To resolve such challenges, this study demonstrates a unique method to immobilize antibodies that can act as targeting motifs on the surfaces of nanocarriers, inspired by a process that bacteria use for immobilization of the host's antibodies. We hypothesized that alkylated Staphylococcus aureus protein A (SpA) would self-assemble with micelles and subsequently induce stable coupling of antibodies to the micelles. We examined this hypothesis by using poly(2-hydroxyethyl-co-octadecyl aspartamide) (PHEA-g-C18) as a model polymer to form micelles. The self-assembly between the micelles and alkylated SpA became more thermodynamically favorable by increasing the degree of substitution of octadecyl chains to PHEA-g-C18, due to a positive entropy change. Lastly, the mixing of SpA-PA-coupled micelles with antibodies resulted in the coating of micelles with antibodies, as confirmed with a fluorescence resonance energy transfer (FRET) assay. The micelles coated with antibodies to VCAM-1 or integrin αv displayed a higher binding affinity to substrates coated with VCAM-1 and integrin αvβ3, respectively, than other controls, as evaluated with surface plasmon resonance (SPR) spectroscopy and a circulation-simulating flow chamber. We envisage that this bacteria-inspired protein immobilization approach will be useful to improve the quality of targeted delivery of nanoparticles, and can be extended to modify the surface of a wide array of nanocarriers.In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various

  10. Bacteria-mimicking nanoparticle surface functionalization with targeting motifs.

    PubMed

    Lai, Mei-Hsiu; Clay, Nicholas E; Kim, Dong Hyun; Kong, Hyunjoon

    2015-04-21

    In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various diagnostic, sensing and therapeutic molecular cargo to desired sites of interest in in vitro bioengineering platforms and in vivo pathologic tissue. However, most surface functionalization approaches are often plagued by complex chemical modifications and effortful purifications. To resolve such challenges, this study demonstrates a unique method to immobilize antibodies that can act as targeting motifs on the surfaces of nanocarriers, inspired by a process that bacteria use for immobilization of the host's antibodies. We hypothesized that alkylated Staphylococcus aureus protein A (SpA) would self-assemble with micelles and subsequently induce stable coupling of antibodies to the micelles. We examined this hypothesis by using poly(2-hydroxyethyl-co-octadecyl aspartamide) (PHEA-g-C18) as a model polymer to form micelles. The self-assembly between the micelles and alkylated SpA became more thermodynamically favorable by increasing the degree of substitution of octadecyl chains to PHEA-g-C18, due to a positive entropy change. Lastly, the mixing of SpA-PA-coupled micelles with antibodies resulted in the coating of micelles with antibodies, as confirmed with a fluorescence resonance energy transfer (FRET) assay. The micelles coated with antibodies to VCAM-1 or integrin αv displayed a higher binding affinity to substrates coated with VCAM-1 and integrin αvβ3, respectively, than other controls, as evaluated with surface plasmon resonance (SPR) spectroscopy and a circulation-simulating flow chamber. We envisage that this bacteria-inspired protein immobilization approach will be useful to improve the quality of targeted delivery of nanoparticles, and can be extended to modify the surface of a wide array of nanocarriers. PMID:25804130

  11. Bacterium-Mimicking Nanoparticle Surface Functionalization with Targeting Motifs

    PubMed Central

    Lai, Mei-Hsiu; Clay, Nicholas E.; Kim, Dong Hyun; Kong, Hyunjoon

    2015-01-01

    In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various diagnostic, sensing and therapeutic molecular cargos to desired sites of interest in in vitro bioengineering platforms and in vivo pathologic tissue. However, most surface functionalization approaches are often plagued by complex chemical modifications and effortful purifications. To resolve such challenges, this study demonstrates a unique method to immobilize antibodies that can act as targeting motifs on the surfaces of nanocarriers, inspired by a process that bacteria use for immobilization of the host’s antibodies. We hypothesized that alkylated Staphylococcus aureus protein A (SpA) would self-assemble with micelles and subsequently induce stable coupling of antibodies to the micelles. We examined this hypothesis by using poly(2-hydroxyethyl-co-octadecyl aspartamide) (PHEA-g-C18) as a model polymer to form micelles. The self-assembly between micelles and alkylated SpA became more thermodynamically favorable by increasing the degree of substitution of octadecyl chains to PHEA-g-C18, due to a positive entropy change. Lastly, the simple mixing of SpA-PA-coupled micelles with antibodies resulted in the micelles coated by antibodies, as confirmed with a fluorescence resonance energy transfer (FRET) assay. The micelles coated by antibodies to VCAM-1 or integrin αv displayed higher binding affinity to a substrate coated by VCAM-1 and integrin αvβ3, respectively, than other controls, as evaluated with surface plasmon resonance (SPR) spectroscopy and a circulation-simulating flow chamber. We envisage this bacterium-inspired protein immobilization approach will be useful to improving the quality of targeted delivery of nanoparticles, and can be extended to modify the surface of a wide array of nanocarriers. PMID:25804130

  12. Motif-directed flexible backbone design of functional interactions

    PubMed Central

    Havranek, James J; Baker, David

    2009-01-01

    Computational protein design relies on a number of approximations to efficiently search the huge sequence space available to proteins. The fixed backbone and rotamer approximations in particular are important for formulating protein design as a discrete combinatorial optimization problem. However, the resulting coarse-grained sampling of possible side-chain terminal positions is problematic for the design of protein function, which depends on precise positioning of side-chain atoms. Although backbone flexibility can greatly increase the conformation freedom of side-chain functional groups, it is not obvious which backbone movements will generate the critical constellation of atoms responsible for protein function. Here, we report an automated method for identifying protein backbone movements that can give rise to any specified set of desired side-chain atomic placements and interactions, using protein–DNA interfaces as a model system. We use a library of previously observed protein–DNA interactions (motifs) and a rotamer-based description of side-chain conformation freedom to identify placements for the protein backbone that can give rise to a favorable side-chain interaction with DNA. We describe a tree-search algorithm for identifying those combinations of interactions from the library that can be realized with minimal perturbation of the protein backbone. We compare the efficiency of this method with the alternative approach of building and screening alternate backbone conformations. PMID:19472357

  13. False occurrences of functional motifs in protein sequences highlight evolutionary constraints

    PubMed Central

    Via, Allegra; Gherardini, Pier Federico; Ferraro, Enrico; Ausiello, Gabriele; Scalia Tomba, Gianpaolo; Helmer-Citterich, Manuela

    2007-01-01

    Background False occurrences of functional motifs in protein sequences can be considered as random events due solely to the sequence composition of a proteome. Here we use a numerical approach to investigate the random appearance of functional motifs with the aim of addressing biological questions such as: How are organisms protected from undesirable occurrences of motifs otherwise selected for their functionality? Has the random appearance of functional motifs in protein sequences been affected during evolution? Results Here we analyse the occurrence of functional motifs in random sequences and compare it to that observed in biological proteomes; the behaviour of random motifs is also studied. Most motifs exhibit a number of false positives significantly similar to the number of times they appear in randomized proteomes (=expected number of false positives). Interestingly, about 3% of the analysed motifs show a different kind of behaviour and appear in biological proteomes less than they do in random sequences. In some of these cases, a mechanism of evolutionary negative selection is apparent; this helps to prevent unwanted functionalities which could interfere with cellular mechanisms. Conclusion Our thorough statistical and biological analysis showed that there are several mechanisms and evolutionary constraints both of which affect the appearance of functional motifs in protein sequences. PMID:17331242

  14. Finding specific RNA motifs: Function in a zeptomole world?

    PubMed Central

    KNIGHT, ROB; YARUS, MICHAEL

    2003-01-01

    We have developed a new method for estimating the abundance of any modular (piecewise) RNA motif within a longer random region. We have used this method to estimate the size of the active motifs available to modern SELEX experiments (picomoles of unique sequences) and to a plausible RNA World (zeptomoles of unique sequences: 1 zmole = 602 sequences). Unexpectedly, activities such as specific isoleucine binding are almost certainly present in zeptomoles of molecules, and even ribozymes such as self-cleavage motifs may appear (depending on assumptions about the minimal structures). The number of specified nucleotides is not the only important determinant of a motif’s rarity: The number of modules into which it is divided, and the details of this division, are also crucial. We propose three maxims for easily isolated motifs: the Maxim of Minimization, the Maxim of Multiplicity, and the Maxim of the Median. These maxims together state that selected motifs should be small and composed of as many separate, equally sized modules as possible. For evenly divided motifs with four modules, the largest accessible activity in picomole scale (1–1000 pmole) pools of length 100 is about 34 nucleotides; while for zeptomole scale (1–1000 zmole) pools it is about 20 specific nucleotides (50% probability of occurrence). This latter figure includes some ribozymes and aptamers. Consequently, an RNA metabolism apparently could have begun with only zeptomoles of RNA molecules. PMID:12554865

  15. Automated protein motif generation in the structure-based protein function prediction tool ProMOL.

    PubMed

    Osipovitch, Mikhail; Lambrecht, Mitchell; Baker, Cameron; Madha, Shariq; Mills, Jeffrey L; Craig, Paul A; Bernstein, Herbert J

    2015-12-01

    ProMOL, a plugin for the PyMOL molecular graphics system, is a structure-based protein function prediction tool. ProMOL includes a set of routines for building motif templates that are used for screening query structures for enzyme active sites. Previously, each motif template was generated manually and required supervision in the optimization of parameters for sensitivity and selectivity. We developed an algorithm and workflow for the automation of motif building and testing routines in ProMOL. The algorithm uses a set of empirically derived parameters for optimization and requires little user intervention. The automated motif generation algorithm was first tested in a performance comparison with a set of manually generated motifs based on identical active sites from the same 112 PDB entries. The two sets of motifs were equally effective in identifying alignments with homologs and in rejecting alignments with unrelated structures. A second set of 296 active site motifs were generated automatically, based on Catalytic Site Atlas entries with literature citations, as an expansion of the library of existing manually generated motif templates. The new motif templates exhibited comparable performance to the existing ones in terms of hit rates against native structures, homologs with the same EC and Pfam designations, and randomly selected unrelated structures with a different EC designation at the first EC digit, as well as in terms of RMSD values obtained from local structural alignments of motifs and query structures. This research is supported by NIH grant GM078077. PMID:26573864

  16. A Conserved Cysteine Motif Is Critical for Rice Ceramide Kinase Activity and Function

    PubMed Central

    Liu, Zhe; Fang, Ce; Li, Jian; Su, Jian-Bin; Greenberg, Jean T.; Wang, Hong-Bin; Yao, Nan

    2011-01-01

    Background Ceramide kinase (CERK) is a key regulator of cell survival in dicotyledonous plants and animals. Much less is known about the roles of CERK and ceramides in mediating cellular processes in monocot plants. Here, we report the characterization of a ceramide kinase, OsCERK, from rice (Oryza sativa spp. Japonica cv. Nipponbare) and investigate the effects of ceramides on rice cell viability. Principal Findings OsCERK can complement the Arabidopsis CERK mutant acd5. Recombinant OsCERK has ceramide kinase activity with Michaelis-Menten kinetics and optimal activity at 7.0 pH and 40°C. Mg2+ activates OsCERK in a concentration-dependent manner. Importantly, a CXXXCXXC motif, conserved in all ceramide kinases and important for the activity of the human enzyme, is critical for OsCERK enzyme activity and in planta function. In a rice protoplast system, inhibition of CERK leads to cell death and the ratio of added ceramide and ceramide-1-phosphate, CERK's substrate and product, respectively, influences cell survival. Ceramide-induced rice cell death has apoptotic features and is an active process that requires both de novo protein synthesis and phosphorylation, respectively. Finally, mitochondria membrane potential loss previously associated with ceramide-induced cell death in Arabidopsis was also found in rice, but it occurred with different timing. Conclusions OsCERK is a bona fide ceramide kinase with a functionally and evolutionarily conserved Cys-rich motif that plays an important role in modulating cell fate in plants. The vital function of the conserved motif in both human and rice CERKs suggests that the biochemical mechanism of CERKs is similar in animals and plants. Furthermore, ceramides induce cell death with similar features in monocot and dicot plants. PMID:21483860

  17. How motif environment influences transcription factor search dynamics: Finding a needle in a haystack.

    PubMed

    Dror, Iris; Rohs, Remo; Mandel-Gutfreund, Yael

    2016-07-01

    Transcription factors (TFs) have to find their binding sites, which are distributed throughout the genome. Facilitated diffusion is currently the most widely accepted model for this search process. Based on this model the TF alternates between one-dimensional sliding along the DNA, and three-dimensional bulk diffusion. In this view, the non-specific associations between the proteins and the DNA play a major role in the search dynamics. However, little is known about how the DNA properties around the motif contribute to the search. Accumulating evidence showing that TF binding sites are embedded within a unique environment, specific to each TF, leads to the hypothesis that the search process is facilitated by favorable DNA features that help to improve the search efficiency. Here, we review the field and present the hypothesis that TF-DNA recognition is dictated not only by the motif, but is also influenced by the environment in which the motif resides. PMID:27192961

  18. Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs

    PubMed Central

    Laserson, Uri; Gan, Hin Hark; Schlick, Tamar

    2005-01-01

    Riboswitches and RNA interference are important emerging mechanisms found in many organisms to control gene expression. To enhance our understanding of such RNA roles, finding small regulatory motifs in genomes presents a challenge on a wide scale. Many simple functional RNA motifs have been found by in vitro selection experiments, which produce synthetic target-binding aptamers as well as catalytic RNAs, including the hammerhead ribozyme. Motivated by the prediction of Piganeau and Schroeder [(2003) Chem. Biol., 10, 103–104] that synthetic RNAs may have natural counterparts, we develop and apply an efficient computational protocol for identifying aptamer-like motifs in genomes. We define motifs from the sequence and structural information of synthetic aptamers, search for sequences in genomes that will produce motif matches, and then evaluate the structural stability and statistical significance of the potential hits. Our application to aptamers for streptomycin, chloramphenicol, neomycin B and ATP identifies 37 candidate sequences (in coding and non-coding regions) that fold to the target aptamer structures in bacterial and archaeal genomes. Further energetic screening reveals that several candidates exhibit energetic properties and sequence conservation patterns that are characteristic of functional motifs. Besides providing candidates for experimental testing, our computational protocol offers an avenue for expanding natural RNA's functional repertoire. PMID:16254081

  19. A systematic approach to identify functional motifs within vertebrate developmental enhancers

    PubMed Central

    Li, Qiang; Ritter, Deborah; Yang, Nan; Dong, Zhiqiang; Li, Hao; Chuang, Jeffrey H.; Guo, Su

    2012-01-01

    Uncovering the cis-regulatory logic of developmental enhancers is critical to understanding the role of non-coding DNA in development. However, it is cumbersome to identify functional motifs within enhancers, and thus few vertebrate enhancers have their core functional motifs revealed. Here we report a combined experimental and computational approach for discovering regulatory motifs in developmental enhancers. Making use of the zebrafish gene expression database, we computationally identified conserved non-coding elements (CNEs) likely to have a desired tissue-specificity based on the expression of nearby genes. Through a high throughput and robust enhancer assay, we tested the activity of ~100 such CNEs and efficiently uncovered developmental enhancers with desired spatial and temporal expression patterns in the zebrafish brain. Application of de novo motif prediction algorithms on a group of forebrain enhancers identified five top-ranked motifs, all of which were experimentally validated as critical for forebrain enhancer activity. These results demonstrate a systematic approach to discover important regulatory motifs in vertebrate developmental enhancers. Moreover, this dataset provides a useful resource for further dissection of vertebrate brain development and function. PMID:19850031

  20. Functional characterization of transcription factor motifs using cross-species comparison across large evolutionary distances.

    PubMed

    Kim, Jaebum; Cunningham, Ryan; James, Brian; Wyder, Stefan; Gibson, Joshua D; Niehuis, Oliver; Zdobnov, Evgeny M; Robertson, Hugh M; Robinson, Gene E; Werren, John H; Sinha, Saurabh

    2010-01-01

    We address the problem of finding statistically significant associations between cis-regulatory motifs and functional gene sets, in order to understand the biological roles of transcription factors. We develop a computational framework for this task, whose features include a new statistical score for motif scanning, the use of different scores for predicting targets of different motifs, and new ways to deal with redundancies among significant motif-function associations. This framework is applied to the recently sequenced genome of the jewel wasp, Nasonia vitripennis, making use of the existing knowledge of motifs and gene annotations in another insect genome, that of the fruitfly. The framework uses cross-species comparison to improve the specificity of its predictions, and does so without relying upon non-coding sequence alignment. It is therefore well suited for comparative genomics across large evolutionary divergences, where existing alignment-based methods are not applicable. We also apply the framework to find motifs associated with socially regulated gene sets in the honeybee, Apis mellifera, using comparisons with Nasonia, a solitary species, to identify honeybee-specific associations. PMID:20126523

  1. SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions

    PubMed Central

    Davey, Norman E.; Cowan, Joanne L.; Shields, Denis C.; Gibson, Toby J.; Coldwell, Mark J.; Edwards, Richard J.

    2012-01-01

    Large portions of higher eukaryotic proteomes are intrinsically disordered, and abundant evidence suggests that these unstructured regions of proteins are rich in regulatory interaction interfaces. A major class of disordered interaction interfaces are the compact and degenerate modules known as short linear motifs (SLiMs). As a result of the difficulties associated with the experimental identification and validation of SLiMs, our understanding of these modules is limited, advocating the use of computational methods to focus experimental discovery. This article evaluates the use of evolutionary conservation as a discriminatory technique for motif discovery. A statistical framework is introduced to assess the significance of relatively conserved residues, quantifying the likelihood a residue will have a particular level of conservation given the conservation of the surrounding residues. The framework is expanded to assess the significance of groupings of conserved residues, a metric that forms the basis of SLiMPrints (short linear motif fingerprints), a de novo motif discovery tool. SLiMPrints identifies relatively overconstrained proximal groupings of residues within intrinsically disordered regions, indicative of putatively functional motifs. Finally, the human proteome is analysed to create a set of highly conserved putative motif instances, including a novel site on translation initiation factor eIF2A that may regulate translation through binding of eIF4E. PMID:22977176

  2. CPI motif interaction is necessary for capping protein function in cells

    PubMed Central

    Edwards, Marc; McConnell, Patrick; Schafer, Dorothy A.; Cooper, John A.

    2015-01-01

    Capping protein (CP) has critical roles in actin assembly in vivo and in vitro. CP binds with high affinity to the barbed end of actin filaments, blocking the addition and loss of actin subunits. Heretofore, models for actin assembly in cells generally assumed that CP is constitutively active, diffusing freely to find and cap barbed ends. However, CP can be regulated by binding of the ‘capping protein interaction' (CPI) motif, found in a diverse and otherwise unrelated set of proteins that decreases, but does not abolish, the actin-capping activity of CP and promotes uncapping in biochemical experiments. Here, we report that CP localization and the ability of CP to function in cells requires interaction with a CPI-motif-containing protein. Our discovery shows that cells target and/or modulate the capping activity of CP via CPI motif interactions in order for CP to localize and function in cells. PMID:26412145

  3. Classification of protein motifs based on subcellular localization uncovers evolutionary relationships at both sequence and functional levels

    PubMed Central

    2013-01-01

    Background Most proteins have evolved in specific cellular compartments that limit their functions and potential interactions. On the other hand, motifs define amino acid arrangements conserved between protein family members and represent powerful tools for assigning function to protein sequences. The ideal motif would identify all members of a protein family but in practice many motifs identify both family members and unrelated proteins, referred to as True Positive (TP) and False Positive (FP) sequences, respectively. Results To address the relationship between protein motifs, protein function and cellular localization, we systematically assigned subcellular localization data to motif sequences from the comprehensive PROSITE sequence motif database. Using this data we analyzed relationships between localization and function. We find that TPs and FPs have a strong tendency to localize in different compartments. When multiple localizations are considered, TPs are usually distributed between related cellular compartments. We also identified cases where FPs are concentrated in particular subcellular regions, indicating possible functional or evolutionary relationships with TP sequences of the same motif. Conclusions Our findings suggest that the systematic examination of subcellular localization has the potential to uncover evolutionary and functional relationships between motif-containing sequences. We believe that this type of analysis complements existing motif annotations and could aid in their interpretation. Our results shed light on the evolution of cellular organelles and potentially establish the basis for new subcellular localization and function prediction algorithms. PMID:23865897

  4. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space

    PubMed Central

    Ahnert, S. E.; Fink, T. M. A.

    2016-01-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the ‘function’ of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. PMID:27440255

  5. A conserved cysteine motif essential for ceramide kinase function.

    PubMed

    Lidome, Emilie; Graf, Christine; Jaritz, Markus; Schanzer, Andrea; Rovina, Philipp; Nikolay, Rainer; Bornancin, Frédéric

    2008-10-01

    Ceramide kinase (CerK) is a sphingolipid metabolizing enzyme very sensitive to oxidation; however, the determinants are unknown. We show here that the thiol-modifying agent N-ethyl-maleimide abrogates CerK activity in vitro and in a cell based assay, implying that important cysteine residues are accessible in purified as well as endogenous CerK. We replaced every 22 residues in human CerK, by an alanine, and measured activity in the resulting mutant proteins. This led to identification of a cluster of cysteines, C(347)XXXC(351)XXC(354), essential for CerK function. These findings are discussed based on homology modeling of the catalytic domain of CerK. PMID:18662741

  6. Chromatin states modify network motifs contributing to cell-specific functions

    PubMed Central

    Zhao, Hongying; Liu, Tingting; Liu, Ling; Zhang, Guanxiong; Pang, Lin; Yu, Fulong; Fan, Huihui; Ping, Yanyan; Wang, Li; Xu, Chaohan; Xiao, Yun; Li, Xia

    2015-01-01

    Epigenetic modification can affect many important biological processes, such as cell proliferation and apoptosis. It can alter chromatin conformation and contribute to gene regulation. To investigate how chromatin states associated with network motifs, we assembled chromatin state-modified regulatory networks by combining 269 ChIP-seq data and chromatin states in four cell types. We found that many chromatin states were significantly associated with network motifs, especially for feedforward loops (FFLs). These distinct chromatin state compositions contribute to different expression levels and translational control of targets in FFLs. Strikingly, the chromatin state-modified FFLs were highly cell-specific and, to a large extent, determined cell-selective functions, such as the embryonic stem cell-specific bivalent modification-related FFL with an important role in poising developmentally important genes for expression. Besides, comparisons of chromatin state-modified FFLs between cancerous/stem and primary cell lines revealed specific type of chromatin state alterations that may act together with motif structural changes cooperatively contribute to cell-to-cell functional differences. Combination of these alterations could be helpful in prioritizing candidate genes. Together, this work highlights that a dynamic epigenetic dimension can help network motifs to control cell-specific functions. PMID:26169043

  7. Design of a biochemical circuit motif for learning linear functions.

    PubMed

    Lakin, Matthew R; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-12-01

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective. PMID:25401175

  8. Design of a biochemical circuit motif for learning linear functions

    PubMed Central

    Lakin, Matthew R.; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-01-01

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective. PMID:25401175

  9. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-06-01

    Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision. PMID:23524681

  10. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    PubMed Central

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP) when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis). Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons). Neurons (including the post-synaptic neuron) in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV) induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV) induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1) synchronous firing and burstiness tend to increase DiffV, (2) heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3) heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our work

  11. Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif.

    PubMed

    Kim, Kuglae; Kwon, Soon-Kyeong; Jun, Sung-Hoon; Cha, Jeong Seok; Kim, Hoyoung; Lee, Weontae; Kim, Jihyun F; Cho, Hyun-Soo

    2016-01-01

    A novel light-driven chloride-pumping rhodopsin (ClR) containing an 'NTQ motif' in its putative ion conduction pathway has been discovered and functionally characterized in a genomic analysis study of a marine bacterium. Here we report the crystal structure of ClR from the flavobacterium Nonlabens marinus S1-08(T) determined under two conditions at 2.0 and 1.56 Å resolutions. The structures reveal two chloride-binding sites, one around the protonated Schiff base and the other on a cytoplasmic loop. We identify a '3 omega motif' formed by three non-consecutive aromatic amino acids that is correlated with the B-C loop orientation. Detailed ClR structural analyses with functional studies in E. coli reveal the chloride ion transduction pathway. Our results help understand the molecular mechanism and physiological role of ClR and provide a structural basis for optogenetic applications. PMID:27554809

  12. LDSS-P: an advanced algorithm to extract functional short motifs associated with coordinated gene expression

    PubMed Central

    Ichida, Hiroyuki; Long, Sharon R.

    2016-01-01

    Identifying functional elements in promoter sequences is a major goal in computational and experimental genome biology. Here, we describe an algorithm, Local Distribution of Short Sequences for Prokaryotes (LDSS-P), to identify conserved short motifs located at specific positions in the promoters of co-expressed prokaryotic genes. As a test case, we applied this algorithm to a symbiotic nitrogen-fixing bacterium, Sinorhizobium meliloti. The LDSS-P profiles that overlap with the 5′ section of the extracytoplasmic function RNA polymerase sigma factor RpoE2 consensus sequences displayed a sharp peak between -34 and -32 from TSS positions. The corresponding genes overlap significantly with RpoE2 targets identified from previous experiments. We further identified several groups of genes that are co-regulated with characterized marker genes. Our data indicate that in S. meliloti, and possibly in other Rhizobiaceae species, the master cell cycle regulator CtrA may recognize an expanded motif (AACCAT), which is positionally shifted from the previously reported CtrA consensus sequence in Caulobacter crescentus. Bacterial one-hybrid experiments showed that base substitution in the expanded motif either increase or decrease the binding by CtrA. These results show the effectiveness of LDSS-P as a method to delineate functional promoter elements. PMID:27190233

  13. LDSS-P: an advanced algorithm to extract functional short motifs associated with coordinated gene expression.

    PubMed

    Ichida, Hiroyuki; Long, Sharon R

    2016-06-20

    Identifying functional elements in promoter sequences is a major goal in computational and experimental genome biology. Here, we describe an algorithm, Local Distribution of Short Sequences for Prokaryotes (LDSS-P), to identify conserved short motifs located at specific positions in the promoters of co-expressed prokaryotic genes. As a test case, we applied this algorithm to a symbiotic nitrogen-fixing bacterium, Sinorhizobium meliloti The LDSS-P profiles that overlap with the 5' section of the extracytoplasmic function RNA polymerase sigma factor RpoE2 consensus sequences displayed a sharp peak between -34 and -32 from TSS positions. The corresponding genes overlap significantly with RpoE2 targets identified from previous experiments. We further identified several groups of genes that are co-regulated with characterized marker genes. Our data indicate that in S. meliloti, and possibly in other Rhizobiaceae species, the master cell cycle regulator CtrA may recognize an expanded motif (AACCAT), which is positionally shifted from the previously reported CtrA consensus sequence in Caulobacter crescentus Bacterial one-hybrid experiments showed that base substitution in the expanded motif either increase or decrease the binding by CtrA. These results show the effectiveness of LDSS-P as a method to delineate functional promoter elements. PMID:27190233

  14. A conserved disulfide motif in human tear lipocalins influences ligand binding.

    PubMed

    Glasgow, B J; Abduragimov, A R; Yusifov, T N; Gasymov, O K; Horwitz, J; Hubbell, W L; Faull, K F

    1998-02-24

    Structural and functional characteristics of the disulfide motif have been determined for tear lipocalins, members of a novel group of proteins that carry lipids. Amino acid sequences for two of the six isolated isoforms were assigned by a comparison of molecular mass measurements with masses calculated from the cDNA-predicted protein sequence and available N-terminal protein sequence data. A third isoform was tentatively sequence assigned using the same criteria. The most abundant isoform has a measured mass of 17 446.3 Da, consistent with residues 19-176 of the putative precursor (calculated mass 17 445.8 Da). Chemical derivatization of native and reduced/denatured protein confirmed the presence of a single intramolecular disulfide bond in the native protein. Reactivity of native, reduced, and denatured protein with 4-pyridine disulfide and dithiobis(2-nitrobenzoic acid) indicated that access to the free cysteine is markedly restricted by the intact disulfide bridge. Mass measurements of tryptic fragments identified C119 as the free cysteine and showed that the single intramolecular disulfide bond joined residues C79 and C171. Circular dichroism indicated that tear lipocalins have a predominant beta-pleated sheet structure (44%) that is essentially retained after reduction of the disulfide bond. Circular dichroism in the far-UV showed reduced molecular asymmetry and enhanced urea-induced unfolding with disulfide reduction indicative of relaxation of protein structure. Circular dichroism in the near-UV shows that the disulfide bond contributes to the asymmetry of aromatic sites. The effect of disulfide reduction on ligand binding was monitored using the intrinsic optical activity of bound retinol. The intact disulfide bond diminishes the affinity of tear lipocalins for retinol and restricts the displacement of native lipids by retinol. Disulfide reduction is accompanied by a dramatic alteration in ligand-induced conformational changes that involves aromatic

  15. Functional roles of short sequence motifs in the endocytosis of membrane receptors

    PubMed Central

    Pandey, Kailash N.

    2009-01-01

    Internalization and trafficking of cell-surface membrane receptors and proteins into subcellular compartments is mediated by specific short-sequence signal motifs, which are usually located within the cytoplasmic domains of these receptor and protein molecules. The signals usually consist of short linear amino acid sequences, which are recognized by adaptor coat proteins along the endocytic and sorting pathways. The complex arrays of signals and recognition proteins ensure the dynamic movement, accurate trafficking, and designated distribution of transmembrane receptors and ligands into intracellular compartments, particularly to the endosomal-lysosomal system. This review summarizes the new information and concepts, integrating them with the current and established views of endocytosis, intracellular trafficking, and sorting of membrane receptors and proteins. Particular emphasis has been given to the functional roles of short-sequence signal motifs responsible for the itinerary and destination of membrane receptors and proteins moving into the subcellular compartments. The specific characteristics and functions of short-sequence motifs, including various tyrosine-based, dileucine-type, and other short-sequence signals in the trafficking and sorting of membrane receptors and membrane proteins are presented and discussed. PMID:19482617

  16. Structure/function relationships within the RNA recognition motif family applied to the hermes gene product.

    PubMed

    Thion, Laurent; Erard, Monique

    2002-04-01

    The RNA Recognition Motif (RRM) family of RNA-binding domains comprises distinct structural subclasses which can be equated to various types of cognate RNA(s) in relation to biological functions. By identifying structural templates within the appropriate RRM subclass, we have homology-modelled the three-dimensional structure of the hermes gene-encoded RRM. Our findings lead us to propose potential RNA targets for the corresponding protein and to predict possible functions in RNA metabolism during heart development. PMID:12141909

  17. The rad50 signature motif: essential to ATP binding and biological function.

    PubMed

    Moncalian, Gabriel; Lengsfeld, Bettina; Bhaskara, Venugopal; Hopfner, Karl-Peter; Karcher, Annette; Alden, Erinn; Tainer, John A; Paull, Tanya T

    2004-01-23

    The repair of double-strand breaks in DNA is an essential process in all organisms, and requires the coordinated activities of evolutionarily conserved protein assemblies. One of the most critical of these is the Mre11/Rad50 (M/R) complex, which is present in all three biological kingdoms, but is not well-understood at the biochemical level. Previous structural analysis of a Rad50 homolog from archaebacteria illuminated the catalytic core of the enzyme, an ATP-binding domain related to the ABC transporter family of ATPases. Here, we present the crystallographic structure of the Rad50 mutant S793R. This missense signature motif mutation changes the key serine residue in the signature motif that is conserved among Rad50 homologs and ABC ATPases. The S793R mutation is analogous to the mutation S549R in the cystic fibrosis transmembrane conductance regulator (CFTR) that results in cystic fibrosis. We show here that the serine to arginine change in the Rad50 protein prevents ATP binding and disrupts the communication among the other ATP-binding loops. This structural change, in turn, alters the communication between Rad50 monomers and thus prevents Rad50 dimerization. The equivalent mutation was made in the human Rad50 gene, and the resulting mutant protein did form a complex with Mre11 and Nbs1, but was specifically deficient in all ATP-dependent enzymatic activities. This signature motif structure-function homology extends to yeast, because the same mutation introduced into the Saccharomyces cerevisiae RAD50 gene generated an allele that failed to complement a rad50 deletion strain in DNA repair assays in vivo. These structural and biochemical results extend our understanding of the Rad50 catalytic domain and validate the use of the signature motif mutant to test the role of Rad50 ATP binding in diverse organisms. PMID:14698290

  18. The influence of promoter architectures and regulatory motifs on gene expression in Escherichia coli.

    PubMed

    Rydenfelt, Mattias; Garcia, Hernan G; Cox, Robert Sidney; Phillips, Rob

    2014-01-01

    The ability to regulate gene expression is of central importance for the adaptability of living organisms to changes in their external and internal environment. At the transcriptional level, binding of transcription factors (TFs) in the promoter region can modulate the transcription rate, hence making TFs central players in gene regulation. For some model organisms, information about the locations and identities of discovered TF binding sites have been collected in continually updated databases, such as RegulonDB for the well-studied case of E. coli. In order to reveal the general principles behind the binding-site arrangement and function of these regulatory architectures we propose a random promoter architecture model that preserves the overall abundance of binding sites to identify overrepresented binding site configurations. This model is analogous to the random network model used in the study of genetic network motifs, where regulatory motifs are identified through their overrepresentation with respect to a "randomly connected" genetic network. Using our model we identify TF pairs which coregulate operons in an overrepresented fashion, or individual TFs which act at multiple binding sites per promoter by, for example, cooperative binding, DNA looping, or through multiple binding domains. We furthermore explore the relationship between promoter architecture and gene expression, using three different genome-wide protein copy number censuses. Perhaps surprisingly, we find no systematic correlation between the number of activator and repressor binding sites regulating a gene and the level of gene expression. A position-weight-matrix model used to estimate the binding affinity of RNA polymerase (RNAP) to the promoters of activated and repressed genes suggests that this lack of correlation might in part be due to differences in basal transcription levels, with repressed genes having a higher basal activity level. This quantitative catalogue relating promoter

  19. A PP1-binding motif present in BRCA1 plays a role in its DNA repair function

    PubMed Central

    Yu, Young-Mi; Pace, Serena M.; Allen, Susan R.; Deng, Chu-Xia; Hsu, Lih-Ching

    2008-01-01

    Protein phosphatase 1α (PP1α) regulates phosphorylation of BRCA1, which contains a PP1-binding motif 898KVTF901. Mutation of this motif greatly reduces the interaction between BRCA1 and PP1α. Here we show that mutation of the PP1-binding motif abolishes the ability of BRCA1 to enhance survival of Brca1-deficient mouse mammary tumor cells after DNA damage. The Rad51 focus formation and comet assays revealed that the DNA repair function of BRCA1 was impaired when the PP1-binding motif was mutated. Analysis of subnuclear localization of GFP-tagged BRCA1 demonstrated that mutation of the PP1-binding motif affected BRCA1 redistribution in response to DNA damage. BRCA1 is required for the formation of Rad51 subnuclear foci after DNA damage. Mutation of the PP1-binding motif in BRCA1 also affected recruitment of Rad51 to sites of DNA damage. Consistent with these findings, knockdown of PP1α in BRCA1-proficient cells by small interfering RNA also significantly reduced Rad51 focus formation induced by DNA damage. Further analysis indicated that mutation of the PP1-binding motif compromised BRCA1 activities in homologous recombination. Altogether, our data implicate that interaction with PP1α is important for BRCA1 function in DNA repair. PMID:18953404

  20. Functional Analysis of Semi-conserved Transit Peptide Motifs and Mechanistic Implications in Precursor Targeting and Recognition.

    PubMed

    Holbrook, Kristen; Subramanian, Chitra; Chotewutmontri, Prakitchai; Reddick, L Evan; Wright, Sarah; Zhang, Huixia; Moncrief, Lily; Bruce, Barry D

    2016-09-01

    Over 95% of plastid proteins are nuclear-encoded as their precursors containing an N-terminal extension known as the transit peptide (TP). Although highly variable, TPs direct the precursors through a conserved, posttranslational mechanism involving translocons in the outer (TOC) and inner envelope (TOC). The organelle import specificity is mediated by one or more components of the Toc complex. However, the high TP diversity creates a paradox on how the sequences can be specifically recognized. An emerging model of TP design is that they contain multiple loosely conserved motifs that are recognized at different steps in the targeting and transport process. Bioinformatics has demonstrated that many TPs contain semi-conserved physicochemical motifs, termed FGLK. In order to characterize FGLK motifs in TP recognition and import, we have analyzed two well-studied TPs from the precursor of RuBisCO small subunit (SStp) and ferredoxin (Fdtp). Both SStp and Fdtp contain two FGLK motifs. Analysis of large set mutations (∼85) in these two motifs using in vitro, in organello, and in vivo approaches support a model in which the FGLK domains mediate interaction with TOC34 and possibly other TOC components. In vivo import analysis suggests that multiple FGLK motifs are functionally redundant. Furthermore, we discuss how FGLK motifs are required for efficient precursor protein import and how these elements may permit a convergent function of this highly variable class of targeting sequences. PMID:27378725

  1. Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif

    PubMed Central

    Kim, Kuglae; Kwon, Soon-Kyeong; Jun, Sung-Hoon; Cha, Jeong Seok; Kim, Hoyoung; Lee, Weontae; Kim, Jihyun F.; Cho, Hyun-Soo

    2016-01-01

    A novel light-driven chloride-pumping rhodopsin (ClR) containing an ‘NTQ motif' in its putative ion conduction pathway has been discovered and functionally characterized in a genomic analysis study of a marine bacterium. Here we report the crystal structure of ClR from the flavobacterium Nonlabens marinus S1-08T determined under two conditions at 2.0 and 1.56 Å resolutions. The structures reveal two chloride-binding sites, one around the protonated Schiff base and the other on a cytoplasmic loop. We identify a ‘3 omega motif' formed by three non-consecutive aromatic amino acids that is correlated with the B–C loop orientation. Detailed ClR structural analyses with functional studies in E. coli reveal the chloride ion transduction pathway. Our results help understand the molecular mechanism and physiological role of ClR and provide a structural basis for optogenetic applications. PMID:27554809

  2. CyanoLyase: a database of phycobilin lyase sequences, motifs and functions

    PubMed Central

    Bretaudeau, Anthony; Coste, François; Humily, Florian; Garczarek, Laurence; Le Corguillé, Gildas; Six, Christophe; Ratin, Morgane; Collin, Olivier; Schluchter, Wendy M.; Partensky, Frédéric

    2013-01-01

    CyanoLyase (http://cyanolyase.genouest.org/) is a manually curated sequence and motif database of phycobilin lyases and related proteins. These enzymes catalyze the covalent ligation of chromophores (phycobilins) to specific binding sites of phycobiliproteins (PBPs). The latter constitute the building bricks of phycobilisomes, the major light-harvesting systems of cyanobacteria and red algae. Phycobilin lyases sequences are poorly annotated in public databases. Sequences included in CyanoLyase were retrieved from all available genomes of these organisms and a few others by similarity searches using biochemically characterized enzyme sequences and then classified into 3 clans and 32 families. Amino acid motifs were computed for each family using Protomata learner. CyanoLyase also includes BLAST and a novel pattern matching tool (Protomatch) that allow users to rapidly retrieve and annotate lyases from any new genome. In addition, it provides phylogenetic analyses of all phycobilin lyases families, describes their function, their presence/absence in all genomes of the database (phyletic profiles) and predicts the chromophorylation of PBPs in each strain. The site also includes a thorough bibliography about phycobilin lyases and genomes included in the database. This resource should be useful to scientists and companies interested in natural or artificial PBPs, which have a number of biotechnological applications, notably as fluorescent markers. PMID:23175607

  3. Newly identified motifs in Candida albicans Cdr1 protein nucleotide binding domains are pleiotropic drug resistance subfamily-specific and functionally asymmetric.

    PubMed

    Rawal, Manpreet Kaur; Banerjee, Atanu; Shah, Abdul Haseeb; Khan, Mohammad Firoz; Sen, Sobhan; Saxena, Ajay Kumar; Monk, Brian C; Cannon, Richard D; Bhatnagar, Rakesh; Mondal, Alok Kumar; Prasad, Rajendra

    2016-01-01

    An analysis of Candida albicans ABC transporters identified conserved related α-helical sequence motifs immediately C-terminal of each Walker A sequence. Despite the occurrence of these motifs in ABC subfamilies of other yeasts and higher eukaryotes, their roles in protein function remained unexplored. In this study we have examined the functional significance of these motifs in the C. albicans PDR transporter Cdr1p. The motifs present in NBD1 and NBD2 were subjected to alanine scanning mutagenesis, deletion, or replacement of an entire motif. Systematic replacement of individual motif residues with alanine did not affect the function of Cdr1p but deletion of the M1-motif in NBD1 (M1-Del) resulted in Cdr1p being trapped within the endoplasmic reticulum. In contrast, deletion of the M2-motif in NBD2 (M2-Del) yielded a non-functional protein with normal plasma membrane localization. Replacement of the motif in M1-Del with six alanines (M1-Ala) significantly improved localization of the protein and partially restored function. Conversely, replacement of the motif in M2-Del with six alanines (M2-Ala) did not reverse the phenotype and susceptibility to antifungal substrates of Cdr1p was unchanged. Together, the M1 and M2 motifs contribute to the functional asymmetry of NBDs and are important for maturation of Cdr1p and ATP catalysis, respectively. PMID:27251950

  4. Newly identified motifs in Candida albicans Cdr1 protein nucleotide binding domains are pleiotropic drug resistance subfamily-specific and functionally asymmetric

    PubMed Central

    Rawal, Manpreet Kaur; Banerjee, Atanu; Shah, Abdul Haseeb; Khan, Mohammad Firoz; Sen, Sobhan; Saxena, Ajay Kumar; Monk, Brian C.; Cannon, Richard D.; Bhatnagar, Rakesh; Mondal, Alok Kumar; Prasad, Rajendra

    2016-01-01

    An analysis of Candida albicans ABC transporters identified conserved related α-helical sequence motifs immediately C-terminal of each Walker A sequence. Despite the occurrence of these motifs in ABC subfamilies of other yeasts and higher eukaryotes, their roles in protein function remained unexplored. In this study we have examined the functional significance of these motifs in the C. albicans PDR transporter Cdr1p. The motifs present in NBD1 and NBD2 were subjected to alanine scanning mutagenesis, deletion, or replacement of an entire motif. Systematic replacement of individual motif residues with alanine did not affect the function of Cdr1p but deletion of the M1-motif in NBD1 (M1-Del) resulted in Cdr1p being trapped within the endoplasmic reticulum. In contrast, deletion of the M2-motif in NBD2 (M2-Del) yielded a non-functional protein with normal plasma membrane localization. Replacement of the motif in M1-Del with six alanines (M1-Ala) significantly improved localization of the protein and partially restored function. Conversely, replacement of the motif in M2-Del with six alanines (M2-Ala) did not reverse the phenotype and susceptibility to antifungal substrates of Cdr1p was unchanged. Together, the M1 and M2 motifs contribute to the functional asymmetry of NBDs and are important for maturation of Cdr1p and ATP catalysis, respectively. PMID:27251950

  5. G alpha selectivity and inhibitor function of the multiple GoLoco motif protein GPSM2/LGN.

    PubMed

    McCudden, Christopher R; Willard, Francis S; Kimple, Randall J; Johnston, Christopher A; Hains, Melinda D; Jones, Miller B; Siderovski, David P

    2005-09-10

    GPSM2 (G-protein signalling modulator 2; also known as LGN or mammalian Pins) is a protein that regulates mitotic spindle organization and cell division. GPSM2 contains seven tetratricopeptide repeats (TPR) and four Galpha(i/o)-Loco (GoLoco) motifs. GPSM2 has guanine nucleotide dissociation inhibitor (GDI) activity towards both Galpha(o)- and Galpha(i)-subunits; however, a systematic analysis of its individual GoLoco motifs has not been described. We analyzed each of the four individual GoLoco motifs from GPSM2, assessing their relative binding affinities and GDI potencies for Galpha(i1), Galpha(i2), and Galpha(i3) and Galpha(o). Each of the four GPSM2 GoLoco motifs (36-43 amino acids in length) was expressed in bacteria as a GST-fusion protein and purified to homogeneity. The binding of each of the four GST-GoLoco motifs to Galpha(i1)-, Galpha(o)-, and Galpha(s)-subunits was assessed by surface plasmon resonance; all of the motifs bound Galpha(i1), but exhibited low affinity towards Galpha(o). GDI activity was assessed by a fluorescence-based nucleotide-binding assay, revealing that all four GoLoco motifs are functional as GDIs for Galpha(i1), Galpha(i2), and Galpha(i3). Consistent with our binding studies, the GDI activity of GPSM2 GoLoco motifs on Galpha(o) was significantly lower than that toward Galpha(i1), suggesting that the in vivo targets of GPSM2 are most likely to be Galpha(i)-subunits. PMID:15946753

  6. Mutations causing DOK7 congenital myasthenia ablate functional motifs in Dok-7.

    PubMed

    Hamuro, Johko; Higuchi, Osamu; Okada, Kumiko; Ueno, Makiko; Iemura, Shun-ichiro; Natsume, Tohru; Spearman, Hayley; Beeson, David; Yamanashi, Yuji

    2008-02-29

    Dok-7 is a cytoplasmic activator of muscle-specific receptor-tyrosine kinase (MuSK). Both Dok-7 and MuSK are required for neuromuscular synaptogenesis. Mutations in DOK7 underlie a congenital myasthenic syndrome (CMS) associated with small and simplified neuromuscular synapses likely due to impaired Dok-7/MuSK signaling. The overwhelming majority of patients with DOK7 CMS have at least one allele with a frameshift mutation that causes a truncation in the COOH-terminal region of Dok-7 and affects MuSK activation. Dok-7 has pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains in the NH2-terminal moiety, both of which are indispensable for MuSK activation in myotubes, but little is known about additional functional elements. Here, we identify a chromosome region maintenance 1-dependent nuclear export signal (NES) in the COOH-terminal moiety and demonstrate that the NES-mediated cytoplasmic location of Dok-7 is essential for regulating the interaction with MuSK in myotubes. The NH2-terminal PH domain is responsible for the nuclear import of Dok-7. We also show that the Src homology 2 target motifs in the COOH-terminal moiety of Dok-7 are active and crucial for MuSK activation in myotubes. In addition, CMS-associated missense mutations found in the PH or PTB domain inactivate Dok-7. Together, these findings demonstrate that, in addition to the NH2-terminal PH and PTB domains, the COOH-terminal NES and Src homology 2 target motifs play key roles in Dok-7/MuSK signaling for neuromuscular synaptogenesis. Ablation or disruption of these functional elements in Dok-7 probably underlies the neuromuscular junction synaptopathy observed in DOK7 CMS. PMID:18165682

  7. Mutations in the Catalytic Loop HRD Motif Alter the Activity and Function of Drosophila Src64

    PubMed Central

    Strong, Taylor C.; Kaur, Gurvinder; Thomas, Jeffrey H.

    2011-01-01

    The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele. PMID:22132220

  8. Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes

    PubMed Central

    Noé, Griselda; De Gaudenzi, Javier G; Frasch, Alberto C

    2008-01-01

    Background Trypanosomes mostly control gene expression by post-transcriptional events such as modulation of mRNA stability and translational efficiency. These mechanisms involve RNA-binding proteins (RBPs), which associate with transcripts to form messenger ribonucleoprotein (mRNP) complexes. Results In this study, we report the identification of mRNA targets for Trypanosoma cruzi U-rich RBP 1 (TcUBP1) and T. cruzi RBP 3 (TcRBP3), two phylogenetically conserved proteins among Kinetoplastids. Co-immunoprecipitated RBP-associated RNAs were extracted from mRNP complexes and binding of RBPs to several targets was confirmed by independent experimental assays. Analysis of target transcript sequences allowed the identification of different signature RNA motifs for each protein. Cis-elements for RBP binding have a stem-loop structure of 30–35 bases and are more frequently represented in the 3'-untranslated region (UTR) of mRNAs. Insertion of the correctly folded RNA elements to a non-specific mRNA rendered it into a target transcript, whereas substitution of the RNA elements abolished RBP interaction. In addition, RBPs competed for RNA-binding sites in accordance with the distribution of different and overlapping motifs in the 3'-UTRs of common mRNAs. Conclusion Functionally related transcripts were preferentially associated with a given RBP; TcUBP1 targets were enriched in genes encoding proteins involved in metabolism, whereas ribosomal protein-encoding transcripts were the largest group within TcRBP3 targets. Together, these results suggest coordinated control of different mRNA subsets at the post-transcriptional level by specific RBPs. PMID:19063746

  9. Genomic leftovers: identifying novel microsatellites, over-represented motifs and functional elements in the human genome.

    PubMed

    Fonville, Natalie C; Velmurugan, Karthik Raja; Tae, Hongseok; Vaksman, Zalman; McIver, Lauren J; Garner, Harold R

    2016-01-01

    The human genome is 99% complete. This study contributes to filling the 1% gap by enriching previously unknown repeat regions called microsatellites (MST). We devised a Global MST Enrichment (GME) kit to enrich and nextgen sequence 2 colorectal cell lines and 16 normal human samples to illustrate its utility in identifying contigs from reads that do not map to the genome reference. The analysis of these samples yielded 790 novel extra-referential concordant contigs that are observed in more than one sample. We searched for evidence of functional elements in the concordant contigs in two ways: (1) BLAST-ing each contig against normal RNA-Seq samples, (2) Checking for predicted functional elements using GlimmerHMM. Of the 790 concordant contigs, 37 had an exact match to at least one RNA-Seq read; 15 aligned to more than 100 RNA-Seq reads. Of the 249 concordant contigs predicted by GlimmerHMM to have functional elements, 6 had at least one exact RNA-Seq match. BLAST-ing these novel contigs against all publically available sequences confirmed that they were found in human and chimpanzee BAC and FOSMID clones sequenced as part of the original human genome project. These extra-referential contigs predominantly contained pentameric repeats, especially two motifs: AATGG and GTGGA. PMID:27278669

  10. Genomic leftovers: identifying novel microsatellites, over-represented motifs and functional elements in the human genome

    PubMed Central

    Fonville, Natalie C.; Velmurugan, Karthik Raja; Tae, Hongseok; Vaksman, Zalman; McIver, Lauren J.; Garner, Harold R.

    2016-01-01

    The human genome is 99% complete. This study contributes to filling the 1% gap by enriching previously unknown repeat regions called microsatellites (MST). We devised a Global MST Enrichment (GME) kit to enrich and nextgen sequence 2 colorectal cell lines and 16 normal human samples to illustrate its utility in identifying contigs from reads that do not map to the genome reference. The analysis of these samples yielded 790 novel extra-referential concordant contigs that are observed in more than one sample. We searched for evidence of functional elements in the concordant contigs in two ways: (1) BLAST-ing each contig against normal RNA-Seq samples, (2) Checking for predicted functional elements using GlimmerHMM. Of the 790 concordant contigs, 37 had an exact match to at least one RNA-Seq read; 15 aligned to more than 100 RNA-Seq reads. Of the 249 concordant contigs predicted by GlimmerHMM to have functional elements, 6 had at least one exact RNA-Seq match. BLAST-ing these novel contigs against all publically available sequences confirmed that they were found in human and chimpanzee BAC and FOSMID clones sequenced as part of the original human genome project. These extra-referential contigs predominantly contained pentameric repeats, especially two motifs: AATGG and GTGGA. PMID:27278669

  11. Sequence Motifs in Transit Peptides Act as Independent Functional Units and Can Be Transferred to New Sequence Contexts.

    PubMed

    Lee, Dong Wook; Woo, Seungjin; Geem, Kyoung Rok; Hwang, Inhwan

    2015-09-01

    A large number of nuclear-encoded proteins are imported into chloroplasts after they are translated in the cytosol. Import is mediated by transit peptides (TPs) at the N termini of these proteins. TPs contain many small motifs, each of which is critical for a specific step in the process of chloroplast protein import; however, it remains unknown how these motifs are organized to give rise to TPs with diverse sequences. In this study, we generated various hybrid TPs by swapping domains between Rubisco small subunit (RbcS) and chlorophyll a/b-binding protein, which have highly divergent sequences, and examined the abilities of the resultant TPs to deliver proteins into chloroplasts. Subsequently, we compared the functionality of sequence motifs in the hybrid TPs with those of wild-type TPs. The sequence motifs in the hybrid TPs exhibited three different modes of functionality, depending on their domain composition, as follows: active in both wild-type and hybrid TPs, active in wild-type TPs but inactive in hybrid TPs, and inactive in wild-type TPs but active in hybrid TPs. Moreover, synthetic TPs, in which only three critical motifs from RbcS or chlorophyll a/b-binding protein TPs were incorporated into an unrelated sequence, were able to deliver clients to chloroplasts with a comparable efficiency to RbcS TP. Based on these results, we propose that diverse sequence motifs in TPs are independent functional units that interact with specific translocon components at various steps during protein import and can be transferred to new sequence contexts. PMID:26149569

  12. Conserved function of the lysine-based KXD/E motif in Golgi retention for endomembrane proteins among different organisms.

    PubMed

    Woo, Cheuk Hang; Gao, Caiji; Yu, Ping; Tu, Linna; Meng, Zhaoyue; Banfield, David K; Yao, Xiaoqiang; Jiang, Liwen

    2015-11-15

    We recently identified a new COPI-interacting KXD/E motif in the C-terminal cytosolic tail (CT) of Arabidopsis endomembrane protein 12 (AtEMP12) as being a crucial Golgi retention mechanism for AtEMP12. This KXD/E motif is conserved in CTs of all EMPs found in plants, yeast, and humans and is also present in hundreds of other membrane proteins. Here, by cloning selective EMP isoforms from plants, yeast, and mammals, we study the localizations of EMPs in different expression systems, since there are contradictory reports on the localizations of EMPs. We show that the N-terminal and C-terminal GFP-tagged EMP fusions are localized to Golgi and post-Golgi compartments, respectively, in plant, yeast, and mammalian cells. In vitro pull-down assay further proves the interaction of the KXD/E motif with COPI coatomer in yeast. COPI loss of function in yeast and plants causes mislocalization of EMPs or KXD/E motif-containing proteins to vacuole. Ultrastructural studies further show that RNA interference (RNAi) knockdown of coatomer expression in transgenic Arabidopsis plants causes severe morphological changes in the Golgi. Taken together, our results demonstrate that N-terminal GFP fusions reflect the real localization of EMPs, and KXD/E is a conserved motif in COPI interaction and Golgi retention in eukaryotes. PMID:26378254

  13. Purification and in vitro functional analyses of RGS12 and RGS14 GoLoco motif peptides.

    PubMed

    Kimple, Randall J; Willard, Francis S; Siderovski, David P

    2004-01-01

    The GoLoco motif is a short polypeptide sequence that binds to heterotrimeric G-protein alpha subunits of the adenylyl cyclase-inhibitory (Galpha(i/o)) subclass in a nucleotide-dependent manner (i.e., solely to the GDP-bound ground state). This article describes methods used for the expression, purification, and in vitro evaluation of membrane-permeant tag fusion peptides derived from the GoLoco motif regions of "regulator of G-protein signaling" proteins type 12 (RGS12) and 14 (RGS14) and a consensus GoLoco sequence from the multiple GoLoco motif protein AGS3. Three different fluorescence-based assays are described for evaluating the in vitro function of these GoLoco peptides as guanine nucleotide dissociation inhibitors, including measurements of GTPgammaS binding and Galpha subunit activation by the planar ion aluminum tetrafluoride. PMID:15488192

  14. ELM 2016—data update and new functionality of the eukaryotic linear motif resource

    PubMed Central

    Dinkel, Holger; Van Roey, Kim; Michael, Sushama; Kumar, Manjeet; Uyar, Bora; Altenberg, Brigitte; Milchevskaya, Vladislava; Schneider, Melanie; Kühn, Helen; Behrendt, Annika; Dahl, Sophie Luise; Damerell, Victoria; Diebel, Sandra; Kalman, Sara; Klein, Steffen; Knudsen, Arne C.; Mäder, Christina; Merrill, Sabina; Staudt, Angelina; Thiel, Vera; Welti, Lukas; Davey, Norman E.; Diella, Francesca; Gibson, Toby J.

    2016-01-01

    The Eukaryotic Linear Motif (ELM) resource (http://elm.eu.org) is a manually curated database of short linear motifs (SLiMs). In this update, we present the latest additions to this resource, along with more improvements to the web interface. ELM 2016 contains more than 240 different motif classes with over 2700 experimentally validated instances, manually curated from more than 2400 scientific publications. In addition, more data have been made available as individually searchable pages and are downloadable in various formats. PMID:26615199

  15. ELM 2016--data update and new functionality of the eukaryotic linear motif resource.

    PubMed

    Dinkel, Holger; Van Roey, Kim; Michael, Sushama; Kumar, Manjeet; Uyar, Bora; Altenberg, Brigitte; Milchevskaya, Vladislava; Schneider, Melanie; Kühn, Helen; Behrendt, Annika; Dahl, Sophie Luise; Damerell, Victoria; Diebel, Sandra; Kalman, Sara; Klein, Steffen; Knudsen, Arne C; Mäder, Christina; Merrill, Sabina; Staudt, Angelina; Thiel, Vera; Welti, Lukas; Davey, Norman E; Diella, Francesca; Gibson, Toby J

    2016-01-01

    The Eukaryotic Linear Motif (ELM) resource (http://elm.eu.org) is a manually curated database of short linear motifs (SLiMs). In this update, we present the latest additions to this resource, along with more improvements to the web interface. ELM 2016 contains more than 240 different motif classes with over 2700 experimentally validated instances, manually curated from more than 2400 scientific publications. In addition, more data have been made available as individually searchable pages and are downloadable in various formats. PMID:26615199

  16. Conserved phosphoprotein interaction motif is functionally interchangeable between ataxin-7 and arrestins.

    PubMed

    Mushegian, A R; Vishnivetskiy, S A; Gurevich, V V

    2000-06-13

    Olivopontocerebellar atrophy with retinal degeneration is a hereditary neurodegenerative disorder that belongs to the subtype II of the autosomal dominant cerebellar ataxias and is characterized by early-onset cerebellar and macular degeneration preceded by diagnostically useful tritan colorblindness. The gene mutated in the disease (SCA7) has been mapped to chromosome 3p12-13.5, and positional cloning identified the cause of the disease as CAG repeat expansion in this gene. The SCA7 gene product, ataxin-7, is an 897 amino acid protein with an expandable polyglutamine tract close to its N-terminus. No clues to ataxin-7 function have been obtained from sequence database searches. Here we report that ataxin-7 has a motif of ca. 50 amino acids, related to the phosphate-binding site of arrestins. To test the relevance of this sequence similarity, we introduced the putative ataxin-7 phosphate-binding site into visual arrestin and beta-arrestin. Both chimeric arrestins retain receptor-binding affinity and show characteristic high selectivity for phosphorylated activated forms of rhodopsin and beta-adrenergic receptor, respectively. Although the insertion of a Gly residue (absent in arrestins but present in the putative phosphate-binding site of ataxin-7) disrupts the function of visual arrestin-ataxin-7 chimera, it enhances the function of beta-arrestin-ataxin-7 chimera. Taken together, our data suggest that the arrestin-like site in the ataxin-7 sequence is a functional phosphate-binding site. The presence of the phosphate-binding site in ataxin-7 suggests that this protein may be involved in phosphorylation-dependent binding to its protein partner(s) in the cell. PMID:10841760

  17. Efficient α, β-motif finder for identification of phenotype-related functional modules

    PubMed Central

    2011-01-01

    Background Microbial communities in their natural environments exhibit phenotypes that can directly cause particular diseases, convert biomass or wastewater to energy, or degrade various environmental contaminants. Understanding how these communities realize specific phenotypic traits (e.g., carbon fixation, hydrogen production) is critical for addressing health, bioremediation, or bioenergy problems. Results In this paper, we describe a graph-theoretical method for in silico prediction of the cellular subsystems that are related to the expression of a target phenotype. The proposed (α, β)-motif finder approach allows for identification of these phenotype-related subsystems that, in addition to metabolic subsystems, could include their regulators, sensors, transporters, and even uncharacterized proteins. By comparing dozens of genome-scale networks of functionally associated proteins, our method efficiently identifies those statistically significant functional modules that are in at least α networks of phenotype-expressing organisms but appear in no more than β networks of organisms that do not exhibit the target phenotype. It has been shown via various experiments that the enumerated modules are indeed related to phenotype-expression when tested with different target phenotypes like hydrogen production, motility, aerobic respiration, and acid-tolerance. Conclusion Thus, we have proposed a methodology that can identify potential statistically significant phenotype-related functional modules. The functional module is modeled as an (α, β)-clique, where α and β are two criteria introduced in this work. We also propose a novel network model, called the two-typed, divided network. The new network model and the criteria make the problem tractable even while very large networks are being compared. The code can be downloaded from http://www.freescience.org/cs/ABClique/ PMID:22078292

  18. Transcription factor motif quality assessment requires systematic comparative analysis

    PubMed Central

    Kibet, Caleb Kipkurui; Machanick, Philip

    2016-01-01

    Transcription factor (TF) binding site prediction remains a challenge in gene regulatory research due to degeneracy and potential variability in binding sites in the genome. Dozens of algorithms designed to learn binding models (motifs) have generated many motifs available in research papers with a subset making it to databases like JASPAR, UniPROBE and Transfac. The presence of many versions of motifs from the various databases for a single TF and the lack of a standardized assessment technique makes it difficult for biologists to make an appropriate choice of binding model and for algorithm developers to benchmark, test and improve on their models. In this study, we review and evaluate the approaches in use, highlight differences and demonstrate the difficulty of defining a standardized motif assessment approach. We review scoring functions, motif length, test data and the type of performance metrics used in prior studies as some of the factors that influence the outcome of a motif assessment. We show that the scoring functions and statistics used in motif assessment influence ranking of motifs in a TF-specific manner. We also show that TF binding specificity can vary by source of genomic binding data. We also demonstrate that information content of a motif is not in isolation a measure of motif quality but is influenced by TF binding behaviour. We conclude that there is a need for an easy-to-use tool that presents all available evidence for a comparative analysis. PMID:27092243

  19. Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation

    PubMed Central

    Beaume, Nicolas; Pathak, Rajiv; Yadav, Vinod Kumar; Kota, Swathi; Misra, Hari S.; Gautam, Hemant K.; Chowdhury, Shantanu

    2013-01-01

    A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4P) index we analysed >60 000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4P. Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4P of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ∼60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions. PMID:23161683

  20. Effects of Modified Parvalbumin EF-Hand Motifs on Cardiac Myocyte Contractile Function.

    PubMed

    Asp, Michelle L; Sjaastad, Frances V; Siddiqui, Jalal K; Davis, Jonathan P; Metzger, Joseph M

    2016-05-10

    +) waves. ParvE101D provides mechanistic insight into how changes in the Ca(2+)/Mg(2+) binding affinities of parvalbumin's EF-hand motif alter function of cardiac myocytes. These data are informative in developing new Ca(2+) buffering strategies for the failing heart. PMID:27166817

  1. Conservation defines functional motifs in the squint/nodal-related 1 RNA dorsal localization element

    PubMed Central

    Gilligan, Patrick C.; Kumari, Pooja; Lim, Shimin; Cheong, Albert; Chang, Alex; Sampath, Karuna

    2011-01-01

    RNA localization is emerging as a general principle of sub-cellular protein localization and cellular organization. However, the sequence and structural requirements in many RNA localization elements remain poorly understood. Whereas transcription factor-binding sites in DNA can be recognized as short degenerate motifs, and consensus binding sites readily inferred, protein-binding sites in RNA often contain structural features, and can be difficult to infer. We previously showed that zebrafish squint/nodal-related 1 (sqt/ndr1) RNA localizes to the future dorsal side of the embryo. Interestingly, mammalian nodal RNA can also localize to dorsal when injected into zebrafish embryos, suggesting that the sequence motif(s) may be conserved, even though the fish and mammal UTRs cannot be aligned. To define potential sequence and structural features, we obtained ndr1 3′-UTR sequences from approximately 50 fishes that are closely, or distantly, related to zebrafish, for high-resolution phylogenetic footprinting. We identify conserved sequence and structural motifs within the zebrafish/carp family and catfish. We find that two novel motifs, a single-stranded AGCAC motif and a small stem-loop, are required for efficient sqt RNA localization. These findings show that comparative sequencing in the zebrafish/carp family is an efficient approach for identifying weak consensus binding sites for RNA regulatory proteins. PMID:21149265

  2. Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.).

    PubMed

    Kaur, Simerjeet; Dhugga, Kanwarpal S; Gill, Kulvinder; Singh, Jaswinder

    2016-01-01

    Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production. PMID:26771740

  3. Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.)

    PubMed Central

    Kaur, Simerjeet; Dhugga, Kanwarpal S.; Gill, Kulvinder; Singh, Jaswinder

    2016-01-01

    Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production. PMID:26771740

  4. Theme and variations: evolutionary diversification of the HET-s functional amyloid motif

    PubMed Central

    Daskalov, Asen; Dyrka, Witold; Saupe, Sven J.

    2015-01-01

    In mammals and fungi, Nod-like receptors (NLR) activate downstream cell death execution proteins by a prion-like mechanism. In Podospora anserina, the NWD2 NLR activates the HET-S Helo-domain pore-forming protein by converting its prion-forming domain into a characteristic β-solenoid amyloid fold. The amyloid forming region of HET-S/s comprises two repetitions of a 21 amino acid motif. Herein, we systematically analyze the sequences of C-terminal regions of fungal HeLo and HeLo-like domain proteins to identify HET-s-related amyloid motifs (HRAM). We now identify four novel HRAM subfamilies in addition to the canonical HET-S/s subfamily. These novel motifs share the pseudo-repeat structure of HET-S/s and a specific pattern of distribution of hydrophobic and polar residues. Sequence co-variance analyses predict parallel in-register β-stacking of the two repeats and residue-residue interactions compatible with the β-solenoid fold. As described for HET-S, most genes encoding the HeLo proteins are adjacent to genes encoding NLRs also displaying HRAMs. The motifs of the NLRs are similar to those of their cognate HeLo-domain protein, indicating concerted evolution between repeats. This study shows that HET-s-related amyloid motifs are more common than anticipated and that they have diversified into discrete subfamilies that apparently share a common overall fold. PMID:26219477

  5. Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking.

    PubMed

    Zhong, Xuehua; Tao, Xiaorong; Stombaugh, Jesse; Leontis, Neocles; Ding, Biao

    2007-08-22

    Vascular entry is a decisive step for the initiation of long-distance movement of infectious and endogenous RNAs, silencing signals and developmental/defense signals in plants. However, the mechanisms remain poorly understood. We used Potato spindle tuber viroid (PSTVd) as a model to investigate the direct role of the RNA itself in vascular entry. We report here the identification of an RNA motif that is required for PSTVd to traffic from nonvascular into the vascular tissue phloem to initiate systemic infection. This motif consists of nucleotides U/C that form a water-inserted cis Watson-Crick/Watson-Crick base pair flanked by short helices that comprise canonical Watson-Crick/Watson-Crick base pairs. This tertiary structural model was inferred by comparison with X-ray crystal structures of similar motifs in rRNAs and is supported by combined mutagenesis and covariation analyses. Hydration pattern analysis suggests that water insertion induces a widened minor groove conducive to protein and/or RNA interactions. Our model and approaches have broad implications to investigate the RNA structural motifs in other RNAs for vascular entry and to study the basic principles of RNA structure-function relationships. PMID:17660743

  6. Functions of sorting nexin 17 domains and recognition motif for P-selectin trafficking.

    PubMed

    Knauth, Peter; Schlüter, Thomas; Czubayko, Martin; Kirsch, Cornelia; Florian, Volker; Schreckenberger, Susan; Hahn, Heidi; Bohnensack, Ralf

    2005-04-01

    SNX17 is a member of the sorting nexin family (SNX), a group of hydrophilic proteins whose common characteristic property is a phox homology (PX) domain. The PX domain directs SNXs to phosphatidylinositides containing membranes of the endosomal compartment, where the SNXs are involved in the sorting of transmembrane proteins. SNX17 is known to interact with P-selectin and the LDL receptor family. Here, we report that the PX domain of SNX17 specifically binds to phosphatidylinositol 3-phosphate-containing membranes. The functional part of SNX17 that binds P-selectin or Patched (PTCH) consists of a truncated FERM domain and a unique C terminus together (FC-unit). In a yeast two-hybrid analysis a putative recognition motif for the FC-unit was revealed within P-selectin as FxNaa(F/Y). When HepG2 cells overexpress P-selectin together with SNX17, SNX17 changes its distribution from early endosomes to lysobisphosphatidic acid-containing late endosomes. Furthermore, overexpressed SNX17 restrains P-selectin in the outer membrane of the late endosomal compartment, thus preventing the normal lysosomal accumulation of P-selectin. These results suggest that the PX domain is necessary for the intracellular localisation, while the FC-unit is required for cargo recognition. We hypothesise that the expression level of SNX17 may regulate the lysosomal degradation, at least for P-selectin, by suppressing its entry into the inner vesicles of the multi-vesicular bodies (MVBs). PMID:15769472

  7. CeFunMO: A centrality based method for discovering functional motifs with application in biological networks.

    PubMed

    Kouhsar, Morteza; Razaghi-Moghadam, Zahra; Mousavian, Zaynab; Masoudi-Nejad, Ali

    2016-09-01

    Detecting functional motifs in biological networks is one of the challenging problems in systems biology. Given a multiset of colors as query and a list-colored graph (an undirected graph with a set of colors assigned to each of its vertices), the problem is reduced to finding connected subgraphs, which best cover the multiset of query. To solve this NP-complete problem, we propose a new color-based centrality measure for list-colored graphs. Based on this newly-defined measure of centrality, a novel polynomial time algorithm is developed to discover functional motifs in list-colored graphs, using a greedy strategy. This algorithm, called CeFunMO, has superior running time and acceptable accuracy in comparison with other well-known algorithms, such as RANGI and GraMoFoNe. PMID:27454243

  8. ConBind: motif-aware cross-species alignment for the identification of functional transcription factor binding sites.

    PubMed

    Lelieveld, Stefan H; Schütte, Judith; Dijkstra, Maurits J J; Bawono, Punto; Kinston, Sarah J; Göttgens, Berthold; Heringa, Jaap; Bonzanni, Nicola

    2016-05-01

    Eukaryotic gene expression is regulated by transcription factors (TFs) binding to promoter as well as distal enhancers. TFs recognize short, but specific binding sites (TFBSs) that are located within the promoter and enhancer regions. Functionally relevant TFBSs are often highly conserved during evolution leaving a strong phylogenetic signal. While multiple sequence alignment (MSA) is a potent tool to detect the phylogenetic signal, the current MSA implementations are optimized to align the maximum number of identical nucleotides. This approach might result in the omission of conserved motifs that contain interchangeable nucleotides such as the ETS motif (IUPAC code: GGAW). Here, we introduce ConBind, a novel method to enhance alignment of short motifs, even if their mutual sequence similarity is only partial. ConBind improves the identification of conserved TFBSs by improving the alignment accuracy of TFBS families within orthologous DNA sequences. Functional validation of the Gfi1b + 13 enhancer reveals that ConBind identifies additional functionally important ETS binding sites that were missed by all other tested alignment tools. In addition to the analysis of known regulatory regions, our web tool is useful for the analysis of TFBSs on so far unknown DNA regions identified through ChIP-sequencing. PMID:26721389

  9. ConBind: motif-aware cross-species alignment for the identification of functional transcription factor binding sites

    PubMed Central

    Lelieveld, Stefan H.; Schütte, Judith; Dijkstra, Maurits J.J.; Bawono, Punto; Kinston, Sarah J.; Göttgens, Berthold; Heringa, Jaap; Bonzanni, Nicola

    2016-01-01

    Eukaryotic gene expression is regulated by transcription factors (TFs) binding to promoter as well as distal enhancers. TFs recognize short, but specific binding sites (TFBSs) that are located within the promoter and enhancer regions. Functionally relevant TFBSs are often highly conserved during evolution leaving a strong phylogenetic signal. While multiple sequence alignment (MSA) is a potent tool to detect the phylogenetic signal, the current MSA implementations are optimized to align the maximum number of identical nucleotides. This approach might result in the omission of conserved motifs that contain interchangeable nucleotides such as the ETS motif (IUPAC code: GGAW). Here, we introduce ConBind, a novel method to enhance alignment of short motifs, even if their mutual sequence similarity is only partial. ConBind improves the identification of conserved TFBSs by improving the alignment accuracy of TFBS families within orthologous DNA sequences. Functional validation of the Gfi1b + 13 enhancer reveals that ConBind identifies additional functionally important ETS binding sites that were missed by all other tested alignment tools. In addition to the analysis of known regulatory regions, our web tool is useful for the analysis of TFBSs on so far unknown DNA regions identified through ChIP-sequencing. PMID:26721389

  10. The Nature of the Donor Motif in Acceptor-Bridge-Donor Dyes as an Influence in the Electron Photo-Injection Mechanism in DSSCs.

    PubMed

    Zarate, Ximena; Schott-Verdugo, Stephan; Rodriguez-Serrano, Angela; Schott, Eduardo

    2016-03-10

    The combination and balance of acceptor(A)-bridge-donor(D) architecture of molecules confer suitable attributes and/or properties to act as efficient light-harvesting and sensitizers in dye sensitized solar cells (DSSCs). An important process in a DSSC performance is the electron photoinjection (PI) mechanism which can take place either via type I (indirect), that consists in injecting from the excited state of the dye to the semiconductor, or type II (direct), where the PI is from the ground state of the dye to the semiconductor upon photoexcitation. Here, we present a computational study about the role of the donor motif in the PI mechanisms displayed from a family of 11 A-bridge-D structured dyes to a (TiO2)15 anatase cluster. To this end, different donor motifs (D1-D11) were evaluated while the A and bridge motifs remained the same. All the computations were carried out within the DFT framework, using the B3LYP, PW91, PBE, M06L and CAM-B3LYP functionals. The 6-31G(d) basis set was employed for nonmetallic atoms and the LANL2DZ pseudopotential for Ti atoms. The solvation effects were incorporated using the polarized continuum model (PCM) for acetonitrile. As benchmark systems, alizarin and naphthalenediol dyes were analyzed, as they are known to undergo Type I and Type II PI pathways in DSSCs, respectively. Donors in the studied family of dyes could influence to drive Type I or II PI since it was found that D2 could show some Type II PI route, showing a new absorption band, although with CAM-B3LYP this shows a very low oscillator strength, while the remaining dyes behave according to Type I photoinjectors. Finally, the photovoltaic parameters that govern the light absorption process were evaluated, as the use of these criteria could be applied to predict the efficiency of the studied dyes in DSSCs devices. PMID:26900717

  11. The Eps1p Protein Disulfide Isomerase Conserves Classic Thioredoxin Superfamily Amino Acid Motifs but Not Their Functional Geometries

    PubMed Central

    Biran, Shai; Gat, Yair; Fass, Deborah

    2014-01-01

    The widespread thioredoxin superfamily enzymes typically share the following features: a characteristic α-β fold, the presence of a Cys-X-X-Cys (or Cys-X-X-Ser) redox-active motif, and a proline in the cis configuration abutting the redox-active site in the tertiary structure. The Cys-X-X-Cys motif is at the solvent-exposed amino terminus of an α-helix, allowing the first cysteine to engage in nucleophilic attack on substrates, or substrates to attack the Cys-X-X-Cys disulfide, depending on whether the enzyme functions to reduce, isomerize, or oxidize its targets. We report here the X-ray crystal structure of an enzyme that breaks many of our assumptions regarding the sequence-structure relationship of thioredoxin superfamily proteins. The yeast Protein Disulfide Isomerase family member Eps1p has Cys-X-X-Cys motifs and proline residues at the appropriate primary structural positions in its first two predicted thioredoxin-fold domains. However, crystal structures show that the Cys-X-X-Cys of the second domain is buried and that the adjacent proline is in the trans, rather than the cis isomer. In these configurations, neither the “active-site” disulfide nor the backbone carbonyl preceding the proline is available to interact with substrate. The Eps1p structures thus expand the documented diversity of the PDI oxidoreductase family and demonstrate that conserved sequence motifs in common folds do not guarantee structural or functional conservation. PMID:25437863

  12. Making sense of G-quadruplex and i-motif functions in oncogene promoters

    PubMed Central

    Brooks, Tracy A.; Kendrick, Samantha; Hurley, Laurence

    2010-01-01

    The presence and biological importance of DNA secondary structures in eukaryotic promoters are becoming increasingly recognized among chemists and biologists as bioinformatics, in vitro, and in vivo evidence for these structures in the c-Myc, c-Kit, KRAS, PDGF-A, hTERT, Rb, RET and Hif-1α promoters accumulates. Nevertheless, the evidence remains largely circumstantial. This minireview differs from previous ones in that here we examine the diversity of G-quadruplex and i-motif structures in promoter elements and attempt to categorize the different types of arrangements in which they are found. For the c-Myc G-quadruplex and Bcl-2 i-motif, we summarize recent biological and structural studies. PMID:20670278

  13. Genetic Variation Within a Metabolic Motif in the Chromogranin A Promoter: Pleiotropic Influence on Cardiometabolic Risk Traits in Twins

    PubMed Central

    Rao, Fangwen; Chiron, Stephane; Wei, Zhiyun; Fung, Maple M.; Chen, Yuqing; Wen, Gen; Khandrika, Srikrishna; Ziegler, Michael G.; Benyamin, Beben; Montgomery, Grant; Whitfield, John B.; Martin, Nicholas G.; Waalen, Jill; Hamilton, Bruce A.; Mahata, Sushil K.; O’Connor, Daniel T.

    2013-01-01

    BACKGROUND The cardiometabolic syndrome comprised of multiple correlated traits, but its origin is incompletely understood. Chromogranin A (CHGA) is required for formation of the catecholamine secretory pathway in sympathochromaffin cells. In twin pair studies, we found that CHGA traits aggregated with body mass index (BMI), as well as its biochemical determinant leptin. METHODS Here we used the twin method to probe the role of heredity in generating such risk traits, and then investigated the role of risk-trait-associated CHGA promoter genetic variation in transfected chromaffin cells. Trait heritability (h2) and shared genetic determination among traits (pleiotropy, genetic covariance, ρG) were estimated by variance components in twin pairs. RESULTS CHGA, BMI, and leptin each displayed substantial h2, and the traits also aggregated with several features of the metabolic syndrome (e.g., insulin resistance, blood pressure (BP), hypertension, catecholamines, and C-reactive protein (CRP)). Twin studies demonstrated genetic covariance (pleiotropy, ρG) for CHGA, BMI, and leptin with other metabolic traits (insulin resistance, BP, and CRP). We therefore investigated the CHGA locus for mechanisms of codetermination with such metabolic traits. A common functional variant in the human CHGA promoter (G-462A, rs9658634, minor allele frequency ~21%) was associated with leptin and CRP secretion, as well as BMI, especially in women; marker-on-trait effects on BMI were replicated across twin populations on two continents. In CHGA promoter/luciferase reporter plasmids transfected into chromaffin cells, G-462A alleles differed markedly in reporter expression. The G-462A variant disrupted predicted transcriptional control by a PPARγ/RXRα motif and costimulation by PPARγ/RXRα and their cognate ligands, differentially activated the two alleles. During chromatin immunoprecipitation, endogenous PPARγ bound the motif. CONCLUSIONS Multiple features of the metabolic syndrome are

  14. Genetic analysis of Escherichia coli RadA: functional motifs and genetic interactions.

    PubMed

    Cooper, Deani L; Boyle, Daniel C; Lovett, Susan T

    2015-03-01

    The RadA/Sms protein is a RecA-related protein found universally in eubacteria and plants, implicated in processing of recombination intermediates. Here we show that the putative Zn finger, Walker A motif, KNRXG motif and Lon protease homology domain of the Escherichia coli RadA protein are required for DNA damage survival. RadA is unlikely to possess protease activity as the putative active site serine is not required. Mutants in RadA have strong synergistic phenotypes with those in the branch migration protein RecG. Sensitivity of radA recG mutants to azidothymidine (AZT) can be rescued by blocking recombination with recA or recF mutations or by overexpression of RuvAB, suggesting that lethal recombination intermediates accumulate in the absence of RadA and RecG. Synthetic genetic interactions for survival to AZT or ciprofloxacin exposure were observed between RadA and known or putative helicases including DinG, Lhr, PriA, Rep, RuvAB, UvrD, YejH and YoaA. These represent the first affected phenotypes reported for Lhr, YejH and YoaA. The specificity of these effects sheds new light on the role of these proteins in DNA damage avoidance and repair and implicates a role in replication gap processing for DinG and YoaA and a role in double-strand break repair for YejH. PMID:25484163

  15. Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs

    PubMed Central

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria. PMID:23505460

  16. Genetic analysis of Escherichia coli RadA: functional motifs and genetic interactions

    PubMed Central

    Cooper, Deani L; Boyle, Daniel C; Lovett, Susan T

    2015-01-01

    The RadA/Sms protein is a RecA-related protein found universally in eubacteria and plants, implicated in processing of recombination intermediates. Here we show that the putative Zn finger, Walker A motif, KNRXG motif and Lon protease homology domain of the Escherichia coli RadA protein are required for DNA damage survival. RadA is unlikely to possess protease activity as the putative active site serine is not required. Mutants in RadA have strong synergistic phenotypes with those in the branch migration protein RecG. Sensitivity of radA recG mutants to azidothymidine (AZT) can be rescued by blocking recombination with recA or recF mutations or by overexpression of RuvAB, suggesting that lethal recombination intermediates accumulate in the absence of RadA and RecG. Synthetic genetic interactions for survival to AZT or ciprofloxacin exposure were observed between RadA and known or putative helicases including DinG, Lhr, PriA, Rep, RuvAB, UvrD, YejH and YoaA. These represent the first affected phenotypes reported for Lhr, YejH and YoaA. The specificity of these effects sheds new light on the role of these proteins in DNA damage avoidance and repair and implicates a role in replication gap processing for DinG and YoaA and a role in double-strand break repair for YejH. PMID:25484163

  17. The CR3 motif of Rrp44p is important for interaction with the core exosome and exosome function.

    PubMed

    Schaeffer, Daneen; Reis, Filipa Pereira; Johnson, Sean J; Arraiano, Cecília Maria; van Hoof, Ambro

    2012-10-01

    The 10-subunit RNA exosome is involved in a large number of diverse RNA processing and degradation events in eukaryotes. These reactions are carried out by the single catalytic subunit, Rrp44p/Dis3p, which is composed of three parts that are conserved throughout eukaryotes. The exosome is named for the 3' to 5' exoribonuclease activity provided by a large C-terminal region of the Rrp44p subunit that resembles other exoribonucleases. Rrp44p also contains an endoribonuclease domain. Finally, the very N-terminus of Rrp44p contains three Cys residues (CR3 motif) that are conserved in many eukaryotes but have no known function. These three conserved Cys residues cluster with a previously unrecognized conserved His residue in what resembles a metal-ion-binding site. Genetic and biochemical data show that this CR3 motif affects both endo- and exonuclease activity in vivo and both the nuclear and cytoplasmic exosome, as well as the ability of Rrp44p to associate with the other exosome subunits. These data provide the first direct evidence that the exosome-Rrp44p interaction is functionally important and also provides a molecular explanation for the functional defects when the conserved Cys residues are mutated. PMID:22833611

  18. Role of PDZ Proteins in Regulating Trafficking, Signaling, and Function of GPCRs: Means, Motif, and Opportunity

    PubMed Central

    Romero, Guillermo; von Zastrow, Mark; Friedman, Peter A.

    2016-01-01

    PDZ proteins, named for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1), constitute a family of 200–300 recognized members. These cytoplasmic adapter proteins are capable of assembling a variety of membrane-associated proteins and signaling molecules in short-lived functional units. Here, we review PDZ proteins that participate in the regulation of signaling, trafficking, and function of G protein-coupled receptors. Salient structural features of PDZ proteins that allow them to recognize targeted GPCRs are considered. Scaffolding proteins harboring PDZ domains may contain single or multiple PDZ modules and may also include other protein–protein interaction modules. PDZ proteins may impact receptor signaling by diverse mechanisms that include retaining the receptor at the cell membrane, thereby increasing the duration of ligand binding, as well as importantly influencing GPCR internalization, trafficking, recycling, and intracellular sorting. PDZ proteins are also capable of modifying the assembled complex of accessory proteins such as β-arrestins that themselves regulate GPCR signaling. Additionally, PDZ proteins may modulate GPCR signaling by altering the G protein to which the receptor binds, or affect other regulatory proteins that impact GTPase activity, protein kinase A, phospholipase C, or modify downstream signaling events. Small molecules targeting the PDZ protein-GPCR interaction are being developed and may become important and selective drug candidates. PMID:21907913

  19. An unconventional nuclear localization motif is crucial for function of the Drosophila Wnt/wingless antagonist Naked cuticle.

    PubMed

    Waldrop, Sharon; Chan, Chih-Chiang; Cagatay, Tolga; Zhang, Shu; Rousset, Raphaël; Mack, Judy; Zeng, Wenlin; Fish, Matt; Zhang, Mei; Amanai, Manami; Wharton, Keith A

    2006-09-01

    Wnt/beta-catenin signals orchestrate cell fate and behavior throughout the animal kingdom. Aberrant Wnt signaling impacts nearly the entire spectrum of human disease, including birth defects, cancer, and osteoporosis. If Wnt signaling is to be effectively manipulated for therapeutic advantage, we first must understand how Wnt signals are normally controlled. Naked cuticle (Nkd) is a novel and evolutionarily conserved inducible antagonist of Wnt/beta-catenin signaling that is crucial for segmentation in the model genetic organism, the fruit fly Drosophila melanogaster. Nkd can bind and inhibit the Wnt signal transducer Dishevelled (Dsh), but the mechanism by which Nkd limits Wnt signaling in the fly embryo is not understood. Here we show that nkd mutants exhibit elevated levels of the beta-catenin homolog Armadillo but no alteration in Dsh abundance or distribution. In the fly embryo, Nkd and Dsh are predominantly cytoplasmic, although a recent report suggests that vertebrate Dsh requires nuclear localization for activity in gain-of-function assays. While Dsh-binding regions of Nkd contribute to its activity, we identify a conserved 30-amino-acid motif, separable from Dsh-binding regions, that is essential for Nkd function and nuclear localization. Replacement of the 30-aa motif with a conventional nuclear localization sequence rescued a small fraction of nkd mutant animals to adulthood. Our studies suggest that Nkd targets Dsh-dependent signal transduction steps in both cytoplasmic and nuclear compartments of cells receiving the Wnt signal. PMID:16849595

  20. Targeted Delivery of Anticancer Agents via a Dual Function Nanocarrier with an Interfacial Drug-Interactive Motif

    PubMed Central

    2015-01-01

    We have developed a dual-function drug carrier, polyethylene glycol (PEG)-derivatized farnesylthiosalicylate (FTS). Here we report that incorporation of a drug-interactive motif (Fmoc) into PEG5k–FTS2 led to further improvement in both drug loading capacity and formulation stability. Doxorubicin (DOX) formulated in PEG5k–Fmoc–FTS2 showed sustained release kinetics slower than those of DOX loaded in PEG5k–FTS2. The maximum tolerated dose of DOX- or paclitaxel (PTX)-loaded PEG5k–Fmoc–FTS2 was significantly higher than that of the free drug. Pharmacokinetics and biodistribution studies showed that DOX/PEG5k–Fmoc–FTS2 mixed micelles were able to retain DOX in the bloodstream for a significant amount of time and efficiently deliver the drug to tumor sites. More importantly, drug (DOX or PTX)-loaded PEG5k–Fmoc–FTS2 led to superior antitumor activity over other treatments including drugs formulated in PEG5k–FTS2 in breast cancer and prostate cancer models. Our improved dual function carrier with a built-in drug-interactive motif represents a simple and effective system for targeted delivery of anticancer agents. PMID:25325795

  1. Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif.

    PubMed

    Kimple, Randall J; Willard, Francis S; Hains, Melinda D; Jones, Miller B; Nweke, Gift K; Siderovski, David P

    2004-03-15

    GoLoco ('Galpha(i/o)-Loco' interaction) motif proteins have recently been identified as novel GDIs (guanine nucleotide dissociation inhibitors) for heterotrimeric G-protein alpha subunits. G18 is a member of the mammalian GoLoco-motif gene family and was uncovered by analyses of human and mouse genomes for anonymous open-reading frames. The encoded G18 polypeptide is predicted to contain three 19-amino-acid GoLoco motifs, which have been shown in other proteins to bind Galpha subunits and inhibit spontaneous nucleotide release. However, the G18 protein has thus far not been characterized biochemically. Here, we have cloned and expressed the G18 protein and assessed its ability to act as a GDI. G18 is capable of simultaneously binding more than one Galpha(i1) subunit. In binding assays with the non-hydrolysable GTP analogue guanosine 5'-[gamma-thio]triphosphate, G18 exhibits GDI activity, slowing the exchange of GDP for GTP by Galpha(i1). Only the first and third GoLoco motifs within G18 are capable of interacting with Galpha subunits, and these bind with low micromolar affinity only to Galpha(i1) in the GDP-bound form, and not to Galpha(o), Galpha(q), Galpha(s) or Galpha12. Mutation of Ala-121 to aspartate in the inactive second GoLoco motif of G18, to restore the signature acidic-glutamine-arginine tripeptide that forms critical contacts with Galpha and its bound nucleotide [Kimple, Kimple, Betts, Sondek and Siderovski (2002) Nature (London) 416, 878-881], results in gain-of-function with respect to Galpha binding and GDI activity. PMID:14656218

  2. Clathrin Functions in the Absence of the Terminal Domain Binding Site for Adaptor-associated Clathrin-Box Motifs

    PubMed Central

    Collette, John R.; Chi, Richard J.; Boettner, Douglas R.; Fernandez-Golbano, Isabel M.; Plemel, Rachael; Merz, Alex J.; Geli, Maria Isabel; Traub, Linton M.

    2009-01-01

    Clathrin is involved in vesicle formation in the trans-Golgi network (TGN)/endosomal system and during endocytosis. Clathrin recruitment to membranes is mediated by the clathrin heavy chain (HC) N-terminal domain (TD), which forms a seven-bladed β-propeller. TD binds membrane-associated adaptors, which have short peptide motifs, either the clathrin-box (CBM) and/or the W-box; however, the importance of the TD binding sites for these motifs has not been tested in vivo. We investigated the importance of the TD in clathrin function by generating 1) mutations in the yeast HC gene (CHC1) to disrupt the binding sites for the CBM and W-box (chc1-box), and 2) four TD-specific temperature-sensitive alleles of CHC1. We found that TD is important for the retention of resident TGN enzymes and endocytosis of α-factor; however, the known adaptor binding sites are not necessary, because chc1-box caused little to no effect on trafficking pathways involving clathrin. The Chc1-box TD was able to interact with the endocytic adaptor Ent2 in a CBM-dependent manner, and HCs encoded by chc1-box formed clathrin-coated vesicles. These data suggest that additional or alternative binding sites exist on the TD propeller to help facilitate the recruitment of clathrin to sites of vesicle formation. PMID:19458198

  3. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: Structural and functional studies

    PubMed Central

    Drakou, Christina E.; Malekkou, Anna; Hayes, Joseph M.; Lederer, Carsten W.; Leonidas, Demetres D.; Lamond, Angus I.; Santama, Niovi; Zographos, Spyros E.

    2013-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg2+ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg2+ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells. PMID:22038794

  4. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: structural and functional studies.

    PubMed

    Drakou, Christina E; Malekkou, Anna; Hayes, Joseph M; Lederer, Carsten W; Leonidas, Demetres D; Oikonomakos, Nikos G; Lamond, Angus I; Santama, Niovi; Zographos, Spyros E

    2012-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg(2+) ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg(2+) ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells. PMID:22038794

  5. Effects of chemokine (C–C motif) ligand 1 on microglial function

    SciTech Connect

    Akimoto, Nozomi; Ifuku, Masataka; Mori, Yuki; Noda, Mami

    2013-07-05

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain.

  6. Novel recognition motifs and biological functions of the RNA-binding protein HuD revealed by genome-wide identification of its targets

    PubMed Central

    Bolognani, Federico; Contente-Cuomo, Tania; Perrone-Bizzozero, Nora I.

    2010-01-01

    HuD is a neuronal ELAV-like RNA-binding protein (RBP) involved in nervous system development, regeneration, and learning and memory. This protein stabilizes mRNAs by binding to AU-rich instability elements (AREs) in their 3′ unstranslated regions (3′ UTR). To isolate its in vivo targets, messenger ribonucleoprotein (mRNP) complexes containing HuD were first immunoprecipitated from brain extracts and directly bound mRNAs identified by subsequent GST-HuD pull downs and microarray assays. Using the 3′ UTR sequences of the most enriched targets and the known sequence restrictions of the HuD ARE-binding site, we discovered three novel recognition motifs. Motifs 2 and 3 are U-rich whereas motif 1 is C-rich. In vitro binding assays indicated that HuD binds motif 3 with the highest affinity, followed by motifs 2 and 1, with less affinity. These motifs were found to be over-represented in brain mRNAs that are upregulated in HuD overexpressor mice, supporting the biological function of these sequences. Gene ontology analyses revealed that HuD targets are enriched in signaling pathways involved in neuronal differentiation and that many of these mRNAs encode other RBPs, translation factors and actin-binding proteins. These findings provide further insights into the post-transcriptional mechanisms by which HuD promotes neural development and synaptic plasticity. PMID:19846595

  7. Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues

    PubMed Central

    Chen, Ming-Kun; Hsieh, Wen-Ping; Yang, Chang-Hsien

    2012-01-01

    Two lily (Lilium longiflorum) PISTILLATA (PI) genes, Lily MADS Box Gene 8 and 9 (LMADS8/9), were characterized. LMADS9 lacked 29 C-terminal amino acids including the PI motif that was present in LMADS8. Both LMADS8/9 mRNAs were prevalent in the first and second whorl tepals during all stages of development and were expressed in the stamen only in young flower buds. LMADS8/9 could both form homodimers, but the ability of LMADS8 homodimers to bind to CArG1 was relatively stronger than that of LMADS9 homodimers. 35S:LMADS8 completely, and 35S:LMADS9 only partially, rescued the second whorl petal formation and partially converted the first whorl sepal into a petal-like structure in Arabidopsis pi-1 mutants. Ectopic expression of LMADS8-C (with deletion of the 29 amino acids of the C-terminal sequence) or LMADS8-PI (with only the PI motif deleted) only partially rescued petal formation in pi mutants, which was similar to what was observed in 35S:LMADS9/pi plants. In contrast, 35:LMADS9+L8C (with the addition of the 29 amino acids of the LMADS8 C-terminal sequence) or 35S:LMADS9+L8PI (with the addition of the LMADS8 PI motif) demonstrated an increased ability to rescue petal formation in pi mutants, which was similar to what was observed in 35S:LMADS8/pi plants. Furthermore, ectopic expression of LMADS8-M (with the MADS domain truncated) generated more severe dominant negative phenotypes than those seen in 35S:LMADS9-M flowers. These results revealed that the 29 amino acids including the PI motif in the C-terminal region of the lily PI orthologue are valuable for its function in regulating perianth organ formation. PMID:22068145

  8. Proteome-wide search for functional motifs altered in tumors: Prediction of nuclear export signals inactivated by cancer-related mutations.

    PubMed

    Prieto, Gorka; Fullaondo, Asier; Rodríguez, Jose A

    2016-01-01

    Large-scale sequencing projects are uncovering a growing number of missense mutations in human tumors. Understanding the phenotypic consequences of these alterations represents a formidable challenge. In silico prediction of functionally relevant amino acid motifs disrupted by cancer mutations could provide insight into the potential impact of a mutation, and guide functional tests. We have previously described Wregex, a tool for the identification of potential functional motifs, such as nuclear export signals (NESs), in proteins. Here, we present an improved version that allows motif prediction to be combined with data from large repositories, such as the Catalogue of Somatic Mutations in Cancer (COSMIC), and to be applied to a whole proteome scale. As an example, we have searched the human proteome for candidate NES motifs that could be altered by cancer-related mutations included in the COSMIC database. A subset of the candidate NESs identified was experimentally tested using an in vivo nuclear export assay. A significant proportion of the selected motifs exhibited nuclear export activity, which was abrogated by the COSMIC mutations. In addition, our search identified a cancer mutation that inactivates the NES of the human deubiquitinase USP21, and leads to the aberrant accumulation of this protein in the nucleus. PMID:27174732

  9. Proteome-wide search for functional motifs altered in tumors: Prediction of nuclear export signals inactivated by cancer-related mutations

    PubMed Central

    Prieto, Gorka; Fullaondo, Asier; Rodríguez, Jose A.

    2016-01-01

    Large-scale sequencing projects are uncovering a growing number of missense mutations in human tumors. Understanding the phenotypic consequences of these alterations represents a formidable challenge. In silico prediction of functionally relevant amino acid motifs disrupted by cancer mutations could provide insight into the potential impact of a mutation, and guide functional tests. We have previously described Wregex, a tool for the identification of potential functional motifs, such as nuclear export signals (NESs), in proteins. Here, we present an improved version that allows motif prediction to be combined with data from large repositories, such as the Catalogue of Somatic Mutations in Cancer (COSMIC), and to be applied to a whole proteome scale. As an example, we have searched the human proteome for candidate NES motifs that could be altered by cancer-related mutations included in the COSMIC database. A subset of the candidate NESs identified was experimentally tested using an in vivo nuclear export assay. A significant proportion of the selected motifs exhibited nuclear export activity, which was abrogated by the COSMIC mutations. In addition, our search identified a cancer mutation that inactivates the NES of the human deubiquitinase USP21, and leads to the aberrant accumulation of this protein in the nucleus. PMID:27174732

  10. On the border of the homeotic function: re-evaluating the controversial role of cofactor-recruiting motifs: the role of cofactor-recruiting motifs in conferring Hox evolutionary flexibility may critically depend on the protein environment.

    PubMed

    Merabet, Samir; Hudry, Bruno

    2011-07-01

    In this review we present concepts that challenge a recently emerging paradigm explaining how similar Hox proteins perform different developmental functions across evolution, despite relatively limited sequence variability. This paradigm relates to the transcription factor, Fushi tarazu (Ftz), whose evolutionary plasticity has been shown to rely on the shuffling between two short protein recognition motifs. We discuss the Ftz paradigm and consider alternative interpretations to the evolutionary flexibility of this Hox protein. In particular, we propose that the protein environment might have played a critical role in the functional shuffling of Ftz during arthropod evolution. PMID:21544844

  11. Multiple interactions of PRK1 with RhoA. Functional assignment of the Hr1 repeat motif.

    PubMed

    Flynn, P; Mellor, H; Palmer, R; Panayotou, G; Parker, P J

    1998-01-30

    PRK1 (PKN) is a serine/threonine kinase that has been shown to be activated by RhoA (Amano, M., Mukai, H., Ono, Y., Chihara, K., Matsui, T., Hamajima, Y., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996) Science 271, 648-650). Detailed analysis of the PRK1 region involved in RhoA binding has revealed that two homologous sequences within the HR1 domain (HR1a and HR1b) both bind to RhoA; the third repeat within this domain, HR1cPRK1, does not bind RhoA. The related HR1 motif is also found to confer RhoA binding activity to the only other fully cloned member of this kinase family, PRK2. Furthermore, the predictive value of this motif is established for an HR1a sequence derived from a Caenorhabditis elegans open reading frame encoding a protein kinase of unknown function. Interestingly, the HR1aPRK1 and HR1bPRK1 subdomains are shown to display a distinctive nucleotide dependence for RhoA binding. HRIaPRK1 is entirely GTP-dependent, while HR1bPRK1 binds both GTP- and GDP-bound forms of RhoA. This distinction indicates that there are two sites of contact between RhoA and PRK1, one contact through a region that is conformationally dependent upon the nucleotide-bound state of RhoA and one that is not. Analysis of binding to Rho/Rac chimera provides evidence for a HR1aPRK1 but not HR1bPRK1 interaction in the central third of Rho. Additionally, it is observed that the V14RhoA mutant binds HR1a but does not bind HR1b. This distinct binding behavior corroborates the conclusion that there are independent contacts on RhoA for the HR1aPRK1 and HR1bPRK1 motifs. PMID:9446575

  12. A functional Small Ubiquitin-like Modifier (SUMO) interacting motif (SIM) in the gibberellin hormone receptor GID1 is conserved in cereal crops and disrupting this motif does not abolish hormone dependency of the DELLA-GID1 interaction

    PubMed Central

    Nelis, Stuart; Conti, Lucio; Zhang, Cunjin; Sadanandom, Ari

    2015-01-01

    Plants survive adversity by modulating their growth in response to changing environmental signals. The phytohormone Gibberellic acid (GA) plays a central role in regulating these adaptive responses by stimulating the degradation of growth repressing DELLA proteins which accumulate during stress. The current model for GA signaling describes how this hormone binds to its receptor GID1 so promoting association of GID1 with DELLA, which then undergoes ubiquitin-mediated proteasomal degradation. Recent data revealed that conjugation of DELLAs to the Small Ubiquitin-like Modifier (SUMO) protein enables plants to modulate its abundance during environmental stress. This is achieved by SUMOylated DELLAs sequestering GID1 via its SUMO interacting motif (SIM) allowing non-SUMOylated DELLAs to accumulate leading to growth restraint under stress and potential yield loss. We demonstrate that GID1 proteins across the major cereal crops contain a functional SIM able to bind SUMO1. Site directed mutagenesis and yeast 2 hybrid experiments reveal that it is possible to disrupt the SIM-SUMO interaction motif without affecting the GA dependent DELLA–GID1 interaction and thereby uncoupling SUMO–mediated inhibition from DELLA degradation. Arabidopsis plants overexpressing a SIM mutant allele of GID1 perform better at relieving DELLA restraint than wild–type GID1. This evidence suggests that manipulating the SIM motif in the GA receptor may provide a possible route to developing stress tolerant crops plants. PMID:25761145

  13. Genomic distribution and possible functional roles of putative G-quadruplex motifs in two subspecies of Oryza sativa.

    PubMed

    Wang, Yu; Zhao, Minglang; Zhang, Qingyan; Zhu, Guo-Fei; Li, Fei-Fan; Du, Lin-Fang

    2015-06-01

    G-quadruplex is a stable, four-stranded DNA or RNA structure formed from guanine-rich regions and implicated in telomere maintenance, replication, gene regulation at transcription level or translation level, etc. Based on bioinformatics methods, we analyzed different putative G-quadruplex motifs (PGQMs) patterns in various genomic regions of two subspecies (indica and japonica) of Oryza sativa and the whole genomes of other 8 species. In total, in the 10 species we discussed, the PGQMs densities in monocots were higher than dicots. 40,483 and 31,795 PGQMs were identified with a density of 108.46 and 84.89 PGQMs/Mb, respectively, in japonica and indica genomes, 10,655 and 5420 loci were found to contain at least one PGQM in their gene bodies (with a percentage of 19% and 14%) indicating a wide distribution of G-quadruplex motifs in O. sativa genome. They preferred to locate in transcription start sites proximal regions and 5'-UTR with relative high enrichment. This phenomenon supports the hypothesis that PGQMs are involved in gene transcription and translation. In addition, we analyzed the distribution of different loop length in G-quadruplex and found the density of long loop PGQMs was less than short loop in indica's intron but it was similar in japonica. Meanwhile, we focused on the loci with PGQMs and conducted gene ontology (GO) analysis of them. As a result, many GO terms were identified and significantly correlated with the loci containing at least one PGQM. The GO analysis in the two subspecies of rice may be helpful for elucidating the functional roles of G-quadruplexes. PMID:25935116

  14. The Cys3-His1 Motif of the Respiratory Syncytial Virus M2-1 Protein Is Essential for Protein Function

    PubMed Central

    Hardy, Richard W.; Wertz, Gail W.

    2000-01-01

    The M2 gene of respiratory syncytial (RS) virus has two open reading frames (ORFs). ORF1 encodes a 22-kDa protein termed M2-1. The M2-1 protein contains a Cys3-His1 motif (C-X7-C-X5-C-X3-H) near the amino terminus. This motif is conserved in all human, bovine, and ovine strains of RS virus. A similar motif found in the mammalian transcription factor Nup475 has been shown to bind zinc. The M2-1 protein of human RS virus functions as a transcription factor which increases polymerase processivity, and it enhances readthrough of intergenic junctions during RS virus transcription, thereby acting as a transcription antiterminator. The M2-1 protein also interacts with the nucleocapsid protein. We examined the effects of mutations of cysteine and histidine residues predicted to coordinate zinc in the Cys3-His1 motif on transcription antitermination and N protein binding. We found that mutating the predicted zinc-coordinating residues, the cysteine residues at amino acid positions 7 and 15 and the histidine residue at position 25, prevented M2-1 from enhancing transcriptional readthrough. In contrast, mutations of amino acids within this motif not predicted to coordinate zinc had no effect. Mutations of the predicted zinc-coordinating residues in the Cys3-His1 motif also prevented M2-1 from interacting with the nucleocapsid protein. One mutation of a noncoordinating residue in the motif which did not affect readthrough during transcription, E10G, prevented interaction with the nucleocapsid protein. This suggests that M2-1 does not require interaction with the nucleocapsid protein in order to function during transcription. Analysis of the M2-1 protein in reducing sodium dodecyl sulfate-polyacrylamide gels revealed two major forms distinguished by their mobilities. The slower migrating form was shown to be phosphorylated, whereas the faster migrating form was not. Mutations in the Cys3-His1 motif caused a change in distribution of the M2-1 protein from the slower to the

  15. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA.

    PubMed

    Schmidt, Thomas P; Perna, Anna M; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja

    2016-01-01

    The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions. PMID:26983597

  16. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA

    PubMed Central

    Schmidt, Thomas P.; Perna, Anna M.; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T.; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja

    2016-01-01

    The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions. PMID:26983597

  17. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering

    NASA Astrophysics Data System (ADS)

    Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.

    2012-04-01

    Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the

  18. Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination.

    PubMed

    Kegel, Linde; Jaegle, Martine; Driegen, Siska; Aunin, Eerik; Leslie, Kris; Fukata, Yuko; Watanabe, Masahiko; Fukata, Masaki; Meijer, Dies

    2014-04-01

    The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution. PMID:24715463

  19. Engineering multiple biological functional motifs into a blank collagen-like protein template from Streptococcus pyogenes.

    PubMed

    Peng, Yong Y; Stoichevska, Violet; Schacht, Kristin; Werkmeister, Jerome A; Ramshaw, John A M

    2014-07-01

    Bacterially derived triple-helical, collagen-like proteins are attractive as potential biomedical materials. The collagen-like domain of the Scl2 protein from S. pyogenes lacks any specific binding sites for mammalian cells yet possesses the inherent structural integrity of the collagen triple-helix of animal collagens. It can, therefore, be considered as a structurally-stable "blank slate" into which various defined, biological sequences, derived from animal collagens, can be added by substitutions or insertions, to enable production of novel designed materials to fit specific functional requirements. In the present study, we have used site directed mutagenesis to substitute two functional sequences, one for heparin binding and the other for integrin binding, into different locations in the triple-helical structure. This provided three new constructs, two containing the single substitutions and one containing both substitutions. The stability of these constructs was marginally reduced when compared to the unmodified sequence. When compared to the unmodified bacterial collagen, both the modified collagens that contain the heparin binding site showed marked binding of fluorescently labeled heparin. Similarly, the modified collagens from both constructs containing the integrin binding site showed significant adhesion of L929 cells that are known to possess the appropriate integrin receptor. C2C12 cells that lack any appropriate integrins did not bind. These data show that bacterial collagen-like sequences can be modified to act like natural extracellular matrix collagens by inserting one or more unique biological domains with defined function. PMID:23913780

  20. [Hemoglobin, from microorganisms to man: a single structural motif, multiple functions].

    PubMed

    Wajcman, Henri; Kiger, Laurent

    2002-12-01

    Haemoglobins from unicellular organisms, plants or animals, share a common structure, which results from the folding, around the heme group, of a polypeptide chain made from 6-8 helices. Nowadays, deciphering the genome of several species allows one to draw the evolutionary tree of this protein going back to 1800 millions of years, at a time when oxygen began to accumulate in the atmosphere. This permits to follow the evolution of the ancestral gene and of its product. It is likely that, only in complex multicellular species, transport and storage of oxygen became the main physiological function of this molecule. In addition, in unicellular organisms and small invertebrates, it is likely that the main function of this protein was to protect the organism from the toxic effect of O2, CO and NO*. The very high oxygen affinity of these molecules, leading them to act rather as a scavenger as an oxygen carrier, supports this hypothesis. Haemoglobins from microorganisms, which may probably be the closest vestiges to the ancestral molecules, are divided into three families. The first one is made from flavohaemoglobins, a group of chimerical proteins carrying a globin domain and an oxido-reduction FAD-dependant domain. The second corresponds to truncated haemoglobins, which are hexacoordinated with very high oxygen-affinity molecules, 20-40 residues shorter than classical haemoglobins. The third group is made from bacterial haemoglobins such as that of Vitreoscilla. Some specific structural arrangements in the region surrounding the heme are cause of their high oxygen affinity. In plants, two types of haemoglobins are present (non-symbiotic and symbiotic), that arose from duplication of an ancestral vegetal gene. Non-symbiotic haemoglobins, which are probably the oldest, are scarcely distributed within tissues having high energetic consumption. Conversely, symbiotic haemoglobins (also named leghaemoglobins) are present at a high concentration (mM) mostly in the rhizomes of

  1. Bio-mimicking of Proline-Rich Motif Applied to Carbon Nanotube Reveals Unexpected Subtleties Underlying Nanoparticle Functionalization

    PubMed Central

    Zhang, Yuanzhao; Jimenez-Cruz, Camilo A.; Wang, Jian; Zhou, Bo; Yang, Zaixing; Zhou, Ruhong

    2014-01-01

    Here, we report computational studies of the SH3 protein domain interacting with various single-walled carbon nanotubes (SWCNT) either bare or functionalized by mimicking the proline-rich motif (PRM) ligand (PPPVPPRR) and compare it to the SH3-PRM complex binding. With prolines or a single arginine attached, the SWCNT gained slightly on specificity when compared with the bare control, whereas with multi-arginine systems the specificity dropped dramatically to our surprise. Although the electrostatic interaction provided by arginines is crucial in the recognition between PRM and SH3 domain, our results suggest that attaching multiple arginines to the SWCNT has a detrimental effect on the binding affinity. Detailed analysis of the MD trajectories found two main factors that modulate the specificity of the binding: the existence of competing acidic patches at the surface of SH3 that leads to “trapping and clamping” by the arginines, and the rigidity of the SWCNT introducing entropic penalties in the proper binding. Further investigation revealed that the same “clamping” phenomenon exits in the PRM-SH3 system, which has not been reported in previous literature. The competing effects between nanoparticle and its functionalization components revealed by our model system should be of value to current and future nanomedicine designs. PMID:25427563

  2. Bio-mimicking of proline-rich motif applied to carbon nanotube reveals unexpected subtleties underlying nanoparticle functionalization.

    PubMed

    Zhang, Yuanzhao; Jimenez-Cruz, Camilo A; Wang, Jian; Zhou, Bo; Yang, Zaixing; Zhou, Ruhong

    2014-01-01

    Here, we report computational studies of the SH3 protein domain interacting with various single-walled carbon nanotubes (SWCNT) either bare or functionalized by mimicking the proline-rich motif (PRM) ligand (PPPVPPRR) and compare it to the SH3-PRM complex binding. With prolines or a single arginine attached, the SWCNT gained slightly on specificity when compared with the bare control, whereas with multi-arginine systems the specificity dropped dramatically to our surprise. Although the electrostatic interaction provided by arginines is crucial in the recognition between PRM and SH3 domain, our results suggest that attaching multiple arginines to the SWCNT has a detrimental effect on the binding affinity. Detailed analysis of the MD trajectories found two main factors that modulate the specificity of the binding: the existence of competing acidic patches at the surface of SH3 that leads to "trapping and clamping" by the arginines, and the rigidity of the SWCNT introducing entropic penalties in the proper binding. Further investigation revealed that the same "clamping" phenomenon exits in the PRM-SH3 system, which has not been reported in previous literature. The competing effects between nanoparticle and its functionalization components revealed by our model system should be of value to current and future nanomedicine designs. PMID:25427563

  3. Structures and Encapsulation Motifs of Functional Molecules probed by Laser Spectroscopic and Theoretical methods

    SciTech Connect

    Kusaka, Ryoji; Inokuchi, Yoshiya; Xantheas, Sotiris S.; Ebata, Takayuki

    2010-04-01

    We report laser spectroscopic studies of host/guest hydration interactions between functional molecules (hosts) and water (guest) in supersonic jets. The examined hosts include dibenzo-18-crown-6-ether (DB18C6), benzo-18-crown-6-ether (B18C6) and calix[4]arene (C4A). The gaseous complexes between the functional molecular hosts and water are generated under jet-cooled conditions. Various laser spectroscopic methods are applied for these species: the electronic spectra are observed by laser-induced fluorescence (LIF) , massselected resonance enhanced multiphoton ionization (REMPI) and ultraviolet-ultraviolet holeburning (UV-UV HB) spectroscopy, whereas the vibrational spectra for each individual species are observed by infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. The obained results are analyzed by first principles electronic structure calculations. We discuss the conformations of the host molecules, the various structures of the complexes and the key interactions that result in the complexation as well as the effect of the host conformation in the resulting complexation mechanism.

  4. The conserved helicase motifs of the herpes simplex virus type 1 origin-binding protein UL9 are important for function.

    PubMed Central

    Martinez, R; Shao, L; Weller, S K

    1992-01-01

    The UL9 gene of herpes simplex virus encodes a protein that specifically recognizes sequences within the viral origins of replication and exhibits helicase and DNA-dependent ATPase activities. The specific DNA binding domain of the UL9 protein was localized to the carboxy-terminal one-third of the molecule (H. M. Weir, J. M. Calder, and N. D. Stow, Nucleic Acids Res. 17:1409-1425, 1989). The N-terminal two-thirds of the UL9 gene contains six sequence motifs found in all members of a superfamily of DNA and RNA helicases, suggesting that this region may be important for helicase activity of UL9. In this report, we examined the functional significance of these six motifs for the UL9 protein through the introduction of site-specific mutations resulting in single amino acid substitutions of the most highly conserved residues within each motif. An in vivo complementation test was used to study the effect of each mutation on the function of the UL9 protein in viral DNA replication. In this assay, a mutant UL9 protein expressed from a transfected plasmid is used to complement a replication-deficient null mutant in the UL9 gene for the amplification of herpes simplex virus origin-containing plasmids. Mutations in five of the six conserved motifs inactivated the function of the UL9 protein in viral DNA replication, providing direct evidence for the importance of these conserved motifs. Insertion mutants resulting in the introduction of two alanines at 100-residue intervals in regions outside the conserved motifs were also constructed. Three of the insertion mutations were tolerated, whereas the other five abolished UL9 function. These data indicate that other regions of the protein, in addition to the helicase motifs, are important for function in vivo. Several mutations result in instability of the mutant products, presumably because of conformational changes in the protein. Taken together, these results suggest that UL9 is very sensitive to mutations with respect to both

  5. Laser Spectroscopic and Theoretical Studies of the Structures and Encapsulation Motifs of Functional Molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-02-01

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) "hosts" interacting with N2, acetylene, water, and ammonia "guest" molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes

  6. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  7. On the Concept of Cis-regulatory Information: From Sequence Motifs to Logic Functions

    NASA Astrophysics Data System (ADS)

    Tarpine, Ryan; Istrail, Sorin

    The regulatory genome is about the “system level organization of the core genomic regulatory apparatus, and how this is the locus of causality underlying the twin phenomena of animal development and animal evolution” (E.H. Davidson. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, Academic Press, 2006). Information processing in the regulatory genome is done through regulatory states, defined as sets of transcription factors (sequence-specific DNA binding proteins which determine gene expression) that are expressed and active at the same time. The core information processing machinery consists of modular DNA sequence elements, called cis-modules, that interact with transcription factors. The cis-modules “read” the information contained in the regulatory state of the cell through transcription factor binding, “process” it, and directly or indirectly communicate with the basal transcription apparatus to determine gene expression. This endowment of each gene with the information-receiving capacity through their cis-regulatory modules is essential for the response to every possible regulatory state to which it might be exposed during all phases of the life cycle and in all cell types. We present here a set of challenges addressed by our CYRENE research project aimed at studying the cis-regulatory code of the regulatory genome. The CYRENE Project is devoted to (1) the construction of a database, the cis-Lexicon, containing comprehensive information across species about experimentally validated cis-regulatory modules; and (2) the software development of a next-generation genome browser, the cis-Browser, specialized for the regulatory genome. The presentation is anchored on three main computational challenges: the Gene Naming Problem, the Consensus Sequence Bottleneck Problem, and the Logic Function Inference Problem.

  8. Chemokine (C-X-C Motif) Receptor 4 and Atypical Chemokine Receptor 3 Regulate Vascular α1-Adrenergic Receptor Function

    PubMed Central

    Bach, Harold H; Wong, Yee M; Tripathi, Abhishek; Nevins, Amanda M; Gamelli, Richard L; Volkman, Brian F; Byron, Kenneth L; Majetschak, Matthias

    2014-01-01

    Chemokine (C-X-C motif) receptor (CXCR) 4 and atypical chemokine receptor (ACKR) 3 ligands have been reported to modulate cardiovascular function in various disease models. The underlying mechanisms, however, remain unknown. Thus, it was the aim of the present study to determine how pharmacological modulation of CXCR4 and ACKR3 regulate cardiovascular function. In vivo administration of TC14012, a CXCR4 antagonist and ACKR3 agonist, caused cardiovascular collapse in normal animals. During the cardiovascular stress response to hemorrhagic shock, ubiquitin, a CXCR4 agonist, stabilized blood pressure, whereas coactivation of CXCR4 and ACKR3 with CXC chemokine ligand 12 (CXCL12), or blockade of CXCR4 with AMD3100 showed opposite effects. While CXCR4 and ACKR3 ligands did not affect myocardial function, they selectively altered vascular reactivity upon α1-adrenergic receptor (AR) activation in pressure myography experiments. CXCR4 activation with ubiquitin enhanced α1-AR-mediated vasoconstriction, whereas ACKR3 activation with various natural and synthetic ligands antagonized α1-AR-mediated vasoconstriction. The opposing effects of CXCR4 and ACKR3 activation by CXCL12 could be dissected pharmacologically. CXCR4 and ACKR3 ligands did not affect vasoconstriction upon activation of voltage-operated Ca2+ channels or endothelin receptors. Effects of CXCR4 and ACKR3 agonists on vascular α1-AR responsiveness were independent of the endothelium. These findings suggest that CXCR4 and ACKR3 modulate α1-AR reactivity in vascular smooth muscle and regulate hemodynamics in normal and pathological conditions. Our observations point toward CXCR4 and ACKR3 as new pharmacological targets to control vasoreactivity and blood pressure. PMID:25032954

  9. Functional analysis of the cysteine motifs in the ferredoxin-like protein FdxN of Rhizobium meliloti involved in symbiotic nitrogen fixation.

    PubMed

    Masepohl, B; Kutsche, M; Riedel, K U; Schmehl, M; Klipp, W; Pühler, A

    1992-05-01

    The Rhizobium meliloti fdxN gene, which is part of the nifA-nifB-fdxN operon, is absolutely required for symbiotic nitrogen fixation. The deduced sequence of the FdxN protein is characterized by two cysteine motifs typical of bacterial-type ferredoxins. The Fix-phenotype of an R. meliloti fdxN::[Tc] mutant could be rescued by the R. leguminosarum fdxN gene, whereas no complementation was observed with nif-associated genes encoding ferredoxins from Bradyrhizobium japonicum, Azotobacter vinelandii, A. chroococcum and Rhodobacter capsulatus. In addition to these heterologous genes, several R. meliloti fdxN mutant genes constructed by site-directed mutagenesis were analyzed. Not only a cysteine residue within the second cysteine motif (position 42), which is known to coordinate the Fe-S cluster in homologous proteins, but also a cysteine located down-stream of this motif (position 61), was found to be essential for the activity of the R. meliloti FdxN protein. Changing the amino acid residue proline in position 56 into methionine resulted in a FdxN mutant protein with decreased activity, whereas changes in positions 35 (Asp35Glu) and 45 (Gly45Glu) had no significant effect on the function of the FdxN mutant proteins. In contrast to bacterial-type ferredoxins, which contain two identical cysteine motifs of the form C-X2-C-X2-C-X3-C, nif-associated ferredoxins, including R. meliloti FdxN, are characterized by two different cysteine motifs. Six "additional" amino acids separate the second (Cys42) and the third cysteine (Cys51) in the C-terminal motif (C-X2-C-X8-C-X3-C).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1603075

  10. The Q motif of Fanconi anemia group J protein (FANCJ) DNA helicase regulates its dimerization, DNA binding, and DNA repair function.

    PubMed

    Wu, Yuliang; Sommers, Joshua A; Loiland, Jason A; Kitao, Hiroyuki; Kuper, Jochen; Kisker, Caroline; Brosh, Robert M

    2012-06-22

    The Q motif, conserved in a number of RNA and DNA helicases, is proposed to be important for ATP binding based on structural data, but its precise biochemical functions are less certain. FANCJ encodes a Q motif DEAH box DNA helicase implicated in Fanconi anemia and breast cancer. A Q25A mutation of the invariant glutamine in the Q motif abolished its ability to complement cisplatin or telomestatin sensitivity of a fancj null cell line and exerted a dominant negative effect. Biochemical characterization of the purified recombinant FANCJ-Q25A protein showed that the mutation disabled FANCJ helicase activity and the ability to disrupt protein-DNA interactions. FANCJ-Q25A showed impaired DNA binding and ATPase activity but displayed ATP binding and temperature-induced unfolding transition similar to FANCJ-WT. Size exclusion chromatography and sedimentation velocity analyses revealed that FANCJ-WT existed as molecular weight species corresponding to a monomer and a dimer, and the dimeric form displayed a higher specific activity for ATPase and helicase, as well as greater DNA binding. In contrast, FANCJ-Q25A existed only as a monomer, devoid of helicase activity. Thus, the Q motif is essential for FANCJ enzymatic activity in vitro and DNA repair function in vivo. PMID:22582397

  11. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy. PMID:26202617

  12. A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function.

    PubMed

    Kaur, Gurjot; Pinggera, Alexandra; Ortner, Nadine J; Lieb, Andreas; Sinnegger-Brauns, Martina J; Yarov-Yarovoy, Vladimir; Obermair, Gerald J; Flucher, Bernhard E; Striessnig, Jörg

    2015-08-21

    L-type voltage-gated Ca(2+) channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I-IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca(2+) levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca(2+) channel function. PMID:26100638

  13. A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function*

    PubMed Central

    Kaur, Gurjot; Pinggera, Alexandra; Ortner, Nadine J.; Lieb, Andreas; Sinnegger-Brauns, Martina J.; Yarov-Yarovoy, Vladimir; Obermair, Gerald J.; Flucher, Bernhard E.; Striessnig, Jörg

    2015-01-01

    L-type voltage-gated Ca2+ channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I–IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca2+ levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca2+ channel function. PMID:26100638

  14. Invariant NKT Cell Development Requires a Full Complement of Functional CD3 ζ Immunoreceptor Tyrosine-Based Activation Motifs

    PubMed Central

    Becker, Amy M.; Blevins, Jon S.; Tomson, Farol L.; Eitson, Jennifer L.; Medeiros, Jennifer J.; Yarovinsky, Felix; Norgard, Michael V.; van Oers, Nicolai S. C.

    2010-01-01

    Invariant NKT (iNKT) cells regulate early immune responses to infections, in part because of their rapid release of IFN-γ and IL-4. iNKT cells are proposed to reduce the severity of Lyme disease following Borrelia burgdorferi infection. Unlike conventional T cells, iNKT cells express an invariant αβ TCR that recognizes lipids bound to the MHC class I-like molecule, CD1d. Furthermore, these cells are positively selected following TCR interactions with glycolipid/CD1d complexes expressed on CD4+CD8+ thymocytes. Whereas conventional T cell development can proceed with as few as 4/10 CD3 immunoreceptor tyrosine-based activation motifs (ITAMs), little is known about the ITAM requirements for iNKT cell selection and expansion. We analyzed iNKT cell development in CD3 ζ transgenic lines with various tyrosine-to-phenylalanine substitutions (YF) that eliminated the functions of the first (YF1,2), third (YF5,6), or all three (YF1–6) CD3 ζ ITAMs. iNKT cell numbers were significantly reduced in the thymus, spleen, and liver of all YF mice compared with wild type mice. The reduced numbers of iNKT cells resulted from significant reductions in the expression of the early growth response 2 and promyelocytic leukemia zinc finger transcription factors. In the mice with few to no iNKT cells, there was no difference in the severity of Lyme arthritis compared with wild type controls, following infections with the spirochete B. burgdorferi. These findings indicate that a full complement of functional CD3 ζ ITAMs is required for effective iNKT cell development. The Journal of Immunology, 2010, 184: 6822–6832. PMID:20483726

  15. The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis

    PubMed Central

    Parsons, Michael J.; Brancaccio, Marco; Sethi, Siddharth; Maywood, Elizabeth S.; Satija, Rahul; Edwards, Jessica K.; Jagannath, Aarti; Couch, Yvonne; Finelli, Mattéa J.; Smyllie, Nicola J.; Esapa, Christopher; Butler, Rachel; Barnard, Alun R.; Chesham, Johanna E.; Saito, Shoko; Joynson, Greg; Wells, Sara; Foster, Russell G.; Oliver, Peter L.; Simon, Michelle M.; Mallon, Ann-Marie; Hastings, Michael H.; Nolan, Patrick M.

    2015-01-01

    Summary We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3Sci), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3Sci/+ SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3Sci/+ SCN slices. In conclusion, by cloning Zfhx3Sci, we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms. PMID:26232227

  16. ATP-binding motifs play key roles in Krp1p, kinesin-related protein 1, function for bi-polar growth control in fission yeast

    SciTech Connect

    Rhee, Dong Keun; Cho, Bon A; Kim, Hyong Bai . E-mail: hbkim5212@hotmail.com

    2005-06-03

    Kinesin is a microtubule-based motor protein with various functions related to the cell growth and division. It has been reported that Krp1p, kinesin-related protein 1, which belongs to the kinesin heavy chain superfamily, localizes on microtubules and may play an important role in cytokinesis. However, the function of Krp1p has not been fully elucidated. In this study, we overexpressed an intact form and three different mutant forms of Krp1p in fission yeast constructed by site-directed mutagenesis in two ATP-binding motifs or by truncation of the leucine zipper-like motif (LZiP). We observed hyper-extended microtubules and the aberrant nuclear shape in Krp1p-overexpressed fission yeast. As a functional consequence, a point mutation of ATP-binding domain 1 (G89E) in Krp1p reversed the effect of Krp1p overexpression in fission yeast, whereas the specific mutation in ATP-binding domain 2 (G238E) resulted in the altered cell polarity. Additionally, truncation of the leucine zipper-like domain (LZiP) at the C-terminal of Krp1p showed a normal nuclear division. Taken together, we suggest that krp1p is involved in regulation of cell-polarized growth through ATP-binding motifs in fission yeast.

  17. Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate.

    PubMed

    Huang, Kai-Lieh; Chadee, Amanda B; Chen, Chyi-Ying A; Zhang, Yueqiang; Shyu, Ann-Bin

    2013-03-01

    Cytoplasmic poly(A)-binding protein (PABP) C1 recruits different interacting partners to regulate mRNA fate. The majority of PABP-interacting proteins contain a PAM2 motif to mediate their interactions with PABPC1. However, little is known about the regulation of these interactions or the corresponding functional consequences. Through in silico analysis, we found that PAM2 motifs are generally embedded within an extended intrinsic disorder region (IDR) and are located next to cluster(s) of potential serine (Ser) or threonine (Thr) phosphorylation sites within the IDR. We hypothesized that phosphorylation at these Ser/Thr sites regulates the interactions between PAM2-containing proteins and PABPC1. In the present study, we have tested this hypothesis using complementary approaches to increase or decrease phosphorylation. The results indicate that changing the extent of phosphorylation of three PAM2-containing proteins (Tob2, Pan3, and Tnrc6c) alters their ability to interact with PABPC1. Results from experiments using phospho-blocking or phosphomimetic mutants in PAM2-containing proteins further support our hypothesis. Moreover, the phosphomimetic mutations appreciably affected the functions of these proteins in mRNA turnover and gene silencing. Taken together, these results provide a new framework for understanding the roles of intrinsically disordered proteins in the dynamic and signal-dependent control of cytoplasmic mRNA functions. PMID:23340509

  18. The SAP motif and C-terminal RS- and RD/E-rich region influences the sub-nuclear localization of Acinus isoforms.

    PubMed

    Wang, Fang; Wendling, Karen S; Soprano, Kenneth J; Soprano, Dianne Robert

    2014-12-01

    Acinus has been reported to function in apoptosis, RNA processing and regulation of gene transcription including RA-dependent transcription. There are three different isoforms of Acinus termed Acinus-L, Acinus-S', and Acinus-S. The isoforms of Acinus differ in their N-terminus while the C-terminus is consistent in all isoforms. The sub-nuclear localization of Acinus-L and Acinus-S' was determined using fluorescence microscopy. Acinus-S' colocalizes with SC35 in nuclear speckles while Acinus-L localizes diffusely throughout the nucleoplasm. RA treatment has little effect on the sub-nuclear localization of Acinus-L and Acinus-S'. The domains/regions necessary for the distinct sub-nuclear localization of Acinus-L and Acinus-S' were identified. The speckled sub-nuclear localization of Acinus-S' is dependent on its C-terminal RS- and RD/E-rich region but is independent of the phosphorylation status of Ser-453 and Ser-604 within this region. The unique N-terminal SAP motif of Acinus-L is responsible for its diffuse localization in the nucleus. Moreover, the sub-nuclear localization of Acinus isoforms is affected by each other, which is determined by the combinatorial effect of the more potent SAP motif of Acinus-L and the C-terminal RS- and RD/E-rich region in all Acinus isoforms. The C-terminal RS- and RD/E-rich region of Acinus mediates the colocalization of Acinus isoforms as well as with its interacting protein RNPS1. In conclusion, the SAP motif is responsible for the difference in the nuclear localization between Acinus-L and Acinus-S'. This difference in the nuclear localization of Acinus-S' and Acinus-L may suggest that these two isoforms have different functional roles. PMID:25079509

  19. Cognitive Processes Influencing Marital Functioning.

    ERIC Educational Resources Information Center

    Arias, Ileana

    This paper reviews the literature on the role of mediating cognitive factors in marital functioning and satisfaction. Types and patterns of causal attributions of distressed and nondistressed couples are compared and the effectiveness of various intervention models is discussed. The materials also discuss the role of unfulfilled expectations as a…

  20. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry

    SciTech Connect

    Sagaram, Uma S.; El-Mounadi, Kaoutar; Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghoottama; Smith, Thomas J.; Shah, Dilip

    2013-12-04

    A highly conserved plant defensin MtDef4 potently inhibits the growth of a filamentous fungus Fusarium graminearum. MtDef4 is internalized by cells of F. graminearum. To determine its mechanism of fungal cell entry and antifungal action, NMR solution structure of MtDef4 has been determined. The analysis of its structure has revealed a positively charged patch on the surface of the protein consisting of arginine residues in its γ-core signature, a major determinant of the antifungal activity of MtDef4. Here, we report functional analysis of the RGFRRR motif of the γ-core signature of MtDef4. The replacement of RGFRRR to AAAARR or to RGFRAA not only abolishes fungal cell entry but also results in loss of the antifungal activity of MtDef4. MtDef4 binds strongly to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Mutations of RGFRRR which abolish fungal cell entry of MtDef4 also impair its binding to PA. Our results suggest that RGFRRR motif is a translocation signal for entry of MtDef4 into fungal cells and that this positively charged motif likely mediates interaction of this defensin with PA as part of its antifungal action.

  1. Functional Epitope Core Motif of the Anaplasma marginale Major Surface Protein 1a and Its Incorporation onto Bioelectrodes for Antibody Detection

    PubMed Central

    Rodrigues, Luciano P.; Santos, Fabiana A. A.; Faria, Paula C. B.; Martins, João R. S.; Brito-Madurro, Ana G.; Madurro, João M.; Goulart, Luiz R.

    2012-01-01

    Anaplasmosis, a persistent intraerythrocytic infection of cattle by Anaplasma marginale, causes severe anemia and a higher rate of abortion, resulting in significant loss to both dairy and beef industries. Clinical diagnosis is based on symptoms and confirmatory laboratory tests are required. Currently, all the diagnostic assays have been developed with whole antigens with indirect ELISA based on multiple epitopes. In a pioneer investigation we demonstrated the use of critical motifs of an epitope as biomarkers for immunosensor applications. Mimotopes of the MSP1a protein functional epitope were obtained through Phage Display after three cycles of selection of a 12-mer random peptide library against the neutralizing monoclonal antibody 15D2. Thirty-nine clones were randomly selected, sequenced, translated and aligned with the native sequence. The consensus sequence SxSSQSEASTSSQLGA was obtained, which is located in C-terminal end of the 28-aa repetitive motif of the MSP1a protein, but the alignment and sequences' variation among mimotopes allowed us to map the critical motif STSSxL within the consensus sequence. Based on these results, two peptides were chemically synthesized: one based on the critical motif (STSSQL, Am1) and the other based on the consensus sequence aligned with the native epitope (SEASTSSQLGA, Am2). Sera from 24 infected and 52 healthy animals were tested by ELISA for reactivity against Am1 and Am2, which presented sensitivities of 96% and 100%, respectively. The Am1 peptide was incorporated onto a biolectrode (graphite modified with poly-3-hydroxyphenylacetic acid) and direct serum detection was demonstrated by impedance, differential pulse voltammetry, and atomic force microscopy. The electrochemical sensor system proved to be highly effective in discriminating sera from positive and negative animals. These immunosensors were highly sensitive and selective for positive IgG, contaminants did not affect measurements, and were based on a simple

  2. Bridge and brick motifs in complex networks

    NASA Astrophysics Data System (ADS)

    Huang, Chung-Yuan; Sun, Chuen-Tsai; Cheng, Chia-Ying; Hsieh, Ji-Lung

    2007-04-01

    Acknowledging the expanding role of complex networks in numerous scientific contexts, we examine significant functional and topological differences between bridge and brick motifs for predicting network behaviors and functions. After observing similarities between social networks and their genetic, ecological, and engineering counterparts, we identify a larger number of brick motifs in social networks and bridge motifs in the other three types. We conclude that bridge and brick motif content analysis can assist researchers in understanding the small-world and clustering properties of network structures when investigating network functions and behaviors.

  3. Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator delta f508.

    PubMed

    DeCarvalho, Ana C V; Gansheroff, Lisa J; Teem, John L

    2002-09-27

    The gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an ATP binding cassette (ABC) transporter that functions as a phosphorylation- and nucleotide-regulated chloride channel, is mutated in cystic fibrosis (CF) patients. Deletion of a phenylalanine at amino acid position 508 (DeltaF508) in the first nucleotide binding domain (NBD1) is the most prevalent CF-causing mutation and results in defective protein processing and reduced CFTR function, leading to chloride impermeability in CF epithelia and heterologous systems. Using a STE6/CFTRDeltaF508 chimera system in yeast, we isolated two novel DeltaF508 revertant mutations, I539T and G550E, proximal to and within the conserved ABC signature motif of NBD1, respectively. Western blot and functional analysis in mammalian cells indicate that mutations I539T and G550E each partially rescue the CFTRDeltaF508 defect. Furthermore, a combination of both revertant mutations resulted in a 38-fold increase in CFTRDeltaF508-mediated chloride current, representing 29% of wild type channel activity. The G550E mutation increased the sensitivity of CFTRDeltaF508 and wild type CFTR to activation by cAMP agonists and blocked the enhancement of CFTRDeltaF508 channel activity by 2 mm 3-isobutyl-1-methylxanthine. The data show that the DeltaF508 defect can be significantly rescued by second-site mutations in the nucleotide binding domain 1 region, that includes the LSGGQ consensus motif. PMID:12110684

  4. Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification.

    PubMed

    Amalraj, Amritha; Luang, Sukanya; Kumar, Manoj Yadav; Sornaraj, Pradeep; Eini, Omid; Kovalchuk, Nataliya; Bazanova, Natalia; Li, Yuan; Yang, Nannan; Eliby, Serik; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2016-02-01

    Plants respond to abiotic stresses by changes in gene regulation, including stress-inducible expression of transcriptional activators and repressors. One of the best characterized families of drought-related transcription factors are dehydration-responsive element binding (DREB) proteins, known as C-repeat binding factors (CBF). The wheat DREB/CBF gene TaRAP2.1L was isolated from drought-affected tissues using a dehydration-responsive element (DRE) as bait in a yeast one-hybrid screen. TaRAP2.1L is induced by elevated abscisic acid, drought and cold. A C-terminal ethylene responsive factor-associated amphiphilic repression (EAR) motif, known to be responsible for active repression of target genes, was identified in the TaRAP2.1L protein. It was found that TaRAP2.1L has a unique selectivity of DNA-binding, which differs from that of DREB activators. This binding selectivity remains unchanged in a TaRAP2.1L variant with an inactivated EAR motif (TaRAP2.1Lmut). To study the role of the TaRAP2.1L repressor activity associated with the EAR motif in planta, transgenic wheat overexpressing native or mutated TaRAP2.1L was generated. Overexpression of TaRAP2.1L under constitutive and stress-inducible promoters in transgenic wheat and barley led to dwarfism and decreased frost tolerance. By contrast, constitutive overexpression of the TaRAP2.1Lmut gene had little or no negative influence on wheat development or grain yield. Transgenic lines with the TaRAP2.1Lmut transgene had an enhanced ability to survive frost and drought. The improved stress tolerance is attributed to up-regulation of several stress-related genes known to be downstream genes of DREB/CBF activators. PMID:26150199

  5. Influence Function Learning in Information Diffusion Networks

    PubMed Central

    Du, Nan; Liang, Yingyu; Balcan, Maria-Florina; Song, Le

    2015-01-01

    Can we learn the influence of a set of people in a social network from cascades of information diffusion? This question is often addressed by a two-stage approach: first learn a diffusion model, and then calculate the influence based on the learned model. Thus, the success of this approach relies heavily on the correctness of the diffusion model which is hard to verify for real world data. In this paper, we exploit the insight that the influence functions in many diffusion models are coverage functions, and propose a novel parameterization of such functions using a convex combination of random basis functions. Moreover, we propose an efficient maximum likelihood based algorithm to learn such functions directly from cascade data, and hence bypass the need to specify a particular diffusion model in advance. We provide both theoretical and empirical analysis for our approach, showing that the proposed approach can provably learn the influence function with low sample complexity, be robust to the unknown diffusion models, and significantly outperform existing approaches in both synthetic and real world data. PMID:25973445

  6. Mining Conditional Phosphorylation Motifs.

    PubMed

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  7. DILIMOT: discovery of linear motifs in proteins.

    PubMed

    Neduva, Victor; Russell, Robert B

    2006-07-01

    Discovery of protein functional motifs is critical in modern biology. Small segments of 3-10 residues play critical roles in protein interactions, post-translational modifications and trafficking. DILIMOT (DIscovery of LInear MOTifs) is a server for the prediction of these short linear motifs within a set of proteins. Given a set of sequences sharing a common functional feature (e.g. interaction partner or localization) the method finds statistically over-represented motifs likely to be responsible for it. The input sequences are first passed through a set of filters to remove regions unlikely to contain instances of linear motifs. Motifs are then found in the remaining sequence and ranked according to a statistic that measure over-representation and conservation across homologues in related species. The results are displayed via a visual interface for easy perusal. The server is available at http://dilimot.embl.de. PMID:16845024

  8. The valine and lysine residues in the conserved FxVTxK motif are important for the function of phylogenetically distant plant cellulose synthases.

    PubMed

    Slabaugh, Erin; Scavuzzo-Duggan, Tess; Chaves, Arielle; Wilson, Liza; Wilson, Carmen; Davis, Jonathan K; Cosgrove, Daniel J; Anderson, Charles T; Roberts, Alison W; Haigler, Candace H

    2016-05-01

    Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix. This would place the conserved FxVTxK motif in the plant cell cytosol where it could function as a substrate-gating loop as occurs in BcsA. To define the functional importance of the CESA region containing FxVTxK, we tested five parallel mutations in Arabidopsis thaliana CESA1 and Physcomitrella patens CESA5 in complementation assays of the relevant cesa mutants. In both organisms, the substitution of the valine or lysine residues in FxVTxK severely affected CESA function. In Arabidopsis roots, both changes were correlated with lower cellulose anisotropy, as revealed by Pontamine Fast Scarlet. Analysis of hypocotyl inner cell wall layers by atomic force microscopy showed that two altered versions of Atcesa1 could rescue cell wall phenotypes observed in the mutant background line. Overall, the data show that the FxVTxK motif is functionally important in two phylogenetically distant plant CESAs. The results show that Physcomitrella provides an efficient model for assessing the effects of engineered CESA mutations affecting primary cell wall synthesis and that diverse testing systems can lead to nuanced insights into CESA structure-function relationships. Although CESA membrane topology needs to be experimentally determined, the results support the possibility that the FxVTxK region functions similarly in CESA and BcsA. PMID:26646446

  9. Production Decline Analysis Using Influence Functions

    SciTech Connect

    Zais, Elliot J.

    1980-12-16

    We previously reported (Zais, 1979) that Arps's exponential equation works quite well on geothermal production data. The hyperbolic equation should probably not be used. In this paper we show the progress made i n using influence functions t o describe reservoir production behavior.

  10. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG.

    PubMed

    Douillard, François P; Rasinkangas, Pia; Bhattacharjee, Arnab; Palva, Airi; de Vos, Willem M

    2016-01-01

    Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species. PMID:27070897

  11. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG

    PubMed Central

    Douillard, François P.; Rasinkangas, Pia; Bhattacharjee, Arnab; Palva, Airi; de Vos, Willem M.

    2016-01-01

    Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species. PMID:27070897

  12. The Influence of Palatoplasty on Eating Function.

    PubMed

    Fujikawa, Heishiro; Wakami, Satoki; Motomura, Hisashi

    2016-08-01

    Postoperative dietary control and surgical procedures are important for minimizing complications after a palatoplasty because the palate is always exposed to stresses by various movements associated with eating. Currently, we provide fluid foods (food paste, liquid food, and soft food) to postpalatoplasty patients. However, nutritional inadequacies associated with fluid food necessitate the need to develop a new food specifically for postpalatoplasty patients. Although evaluating the influence of a palatoplasty on eating function is important for the development of a new diet, no data have been published on this topic. Thus, to evaluate the influence of a palatoplasty on eating function, we analyzed postoperative changes in the eating condition of cleft palate patients. We performed a retrospective study. All participants had undergone surgery for a cleft palate at our hospital. Nurses recorded the amount of food that patients consumed as a ratio of the whole meal, and we extracted data on the food type and the amount consumed at each meal from their medical records. After the ratio was expressed as a percentage of the whole meal (eating rate), we calculated the mean value of the percentage of the subject group and examined chronological changes. The eating rate was very low on postoperative day 1, it improved over time and was constant on postoperative day 7. From this result, we concluded that palatoplasty greatly influences the eating function of patients, and the influence lasts for at least a week after surgery. PMID:27622108

  13. The Influence of Palatoplasty on Eating Function

    PubMed Central

    Wakami, Satoki; Motomura, Hisashi

    2016-01-01

    Summary: Postoperative dietary control and surgical procedures are important for minimizing complications after a palatoplasty because the palate is always exposed to stresses by various movements associated with eating. Currently, we provide fluid foods (food paste, liquid food, and soft food) to postpalatoplasty patients. However, nutritional inadequacies associated with fluid food necessitate the need to develop a new food specifically for postpalatoplasty patients. Although evaluating the influence of a palatoplasty on eating function is important for the development of a new diet, no data have been published on this topic. Thus, to evaluate the influence of a palatoplasty on eating function, we analyzed postoperative changes in the eating condition of cleft palate patients. We performed a retrospective study. All participants had undergone surgery for a cleft palate at our hospital. Nurses recorded the amount of food that patients consumed as a ratio of the whole meal, and we extracted data on the food type and the amount consumed at each meal from their medical records. After the ratio was expressed as a percentage of the whole meal (eating rate), we calculated the mean value of the percentage of the subject group and examined chronological changes. The eating rate was very low on postoperative day 1, it improved over time and was constant on postoperative day 7. From this result, we concluded that palatoplasty greatly influences the eating function of patients, and the influence lasts for at least a week after surgery.

  14. Solution structure of gamma-bungarotoxin: the functional significance of amino acid residues flanking the RGD motif in integrin binding.

    PubMed

    Shiu, Jia-Hau; Chen, Chiu-Yueh; Chang, Long-Sen; Chen, Yi-Chun; Chen, Yen-Chin; Lo, Yu-Hui; Liu, Yu-Chen; Chuang, Woei-Jer

    2004-12-01

    Gamma-bungarotoxin, a snake venom protein isolated from Bungarus multicinctus, contains 68 amino acids, including 10 cysteine residues and a TAVRGDGP sequence at positions 30-37. The solution structure of gamma-bungarotoxin has been determined by nuclear magnetic resonance (NMR) spectroscopy. The structure is similar to that of the short-chain neurotoxins that contain three loops extending from a disulfide-bridged core. The tripeptide Arg-Gly-Asp (RGD) sequence is located at the apex of the flexible loop and is similar to that of other RGD-containing proteins. However, gamma-bungarotoxin only inhibits platelet aggregations with an IC50 of 34 microM. To understand its weak activity in inhibiting platelet aggregation, we mutated the RGD loop sequences of rhodostomin, a potent platelet aggregation inhibitor, from RIPRGDMP to TAVRGDGP, resulting in a 196-fold decrease in activity. In addition, the average Calpha-to-Calpha distance between R33 and G36 of gamma-bungarotoxin is 6.02 A, i.e., shorter than that of other RGD-containing proteins that range from 6.55 to 7.46 A. These results suggested that the amino acid residues flanking the RGD motif might control the width of the RGD loop. This structural difference may be responsible for its decrease in platelet aggregation inhibition compared with other RGD-containing proteins. PMID:15390258

  15. Soluble expression, purification and functional characterization of a coil peptide composed of a positively charged and hydrophobic motif.

    PubMed

    Riahi, Nesrine; Cappadocia, Laurent; Henry, Olivier; Omichinski, James; De Crescenzo, Gregory

    2016-02-01

    A de novo heterodimeric coiled-coil system formed by the association of two synthetic peptides, the Ecoil and Kcoil, has been previously designed and proven to be an excellent and versatile tool for various biotechnology applications. However, based on the challenges encountered during its chemical synthesis, the Kcoil peptide has been designated as a "difficult peptide". In this study, we explore the expression of the Kcoil peptide by a bacterial system as well as its subsequent purification. The maximum expression level was observed when the peptide was fused to thioredoxin and the optimized purification process consisted of three chromatographic steps: immobilized-metal affinity chromatography followed by cation-exchange chromatography and, finally, a reverse-phase high-performance liquid chromatography. This entire process led to a final volumetric production yield of 1.5 mg of pure Kcoil peptide per liter of bacterial culture, which represents a significant step towards the cost-effective production and application of coiled-coil motifs. Our results thus demonstrate for the first time that bacterial production is a viable alternative to the chemical synthesis of de novo designed coil peptides. PMID:26459292

  16. Functional Interaction between Angiotensin II Receptor Type 1 and Chemokine (C-C Motif) Receptor 2 with Implications for Chronic Kidney Disease

    PubMed Central

    Kelly, Robyn S.; See, Heng B.; Johnstone, Elizabeth K. M.; McCall, Elizabeth A.; Williams, James H.; Kelly, Darren J.; Pfleger, Kevin D. G.

    2015-01-01

    Understanding functional interactions between G protein-coupled receptors is of great physiological and pathophysiological importance. Heteromerization provides one important potential mechanism for such interaction between different signalling pathways via macromolecular complex formation. Previous studies suggested a functional interplay between angiotensin II receptor type 1 (AT1) and Chemokine (C-C motif) Receptor 2 (CCR2). However the molecular mechanisms are not understood. We investigated AT1-CCR2 functional interaction in vitro using bioluminescence resonance energy transfer in HEK293 cells and in vivo using subtotal-nephrectomized rats as a well-established model for chronic kidney disease. Our data revealed functional heteromers of these receptors resulting in CCR2-Gαi1 coupling being sensitive to AT1 activation, as well as apparent enhanced β-arrestin2 recruitment with agonist co-stimulation that is synergistically reversed by combined antagonist treatment. Moreover, we present in vivo findings where combined treatment with AT1- and CCR2-selective inhibitors was synergistically beneficial in terms of decreasing proteinuria, reducing podocyte loss and preventing renal injury independent of blood pressure in the subtotal-nephrectomized rat model. Our findings further support a role for G protein-coupled receptor functional heteromerization in pathophysiology and provide insights into previous observations indicating the importance of AT1-CCR2 functional interaction in inflammation, renal and hypertensive disorders. PMID:25807547

  17. Mutations in a Highly Conserved Motif of nsp1β Protein Attenuate the Innate Immune Suppression Function of Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Li, Yanhua; Shyu, Duan-Liang; Shang, Pengcheng; Bai, Jianfa; Ouyang, Kang; Dhakal, Santosh; Hiremath, Jagadish; Binjawadagi, Basavaraj

    2016-01-01

    ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1β (nsp1β) is a multifunctional viral protein, which is involved in suppressing the host innate immune response and activating a unique −2/−1 programmed ribosomal frameshifting (PRF) signal for the expression of frameshifting products. In this study, site-directed mutagenesis analysis showed that the R128A or R129A mutation introduced into a highly conserved motif (123GKYLQRRLQ131) reduced the ability of nsp1β to suppress interferon beta (IFN-β) activation and also impaired nsp1β's function as a PRF transactivator. Three recombinant viruses, vR128A, vR129A, and vRR129AA, carrying single or double mutations in the GKYLQRRLQ motif were characterized. In comparison to the wild-type (WT) virus, vR128A and vR129A showed slightly reduced growth abilities, while the vRR129AA mutant had a significantly reduced growth ability in infected cells. Consistent with the attenuated growth phenotype in vitro, pigs infected with nsp1β mutants had lower levels of viremia than did WT virus-infected pigs. Compared to the WT virus in infected cells, all three mutated viruses stimulated high levels of IFN-α expression and exhibited a reduced ability to suppress the mRNA expression of selected interferon-stimulated genes (ISGs). In pigs infected with nsp1β mutants, IFN-α production was increased in the lungs at early time points postinfection, which was correlated with increased innate NK cell function. Furthermore, the augmented innate response was consistent with the increased production of IFN-γ in pigs infected with mutated viruses. These data demonstrate that residues R128 and R129 are critical for nsp1β function and that modifying these key residues in the GKYLQRRLQ motif attenuates virus growth ability and improves the innate and adaptive immune responses in infected animals. IMPORTANCE PRRSV infection induces poor antiviral innate IFN and cytokine responses, which results in

  18. Loss of DNA-binding and new transcriptional trans-activation function in polyomavirus large T-antigen with mutation of zinc finger motif.

    PubMed Central

    Bergqvist, A; Nilsson, M; Bondeson, K; Magnusson, G

    1990-01-01

    A putative zinc finger in polyomavirus large T-antigen was investigated. We were unable to demonstrate unequivocally a requirement for zinc in specific DNA-binding using the chelating agent 1, 10-phenanthroline. An involvement of the putative zinc finger in specific DNA-binding was nevertheless suggested by the properties of a mutant protein with a cys----ser replacement in the finger motif. Probably as a result of the defective DNA-binding, the mutant protein had lost its activity in initiation of viral DNA-replication and in negative regulation of viral early transcription. However, the trans-activation of the viral late promoter was normal. The analysis also revealed a previously unrecognized activity of large T-antigen. The mutant protein trans-activated the viral early promoter. In the wild-type protein this activity is probably concealed by the separate, negative regulatory function. Images PMID:2160069

  19. Oxidorhenium(V) Complexes with Tetradentate Iminophenolate Ligands: Influence of Ligand Flexibility on the Coordination Motif and Oxygen-Atom-Transfer Activity.

    PubMed

    Zwettler, Niklas; Schachner, Jörg A; Belaj, Ferdinand; Mösch-Zanetti, Nadia C

    2016-06-20

    The synthesis of oxidorhenium(V) complexes 1-3 coordinated by tetradentate iminophenolate ligands H2L1-H2L3 bearing backbones of different rigidity (alkyl, cycloalkyl, and phenyl bridges) allows for the formation of distinct geometric isomers, including a symmetric trans-oxidochlorido coordination motif in complex 3. The complex employing a cycloalkyl-bridged ligand (2) of intermediate rigidity exhibits an interesting solvent- and temperature-dependent equilibrium between a symmetric (trans) isomer and an asymmetric (cis) isomer in solution. The occurrence of a symmetric isomer for 2 and 3 is confirmed by single-crystal X-ray diffraction analysis. Chlorido abstraction from 2 with AgOTf yields the corresponding cationic complex 2a, which does not exhibit an isomeric equilibrium in solution but adopts the isomeric form predominant for 2 in a given solvent. All complexes were, furthermore, employed in three benchmark oxygen-atom-transfer (OAT) reactions, namely, the reduction of perchlorate, the epoxidation of cyclooctene, and OAT from dimethyl sulfoxide (DMSO) to triphenylphosphane (PPh3), to assess the influence of the isomeric structure on the reactivity in these reactions. In perchlorate reduction, a clear structural influence was observed, where the trans arrangement in 3 led to the complete absence of activity. In the epoxidation reaction, all complexes led to comparable epoxide yields, albeit higher catalytic activity but lower overall stability of the catalysts with a trans arrangement was observed. In OAT from DMSO to PPh3, also a clear structural dependence was observed, where the trans complex 3 led to full phosphane conversion with an excess of oxidant, while the cis compound 1 was completely inactive. PMID:27251591

  20. The growth-suppressive function of the polycomb group protein polyhomeotic is mediated by polymerization of its sterile alpha motif (SAM) domain.

    PubMed

    Robinson, Angela K; Leal, Belinda Z; Chadwell, Linda V; Wang, Renjing; Ilangovan, Udayar; Kaur, Yogeet; Junco, Sarah E; Schirf, Virgil; Osmulski, Pawel A; Gaczynska, Maria; Hinck, Andrew P; Demeler, Borries; McEwen, Donald G; Kim, Chongwoo A

    2012-03-16

    Polyhomeotic (Ph), a member of the Polycomb Group (PcG), is a gene silencer critical for proper development. We present a previously unrecognized way of controlling Ph function through modulation of its sterile alpha motif (SAM) polymerization leading to the identification of a novel target for tuning the activities of proteins. SAM domain containing proteins have been shown to require SAM polymerization for proper function. However, the role of the Ph SAM polymer in PcG-mediated gene silencing was uncertain. Here, we first show that Ph SAM polymerization is indeed required for its gene silencing function. Interestingly, the unstructured linker sequence N-terminal to Ph SAM can shorten the length of polymers compared with when Ph SAM is individually isolated. Substituting the native linker with a random, unstructured sequence (RLink) can still limit polymerization, but not as well as the native linker. Consequently, the increased polymeric Ph RLink exhibits better gene silencing ability. In the Drosophila wing disc, Ph RLink expression suppresses growth compared with no effect for wild-type Ph, and opposite to the overgrowth phenotype observed for polymer-deficient Ph mutants. These data provide the first demonstration that the inherent activity of a protein containing a polymeric SAM can be enhanced by increasing SAM polymerization. Because the SAM linker had not been previously considered important for the function of SAM-containing proteins, our finding opens numerous opportunities to manipulate linker sequences of hundreds of polymeric SAM proteins to regulate a diverse array of intracellular functions. PMID:22275371

  1. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets

    PubMed Central

    2012-01-01

    Background To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. Results We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. Conclusions SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery

  2. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction.

    PubMed

    Karlsson, Thomas; Altankhuyag, Altanchimeg; Dobrovolska, Olena; Turcu, Diana C; Lewis, Aurélia E

    2016-07-15

    Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1. PMID:27118868

  3. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction

    PubMed Central

    Karlsson, Thomas; Altankhuyag, Altanchimeg; Dobrovolska, Olena; Turcu, Diana C.; Lewis, Aurélia E.

    2016-01-01

    Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1. PMID:27118868

  4. CodingMotif: exact determination of overrepresented nucleotide motifs in coding sequences

    PubMed Central

    2012-01-01

    Background It has been increasingly appreciated that coding sequences harbor regulatory sequence motifs in addition to encoding for protein. These sequence motifs are expected to be overrepresented in nucleotide sequences bound by a common protein or small RNA. However, detecting overrepresented motifs has been difficult because of interference by constraints at the protein level. Sampling-based approaches to solve this problem based on codon-shuffling have been limited to exploring only an infinitesimal fraction of the sequence space and by their use of parametric approximations. Results We present a novel O(N(log N)2)-time algorithm, CodingMotif, to identify nucleotide-level motifs of unusual copy number in protein-coding regions. Using a new dynamic programming algorithm we are able to exhaustively calculate the distribution of the number of occurrences of a motif over all possible coding sequences that encode the same amino acid sequence, given a background model for codon usage and dinucleotide biases. Our method takes advantage of the sparseness of loci where a given motif can occur, greatly speeding up the required convolution calculations. Knowledge of the distribution allows one to assess the exact non-parametric p-value of whether a given motif is over- or under- represented. We demonstrate that our method identifies known functional motifs more accurately than sampling and parametric-based approaches in a variety of coding datasets of various size, including ChIP-seq data for the transcription factors NRSF and GABP. Conclusions CodingMotif provides a theoretically and empirically-demonstrated advance for the detection of motifs overrepresented in coding sequences. We expect CodingMotif to be useful for identifying motifs in functional genomic datasets such as DNA-protein binding, RNA-protein binding, or microRNA-RNA binding within coding regions. A software implementation is available at http://bioinformatics.bc.edu/chuanglab/codingmotif.tar PMID

  5. MEME Suite: tools for motif discovery and searching

    PubMed Central

    Bailey, Timothy L.; Boden, Mikael; Buske, Fabian A.; Frith, Martin; Grant, Charles E.; Clementi, Luca; Ren, Jingyuan; Li, Wilfred W.; Noble, William S.

    2009-01-01

    The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms—MAST, FIMO and GLAM2SCAN—allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm Tomtom. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and Tomtom), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net. PMID:19458158

  6. No tradeoff between versatility and robustness in gene circuit motifs

    NASA Astrophysics Data System (ADS)

    Payne, Joshua L.

    2016-05-01

    Circuit motifs are small directed subgraphs that appear in real-world networks significantly more often than in randomized networks. In the Boolean model of gene circuits, most motifs are realized by multiple circuit genotypes. Each of a motif's constituent circuit genotypes may have one or more functions, which are embodied in the expression patterns the circuit forms in response to specific initial conditions. Recent enumeration of a space of nearly 17 million three-gene circuit genotypes revealed that all circuit motifs have more than one function, with the number of functions per motif ranging from 12 to nearly 30,000. This indicates that some motifs are more functionally versatile than others. However, the individual circuit genotypes that constitute each motif are less robust to mutation if they have many functions, hinting that functionally versatile motifs may be less robust to mutation than motifs with few functions. Here, I explore the relationship between versatility and robustness in circuit motifs, demonstrating that functionally versatile motifs are robust to mutation despite the inherent tradeoff between versatility and robustness at the level of an individual circuit genotype.

  7. Multi-scale modularity and motif distributional effect in metabolic networks.

    PubMed

    Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui

    2016-01-01

    Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks. PMID:26412791

  8. Fast approximate motif statistics.

    PubMed

    Nicodème, P

    2001-01-01

    We present in this article a fast approximate method for computing the statistics of a number of non-self-overlapping matches of motifs in a random text in the nonuniform Bernoulli model. This method is well suited for protein motifs where the probability of self-overlap of motifs is small. For 96% of the PROSITE motifs, the expectations of occurrences of the motifs in a 7-million-amino-acids random database are computed by the approximate method with less than 1% error when compared with the exact method. Processing of the whole PROSITE takes about 30 seconds with the approximate method. We apply this new method to a comparison of the C. elegans and S. cerevisiae proteomes. PMID:11535175

  9. Interaction of the Spo20 Membrane-Sensor Motif with Phosphatidic Acid and Other Anionic Lipids, and Influence of the Membrane Environment

    PubMed Central

    Horchani, Habib; de Saint-Jean, Maud; Barelli, Hélène; Antonny, Bruno

    2014-01-01

    The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5)bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS), suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context. PMID:25426975

  10. Influence of cochlear implantation on vestibular function.

    PubMed

    Chen, Xiulan; Chen, Xiaohua; Zhang, Fan; Qin, Zhaobing

    2016-07-01

    Conclusion Vestibular function in patients can be damaged following cochlear implantation. Therefore, assessing the pre-operative vestibular status, carefully choosing the side of implantation, and preserving function by using minimally invasive surgical techniques are important. Objectives The aim of this study was to assess the influence of cochlear implantation on vestibular function in patients with severe and profound sensorineural hearing loss, and to analyze a possible correlation between the changes in vestibular testing and post-operative vestibular symptoms. Methods Thirty-four patients were evaluated for vestibular function using the cervical and ocular vestibular-evoked myogenic potentials (cVEMP and oVEMP, respectively), and 29 patients underwent caloric tests pre-operatively and 4 weeks post-operatively. Results Before surgery, the cVEMPs were recorded bilaterally in 22 patients, unilaterally in eight patients, and absent bilaterally in four patients. The oVEMPs were recorded bilaterally in 19 patients, unilaterally in six patients, and absent bilaterally in nine patients. After implantation, the cVEMPs were absent in 10 patients and the oVEMPs were absent in seven patients on the implanted side. Caloric tests demonstrated canal paresis in 17 patients, and normal responses were recorded in 12 of the 29 patients pre-operatively. There was a significant decrease post-implantation in the ear implanted, with the exception of two patients. Two patients presented with vertigo and another two patients reported slight unsteadiness post-operatively, but all symptoms resolved within 7 days. The impaired vestibular function did not correlate with vestibular symptoms, age, or gender. Function on the contralateral side remained unaffected. PMID:27008103

  11. All-organic non-PFOS nonionic photoacid generating compounds with functionalized fluoroorganic sulfonate motif for chemically amplified resists

    NASA Astrophysics Data System (ADS)

    Ayothi, Ramakrishnan; Yi, Yi; Ober, Christopher K.; Putna, Steve; Yueh, Wang; Cao, Heidi

    2006-03-01

    Nonionic photoacid generators (PAGs) based on photosensitive fluoroorganic sulfonate esters of imide and nitrobenzyl have been prepared and characterized. These new compounds produce fluoroorganic sulfonic acids that contain very few fluorine atoms (non-PFOS), which make them attractive PAGs for all advanced and emerging lithography. The structural influence of these new PAGs on sensitivity, resolution and line edge roughness (LER) was investigated by using DUV (254 nm) and e-beam lithography with ESCAP and ACRYLIC type positive tone resists. E-beam lithography evaluation indicates that these new fluroorganic sulfonic acids are sensitive and capable of providing image profiles down to 80 nm. The variation observed in sensitivity and LER at e-beam lithography was analyzed in terms of the structures of the photogenerated acids, chromophores and resists.

  12. MotifMiner: A Table Driven Greedy Algorithm for DNA Motif Mining

    NASA Astrophysics Data System (ADS)

    Seeja, K. R.; Alam, M. A.; Jain, S. K.

    DNA motif discovery is a much explored problem in functional genomics. This paper describes a table driven greedy algorithm for discovering regulatory motifs in the promoter sequences of co-expressed genes. The proposed algorithm searches both DNA strands for the common patterns or motifs. The inputs to the algorithm are set of promoter sequences, the motif length and minimum Information Content. The algorithm generates subsequences of given length from the shortest input promoter sequence. It stores these subsequences and their reverse complements in a table. Then it searches the remaining sequences for good matches of these subsequences. The Information Content score is used to measure the goodness of the motifs. The algorithm has been tested with synthetic data and real data. The results are found promising. The algorithm could discover meaningful motifs from the muscle specific regulatory sequences.

  13. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules

    PubMed Central

    Sangith, Nikhil; Srinivasaraghavan, Kannan; Sahu, Indrajit; Desai, Ankita; Medipally, Spandana; Somavarappu, Arun Kumar; Verma, Chandra; Venkatraman, Prasanna

    2014-01-01

    PSMD9 (Proteasome Macropain non-ATPase subunit 9), a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a) proteins with conserved C-termini may share common functions and (b) PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein), S14 (a ribosomal protein), CSH1 (a growth hormone), E12 (a transcription factor) and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM) at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions. PMID:25009770

  14. Functionalization of reactive polymer multilayers with RGD and an antifouling motif: RGD density provides control over human corneal epithelial cell-substrate interactions.

    PubMed

    Tocce, Elizabeth J; Broderick, Adam H; Murphy, Kaitlin C; Liliensiek, Sara J; Murphy, Christopher J; Lynn, David M; Nealey, Paul F

    2012-01-01

    Our study demonstrates that substrates fabricated using a "reactive" layer-by-layer approach promote well-defined cell-substrate interactions of human corneal epithelial cells. Specifically, crosslinked and amine-reactive polymer multilayers were produced by alternating "reactive" deposition of an azlactone-functionalized polymer [poly(2-vinyl-4,4-dimethylazlactone)] (PVDMA) and a primary amine-containing polymer [branched poly(ethylene imine)] (PEI). Advantages of our system include a 5- to 30-fold decrease in deposition time compared to traditional polyelectrolyte films and direct modification of the films with peptides. Our films react with mixtures of an adhesion-promoting peptide containing Arg-Gly-Asp (RGD) and the small molecule D-glucamine, a chemical motif which is nonfouling. Resulting surfaces prevent protein adsorption and promote cell attachment through specific peptide interactions. The specificity of cell attachment via immobilized RGD sequences was verified using both a scrambled RDG peptide control as well as soluble-RGD competitive assays. Films were functionalized with monotonically increasing surface densities of RGD which resulted in both increased cell attachment and the promotion of a tri-phasic proliferative response of a human corneal epithelial cell line (hTCEpi). The ability to treat PEI/PVDMA films with peptides for controlled cell-substrate interactions enables the use of these films in a wide range of biological applications. PMID:21972074

  15. Functionalization of reactive polymer multilayers with RGD and an anti-fouling motif: RGD density provides control over human corneal epithelial cell-substrate interactions

    PubMed Central

    Tocce, Elizabeth J.; Broderick, Adam H.; Murphy, Kaitlin C.; Liliensiek, Sara J.; Murphy, Christopher J.; Lynn, David M.; Nealey, Paul F.

    2011-01-01

    Our study demonstrates that substrates fabricated using a ‘reactive’ layer-by-layer approach promote well-defined cell-substrate interactions of human corneal epithelial cells. Specifically, crosslinked and amine-reactive polymer multilayers were produced by alternating ‘reactive’ deposition of an azlactone-functionalized polymer [poly(2-vinyl-4,4-dimethylazlactone)] and a primary amine-containing polymer [branched poly(ethylene imine)]. Advantages of our system include a 5 to 30-fold decrease in deposition time compared to traditional polyelectrolyte films and direct modification of the films with peptides. Our films react with mixtures of an adhesion-promoting peptide containing Arg-Gly-Asp (RGD) and the small molecule d-glucamine, a chemical motif which is non-fouling. Resulting surfaces prevent protein adsorption and promote cell attachment through specific peptide interactions. The specificity of cell attachment via immobilized RGD sequences was verified using both a scrambled RDG peptide control as well as soluble-RGD competitive assays. Films were functionalized with monotonically increasing surface densities of RGD which resulted in both increased cell attachment and the promotion of a tri-phasic proliferative response of a human corneal epithelial cell line (hTCEpi). The ability to treat PEI/PVDMA films with peptides for controlled cell-substrate interactions enables the use of these films in a wide range of biological applications. PMID:21972074

  16. Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs

    PubMed Central

    Date, Rishabh C.; Bush, Kevin T.; Springer, Stevan A.; Saier, Milton H.; Wu, Wei; Nigam, Sanjay K.

    2015-01-01

    The SLC22 family includes organic anion transporters (OATs), organic cation transporters (OCTs) and organic carnitine and zwitterion transporters (OCTNs). These are often referred to as drug transporters even though they interact with many endogenous metabolites and signaling molecules (Nigam, S.K., Nature Reviews Drug Discovery, 14:29–44, 2015). Phylogenetic analysis of SLC22 supports the view that these transporters may have evolved over 450 million years ago. Many OAT members were found to appear after a major expansion of the SLC22 family in mammals, suggesting a physiological and/or toxicological role during the mammalian radiation. Putative SLC22 orthologs exist in worms, sea urchins, flies, and ciona. At least six groups of SLC22 exist. OATs and OCTs form two Major clades of SLC22, within which (apart from Oat and Oct subclades), there are also clear Oat-like, Octn, and Oct-related subclades, as well as a distantly related group we term “Oat-related” (which may have different functions). Based on available data, it is arguable whether SLC22A18, which is related to bacterial drug-proton antiporters, should be assigned to SLC22. Disease-causing mutations, single nucleotide polymorphisms (SNPs) and other functionally analyzed mutations in OAT1, OAT3, URAT1, OCT1, OCT2, OCTN1, and OCTN2 map to the first extracellular domain, the large central intracellular domain, and transmembrane domains 9 and 10. These regions are highly conserved within subclades, but not between subclades, and may be necessary for SLC22 transporter function and functional diversification. Our results not only link function to evolutionarily conserved motifs but indicate the need for a revised sub-classification of SLC22. PMID:26536134

  17. New Insights into Mechanisms and Functions of Chemokine (C-X-C Motif) Receptor 4 Heteromerization in Vascular Smooth Muscle

    PubMed Central

    Evans, Ann E.; Tripathi, Abhishek; LaPorte, Heather M.; Brueggemann, Lioubov I.; Singh, Abhay Kumar; Albee, Lauren J.; Byron, Kenneth L.; Tarasova, Nadya I.; Volkman, Brian F.; Cho, Thomas Yoonsang; Gaponenko, Vadim; Majetschak, Matthias

    2016-01-01

    Recent evidence suggests that C-X-C chemokine receptor type 4 (CXCR4) heteromerizes with α1A/B-adrenoceptors (AR) and atypical chemokine receptor 3 (ACKR3) and that CXCR4:α1A/B-AR heteromers are important for α1-AR function in vascular smooth muscle cells (VSMC). Structural determinants for CXCR4 heteromerization and functional consequences of CXCR4:α1A/B-AR heteromerization in intact arteries, however, remain unknown. Utilizing proximity ligation assays (PLA) to visualize receptor interactions in VSMC, we show that peptide analogs of transmembrane-domain (TM) 2 and TM4 of CXCR4 selectively reduce PLA signals for CXCR4:α1A-AR and CXCR4:ACKR3 interactions, respectively. While both peptides inhibit CXCL12-induced chemotaxis, only the TM2 peptide inhibits phenylephrine-induced Ca2+-fluxes, contraction of VSMC and reduces efficacy of phenylephrine to constrict isolated arteries. In a Cre-loxP mouse model to delete CXCR4 in VSMC, we observed 60% knockdown of CXCR4. PLA signals for CXCR4:α1A/B-AR and CXCR4:ACKR3 interactions in VSMC, however, remained constant. Our observations point towards TM2/4 of CXCR4 as possible contact sites for heteromerization and suggest that TM-derived peptide analogs permit selective targeting of CXCR4 heteromers. A molecular dynamics simulation of a receptor complex in which the CXCR4 homodimer interacts with α1A-AR via TM2 and with ACKR3 via TM4 is presented. Our findings further imply that CXCR4:α1A-AR heteromers are important for intrinsic α1-AR function in intact arteries and provide initial and unexpected insights into the regulation of CXCR4 heteromerization in VSMC. PMID:27331810

  18. New Insights into Mechanisms and Functions of Chemokine (C-X-C Motif) Receptor 4 Heteromerization in Vascular Smooth Muscle.

    PubMed

    Evans, Ann E; Tripathi, Abhishek; LaPorte, Heather M; Brueggemann, Lioubov I; Singh, Abhay Kumar; Albee, Lauren J; Byron, Kenneth L; Tarasova, Nadya I; Volkman, Brian F; Cho, Thomas Yoonsang; Gaponenko, Vadim; Majetschak, Matthias

    2016-01-01

    Recent evidence suggests that C-X-C chemokine receptor type 4 (CXCR4) heteromerizes with α1A/B-adrenoceptors (AR) and atypical chemokine receptor 3 (ACKR3) and that CXCR4:α1A/B-AR heteromers are important for α₁-AR function in vascular smooth muscle cells (VSMC). Structural determinants for CXCR4 heteromerization and functional consequences of CXCR4:α1A/B-AR heteromerization in intact arteries, however, remain unknown. Utilizing proximity ligation assays (PLA) to visualize receptor interactions in VSMC, we show that peptide analogs of transmembrane-domain (TM) 2 and TM4 of CXCR4 selectively reduce PLA signals for CXCR4:α1A-AR and CXCR4:ACKR3 interactions, respectively. While both peptides inhibit CXCL12-induced chemotaxis, only the TM2 peptide inhibits phenylephrine-induced Ca(2+)-fluxes, contraction of VSMC and reduces efficacy of phenylephrine to constrict isolated arteries. In a Cre-loxP mouse model to delete CXCR4 in VSMC, we observed 60% knockdown of CXCR4. PLA signals for CXCR4:α1A/B-AR and CXCR4:ACKR3 interactions in VSMC, however, remained constant. Our observations point towards TM2/4 of CXCR4 as possible contact sites for heteromerization and suggest that TM-derived peptide analogs permit selective targeting of CXCR4 heteromers. A molecular dynamics simulation of a receptor complex in which the CXCR4 homodimer interacts with α1A-AR via TM2 and with ACKR3 via TM4 is presented. Our findings further imply that CXCR4:α1A-AR heteromers are important for intrinsic α₁-AR function in intact arteries and provide initial and unexpected insights into the regulation of CXCR4 heteromerization in VSMC. PMID:27331810

  19. Data-mining the FlyAtlas online resource to identify core functional motifs across transporting epithelia

    PubMed Central

    2013-01-01

    Background Comparative analysis of tissue-specific transcriptomes is a powerful technique to uncover tissue functions. Our FlyAtlas.org provides authoritative gene expression levels for multiple tissues of Drosophila melanogaster (1). Although the main use of such resources is single gene lookup, there is the potential for powerful meta-analysis to address questions that could not easily be framed otherwise. Here, we illustrate the power of data-mining of FlyAtlas data by comparing epithelial transcriptomes to identify a core set of highly-expressed genes, across the four major epithelial tissues (salivary glands, Malpighian tubules, midgut and hindgut) of both adults and larvae. Method Parallel hypothesis-led and hypothesis-free approaches were adopted to identify core genes that underpin insect epithelial function. In the former, gene lists were created from transport processes identified in the literature, and their expression profiles mapped from the flyatlas.org online dataset. In the latter, gene enrichment lists were prepared for each epithelium, and genes (both transport related and unrelated) consistently enriched in transporting epithelia identified. Results A key set of transport genes, comprising V-ATPases, cation exchangers, aquaporins, potassium and chloride channels, and carbonic anhydrase, was found to be highly enriched across the epithelial tissues, compared with the whole fly. Additionally, a further set of genes that had not been predicted to have epithelial roles, were co-expressed with the core transporters, extending our view of what makes a transporting epithelium work. Further insights were obtained by studying the genes uniquely overexpressed in each epithelium; for example, the salivary gland expresses lipases, the midgut organic solute transporters, the tubules specialize for purine metabolism and the hindgut overexpresses still unknown genes. Conclusion Taken together, these data provide a unique insight into epithelial function in this

  20. Design of a functional calcium channel protein: inferences about an ion channel-forming motif derived from the primary structure of voltage-gated calcium channels.

    PubMed Central

    Grove, A.; Tomich, J. M.; Iwamoto, T.; Montal, M.

    1993-01-01

    To identify sequence-specific motifs associated with the formation of an ionic pore, we systematically evaluated the channel-forming activity of synthetic peptides with sequence of predicted transmembrane segments of the voltage-gated calcium channel. The amino acid sequence of voltage-gated, dihydropyridine (DHP)-sensitive calcium channels suggests the presence in each of four homologous repeats (I-IV) of six segments (S1-S6) predicted to form membrane-spanning, alpha-helical structures. Only peptides representing amphipathic segments S2 or S3 form channels in lipid bilayers. To generate a functional calcium channel based on a four-helix bundle motif, four-helix bundle proteins representing IVS2 (T4CaIVS2) or IVS3 (T4CaIVS3) were synthesized. Both proteins form cation-selective channels, but with distinct characteristics: the single-channel conductance in 50 mM BaCl2 is 3 pS and 10 pS. For T4CaIVS3, the conductance saturates with increasing concentration of divalent cation. The dissociation constants for Ba2+, Ca2+, and Sr2+ are 13.6 mM, 17.7 mM, and 15.0 mM, respectively. The conductance of T4CaIVS2 does not saturate up to 150 mM salt. Whereas T4CaIVS3 is blocked by microM Ca2+ and Cd2+, T4CaIVS2 is not blocked by divalent cations. Only T4CaIVS3 is modulated by enantiomers of the DHP derivative BayK 8644, demonstrating sequence requirement for specific drug action. Thus, only T4CaIVS3 exhibits pore properties characteristic also of authentic calcium channels. The designed functional calcium channel may provide insights into fundamental mechanisms of ionic permeation and drug action, information that may in turn further our understanding of molecular determinants underlying authentic pore structures. PMID:7505682

  1. Oxygen radical-mediated oxidation reactions of an alanine peptide motif - density functional theory and transition state theory study

    PubMed Central

    2012-01-01

    Background Oxygen-base (O-base) oxidation in protein backbone is important in the protein backbone fragmentation due to the attack from reactive oxygen species (ROS). In this study, an alanine peptide was used model system to investigate this O-base oxidation by employing density functional theory (DFT) calculations combining with continuum solvent model. Detailed reaction steps were analyzed along with their reaction rate constants. Results Most of the O-base oxidation reactions for this alanine peptide are exothermic except for the bond-breakage of the Cα-N bond to form hydroperoxy alanine radical. Among the reactions investigated in this study, the activated energy of OH α-H abstraction is the lowest one, while the generation of alkylperoxy peptide radical must overcome the highest energy barrier. The aqueous situation facilitates the oxidation reactions to generate hydroxyl alanine peptide derivatives except for the fragmentations of alkoxyl alanine peptide radical. The Cα-Cβ bond of the alkoxyl alanine peptide radical is more labile than the peptide bond. Conclusion the rate-determining step of oxidation in protein backbone is the generation of hydroperoxy peptide radical via the reaction of alkylperoxy peptide radical with HO2. The stabilities of alkylperoxy peptide radical and complex of alkylperoxy peptide radical with HO2 are crucial in this O-base oxidation reaction. PMID:22524792

  2. Merging the Structural Motifs of Functionalized Amino Acids and α-Aminoamides: Compounds with Significant Anticonvulsant Activities

    PubMed Central

    Salomé, Christophe; Salomé-Grosjean, Elise; Stables, James P.; Kohn, Harold

    2010-01-01

    Functional amino acids (FAAs) and α-aminoamides (AAAs) are two classes of antiepileptic drugs (AEDs) that exhibit pronounced anticonvulsant activities. We combined key structural pharmacophores present in FAAs and AAAs to generate a new series of compounds and document that select compounds exhibit activity superior to either the prototypical FAA (lacosamide) or the prototypical AAA (safinamide) in the maximal electroshock (MES) seizure model in rats. A representative compound, (R)-N-4′-((3″-fluoro)benzyloxy)benzyl 2-acetamido-3-methoxypropionamide ((R)-10), was tested in the MES (mice, ip), MES (rat, po), psychomotor 6 Hz (32 mA) (mice, ip), and hippocampal kindled (rat, ip) seizure tests providing excellent protection with ED50 values of 13, 14, ~10 mg/kg, and 12 mg/kg, respectively. In the rat sciatic nerve ligation model (ip), (R)-10 (12 mg/kg) provided an 11.2-fold attenuation of mechanical allodynia. In the mouse biphasic formalin pain model (ip), (R)-10 (15 mg/kg) reduced pain responses in the acute and the chronic inflammatory phases. PMID:20394379

  3. Loop Sequence Context Influences the Formation and Stability of the i-Motif for DNA Oligomers of Sequence (CCCXXX)4, where X = A and/or T, under Slightly Acidic Conditions.

    PubMed

    McKim, Mikeal; Buxton, Alexander; Johnson, Courtney; Metz, Amanda; Sheardy, Richard D

    2016-08-11

    The structure and stability of DNA is highly dependent upon the sequence context of the bases (A, G, C, and T) and the environment under which the DNA is prepared (e.g., buffer, temperature, pH, ionic strength). Understanding the factors that influence structure and stability of the i-motif conformation can lead to the design of DNA sequences with highly tunable properties. We have been investigating the influence of pH and temperature on the conformations and stabilities for all permutations of the DNA sequence (CCCXXX)4, where X = A and/or T, using spectroscopic approaches. All oligomers undergo transitions from single-stranded structures at pH 7.0 to i-motif conformations at pH 5.0 as evidenced by circular dichroism (CD) studies. These folded structures possess stacked C:CH(+) base pairs joined by loops of 5'-XXX-3'. Although the pH at the midpoint of the transition (pHmp) varies slightly with loop sequence, the linkage between pH and log K for the proton induced transition is highly loop sequence dependent. All oligomers also undergo the thermally induced i-motif to single-strand transition at pH 5.0 as the temperature is increased from 25 to 95 °C. The temperature at the midpoint of this transition (Tm) is also highly dependent on loop sequence context effects. For seven of eight possible permutations, the pH induced, and thermally induced transitions appear to be highly cooperative and two state. Analysis of the CD optical melting profiles via a van't Hoff approach reveals sequence-dependent thermodynamic parameters for the unfolding as well. Together, these data reveal that the i-motif conformation exhibits exquisite sensitivity to loop sequence context with respect to formation and stability. PMID:27438583

  4. Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine-signaling pathway.

    PubMed

    Uehara, Yukiko; Takahashi, Yoshihiro; Berberich, Thomas; Miyazaki, Atsushi; Takahashi, Hideki; Matsui, Kyoko; Ohme-Takagi, Masaru; Saitoh, Hiromasa; Terauchi, Ryohei; Kusano, Tomonobu

    2005-10-01

    We previously proposed that a spermine (Spm)-mediated signal transduction pathway is involved in the hypersensitive response induced by Tobacco mosaic virus (TMV) in tobacco plants. To identify regulatory component(s) of this pathway, we surveyed a tobacco cDNA library and found that the ZFT1 gene, which encodes a Cys2/His2 type zinc-finger protein, is Spm-responsive. ZFT1 was not induced by two other polyamines, putrescine and spermidine, or by salicylic acid (SA), jasmonic acid or ethylene. Furthermore, ZFT1 was upregulated in TMV- inoculated tobacco plants in an N gene-dependent manner. Notably, induction of ZFT1 by Spm and by TMV infection was unimpaired in NahG-transgenic tobacco plants, indicating that cross-talk with an SA signaling pathway is not involved in this response. Within the Spm-signaling pathway, we found that ZFT1 functioned downstream of both mitochondrial dysfunction and mitogen-activated protein kinase activation. The ZFT1 protein has two zinc finger motifs and shows a high degree of similarity to ZPT2-3 in petunia and SCOF1 in soybean. However, unlike the latter two proteins, ZFT1 binds to the EP1S sequence and functions as a transcription repressor. Moreover, interestingly, ZFT1 overexpression rendered tobacco plants more tolerant to TMV. Based on the results presented here, we propose that ZFT1 functions as a transcription repressor in a Spm signaling pathway, thereby accelerating necrotic local region formation in tobacco leaves. PMID:16235109

  5. Function of a unique sequence motif in the long terminal repeat of feline leukemia virus isolated from an unusual set of naturally occurring tumors.

    PubMed

    Athas, G B; Lobelle-Rich, P; Levy, L S

    1995-06-01

    Feline leukemia virus (FeLV) proviruses have been characterized from naturally occurring non-B-cell, non-T-cell tumors occurring in the spleens of infected cats. These proviruses exhibit a unique sequence motif in the long terminal repeat (LTR), namely, a 21-bp tandem triplication beginning 25 bp downstream of the enhancer. The repeated finding of the triplication-containing LTR in non-B-cell, non-T-cell lymphomas of the spleen suggests that the unique LTR is an essential participant in the development of tumors of this particular phenotype. The nucleotide sequence of the triplication-containing LTR most closely resembles that of FeLV subgroup C. Studies performed to measure the ability of the triplication-containing LTR to modulate gene expression indicate that the 21-bp triplication provides transcriptional enhancer function to the LTR that contains it and that it substitutes at least in part for the duplication of the enhancer. The 21-bp triplication confers a bona fide enhancer function upon LTR-directed reporter gene expression; however, the possibility of a spacer function was not eliminated. The studies demonstrate further that the triplication-containing LTR acts preferentially in a cell-type-specific manner, i.e., it is 12-fold more active in K-562 cells than is an LTR lacking the triplication. A recombinant, infectious FeLV bearing the 21-bp triplication in U3 was constructed. Cells infected with the recombinant were shown to accumulate higher levels of viral RNA transcripts and virus particles in culture supernatants than did cells infected with the parental type. The triplication-containing LTR is implicated in the induction of tumors of a particular phenotype, perhaps through transcriptional regulation of the virus and/or adjacent cellular genes, in the appropriate target cell. PMID:7745680

  6. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits and two catalytic centers. Each catalytic center (PP:PYR) is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and amhopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core (PP:PYR)(sub 2) within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GXPhiX(sub 4)(G)PhiXXGQ and GDGX(sub 25-30)NN in the PP-domain, and the EX(sub 4)(G)PhiXXGPhi in the PYR-domain, where Phi corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  7. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina M.; Ciszak, Ewa M.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits, two catalytic centers, common amino acid sequence, and specific contacts to provide a flip-flop, or alternate site, mechanism of action. Each catalytic center [PP:PYR] is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and aminopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core [PP:PYR]* within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GX@&(G)@XXGQ, and GDGX25-30 within the PP- domain, and the E&(G)@XXG@ within the PYR-domain, where Q, corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  8. Distal NF-kB binding motif functions as an enhancer for nontypeable H. influenzae-induced DEFB4 regulation in epithelial cells

    PubMed Central

    Woo, Jeong-Im; Kil, Sung-Hee; Pan, Huiqi; Lee, Yoo Jin; Lim, David J.; Moon, Sung K.

    2014-01-01

    Among the antimicrobial molecules produced by epithelial cells, DEFB4 is inducible in response to proinflammatory signals such as cytokines and bacterial molecules. Nontypeable Haemophilus influenzae (NTHi) is an important human pathogen that exacerbates chronic obstructive pulmonary disease in adult and causes otitis media and sinusitis in children. Previously, we have demonstrated that DEFB4 effectively kills NTHi and is induced by NTHi via TLR2 signaling. The 5′-flanking region of DEFB4 contains several NF-κB binding motifs, but their NTHi-specific activity remains unclear. In this study, we aimed to elucidate molecular mechanism involved in DEFB4 regulation, focusing on the role of the distal NF-κB binding motif of DEFB4 responding to NTHi. Here, we show that the human middle ear epithelial cells up-regulate DEFB4 expression in response to NTHi via NF-κB activation mediated by IκKα/β–IκBα signaling. Deletion of the distal NF-κB binding motif led to a significant reduction in NTHi-induced DEFB4 up-regulation. A heterologous construct containing the distal NF-κB binding motif was found to increase the promoter activity in response to NTHi, indicating a NTHi-responding enhancer activity of the distal NF-κB binding motif. Furthermore, electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that the p65 domain of NF-κB binds to the distal NF-κB binding motif in response to NTHi. Taken together, our results suggest that NTHi-induced binding of p65 NF-κB to the distal NF-κB binding motif of DEFB4 enhances NTHi-induced DEFB4 regulation in epithelial cells. PMID:24368180

  9. Stochastic motif extraction using hidden Markov model

    SciTech Connect

    Fujiwara, Yukiko; Asogawa, Minoru; Konagaya, Akihiko

    1994-12-31

    In this paper, we study the application of an HMM (hidden Markov model) to the problem of representing protein sequences by a stochastic motif. A stochastic protein motif represents the small segments of protein sequences that have a certain function or structure. The stochastic motif, represented by an HMM, has conditional probabilities to deal with the stochastic nature of the motif. This HMM directive reflects the characteristics of the motif, such as a protein periodical structure or grouping. In order to obtain the optimal HMM, we developed the {open_quotes}iterative duplication method{close_quotes} for HMM topology learning. It starts from a small fully-connected network and iterates the network generation and parameter optimization until it achieves sufficient discrimination accuracy. Using this method, we obtained an HMM for a leucine zipper motif. Compared to the accuracy of a symbolic pattern representation with accuracy of 14.8 percent, an HMM achieved 79.3 percent in prediction. Additionally, the method can obtain an HMM for various types of zinc finger motifs, and it might separate the mixed data. We demonstrated that this approach is applicable to the validation of the protein databases; a constructed HMM b as indicated that one protein sequence annotated as {open_quotes}lencine-zipper like sequence{close_quotes} in the database is quite different from other leucine-zipper sequences in terms of likelihood, and we found this discrimination is plausible.

  10. SVM2Motif--Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor.

    PubMed

    Vidovic, Marina M-C; Görnitz, Nico; Müller, Klaus-Robert; Rätsch, Gunnar; Kloft, Marius

    2015-01-01

    Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs) achieve state-of-the-art performances in genomic discrimination tasks, but--due to its black-box character--motifs underlying its decision function are largely unknown. As a remedy, positional oligomer importance matrices (POIMs) allow us to visualize the significance of position-specific subsequences. Although being a major step towards the explanation of trained SVM models, they suffer from the fact that their size grows exponentially in the length of the motif, which renders their manual inspection feasible only for comparably small motif sizes, typically k ≤ 5. In this work, we extend the work on positional oligomer importance matrices, by presenting a new machine-learning methodology, entitled motifPOIM, to extract the truly relevant motifs--regardless of their length and complexity--underlying the predictions of a trained SVM model. Our framework thereby considers the motifs as free parameters in a probabilistic model, a task which can be phrased as a non-convex optimization problem. The exponential dependence of the POIM size on the oligomer length poses a major numerical challenge, which we address by an efficient optimization framework that allows us to find possibly overlapping motifs consisting of up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic data set as well as a real-world human splice site data set. PMID:26690911

  11. Occurrence probability of structured motifs in random sequences.

    PubMed

    Robin, S; Daudin, J-J; Richard, H; Sagot, M-F; Schbath, S

    2002-01-01

    The problem of extracting from a set of nucleic acid sequences motifs which may have biological function is more and more important. In this paper, we are interested in particular motifs that may be implicated in the transcription process. These motifs, called structured motifs, are composed of two ordered parts separated by a variable distance and allowing for substitutions. In order to assess their statistical significance, we propose approximations of the probability of occurrences of such a structured motif in a given sequence. An application of our method to evaluate candidate promoters in E. coli and B. subtilis is presented. Simulations show the goodness of the approximations. PMID:12614545

  12. Efficient exact motif discovery

    PubMed Central

    Marschall, Tobias; Rahmann, Sven

    2009-01-01

    Motivation: The motif discovery problem consists of finding over-represented patterns in a collection of biosequences. It is one of the classical sequence analysis problems, but still has not been satisfactorily solved in an exact and efficient manner. This is partly due to the large number of possibilities of defining the motif search space and the notion of over-representation. Even for well-defined formalizations, the problem is frequently solved in an ad hoc manner with heuristics that do not guarantee to find the best motif. Results: We show how to solve the motif discovery problem (almost) exactly on a practically relevant space of IUPAC generalized string patterns, using the p-value with respect to an i.i.d. model or a Markov model as the measure of over-representation. In particular, (i) we use a highly accurate compound Poisson approximation for the null distribution of the number of motif occurrences. We show how to compute the exact clump size distribution using a recently introduced device called probabilistic arithmetic automaton (PAA). (ii) We define two p-value scores for over-representation, the first one based on the total number of motif occurrences, the second one based on the number of sequences in a collection with at least one occurrence. (iii) We describe an algorithm to discover the optimal pattern with respect to either of the scores. The method exploits monotonicity properties of the compound Poisson approximation and is by orders of magnitude faster than exhaustive enumeration of IUPAC strings (11.8 h compared with an extrapolated runtime of 4.8 years). (iv) We justify the use of the proposed scores for motif discovery by showing our method to outperform other motif discovery algorithms (e.g. MEME, Weeder) on benchmark datasets. We also propose new motifs on Mycobacterium tuberculosis. Availability and Implementation: The method has been implemented in Java. It can be obtained from http://ls11-www

  13. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    PubMed Central

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  14. Cofunctional Subpathways Were Regulated by Transcription Factor with Common Motif, Common Family, or Common Tissue

    PubMed Central

    Su, Fei; Shang, Desi; Xu, Yanjun; Feng, Li; Yang, Haixiu; Liu, Baoquan; Su, Shengyang; Chen, Lina; Li, Xia

    2015-01-01

    Dissecting the characteristics of the transcription factor (TF) regulatory subpathway is helpful for understanding the TF underlying regulatory function in complex biological systems. To gain insight into the influence of TFs on their regulatory subpathways, we constructed a global TF-subpathways network (TSN) to analyze systematically the regulatory effect of common-motif, common-family, or common-tissue TFs on subpathways. We performed cluster analysis to show that the common-motif, common-family, or common-tissue TFs that regulated the same pathway classes tended to cluster together and contribute to the same biological function that led to disease initiation and progression. We analyzed the Jaccard coefficient to show that the functional consistency of subpathways regulated by the TF pairs with common motif, common family, or common tissue was significantly greater than the random TF pairs at the subpathway level, pathway level, and pathway class level. For example, HNF4A (hepatocyte nuclear factor 4, alpha) and NR1I3 (nuclear receptor subfamily 1, group I, member 3) were a pair of TFs with common motif, common family, and common tissue. They were involved in drug metabolism pathways and were liver-specific factors required for physiological transcription. In short, we inferred that the cofunctional subpathways were regulated by common-motif, common-family, or common-tissue TFs. PMID:26688819

  15. Multi-functional ultrathin PdxCu1-x and Pt~PdxCu1-x one-dimensional nanowire motifs for various small molecule oxidation reactions

    DOE PAGESBeta

    Liu, Haiqing; Wong, Stanislaus S.; Adzic, Radoslav R.

    2015-11-18

    Developing novel electrocatalysts for small molecule oxidation processes, including formic acid oxidation (FAOR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR), denoting the key anodic reactions for their respective fuel cell configurations, is a significant and relevant theme of recent efforts in the field. Herein, in this report, we demonstrated a concerted effort to couple and combine the benefits of small size, anisotropic morphology, and tunable chemical composition in order to devise a novel “family” of functional architectures. In particular, we have fabricated not only ultrathin 1-D Pd1–xCux alloys but also Pt-coated Pd1–xCux (i.e., Pt~Pd1–xCux; herein the ~ indicatesmore » an intimate association, but not necessarily actual bond formation, between the inner bimetallic core and the Pt outer shell) core–shell hierarchical nanostructures with readily tunable chemical compositions by utilizing a facile, surfactant-based, wet chemical synthesis coupled with a Cu underpotential deposition technique. Our main finding is that our series of as-prepared nanowires are functionally flexible. More precisely, we demonstrate that various examples within this “family” of structural motifs can be tailored for exceptional activity with all 3 of these important electrocatalytic reactions. In particular, we note that our series of Pd1–xCux nanowires all exhibit enhanced FAOR activities as compared with not only analogous Pd ultrathin nanowires but also commercial Pt and Pd standards, with Pd9Cu representing the “optimal” composition. Moreover, our group of Pt~Pd1–xCux nanowires consistently outperformed not only commercial Pt NPs but also ultrathin Pt nanowires by several fold orders of magnitude for both the MOR and EOR reactions in alkaline media. As a result, the variation of the MOR and EOR performance with the chemical composition of our ultrathin Pt~Pd1–xCux nanowires was also discussed.« less

  16. Detecting seeded motifs in DNA sequences.

    PubMed

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at http://telethon.bio.unipd.it/bioinfo/MOST. PMID:16141193

  17. Detecting seeded motifs in DNA sequences

    PubMed Central

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at . PMID:16141193

  18. Do short, frequent DNA sequence motifs mould the epigenome?

    PubMed

    Quante, Timo; Bird, Adrian

    2016-04-01

    'Epigenome' refers to the panoply of chemical modifications borne by DNA and its associated proteins that locally affect genome function. Epigenomic patterns are thought to be determined by external constraints resulting from development, disease and the environment, but DNA sequence is also a potential influence. We propose that domains of relatively uniform DNA base composition may modulate the epigenome through cell type-specific proteins that recognize short, frequent sequence motifs. Differential recruitment of epigenomic modifiers may adjust gene expression in multigene blocks as an alternative to tuning the activity of each gene separately, thus simplifying gene expression programming. PMID:26837845

  19. The Thiamine-Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2004-01-01

    Thiamin pyrophosphate (TPP), a derivative of vitamin B1, is a cofactor for enzymes performing catalysis in pathways of energy production including the well known decarboxylation of a-keto acid dehydrogenases followed by transketolation. TPP-dependent enzymes constitute a structurally and functionally diverse group exhibiting multimeric subunit organization, multiple domains and two chemically equivalent catalytic centers. Annotation of functional TPP-dependcnt enzymes, therefore, has not been trivial due to low sequence similarity related to this complex organization. Our approach to analysis of structures of known TPP-dependent enzymes reveals for the first time features common to this group, which we have termed the TPP-motif. The TPP-motif consists of specific spatial arrangements of structural elements and their specific contacts to provide for a flip-flop, or alternate site, enzymatic mechanism of action. Analysis of structural elements entrained in the flip-flop action displayed by TPP-dependent enzymes reveals a novel definition of the common amino acid sequences. These sequences allow for annotation of TPP-dependent enzymes, thus advancing functional proteomics. Further details of three-dimensional structures of TPP-dependent enzymes will be discussed.

  20. Synthetic biology with RNA motifs.

    PubMed

    Saito, Hirohide; Inoue, Tan

    2009-02-01

    Structural motifs in naturally occurring RNAs and RNPs can be employed as new molecular parts for synthetic biology to facilitate the development of novel devices and systems that modulate cellular functions. In this review, we focus on the following: (i) experimental evolution techniques of RNA molecules in vitro and (ii) their applications for regulating gene expression systems in vivo. For experimental evolution, new artificial RNA aptamers and RNA enzymes (ribozymes) have been selected in vitro. These functional RNA molecules are likely to be applicable in the reprogramming of existing gene regulatory systems. Furthermore, they may be used for designing hypothetical RNA-based living systems in the so-called RNA world. For the regulation of gene expressions in living cells, the development of new riboswitches allows us to modulate the target gene expression in a tailor-made manner. Moreover, recently RNA-based synthetic genetic circuits have been reported by employing functional RNA molecules, expanding the repertory of synthetic biology with RNA motifs. PMID:18775792

  1. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs*

    PubMed Central

    Smit, Cornelis H.; van Diepen, Angela; Nguyen, D. Linh; Wuhrer, Manfred; Hoffmann, Karl F.; Deelder, André M.; Hokke, Cornelis H.

    2015-01-01

    Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles of glycans and antigenic glycan-motifs during a range of critical stages of the complex schistosome lifecycle. We performed a longitudinal profiling study covering schistosome glycosylation throughout worm- and egg-development using a mass spectrometry-based glycomics approach. Our study revealed that during worm development N-glycans with Galβ1–4(Fucα1–3)GlcNAc (LeX) and core-xylose motifs were rapidly lost after cercariae to schistosomula transformation, whereas GalNAcβ1–4GlcNAc (LDN)-motifs gradually became abundant and predominated in adult worms. LeX-motifs were present on glycolipids up to 2 weeks of schistosomula development, whereas glycolipids with mono- and multifucosylated LDN-motifs remained present up to the adult worm stage. In contrast, expression of complex O-glycans diminished to undetectable levels within days after transformation. During egg development, a rich diversity of N-glycans with fucosylated motifs was expressed, but with α3-core fucose and a high degree of multifucosylated antennae only in mature eggs and miracidia. N-glycan antennae were exclusively LDN-based in miracidia. O-glycans in the mature eggs were also diverse and contained LeX- and multifucosylated LDN, but none of these were associated with miracidia in which we detected only the Galβ1–3(Galβ1–6)GalNAc core glycan. Immature eggs also exhibited short O-glycan core structures only, suggesting that complex fucosylated O-glycans of schistosome eggs are derived primarily from glycoproteins produced by the subshell envelope in the developed egg. Lipid glycans with multifucosylated GlcNAc repeats were present throughout egg development, but with the longer highly

  2. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs.

    PubMed

    Smit, Cornelis H; van Diepen, Angela; Nguyen, D Linh; Wuhrer, Manfred; Hoffmann, Karl F; Deelder, André M; Hokke, Cornelis H

    2015-07-01

    Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles of glycans and antigenic glycan-motifs during a range of critical stages of the complex schistosome lifecycle. We performed a longitudinal profiling study covering schistosome glycosylation throughout worm- and egg-development using a mass spectrometry-based glycomics approach. Our study revealed that during worm development N-glycans with Galβ1-4(Fucα1-3)GlcNAc (LeX) and core-xylose motifs were rapidly lost after cercariae to schistosomula transformation, whereas GalNAcβ1-4GlcNAc (LDN)-motifs gradually became abundant and predominated in adult worms. LeX-motifs were present on glycolipids up to 2 weeks of schistosomula development, whereas glycolipids with mono- and multifucosylated LDN-motifs remained present up to the adult worm stage. In contrast, expression of complex O-glycans diminished to undetectable levels within days after transformation. During egg development, a rich diversity of N-glycans with fucosylated motifs was expressed, but with α3-core fucose and a high degree of multifucosylated antennae only in mature eggs and miracidia. N-glycan antennae were exclusively LDN-based in miracidia. O-glycans in the mature eggs were also diverse and contained LeX- and multifucosylated LDN, but none of these were associated with miracidia in which we detected only the Galβ1-3(Galβ1-6)GalNAc core glycan. Immature eggs also exhibited short O-glycan core structures only, suggesting that complex fucosylated O-glycans of schistosome eggs are derived primarily from glycoproteins produced by the subshell envelope in the developed egg. Lipid glycans with multifucosylated GlcNAc repeats were present throughout egg development, but with the longer highly fucosylated

  3. Ballast: A Ball-based Algorithm for Structural Motifs

    PubMed Central

    He, Lu; Vandin, Fabio; Pandurangan, Gopal

    2013-01-01

    Abstract Structural motifs encapsulate local sequence-structure-function relationships characteristic of related proteins, enabling the prediction of functional characteristics of new proteins, providing molecular-level insights into how those functions are performed, and supporting the development of variants specifically maintaining or perturbing function in concert with other properties. Numerous computational methods have been developed to search through databases of structures for instances of specified motifs. However, it remains an open problem how best to leverage the local geometric and chemical constraints underlying structural motifs in order to develop motif-finding algorithms that are both theoretically and practically efficient. We present a simple, general, efficient approach, called Ballast (ball-based algorithm for structural motifs), to match given structural motifs to given structures. Ballast combines the best properties of previously developed methods, exploiting the composition and local geometry of a structural motif and its possible instances in order to effectively filter candidate matches. We show that on a wide range of motif-matching problems, Ballast efficiently and effectively finds good matches, and we provide theoretical insights into why it works well. By supporting generic measures of compositional and geometric similarity, Ballast provides a powerful substrate for the development of motif-matching algorithms. PMID:23383999

  4. Identification and Characterization of Functionally Critical, Conserved Motifs in the Internal Repeats and N-terminal Domain of Yeast Translation Initiation Factor 4B (yeIF4B)*

    PubMed Central

    Zhou, Fujun; Walker, Sarah E.; Mitchell, Sarah F.; Lorsch, Jon R.; Hinnebusch, Alan G.

    2014-01-01

    eIF4B has been implicated in attachment of the 43 S preinitiation complex (PIC) to mRNAs and scanning to the start codon. We recently determined that the internal seven repeats (of ∼26 amino acids each) of Saccharomyces cerevisiae eIF4B (yeIF4B) compose the region most critically required to enhance mRNA recruitment by 43 S PICs in vitro and stimulate general translation initiation in yeast. Moreover, although the N-terminal domain (NTD) of yeIF4B contributes to these activities, the RNA recognition motif is dispensable. We have now determined that only two of the seven internal repeats are sufficient for wild-type (WT) yeIF4B function in vivo when all other domains are intact. However, three or more repeats are needed in the absence of the NTD or when the functions of eIF4F components are compromised. We corroborated these observations in the reconstituted system by demonstrating that yeIF4B variants with only one or two repeats display substantial activity in promoting mRNA recruitment by the PIC, whereas additional repeats are required at lower levels of eIF4A or when the NTD is missing. These findings indicate functional overlap among the 7-repeats and NTD domains of yeIF4B and eIF4A in mRNA recruitment. Interestingly, only three highly conserved positions in the 26-amino acid repeat are essential for function in vitro and in vivo. Finally, we identified conserved motifs in the NTD and demonstrate functional overlap of two such motifs. These results provide a comprehensive description of the critical sequence elements in yeIF4B that support eIF4F function in mRNA recruitment by the PIC. PMID:24285537

  5. Functional analysis of the N-terminal basic motif of a eukaryotic satellite RNA virus capsid protein in replication and packaging.

    PubMed

    Sivanandam, Venkatesh; Mathews, Deborah; Garmann, Rees; Erdemci-Tandogan, Gonca; Zandi, Roya; Rao, A L N

    2016-01-01

    Efficient replication and assembly of virus particles are integral to the establishment of infection. In addition to the primary role of the capsid protein (CP) in encapsidating the RNA progeny, experimental evidence on positive sense single-stranded RNA viruses suggests that the CP also regulates RNA synthesis. Here, we demonstrate that replication of Satellite tobacco mosaic virus (STMV) is controlled by the cooperative interaction between STMV CP and the helper virus (HV) Tobacco mosaic virus (TMV) replicase. We identified that the STMV CP-HV replicase interaction requires a positively charged residue at the third position (3R) in the N-terminal 13 amino acid (aa) motif. Far-Northwestern blotting showed that STMV CP promotes binding between HV-replicase and STMV RNA. An STMV CP variant having an arginine to alanine substitution at position 3 in the N-terminal 13aa motif abolished replicase-CP binding. The N-terminal 13aa motif of the CP bearing alanine substitutions for positively charged residues located at positions 5, 7, 10 and 11 are defective in packaging full-length STMV, but can package a truncated STMV RNA lacking the 3' terminal 150 nt region. These findings provide insights into the mechanism underlying the regulation of STMV replication and packaging. PMID:27193742

  6. Functional analysis of the N-terminal basic motif of a eukaryotic satellite RNA virus capsid protein in replication and packaging

    PubMed Central

    Sivanandam, Venkatesh; Mathews, Deborah; Garmann, Rees; Erdemci-Tandogan, Gonca; Zandi, Roya; Rao, A. L. N.

    2016-01-01

    Efficient replication and assembly of virus particles are integral to the establishment of infection. In addition to the primary role of the capsid protein (CP) in encapsidating the RNA progeny, experimental evidence on positive sense single-stranded RNA viruses suggests that the CP also regulates RNA synthesis. Here, we demonstrate that replication of Satellite tobacco mosaic virus (STMV) is controlled by the cooperative interaction between STMV CP and the helper virus (HV) Tobacco mosaic virus (TMV) replicase. We identified that the STMV CP-HV replicase interaction requires a positively charged residue at the third position (3R) in the N-terminal 13 amino acid (aa) motif. Far-Northwestern blotting showed that STMV CP promotes binding between HV-replicase and STMV RNA. An STMV CP variant having an arginine to alanine substitution at position 3 in the N-terminal 13aa motif abolished replicase-CP binding. The N-terminal 13aa motif of the CP bearing alanine substitutions for positively charged residues located at positions 5, 7, 10 and 11 are defective in packaging full-length STMV, but can package a truncated STMV RNA lacking the 3′ terminal 150 nt region. These findings provide insights into the mechanism underlying the regulation of STMV replication and packaging. PMID:27193742

  7. Do Geographically Isolated Wetlands Influence Landscape Functions?

    EPA Science Inventory

    Landscape functions such as flow generation, nutrient and sediment retention, and biodiversity support depend on the exchange of solutes, particles, energy, and organisms between elements in hydrological and habitat networks. Wetlands are important network elements, providing hyd...

  8. THERMAL INFLUENCES ON NERVOUS SYSTEM FUNCTION

    EPA Science Inventory

    The effects of cooling and warming on neural function are reviewed. he literature is presented progressively from the subcellular through the cellular level to the neural systems level. emporal measures relevant to membrane activity, action potentials, synaptic transmission and e...

  9. Do geographically isolated wetlands influence landscape functions?

    USGS Publications Warehouse

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie C.; Basu, Nandita; Calhoun, Aram J. K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward S.; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2015-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.

  10. Motif-Role-Fingerprints: The Building-Blocks of Motifs, Clustering-Coefficients and Transitivities in Directed Networks

    PubMed Central

    McDonnell, Mark D.; Yaveroğlu, Ömer Nebil; Schmerl, Brett A.; Iannella, Nicolangelo; Ward, Lawrence M.

    2014-01-01

    Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are ‘structural’ (induced subgraphs) and ‘functional’ (partial subgraphs). Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File. PMID:25486535

  11. Do geographically isolated wetlands influence landscape functions?

    PubMed

    Cohen, Matthew J; Creed, Irena F; Alexander, Laurie; Basu, Nandita B; Calhoun, Aram J K; Craft, Christopher; D'Amico, Ellen; DeKeyser, Edward; Fowler, Laurie; Golden, Heather E; Jawitz, James W; Kalla, Peter; Kirkman, L Katherine; Lane, Charles R; Lang, Megan; Leibowitz, Scott G; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L; Mushet, David M; Raanan-Kiperwas, Hadas; Rains, Mark C; Smith, Lora; Walls, Susan C

    2016-02-23

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs. PMID:26858425

  12. Do geographically isolated wetlands influence landscape functions?

    PubMed Central

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie; Basu, Nandita B.; Calhoun, Aram J. K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2016-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs. PMID:26858425

  13. Identification of Biomarker and Co-Regulatory Motifs in Lung Adenocarcinoma Based on Differential Interactions

    PubMed Central

    Chang, Zhiqiang; Li, Kening; Zhang, Rui; Zhou, Yuanshuai; Qiu, Fujun; Han, Xiaole; Xu, Yan

    2015-01-01

    Changes in intermolecular interactions (differential interactions) may influence the progression of cancer. Specific genes and their regulatory networks may be more closely associated with cancer when taking their transcriptional and post-transcriptional levels and dynamic and static interactions into account simultaneously. In this paper, a differential interaction analysis was performed to detect lung adenocarcinoma-related genes. Furthermore, a miRNA-TF (transcription factor) synergistic regulation network was constructed to identify three kinds of co-regulated motifs, namely, triplet, crosstalk and joint. Not only were the known cancer-related miRNAs and TFs (let-7, miR-15a, miR-17, TP53, ETS1, and so on) were detected in the motifs, but also the miR-15, let-7 and miR-17 families showed a tendency to regulate the triplet, crosstalk and joint motifs, respectively. Moreover, several biological functions (i.e., cell cycle, signaling pathways and hemopoiesis) associated with the three motifs were found to be frequently targeted by the drugs for lung adenocarcinoma. Specifically, the two 4-node motifs (crosstalk and joint) based on co-expression and interaction had a closer relationship to lung adenocarcinoma, and so further research was performed on them. A 10-gene biomarker (UBC, SRC, SP1, MYC, STAT3, JUN, NR3C1, RB1, GRB2 and MAPK1) was selected from the joint motif, and a survival analysis indicated its significant association with survival. Among the ten genes, JUN, NR3C1 and GRB2 are our newly detected candidate lung adenocarcinoma-related genes. The genes, regulators and regulatory motifs detected in this work will provide potential drug targets and new strategies for individual therapy. PMID:26402252

  14. Pressure-dependent formation of i-motif and G-quadruplex DNA structures.

    PubMed

    Takahashi, S; Sugimoto, N

    2015-12-14

    Pressure is an important physical stimulus that can influence the fate of cells by causing structural changes in biomolecules such as DNA. We investigated the effect of high pressure on the folding of duplex, DNA i-motif, and G-quadruplex (G4) structures; the non-canonical structures may be modulators of expression of genes involved in cancer progression. The i-motif structure was stabilized by high pressure, whereas the G4 structure was destabilized. The melting temperature of an intramolecular i-motif formed by 5'-dCGG(CCT)10CGG-3' increased from 38.8 °C at atmospheric pressure to 61.5 °C at 400 MPa. This effect was also observed in the presence of 40 wt% ethylene glycol, a crowding agent. In the presence of 40 wt% ethylene glycol, the G4 structure was less destabilized than in the absence of the crowding agent. P-T stability diagrams of duplex DNA with a telomeric sequence indicated that the duplex is more stable than G4 and i-motif structures under low pressure, but the i-motif dominates the structural composition under high pressure. Under crowding conditions, the P-T diagrams indicated that the duplex does not form under high pressure, and i-motif and G4 structures dominate. Our findings imply that temperature regulates the formation of the duplex structure, whereas pressure triggers the formation of non-canonical DNA structures like i-motif and G4. These results suggest that pressure impacts the function of nucleic acids by stabilizing non-canonical structures; this may be relevant to deep sea organisms and during evolution under prebiotic conditions. PMID:26387909

  15. A Gibbs sampler for motif detection in phylogenetically close sequences

    NASA Astrophysics Data System (ADS)

    Siddharthan, Rahul; van Nimwegen, Erik; Siggia, Eric

    2004-03-01

    Genes are regulated by transcription factors that bind to DNA upstream of genes and recognize short conserved ``motifs'' in a random intergenic ``background''. Motif-finders such as the Gibbs sampler compare the probability of these short sequences being represented by ``weight matrices'' to the probability of their arising from the background ``null model'', and explore this space (analogous to a free-energy landscape). But closely related species may show conservation not because of functional sites but simply because they have not had sufficient time to diverge, so conventional methods will fail. We introduce a new Gibbs sampler algorithm that accounts for common ancestry when searching for motifs, while requiring minimal ``prior'' assumptions on the number and types of motifs, assessing the significance of detected motifs by ``tracking'' clusters that stay together. We apply this scheme to motif detection in sporulation-cycle genes in the yeast S. cerevisiae, using recent sequences of other closely-related Saccharomyces species.

  16. Mining protein sequences for motifs.

    PubMed

    Narasimhan, Giri; Bu, Changsong; Gao, Yuan; Wang, Xuning; Xu, Ning; Mathee, Kalai

    2002-01-01

    We use methods from Data Mining and Knowledge Discovery to design an algorithm for detecting motifs in protein sequences. The algorithm assumes that a motif is constituted by the presence of a "good" combination of residues in appropriate locations of the motif. The algorithm attempts to compile such good combinations into a "pattern dictionary" by processing an aligned training set of protein sequences. The dictionary is subsequently used to detect motifs in new protein sequences. Statistical significance of the detection results are ensured by statistically determining the various parameters of the algorithm. Based on this approach, we have implemented a program called GYM. The Helix-Turn-Helix motif was used as a model system on which to test our program. The program was also extended to detect Homeodomain motifs. The detection results for the two motifs compare favorably with existing programs. In addition, the GYM program provides a lot of useful information about a given protein sequence. PMID:12487759

  17. Global network influences on local functional connectivity

    PubMed Central

    Snyder, Adam C.; Morais, Michael J.; Willis, Cory M.; Smith, Matthew A.

    2015-01-01

    A central neuroscientific pursuit is understanding neuronal interactions that support computations underlying cognition and behavior. Although neurons interact across disparate scales – from cortical columns to whole-brain networks – research has been restricted to one scale at a time. We measured local interactions through multi-neuronal recordings while accessing global networks using scalp EEG in rhesus macaques. We measured spike count correlation, an index of functional connectivity with computational relevance, and EEG oscillations, which have been linked to various cognitive functions. We found a surprising non-monotonic relationship between EEG oscillation amplitude and spike count correlation, contrary to the intuitive expectation of a direct relationship. With a widely-used network model we replicated these findings by incorporating a private signal targeting inhibitory neurons, a common mechanism proposed for gain modulation. Finally, we report that spike count correlation explains nonlinearities in the relationship between EEG oscillations and response time in a spatial selective attention task. PMID:25799040

  18. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  19. Influence of vascular function and pulsatile hemodynamics on cardiac function.

    PubMed

    Bell, Vanessa; Mitchell, Gary F

    2015-09-01

    Interactions between cardiac and vascular structure and function normally are optimized to ensure delivery of cardiac output with modest pulsatile hemodynamic overhead. Aortic stiffening with age or disease impairs optimal ventricular-vascular coupling, increases pulsatile load, and contributes to left ventricular (LV) hypertrophy, reduced systolic function, and impaired diastolic relaxation. Aortic pulse pressure and timing of peak systolic pressure are well-known measures of hemodynamic ventricular-vascular interaction. Recent work has elucidated the importance of direct, mechanical coupling between the aorta and the heart. LV systolic contraction results in displacement of aortic and mitral annuli, thereby producing longitudinal stretch in the ascending aorta and left atrium, respectively. Force associated with longitudinal stretch increases systolic load on the LV. However, the resulting energy stored in the elastic elements of the proximal aorta during systole facilitates early diastolic LV recoil and rapid filling. This review discusses current views on hemodynamics and mechanics of ventricular-vascular coupling. PMID:26164466

  20. Species identity influences belowground arthropod assemblages via functional traits

    PubMed Central

    Gorman, Courtney E.; Read, Quentin D.; Van Nuland, Michael E.; Bryant, Jessica A. M.; Welch, Jessica N.; Altobelli, Joseph T.; Douglas, Morgan J.; Genung, Mark A.; Haag, Elliot N.; Jones, Devin N.; Long, Hannah E.; Wilburn, Adam D.; Schweitzer, Jennifer A.; Bailey, Joseph K.

    2013-01-01

    Plant species influence belowground communities in a variety of ways, ultimately impacting nutrient cycling. Functional plant traits provide a means whereby species identity can influence belowground community interactions, but little work has examined whether species identity influences belowground community processes when correcting for evolutionary history. Specifically, we hypothesized that closely related species would exhibit (i) more similar leaf and root functional traits than more distantly related species, and (ii) more similar associated soil arthropod communities. We found that after correcting for evolutionary history, tree species identity influenced belowground arthropod communities through plant functional traits. These data suggest that plant species structure may be an important predictor in shaping associated soil arthropod communities and further suggest the importance of better understanding the extended consequences of evolutionary history on ecological processes, as similarity in traits may not always reflect similar ecology.

  1. Nutritional influences on visual development and function.

    PubMed

    Lien, Eric L; Hammond, Billy R

    2011-05-01

    Experiments conducted on many different species reveal a fundamental paradox about the vertebrate eye; it is damaged by its own operation. This vulnerability stems from the need to respond to visible light, often actinic, but also from the intrinsic metabolic and structural state of the eye's internal structures. Photoreceptor outer segments, for instance, have high concentrations of diet-derived long-chain polyunsaturated fatty acids and these membrane lipids are highly prone to peroxidation due to the high oxygen tension of the outer retina. Such a high diathesis for damage would be catastrophic if it were not balanced by an equally impressive system for responding to such stressors. The retina (and to a lesser extent the crystalline lens), for instance, is especially rich in dietary antioxidants such as vitamin E, vitamin C and the macular carotenoids (lutein and zeaxanthin) putatively to retard light-induced oxidative damage. The nutrients that support both essential function (e.g., retinal, the vitamin form of vitamin A, in photopigment) and protection operate in a highly integrated manner. For instance, Vitamin E is a lipophillic chain-breaking anti-oxidant (protecting DHA-rich outer segment membranes) that regenerates itself through reaction with vitamin C (a primary anti-oxidant against aqueous radicals) and is spatially distributed in complement with the carotenoids lutein and zeaxanthin. Nor are these interactions relegated to simply providing protection and the basic elements needed for transduction. Macular lutein and zeaxanthin, for example, improve visual performance (e.g., reduce glare disability and discomfort, speed photostress recovery, and enhance chromatic contrast) through purely optical means (by absorbing short-wave light anterior to the foveal cones). The vulnerability of the eye to exogenous insult, and the sensitivity of the eye to dietary components, is not static: infants have more vulnerable retinas due to clearer lenses and higher

  2. SPIC: A novel similarity metric for comparing transcription factor binding site motifs based on information contents

    PubMed Central

    2013-01-01

    Background Discovering transcription factor binding sites (TFBS) is one of primary challenges to decipher complex gene regulatory networks encrypted in a genome. A set of short DNA sequences identified by a transcription factor (TF) is known as a motif, which can be expressed accurately in matrix form such as a position-specific scoring matrix (PSSM) and a position frequency matrix. Very frequently, we need to query a motif in a database of motifs by seeking its similar motifs, merge similar TFBS motifs possibly identified by the same TF, separate irrelevant motifs, or filter out spurious motifs. Therefore, a novel metric is required to seize slight differences between irrelevant motifs and highlight the similarity between motifs of the same group in all these applications. While there are already several metrics for motif similarity proposed before, their performance is still far from satisfactory for these applications. Methods A novel metric has been proposed in this paper with name as SPIC (Similarity with Position Information Contents) for measuring the similarity between a column of a motif and a column of another motif. When defining this similarity score, we consider the likelihood that the column of the first motif's PFM can be produced by the column of the second motif's PSSM, and multiply the likelihood by the information content of the column of the second motif's PSSM, and vise versa. We evaluated the performance of SPIC combined with a local or a global alignment method having a function for affine gap penalty, for computing the similarity between two motifs. We also compared SPIC with seven existing state-of-the-arts metrics for their capability of clustering motifs from the same group and retrieving motifs from a database on three datasets. Results When used jointly with the Smith-Waterman local alignment method with an affine gap penalty function (gap open penalty is equal to1, gap extension penalty is equal to 0.5), SPIC outperforms the seven

  3. The frustrated brain: from dynamics on motifs to communities and networks.

    PubMed

    Gollo, Leonardo L; Breakspear, Michael

    2014-10-01

    Cognitive function depends on an adaptive balance between flexible dynamics and integrative processes in distributed cortical networks. Patterns of zero-lag synchrony likely underpin numerous perceptual and cognitive functions. Synchronization fulfils integration by reducing entropy, while adaptive function mandates that a broad variety of stable states be readily accessible. Here, we elucidate two complementary influences on patterns of zero-lag synchrony that derive from basic properties of brain networks. First, mutually coupled pairs of neuronal subsystems-resonance pairs-promote stable zero-lag synchrony among the small motifs in which they are embedded, and whose effects can propagate along connected chains. Second, frustrated closed-loop motifs disrupt synchronous dynamics, enabling metastable configurations of zero-lag synchrony to coexist. We document these two complementary influences in small motifs and illustrate how these effects underpin stable versus metastable phase-synchronization patterns in prototypical modular networks and in large-scale cortical networks of the macaque (CoCoMac). We find that the variability of synchronization patterns depends on the inter-node time delay, increases with the network size and is maximized for intermediate coupling strengths. We hypothesize that the dialectic influences of resonance versus frustration may form a dynamic substrate for flexible neuronal integration, an essential platform across diverse cognitive processes. PMID:25180310

  4. The frustrated brain: from dynamics on motifs to communities and networks

    PubMed Central

    Gollo, Leonardo L.; Breakspear, Michael

    2014-01-01

    Cognitive function depends on an adaptive balance between flexible dynamics and integrative processes in distributed cortical networks. Patterns of zero-lag synchrony likely underpin numerous perceptual and cognitive functions. Synchronization fulfils integration by reducing entropy, while adaptive function mandates that a broad variety of stable states be readily accessible. Here, we elucidate two complementary influences on patterns of zero-lag synchrony that derive from basic properties of brain networks. First, mutually coupled pairs of neuronal subsystems—resonance pairs—promote stable zero-lag synchrony among the small motifs in which they are embedded, and whose effects can propagate along connected chains. Second, frustrated closed-loop motifs disrupt synchronous dynamics, enabling metastable configurations of zero-lag synchrony to coexist. We document these two complementary influences in small motifs and illustrate how these effects underpin stable versus metastable phase-synchronization patterns in prototypical modular networks and in large-scale cortical networks of the macaque (CoCoMac). We find that the variability of synchronization patterns depends on the inter-node time delay, increases with the network size and is maximized for intermediate coupling strengths. We hypothesize that the dialectic influences of resonance versus frustration may form a dynamic substrate for flexible neuronal integration, an essential platform across diverse cognitive processes. PMID:25180310

  5. A point mutation to Galphai selectively blocks GoLoco motif binding: direct evidence for Galpha.GoLoco complexes in mitotic spindle dynamics.

    PubMed

    Willard, Francis S; Zheng, Zhen; Guo, Juan; Digby, Gregory J; Kimple, Adam J; Conley, Jason M; Johnston, Christopher A; Bosch, Dustin; Willard, Melinda D; Watts, Val J; Lambert, Nevin A; Ikeda, Stephen R; Du, Quansheng; Siderovski, David P

    2008-12-26

    Heterotrimeric G-protein Galpha subunits and GoLoco motif proteins are key members of a conserved set of regulatory proteins that influence invertebrate asymmetric cell division and vertebrate neuroepithelium and epithelial progenitor differentiation. GoLoco motif proteins bind selectively to the inhibitory subclass (Galphai) of Galpha subunits, and thus it is assumed that a Galphai.GoLoco motif protein complex plays a direct functional role in microtubule dynamics underlying spindle orientation and metaphase chromosomal segregation during cell division. To address this hypothesis directly, we rationally identified a point mutation to Galphai subunits that renders a selective loss-of-function for GoLoco motif binding, namely an asparagine-to-isoleucine substitution in the alphaD-alphaE loop of the Galpha helical domain. This GoLoco-insensitivity ("GLi") mutation prevented Galphai1 association with all human GoLoco motif proteins and abrogated interaction between the Caenorhabditis elegans Galpha subunit GOA-1 and the GPR-1 GoLoco motif. In contrast, the GLi mutation did not perturb any other biochemical or signaling properties of Galphai subunits, including nucleotide binding, intrinsic and RGS protein-accelerated GTP hydrolysis, and interactions with Gbetagamma dimers, adenylyl cyclase, and seven transmembrane-domain receptors. GoLoco insensitivity rendered Galphai subunits unable to recruit GoLoco motif proteins such as GPSM2/LGN and GPSM3 to the plasma membrane, and abrogated the exaggerated mitotic spindle rocking normally seen upon ectopic expression of wild type Galphai subunits in kidney epithelial cells. This GLi mutation should prove valuable in establishing the physiological roles of Galphai.GoLoco motif protein complexes in microtubule dynamics and spindle function during cell division as well as to delineate potential roles for GoLoco motifs in receptor-mediated signal transduction. PMID:18984596

  6. The ken and barbie gene encoding a putative transcription factor with a BTB domain and three zinc finger motifs functions in terminalia development of Drosophila.

    PubMed

    Lukacsovich, Tamas; Yuge, Kazuya; Awano, Wakae; Asztalos, Zoltan; Kondo, Shunzo; Juni, Naoto; Yamamoto, Daisuke

    2003-10-01

    Mutations in the ken and barbie locus are accompanied by the malformation of terminalia in adult Drosophila. Male and female genitalia often remain inside the body, and the same portions of genitalia and analia are missing in a fraction of homozygous flies. Rotated and/or duplicated terminalia are also observed. Terminalia phenotypes are enhanced by mutations in the gap gene tailless, the homeobox gene caudal, and the decapentaplegic gene that encodes a TGFbeta-like morphogen. The ken and barbie gene encodes a protein with three CCHH-type zinc finger motifs that are conserved in several transcription factors such as Krüppel and BCL-6. All defects in ken and barbie mutants are fully rescued by the expression of a wild-type genomic construct, which establishes the causality between phenotypes and the gene. PMID:14518006

  7. Motifs, modules and games in bacteria

    SciTech Connect

    Wolf, Denise M.; Arkin, Adam P.

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.

  8. The seirena B Class Floral Homeotic Mutant of California Poppy (Eschscholzia californica) Reveals a Function of the Enigmatic PI Motif in the Formation of Specific Multimeric MADS Domain Protein Complexes[C][W][OA

    PubMed Central

    Lange, Matthias; Orashakova, Svetlana; Lange, Sabrina; Melzer, Rainer; Theißen, Günter; Smyth, David R.; Becker, Annette

    2013-01-01

    The products of B class floral homeotic genes specify petal and stamen identity, and loss of B function results in homeotic conversions of petals into sepals and stamens into carpels. Here, we describe the molecular characterization of seirena-1 (sei-1), a mutant from the basal eudicot California poppy (Eschscholzia californica) that shows homeotic changes characteristic of floral homeotic B class mutants. SEI has been previously described as EScaGLO, one of four B class–related MADS box genes in California poppy. The C terminus of SEI, including the highly conserved PI motif, is truncated in sei-1 proteins. Nevertheless, like the wild-type SEI protein, the sei-1 mutant protein is able to bind CArG-boxes and can form homodimers, heterodimers, and several higher order complexes with other MADS domain proteins. However, unlike the wild type, the mutant protein is not able to mediate higher order complexes consisting of specific B, C, and putative E class related proteins likely involved in specifying stamen identity. Within the PI motif, five highly conserved N-terminal amino acids are specifically required for this interaction. Several families lack this short conserved sequence, including the Brassicaceae, and we propose an evolutionary scenario to explain these functional differences. PMID:23444328

  9. Structural alphabet motif discovery and a structural motif database.

    PubMed

    Ku, Shih-Yen; Hu, Yuh-Jyh

    2012-01-01

    This study proposes a general framework for structural motif discovery. The framework is based on a modular design in which the system components can be modified or replaced independently to increase its applicability to various studies. It is a two-stage approach that first converts protein 3D structures into structural alphabet sequences, and then applies a sequence motif-finding tool to these sequences to detect conserved motifs. We named the structural motif database we built the SA-Motifbase, which provides the structural information conserved at different hierarchical levels in SCOP. For each motif, SA-Motifbase presents its 3D view; alphabet letter preference; alphabet letter frequency distribution; and the significance. SA-Motifbase is available at http://bioinfo.cis.nctu.edu.tw/samotifbase/. PMID:22099701

  10. FPGA implementation of motifs-based neuronal network and synchronization analysis

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Zhu, Zechen; Yang, Shuangming; Wei, Xile; Wang, Jiang; Yu, Haitao

    2016-06-01

    Motifs in complex networks play a crucial role in determining the brain functions. In this paper, 13 kinds of motifs are implemented with Field Programmable Gate Array (FPGA) to investigate the relationships between the networks properties and motifs properties. We use discretization method and pipelined architecture to construct various motifs with Hindmarsh-Rose (HR) neuron as the node model. We also build a small-world network based on these motifs and conduct the synchronization analysis of motifs as well as the constructed network. We find that the synchronization properties of motif determine that of motif-based small-world network, which demonstrates effectiveness of our proposed hardware simulation platform. By imitation of some vital nuclei in the brain to generate normal discharges, our proposed FPGA-based artificial neuronal networks have the potential to replace the injured nuclei to complete the brain function in the treatment of Parkinson's disease and epilepsy.

  11. Bioinformatics Approaches for Predicting Disordered Protein Motifs.

    PubMed

    Bhowmick, Pallab; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Short, linear motifs (SLiMs) in proteins are functional microdomains consisting of contiguous residue segments along the protein sequence, typically not more than 10 consecutive amino acids in length with less than 5 defined positions. Many positions are 'degenerate' thus offering flexibility in terms of the amino acid types allowed at those positions. Their short length and degenerate nature confers evolutionary plasticity meaning that SLiMs often evolve convergently. Further, SLiMs have a propensity to occur within intrinsically unstructured protein segments and this confers versatile functionality to unstructured regions of the proteome. SLiMs mediate multiple types of protein interactions based on domain-peptide recognition and guide functions including posttranslational modifications, subcellular localization of proteins, and ligand binding. SLiMs thus behave as modular interaction units that confer versatility to protein function and SLiM-mediated interactions are increasingly being recognized as therapeutic targets. In this chapter we start with a brief description about the properties of SLiMs and their interactions and then move on to discuss algorithms and tools including several web-based methods that enable the discovery of novel SLiMs (de novo motif discovery) as well as the prediction of novel occurrences of known SLiMs. Both individual amino acid sequences as well as sets of protein sequences can be scanned using these methods to obtain statistically overrepresented sequence patterns. Lists of putatively functional SLiMs are then assembled based on parameters such as evolutionary sequence conservation, disorder scores, structural data, gene ontology terms and other contextual information that helps to assess the functional credibility or significance of these motifs. These bioinformatics methods should certainly guide experiments aimed at motif discovery. PMID:26387106

  12. Stochastic EM-based TFBS motif discovery with MITSU

    PubMed Central

    Kilpatrick, Alastair M.; Ward, Bruce; Aitken, Stuart

    2014-01-01

    Motivation: The Expectation–Maximization (EM) algorithm has been successfully applied to the problem of transcription factor binding site (TFBS) motif discovery and underlies the most widely used motif discovery algorithms. In the wider field of probabilistic modelling, the stochastic EM (sEM) algorithm has been used to overcome some of the limitations of the EM algorithm; however, the application of sEM to motif discovery has not been fully explored. Results: We present MITSU (Motif discovery by ITerative Sampling and Updating), a novel algorithm for motif discovery, which combines sEM with an improved approximation to the likelihood function, which is unconstrained with regard to the distribution of motif occurrences within the input dataset. The algorithm is evaluated quantitatively on realistic synthetic data and several collections of characterized prokaryotic TFBS motifs and shown to outperform EM and an alternative sEM-based algorithm, particularly in terms of site-level positive predictive value. Availability and implementation: Java executable available for download at http://www.sourceforge.net/p/mitsu-motif/, supported on Linux/OS X. Contact: a.m.kilpatrick@sms.ed.ac.uk PMID:24931999

  13. ELM: the status of the 2010 eukaryotic linear motif resource

    PubMed Central

    Gould, Cathryn M.; Diella, Francesca; Via, Allegra; Puntervoll, Pål; Gemünd, Christine; Chabanis-Davidson, Sophie; Michael, Sushama; Sayadi, Ahmed; Bryne, Jan Christian; Chica, Claudia; Seiler, Markus; Davey, Norman E.; Haslam, Niall; Weatheritt, Robert J.; Budd, Aidan; Hughes, Tim; Paś, Jakub; Rychlewski, Leszek; Travé, Gilles; Aasland, Rein; Helmer-Citterich, Manuela; Linding, Rune; Gibson, Toby J.

    2010-01-01

    Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a ‘Bar Code’ format, which also displays known instances from homologous proteins through a novel ‘Instance Mapper’ protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation. PMID:19920119

  14. Multiple Dileucine-like Motifs Direct VGLUT1 Trafficking

    PubMed Central

    Foss, Sarah M.; Li, Haiyan; Santos, Magda S.; Edwards, Robert H.

    2013-01-01

    The vesicular glutamate transporters (VGLUTs) package glutamate into synaptic vesicles, and the two principal isoforms VGLUT1 and VGLUT2 have been suggested to influence the properties of release. To understand how a VGLUT isoform might influence transmitter release, we have studied their trafficking and previously identified a dileucine-like endocytic motif in the C terminus of VGLUT1. Disruption of this motif impairs the activity-dependent recycling of VGLUT1, but does not eliminate its endocytosis. We now report the identification of two additional dileucine-like motifs in the N terminus of VGLUT1 that are not well conserved in the other isoforms. In the absence of all three motifs, rat VGLUT1 shows limited accumulation at synaptic sites and no longer responds to stimulation. In addition, shRNA-mediated knockdown of clathrin adaptor proteins AP-1 and AP-2 shows that the C-terminal motif acts largely via AP-2, whereas the N-terminal motifs use AP-1. Without the C-terminal motif, knockdown of AP-1 reduces the proportion of VGLUT1 that responds to stimulation. VGLUT1 thus contains multiple sorting signals that engage distinct trafficking mechanisms. In contrast to VGLUT1, the trafficking of VGLUT2 depends almost entirely on the conserved C-terminal dileucine-like motif: without this motif, a substantial fraction of VGLUT2 redistributes to the plasma membrane and the transporter's synaptic localization is disrupted. Consistent with these differences in trafficking signals, wild-type VGLUT1 and VGLUT2 differ in their response to stimulation. PMID:23804088

  15. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads. PMID:18253168

  16. Influence of Exogenous Progestin on Ovarian Function in Beef Cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to precisely regulate follicle recruitment and selection is critical to improving methods to control ovulation in beef cows. The objectives of the current study were to investigate the influence of exogenous progestins, commonly used in synchronization protocols, on ovarian function and...

  17. Mycorrhizas influence functional traits of two tallgrass prairie species.

    PubMed

    Weremijewicz, Joanna; Seto, Kotaro

    2016-06-01

    Over the past decade, functional traits that influence plant performance and thus, population, community, and ecosystem biology have garnered increasing attention. Generally lacking, however, has been consideration of how ubiquitous arbuscular mycorrhizas influence plant allometric and stoichiometric functional traits. We assessed how plant dependence on and responsiveness to mycorrhizas influence plant functional traits of a warm-season, C4 grass, Andropogon gerardii Vitman, and the contrasting, cool-season, C3 grass, Elymus canadensis L. We grew both host species with and without inoculation with mycorrhizal fungi, across a broad gradient of soil phosphorus availabilities. Both host species were facultatively mycotrophic, able to grow without mycorrhizas at high soil phosphorus availability. A. gerardii was most dependent upon mycorrhizas and E. canadensis was weakly dependent, but highly responsive to mycorrhizas. The high dependence of A. gerardii on mycorrhizas resulted in higher tissue P and N concentrations of inoculated than noninoculated plants. When not inoculated, E. canadensis was able to take up both P and N in similar amounts to inoculated plants because of its weak dependence on mycorrhizas for nutrient uptake and its pronounced ability to change root-to-shoot ratios. Unlike other highly dependent species, A. gerardii had a high root-to-shoot ratio and was able to suppress colonization by mycorrhizal fungi at high soil fertilities. E. canadensis, however, was unable to suppress colonization and had a lower root-to shoot ratio than A. gerardii. The mycorrhiza-related functional traits of both host species likely influence their performance in nature: both species attained the maximum responsiveness from mycorrhizas at soil phosphorus availabilities similar to those of tallgrass prairies. Dependence upon mycorrhizas affects performance in the absence of mycorrhizas. Responsiveness to mycorrhizal fungi is also a function of the environment and

  18. Structural and Functional Studies of a Phosphatidic Acid-Binding Antifungal Plant Defensin MtDef4: Identification of an RGFRRR Motif Governing Fungal Cell Entry

    PubMed Central

    Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghu S.; Smith, Thomas J.; Shah, Dilip M.

    2013-01-01

    MtDef4 is a 47-amino acid cysteine-rich evolutionary conserved defensin from a model legume Medicago truncatula. It is an apoplast-localized plant defense protein that inhibits the growth of the ascomycetous fungal pathogen Fusarium graminearum in vitro at micromolar concentrations. Little is known about the mechanisms by which MtDef4 mediates its antifungal activity. In this study, we show that MtDef4 rapidly permeabilizes fungal plasma membrane and is internalized by the fungal cells where it accumulates in the cytoplasm. Furthermore, analysis of the structure of MtDef4 reveals the presence of a positively charged γ-core motif composed of β2 and β3 strands connected by a positively charged RGFRRR loop. Replacement of the RGFRRR sequence with AAAARR or RGFRAA abolishes the ability of MtDef4 to enter fungal cells, suggesting that the RGFRRR loop is a translocation signal required for the internalization of the protein. MtDef4 binds to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Amino acid substitutions in the RGFRRR sequence which abolish the ability of MtDef4 to enter fungal cells also impair its ability to bind PA. These findings suggest that MtDef4 is a novel antifungal plant defensin capable of entering into fungal cells and affecting intracellular targets and that these processes are mediated by the highly conserved cationic RGFRRR loop via its interaction with PA. PMID:24324798

  19. Network motifs emerge from interconnections that favour stability

    NASA Astrophysics Data System (ADS)

    Angulo, Marco Tulio; Liu, Yang-Yu; Slotine, Jean-Jacques

    2015-10-01

    The microscopic principles organizing dynamic units in complex networks--from proteins to power generators--can be understood in terms of network `motifs’: small interconnection patterns that appear much more frequently in real networks than expected in random networks. When considered as small subgraphs isolated from a large network, these motifs are more robust to parameter variations, easier to synchronize than other possible subgraphs, and can provide specific functionalities. But one can isolate these subgraphs only by assuming, for example, a significant separation of timescales, and the origin of network motifs and their functionalities when embedded in larger networks remain unclear. Here we show that most motifs emerge from interconnection patterns that best exploit the intrinsic stability characteristics at different scales of interconnection, from simple nodes to whole modules. This functionality suggests an efficient mechanism to stably build complex systems by recursively interconnecting nodes and modules as motifs. We present direct evidence of this mechanism in several biological networks.

  20. Influence of age on neutrophil function in foals.

    PubMed

    Wichtel, M G; Anderson, K L; Johnson, T V; Nathan, U; Smith, L

    1991-11-01

    Functional activities (phagocytosis and killing) of neutrophil leucocytes (NL) and immunoglobulin G concentrations were evaluated in six healthy foals from birth to 6 months of age. Peripheral blood NL were reacted with Streptococcus equisimilis in 20 per cent pooled equine serum for 30, 60 and 90 mins and functional activities of NL were determined using a fluorochrome microassay. Values for foal NL function were compared with those of healthy adult horses (n = 28). Foal neutrophil function was influenced by age. Killing capacity of NL decreased, whereas phagocytic capacity increased, until 113 days of age, after which a reversal in trends became apparent. Immunoglobulin G concentrations changed significantly over time and were lowest at 29 to 56 days of age. All foal values for NL function fell within the range of normal values established for healthy adult horses. PMID:1778167

  1. Dynamic motifs in socio-economic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  2. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.

    PubMed

    Adrianos, Sherry L; Teulé, Florence; Hinman, Michael B; Jones, Justin A; Weber, Warner S; Yarger, Jeffery L; Lewis, Randolph V

    2013-06-10

    Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength, though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength, with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers. PMID:23646825

  3. A million peptide motifs for the molecular biologist.

    PubMed

    Tompa, Peter; Davey, Norman E; Gibson, Toby J; Babu, M Madan

    2014-07-17

    A molecular description of functional modules in the cell is the focus of many high-throughput studies in the postgenomic era. A large portion of biomolecular interactions in virtually all cellular processes is mediated by compact interaction modules, referred to as peptide motifs. Such motifs are typically less than ten residues in length, occur within intrinsically disordered regions, and are recognized and/or posttranslationally modified by structured domains of the interacting partner. In this review, we suggest that there might be over a million instances of peptide motifs in the human proteome. While this staggering number suggests that peptide motifs are numerous and the most understudied functional module in the cell, it also holds great opportunities for new discoveries. PMID:25038412

  4. BlockLogo: visualization of peptide and sequence motif conservation.

    PubMed

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian; Sun, Jing; Schönbach, Christian; Reinherz, Ellis L; Zhang, Guang Lan; Brusic, Vladimir

    2013-12-31

    BlockLogo is a web-server application for the visualization of protein and nucleotide fragments, continuous protein sequence motifs, and discontinuous sequence motifs using calculation of block entropy from multiple sequence alignments. The user input consists of a multiple sequence alignment, selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine the specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms to enable on-the-fly prediction of MHC binding affinity to 15 common HLA class I and class II alleles as well as visual analysis of discontinuous epitopes from multiple sequence alignments. It enables the visualization and analysis of structural and functional motifs that are usually described as regular expressions. It provides a compact view of discontinuous motifs composed of distant positions within biological sequences. BlockLogo is available at: http://research4.dfci.harvard.edu/cvc/blocklogo/ and http://met-hilab.bu.edu/blocklogo/. PMID:24001880

  5. Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs

    NASA Astrophysics Data System (ADS)

    Xu, Feng-Dan; Liu, Zeng-Rong; Zhang, Zhi-Yong; Shen, Jian-Wei

    2009-02-01

    We integrate transcriptional and post-transcriptional regulation into microRNA-mediated incoherent feedforward motifs and analyse their dynamical behaviour and functions. The analysis show that the behaviour of the system is almost uninfluenced by the varying input in certain ranges and by introducing of delay and noise. The results indicate that microRNA-mediated incoherent feedforward motifs greatly enhance the robustness of gene regulation.

  6. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport.

    PubMed

    Liu, Xiaoqin; Huang, Daimin; Tao, Jinyuan; Miller, Anthony J; Fan, Xiaorong; Xu, Guohua

    2014-10-01

    A partner protein, NAR2, is essential for high-affinity nitrate transport of the NRT2 protein in plants. However, the NAR2 motifs that interact with NRT2s for their plasma membrane (PM) localization and nitrate transporter activity have not been functionally characterized. In this study, OsNAR2.1 mutations with different carbon (C)-terminal deletions and nine different point mutations in the conserved regions of NAR2 homologs in plants were generated to explore the essential motifs involved in the interaction with OsNRT2.3a. Screening using the membrane yeast two-hybrid system and Xenopus oocytes for nitrogen-15 ((15)N) uptake demonstrated that either R100G or D109N point mutations impaired the OsNAR2.1 interaction with OsNRT2.3a. Western blotting and visualization using green fluorescent protein fused to either the N- or C-terminus of OsNAR2.1 indicated that OsNAR2.1 is expressed in both the PM and cytoplasm. The split-yellow fluorescent protein (YFP)/BiFC analyses indicated that OsNRT2.3a was targeted to the PM in the presence of OsNAR2.1, while either R100G or D109N mutation resulted in the loss of OsNRT2.3a-YFP signal in the PM. Based on these results, arginine 100 and aspartic acid 109 of the OsNAR2.1 protein are key amino acids in the interaction with OsNRT2.3a, and their interaction occurs in the PM but not cytoplasm. PMID:25103875

  7. The Annotation of RNA Motifs

    PubMed Central

    2002-01-01

    The recent deluge of new RNA structures, including complete atomic-resolution views of both subunits of the ribosome, has on the one hand literally overwhelmed our individual abilities to comprehend the diversity of RNA structure, and on the other hand presented us with new opportunities for comprehensive use of RNA sequences for comparative genetic, evolutionary and phylogenetic studies. Two concepts are key to understanding RNA structure: hierarchical organization of global structure and isostericity of local interactions. Global structure changes extremely slowly, as it relies on conserved long-range tertiary interactions. Tertiary RNA–RNA and quaternary RNA–protein interactions are mediated by RNA motifs, defined as recurrent and ordered arrays of non-Watson–Crick base-pairs. A single RNA motif comprises a family of sequences, all of which can fold into the same three-dimensional structure and can mediate the same interaction(s). The chemistry and geometry of base pairing constrain the evolution of motifs in such a way that random mutations that occur within motifs are accepted or rejected insofar as they can mediate a similar ordered array of interactions. The steps involved in the analysis and annotation of RNA motifs in 3D structures are: (a) decomposition of each motif into non-Watson–Crick base-pairs; (b) geometric classification of each basepair; (c) identification of isosteric substitutions for each basepair by comparison to isostericity matrices; (d) alignment of homologous sequences using the isostericity matrices to identify corresponding positions in the crystal structure; (e) acceptance or rejection of the null hypothesis that the motif is conserved. PMID:18629252

  8. Redox active motifs in selenoproteins.

    PubMed

    Li, Fei; Lutz, Patricia B; Pepelyayeva, Yuliya; Arnér, Elias S J; Bayse, Craig A; Rozovsky, Sharon

    2014-05-13

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used (77)Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of (77)Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs' reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20-25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs' flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed. PMID:24769567

  9. [Prediction of Promoter Motifs in Virophages].

    PubMed

    Gong, Chaowen; Zhou, Xuewen; Pan, Yingjie; Wang, Yongjie

    2015-07-01

    Virophages have crucial roles in ecosystems and are the transport vectors of genetic materials. To shed light on regulation and control mechanisms in virophage--host systems as well as evolution between virophages and their hosts, the promoter motifs of virophages were predicted on the upstream regions of start codons using an analytical tool for prediction of promoter motifs: Multiple EM for Motif Elicitation. Seventeen potential promoter motifs were identified based on the E-value, location, number and length of promoters in genomes. Sputnik and zamilon motif 2 with AT-rich regions were distributed widely on genomes, suggesting that these motifs may be associated with regulation of the expression of various genes. Motifs containing the TCTA box were predicted to be late promoter motif in mavirus; motifs containing the ATCT box were the potential late promoter motif in the Ace Lake mavirus . AT-rich regions were identified on motif 2 in the Organic Lake virophage, motif 3 in Yellowstone Lake virophage (YSLV)1 and 2, motif 1 in YSLV3, and motif 1 and 2 in YSLV4, respectively. AT-rich regions were distributed widely on the genomes of virophages. All of these motifs may be promoter motifs of virophages. Our results provide insights into further exploration of temporal expression of genes in virophages as well as associations between virophages and giant viruses. PMID:26524912

  10. Identification of a pKa-regulating motif stabilizing imidazole-modified double-stranded DNA

    PubMed Central

    Buyst, Dieter; Gheerardijn, Vicky; Fehér, Krisztina; Van Gasse, Bjorn; Van Den Begin, Jos; Martins, José C.; Madder, Annemieke

    2015-01-01

    The predictable 3D structure of double-stranded DNA renders it ideally suited as a template for the bottom-up design of functionalized nucleic acid-based active sites. We here explore the use of a 14mer DNA duplex as a scaffold for the precise and predictable positioning of catalytic functionalities. Given the ubiquitous participation of the histidine-based imidazole group in protein recognition and catalysis events, single histidine-like modified duplexes were investigated. Tethering histamine to the C5 of the thymine base via an amide bond, allows the flexible positioning of the imidazole function in the major groove. The mutual interactions between the imidazole and the duplex and its influence on the imidazolium pKaH are investigated by placing a single modified thymine at four different positions in the center of the 14mer double helix. Using NMR and unrestrained molecular dynamics, a structural motif involving the formation of a hydrogen bond between the imidazole and the Hoogsteen side of the guanine bases of two neighboring GC base pairs is established. The motif contributes to a stabilization against thermal melting of 6°C and is key in modulating the pKaH of the imidazolium group. The general features, prerequisites and generic character of the new pKaH-regulating motif are described. PMID:25520197

  11. Acute and chronic wound fluids influence keratinocyte function differently.

    PubMed

    Thamm, Oliver C; Koenen, Paola; Bader, Nicola; Schneider, Alina; Wutzler, Sebastian; Neugebauer, Edmund A M; Spanholtz, Timo A

    2015-04-01

    Wound healing requires a proper functioning of keratinocytes that migrate, proliferate and lead to a competent wound closure. Impaired wound healing might be due to a disturbed keratinocyte function caused by the wound environment. Basically, chronic wound fluid (CWF) differs from acute wound fluid (AWF). The aim of this study was to analyse the effects of AWF and CWF on keratinocyte function. We therefore investigated keratinocyte migration and proliferation under the influence of AWF and CWF using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] test and scratch assay. We further measured the gene expression by qRT-PCR regarding growth factors and matrixmetalloproteinases (MMPs) involved in regeneration processes. AWF had a positive impact on keratinocyte proliferation over time, whereas CWF had an anti-proliferative effect. Keratinocyte migration was significantly impaired by CWF in contrast to an undisturbed wound closure under the influence of AWF. MMP-9 expression was strongly upregulated by CWF compared with AWF. Keratinocyte function was significantly impaired by CWF. An excessive induction of MMP-9 by CWF might lead to a permanent degradation of extracellular matrix and thereby prevent wounds from healing. PMID:23517467

  12. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs

    PubMed Central

    2012-01-01

    Background Discovery of functionally significant short, statistically overrepresented subsequence patterns (motifs) in a set of sequences is a challenging problem in bioinformatics. Oftentimes, not all sequences in the set contain a motif. These non-motif-containing sequences complicate the algorithmic discovery of motifs. Filtering the non-motif-containing sequences from the larger set of sequences while simultaneously determining the identity of the motif is, therefore, desirable and a non-trivial problem in motif discovery research. Results We describe MotifCatcher, a framework that extends the sensitivity of existing motif-finding tools by employing random sampling to effectively remove non-motif-containing sequences from the motif search. We developed two implementations of our algorithm; each built around a commonly used motif-finding tool, and applied our algorithm to three diverse chromatin immunoprecipitation (ChIP) data sets. In each case, the motif finder with the MotifCatcher extension demonstrated improved sensitivity over the motif finder alone. Our approach organizes candidate functionally significant discovered motifs into a tree, which allowed us to make additional insights. In all cases, we were able to support our findings with experimental work from the literature. Conclusions Our framework demonstrates that additional processing at the sequence entry level can significantly improve the performance of existing motif-finding tools. For each biological data set tested, we were able to propose novel biological hypotheses supported by experimental work from the literature. Specifically, in Escherichia coli, we suggested binding site motifs for 6 non-traditional LexA protein binding sites; in Saccharomyces cerevisiae, we hypothesize 2 disparate mechanisms for novel binding sites of the Cse4p protein; and in Halobacterium sp. NRC-1, we discoverd subtle differences in a general transcription factor (GTF) binding site motif across several data sets. We

  13. Influence of hypokinesis on physiological functions in fowl

    NASA Technical Reports Server (NTRS)

    Nvota, J.; Lamosova, D.; Tesarova, D.; Cierna, V.; Vyboh, P.

    1979-01-01

    The effects of hypokinesis and postincubation stress (which are characteristic for modern techniques of poultry cage keeping) on the endocrine functions, metabolic reactions, body weight growth and proteosynthesis in the muscle of cocks was investigated. The stress due to hypokinesis was observed in growing cocks housed in metallic cages in which they could hardly turn around. The findings obtained indicate that a 35-day hypokinesis did not exert any more significant influence both on physiological functions and body weight growth as well as on proteosynthesis in the muscle of cocks under study; however, it speeded up the protein metabolism in the muscle. The postincubation stress modified significantly the hypokinesis effect. Findings recorded in birds differed considerably from findings obtained in laboratory mammals, in which the hypokinesis induced significant changes in endocrine functions, body weight decrease and proteosynthesis disorders. A good tolerance of hypokinesis by fowl can be interpreted not only by the phylogenetic remoteness of the compared species but also by the domestication.

  14. [Conserved motifs in voltage sensing proteins].

    PubMed

    Wang, Chang-He; Xie, Zhen-Li; Lv, Jian-Wei; Yu, Zhi-Dan; Shao, Shu-Li

    2012-08-25

    This paper was aimed to study conserved motifs of voltage sensing proteins (VSPs) and establish a voltage sensing model. All VSPs were collected from the Uniprot database using a comprehensive keyword search followed by manual curation, and the results indicated that there are only two types of known VSPs, voltage gated ion channels and voltage dependent phosphatases. All the VSPs have a common domain of four helical transmembrane segments (TMS, S1-S4), which constitute the voltage sensing module of the VSPs. The S1 segment was shown to be responsible for membrane targeting and insertion of these proteins, while S2-S4 segments, which can sense membrane potential, for protein properties. Conserved motifs/residues and their functional significance of each TMS were identified using profile-to-profile sequence alignments. Conserved motifs in these four segments are strikingly similar for all VSPs, especially, the conserved motif [RK]-X(2)-R-X(2)-R-X(2)-[RK] was presented in all the S4 segments, with positively charged arginine (R) alternating with two hydrophobic or uncharged residues. Movement of these arginines across the membrane electric field is the core mechanism by which the VSPs detect changes in membrane potential. The negatively charged aspartate (D) in the S3 segment is universally conserved in all the VSPs, suggesting that the aspartate residue may be involved in voltage sensing properties of VSPs as well as the electrostatic interactions with the positively charged residues in the S4 segment, which may enhance the thermodynamic stability of the S4 segments in plasma membrane. PMID:22907298

  15. Influence of persistent monodominance on functional diversity and functional community assembly in African tropical forests.

    NASA Astrophysics Data System (ADS)

    Kearsley, Elizabeth; Verbeeck, Hans; Hufkens, Koen; Beeckman, Hans; Steppe, Kathy; Boeckx, Pascal; Huygens, Dries

    2015-04-01

    Lowland tropical rainforest are taxonomically diverse and complex systems, although not all tropical communities are equally diverse. Naturally occuring monodominant patches of Gilbertiodendron dewevrei are commonly found across Central Africa alongside higher diversity forests. Nevertheless, a low taxonomical diversity does not necessarily indicate an equivalently low functional diverse system. We investigate the functional diversity and functional community assembly of mixed and monodominant tropical forests in a central region of the Congo Basin in D. R. Congo using 15 leaf and wood traits covering 95% of all species within each community. This unique dataset allows us to investigate differences in functional diversity and ecosystem functioning between mixed and monodominant forest types. Functional richness, functional divergence and functional evenness are three functional diversity measures providing different aspects of functional diversity. The largest difference between the two forest types was found for functional richness, with a lower functional richness in the monodominant forest indicating a higher amount of niche space filled in the mixed forest. The mixed forest also had a higher species richness and Simpson diversity index, indicating that the higher species richness increases the functional niche space. Subsequently, we identified whole community trait shifts within the monodominant forest compared to the mixed forest. The dominance of Gilbertiodendron dewevrei, for which a distinct niche is found for most traits, presented a significant influence on the entire (trait) community expressing fundamental differences in ecosystem functioning. More detailed investigation of species unique within the monodominant forest and species occurring in both forest types provide more insight into the influence of Gilbertiodendron dewevrei. Both the unique and the shared species showed significant shifts in leaf nutrients, specific leaf area and water use

  16. Influence of tetracyclines on human polymorphonuclear leukocyte function.

    PubMed Central

    Glette, J; Sandberg, S; Hopen, G; Solberg, C O

    1984-01-01

    Low concentrations of oxytetracycline, doxycycline, or minocycline (less than 10 micrograms/ml) did not influence in vitro polymorphonuclear leukocyte random migration, chemiluminescence, or glucose oxidation. At high concentrations of doxycycline or minocycline (greater than 10 micrograms/ml), chemiluminescence and glucose oxidation were impaired. High concentrations of doxycycline also reduced random migration. Oxytetracycline did not influence these functions in concentrations up to 100 micrograms/ml. The inhibiting effect of doxycycline and minocycline was abolished when 4 mM Mg2+ was added to the reaction mixture, and 4 mM Ca2+ partly restored minocycline-inhibited polymorphonuclear leukocyte functions. This indicates that the major effect of tetracyclines on in vitro polymorphonuclear leukocyte functions is mediated by their divalent cation chelating effect and that the results of in vitro experiments are highly dependent on the concentration of divalent cations in the reaction mixtures. The difference between the tetracyclines may be due to differences in lipid solubility, with solubility being highest for minocycline and lowest for oxytetracycline, or to different divalent cation chelating ability. PMID:6721468

  17. Sequential visibility-graph motifs

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  18. Motif for controllable toggle switch in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Bin, Ao; Ye, Weiming; Fan, Ying; Di, Zengru

    2015-02-01

    Toggle switch as a common phenomenon in gene regulatory networks has been recognized important for biological functions. Despite much effort dedicated to understanding the toggle switch and designing synthetic biology circuit to achieve the biological function, we still lack a comprehensive understanding of the intrinsic dynamics behind such phenomenon and the minimum structure that is imperative for producing toggle switch. In this paper, we discover a minimum structure, a motif that enables a controllable toggle switch. In particular, the motif consists of a transformative double negative feedback loop (DNFL) that is regulated by an additional driver node. By enumerating all possible regulatory configurations from the driver node, we identify two types of motifs associated with the toggle switch that is captured by the existence of bistable states. The toggle switch is controllable in the sense that the gap between the bistable states is adjustable as determined by the regulatory strength from the driver nodes. We test the effect of the motifs in self-oscillating gene regulatory network (SON) with respect to the interplay between the motifs and the other genes, and find that the switching dynamics of the whole network can be successfully controlled insofar as the network contains a single motif. Our findings are important to uncover the underlying nonlinear dynamics of controllable toggle switch and can have implications in devising biology circuit in the field of synthetic biology.

  19. Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins.

    PubMed

    Cooke, M J; Zahir, T; Phillips, S R; Shah, D S H; Athey, D; Lakey, J H; Shoichet, M S; Przyborski, S A

    2010-06-01

    The interaction between cells and the extracellular matrix (ECM) is essential during development. To elucidate the function of ECM proteins on cell differentiation, we developed biomimetic surfaces that display specific ECM peptide motifs in a controlled manner. Presentation of ECM domains for collagen, fibronectin, and laminin influenced the formation of neurites by differentiating PC12 cells. The effect of these peptide sequences was also tested on the development of adult neural stem/progenitor cells. In this system, collagen I and fibronectin induced the formation of beta-III-tubulin positive cells, whereas collagen IV reduced such differentiation. Biomimetic surfaces composed of multiple peptide types enabled the combinatorial effects of various ECM motifs to be studied. Surfaces displaying combined motifs were often predictable as a result of the synergistic effects of ECM peptides studied in isolation. For example, the additive effects of fibronectin and laminin resulted in greater expression of beta-III-tubulin positive cells, whereas the negative effect of the collagen IV domain was canceled out by coexpression of collagen I. However, simultaneous expression of certain ECM domains was less predictable. These data highlight the complexity of the cellular response to combined ECM signals and the need to study the function of ECM domains individually and in combination. PMID:19653304

  20. The influence of gravity on structure and function of animals

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1984-01-01

    Gravity is the only environmental parameter that has remained constant during the period of evolution of living matter on earth. Thus, it must have been a major force in shaping living things. The influence of gravitational loading on evolution of the vertebrate skeleton is well recognized, and scale effects have been studied. This paper, however, considers in addition four pivotal events in early evolution that would seem to have been significant for the later success and diversifcation of animal life. These are evolution of the cytoskeleton, cell motility (flagellae and cilia), gravity detecting devices (accelerometers), and biomineralization. All are functionally calcium dependent in eukaryotes and all occurred or were foreshadowed in prokaryotes. A major question is why calcium was selected as an ion of great importance to the structure and function of living matter; another is whether gravity played a role in its selection.

  1. The influence of gravity on structure and function of animals

    NASA Astrophysics Data System (ADS)

    Ross, M. D.

    Gravity is the only environmental parameter that has remained constant during the period of evolution of living matter on Earth. Thus, it must have been a major force in shaping livimg things. The influence of gravitational loading on evolution of the vertebrate skeleton is well recognized, and scale effects have been studied. This paper, however, considers in addition four pivotal events in early evolution that would seem to have been significant for the later success and diversification of animal life. These are evolution of the cytoskeleton, cell motility (flagellae and cilia), gravity detecting devices (accelerometers), and biomineralization. All are functionally calcium dependent in eukaryotes and all occurred or were foreshadowed in prokaryotes. A major question is why calcium was selected as an ion of great importance to the structure and function of living matter; another is whether gravity played a role in its selection.

  2. An Amino-Terminal Polo Kinase Interaction Motif Acts in the Regulation of Centrosome Formation and Reveals a Novel Function for centrosomin (cnn) in Drosophila.

    PubMed

    Eisman, Robert C; Phelps, Melissa A S; Kaufman, Thomas

    2015-10-01

    The formation of the pericentriolar matrix (PCM) and a fully functional centrosome in syncytial Drosophila melanogaster embryos requires the rapid transport of Cnn during initiation of the centrosome replication cycle. We show a Cnn and Polo kinase interaction is apparently required during embryogenesis and involves the exon 1A-initiating coding exon, suggesting a subset of Cnn splice variants is regulated by Polo kinase. During PCM formation exon 1A Cnn-Long Form proteins likely bind Polo kinase before phosphorylation by Polo for Cnn transport to the centrosome. Loss of either of these interactions in a portion of the total Cnn protein pool is sufficient to remove native Cnn from the pool, thereby altering the normal localization dynamics of Cnn to the PCM. Additionally, Cnn-Short Form proteins are required for polar body formation, a process known to require Polo kinase after the completion of meiosis. Exon 1A Cnn-LF and Cnn-SF proteins, in conjunction with Polo kinase, are required at the completion of meiosis and for the formation of functional centrosomes during early embryogenesis. PMID:26447129

  3. Influence of Radiofrequency Ablation of Lung Cancer on Pulmonary Function

    SciTech Connect

    Tada, Akihiro Hiraki, Takao; Iguchi, Toshihiro; Gobara, Hideo; Mimura, Hidefumi; Toyooka, Shinichi; Kiura, Katsuyuki; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Kanazawa, Susumu

    2012-08-15

    Purpose: The purpose of this study was to evaluate altered pulmonary function retrospectively after RFA. Methods: This retrospective study comprised 41 ablation sessions for 39 patients (22 men and 17 women; mean age, 64.8 years). Vital capacity (VC) and forced expiratory volume in 1 s (FEV{sub 1}) at 1 and 3 months after RFA were compared with the baseline (i.e., values before RFA). To evaluate the factors that influenced impaired pulmonary function, univariate analysis was performed by using multiple variables. If two or more variables were indicated as statistically significant by univariate analysis, these variables were subjected to multivariate analysis to identify independent factors. Results: The mean VC and FEV{sub 1} before RFA and 1 and 3 months after RFA were 3.04 and 2.24 l, 2.79 and 2.11 l, and 2.85 and 2.13 l, respectively. The values at 1 and 3 months were significantly lower than the baseline. Severe pleuritis after RFA was identified as the independent factor influencing impaired VC at 1 month (P = 0.003). For impaired FEV{sub 1} at 1 month, only severe pleuritis (P = 0.01) was statistically significant by univariate analysis. At 3 months, severe pleuritis (VC, P = 0.019; FEV{sub 1}, P = 0.003) and an ablated parenchymal volume {>=}20 cm{sup 3} (VC, P = 0.047; FEV{sub 1}, P = 0.038) were independent factors for impaired VC and FEV{sub 1}. Conclusions: Pulmonary function decreased after RFA. RFA-induced severe pleuritis and ablation of a large volume of marginal parenchyma were associated with impaired pulmonary function.

  4. A comprehensive analysis of the La-motif protein superfamily

    PubMed Central

    Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2009-01-01

    The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits. PMID:19299548

  5. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-gi

    2011-01-01

    A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.

  6. Impairments that Influence Physical Function among Survivors of Childhood Cancer

    PubMed Central

    Wilson, Carmen L.; Gawade, Prasad L.; Ness, Kirsten K.

    2015-01-01

    Children treated for cancer are at increased risk of developing chronic health conditions, some of which may manifest during or soon after treatment while others emerge many years after therapy. These health problems may limit physical performance and functional capacity, interfering with participation in work, social, and recreational activities. In this review, we discuss treatment-induced impairments in the endocrine, musculoskeletal, neurological, and cardiopulmonary systems and their influence on mobility and physical function. We found that cranial radiation at a young age was associated with a broad range of chronic conditions including obesity, short stature, low bone mineral density and neuromotor impairments. Anthracyclines and chest radiation are associated with both short and long-term cardiotoxicity. Although numerous chronic conditions are documented among individuals treated for childhood cancer, the impact of these conditions on mobility and function are not well characterized, with most studies limited to survivors of acute lymphoblastic leukemia and brain tumors. Moving forward, further research assessing the impact of chronic conditions on participation in work and social activities is required. Moreover, interventions to prevent or ameliorate the loss of physical function among children treated for cancer are likely to become an important area of survivorship research. PMID:25692094

  7. Multiple Weak Linear Motifs Enhance Recruitment and Processivity in SPOP-Mediated Substrate Ubiquitination.

    PubMed

    Pierce, Wendy K; Grace, Christy R; Lee, Jihun; Nourse, Amanda; Marzahn, Melissa R; Watson, Edmond R; High, Anthony A; Peng, Junmin; Schulman, Brenda A; Mittag, Tanja

    2016-03-27

    Primary sequence motifs, with millimolar affinities for binding partners, are abundant in disordered protein regions. In multivalent interactions, such weak linear motifs can cooperate to recruit binding partners via avidity effects. If linear motifs recruit modifying enzymes, optimal placement of weak motifs may regulate access to modification sites. Weak motifs may thus exert physiological relevance stronger than that suggested by their affinities, but molecular mechanisms of their function are still poorly understood. Herein, we use the N-terminal disordered region of the Hedgehog transcriptional regulator Gli3 (Gli3(1-90)) to determine the role of weak motifs encoded in its primary sequence for the recruitment of its ubiquitin ligase CRL3(SPOP) and the subsequent effect on ubiquitination efficiency. The substrate adaptor SPOP binds linear motifs through its MATH (meprin and TRAF homology) domain and forms higher-order oligomers through its oligomerization domains, rendering SPOP multivalent for its substrates. Gli3 has multiple weak SPOP binding motifs. We map three such motifs in Gli3(1-90), the weakest of which has a millimolar dissociation constant. Multivalency of ligase and substrate for each other facilitates enhanced ligase recruitment and stimulates Gli3(1-90) ubiquitination in in vitro ubiquitination assays. We speculate that the weak motifs enable processivity through avidity effects and by providing steric access to lysine residues that are otherwise not prioritized for polyubiquitination. Weak motifs may generally be employed in multivalent systems to act as gatekeepers regulating post-translational modification. PMID:26475525

  8. Transcriptional Network Growing Models Using Motif-Based Preferential Attachment

    PubMed Central

    Abdelzaher, Ahmed F.; Al-Musawi, Ahmad F.; Ghosh, Preetam; Mayo, Michael L.; Perkins, Edward J.

    2015-01-01

    Understanding relationships between architectural properties of gene-regulatory networks (GRNs) has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs – i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent “building blocks” of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here, we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops), its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties. PMID:26528473

  9. cWINNOWER Algorithm for Finding Fuzzy DNA Motifs

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan

    2003-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum number of detectable motifs qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc, by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12000 for (l,d) = (15,4).

  10. Network motif-based method for identifying coronary artery disease

    PubMed Central

    LI, YIN; CONG, YAN; ZHAO, YUN

    2016-01-01

    The present study aimed to develop a more efficient method for identifying coronary artery disease (CAD) than the conventional method using individual differentially expressed genes (DEGs). GSE42148 gene microarray data were downloaded, preprocessed and screened for DEGs. Additionally, based on transcriptional regulation data obtained from ENCODE database and protein-protein interaction data from the HPRD, the common genes were downloaded and compared with genes annotated from gene microarrays to screen additional common genes in order to construct an integrated regulation network. FANMOD was then used to detect significant three-gene network motifs. Subsequently, GlobalAncova was used to screen differential three-gene network motifs between the CAD group and the normal control data from GSE42148. Genes involved in the differential network motifs were then subjected to functional annotation and pathway enrichment analysis. Finally, clustering analysis of the CAD and control samples was performed based on individual DEGs and the top 20 network motifs identified. In total, 9,008 significant three-node network motifs were detected from the integrated regulation network; these were categorized into 22 interaction modes, each containing a minimum of one transcription factor. Subsequently, 1,132 differential network motifs involving 697 genes were screened between the CAD and control group. The 697 genes were enriched in 154 gene ontology terms, including 119 biological processes, and 14 KEGG pathways. Identifying patients with CAD based on the top 20 network motifs provided increased accuracy compared with the conventional method based on individual DEGs. The results of the present study indicate that the network motif-based method is more efficient and accurate for identifying CAD patients than the conventional method based on individual DEGs. PMID:27347046

  11. Redox active motifs in selenoproteins

    PubMed Central

    Li, Fei; Lutz, Patricia B.; Pepelyayeva, Yuliya; Arnér, Elias S. J.; Bayse, Craig A.; Rozovsky, Sharon

    2014-01-01

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used 77Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of 77Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs’ reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20–25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs’ flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed. PMID:24769567

  12. The C-terminal RNA binding motif of HuR is a multi-functional domain leading to HuR oligomerization and binding to U-rich RNA targets.

    PubMed

    Scheiba, Rafael M; de Opakua, Alain Ibáñez; Díaz-Quintana, Antonio; Cruz-Gallardo, Isabel; Martínez-Cruz, Luis A; Martínez-Chantar, María L; Blanco, Francisco J; Díaz-Moreno, Irene

    2014-01-01

    Human antigen R (HuR) is a 32 kDa protein with 3 RNA Recognition Motifs (RRMs), which bind to Adenylate and uridylate Rich Elements (AREs) of mRNAs. Whereas the N-terminal and central domains (RRM1 and RRM2) are essential for AREs recognition, little is known on the C-terminal RRM3 beyond its implication in HuR oligomerization and apoptotic signaling. We have developed a detergent-based strategy to produce soluble RRM3 for structural studies. We have found that it adopts the typical RRM fold, does not interact with the RRM1 and RRM2 modules, and forms dimers in solution. Our NMR measurements, combined with Molecular Dynamics simulations and Analytical Ultracentrifugation experiments, show that the protein dimerizes through a helical region that contains the conserved W261 residue. We found that HuR RRM3 binds to 5'-mer U-rich RNA stretches through the solvent exposed side of its β-sheet, located opposite to the dimerization site. Upon mimicking phosphorylation by the S318D replacement, RRM3 mutant shows less ability to recognize RNA due to an electrostatic repulsion effect with the phosphate groups. Our study brings new insights of HuR RRM3 as a domain involved in protein oligomerization and RNA interaction, both functions regulated by 2 surfaces on opposite sides of the RRM domain. PMID:25584704

  13. The C-terminal RNA binding motif of HuR is a multi-functional domain leading to HuR oligomerization and binding to U-rich RNA targets

    PubMed Central

    Scheiba, Rafael M; de Opakua, Alain Ibáñez; Díaz-Quintana, Antonio; Cruz-Gallardo, Isabel; Martínez-Cruz, Luis A; Martínez-Chantar, María L; Blanco, Francisco J; Díaz-Moreno, Irene

    2014-01-01

    Human antigen R (HuR) is a 32 kDa protein with 3 RNA Recognition Motifs (RRMs), which bind to Adenylate and uridylate Rich Elements (AREs) of mRNAs. Whereas the N-terminal and central domains (RRM1 and RRM2) are essential for AREs recognition, little is known on the C-terminal RRM3 beyond its implication in HuR oligomerization and apoptotic signaling. We have developed a detergent-based strategy to produce soluble RRM3 for structural studies. We have found that it adopts the typical RRM fold, does not interact with the RRM1 and RRM2 modules, and forms dimers in solution. Our NMR measurements, combined with Molecular Dynamics simulations and Analytical Ultracentrifugation experiments, show that the protein dimerizes through a helical region that contains the conserved W261 residue. We found that HuR RRM3 binds to 5′-mer U-rich RNA stretches through the solvent exposed side of its β-sheet, located opposite to the dimerization site. Upon mimicking phosphorylation by the S318D replacement, RRM3 mutant shows less ability to recognize RNA due to an electrostatic repulsion effect with the phosphate groups. Our study brings new insights of HuR RRM3 as a domain involved in protein oligomerization and RNA interaction, both functions regulated by 2 surfaces on opposite sides of the RRM domain. PMID:25584704

  14. Assessment of the potential contribution of the highly conserved C-terminal motif (C10) of Borrelia burgdorferi outer surface protein C in transmission and infectivity.

    PubMed

    Earnhart, Christopher G; Rhodes, DeLacy V L; Smith, Alexis A; Yang, Xiuli; Tegels, Brittney; Carlyon, Jason A; Pal, Utpal; Marconi, Richard T

    2014-03-01

    OspC is produced by all species of the Borrelia burgdorferi sensu lato complex and is required for infectivity in mammals. To test the hypothesis that the conserved C-terminal motif (C10) of OspC is required for function in vivo, a mutant B. burgdorferi strain (B31::ospCΔC10) was created in which ospC was replaced with an ospC gene lacking the C10 motif. The ability of the mutant to infect mice was investigated using tick transmission and needle inoculation. Infectivity was assessed by cultivation, qRT-PCR, and measurement of IgG antibody responses. B31::ospCΔC10 retained the ability to infect mice by both needle and tick challenge and was competent to survive in ticks after exposure to the blood meal. To determine whether recombinant OspC protein lacking the C-terminal 10 amino acid residues (rOspCΔC10) can bind plasminogen, the only known mammalian-derived ligand for OspC, binding analyses were performed. Deletion of the C10 motif resulted in a statistically significant decrease in plasminogen binding. Although deletion of the C10 motif influenced plasminogen binding, it can be concluded that the C10 motif is not required for OspC to carry out its critical in vivo functions in tick to mouse transmission. PMID:24376161

  15. Calculated spanwise lift distributions, influence functions, and influence coefficients for unswept wings in subsonic flow

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W; Zlotnick, Martin

    1955-01-01

    Spanwise lift distributions have been calculated for nineteen unswept wings with various aspect ratios and taper ratios and with a variety of angle-of-attack or twist distributions, including flap and aileron deflections, by means of the Weissinger method with eight control points on the semispan. Also calculated were aerodynamic influence coefficients which pertain to a certain definite set of stations along the span, and several methods are presented for calculating aerodynamic influence functions and coefficients for stations other than those stipulated. The information presented in this report can be used in the analysis of untwisted wings or wings with known twist distributions, as well as in aeroelastic calculations involving initially unknown twist distributions.

  16. The Influence of Head Motion on Intrinsic Functional Connectivity MRI

    PubMed Central

    Van Dijk, Koene R.A.; Sabuncu, Mert R.; Buckner, Randy L.

    2011-01-01

    Functional connectivity MRI (fcMRI) has been widely applied to explore group and individual differences. A confounding factor is head motion. Children move more than adults, older adults more than younger adults, and patients more than controls. Head motion varies considerably among individuals within the same population. Here we explored the influence of head motion on fcMRI estimates. Mean head displacement, maximum head displacement, the number of micro movements (> 0.1 mm), and head rotation were estimated in 1000 healthy, young adult subjects each scanned for two resting-state runs on matched 3T scanners. The majority of fcMRI variation across subjects was not linked to estimated head motion. However, head motion had significant, systematic effects on fcMRI network measures. Head motion was associated with decreased functional coupling in the default and frontoparietal control networks – two networks characterized by coupling among distributed regions of association cortex. Other network measures increased with motion including estimates of local functional coupling and coupling between left and right motor regions – a region pair sometimes used as a control in studies to establish specificity. Comparisons between groups of individuals with subtly different levels of head motion yielded difference maps that could be mistaken for neuronal effects in other contexts. These effects are important to consider when interpreting variation between groups and across individuals. PMID:21810475

  17. Motif types, motif locations and base composition patterns around the RNA polyadenylation site in microorganisms, plants and animals

    PubMed Central

    2014-01-01

    Background The polyadenylation of RNA is critical for gene functioning, but the conserved sequence motifs (often called signal or signature motifs), motif locations and abundances, and base composition patterns around mRNA polyadenylation [poly(A)] sites are still uncharacterized in most species. The evolutionary tendency for poly(A) site selection is still largely unknown. Results We analyzed the poly(A) site regions of 31 species or phyla. Different groups of species showed different poly(A) signal motifs: UUACUU at the poly(A) site in the parasite Trypanosoma cruzi; UGUAAC (approximately 13 bases upstream of the site) in the alga Chlamydomonas reinhardtii; UGUUUG (or UGUUUGUU) at mainly the fourth base downstream of the poly(A) site in the parasite Blastocystis hominis; and AAUAAA at approximately 16 bases and approximately 19 bases upstream of the poly(A) site in animals and plants, respectively. Polyadenylation signal motifs are usually several hundred times more abundant around poly(A) sites than in whole genomes. These predominant motifs usually had very specific locations, whether upstream of, at, or downstream of poly(A) sites, depending on the species or phylum. The poly(A) site was usually an adenosine (A) in all analyzed species except for B. hominis, and there was weak A predominance in C. reinhardtii. Fungi, animals, plants, and the protist Phytophthora infestans shared a general base abundance pattern (or base composition pattern) of “U-rich—A-rich—U-rich—Poly(A) site—U-rich regions”, or U-A-U-A-U for short, with some variation for each kingdom or subkingdom. Conclusion This study identified the poly(A) signal motifs, motif locations, and base composition patterns around mRNA poly(A) sites in protists, fungi, plants, and animals and provided insight into poly(A) site evolution. PMID:25052519

  18. Recognition of 27-Class Protein Folds by Adding the Interaction of Segments and Motif Information

    PubMed Central

    Feng, Zhenxing; Hu, Xiuzhen

    2014-01-01

    The recognition of protein folds is an important step for the prediction of protein structure and function. After the recognition of 27-class protein folds in 2001 by Ding and Dubchak, prediction algorithms, prediction parameters, and new datasets for the prediction of protein folds have been improved. However, the influences of interactions from predicted secondary structure segments and motif information on protein folding have not been considered. Therefore, the recognition of 27-class protein folds with the interaction of segments and motif information is very important. Based on the 27-class folds dataset built by Liu et al., amino acid composition, the interactions of secondary structure segments, motif frequency, and predicted secondary structure information were extracted. Using the Random Forest algorithm and the ensemble classification strategy, 27-class protein folds and corresponding structural classification were identified by independent test. The overall accuracy of the testing set and structural classification measured up to 78.38% and 92.55%, respectively. When the training set and testing set were combined, the overall accuracy by 5-fold cross validation was 81.16%. In order to compare with the results of previous researchers, the method above was tested on Ding and Dubchak's dataset which has been widely used by many previous researchers, and an improved overall accuracy 70.24% was obtained. PMID:25136571

  19. Transition from winnerless competition to synchronization in time-delayed neuronal motifs

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Li, P. J.; Wu, F. P.; Wu, W. J.; Jiang, M.; Chen, L.; Qi, G. X.; Huang, H. B.

    2012-03-01

    The dynamics of brain functional motifs are studied. It is shown that different rhythms can occur in the motifs when time delay is taken into account. These rhythms include synchronization, winnerless competition (WLC) and "two plus one" (TPO). The main discovery is that the transition from WLC to synchronization can be induced simply by time delay. It is also concluded that some medium time delay is needed to achieve WLC in the realistic case. The motifs composed of heterogeneous neurons are also considered.

  20. Structural motifs of pre-nucleation clusters.

    PubMed

    Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E

    2013-10-01

    Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions. PMID:24116574

  1. Mining tertiary structural motifs for assessment of designability.

    PubMed

    Zhang, Jian; Grigoryan, Gevorg

    2013-01-01

    The observation of a limited secondary-structural alphabet in native proteins, with significant sequence preferences, has profoundly influenced the fields of protein design and structure prediction (Simons, Kooperberg, Huang, & Baker, 1997; Verschueren et al., 2011). In the era of structural genomics, as the size of the structural dataset continues to grow rapidly, it is becoming possible to extend this analysis to tertiary structural motifs and their sequences. For a hypothetical tertiary motif, the rate of its utilization in natural proteins may be used to assess its designability-the ease with which the motif can be realized with natural amino acids. This requires a structural similarity search methodology, which rather than looking for global topological agreement (more appropriate for categorization of full proteins or domains), identifies detailed geometric matches. In this chapter, we introduce such a method, called MaDCaT, and demonstrate its use by assessing the designability landscapes of two tertiary structural motifs. We also show that such analysis can establish structure/sequence links by providing the sequence constraints necessary to encode designable motifs. As logical extension of their secondary-structure counterparts, tertiary structural preferences will likely prove extremely useful in de novo protein design and structure prediction. PMID:23422424

  2. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley Waisang; Pak, Chan-Gi

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle

  3. Influence of gold nanoparticles on platelets functional activity in vitro

    NASA Astrophysics Data System (ADS)

    Akchurin, Garif G.; Akchurin, George G.; Ivanov, Alexey N.; Kirichuk, Vyacheslav F.; Terentyuk, George S.; Khlebtsov, Boris N.; Khlebtsov, Nikolay G.

    2008-02-01

    Now in the leading biomedical centers of the world approved new technology of laser photothermal destruction of cancer cells using plasmon gold nanoparticles. Investigations of influence of gold nanoparticles on white rat platelets aggregative activity in vitro have been made. Platelet aggregation was investigated in platelet rich plasma (PRP) with help of laser analyzer 230 LA <>, Russia). Aggregation inductor was ADP solution in terminal concentration 2.5 micromole (<>, Russia). Gold nanoshells soluted in salt solution were used for experiments. Samples of PRP were incubated with 50 or 100 μl gold nanoshells solution in 5 minute, after that we made definition ADP induced platelet aggregation. We found out increase platelet function activity after incubation with nanoparticles solution which shown in maximum ADP-induced aggregation degree increase. Increase platelet function activity during intravenous nanoshells injection can be cause of thrombosis on patients. That's why before clinical application of cancer cell destruction based on laser photothermal used with plasmon gold nanoparticles careful investigations of thrombosis process and detail analyze of physiological blood parameters are very necessary.

  4. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs

    PubMed Central

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5′ distal regions were often enriched in 3′ distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/. PMID:25505144

  5. Structural and Mechanistic Analysis of Trichodiene Synthase Using Site-Directed Mutagenesis: Probing the Catalytic Function of Tryosine-295 and the Asparagine-225/Serine-229/Glutamate-233-Mg2+ B Motif

    SciTech Connect

    Vedula,L.; Jiang, J.; Zakharian, T.; Cane, D.; Christianson, D.

    2008-01-01

    Trichodiene synthase from Fusarium sporotrichioides contains two metal ion-binding motifs required for the cyclization of farnesyl diphosphate: the 'aspartate-rich' motif D100DXX(D/E) that coordinates to Mg{sup 2+}{sub A} and Mg{sup 2+}{sub C} source, and the 'NSE/DTE' motif N225DXXSXXXE that chelates Mg{sup 2+}{sub b} (boldface indicates metal ion ligands). Here, we report steady-state kinetic parameters, product array analyses, and X-ray crystal structures of trichodiene synthase mutants in which the fungal NSE motif is progressively converted into a plant-like DDXXTXXXE motif, resulting in a degradation in both steady-state kinetic parameters and product specificity. Each catalytically active mutant generates a different distribution of sesquiterpene products, and three newly detected sesquiterpenes are identified. In addition, the kinetic and structural properties of the Y295F mutant of trichodiene synthase were found to be similar to those of the wild-type enzyme, thereby ruling out a proposed role for Y295 in catalysis.

  6. Pharmaceutical excipients influence the function of human uptake transporting proteins.

    PubMed

    Engel, Anett; Oswald, Stefan; Siegmund, Werner; Keiser, Markus

    2012-09-01

    Although pharmaceutical excipients are supposed to be pharmacologically inactive, solubilizing agents like Cremophor EL have been shown to interact with cytochrome P450 (CYP)-dependent drug metabolism as well as efflux transporters such as P-glycoprotein (ABCB1) and multidrug resistance associated protein 2 (ABCC2). However, knowledge about their influence on the function of uptake transporters important in drug disposition is very limited. In this study we investigated the in vitro influence of polyethylene glycol 400 (PEG), hydroxypropyl-β-cyclodextrin (HPCD), Solutol HS 15 (SOL), and Cremophor EL (CrEL) on the organic anion transporting polypeptides (OATP) 1A2, OATP2B1, OATP1B1, and OATP1B3 and the Na(+)/taurocholate cotransporting polypeptide (NTCP). In stably transfected human embryonic kidney cells we analyzed the competition of the excipients with the uptake of bromosulfophthalein in OATP1B1, OATP1B3, OATP2B1, and NTCP, estrone-3-sulfate (E(3)S) in OATP1A2, OATP1B1, and OATP2B1, estradiol-17β-glucuronide in OATP1B3, and taurocholate (TA) in OATP1A2 and NTCP cells. SOL and CrEL were the most potent inhibitors of all transporters with the strongest effect on OATP1A2, OATP1B3, and OATP2B1 (IC(50) < 0.01%). HPCD also strongly inhibited all transport proteins but only for substrates containing a sterane-backbone. Finally, PEG seems to be a selective and potent modulator of OATP1A2 with IC(50) values of 0.05% (TA) and 0.14% (E(3)S). In conclusion, frequently used solubilizing agents were shown to interact substantially with intestinal and hepatic uptake transporters which should be considered in drug development. However, the clinical relevance of these findings needs to be evaluated in further in vivo studies. PMID:22808947

  7. Fast and Accurate Discovery of Degenerate Linear Motifs in Protein Sequences

    PubMed Central

    Levy, Emmanuel D.; Michnick, Stephen W.

    2014-01-01

    Linear motifs mediate a wide variety of cellular functions, which makes their characterization in protein sequences crucial to understanding cellular systems. However, the short length and degenerate nature of linear motifs make their discovery a difficult problem. Here, we introduce MotifHound, an algorithm particularly suited for the discovery of small and degenerate linear motifs. MotifHound performs an exact and exhaustive enumeration of all motifs present in proteins of interest, including all of their degenerate forms, and scores the overrepresentation of each motif based on its occurrence in proteins of interest relative to a background (e.g., proteome) using the hypergeometric distribution. To assess MotifHound, we benchmarked it together with state-of-the-art algorithms. The benchmark consists of 11,880 sets of proteins from S. cerevisiae; in each set, we artificially spiked-in one motif varying in terms of three key parameters, (i) number of occurrences, (ii) length and (iii) the number of degenerate or “wildcard” positions. The benchmark enabled the evaluation of the impact of these three properties on the performance of the different algorithms. The results showed that MotifHound and SLiMFinder were the most accurate in detecting degenerate linear motifs. Interestingly, MotifHound was 15 to 20 times faster at comparable accuracy and performed best in the discovery of highly degenerate motifs. We complemented the benchmark by an analysis of proteins experimentally shown to bind the FUS1 SH3 domain from S. cerevisiae. Using the full-length protein partners as sole information, MotifHound recapitulated most experimentally determined motifs binding to the FUS1 SH3 domain. Moreover, these motifs exhibited properties typical of SH3 binding peptides, e.g., high intrinsic disorder and evolutionary conservation, despite the fact that none of these properties were used as prior information. MotifHound is available (http://michnick.bcm.umontreal.ca or http

  8. Changes in the quaternary structure and function of MjHSP16.5 attributable to deletion of the IXI motif and introduction of the substitution, R107G, in the α-crystallin domain

    PubMed Central

    Quinlan, Roy A.; Zhang, Yan; Lansbury, Andrew; Williamson, Ian; Pohl, Ehmke; Sun, Fei

    2013-01-01

    The archael small heat-shock protein (sHSP), MjHSP16.5, forms a 24-subunit oligomer with octahedral symmetry. Here, we demonstrate that the IXI motif present in the C-terminal domain is necessary for the oligomerization of MjHSP16.5. Removal increased the in vitro chaperone activity with citrate synthase as the client protein. Less predictable were the effects of the R107G substitution in MjHSP16.5 because of the differences in the oligomerization of metazoan and non-metazoan sHSPs. We present the crystal structure for MjHSP16.5 R107G and compare this with an improved (2.5 Å) crystal structure for wild-type (WT) MjHSP16.5. Although no significant structural differences were found in the crystal, using cryo-electron microscopy, we identified two 24mer species with octahedral symmetry for the WT MjHSP16.5 both at room temperature and at 60°C, all showing two major species with the same diameter of 12.4 nm. Similarly, at room temperature, there are also two kinds of 12.4 nm oligomers for R107G MjHSP16.5, but in the 60°C sample, a larger 24mer species with a diameter of 13.6 nm was observed with significant changes in the fourfold symmetry axis and dimer–dimer interface. This highly conserved arginine, therefore, contributes to the quaternary organization of non-metazoan sHSP oligomers. Potentially, the R107G substitution has functional consequences as R107G MjHSP16.5 was far superior to the WT protein in protecting βL-crystallin against heat-induced aggregation. PMID:23530263

  9. The N-terminal leucine-zipper motif in PTRF/cavin-1 is essential and sufficient for its caveolae-association

    SciTech Connect

    Wei, Zhuang; Zou, Xinle; Wang, Hongzhong; Lei, Jigang; Wu, Yuan; Liao, Kan

    2015-01-16

    Highlight: • The N-terminal leucine-zipper motif in PTRF/cavin-1 determines caveolar association. • Different cellular localization of PTRF/cavin-1 influences its serine 389 and 391 phosphorylation state. • PTRF/cavin-1 regulates cell motility via its caveolar association. - Abstract: PTRF/cavin-1 is a protein of two lives. Its reported functions in ribosomal RNA synthesis and in caveolae formation happen in two different cellular locations: nucleus vs. plasma membrane. Here, we identified that the N-terminal leucine-zipper motif in PTRF/cavin-1 was essential for the protein to be associated with caveolae in plasma membrane. It could counteract the effect of nuclear localization sequence in the molecule (AA 235–251). Deletion of this leucine-zipper motif from PTRF/cavin-1 caused the mutant to be exclusively localized in nuclei. The fusion of this leucine-zipper motif with histone 2A, which is a nuclear protein, could induce the fusion protein to be exported from nucleus. Cell migration was greatly inhibited in PTRF/cavin-1{sup −/−} mouse embryonic fibroblasts (MEFs). The inhibited cell motility could only be rescued by exogenous cavin-1 but not the leucine-zipper motif deleted cavin-1 mutant. Plasma membrane dynamics is an important factor in cell motility control. Our results suggested that the membrane dynamics in cell migration is affected by caveolae associated PTRF/cavin-1.

  10. Structural motifs and the stability of fullerenes

    SciTech Connect

    Austin, S.J.; Fowler, P.W.; Manolopoulos, D.E.; Orlandi, G.; Zerbetto, F.

    1995-05-18

    Full geometry optimization has been performed within the semiempirical QCFF/PI model for the 1812 fullerene structural isomers of C{sub 60} formed by 12 pentagons and 20 hexagons. All are local minima on the potential energy hypersurface. Correlations of total energy with many structural motifs yield highly scattered diagrams, but some exhibit linear trends. Penalty and merit functions can be assigned to certain motifs: inclusion of a fused pentagon pair entails an average penalty of 111 kJ mol{sup -1}; a generic hexagon triple costs 23 kJ mol{sup -1}; a triple (open or fused) comprising a pentagon between two hexagonal neighbors gives a stabilization of 19 kJ mol{sup -1}. These results can be understood in terms of the curved nature of fullerene molecules: pentagons should be isolated to avoid sharp local curvature, hexagon triples are costly because they enforce local planarity and hence imply high curvature in another part of the fullerene surface, but hexagon-pentagon-hexagon triples allow the surface to distribute steric strain by warping. The best linear fit is found for H, the second moment of the hexagon-neighbor-index signature, which fits the total energies with a standard deviation of only 53 kJ mol{sup -1} and must be minimized for stability; this index too can be interpreted in terms of curvature. 26 refs., 5 figs.

  11. Redox state influence on human galectin-1 function.

    PubMed

    Yu, Xing; Scott, Stacy A; Pritchard, Rhys; Houston, Todd A; Ralph, Stephen J; Blanchard, Helen

    2015-09-01

    Intracellular and extracellular functions of human galectin-1 are influenced by its redox surroundings due to the presence of six cysteines within its amino acid sequence. Galectin-1 recognises intracellular-membrane-anchored Ras proteins that act as molecular switches regulating multiple signal transduction pathways. Human tumours frequently express Ras proteins that have become continuously activated due to point mutations, and this typically leads to deregulation of tumour cell growth, angiogenesis and invasion of metastatic cancer cells. Of significance is that galectin-1 preferably recognises H-Ras, one of the human Ras isoforms, and in particular galectin-1 recognition of the H-Ras farnesyl moiety is paramount to H-Ras membrane anchorage, a prerequisite step for H-Ras-mediated signal transduction regulating normal cell growth and malignant transformation. Herein the impact of the redox state on galectin-1's ability to interact with farnesyl analogues is explored. We demonstrate for the first time that reduced galectin-1 directly binds farnesyl and does so in a carbohydrate-independent manner. A K28T mutation abolishes farnesyl recognition by reduced dimeric galectin-1 whilst its carbohydrate-binding activity is retained, thus demonstrating the presence of an independent region on galectin-1 pertaining to growth inhibitory activity. Intriguingly, oxidised galectin-1 also recognises farnesyl, the biological implication of this novel finding is yet to be elucidated. Further, the redox effect on galectin-1 extracellular function was investigated and we discover that oxidised galectin-1 demonstrates a protective effect upon acute lymphoblastic leukaemia cells challenged by oxidative stress. PMID:26116885

  12. A survey of DNA motif finding algorithms

    PubMed Central

    Das, Modan K; Dai, Ho-Kwok

    2007-01-01

    Background Unraveling the mechanisms that regulate gene expression is a major challenge in biology. An important task in this challenge is to identify regulatory elements, especially the binding sites in deoxyribonucleic acid (DNA) for transcription factors. These binding sites are short DNA segments that are called motifs. Recent advances in genome sequence availability and in high-throughput gene expression analysis technologies have allowed for the development of computational methods for motif finding. As a result, a large number of motif finding algorithms have been implemented and applied to various motif models over the past decade. This survey reviews the latest developments in DNA motif finding algorithms. Results Earlier algorithms use promoter sequences of coregulated genes from single genome and search for statistically overrepresented motifs. Recent algorithms are designed to use phylogenetic footprinting or orthologous sequences and also an integrated approach where promoter sequences of coregulated genes and phylogenetic footprinting are used. All the algorithms studied have been reported to correctly detect the motifs that have been previously detected by laboratory experimental approaches, and some algorithms were able to find novel motifs. However, most of these motif finding algorithms have been shown to work successfully in yeast and other lower organisms, but perform significantly worse in higher organisms. Conclusion Despite considerable efforts to date, DNA motif finding remains a complex challenge for biologists and computer scientists. Researchers have taken many different approaches in developing motif discovery tools and the progress made in this area of research is very encouraging. Performance comparison of different motif finding tools and identification of the best tools have proven to be a difficult task because tools are designed based on algorithms and motif models that are diverse and complex and our incomplete understanding of

  13. Transcriptional repression by the orphan steroid receptor RVR/Rev-erb beta is dependent on the signature motif and helix 5 in the E region: functional evidence for a biological role of RVR in myogenesis.

    PubMed Central

    Burke, L; Downes, M; Carozzi, A; Giguère, V; Muscat, G E

    1996-01-01

    RVR/Rev-erb beta/BD73 is an orphan steroid receptor that has no known ligand in the "classical' sense. RVR binds as a monomer to an element which consists of an A/T-rich sequence upstream of the consensus hexameric half-site. However, RVR does not activate transcription and blocks transactivation of this element by ROR/RZR. The mechanism of RVR action remains obscure, hence we used the GAL4 hybrid system to identify and characterize an active transcriptional silencer in the ligand binding domain (LBD) of RVR. Rigorous deletion and mutational analysis demonstrated that this repressor domain is encoded by amino acids 416-449 of RVR. Furthermore, we demonstrated that efficient repression is dependent on the so-called LBD-specific signature motif, (F/W)AKxxxxFxxLxxxDQxxLL (which spans loop3-4 and helix 4) and helix 5 (H5; identified in the crystal structures of the steroid receptor LBDs). Although RVR is expressed in many adult tissues, including skeletal muscle, and during embryogenesis, its physiological function in differentiation and mammalian development remains unknown. Since other 'orphans', e.g. COUP-TF II and Rev-erbA alpha, have been demonstrated to regulate muscle and adipocyte differentiation, we investigated the expression and functional role of RVR during mouse myogenesis. In C2C12 myogenic cells, RVR mRNA was detected in proliferating myoblasts and was suppressed when the cells were induced to differentiate into post-mitotic, multinucleated myotubes by serum withdrawal. This decrease in RVR mRNA correlated with the appearance of muscle-specific markers (e.g. myogenin mRNA). RVR 'loss of function' studies by constitutive over-expression of a dominant negative RVR delta E resulted in increased levels of p21Cip1/Waf1 and myogenin mRNAs after serum withdrawal. Time course studies indicated that expression of RVR delta E mRNA results in the precocious induction and accumulation of myogenin and p21 mRNAs after serum withdrawal. In addition, we demonstrated

  14. Comparative genomic analysis of upstream miRNA regulatory motifs in Caenorhabditis.

    PubMed

    Jovelin, Richard; Krizus, Aldis; Taghizada, Bakhtiyar; Gray, Jeremy C; Phillips, Patrick C; Claycomb, Julie M; Cutter, Asher D

    2016-07-01

    MicroRNAs (miRNAs) comprise a class of short noncoding RNA molecules that play diverse developmental and physiological roles by controlling mRNA abundance and protein output of the vast majority of transcripts. Despite the importance of miRNAs in regulating gene function, we still lack a complete understanding of how miRNAs themselves are transcriptionally regulated. To fill this gap, we predicted regulatory sequences by searching for abundant short motifs located upstream of miRNAs in eight species of Caenorhabditis nematodes. We identified three conserved motifs across the Caenorhabditis phylogeny that show clear signatures of purifying selection from comparative genomics, patterns of nucleotide changes in motifs of orthologous miRNAs, and correlation between motif incidence and miRNA expression. We then validated our predictions with transgenic green fluorescent protein reporters and site-directed mutagenesis for a subset of motifs located in an enhancer region upstream of let-7 We demonstrate that a CT-dinucleotide motif is sufficient for proper expression of GFP in the seam cells of adult C. elegans, and that two other motifs play incremental roles in combination with the CT-rich motif. Thus, functional tests of sequence motifs identified through analysis of molecular evolutionary signatures provide a powerful path for efficiently characterizing the transcriptional regulation of miRNA genes. PMID:27140965

  15. A structural-alphabet-based strategy for finding structural motifs across protein families.

    PubMed

    Wu, Chih Yuan; Chen, Yao Chi; Lim, Carmay

    2010-08-01

    Proteins with insignificant sequence and overall structure similarity may still share locally conserved contiguous structural segments; i.e. structural/3D motifs. Most methods for finding 3D motifs require a known motif to search for other similar structures or functionally/structurally crucial residues. Here, without requiring a query motif or essential residues, a fully automated method for discovering 3D motifs of various sizes across protein families with different folds based on a 16-letter structural alphabet is presented. It was applied to structurally non-redundant proteins bound to DNA, RNA, obligate/non-obligate proteins as well as free DNA-binding proteins (DBPs) and proteins with known structures but unknown function. Its usefulness was illustrated by analyzing the 3D motifs found in DBPs. A non-specific motif was found with a 'corner' architecture that confers a stable scaffold and enables diverse interactions, making it suitable for binding not only DNA but also RNA and proteins. Furthermore, DNA-specific motifs present 'only' in DBPs were discovered. The motifs found can provide useful guidelines in detecting binding sites and computational protein redesign. PMID:20525797

  16. cWINNOWER algorithm for finding fuzzy dna motifs

    NASA Technical Reports Server (NTRS)

    Liang, S.; Samanta, M. P.; Biegel, B. A.

    2004-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if a clique consisting of a sufficiently large number of mutated copies of the motif (i.e., the signals) is present in the DNA sequence. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum detectable clique size qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12,000 for (l, d) = (15, 4). Copyright Imperial College Press.

  17. Influence of abuse history on gastric sensorimotor function in functional dyspepsia.

    PubMed

    Geeraerts, B; Van Oudenhove, L; Fischler, B; Vandenberghe, J; Caenepeel, P; Janssens, J; Tack, J

    2009-01-01

    Patients with functional gastrointestinal disorders have elevated rates of sexual or physical abuse, which may be associated with altered rectal sensorimotor function in irritable bowel syndrome. The aim was to study the association between abuse history and gastric sensorimotor function in functional dyspepsia (FD). We studied gastric sensorimotor function with barostat (sensitivity, compliance and accommodation) and gastric emptying test in 233 consecutive FD patients from a tertiary care centre (162 women, mean age 41.6 +/- 0.9). Patients filled out self-report questionnaires on history of sexual and physical abuse during childhood or adulthood. Eighty-four patients (out of 198, 42.4%) reported an overall history of abuse [sexual and physical in respectively 30.0% (60/200) and 20.3% (42/207)]. FD patients reporting general as well as severe childhood sexual abuse have significantly lower discomfort thresholds during gastric distension [respectively 10.5 +/- 0.4 vs 7.5 +/- 1.0 mmHg above minimal distending pressure (MDP), P = 0.014 and 10.5 +/- 0.4 vs 6.6 +/- 1.2 mmHg above MDP, P = 0.007]. The corresponding intra-balloon volume was also significantly lower (respectively 579 +/- 21 vs 422 +/- 59 mL, P = 0.013 and 579 +/- 19 vs 423 +/- 79 mL, P = 0.033). Gastric accommodation was significantly more pronounced in patients reporting rape during adulthood (91 +/- 12 vs 130 +/- 40 mL, P = 0.016). Abuse history was not associated with differences in gastric emptying. A history of abuse is associated with alterations in gastric sensorimotor function in FD. Particularly sexual abuse, rather than physical abuse, may influence gastric sensitivity and motor function. PMID:18694440

  18. Multi-functional ultrathin PdxCu1-x and Pt~PdxCu1-x one-dimensional nanowire motifs for various small molecule oxidation reactions

    SciTech Connect

    Liu, Haiqing; Wong, Stanislaus S.; Adzic, Radoslav R.

    2015-11-18

    Developing novel electrocatalysts for small molecule oxidation processes, including formic acid oxidation (FAOR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR), denoting the key anodic reactions for their respective fuel cell configurations, is a significant and relevant theme of recent efforts in the field. Herein, in this report, we demonstrated a concerted effort to couple and combine the benefits of small size, anisotropic morphology, and tunable chemical composition in order to devise a novel “family” of functional architectures. In particular, we have fabricated not only ultrathin 1-D Pd1–xCux alloys but also Pt-coated Pd1–xCux (i.e., Pt~Pd1–xCux; herein the ~ indicates an intimate association, but not necessarily actual bond formation, between the inner bimetallic core and the Pt outer shell) core–shell hierarchical nanostructures with readily tunable chemical compositions by utilizing a facile, surfactant-based, wet chemical synthesis coupled with a Cu underpotential deposition technique. Our main finding is that our series of as-prepared nanowires are functionally flexible. More precisely, we demonstrate that various examples within this “family” of structural motifs can be tailored for exceptional activity with all 3 of these important electrocatalytic reactions. In particular, we note that our series of Pd1–xCux nanowires all exhibit enhanced FAOR activities as compared with not only analogous Pd ultrathin nanowires but also commercial Pt and Pd standards, with Pd9Cu representing the “optimal” composition. Moreover, our group of Pt~Pd1–xCux nanowires consistently outperformed not only commercial Pt NPs but also ultrathin Pt nanowires by several fold orders of magnitude for both the MOR and EOR reactions in alkaline media. As a result, the variation of the MOR and EOR performance with

  19. Discovering Motifs in Ranked Lists of DNA Sequences

    PubMed Central

    Eden, Eran; Lipson, Doron; Yogev, Sivan; Yakhini, Zohar

    2007-01-01

    Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP–chip (chromatin immuno-precipitation on a microarray) measurements. Several major challenges in sequence motif discovery still require consideration: (i) the need for a principled approach to partitioning the data into target and background sets; (ii) the lack of rigorous models and of an exact p-value for measuring motif enrichment; (iii) the need for an appropriate framework for accounting for motif multiplicity; (iv) the tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked lists that resolves these four issues. We demonstrate the implementation of this framework in a software application, termed DRIM (discovery of rank imbalanced motifs), which identifies sequence motifs in lists of ranked DNA sequences. We applied DRIM to ChIP–chip and CpG methylation data and obtained the following results. (i) Identification of 50 novel putative transcription factor (TF) binding sites in yeast ChIP–chip data. The biological function of some of them was further investigated to gain new insights on transcription regulation networks in yeast. For example, our discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding enhancement to sequences containing CA repeats. (ii) Discovery of novel motifs in human cancer CpG methylation data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation are mechanistically linked. Overall

  20. Motifs in triadic random graphs based on Steiner triple systems

    NASA Astrophysics Data System (ADS)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  1. Transcription factor and microRNA-regulated network motifs for cancer and signal transduction networks

    PubMed Central

    2015-01-01

    Abstract Background Molecular networks are the basis of biological processes. Such networks can be decomposed into smaller modules, also known as network motifs. These motifs show interesting dynamical behaviors, in which co-operativity effects between the motif components play a critical role in human diseases. We have developed a motif-searching algorithm, which is able to identify common motif types from the cancer networks and signal transduction networks (STNs). Some of the network motifs are interconnected which can be merged together and form more complex structures, the so-called coupled motif structures (CMS). These structures exhibit mixed dynamical behavior, which may lead biological organisms to perform specific functions. Results In this study, we integrate transcription factors (TFs), microRNAs (miRNAs), miRNA targets and network motifs information to build the cancer-related TF-miRNA-motif networks (TMMN). This allows us to examine the role of network motifs in cancer formation at different levels of regulation, i.e. transcription initiation (TF → miRNA), gene-gene interaction (CMS), and post-transcriptional regulation (miRNA → target genes). Among the cancer networks and STNs we considered, it is found that there is a substantial amount of crosstalking through motif interconnections, in particular, the crosstalk between prostate cancer network and PI3K-Akt STN. Conclusions To validate the role of network motifs in cancer formation, several examples are presented which demonstrated the effectiveness of the present approach. A web-based platform has been set up which can be accessed at: http://ppi.bioinfo.asia.edu.tw/pathway/. It is very likely that our results can supply very specific CMS missing information for certain cancer types, it is an indispensable tool for cancer biology research. PMID:25707690

  2. WordSpy: identifying transcription factor binding motifs by building a dictionary and learning a grammar

    PubMed Central

    Wang, Guandong; Yu, Taotao; Zhang, Weixiong

    2005-01-01

    Transcription factor (TF) binding sites or motifs (TFBMs) are functional cis-regulatory DNA sequences that play an essential role in gene transcriptional regulation. Although many experimental and computational methods have been developed, finding TFBMs remains a challenging problem. We propose and develop a novel dictionary based motif finding algorithm, which we call WordSpy. One significant feature of WordSpy is the combination of a word counting method and a statistical model which consists of a dictionary of motifs and a grammar specifying their usage. The algorithm is suitable for genome-wide motif finding; it is capable of discovering hundreds of motifs from a large set of promoters in a single run. We further enhance WordSpy by applying gene expression information to separate true TFBMs from spurious ones, and by incorporating negative sequences to identify discriminative motifs. In addition, we also use randomly selected promoters from the genome to evaluate the significance of the discovered motifs. The output from WordSpy consists of an ordered list of putative motifs and a set of regulatory sequences with motif binding sites highlighted. The web server of WordSpy is available at . PMID:15980501

  3. Molecular Recognition and Structural Influences on Function in Bio-nanosystems of Nucleic Acids and Proteins

    NASA Astrophysics Data System (ADS)

    Sethaphong, Latsavongsakda

    This work examines smart material properties of rational self-assembly and molecular recognition found in nano-biosystems. Exploiting the sequence and structural information encoded within nucleic acids and proteins will permit programmed synthesis of nanomaterials and help create molecular machines that may carry out new roles involving chemical catalysis and bioenergy. Responsive to different ionic environments thru self-reorgnization, nucleic acids (NA) are nature's signature smart material; organisms such as viruses and bacteria use features of NAs to react to their environment and orchestrate their lifecycle. Furthermore, nucleic acid systems (both RNA and DNA) are currently exploited as scaffolds; recent applications have been showcased to build bioelectronics and biotemplated nanostructures via directed assembly of multidimensional nanoelectronic devices 1. Since the most stable and rudimentary structure of nucleic acids is the helical duplex, these were modeled in order to examine the influence of the microenvironment, sequence, and cation-dependent perturbations of their canonical forms. Due to their negatively charged phosphate backbone, NA's rely on counterions to overcome the inherent repulsive forces that arise from the assembly of two complementary strands. As a realistic model system, we chose the HIV-TAR helix (PDB ID: 397D) to study specific sequence motifs on cation sequestration. At physiologically relevant concentrations of sodium and potassium ions, we observed sequence based effects where purine stretches were adept in retaining high residency cations. The transitional space between adenine and guanosine nucleotides (ApG step) in a sequence proved the most favorable. This work was the first to directly show these subtle interactions of sequence based cationic sequestration and may be useful for controlling metallization of nucleic acids in conductive nanowires. Extending the study further, we explored the degree to which the structure of NA

  4. A meta-analysis of zooplankton functional traits influencing ecosystem function.

    PubMed

    Hébert, Marie-Pier; Beisner, Beatrix E; Maranger, Roxane

    2016-04-01

    The use of functional traits to characterize community composition has been proposed as a more effective way to link community structure to ecosystem functioning. Organismal morphology, body stoichiometry, and physiology can be readily linked to large-scale ecosystem processes through functional traits that inform on interspecific and species-environment interactions; yet such effect traits are still poorly included in trait-based approaches. Given their key trophic position in aquatic ecosystems, individual zooplankton affect energy fluxes and elemental processing. We compiled a large database of zooplankton traits contributing to carbon, nitrogen, and phosphorus cycling and examined the effect of classification and habitat (marine vs. freshwater) on trait relationships. Respiration and nutrient excretion rates followed mass-dependent scaling in both habitats, with exponents ranging from 0.70 to 0.90. Our analyses revealed surprising differences in allometry and respiration between habitats, with freshwater species having lower length-specific mass and three times higher mass-specific respiration rates. These differences in traits point to implications for ecological strategies as well as overall carbon storage and fluxes based on habitat type. Our synthesis quantifies multiple trait relationships and links organisms to ecosystem processes they influence, enabling a more complete integration of aquatic community ecology and biogeochemistry through the promising use of effect traits. PMID:27220222

  5. Comparative Influence of Imidafenacin and Oxybutynin on Voiding Function in Rats with Functional Urethral Obstruction.

    PubMed

    Fukata, A; Yamazaki, T

    2016-06-01

    An antimuscarinic therapy may increase the risk of voiding dysfunction. However, it is unclear whether the relative risk of voiding dysfunction is different among antimuscarinics. Therefore we determined the potencies both in enhancing the bladder capacity (BC), effectiveness, and in decreasing the maximum urinary flow rate (Qmax), voiding dysfunction, to compare their therapeutic indices.Under urethane anesthesia, urinary flow rate was measured at distal urethra using an ultrasonic flow meter in female Sprague-Dawley rats with functional urethral obstruction induced by a continuous i. v. infusion of α1-adrenoceptor agonist A-61603 (0.03 μg/kg/min). In a separate group of urethane-anesthetized rats without urethral obstruction, an intermittent cystometry was performed to determine BC.Intravenous imidafenacin and oxybutynin produced a significant dose-dependent decrease in Qmax with the minimum doses of 0.03 and 1 mg/kg, respectively. Imidafenacin and oxybutynin markedly increased BC, with minimum doses of 0.01 and 3 mg/kg, respectively. At the minimum dose to increase BC, oxybutynin caused a significant increase in residual urine volume with a significant decrease in voiding efficiency, whereas imidafenacin had no influence on these values. The relative influence index, which is the ratio of the minimum influence dose between in decreasing of Qmax and in increasing of BC, of imidafenacin was 10 fold higher than that of oxybutynin.This study suggests that imidafenacin has a lower relative risk of voiding difficulty compared with oxybutynin in rats. These results provide new information that antimuscarinics may have varying degrees of impact on voiding difficulty. PMID:26979753

  6. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    PubMed

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-01-01

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. PMID:24555784

  7. Disparate requirements for the Walker A and B ATPase motifs ofhuman RAD51D in homologous recombination

    SciTech Connect

    Wiese, Claudia; Hinz, John M.; Tebbs, Robert S.; Nham, Peter B.; Urbin, Salustra S.; Collins, David W.; Thompson, Larry H.; Schild, David

    2006-04-21

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C, and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks. Ectopic expression of wild type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  8. Remarkable enhancement in PLD activity from Streptoverticillium cinnamoneum by substituting serine residue into the GG/GS motif.

    PubMed

    Ogino, Chiaki; Daido, Hidenori; Ohmura, Yuka; Takada, Namiko; Itou, Yoshiki; Kondo, Akihiko; Fukuda, Hideki; Shimizu, Nobuaki

    2007-06-01

    The gene that encodes phospholipase D (PLD) from Streptoverticillium cinnamoneum contains three consensus regions (Region I, II and IV as shown in Fig. 1A) that are conserved among the PLD superfamily. The glycine-glycine (GG) motif in Region I and the glycine-serine (GS) motif in Region IV are also conserved in the PLD superfamily. These (GG and GS) motifs are located 7 residues downstream from each HKD motif. In an investigation of fifteen GG/GS motif mutants, generated as fusion proteins with maltose-binding protein (MBP-PLDs), three highly active mutants were identified. Three of the mutants (G215S, G216S, and G216S-S489G) contained a serine residue in the GG motif, and exhibited approximately a 9-27-fold increased transphosphatidylation activity to DPPC compared with recombinant wild type MBP-PLD. When heat stability was compared between three mutants and the recombinant wild type, only G216S-S489G showed heat labile properties. It appears that the 489th serine residue in the GS motif also contributes to the thermal stability of the enzyme. In addition, the GG/GS motif was very close to the active center residue, including two HKD motifs, as shown by computer modeling. The findings suggest that the GG/GS motif of PLD is a key motif that affects catalytic function and enzymatic stability. PMID:17499030

  9. Temporal motifs in time-dependent networks

    NASA Astrophysics Data System (ADS)

    Kovanen, Lauri; Karsai, Márton; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2011-11-01

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological-temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network.

  10. Sampling Motif-Constrained Ensembles of Networks

    NASA Astrophysics Data System (ADS)

    Fischer, Rico; Leitão, Jorge C.; Peixoto, Tiago P.; Altmann, Eduardo G.

    2015-10-01

    The statistical significance of network properties is conditioned on null models which satisfy specified properties but that are otherwise random. Exponential random graph models are a principled theoretical framework to generate such constrained ensembles, but which often fail in practice, either due to model inconsistency or due to the impossibility to sample networks from them. These problems affect the important case of networks with prescribed clustering coefficient or number of small connected subgraphs (motifs). In this Letter we use the Wang-Landau method to obtain a multicanonical sampling that overcomes both these problems. We sample, in polynomial time, networks with arbitrary degree sequences from ensembles with imposed motifs counts. Applying this method to social networks, we investigate the relation between transitivity and homophily, and we quantify the correlation between different types of motifs, finding that single motifs can explain up to 60% of the variation of motif profiles.

  11. MOTIFSIM: A web tool for detecting similarity in multiple DNA motif datasets.

    PubMed

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2015-07-01

    Currently, there are a number of motif detection tools available that possess unique functionality. These tools often report different motifs, and therefore use of multiple tools is generally advised since common motifs reported by multiple tools are more likely to be biologically significant. However, results produced by these different tools need to be compared and existing similarity detection tools only allow comparison between two data sets. Here, we describe a motif similarity detection tool (MOTIFSIM) possessing a web-based, user-friendly interface that is capable of detecting similarity from multiple DNA motif data sets concurrently. Results can either be viewed online or downloaded. Users may also download and run MOTIFSIM as a command-line tool in stand-alone mode. The web tool, along with its command-line version, user manuals, and source codes, are freely available at http://biogrid-head.engr.uconn.edu/motifsim/. PMID:26156781

  12. Identification and preliminary characterization of a protein motif related to the zinc finger.

    PubMed Central

    Lovering, R; Hanson, I M; Borden, K L; Martin, S; O'Reilly, N J; Evan, G I; Rahman, D; Pappin, D J; Trowsdale, J; Freemont, P S

    1993-01-01

    We have identified a protein motif, related to the zinc finger, which defines a newly discovered family of proteins. The motif was found in the sequence of the human RING1 gene, which is proximal to the major histocompatibility complex region on chromosome six. We propose naming this motif the "RING finger" and it is found in 27 proteins, all of which have putative DNA binding functions. We have synthesized a peptide corresponding to the RING1 motif and examined a number of properties, including metal and DNA binding. We provide evidence to support the suggestion that the RING finger motif is the DNA binding domain of this newly defined family of proteins. Images Fig. 1 Fig. 4 PMID:7681583

  13. Fast, Sensitive Discovery of Conserved Genome-Wide Motifs

    PubMed Central

    Ihuegbu, Nnamdi E.; Buhler, Jeremy

    2012-01-01

    Abstract Regulatory sites that control gene expression are essential to the proper functioning of cells, and identifying them is critical for modeling regulatory networks. We have developed Magma (Multiple Aligner of Genomic Multiple Alignments), a software tool for multiple species, multiple gene motif discovery. Magma identifies putative regulatory sites that are conserved across multiple species and occur near multiple genes throughout a reference genome. Magma takes as input multiple alignments that can include gaps. It uses efficient clustering methods that make it about 70 times faster than PhyloNet, a previous program for this task, with slightly greater sensitivity. We ran Magma on all non-coding DNA conserved between Caenorhabditis elegans and five additional species, about 70 Mbp in total, in <4 h. We obtained 2,309 motifs with lengths of 6–20 bp, each occurring at least 10 times throughout the genome, which collectively covered about 566 kbp of the genomes, approximately 0.8% of the input. Predicted sites occurred in all types of non-coding sequence but were especially enriched in the promoter regions. Comparisons to several experimental datasets show that Magma motifs correspond to a variety of known regulatory motifs. PMID:22300316

  14. APOE genotype influences functional status among elderly without dementia

    SciTech Connect

    Albert, S.M.; Jacobs, D.M.; Stern, Y.

    1995-12-18

    The presence of apolipoprotein-{epsilon}4 (APOE-{epsilon}4) significantly increases the risk of Alzheimer`s disease (AD). The association between APOE-{epsilon}4 status and functional abilities was explored further in a multicultural sample of community-dwelling, nondemented elders. The sample was limited to cognitively-intact, community-dwelling elders, who were free of stroke or other neurologic disability. In 218 elders who met research criteria, the presence of APOE-{epsilon}4 was associated with poorer functional status, apart from the effects of neuropsychological performance, gender, age, and education (OR = 2.5, 95% CI: 1.3, 4.9). In 158 subjects without an APOE-{epsilon}4 allele, 50% reported no functional limitation; in the 60 subjects with an {epsilon}4 allele, only 28% reported no functional limitation (P < .01). The relationship was not explained by the distribution of co-morbidities. The association between poorer function and the presence of an APOE-{epsilon}4 allele was evident in each ethnic group. In path analyses, the presence of an APOE-{epsilon}4 allele was associated with decreased functional ability in non-demented elders not simply through an association with poorer cognitive status, but also independently. These results suggest that the APOE-{epsilon}4 genotype is associated with functional deficit in people with normal neuropsychological profiles. 29 refs., 1 fig., 3 tabs.

  15. Stabilization of i-motif structures by 2'-β-fluorination of DNA.

    PubMed

    Assi, Hala Abou; Harkness, Robert W; Martin-Pintado, Nerea; Wilds, Christopher J; Campos-Olivas, Ramón; Mittermaier, Anthony K; González, Carlos; Damha, Masad J

    2016-06-20

    i-Motifs are four-stranded DNA structures consisting of two parallel DNA duplexes held together by hemi-protonated and intercalated cytosine base pairs (C:CH(+)). They have attracted considerable research interest for their potential role in gene regulation and their use as pH responsive switches and building blocks in macromolecular assemblies. At neutral and basic pH values, the cytosine bases deprotonate and the structure unfolds into single strands. To avoid this limitation and expand the range of environmental conditions supporting i-motif folding, we replaced the sugar in DNA by 2-deoxy-2-fluoroarabinose. We demonstrate that such a modification significantly stabilizes i-motif formation over a wide pH range, including pH 7. Nuclear magnetic resonance experiments reveal that 2-deoxy-2-fluoroarabinose adopts a C2'-endo conformation, instead of the C3'-endo conformation usually found in unmodified i-motifs. Nevertheless, this substitution does not alter the overall i-motif structure. This conformational change, together with the changes in charge distribution in the sugar caused by the electronegative fluorine atoms, leads to a number of favorable sequential and inter-strand electrostatic interactions. The availability of folded i-motifs at neutral pH will aid investigations into the biological function of i-motifs in vitro, and will expand i-motif applications in nanotechnology. PMID:27166371

  16. The PXDLS linear motif regulates circadian rhythmicity through protein–protein interactions

    PubMed Central

    Shalev, Moran; Aviram, Rona; Adamovich, Yaarit; Kraut-Cohen, Judith; Shamia, Tal; Ben-Dor, Shifra; Golik, Marina; Asher, Gad

    2014-01-01

    The circadian core clock circuitry relies on interlocked transcription-translation feedback loops that largely count on multiple protein interactions. The molecular mechanisms implicated in the assembly of these protein complexes are relatively unknown. Our bioinformatics analysis of short linear motifs, implicated in protein interactions, reveals an enrichment of the Pro-X-Asp-Leu-Ser (PXDLS) motif within circadian transcripts. We show that the PXDLS motif can bind to BMAL1/CLOCK and disrupt circadian oscillations in a cell-autonomous manner. Remarkably, the motif is evolutionary conserved in the core clock protein REV-ERBα, and additional proteins implicated in the clock's function (NRIP1, CBP). In this conjuncture, we uncover a novel cross talk between the two principal core clock feedback loops and show that BMAL/CLOCK and REV-ERBα interact and that the PXDLS motif of REV-ERBα participates in their binding. Furthermore, we demonstrate that the PXDLS motifs of NRIP1 and CBP are involved in circadian rhythmicity. Our findings suggest that the PXDLS motif plays an important role in circadian rhythmicity through regulation of protein interactions within the clock circuitry and that short linear motifs can be employed to modulate circadian oscillations. PMID:25260595

  17. Construction of a Three-Dimensional Motif Dictionary for Protein Structural Data Mining

    NASA Astrophysics Data System (ADS)

    Hiroaki, Kato; Tadokoro, Tetsuo; Miyata, Hiroyuki; Chikamatsu, Shin-Ichi; Takahashi, Yoshimasa; Abe, Hidetsugu

    With the rapidly increasing number of proteins of which three-dimensional (3D) structures are known, the protein structure database is one of the key elements in many attempts being made to derive the knowledge of structure-function relationships of proteins. In this work, the authors have developed a software tool to assist in constructing the 3D protein motif dictionary that is closely related to the PROSITE sequence motif database. In the PROSITE, a structural feature called motif is described by a sequence pattern of amino acid residues with the regular expression defined in the database. The present system allows us to automatically find the related sites for all the 3D protein structures taken from a protein structure database such as the Protein Data Bank (PDB), and to make a dictionary of the 3D motifs related to the PROSITE sequence motif patterns. A computational trial was carried out for a subset of the PDB's structure data file. The structural feature analysis resulted with the tool showed that there are many different 3D motif patterns but having a particular PROSITE sequence pattern. For this reason, the authors also tried to classify the 3D motif patterns into several groups on the basis of distance similarity matrix, and to determine a representative pattern for each group in preparing the dictionary. The usefulness of the additional approach for preparing the 3D motif dictionary is also discussed with an illustrative example.

  18. JAR3D Webserver: Scoring and aligning RNA loop sequences to known 3D motifs.

    PubMed

    Roll, James; Zirbel, Craig L; Sweeney, Blake; Petrov, Anton I; Leontis, Neocles

    2016-07-01

    Many non-coding RNAs have been identified and may function by forming 2D and 3D structures. RNA hairpin and internal loops are often represented as unstructured on secondary structure diagrams, but RNA 3D structures show that most such loops are structured by non-Watson-Crick basepairs and base stacking. Moreover, different RNA sequences can form the same RNA 3D motif. JAR3D finds possible 3D geometries for hairpin and internal loops by matching loop sequences to motif groups from the RNA 3D Motif Atlas, by exact sequence match when possible, and by probabilistic scoring and edit distance for novel sequences. The scoring gauges the ability of the sequences to form the same pattern of interactions observed in 3D structures of the motif. The JAR3D webserver at http://rna.bgsu.edu/jar3d/ takes one or many sequences of a single loop as input, or else one or many sequences of longer RNAs with multiple loops. Each sequence is scored against all current motif groups. The output shows the ten best-matching motif groups. Users can align input sequences to each of the motif groups found by JAR3D. JAR3D will be updated with every release of the RNA 3D Motif Atlas, and so its performance is expected to improve over time. PMID:27235417

  19. Stabilization of i-motif structures by 2′-β-fluorination of DNA

    PubMed Central

    Assi, Hala Abou; Harkness, Robert W.; Martin-Pintado, Nerea; Wilds, Christopher J.; Campos-Olivas, Ramón; Mittermaier, Anthony K.; González, Carlos; Damha, Masad J.

    2016-01-01

    i-Motifs are four-stranded DNA structures consisting of two parallel DNA duplexes held together by hemi-protonated and intercalated cytosine base pairs (C:CH+). They have attracted considerable research interest for their potential role in gene regulation and their use as pH responsive switches and building blocks in macromolecular assemblies. At neutral and basic pH values, the cytosine bases deprotonate and the structure unfolds into single strands. To avoid this limitation and expand the range of environmental conditions supporting i-motif folding, we replaced the sugar in DNA by 2-deoxy-2-fluoroarabinose. We demonstrate that such a modification significantly stabilizes i-motif formation over a wide pH range, including pH 7. Nuclear magnetic resonance experiments reveal that 2-deoxy-2-fluoroarabinose adopts a C2′-endo conformation, instead of the C3′-endo conformation usually found in unmodified i-motifs. Nevertheless, this substitution does not alter the overall i-motif structure. This conformational change, together with the changes in charge distribution in the sugar caused by the electronegative fluorine atoms, leads to a number of favorable sequential and inter-strand electrostatic interactions. The availability of folded i-motifs at neutral pH will aid investigations into the biological function of i-motifs in vitro, and will expand i-motif applications in nanotechnology. PMID:27166371

  20. Distance-based identification of structure motifs in proteins using constrained frequent subgraph mining.

    PubMed

    Huan, Jun; Bandyopadhyay, Deepak; Prins, Jan; Snoeyink, Jack; Tropsha, Alexander; Wang, Wei

    2006-01-01

    Structure motifs are amino acid packing patterns that occur frequently within a set of protein structures. We define a labeled graph representation of protein structure in which vertices correspond to amino acid residues and edges connect pairs of residues and are labeled by (1) the Euclidian distance between the C(alpha) atoms of the two residues and (2) a boolean indicating whether the two residues are in physical/chemical contact. Using this representation, a structure motif corresponds to a labeled clique that occurs frequently among the graphs representing the protein structures. The pairwise distance constraints on each edge in a clique serve to limit the variation in geometry among different occurrences of a structure motif. We present an efficient constrained subgraph mining algorithm to discover structure motifs in this setting. Compared with contact graph representations, the number of spurious structure motifs is greatly reduced. Using this algorithm, structure motifs were located for several SCOP families including the Eukaryotic Serine Proteases, Nuclear Binding Domains, Papain-like Cysteine Proteases, and FAD/NAD-linked Reductases. For each family, we typically obtain a handful of motifs within seconds of processing time. The occurrences of these motifs throughout the PDB were strongly associated with the original SCOP family, as measured using a hyper-geometric distribution. The motifs were found to cover functionally important sites like the catalytic triad for Serine Proteases and co-factor binding sites for Nuclear Binding Domains. The fact that many motifs are highly family-specific can be used to classify new proteins or to provide functional annotation in Structural Genomics Projects. PMID:17369641

  1. Influence of experimental hypokinesia on gastric secretory function

    NASA Technical Reports Server (NTRS)

    Markova, O. O.; Vavryshchuk, V. I.; Rozvodovskyy, V. I.; Proshcheruk, V. A.

    1980-01-01

    The gastric secretory function of rats was studied in 4, 8, 16 and 30 day hypokinesia. Inhibition of both the gastric juice secretory and acid producing functions was found. The greatest inhibition was observed on day 8 of limited mobility. By days 16 and 30 of the experiment, a tendency of the gastric secretory activity to return to normal was observed, although it remained reduced.

  2. Influencing factors on color and product-function association.

    PubMed

    Ko, Ya-Hsien

    2011-06-01

    The associations of age, sex, and matching types with color and product-function were examined in a real-world product scenario (shampoo) among 128 volunteers (M age = 29.3 yr.; SD = 15.6). A pilot study identified eight popular colors and eight product-functions. The association between color and product-function was explored in the main sample. Responses suggested seven pairings of color/product-functions: Red/Hot oil treatment, Yellow/Bright and shiny hair, Green/Herbal extracts, Blue/Deep cleaning, Purple/Soothing, Black/Antiseptic, and White/Anti-dandruff. Analyses indicated that adult participants required more repetitions for retention, as did memorization with random pairing compared to participant-selected pairings. There were statistically significant correlations of responses to colors and product functions. With known color/product-function associations, manufacturers might promote their products more effectively. It is suggested that the associations might be sex- or culture-specific. PMID:21879633

  3. Coordinated Action of Two Double-Stranded RNA Binding Motifs and an RGG Motif Enables Nuclear Factor 90 To Flexibly Target Different RNA Substrates.

    PubMed

    Schmidt, Tobias; Knick, Paul; Lilie, Hauke; Friedrich, Susann; Golbik, Ralph Peter; Behrens, Sven-Erik

    2016-02-16

    The mechanisms of how RNA binding proteins (RBP) bind to and distinguish different RNA molecules are yet uncertain. Here, we performed a comprehensive analysis of the RNA binding properties of multidomain RBP nuclear factor 90 (NF90) by investigating specifically the functional activities of two double-stranded RNA binding motifs (dsRBM) and an RGG motif in the protein's unstructured C-terminus. By comparison of the RNA binding affinities of several NF90 variants and their modes of binding to a set of defined RNA molecules, the activities of the motifs turned out to be very different. While dsRBM1 contributes little to RNA binding, dsRBM2 is essential for effective binding of double-stranded RNA. The protein's immediate C-terminus, including the RGG motif, is indispensable for interactions of the protein with single-stranded RNA, and the RGG motif decisively contributes to NF90's overall RNA binding properties. Conformational studies, which compared wild-type NF90 with a variant that contains a pseudophosphorylated residue in the RGG motif, suggest that the NF90 C-terminus is involved in conformational changes in the protein after RNA binding, with the RGG motif acting as a central regulatory element. In summary, our data propose a concerted action of all RNA binding motifs within the frame of the full-length protein, which may be controlled by regulation of the activity of the RGG motif, e.g., by phosphorylation. This multidomain interplay enables the RBP NF90 to discriminate RNA features by dynamic and adaptable interactions. PMID:26795062

  4. Identification of a putative nuclear export signal motif in human NANOG homeobox domain

    SciTech Connect

    Park, Sung-Won; Do, Hyun-Jin; Huh, Sun-Hyung; Sung, Boreum; Uhm, Sang-Jun; Song, Hyuk; Kim, Nam-Hyung; Kim, Jae-Hwan

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We found the putative nuclear export signal motif within human NANOG homeodomain. Black-Right-Pointing-Pointer Leucine-rich residues are important for human NANOG homeodomain nuclear export. Black-Right-Pointing-Pointer CRM1-specific inhibitor LMB blocked the potent human NANOG NES-mediated nuclear export. -- Abstract: NANOG is a homeobox-containing transcription factor that plays an important role in pluripotent stem cells and tumorigenic cells. To understand how nuclear localization of human NANOG is regulated, the NANOG sequence was examined and a leucine-rich nuclear export signal (NES) motif ({sup 125}MQELSNILNL{sup 134}) was found in the homeodomain (HD). To functionally validate the putative NES motif, deletion and site-directed mutants were fused to an EGFP expression vector and transfected into COS-7 cells, and the localization of the proteins was examined. While hNANOG HD exclusively localized to the nucleus, a mutant with both NLSs deleted and only the putative NES motif contained (hNANOG HD-{Delta}NLSs) was predominantly cytoplasmic, as observed by nucleo/cytoplasmic fractionation and Western blot analysis as well as confocal microscopy. Furthermore, site-directed mutagenesis of the putative NES motif in a partial hNANOG HD only containing either one of the two NLS motifs led to localization in the nucleus, suggesting that the NES motif may play a functional role in nuclear export. Furthermore, CRM1-specific nuclear export inhibitor LMB blocked the hNANOG potent NES-mediated export, suggesting that the leucine-rich motif may function in CRM1-mediated nuclear export of hNANOG. Collectively, a NES motif is present in the hNANOG HD and may be functionally involved in CRM1-mediated nuclear export pathway.

  5. Avian ecosystem functions are influenced by small mammal ecosystem engineering

    PubMed Central

    2013-01-01

    Background Birds are important mobile link species that contribute to landscape-scale patterns by means of pollination, seed dispersal, and predation. Birds are often associated with habitats modified by small mammal ecosystem engineers. We investigated whether birds prefer to forage on degu (Octodon degus) runways by comparing their foraging effort across sites with a range of runway densities, including sites without runways. We measured granivory by granivorous and omnivorous birds at Rinconada de Maipú, central Chile. As a measure of potential bird foraging on insects, we sampled invertebrate prey richness and abundance across the same sites. We then quantified an index of plot-scale functional diversity due to avian foraging at the patch scale. Results We recorded that birds found food sources sooner and ate more at sites with higher densities of degu runways, cururo mounds, trees, and fewer shrubs. These sites also had higher invertebrate prey richness but lower invertebrate prey abundance. This implies that omnivorous birds, and possibly insectivorous birds, forage for invertebrates in the same plots with high degu runway densities where granivory takes place. In an exploratory analysis we also found that plot-scale functional diversity for four avian ecosystem functions were moderately to weakly correllated to expected ecosystem function outcomes at the plot scale. Conclusions Degu ecosystem engineering affects the behavior of avian mobile link species and is thus correlated with ecosystem functioning at relatively small spatial scales. PMID:24359802

  6. Influence of chronic kidney disease on cardiac structure and function.

    PubMed

    Matsushita, Kunihiro; Ballew, Shoshana H; Coresh, Josef

    2015-09-01

    Chronic kidney disease (CKD), the presence of kidney dysfunction and/or damage, is a worldwide public health issue. Although CKD is independently associated with various subtypes of cardiovascular diseases, a recent international collaborative meta-analysis demonstrates that CKD is particularly strongly associated with heart failure, suggesting its critical impact on cardiac structure and function. Although numerous studies have investigated the association of CKD and cardiac structure and function, these studies substantially vary regarding source populations and methodology (e.g., measures of CKD and/or parameters of cardiac structure and function), making it difficult to reach universal conclusions. Nevertheless, in this review, we comprehensively examine relevant studies, discuss potential mechanisms linking CKD to alteration of cardiac structure and function, and demonstrate clinical implications as well as potential future research directions. We exclusively focus on studies investigating both CKD measures, kidney function (i.e., glomerular filtration rate [GFR], creatinine clearance, or levels of filtration markers), and kidney damage represented by albuminuria, since current international clinical guidelines of CKD recommend staging CKD and assessing its clinical risk based on both GFR and albuminuria. PMID:26194332

  7. Pierced Lasso Bundles are a new class of knot-like motifs.

    PubMed

    Haglund, Ellinor; Sulkowska, Joanna I; Noel, Jeffrey K; Lammert, Heiko; Onuchic, José N; Jennings, Patricia A

    2014-06-01

    A four-helix bundle is a well-characterized motif often used as a target for designed pharmaceutical therapeutics and nutritional supplements. Recently, we discovered a new structural complexity within this motif created by a disulphide bridge in the long-chain helical bundle cytokine leptin. When oxidized, leptin contains a disulphide bridge creating a covalent-loop through which part of the polypeptide chain is threaded (as seen in knotted proteins). We explored whether other proteins contain a similar intriguing knot-like structure as in leptin and discovered 11 structurally homologous proteins in the PDB. We call this new helical family class the Pierced Lasso Bundle (PLB) and the knot-like threaded structural motif a Pierced Lasso (PL). In the current study, we use structure-based simulation to investigate the threading/folding mechanisms for all the PLBs along with three unthreaded homologs as the covalent loop (or lasso) in leptin is important in folding dynamics and activity. We find that the presence of a small covalent loop leads to a mechanism where structural elements slipknot to thread through the covalent loop. Larger loops use a piercing mechanism where the free terminal plugs through the covalent loop. Remarkably, the position of the loop as well as its size influences the native state dynamics, which can impact receptor binding and biological activity. This previously unrecognized complexity of knot-like proteins within the helical bundle family comprises a completely new class within the knot family, and the hidden complexity we unraveled in the PLBs is expected to be found in other protein structures outside the four-helix bundles. The insights gained here provide critical new elements for future investigation of this emerging class of proteins, where function and the energetic landscape can be controlled by hidden topology, and should be take into account in ab initio predictions of newly identified protein targets. PMID:24945798

  8. Pierced Lasso Bundles Are a New Class of Knot-like Motifs

    PubMed Central

    Haglund, Ellinor; Sulkowska, Joanna I.; Noel, Jeffrey K.; Lammert, Heiko; Onuchic, José N.; Jennings, Patricia A.

    2014-01-01

    A four-helix bundle is a well-characterized motif often used as a target for designed pharmaceutical therapeutics and nutritional supplements. Recently, we discovered a new structural complexity within this motif created by a disulphide bridge in the long-chain helical bundle cytokine leptin. When oxidized, leptin contains a disulphide bridge creating a covalent-loop through which part of the polypeptide chain is threaded (as seen in knotted proteins). We explored whether other proteins contain a similar intriguing knot-like structure as in leptin and discovered 11 structurally homologous proteins in the PDB. We call this new helical family class the Pierced Lasso Bundle (PLB) and the knot-like threaded structural motif a Pierced Lasso (PL). In the current study, we use structure-based simulation to investigate the threading/folding mechanisms for all the PLBs along with three unthreaded homologs as the covalent loop (or lasso) in leptin is important in folding dynamics and activity. We find that the presence of a small covalent loop leads to a mechanism where structural elements slipknot to thread through the covalent loop. Larger loops use a piercing mechanism where the free terminal plugs through the covalent loop. Remarkably, the position of the loop as well as its size influences the native state dynamics, which can impact receptor binding and biological activity. This previously unrecognized complexity of knot-like proteins within the helical bundle family comprises a completely new class within the knot family, and the hidden complexity we unraveled in the PLBs is expected to be found in other protein structures outside the four-helix bundles. The insights gained here provide critical new elements for future investigation of this emerging class of proteins, where function and the energetic landscape can be controlled by hidden topology, and should be take into account in ab initio predictions of newly identified protein targets. PMID:24945798

  9. Automated Motif Discovery from Glycan Array Data

    PubMed Central

    Cholleti, Sharath R.; Agravat, Sanjay; Morris, Tim; Saltz, Joel H.; Song, Xuezheng

    2012-01-01

    Abstract Assessing interactions of a glycan-binding protein (GBP) or lectin with glycans on a microarray generates large datasets, making it difficult to identify a glycan structural motif or determinant associated with the highest apparent binding strength of the GBP. We have developed a computational method, termed GlycanMotifMiner, that uses the relative binding of a GBP with glycans within a glycan microarray to automatically reveal the glycan structural motifs recognized by a GBP. We implemented the software with a web-based graphical interface for users to explore and visualize the discovered motifs. The utility of GlycanMotifMiner was determined using five plant lectins, SNA, HPA, PNA, Con A, and UEA-I. Data from the analyses of the lectins at different protein concentrations were processed to rank the glycans based on their relative binding strengths. The motifs, defined as glycan substructures that exist in a large number of the bound glycans and few non-bound glycans, were then discovered by our algorithm and displayed in a web-based graphical user interface (http://glycanmotifminer.emory.edu). The information is used in defining the glycan-binding specificity of GBPs. The results were compared to the known glycan specificities of these lectins generated by manual methods. A more complex analysis was also carried out using glycan microarray data obtained for a recombinant form of human galectin-8. Results for all of these lectins show that GlycanMotifMiner identified the major motifs known in the literature along with some unexpected novel binding motifs. PMID:22877213

  10. Automated motif discovery from glycan array data.

    PubMed

    Cholleti, Sharath R; Agravat, Sanjay; Morris, Tim; Saltz, Joel H; Song, Xuezheng; Cummings, Richard D; Smith, David F

    2012-10-01

    Assessing interactions of a glycan-binding protein (GBP) or lectin with glycans on a microarray generates large datasets, making it difficult to identify a glycan structural motif or determinant associated with the highest apparent binding strength of the GBP. We have developed a computational method, termed GlycanMotifMiner, that uses the relative binding of a GBP with glycans within a glycan microarray to automatically reveal the glycan structural motifs recognized by a GBP. We implemented the software with a web-based graphical interface for users to explore and visualize the discovered motifs. The utility of GlycanMotifMiner was determined using five plant lectins, SNA, HPA, PNA, Con A, and UEA-I. Data from the analyses of the lectins at different protein concentrations were processed to rank the glycans based on their relative binding strengths. The motifs, defined as glycan substructures that exist in a large number of the bound glycans and few non-bound glycans, were then discovered by our algorithm and displayed in a web-based graphical user interface ( http://glycanmotifminer.emory.edu ). The information is used in defining the glycan-binding specificity of GBPs. The results were compared to the known glycan specificities of these lectins generated by manual methods. A more complex analysis was also carried out using glycan microarray data obtained for a recombinant form of human galectin-8. Results for all of these lectins show that GlycanMotifMiner identified the major motifs known in the literature along with some unexpected novel binding motifs. PMID:22877213

  11. Variable structure motifs for transcription factor binding sites

    PubMed Central

    2010-01-01

    Background Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. Results We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. Conclusions We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable

  12. The influence of the choice of the oceanic phase function on imaging under water

    NASA Astrophysics Data System (ADS)

    Braesicke, K.; Repasi, E.

    2015-05-01

    There is a large diversity of phase functions for the computer simulation of light under water. Some papers look at the influence of these phase functions on the results of computer simulations of the remote sensing reflectance. We study the influence of these phase functions on the computer simulation of the resulting image of a target illuminated by a laser. For these simulations we are only interested in those parts of the light that reach the camera position. Therefor we investigate the influence of the phase function on the image. We use a Monte Carlo Simulator with several Fournier-Forand, Henyey-Greenstein phase functions. The resulting signals at the receiver of these simulations are compared to a simulation with a Petzold function that is based on measurements of the phase function.

  13. Chapter 8. Resident Group Influences on Team Functioning

    ERIC Educational Resources Information Center

    Burford, Gale E.; Fulcher, Leon C.

    2006-01-01

    Research has documented important interplays between the diagnostic characteristics of residents in group care centers and the functioning of staff teams responsible for the delivery of services. Factors that impact on the quality of working life satisfactions and frustrations are variable over time and may originate from within the team, the…

  14. Early Hormonal Influences on Cognitive Functioning in Congenital Adrenal Hyperplasia.

    ERIC Educational Resources Information Center

    Resnick, Susan M.; And Others

    1986-01-01

    Reports the results of cognitive test performance and early childhood activities in individuals with congenital adrenal hyperplasia, an autosomal recessive disorder associated with elevated prenatal adrenal androgen levels, demonstrating the effects of early exposure to excess androgenizing hormones on sexually dimorphic cognitive functioning.…

  15. Surface plasma functionalization influences macrophage behavior on carbon nanowalls.

    PubMed

    Ion, Raluca; Vizireanu, Sorin; Stancu, Claudia Elena; Luculescu, Catalin; Cimpean, Anisoara; Dinescu, Gheorghe

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. PMID:25579904

  16. RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets.

    PubMed

    Thomas-Chollier, Morgane; Herrmann, Carl; Defrance, Matthieu; Sand, Olivier; Thieffry, Denis; van Helden, Jacques

    2012-02-01

    ChIP-seq is increasingly used to characterize transcription factor binding and chromatin marks at a genomic scale. Various tools are now available to extract binding motifs from peak data sets. However, most approaches are only available as command-line programs, or via a website but with size restrictions. We present peak-motifs, a computational pipeline that discovers motifs in peak sequences, compares them with databases, exports putative binding sites for visualization in the UCSC genome browser and generates an extensive report suited for both naive and expert users. It relies on time- and memory-efficient algorithms enabling the treatment of several thousand peaks within minutes. Regarding time efficiency, peak-motifs outperforms all comparable tools by several orders of magnitude. We demonstrate its accuracy by analyzing data sets ranging from 4000 to 1,28,000 peaks for 12 embryonic stem cell-specific transcription factors. In all cases, the program finds the expected motifs and returns additional motifs potentially bound by cofactors. We further apply peak-motifs to discover tissue-specific motifs in peak collections for the p300 transcriptional co-activator. To our knowledge, peak-motifs is the only tool that performs a complete motif analysis and offers a user-friendly web interface without any restriction on sequence size or number of peaks. PMID:22156162

  17. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    PubMed Central

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  18. Aquatic proteins with repetitive motifs provide insights to bioengineering of novel biomaterials.

    PubMed

    Yang, Yun Jung; Jung, Dooyup; Yang, Byeongseon; Hwang, Byeong Hee; Cha, Hyung Joon

    2014-12-01

    Proteins with repetitive motifs play vital structural and adhesive functions in nature. Some repeat proteins in particular have adapted to harsh aquatic surroundings to support the survival and reproduction of organisms. Significant effort has been made to identify aquatic repeat proteins with attractive properties and functions to be used as novel biomaterials. Examples of such proteins include matrix proteins from pearl oysters, minicollagens from sea anemones, cement proteins from sandcastle worms, and byssal proteins from marine mussels. Here, several repetitive motifs from aquatic proteins are reviewed, and their characteristic properties are linked to practical uses in three aspects of aquatic life: defense, shelter, and attachment. Some repetitive motifs interact with minerals and consequently generate strong outer cover of shells, and some motifs relate with sticky nature, which contribute to organisms' habitation by adhering themselves in harsh aquatic environments. Other motifs, such as silk- or collagen-like motifs, are also involved in structural rigidity as shown in mussel's byssus and egg membrane. Thus, understanding aquatic repetitive motifs will provide clues about biomedical and biotechnological applications of engineered biomaterials in wet environments. PMID:25208823

  19. Influence of organizational functioning on client engagement in treatment.

    PubMed

    Greener, Jack M; Joe, George W; Simpson, D Dwayne; Rowan-Szal, Grace A; Lehman, Wayne E K

    2007-09-01

    This study focused on the relationship between organizational functioning factors measured in a staff survey using the Texas Christian University (TCU) Organizational Readiness for Change assessment and client-level engagement measured by the TCU Client Evaluation of Self and Treatment in drug treatment programs. The sample consisted of 531 clinical and counseling staff and 3,475 clients from 163 substance abuse treatment programs located in nine states from three regional Addiction Technology Transfer Centers. Measures of client engagement in treatment (rapport, satisfaction, and participation) were shown to be higher in programs with more positive staff ratings of organizational functioning. In particular, these programs had fewer agency needs and more favorable ratings for their resources, staff attributes, and climate. These findings help establish the importance of addressing organizational factors as part of an overall strategy for improving treatment effectiveness. PMID:17433863

  20. Genetic Ancestry Influences Asthma Susceptibility and Lung Function Among Latinos

    PubMed Central

    Pino-Yanes, Maria; Thakur, Neeta; Gignoux, Christopher R.; Galanter, Joshua M.; Roth, Lindsey A.; Eng, Celeste; Nishimura, Katherine K.; Oh, Sam S.; Vora, Hita; Huntsman, Scott; Nguyen, Elizabeth A.; Hu, Donglei; Drake, Katherine A.; Conti, David V.; Moreno-Estrada, Andres; Sandoval, Karla; Winkler, Cheryl A.; Borrell, Luisa N.; Lurmann, Fred; Islam, Talat S.; Davis, Adam; Farber, Harold J.; Meade, Kelley; Avila, Pedro C.; Serebrisky, Denise; Bibbins-Domingo, Kirsten; Lenoir, Michael A.; Ford, Jean G.; Brigino-Buenaventura, Emerita; Rodriguez-Cintron, William; Thyne, Shannon M.; Sen, Saunak; Rodriguez-Santana, Jose R.; Bustamante, Carlos D.; Williams, L. Keoki; Gilliland, Frank D.; Gauderman, W. James; Kumar, Rajesh; Torgerson, Dara G.; Burchard, Esteban G.

    2014-01-01

    Background Childhood asthma prevalence and morbidity varies among Latinos in the United States, with Puerto Ricans having the highest and Mexicans the lowest. Objective To determine whether genetic ancestry is associated with the odds of asthma among Latinos, and secondarily whether genetic ancestry is associated with lung function among Latino children. Methods We analyzed 5,493 Latinos with and without asthma from three independent studies. For each participant we estimated the proportion of African, European, and Native American ancestry using genome-wide data. We tested whether genetic ancestry was associated with the presence of asthma and lung function among subjects with and without asthma. Odds ratios (OR) and effect sizes were assessed for every 20% increase in each ancestry. Results Native American ancestry was associated with lower odds of asthma (OR=0.72, 95% confidence interval [CI]: 0.66–0.78, p=8.0×10−15), while African ancestry was associated with higher odds of asthma (OR=1.40, 95%CI: 1.14–1.72, p=0.001). These associations were robust to adjustment for covariates related to early life exposures, air pollution and socioeconomic status. Among children with asthma, African ancestry was associated with lower lung function, including both pre- and post-bronchodilator measures of forced expiratory volume in the first second (−77±19 ml, p=5.8×10−5 and −83±19 ml, p=1.1×10−5, respectively) and forced vital capacity (−100±21 ml, p=2.7×10−6 and −107±22 ml, p=1.0×10−6, respectively). Conclusion Differences in the proportions of genetic ancestry can partially explain disparities in asthma susceptibility and lung function among Latinos. PMID:25301036

  1. Influence of Acupuncture Stimulation on Cerebral Network in Functional Diarrhea

    PubMed Central

    Zhou, Siyuan; Zeng, Fang; Liu, Jixin; Zheng, Hui; Huang, Wenjing; Liu, Ting; Chen, Dashuai; Qin, Wei; Gong, Qiyong; Tian, Jie

    2013-01-01

    Acupuncture is a commonly used therapy for treating functional diarrhea (FD), although there is limited knowledge on the mechanism. The objectives of this study were to investigate the differences in brain activities elicited by acupuncture between FD patients and healthy controls (HC) so as to explore the possible mechanism. Eighteen FD patients and eighteen HC received 10 sessions of acupuncture treatment at ST25 acupoints. Functional magnetic resonance imaging (fMRI) scans were, respectively, performed before and after acupuncture. The defecation frequency, Bristol stool form scale (SBFS), and MOS 36-item Short Healthy Survey (SF-36) were employed to evaluate the clinical efficacy. After acupuncture, the FD patients showed a significant decrease in defecation frequency and BSFS score. The regional homogeneity (ReHo) map showed a decrease in the paracentral lobule and postcentral gyrus, and an increase in the angular gyrus, insula, anterior cingulate cortex (ACC), and precuneus in the FD group. Moreover, the changes in ReHo values in the ACC were correlated with the reduction in defecation frequency. Decreasing functional connectivity among the ACC, insula, thalamus, and orbital frontal cortex only existed in the FD group. Conclusively, acupuncture alleviated defecation frequency and improved stool formation in FD patients. The efficacy might result from the regulation of the homeostasis afferent processing network. PMID:24459533

  2. The Tacrolimus Metabolism Rate Influences Renal Function after Kidney Transplantation

    PubMed Central

    Thölking, Gerold; Fortmann, Christian; Koch, Raphael; Gerth, Hans Ulrich; Pabst, Dirk; Pavenstädt, Hermann; Kabar, Iyad; Hüsing, Anna; Wolters, Heiner

    2014-01-01

    The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient’s risk management strategies. PMID:25340655

  3. The tacrolimus metabolism rate influences renal function after kidney transplantation.

    PubMed

    Thölking, Gerold; Fortmann, Christian; Koch, Raphael; Gerth, Hans Ulrich; Pabst, Dirk; Pavenstädt, Hermann; Kabar, Iyad; Hüsing, Anna; Wolters, Heiner; Reuter, Stefan; Suwelack, Barbara

    2014-01-01

    The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient's risk management strategies. PMID:25340655

  4. Genetic loci influencing kidney function and chronic kidney disease.

    PubMed

    Chambers, John C; Zhang, Weihua; Lord, Graham M; van der Harst, Pim; Lawlor, Debbie A; Sehmi, Joban S; Gale, Daniel P; Wass, Mark N; Ahmadi, Kourosh R; Bakker, Stephan J L; Beckmann, Jacqui; Bilo, Henk J G; Bochud, Murielle; Brown, Morris J; Caulfield, Mark J; Connell, John M C; Cook, H Terence; Cotlarciuc, Ioana; Davey Smith, George; de Silva, Ranil; Deng, Guohong; Devuyst, Olivier; Dikkeschei, Lambert D; Dimkovic, Nada; Dockrell, Mark; Dominiczak, Anna; Ebrahim, Shah; Eggermann, Thomas; Farrall, Martin; Ferrucci, Luigi; Floege, Jurgen; Forouhi, Nita G; Gansevoort, Ron T; Han, Xijin; Hedblad, Bo; Homan van der Heide, Jaap J; Hepkema, Bouke G; Hernandez-Fuentes, Maria; Hypponen, Elina; Johnson, Toby; de Jong, Paul E; Kleefstra, Nanne; Lagou, Vasiliki; Lapsley, Marta; Li, Yun; Loos, Ruth J F; Luan, Jian'an; Luttropp, Karin; Maréchal, Céline; Melander, Olle; Munroe, Patricia B; Nordfors, Louise; Parsa, Afshin; Peltonen, Leena; Penninx, Brenda W; Perucha, Esperanza; Pouta, Anneli; Prokopenko, Inga; Roderick, Paul J; Ruokonen, Aimo; Samani, Nilesh J; Sanna, Serena; Schalling, Martin; Schlessinger, David; Schlieper, Georg; Seelen, Marc A J; Shuldiner, Alan R; Sjögren, Marketa; Smit, Johannes H; Snieder, Harold; Soranzo, Nicole; Spector, Timothy D; Stenvinkel, Peter; Sternberg, Michael J E; Swaminathan, Ramasamyiyer; Tanaka, Toshiko; Ubink-Veltmaat, Lielith J; Uda, Manuela; Vollenweider, Peter; Wallace, Chris; Waterworth, Dawn; Zerres, Klaus; Waeber, Gerard; Wareham, Nicholas J; Maxwell, Patrick H; McCarthy, Mark I; Jarvelin, Marjo-Riitta; Mooser, Vincent; Abecasis, Goncalo R; Lightstone, Liz; Scott, James; Navis, Gerjan; Elliott, Paul; Kooner, Jaspal S

    2010-05-01

    Using genome-wide association, we identify common variants at 2p12-p13, 6q26, 17q23 and 19q13 associated with serum creatinine, a marker of kidney function (P = 10(-10) to 10(-15)). Of these, rs10206899 (near NAT8, 2p12-p13) and rs4805834 (near SLC7A9, 19q13) were also associated with chronic kidney disease (P = 5.0 x 10(-5) and P = 3.6 x 10(-4), respectively). Our findings provide insight into metabolic, solute and drug-transport pathways underlying susceptibility to chronic kidney disease. PMID:20383145

  5. DNA Motif Databases and Their Uses.

    PubMed

    Stormo, Gary D

    2015-01-01

    Transcription factors (TFs) recognize and bind to specific DNA sequences. The specificity of a TF is usually represented as a position weight matrix (PWM). Several databases of DNA motifs exist and are used in biological research to address important biological questions. This overview describes PWMs and some of the most commonly used motif databases, as well as a few of their common applications. PMID:26334922

  6. Influence of cigarette smoking on human autonomic function

    NASA Technical Reports Server (NTRS)

    Niedermaier, O. N.; Smith, M. L.; Beightol, L. A.; Zukowska-Grojec, Z.; Goldstein, D. S.; Eckberg, D. L.

    1993-01-01

    BACKGROUND. Although cigarette smoking is known to lead to widespread augmentation of sympathetic nervous system activity, little is known about the effects of smoking on directly measured human sympathetic activity and its reflex control. METHODS AND RESULTS. We studied the acute effects of smoking two research-grade cigarettes on muscle sympathetic nerve activity and on arterial baroreflex-mediated changes of sympathetic and vagal neural cardiovascular outflows in eight healthy habitual smokers. Measurements were made during frequency-controlled breathing, graded Valsalva maneuvers, and carotid baroreceptor stimulation with ramped sequences of neck pressure and suction. Smoking provoked the following changes: Arterial pressure increased significantly, and RR intervals, RR interval spectral power at the respiratory frequency, and muscle sympathetic nerve activity decreased. Plasma nicotine levels increased significantly, but plasma epinephrine, norepinephrine, and neuropeptide Y levels did not change. Peak sympathetic nerve activity during and systolic pressure overshoots after Valsalva straining increased significantly in proportion to increases of plasma nicotine levels. The average carotid baroreceptor-cardiac reflex relation shifted rightward and downward on arterial pressure and RR interval axes; average gain, operational point, and response range did not change. CONCLUSIONS. In habitual smokers, smoking acutely reduces baseline levels of vagal-cardiac nerve activity and completely resets vagally mediated arterial baroreceptor-cardiac reflex responses. Smoking also reduces muscle sympathetic nerve activity but augments increases of sympathetic activity triggered by brief arterial pressure reductions. This pattern of autonomic changes is likely to influence smokers' responses to acute arterial pressure reductions importantly.

  7. Probiotic modulation of dendritic cell function is influenced by ageing.

    PubMed

    You, Jialu; Dong, Honglin; Mann, Elizabeth R; Knight, Stella C; Yaqoob, Parveen

    2014-02-01

    Dendritic cells (DCs) are critical for the generation of T-cell responses. DC function may be modulated by probiotics, which confer health benefits in immunocompromised individuals, such as the elderly. This study investigated the effects of four probiotics, Bifidobacterium longum bv. infantis CCUG 52486, B. longum SP 07/3, Lactobacillus rhamnosus GG (L.GG) and L. casei Shirota (LcS), on DC function in an allogeneic mixed leucocyte reaction (MLR) model, using DCs and T-cells from young and older donors in different combinations. All four probiotics enhanced expression of CD40, CD80 and CCR7 on both young and older DCs, but enhanced cytokine production (TGF-β, TNF-α) by old DCs only. LcS induced IL-12 and IFNγ production by DC to a greater degree than other strains, while B. longum bv. infantis CCUG 52486 favoured IL-10 production. Stimulation of young T cells in an allogeneic MLR with DC was enhanced by probiotic pretreatment of old DCs, which demonstrated greater activation (CD25) than untreated controls. However, pretreatment of young or old DCs with LPS or probiotics failed to enhance the proliferation of T-cells derived from older donors. In conclusion, this study demonstrates that ageing increases the responsiveness of DCs to probiotics, but this is not sufficient to overcome the impact of immunosenescence in the MLR. PMID:24094416

  8. Loss-of-function variants influence the human serum metabolome.

    PubMed

    Yu, Bing; Li, Alexander H; Metcalf, Ginger A; Muzny, Donna M; Morrison, Alanna C; White, Simon; Mosley, Thomas H; Gibbs, Richard A; Boerwinkle, Eric

    2016-08-01

    The metabolome is a collection of small molecules resulting from multiple cellular and biological processes that can act as biomarkers of disease, and African-Americans exhibit high levels of genetic diversity. Exome sequencing of a sample of deeply phenotyped African-Americans allowed us to analyze the effects of annotated loss-of-function (LoF) mutations on 308 serum metabolites measured by untargeted liquid and gas chromatography coupled with mass spectrometry. In an independent sample, we identified and replicated four genes harboring six LoF mutations that significantly affected five metabolites. These sites were related to a 19 to 45% difference in geometric mean metabolite levels, with an average effect size of 25%. We show that some of the affected metabolites are risk predictors or diagnostic biomarkers of disease and, using the principle of Mendelian randomization, are in the causal pathway of disease. For example, LoF mutations in SLCO1B1 elevate the levels of hexadecanedioate, a fatty acid significantly associated with increased blood pressure levels and risk of incident heart failure in both African-Americans and an independent sample of European-Americans. We show that SLCO1B1 LoF mutations significantly increase the risk of incident heart failure, thus implicating the metabolite in the causal pathway of disease. These results reveal new avenues into gene function and the understanding of disease etiology by integrating -omic technologies into a deeply phenotyped population study. PMID:27602404

  9. Loss-of-function variants influence the human serum metabolome

    PubMed Central

    Yu, Bing; Li, Alexander H.; Metcalf, Ginger A.; Muzny, Donna M.; Morrison, Alanna C.; White, Simon; Mosley, Thomas H.; Gibbs, Richard A.; Boerwinkle, Eric

    2016-01-01

    The metabolome is a collection of small molecules resulting from multiple cellular and biological processes that can act as biomarkers of disease, and African-Americans exhibit high levels of genetic diversity. Exome sequencing of a sample of deeply phenotyped African-Americans allowed us to analyze the effects of annotated loss-of-function (LoF) mutations on 308 serum metabolites measured by untargeted liquid and gas chromatography coupled with mass spectrometry. In an independent sample, we identified and replicated four genes harboring six LoF mutations that significantly affected five metabolites. These sites were related to a 19 to 45% difference in geometric mean metabolite levels, with an average effect size of 25%. We show that some of the affected metabolites are risk predictors or diagnostic biomarkers of disease and, using the principle of Mendelian randomization, are in the causal pathway of disease. For example, LoF mutations in SLCO1B1 elevate the levels of hexadecanedioate, a fatty acid significantly associated with increased blood pressure levels and risk of incident heart failure in both African-Americans and an independent sample of European-Americans. We show that SLCO1B1 LoF mutations significantly increase the risk of incident heart failure, thus implicating the metabolite in the causal pathway of disease. These results reveal new avenues into gene function and the understanding of disease etiology by integrating -omic technologies into a deeply phenotyped population study. PMID:27602404

  10. Influence of passive smoking on functional abilities in children.

    PubMed

    Pavić, Ivan; Pavić, Pero; Palčić, Iva; Nenadić, Nataša

    2012-01-01

    Passive smoking has been found to be associated with a large number of disorders of passive smokers. It seems that the children are the most susceptible population for harmful effects of passive smoke exposure. The aim of this study was to evaluate the effect of passive smoking on children's functional abilities. The target population was 199 children who were 13-15 years old at the time of the study. For the assessment of motor skills 6-min run test was used. Children exposed to passive smoking by their mothers had statistically significant lower functional abilities (r =-0.7029; 95% CI -0.7707 to -0.6194; p < 0.0001). We also found statistically significant difference if the both parents are smokers (r =-0.3343; 95% CI -0.4595 to -0.1961; p < 0.0001). The results of our study did not show statistically significant difference if the children are exposed to cigarette smoke by their fathers (r = 0.03139; 95% CI -0.1171 to 0.1785; p = 0.6792). Public health preventive actions should go toward minimizing the exposure of children to passive smoking by counseling the smoking parents that quitting smoking provides enormous health benefits not only to them but also to their children. PMID:22149107

  11. Basic OSF/Motif programming and applications

    SciTech Connect

    Brooks, D. ); Novak, B. )

    1992-09-15

    When users refer to Motif, they are usually talking about mwm, the window manager. However, when programmers mention Motif they are usually discussing the programming toolkit. This toolkit is used to develop new or modify existing applications. In this presentation, the term Motif will refer to the toolkit. Motif comes with a number of features that help users effectively use the applications built with it. The term look and feel may be overused; nonetheless, a consistent and well designed look and feel assists the user in Teaming and using new applications. The term point and click generally refers to using a mouse to select program commands. While Motif supports point and click, the toolkit also supports using the keyboard as a substitute for many operations. This gives a good typist a distinct advantage when using a familiar application. We will give an overview of the toolkit, touching on the user interface features and general programming considerations. Since the source code for many useful Motif programs is readily available, we will explain how to get these sources and touch on derived benefits. We win also point to other sources of on-line help and documentation. Finally, we will present some practical experiences developing applications.

  12. INFLUENCE OF ASSESSMENT SETTING ON THE RESULTS OF FUNCTIONAL ANALYSES OF PROBLEM BEHAVIOR

    PubMed Central

    Lang, Russell; Sigafoos, Jeff; Lancioni, Giulio; Didden, Robert; Rispoli, Mandy

    2010-01-01

    Analogue functional analyses are widely used to identify the operant function of problem behavior in individuals with developmental disabilities. Because problem behavior often occurs across multiple settings (e.g., homes, schools, outpatient clinics), it is important to determine whether the results of functional analyses vary across settings. This brief review covers 3 recent studies that examined the influence of different settings on the results of functional analyses and identifies directions for future research. PMID:21358920

  13. Fish otolith mass asymmetry: morphometry and influence on acoustic functionality.

    PubMed

    Lychakov, D V; Rebane, Y T

    2005-03-01

    The role of the fish otolith mass asymmetry in acoustic functionality is studied. The saccular, lagenar and utricular otoliths are weighted in two species of the Black Sea rays, 15 species of the Black Sea teleost fish and guppy fish. The dimensionless otolith mass asymmetry chi is calculated as ratio of the difference between masses of the right and left paired otoliths to average otolith mass. In the most fish studied the otolith mass asymmetry is within the range of -0.2 < chi < +0.2 (< 20%). We do not find specific fish species with extremely large or extremely small otolith asymmetry. The large otoliths do not belong solely to any particular side, left or right. The heavier otoliths of different otolithic organs can be located in different labyrinths. No relationship has been found between the magnitude of the otolith mass asymmetry and the length (mass, age) of the animal. The suggested fluctuation model of the otolith growth can interpret these results. The model supposes that the otolith growth rate varies slightly hither and thither during lifetime of the individual fish. Therefore, the sign of the relative otolith mass asymmetry can change several times in the process of the individual fish growth but within the range outlined above. Mathematical modeling shows that acoustic functionality (sensitivity, temporal processing, sound localization) of the fish can be disturbed by the otolith mass asymmetry. But this is valid only for the fish with largest otolith masses, characteristic of the bottom and littoral fish, and with highest otolith asymmetry. For most fish the values of otolith mass asymmetry is well below critical values. Thus, the most fish get around the troubles related to the otolith mass asymmetry. We suggest that a specific physicochemical mechanism of the paired otolith growth that maintains the otolith mass asymmetry at the lowest possible level should exist. However, the principle and details of this mechanism are still far from being

  14. Identifiability and inference of pathway motifs by epistasis analysis.

    PubMed

    Phenix, Hilary; Perkins, Theodore; Kærn, Mads

    2013-06-01

    The accuracy of genetic network inference is limited by the assumptions used to determine if one hypothetical model is better than another in explaining experimental observations. Most previous work on epistasis analysis-in which one attempts to infer pathway relationships by determining equivalences among traits following mutations-has been based on Boolean or linear models. Here, we delineate the ultimate limits of epistasis-based inference by systematically surveying all two-gene network motifs and use symbolic algebra with arbitrary regulation functions to examine trait equivalences. Our analysis divides the motifs into equivalence classes, where different genetic perturbations result in indistinguishable experimental outcomes. We demonstrate that this partitioning can reveal important information about network architecture, and show, using simulated data, that it greatly improves the accuracy of genetic network inference methods. Because of the minimal assumptions involved, equivalence partitioning has broad applicability for gene network inference. PMID:23822501

  15. Distance conservation of transcriptional and splicing regulatory motifs

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Ding, Changjiang

    2012-09-01

    The distance conservation is a new kind of genomic evolutionary conservation. The transcriptional and splicing regulatory k-mer motifs are functionally important DNA sequence elements. We demonstrated that there exist the evolutionarily conservation of the distance between these k-mer pairs in genomic sequences. This kind of conservation is not based on the strict location of bases in genome sequences, and does not depend on excess frequency of occurrence of k-mers. By utilizing the conservation of k-mer distance it is possible to design a non-alignment-based approach to quickly identify transcriptional or splicing regulatory motifs on the genome-wide scale. In this paper we will summarize our previous studies on distance conservation, introduce the method of distance conservation and indicate the prospects of its application.

  16. A new motif for inhibitors of geranylgeranyl diphosphate synthase.

    PubMed

    Foust, Benjamin J; Allen, Cheryl; Holstein, Sarah A; Wiemer, David F

    2016-08-15

    The enzyme geranylgeranyl diphosphate synthase (GGDPS) is believed to receive the substrate farnesyl diphosphate through one lipophilic channel and release the product geranylgeranyl diphosphate through another. Bisphosphonates with two isoprenoid chains positioned on the α-carbon have proven to be effective inhibitors of this enzyme. Now a new motif has been prepared with one isoprenoid chain on the α-carbon, a second included as a phosphonate ester, and the potential for a third at the α-carbon. The pivaloyloxymethyl prodrugs of several compounds based on this motif have been prepared and the resulting compounds have been tested for their ability to disrupt protein geranylgeranylation and induce cytotoxicity in myeloma cells. The initial biological studies reveal activity consistent with GGDPS inhibition, and demonstrate a structure-function relationship which is dependent on the nature of the alkyl group at the α-carbon. PMID:27338660

  17. Identifiability and inference of pathway motifs by epistasis analysis

    NASA Astrophysics Data System (ADS)

    Phenix, Hilary; Perkins, Theodore; Kærn, Mads

    2013-06-01

    The accuracy of genetic network inference is limited by the assumptions used to determine if one hypothetical model is better than another in explaining experimental observations. Most previous work on epistasis analysis—in which one attempts to infer pathway relationships by determining equivalences among traits following mutations—has been based on Boolean or linear models. Here, we delineate the ultimate limits of epistasis-based inference by systematically surveying all two-gene network motifs and use symbolic algebra with arbitrary regulation functions to examine trait equivalences. Our analysis divides the motifs into equivalence classes, where different genetic perturbations result in indistinguishable experimental outcomes. We demonstrate that this partitioning can reveal important information about network architecture, and show, using simulated data, that it greatly improves the accuracy of genetic network inference methods. Because of the minimal assumptions involved, equivalence partitioning has broad applicability for gene network inference.

  18. Graph animals, subgraph sampling, and motif search in large networks

    NASA Astrophysics Data System (ADS)

    Baskerville, Kim; Grassberger, Peter; Paczuski, Maya

    2007-09-01

    We generalize a sampling algorithm for lattice animals (connected clusters on a regular lattice) to a Monte Carlo algorithm for “graph animals,” i.e., connected subgraphs in arbitrary networks. As with the algorithm in [N. Kashtan , Bioinformatics 20, 1746 (2004)], it provides a weighted sample, but the computation of the weights is much faster (linear in the size of subgraphs, instead of superexponential). This allows subgraphs with up to ten or more nodes to be sampled with very high statistics, from arbitrarily large networks. Using this together with a heuristic algorithm for rapidly classifying isomorphic graphs, we present results for two protein interaction networks obtained using the tandem affinity purification (TAP) method: one of Escherichia coli with 230 nodes and 695 links, and one for yeast (Saccharomyces cerevisiae) with roughly ten times more nodes and links. We find in both cases that most connected subgraphs are strong motifs ( Z scores >10 ) or antimotifs ( Z scores <-10 ) when the null model is the ensemble of networks with fixed degree sequence. Strong differences appear between the two networks, with dominant motifs in E. coli being (nearly) bipartite graphs and having many pairs of nodes that connect to the same neighbors, while dominant motifs in yeast tend towards completeness or contain large cliques. We also explore a number of methods that do not rely on measurements of Z scores or comparisons with null models. For instance, we discuss the influence of specific complexes like the 26S proteasome in yeast, where a small number of complexes dominate the k cores with large k and have a decisive effect on the strongest motifs with 6-8 nodes. We also present Zipf plots of counts versus rank. They show broad distributions that are not power laws, in contrast to the case when disconnected subgraphs are included.

  19. Two Di-Leucine Motifs Regulate Trafficking of Mucolipin-1 to Lysosomes

    PubMed Central

    Vergarajauregui, Silvia; Puertollano, Rosa

    2006-01-01

    Mutations in the mucolipin-1 gene have been linked to mucolipidosis type IV, a lysosomal storage disorder characterized by severe neurological and ophthalmologic abnormalities. Mucolipin-1 is a membrane protein containing six putative transmembrane domains with both its N- and C-termini localized facing the cytosol. To gain information on the sorting motifs that mediate the trafficking of this protein to lysosomes, we have generated chimeras in which the N- and C- terminal tail portions of mucolipin-1 were fused to a reporter gene. In this article, we report the identification of two separate di-leucine-type motifs that co-operate to regulate the transport of mucolipin-1 to lysosomes. One di-leucine motif is positioned at the N-terminal cytosolic tail and mediates direct transport to lysosomes, whereas the other di-leucine motif is found at the C-terminal tail and functions as an adaptor protein 2-dependent internalization motif. We have also found that the C-terminal tail of mucolipin-1 is palmitoylated and that this modification might regulate the efficiency of endocytosis. Finally, the mutagenesis of both di-leucine motifs abrogated lysosomal accumulation and resulted in cell-surface redistribution of mucolipin-1. Taken together, these results reveal novel information regarding the motifs that regulate mucolipin-1 trafficking and suggest a role for palmitoylation in protein sorting. PMID:16497227

  20. A Further Study on Mining DNA Motifs Using Fuzzy Self-Organizing Maps.

    PubMed

    Tapan, Sarwar; Wang, Dianhui

    2016-01-01

    Self-organizing map (SOM)-based motif mining, despite being a promising approach for problem solving, mostly fails to offer a consistent interpretation of clusters with respect to the mixed composition of signal and noise in the nodes. The main reason behind this shortcoming comes from the similarity metrics used in data assignment, specially designed with the biological interpretation for this domain, which are not meant to consider the inevitable noise mixture in the clusters. This limits the explicability of the majority of clusters that are supposedly noise dominated, degrading the overall system clarity in motif discovery. This paper aims to improve the explicability aspect of learning process by introducing a composite similarity function (CSF) that is specially designed for the k -mer-to-cluster similarity measure with respect to the degree of motif properties and embedded noise in the cluster. Our proposed motif finding algorithm in this paper is built on our previous work robust elicitation algorithms for discovering (READ) [1] and termed READ Deoxyribonucleic acid motifs using CSFs (READ(csf)), which performs slightly better than READ and shows some remarkable improvements over SOM-based SOMBRERO and SOMEA tools in terms of F-measure on the testing data sets. A real data set containing multiple motifs is used to explore the potential of the READ(csf) for more challenging biological data mining tasks. Visual comparisons with the verified logos extracted from JASPAR database demonstrate that our algorithm is promising to discover multiple motifs simultaneously. PMID:26068877

  1. Coagulase and Efb of Staphylococcus aureus Have a Common Fibrinogen Binding Motif

    PubMed Central

    Ko, Ya-Ping; Kang, Mingsong; Ganesh, Vannakambadi K.; Ravirajan, Dharmanand; Li, Bin

    2016-01-01

    ABSTRACT Coagulase (Coa) and Efb, secreted Staphylococcus aureus proteins, are important virulence factors in staphylococcal infections. Coa interacts with fibrinogen (Fg) and induces the formation of fibrin(ogen) clots through activation of prothrombin. Efb attracts Fg to the bacterial surface and forms a shield to protect the bacteria from phagocytic clearance. This communication describes the use of an array of synthetic peptides to identify variants of a linear Fg binding motif present in Coa and Efb which are responsible for the Fg binding activities of these proteins. This motif represents the first Fg binding motif identified for any microbial protein. We initially located the Fg binding sites to Coa’s C-terminal disordered segment containing tandem repeats by using recombinant fragments of Coa in enzyme-linked immunosorbent assay-type binding experiments. Sequence analyses revealed that this Coa region contained shorter segments with sequences similar to the Fg binding segments in Efb. An alanine scanning approach allowed us to identify the residues in Coa and Efb that are critical for Fg binding and to define the Fg binding motifs in the two proteins. In these motifs, the residues required for Fg binding are largely conserved, and they therefore constitute variants of a common Fg binding motif which binds to Fg with high affinity. Defining a specific motif also allowed us to identify a functional Fg binding register for the Coa repeats that is different from the repeat unit previously proposed. PMID:26733070

  2. The influence of atypical antipsychotic drugs on sexual function

    PubMed Central

    Just, Marek J

    2015-01-01

    Human sexuality is contingent upon many biological and psychological factors. Such factors include sexual drive (libido), physiological arousal (lubrication/erection), orgasm, and ejaculation, as well as maintaining normal menstrual cycle. The assessment of sexual dysfunction can be difficult due to the intimate nature of the problem and patients’ unwillingness to discuss it. Also, the problem of dysfunction is often overlooked by doctors. Atypical antipsychotic treatment is a key component of mental disorders’ treatment algorithms recommended by the National Institute of Health and Clinical Excellence, the American Psychiatric Association, and the British Society for Psychopharmacology. The relationship between atypical antipsychotic drugs and sexual dysfunction is mediated in part by antipsychotic blockade of pituitary dopamine D2 receptors increasing prolactin secretion, although direct correlations have not been established between raised prolactin levels and clinical symptoms. Variety of mechanisms are likely to contribute to antipsychotic-related sexual dysfunction, including hyperprolactinemia, sedation, and antagonism of a number of neurotransmitter receptors (α-adrenergic, dopaminergic, histaminic, and muscarinic). Maintaining normal sexual function in people treated for mental disorders can affect their quality of life, mood, self-esteem, attitude toward taking medication, and compliance during therapy. PMID:26185449

  3. Paternal fenvalerate exposure influences reproductive functions in the offspring.

    PubMed

    Xia, Dong; Parvizi, Nahid; Zhou, Yuchuan; Xu, Kesi; Jiang, Hui; Li, Rongjie; Hang, Yiqiong; Lu, Yang

    2013-11-01

    Fenvalerate (Fen), a synthetic pyrethroid insecticide, has been shown to have adverse effects on male reproductive system. Thus, the aim of the present study was to elucidate whether these adverse effects are passed from exposed male mice to their offspring. Adult male mice received Fen (10 mg/kg) daily for 30 days and mated with untreated females to produce offspring. Fenvalerate significantly changed the methylation status of angiotensin I-converting enzyme (Ace), forkhead box O3 (Foxo3a), huntingtin-associated protein 1 (Hap1), nuclear receptor subfamily 3 (Nr3c2), promyelocytic leukemia (Pml), and Prostaglandin F2 receptor negative regulator (Ptgfrn) genes in paternal mice sperm genomic DNA. Further, Fen significantly increased sperm abnormalities; serum testosterone and estradiol-17ß level in adult male (F0) and their male offspring (F1). Further, paternal Fen treatment significantly increased the length of estrous cycle, serum estradiol-17ß concentration in estrus, and progesterone levels in diestrus in female offspring (F1). These findings suggest that adverse effects of paternal Fen exposure on reproductive functions can be seen not only in treated males (F0) but also in their offsprings. PMID:23548413

  4. Neto2 Influences on Kainate Receptor Pharmacology and Function.

    PubMed

    Han, Liwei; Howe, James R; Pickering, Darryl S

    2016-08-01

    Neuropilin tolloid-like protein 2 (Neto2) is an auxiliary subunit of kainate receptors (KARs). It specifically regulates KARs, for example slows desensitization and deactivation, increases the rate of recovery from desensitization, promotes modal gating and increases agonist sensitivity. Although the mechanism of Neto2 modulation is still unclear, gain-of-function results from the characterization of GluK1-GluA2 chimeras indicate that the GluK1 sequences included in these chimeras (part or all of the TMD and part of the linkers between the TMDs and LBD) play a key role in Neto2 modulation of KAR. In addition, GluK2 M3-S2 linkers and the D1-D1 dimer interface were also recently identified to be important for Neto2 modulation, and some studies suggested that Neto2's N-terminal regions, LDLa domain and the C-terminal regions are important for its modulation of KARs. Although more studies are needed to confirm the roles of these domains and to identify all the domains and residues essential for KAR modulation, these results facilitate our understanding of Neto2 modulation at the structural level, which could potentially aid the development of novel therapies for the treatment of diseases that are associated with KARs, for example epilepsies, non-syndromic autosomal recessive mental retardation, schizophrenia and bipolar disorder. PMID:26928870

  5. Factors influencing reticulophagocytic function in insulin-treated diabetes

    SciTech Connect

    Lawrence, S.; Charlesworth, J.A.; Pussell, B.A.; Campbell, L.V.; Kotowicz, M.A.

    1984-09-01

    The splenic component of reticulophagocytic function (RPF) was examined in 29 insulin-treated diabetic subjects (13 type I and 16 type II) by measurement of clearance of altered, radiolabeled, autologous erythrocytes. Double-isotope studies were performed with cells altered by: (1) preincubation with N-ethylmaleimide (NEM) and (2) coating with IgG antibody to the Rhesus (Rh) D antigen, labeled with 99mTc and 51Cr, respectively. HLA typing for the A, B, and DR loci was performed in those patients showing a defect in the clearance of IgG-coated cells. Values for half-life (t1/2) were correlated with the incidence of diabetic complications, levels of HbA1, and circulating immune complexes (CIC). Two patterns of abnormal clearance were observed: first, an isolated defect of IgG-coated cell clearance in 7 patients (3 had the HLA B8/DR3 haplotype) and second, abnormal removal of both types of cell in a further 7 patients (3 had B8/DR3). There was no correlation between half-lives as measured by the two methods, although exclusion of the patients with a defect of IgG-coated cell clearance alone yielded a highly significant correlation for the remaining 15 Rh-positive patients (P less than 0.01). Abnormalities of IgG-coated cell clearance were more frequent in patients with HbA1 greater than 9% (P less than 0.02), while t1/2 of NEM-altered cells was significantly greater in patients with CIC (P less than 0.05). There was no correlation between t1/2 and the incidence of peripheral complications.

  6. Characterization of the tandem CWCH2 sequence motif: a hallmark of inter-zinc finger interactions

    PubMed Central

    2010-01-01

    Background The C2H2 zinc finger (ZF) domain is widely conserved among eukaryotic proteins. In Zic/Gli/Zap1 C2H2 ZF proteins, the two N-terminal ZFs form a single structural unit by sharing a hydrophobic core. This structural unit defines a new motif comprised of two tryptophan side chains at the center of the hydrophobic core. Because each tryptophan residue is located between the two cysteine residues of the C2H2 motif, we have named this structure the tandem CWCH2 (tCWCH2) motif. Results Here, we characterized 587 tCWCH2-containing genes using data derived from public databases. We categorized genes into 11 classes including Zic/Gli/Glis, Arid2/Rsc9, PacC, Mizf, Aebp2, Zap1/ZafA, Fungl, Zfp106, Twincl, Clr1, and Fungl-4ZF, based on sequence similarity, domain organization, and functional similarities. tCWCH2 motifs are mostly found in organisms belonging to the Opisthokonta (metazoa, fungi, and choanoflagellates) and Amoebozoa (amoeba, Dictyostelium discoideum). By comparison, the C2H2 ZF motif is distributed widely among the eukaryotes. The structure and organization of the tCWCH2 motif, its phylogenetic distribution, and molecular phylogenetic analysis suggest that prototypical tCWCH2 genes existed in the Opisthokonta ancestor. Within-group or between-group comparisons of the tCWCH2 amino acid sequence identified three additional sequence features (site-specific amino acid frequencies, longer linker sequence between two C2H2 ZFs, and frequent extra-sequences within C2H2 ZF motifs). Conclusion These features suggest that the tCWCH2 motif is a specialized motif involved in inter-zinc finger interactions. PMID:20167128

  7. Maximum likelihood density modification by pattern recognition of structural motifs

    DOEpatents

    Terwilliger, Thomas C.

    2004-04-13

    An electron density for a crystallographic structure having protein regions and solvent regions is improved by maximizing the log likelihood of a set of structures factors {F.sub.h } using a local log-likelihood function: (x)+p(.rho.(x).vertline.SOLV)p.sub.SOLV (x)+p(.rho.(x).vertline.H)p.sub.H (x)], where p.sub.PROT (x) is the probability that x is in the protein region, p(.rho.(x).vertline.PROT) is the conditional probability for .rho.(x) given that x is in the protein region, and p.sub.SOLV (x) and p(.rho.(x).vertline.SOLV) are the corresponding quantities for the solvent region, p.sub.H (x) refers to the probability that there is a structural motif at a known location, with a known orientation, in the vicinity of the point x; and p(.rho.(x).vertline.H) is the probability distribution for electron density at this point given that the structural motif actually is present. One appropriate structural motif is a helical structure within the crystallographic structure.

  8. GxxxG motifs hold the TIM23 complex together.

    PubMed

    Demishtein-Zohary, Keren; Marom, Milit; Neupert, Walter; Mokranjac, Dejana; Azem, Abdussalam

    2015-06-01

    Approximately 99% of the mitochondrial proteome is nucleus-encoded, synthesized in the cytosol, and subsequently imported into and sorted to the correct compartment in the organelle. The translocase of the inner mitochondrial membrane 23 (TIM23) complex is the major protein translocase of the inner membrane, and is responsible for translocation of proteins across the inner membrane and their insertion into the inner membrane. Tim23 is the central component of the complex that forms the import channel. A high-resolution structure of the import channel is still missing, and structural elements important for its function are unknown. In the present study, we analyzed the importance of the highly abundant GxxxG motifs in the transmembrane segments of Tim23 for the structural integrity of the TIM23 complex. Of 10 glycines present in the GxxxG motifs in the first, second and third transmembrane segments of Tim23, mutations of three of them in transmembrane segments 1 and 2 resulted in a lethal phenotype, and mutations of three others in a temperature-sensitive phenotype. The remaining four caused no obvious growth phenotype. Importantly, none of the mutations impaired the import and membrane integration of Tim23 precursor into mitochondria. However, the severity of growth impairment correlated with the destabilization of the TIM23 complex. We conclude that the GxxxG motifs found in the first and second transmembrane segments of Tim23 are necessary for the structural integrity of the TIM23 complex. PMID:25765297

  9. QuateXelero: An Accelerated Exact Network Motif Detection Algorithm

    PubMed Central

    Khakabimamaghani, Sahand; Sharafuddin, Iman; Dichter, Norbert; Koch, Ina; Masoudi-Nejad, Ali

    2013-01-01

    Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks’ structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network. PMID:23874498

  10. An update on cell surface proteins containing extensin-motifs.

    PubMed

    Borassi, Cecilia; Sede, Ana R; Mecchia, Martin A; Salgado Salter, Juan D; Marzol, Eliana; Muschietti, Jorge P; Estevez, Jose M

    2016-01-01

    In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge. PMID:26475923

  11. QuateXelero: an accelerated exact network motif detection algorithm.

    PubMed

    Khakabimamaghani, Sahand; Sharafuddin, Iman; Dichter, Norbert; Koch, Ina; Masoudi-Nejad, Ali

    2013-01-01

    Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks' structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network. PMID:23874498

  12. Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria

    PubMed Central

    2013-01-01

    Background In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels. An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. Results A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories. Analysis of taxonomic distribution of these categories allowed us to establish major functional preferences for each analyzed cis-regulatory RNA motif family. Overall, most RNA motif regulons showed predictable functional content in accordance with their experimentally established effector ligands. Our results suggest that some RNA motifs (including thiamin pyrophosphate and cobalamin riboswitches that control the cofactor metabolism) are widespread and likely originated from the last common ancestor of all bacteria. However, many more analyzed RNA motifs are restricted to a narrow taxonomic group of bacteria and likely represent more recent evolutionary innovations. Conclusions The reconstructed regulatory networks for major known RNA motifs substantially expand the existing knowledge of transcriptional regulation in bacteria. The inferred regulons can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and

  13. Single base pair differences in a shared motif determine differential Rhodopsin expression

    PubMed Central

    Rister, Jens; Razzaq, Ansa; Boodram, Pamela; Desai, Nisha; Tsanis, Cleopatra; Chen, Hongtao; Jukam, David; Desplan, Claude

    2016-01-01

    The final identity and functional properties of a neuron are specified by terminal differentiation genes, which are controlled by specific motifs in compact regulatory regions. To determine how these sequences integrate inputs from transcription factors that specify cell types, we compared the regulatory mechanism of Drosophila Rhodopsin genes that are expressed in subsets of photoreceptors to that of phototransduction genes that are expressed broadly, in all photoreceptors. Both sets of genes share an 11bp activator motif. Broadly expressed genes contain a palindromic version that mediates expression in all photoreceptors. In contrast, each Rhodopsin exhibits unique single bp substitutions that break the symmetry of the palindrome and generate activator or repressor motifs critical for restricting expression to photoreceptor subsets. Novel sensory neuron subtypes can therefore evolve through single base pair changes in short regulatory motifs, allowing the discrimination of a wide spectrum of stimuli. PMID:26785491

  14. The influence of demographic factors on functional capacity and everyday functional outcomes in schizophrenia.

    PubMed

    Gould, Felicia; Bowie, Christopher R; Harvey, Philip D

    2012-01-01

    Patients with schizophrenia have impaired everyday living and social outcomes. Performance-based measures, including neuropsychological (NP) performance and functional capacity (FC) measures have demonstrated usefulness in predicting these outcomes. We examined the correlation of demographic factors (race, age, and education) and FC measures, and the relative ability of NP performance, FC, and demographic factors to predict real-world outcomes in social, vocational, and residential domains in 194 outpatients with schizophrenia. Age, education, sex, and racial status were significantly, but modestly, associated with performance-based measures of everyday functioning, while, in addition, age and education had a similar modest relationship with social competence. Age, but none of the other demographic variables, contributed to the prediction of all three domains of everyday functioning. Functional capacity variables predicted everyday outcomes even when demographic variables were entered into a predictive equation first. These data suggest a similar and modest but detectable effect of demographic factors on performance-based measures of functional capacity as seen with NP performance in schizophrenia populations. Older age contributed to poorer everyday functioning even after consideration of functional capacity, which seems similar to findings in healthy populations without clinically notable cognitive decline. PMID:22272559

  15. Orientation and Dynamics of Synthetic Transbilayer Polypeptides Containing GpATM Dimerization Motifs

    PubMed Central

    McDonald, Mark C.; Booth, Valerie; Morrow, Michael R.

    2011-01-01

    Deuterium NMR spectroscopy was used to study how the positioning of a dimerization motif within a transbilayer polypeptide influences its orientation and dynamics in bilayers. Three polypeptide variants comprising glycophorin A transmembrane (GpATM) dimerization motifs incorporated into lysine-terminated poly-leucine-alanine helices were mixed into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine multilamellar vesicles. The variants differed in orientation of the motif segment around the helix axis with respect to the peptide ends. Polypeptides were labeled with methyl-deuterated alanines at positions that were identically situated relative to the peptide ends (Ala-20 and Ala-22) and at two positions within the motif. An analysis of quadrupole splittings revealed similar tilts and orientations of the peptide ends for all three variants, suggesting that average orientations were dominated by interactions at the bilayer surface. For one variant, however, fast orientational fluctuations about the helix axis were significantly smaller. This may indicate some perturbation of peptide dynamics and conformation by interactions that are sensitive to the motif orientation relative to the peptide ends. For the variant that displayed distinct dynamics, one orientation consistent with observed splittings corresponded to the motif being situated such that its two glycines were particularly accessible to adjacent peptides. PMID:21281580

  16. Structure-Activity Studies of Cysteine-Rich α-Conotoxins that Inhibit High-Voltage-Activated Calcium Channels via GABA(B) Receptor Activation Reveal a Minimal Functional Motif.

    PubMed

    Carstens, Bodil B; Berecki, Géza; Daniel, James T; Lee, Han Siean; Jackson, Kathryn A V; Tae, Han-Shen; Sadeghi, Mahsa; Castro, Joel; O'Donnell, Tracy; Deiteren, Annemie; Brierley, Stuart M; Craik, David J; Adams, David J; Clark, Richard J

    2016-04-01

    α-Conotoxins are disulfide-rich peptides that target nicotinic acetylcholine receptors. Recently we identified several α-conotoxins that also modulate voltage-gated calcium channels by acting as G protein-coupled GABA(B) receptor (GABA(B)R) agonists. These α-conotoxins are promising drug leads for the treatment of chronic pain. To elucidate the diversity of α-conotoxins that act through this mechanism, we synthesized and characterized a set of peptides with homology to α-conotoxins known to inhibit high voltage-activated calcium channels via GABA(B)R activation. Remarkably, all disulfide isomers of the active α-conotoxins Pu1.2 and Pn1.2, and the previously studied Vc1.1 showed similar levels of biological activity. Structure determination by NMR spectroscopy helped us identify a simplified biologically active eight residue peptide motif containing a single disulfide bond that is an excellent lead molecule for developing a new generation of analgesic peptide drugs. PMID:26948522

  17. Intragenic Dominant Suppressors of Glp-1, a Gene Essential for Cell-Signaling in Caenorhabditis Elegans, Support a Role for Cdc10/Sw16/Ankyrin Motifs in Glp-1 Function

    PubMed Central

    Lissemore, J. L.; Currie, P. D.; Turk, C. M.; Maine, E. M.

    1993-01-01

    The glp-1 gene product mediates cell-cell interactions required for cell fate specification during development in Caenorhabditis elegans. To identify genes that interact with glp-1, we screened for dominant suppressors of two temperature-sensitive glp-1 alleles and recovered 18 mutations that suppress both germline and embryonic glp-1 phenotypes. These dominant suppressors are tightly linked to glp-1 and do not bypass the requirement for a distal tip cell, which is thought to be the source of a signal that is received and transduced by the GLP-1 protein. Using single-strand conformation polymorphism (SSCP) analysis and DNA sequencing, we found that at least 17 suppressors are second-site intragenic revertants. The suppressors, like the original glp-1(ts) mutations, are all located in the cdc10/SWI6/ankyrin domain of GLP-1. cdc10/SWI6/ankyrin motifs have been shown to mediate specific protein-protein interactions in other polypeptides. We propose that the glp-1(ts) mutations disrupt contact between GLP-1 and an as yet unidentified target protein(s) and that the dominant suppressor mutations restore appropriate protein-protein interactions. PMID:8307320

  18. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    NASA Astrophysics Data System (ADS)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  19. The impact of objective function selection on the influence of individual data points

    NASA Astrophysics Data System (ADS)

    Wright, David; Thyer, Mark; Westra, Seth; McInerney, David

    2016-04-01

    Across the field of hydrology practitioners apply a range of objective functions which are selected based upon the intended model application and suitability of the objective function assumptions to the data in question. Despite most objective functions providing fundamentally different calibration results there are currently limited methods for comparison of alternatives. Influence diagnostics quantify the impact of individual data points on model performance, parameters and predictions. The goal of this study is to use compare four commonly applied objective functions in hydrology using influence diagnostics to provide insights on how objective function selection changes the influence of individual data points on model calibration. The specific aims are to: 1) explore the impact on magnitude of influence of objective functions, 2) investigate similarities between influential points identified by objective functions and, 3) categorise flows that are influential under objective functions. We use case-deletion influence diagnostics to examine four objective functions: Standard Least Squares (SLS), Weighted Least Squares (WLS), Log transformed flows (LOG) and the Kling-Gupta Efficiency (KGE). We apply these objective functions to six scenarios: two conceptual hydrological models (GR4J and IHACRES) across three catchment case studies with varying runoff coefficients (0.14 to 0.57). We quantify influence using the case-deletion relative change in flow metrics: mean flow prediction, maximum flow prediction, and the 10th percentile low flow prediction. The results show that when using objective functions SLS and KGE influential data points have larger magnitude influence (maximum of 10% change in the flow metrics across all data points for both objective functions) than heteroscedastic WLS and LOG (WLS maximum of 8% and LOG maximum of 6% change in the flow metrics). SLS and KGE identify similar influential points (75% of the most influential points are common to both

  20. Kinematics, influence functions and field quantities for disturbance propagation from moving disturbance sources

    NASA Technical Reports Server (NTRS)

    Das, A.

    1984-01-01

    A unified method is presented for deriving the influence functions of moving singularities which determine the field quantities in aerodynamics and aeroacoustics. The moving singularities comprise volume and surface distributions having arbitrary orientations in space and to the trajectory. Hence one generally valid formula for the influence functions which reveal some universal relationships and remarkable properties in the disturbance fields. The derivations used are completely consistent with the physical processes in the propagation field, such that treatment renders new descriptions for some standard concepts. The treatment is uniformly valid for subsonic and supersonic Mach numbers.

  1. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    PubMed Central

    2011-01-01

    Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC). A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans. PMID:22122911

  2. Pressure-induced endocytic degradation of the Saccharomyces cerevisiae low-affinity tryptophan permease Tat1 is mediated by Rsp5 ubiquitin ligase and functionally redundant PPxY motif proteins.

    PubMed

    Suzuki, Asaha; Mochizuki, Takahiro; Uemura, Satoshi; Hiraki, Toshiki; Abe, Fumiyoshi

    2013-07-01

    Cells of Saccharomyces cerevisiae express two tryptophan permeases, Tat1 and Tat2, which have different characteristics in terms of their affinity for tryptophan and intracellular localization. Although the high-affinity permease Tat2 has been well documented in terms of its ubiquitin-dependent degradation, the low-affinity permease Tat1 has not yet been characterized fully. Here we show that a high hydrostatic pressure of 25 MPa triggers a degradation of Tat1 which depends on Rsp5 ubiquitin ligase and the EH domain-containing protein End3. Tat1 was resistant to a 3-h cycloheximide treatment, suggesting that it is highly stable under normal growth conditions. The ubiquitination of Tat1 most likely occurs at N-terminal lysines 29 and 31. Simultaneous substitution of arginine for the two lysines prevented Tat1 degradation, but substitution of either of them alone did not, indicating that the roles of lysines 29 and 31 are redundant. When cells were exposed to high pressure, Tat1-GFP was completely lost from the plasma membrane, while substantial amounts of Tat1(K29R-K31R)-GFP remained. The HPG1-1 (Rsp5(P514T)) and rsp5-ww3 mutations stabilized Tat1 under high pressure, but any one of the rsp5-ww1, rsp5-ww2, and bul1Δ bul2Δ mutations or single deletions of genes encoding arrestin-related trafficking adaptors did not. However, simultaneous loss of 9-arrestins and Bul1/Bul2 prevented Tat1 degradation at 25 MPa. The results suggest that multiple PPxY motif proteins share some essential roles in regulating Tat1 ubiquitination in response to high hydrostatic pressure. PMID:23666621

  3. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    SciTech Connect

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by patterns in

  4. Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements

    NASA Astrophysics Data System (ADS)

    Fernandez-Chamorro, Javier; Lozano, Gloria; Garcia-Martin, Juan Antonio; Ramajo, Jorge; Dotu, Ivan; Clote, Peter; Martinez-Salas, Encarnacion

    2016-04-01

    The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.

  5. Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements

    PubMed Central

    Fernandez-Chamorro, Javier; Lozano, Gloria; Garcia-Martin, Juan Antonio; Ramajo, Jorge; Dotu, Ivan; Clote, Peter; Martinez-Salas, Encarnacion

    2016-01-01

    The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function. PMID:27053355

  6. The Motif of Meeting in Digital Education

    ERIC Educational Resources Information Center

    Sheail, Philippa

    2015-01-01

    This article draws on theoretical work which considers the composition of meetings, in order to think about the form of the meeting in digital environments for higher education. To explore the motif of meeting, I undertake a "compositional interpretation" (Rose, 2012) of the default interface offered by "Collaborate", an…

  7. Estimate of the influence of muzzle smoke on function range of infrared system

    NASA Astrophysics Data System (ADS)

    Luo, Yan-ling; Wang, Jun; Wu, Jiang-hui; Wu, Jun; Gao, Meng; Gao, Fei; Zhao, Yu-jie; Zhang, Lei

    2013-09-01

    Muzzle smoke produced by weapons shooting has important influence on infrared (IR) system while detecting targets. Based on the theoretical model of detecting spot targets and surface targets of IR system while there is muzzle smoke, the function range for detecting spot targets and surface targets are deduced separately according to the definition of noise equivalent temperature difference(NETD) and minimum resolution temperature difference(MRTD). Also parameters of muzzle smoke affecting function range of IR system are analyzed. Base on measured data of muzzle smoke for single shot, the function range of an IR system for detecting typical targets are calculated separately while there is muzzle smoke and there is no muzzle smoke at 8~12 micron waveband. For our IR system function range has reduced by over 10% for detecting tank if muzzle smoke exists. The results will provide evidence for evaluating the influence of muzzle smoke on IR system and will help researchers to improve ammo craftwork.

  8. A systematic evaluation of sorting motifs in the sodium-iodide symporter (NIS).

    PubMed

    Darrouzet, Elisabeth; Graslin, Fanny; Marcellin, Didier; Tcheremisinova, Iulia; Marchetti, Charles; Salleron, Lisa; Pognonec, Philippe; Pourcher, Thierry

    2016-04-01

    The sodium-iodide symporter (NIS) is an integral membrane protein that plays a crucial role in iodide accumulation, especially in the thyroid. As for many other membrane proteins, its intracellular sorting and distribution have a tremendous effect on its function, and constitute an important aspect of its regulation. Many short sequences have been shown to contribute to protein trafficking along the sorting or endocytic pathways. Using bioinformatics tools, we identified such potential sites on human NIS [tyrosine-based motifs, SH2-(Src homology 2), SH3- and PDZ (post-synaptic density-95/discs large tumour suppressor/zonula occludens-1)-binding motifs, and diacidic, dibasic and dileucine motifs] and analysed their roles using mutagenesis. We found that several of these sites play a role in protein stability and/or targeting to the membrane. Aside from the mutation at position 178 (SH2 plus tyrosine-based motif) that affects iodide uptake, the most drastic effect is associated with the mutation of an internal PDZ-binding motif at position 121 that completely abolishes NIS expression at the plasma membrane. Mutating the sites located on the C-terminal domain of the protein has no effect except for the creation of a diacidic motif that decreases the total NIS protein level without affecting its expression at the plasma membrane. PMID:26831514

  9. Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks

    PubMed Central

    Ma'ayan, Avi; Cecchi, Guillermo A.; Wagner, John; Rao, A. Ravi; Iyengar, Ravi; Stolovitzky, Gustavo

    2008-01-01

    Representation and analysis of complex biological and engineered systems as directed networks is useful for understanding their global structure/function organization. Enrichment of network motifs, which are over-represented subgraphs in real networks, can be used for topological analysis. Because counting network motifs is computationally expensive, only characterization of 3- to 5-node motifs has been previously reported. In this study we used a supercomputer to analyze cyclic motifs made of 3–20 nodes for 6 biological and 3 technological networks. Using tools from statistical physics, we developed a theoretical framework for characterizing the ensemble of cyclic motifs in real networks. We have identified a generic property of real complex networks, antiferromagnetic organization, which is characterized by minimal directional coherence of edges along cyclic subgraphs, such that consecutive links tend to have opposing direction. As a consequence, we find that the lack of directional coherence in cyclic motifs leads to depletion in feedback loops, where the number of nodes affected by feedback loops appears to be at a local minimum compared with surrogate shuffled networks. This topology provides more dynamic stability in large networks. PMID:19033453

  10. Bioinformatic identification of novel regulatory DNA sequence motifs in Streptomyces coelicolor

    PubMed Central

    Studholme, David J; Bentley, Stephen D; Kormanec, Jan

    2004-01-01

    Background Streptomyces coelicolor is a bacterium with a vast repertoire of metabolic functions and complex systems of cellular development. Its genome sequence is rich in genes that encode regulatory proteins to control these processes in response to its changing environment. We wished to apply a recently published bioinformatic method for identifying novel regulatory sequence signals to gain new insights into regulation in S. coelicolor. Results The method involved production of position-specific weight matrices from alignments of over-represented words of DNA sequence. We generated 2497 weight matrices, each representing a candidate regulatory DNA sequence motif. We scanned the genome sequence of S. coelicolor against each of these matrices. A DNA sequence motif represented by one of the matrices was found preferentially in non-coding sequences immediately upstream of genes involved in polysaccharide degradation, including several that encode chitinases. This motif (TGGTCTAGACCA) was also found upstream of genes encoding components of the phosphoenolpyruvate phosphotransfer system (PTS). We hypothesise that this DNA sequence motif represents a regulatory element that is responsive to availability of carbon-sources. Other motifs of potential biological significance were found upstream of genes implicated in secondary metabolism (TTAGGTtAGgCTaACCTAA), sigma factors (TGACN19TGAC), DNA replication and repair (ttgtCAGTGN13TGGA), nucleotide conversions (CTACgcNCGTAG), and ArsR (TCAGN12TCAG). A motif found upstream of genes involved in chromosome replication (TGTCagtgcN7Tagg) was similar to a previously described motif found in UV-responsive promoters. Conclusions We successfully applied a recently published in silico method to identify conserved sequence motifs in S. coelicolor that may be biologically significant as regulatory elements. Our data are broadly consistent with and further extend data from previously published studies. We invite experimental testing of

  11. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data

    PubMed Central

    2014-01-01

    Abstract ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. Reviewers This article was reviewed by Prof. Sandor Pongor, Dr. Yuriy Gusev, and Dr. Shyam Prabhakar (nominated by Prof. Limsoon Wong). PMID:24555784

  12. The Molecular Evolution of the Qo Motif

    PubMed Central

    Kao, Wei-Chun; Hunte, Carola

    2014-01-01

    Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex. PMID:25115012

  13. DNA motif elucidation using belief propagation.

    PubMed

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM. PMID:23814189

  14. Using an Adoption Design to Separate Genetic, Prenatal, and Temperament Influences on Toddler Executive Function

    PubMed Central

    Leve, Leslie D.; DeGarmo, David S.; Bridgett, David J.; Neiderhiser, Jenae M.; Shaw, Daniel S.; Harold, Gordon T.; Natsuaki, Misaki N.; Reiss, David

    2012-01-01

    Poor executive functioning has been implicated in children’s concurrent and future behavioral difficulties, making work aimed at understanding processes related to the development of early executive function (EF) critical for models of developmental psychopathology. Deficits in EF have been associated with adverse prenatal experiences, genetic influences, and temperament characteristics. However, our ability to disentangle the predictive and independent effects of these influences has been limited by a dearth of genetically-informed research designs that also consider prenatal influences. The present study examined EF and language development in a sample of 361 toddlers who were adopted at birth and reared in non-relative adoptive families. Predictors included genetic influences (as inherited from birth mothers), prenatal risk, and growth in child negative emotionality. Structural equation modeling indicated that the effect of prenatal risk on toddler effortful attention at age 27 months became nonsignificant once genetic influences were considered in the model. In addition, genetic influences had unique effects on toddler effortful attention. Latent growth modeling indicated that increases in toddler negative emotionality from 9 to 27 months were associated with poorer delay of gratification and poorer language development. Similar results were obtained in models incorporating birth father data. Mechanisms of intergenerational transmission of EF deficits are discussed. PMID:22799580

  15. Using an adoption design to separate genetic, prenatal, and temperament influences on toddler executive function.

    PubMed

    Leve, Leslie D; DeGarmo, David S; Bridgett, David J; Neiderhiser, Jenae M; Shaw, Daniel S; Harold, Gordon T; Natsuaki, Misaki N; Reiss, David

    2013-06-01

    Poor executive functioning has been implicated in children's concurrent and future behavioral difficulties, making work aimed at understanding processes related to the development of early executive function (EF) critical for models of developmental psychopathology. Deficits in EF have been associated with adverse prenatal experiences, genetic influences, and temperament characteristics. However, our ability to disentangle the predictive and independent effects of these influences has been limited by a dearth of genetically informed research designs that also consider prenatal influences. The present study examined EF and language development in a sample of 361 toddlers who were adopted at birth and reared in nonrelative adoptive families. Predictors included genetic influences (as inherited from birth mothers), prenatal risk, and growth in child negative emotionality. Structural equation modeling indicated that the effect of prenatal risk on toddler effortful attention at age 27 months became nonsignificant once genetic influences were considered in the model. In addition, genetic influences had unique effects on toddler effortful attention. Latent growth modeling indicated that increases in toddler negative emotionality from 9 to 27 months were associated with poorer delay of gratification and poorer language development. Similar results were obtained in models incorporating birth father data. Mechanisms of intergenerational transmission of EF deficits are discussed. PMID:22799580

  16. DNA nanotechnology based on i-motif structures.

    PubMed

    Dong, Yuanchen; Yang, Zhongqiang; Liu, Dongsheng

    2014-06-17

    CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this

  17. The TCT motif, a key component of an RNA polymerase II transcription system for the translational machinery

    PubMed Central

    Parry, Trevor J.; Theisen, Joshua W.M.; Hsu, Jer-Yuan; Wang, Yuan-Liang; Corcoran, David L.; Eustice, Moriah; Ohler, Uwe; Kadonaga, James T.

    2010-01-01

    The TCT motif (polypyrimidine initiator) encompasses the transcription start site of nearly all ribosomal protein genes in Drosophila and mammals. The TCT motif is required for transcription of ribosomal protein gene promoters. The TCT element resembles the Inr (initiator), but is not recognized by TFIID and cannot function in lieu of an Inr. However, a single T-to-A substitution converts the TCT element into a functionally active Inr. Thus, the TCT motif is a novel transcriptional element that is distinct from the Inr. These findings reveal a specialized TCT-based transcription system that is directed toward the synthesis of ribosomal proteins. PMID:20801935

  18. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  19. The Influence of Sex Hormones on Functional Cerebral Asymmetries in Postmenopausal Women

    ERIC Educational Resources Information Center

    Bayer, Ulrike; Erdmann, Gisela

    2008-01-01

    Studies investigating changes in functional cerebral asymmetries (FCAs) with hormonal fluctuations during the menstrual cycle in young women have led to controversial hypotheses about an influence of estrogen (E) and/or progesterone (P) on FCAs. Based on methodical, but also on principal problems in deriving conclusions about hormone effects from…

  20. Influence of multi-scale hydrologic controls on river network connectivity and riparian function

    EPA Science Inventory

    The ecological functions of rivers and streams and their associated riparian zones are strongly influenced by surface and subsurface hydrologic routing of water within river basins and river networks. Hydrologic attributes of the riparian area for a given stream reach are typica...

  1. Circadian rhythms in myocardial metabolism and contractile function; influence of workload and oleate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple extra-cardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its ...

  2. Influence of Rice Development on the Function of Bacterial Blight Resistance Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease resistance genes most commonly used in breeding programs are single, dominant, resistance (R) genes with relative effectiveness influenced by plant developmental stage. Knowing the developmental stages at which an R gene is functional is important for disease management. In rice, resistanc...

  3. The Influence of Acculturation on Family Functioning among Hispanic Americans in a Bicultural Community.

    ERIC Educational Resources Information Center

    Ramirez, Jorge I; Hosch, Harmon M.

    It has been observed that the process of acculturation is a potential source of stress. The population of El Paso-Ciudad Juarez border region of Texas and Mexico can be considered as highly vulnerable to the influence of acculturative stress on family functioning. An empirical study was conducted to investigate the relationship between…

  4. Manual Signing in Adults with Intellectual Disability: Influence of Sign Characteristics on Functional Sign Vocabulary

    ERIC Educational Resources Information Center

    Meuris, Kristien; Maes, Bea; De Meyer, Anne-Marie; Zink, Inge

    2014-01-01

    Purpose: The purpose of this study was to investigate the influence of sign characteristics in a key word signing (KWS) system on the functional use of those signs by adults with intellectual disability (ID). Method: All 507 signs from a Flemish KWS system were characterized in terms of phonological, iconic, and referential characteristics.…

  5. The Influence of Frontal Lobe Tumors and Surgical Treatment on Advanced Cognitive Functions.

    PubMed

    Fang, Shengyu; Wang, Yinyan; Jiang, Tao

    2016-07-01

    Brain cognitive functions affect patient quality of life. The frontal lobe plays a crucial role in advanced cognitive functions, including executive function, meta-cognition, decision-making, memory, emotion, and language. Therefore, frontal tumors can lead to serious cognitive impairments. Currently, neurosurgical treatment is the primary method to treat brain tumors; however, the effects of the surgical treatments are difficult to predict or control. The treatment may both resolve the effects of the tumor to improve cognitive function or cause permanent disabilities resulting from damage to healthy functional brain tissue. Previous studies have focused on the influence of frontal lesions and surgical treatments on patient cognitive function. Here, we review cognitive impairment caused by frontal lobe brain tumors. PMID:27072331

  6. HARE-Mediated Endocytosis of Hyaluronan and Heparin Is Targeted by Different Subsets of Three Endocytic Motifs

    PubMed Central

    Pandey, Madhu S.; Harris, Edward N.; Weigel, Paul H.

    2015-01-01

    The hyaluronan (HA) receptor for endocytosis (HARE) is a multifunctional recycling clearance receptor for 14 different ligands, including HA and heparin (Hep), which bind to discrete nonoverlapping sites. Four different functional endocytic motifs (M) in the cytoplasmic domain (CD) target coated pit mediated uptake: (YSYFRI2485 (M1), FQHF2495 (M2), NPLY2519 (M3), and DPF2534 (M4)). We previously found (Pandey et al. J. Biol. Chem. 283, 21453, 2008) that M1, M2, and M3 mediate endocytosis of HA. Here we assessed the ability of HARE variants with a single-motif deletion or containing only a single motif to endocytose HA or Hep. Single-motif deletion variants lacking M1, M3, or M4 (a different subset than involved in HA uptake) showed decreased Hep endocytosis, although M3 was the most active; the remaining redundant motifs did not compensate for loss of other motifs. Surprisingly, a HARE CD variant with only M3 internalized both HA and Hep, whereas variants with either M2 or M4 alone did not endocytose either ligand. Internalization of HA and Hep by HARE CD mutants was dynamin-dependent and was inhibited by hyperosmolarity, confirming clathrin-mediated endocytosis. The results indicate a complicated relationship among multiple CD motifs that target coated pit uptake and a more fundamental role for motif M3. PMID:25883656

  7. CHEM-PATH-TRACKER: An automated tool to analyze chemical motifs in molecular structures.

    PubMed

    Ribeiro, João V; Cerqueira, N M F S A; Fernandes, Pedro A; Ramos, Maria J

    2014-07-01

    In this article, we propose a method for locating functionally relevant chemical motifs in protein structures. The chemical motifs can be a small group of residues or structure protein fragments with highly conserved properties that have important biological functions. However, the detection of chemical motifs is rather difficult because they often consist of a set of amino acid residues separated by long, variable regions, and they only come together to form a functional group when the protein is folded into its three-dimensional structure. Furthermore, the assemblage of these residues is often dependent on non-covalent interactions among the constituent amino acids that are difficult to detect or visualize. To simplify the analysis of these chemical motifs and give access to a generalized use for all users, we developed chem-path-tracker. This software is a VMD plug-in that allows the user to highlight and reveal potential chemical motifs requiring only a few selections. The analysis is based on atoms/residues pair distances applying a modified version of Dijkstra's algorithm, and it makes possible to monitor the distances of a large pathway, even during a molecular dynamics simulation. This tool turned out to be very useful, fast, and user-friendly in the performed tests. The chem-path-tracker package is distributed as an independent platform and can be found at http://www.fc.up.pt/PortoBioComp/database/doku.php?id=chem-path-tracker. PMID:24775806

  8. Opposing Effects of a Tyrosine-Based Sorting Motif and a PDZ-Binding Motif Regulate Human T-Lymphotropic Virus Type 1 Envelope Trafficking▿

    PubMed Central

    Ilinskaya, Anna; Heidecker, Gisela; Derse, David

    2010-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) envelope (Env) glycoprotein mediates binding of the virus to its receptor on the surface of target cells and subsequent fusion of virus and cell membranes. To better understand the mechanisms that control HTLV-1 Env trafficking and activity, we have examined two protein-protein interaction motifs in the cytoplasmic domain of Env. One is the sequence YSLI, which matches the consensus YXXΦ motifs that are known to interact with various adaptor protein complexes; the other is the sequence ESSL at the C terminus of Env, which matches the consensus PDZ-binding motif. We show here that mutations that destroy the YXXΦ motif increased Env expression on the cell surface and increased cell-cell fusion activity. In contrast, mutation of the PDZ-binding motif greatly diminished Env expression in cells, which could be restored to wild-type levels either by mutating the YXXΦ motif or by silencing AP2 and AP3, suggesting that interactions with PDZ proteins oppose an Env degradation pathway mediated by AP2 and AP3. Silencing of the PDZ protein hDlg1 did not affect Env expression, suggesting that hDlg1 is not a binding partner for Env. Substitution of the YSLI sequence in HTLV-1 Env with YXXΦ elements from other cell or virus membrane-spanning proteins resulted in alterations in Env accumulation in cells, incorporation into virions, and virion infectivity. Env variants containing YXXΦ motifs that are predicted to have high-affinity interaction with AP2 accumulated to lower steady-state levels. Interestingly, mutations that destroy the YXXΦ motif resulted in viruses that were not infectious by cell-free or cell-associated routes of infection. Unlike YXXΦ, the function of the PDZ-binding motif manifests itself only in the producer cells; AP2 silencing restored the incorporation of PDZ-deficient Env into virus-like particles (VLPs) and the infectivity of these VLPs to wild-type levels. PMID:20463077

  9. Corannulene-Helicene Hybrids: Chiral π-Systems Comprising Both Bowl and Helical Motifs.

    PubMed

    Fujikawa, Takao; Preda, Dorin V; Segawa, Yasutomo; Itami, Kenichiro; Scott, Lawrence T

    2016-08-19

    Two distinct structural elements that render π-systems nonplanar, i.e., geodesic curvature and helical motifs, have been combined into new polyarenes that contain both features. The resultant corannulene-[n]helicenes (n = 5, 6) show unique molecular dynamics in their enantiomerization processes, including inversion motions of both the bowl and the helix. Optical resolution of a corannulene-based skeletally chiral molecule was also achieved for the first time, and the influence of the bowl-motif annulation on the chiroptical properties was investigated. PMID:27490184

  10. Structural basis for the binding of tryptophan-based motifs by δ-COP

    PubMed Central

    Suckling, Richard J.; Poon, Pak Phi; Travis, Sophie M.; Majoul, Irina V.; Hughson, Frederick M.; Evans, Philip R.; Duden, Rainer; Owen, David J.

    2015-01-01

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ’ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1–6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing. PMID:26578768

  11. Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root- and leaf-activity using TGACG motif rearrangement.

    PubMed

    Kumar, Deepak; Patro, Sunita; Ghosh, Jayasish; Das, Abhimanyu; Maiti, Indu B; Dey, Nrisingha

    2012-07-15

    In Figwort mosaic virus sub-genomic transcript promoter (F-Sgt), function of the TGACG-regulatory motif, was investigated in the background of artificially designed promoter sequences. The 131bp (FS, -100 to +31) long F-Sgt promoter sequence containing one TGACG motif [FS-(TGACG)] was engineered to generate a set of three modified promoter constructs: [FS-(TGACG)(2), containing one additional TGACG motif at 7 nucleotides upstream of the original one], [FS-(TGACG)(3), containing two additional TGACG motifs at 7 nucleotides upstream and two nucleotides downstream of the original one] and [FS-(TGCTG)(mu), having a mutated TGACG motif]. EMSA and foot-printing analysis confirmed binding of tobacco nuclear factors with modified TGACG motif/s. The transcription-activation of the GUS gene by the TGACG motif/s in above promoter constructs was examined in transgenic tobacco and Arabidopsis plants and observed that the transcription activation was affected by the spacing/s and number/s of the TGACG motif/s. The FS-(TGACG)(2) promoter showed strongest root-activity compared to other modified and CaMV35S promoters. Also under salicylic acid (SA) stress, the leaf-activity of the said promoter was further enhanced. All above findings were confirmed by real-time and semi-qRT PCR analysis. Taken together, these results clearly demonstrated that the TGACG motif plays an important role in inducing the root-specific expression of the F-Sgt promoter. This study advocates the importance of genetic manipulation of functional cis-motif for amending the tissue specificity of a plant promoter. SA inducible FS-(TGACG)(2) promoter with enhanced activity could be a useful candidate promoter for developing plants with enhanced crop productivity. PMID:22561698

  12. RNA Sociology: Group Behavioral Motifs of RNA Consortia

    PubMed Central

    Witzany, Guenther

    2014-01-01

    RNA sociology investigates the behavioral motifs of RNA consortia from the social science perspective. Besides the self-folding of RNAs into single stem loop structures, group building of such stem loops results in a variety of essential agents that are highly active in regulatory processes in cellular and non-cellular life. RNA stem loop self-folding and group building do not depend solely on sequence syntax; more important are their contextual (functional) needs. Also, evolutionary processes seem to occur through RNA stem loop consortia that may act as a complement. This means the whole entity functions only if all participating parts are coordinated, although the complementary building parts originally evolved for different functions. If complementary groups, such as rRNAs and tRNAs, are placed together in selective pressure contexts, new evolutionary features may emerge. Evolution initiated by competent agents in natural genome editing clearly contrasts with statistical error replication narratives. PMID:25426799

  13. Computing distribution of scale independent motifs in biological sequences

    PubMed Central

    Almeida, Jonas S; Vinga, Susana

    2006-01-01

    The use of Chaos Game Representation (CGR) or its generalization, Universal Sequence Maps (USM), to describe the distribution of biological sequences has been found objectionable because of the fractal structure of that coordinate system. Consequently, the investigation of distribution of symbolic motifs at multiple scales is hampered by an inexact association between distance and sequence dissimilarity. A solution to this problem could unleash the use of iterative maps as phase-state representation of sequences where its statistical properties can be conveniently investigated. In this study a family of kernel density functions is described that accommodates the fractal nature of iterative function representations of symbolic sequences and, consequently, enables the exact investigation of sequence motifs of arbitrary lengths in that scale-independent representation. Furthermore, the proposed kernel density includes both Markovian succession and currently used alignment-free sequence dissimilarity metrics as special solutions. Therefore, the fractal kernel described is in fact a generalization that provides a common framework for a diverse suite of sequence analysis techniques. PMID:17049089

  14. A Basic Set of Homeostatic Controller Motifs

    PubMed Central

    Drengstig, T.; Jolma, I.W.; Ni, X.Y.; Thorsen, K.; Xu, X.M.; Ruoff, P.

    2012-01-01

    Adaptation and homeostasis are essential properties of all living systems. However, our knowledge about the reaction kinetic mechanisms leading to robust homeostatic behavior in the presence of environmental perturbations is still poor. Here, we describe, and provide physiological examples of, a set of two-component controller motifs that show robust homeostasis. This basic set of controller motifs, which can be considered as complete, divides into two operational work modes, termed as inflow and outflow control. We show how controller combinations within a cell can integrate uptake and metabolization of a homeostatic controlled species and how pathways can be activated and lead to the formation of alternative products, as observed, for example, in the change of fermentation products by microorganisms when the supply of the carbon source is altered. The antagonistic character of hormonal control systems can be understood by a combination of inflow and outflow controllers. PMID:23199928

  15. Anticipated synchronization in neuronal network motifs

    NASA Astrophysics Data System (ADS)

    Matias, F. S.; Gollo, L. L.; Carelli, P. V.; Copelli, M.; Mirasso, C. R.

    2013-01-01

    Two identical dynamical systems coupled unidirectionally (in a so called master-slave configuration) exhibit anticipated synchronization (AS) if the one which receives the coupling (the slave) also receives a negative delayed self-feedback. In oscillatory neuronal systems AS is characterized by a phase-locking with negative time delay τ between the spikes of the master and of the slave (slave fires before the master), while in the usual delayed synchronization (DS) regime τ is positive (slave fires after the master). A 3-neuron motif in which the slave self-feedback is replaced by a feedback loop mediated by an interneuron can exhibits both AS and DS regimes. Here we show that AS is robust in the presence of noise in a 3 Hodgkin-Huxley type neuronal motif. We also show that AS is stable for large values of τ in a chain of connected slaves-interneurons.

  16. Analyzing network reliability using structural motifs

    NASA Astrophysics Data System (ADS)

    Khorramzadeh, Yasamin; Youssef, Mina; Eubank, Stephen; Mowlaei, Shahir

    2015-04-01

    This paper uses the reliability polynomial, introduced by Moore and Shannon in 1956, to analyze the effect of network structure on diffusive dynamics such as the spread of infectious disease. We exhibit a representation for the reliability polynomial in terms of what we call structural motifs that is well suited for reasoning about the effect of a network's structural properties on diffusion across the network. We illustrate by deriving several general results relating graph structure to dynamical phenomena.

  17. Identification of imine reductase-specific sequence motifs.

    PubMed

    Fademrecht, Silvia; Scheller, Philipp N; Nestl, Bettina M; Hauer, Bernhard; Pleiss, Jürgen

    2016-05-01

    Chiral amines are valuable building blocks for the production of a variety of pharmaceuticals, agrochemicals and other specialty chemicals. Only recently, imine reductases (IREDs) were discovered which catalyze the stereoselective reduction of imines to chiral amines. Although several IREDs were biochemically characterized in the last few years, knowledge of the reaction mechanism and the molecular basis of substrate specificity and stereoselectivity is limited. To gain further insights into the sequence-function relationships, the Imine Reductase Engineering Database (www.IRED.BioCatNet.de) was established and a systematic analysis of 530 putative IREDs was performed. A standard numbering scheme based on R-IRED-Sk was introduced to facilitate the identification and communication of structurally equivalent positions in different proteins. A conservation analysis revealed a highly conserved cofactor binding region and a predominantly hydrophobic substrate binding cleft. Two IRED-specific motifs were identified, the cofactor binding motif GLGxMGx5 [ATS]x4 Gx4 [VIL]WNR[TS]x2 [KR] and the active site motif Gx[DE]x[GDA]x[APS]x3 {K}x[ASL]x[LMVIAG]. Our results indicate a preference toward NADPH for all IREDs and explain why, despite their sequence similarity to β-hydroxyacid dehydrogenases (β-HADs), no conversion of β-hydroxyacids has been observed. Superfamily-specific conservations were investigated to explore the molecular basis of their stereopreference. Based on our analysis and previous experimental results on IRED mutants, an exclusive role of standard position 187 for stereoselectivity is excluded. Alternatively, two standard positions 139 and 194 were identified which are superfamily-specifically conserved and differ in R- and S-selective enzymes. Proteins 2016; 84:600-610. © 2016 Wiley Periodicals, Inc. PMID:26857686

  18. The Influence of Neurocognitive Functioning on Proactive Coping Behaviors in Adults With HIV.

    PubMed

    Cody, Shameka L; Fazeli, Pariya L; D Moneyham, Linda; Vance, David E

    2016-10-01

    Although many can appreciate the life-sustaining benefits of combination antiretroviral therapy, some adults with HIV continue to have difficulty managing physical, neurocognitive, and everyday stressors. Fortunately, some adults with HIV are able to use accumulated resources (e.g., social networks) to help them engage in proactive coping behaviors such as planning and problem solving. Others, however, manage their stressors by engaging in avoidant coping, isolating themselves, or ruminating about the negative aspects of their situation. Perhaps, the capacity to engage in proactive coping may be influenced by damage to the frontal-striatal-thalamo circuitry, a region of the brain responsible for executive functioning and often compromised in adults with HIV-associated neurocognitive disorders. This study examined potential neurocognitive influences on proactive coping behaviors in adults with HIV (N = 98). Participants were administered a series of neurocognitive and psychosocial measures to determine if neurocognitive functioning and other factors that have been associated with coping in other populations, such as spirituality/religiosity, influenced proactive coping behaviors. Multiple regression analysis revealed that spirituality/religiosity (p = .002), rather than neurocognitive functioning (Useful Field of View, p = .277; Trails A, p = .701; Trails B, p = .365; Wechsler Memory Scale-III Digit Span, p = .864), was a significant predictor of proactive coping. Interventions to address spirituality/religiosity needs of adults with HIV may possibly facilitate proactive coping behaviors and improve mood, both of which are important for healthy neurocognitive functioning. PMID:27579965

  19. Factors that influence physical function and emotional well-being among Medicare-Medicaid enrollees.

    PubMed

    Wright, Kathy D; Pepper, Ginette A; Caserta, Michael; Wong, Bob; Brunker, Cherie P; Morris, Diana L; Burant, Christopher J; Hazelett, Susan; Kropp, Denise; Allen, Kyle R

    2015-01-01

    Dually enrolled Medicare-Medicaid older adults are a vulnerable population. We tested House's Conceptual Framework for Understanding Social Inequalities in Health and Aging in Medicare-Medicaid enrollees by examining the extent to which disparities indicators, which included race, age, gender, neighborhood poverty, education, income, exercise (e.g., walking), and physical activity (e.g., housework) influence physical function and emotional well-being. This secondary analysis included 337 Black (31%) and White (69%) older Medicare-Medicaid enrollees. Using path analysis, we determined that race, neighborhood poverty, education, and income did not influence physical function or emotional well-being. However, physical activity (e.g., housework) was associated with an increased self-report of physical function and emotional well-being of β = .23, p < .001; β = .17, p < .01, respectively. Future studies of factors that influence physical function and emotional well-being in this population should take into account health status indicators such as allostatic load, comorbidity, and perceived racism/discrimination. PMID:25784082

  20. Factors that influence physical function and emotional well-being among Medicare-Medicaid enrollees

    PubMed Central

    Wright, Kathy D.; Pepper, Ginette A.; Caserta, Michael; Wong, Bob; Brunker, Cherie P.; Morris, Diana L.; Burant, Christopher J.; Hazelett, Susan; Kropp, Denise; Allen, Kyle R.

    2015-01-01

    Dually enrolled Medicare-Medicaid older adults are a vulnerable population. We tested House's Conceptual Framework for Understanding Social Inequalities in Health and Aging in Medicare-Medicaid enrollees by examining the extent to which disparities indicators, which included race, age, gender, neighborhood poverty, education, income, exercise (e.g., walking), and physical activity (e.g., housework) influence physical function and emotional well-being. This secondary analysis included 337 Black (31%) and White (69%) older Medicare-Medicaid enrollees. Using path analysis, we determined that race, neighborhood poverty, education, and income did not influence physical function or emotional well-being. However, physical activity (e.g., housework) was associated with an increased self-report of physical function and emotional well-being of β = .23, p< .001; β = .17, p< .01, respectively. Future studies of factors that influence physical function and emotional well-being in this population should take into account health status indicators such as allostatic load, comorbidity, and perceived racism/discrimination. PMID:25784082

  1. Disruption of the RAG2 zinc finger motif impairs protein stability and causes immunodeficiency.

    PubMed

    Xu, Ke; Liu, Haifeng; Shi, Zhubing; Song, Guangrong; Zhu, Xiaoyan; Jiang, Yuzhang; Zhou, Zhaocai; Liu, Xiaolong

    2016-04-01

    Although the RAG2 core domain is the minimal region required for V(D)J recombination, the noncore region also plays important roles in the regulation of recombination, and mutations in this region are often related to severe combined immunodeficiency. A complete understanding of the functions of the RAG2 noncore region and the potential contributions of its individual residues has not yet been achieved. Here, we show that the zinc finger motif within the noncore region of RAG2 is indispensable for maintaining the stability of the RAG2 protein. The zinc finger motif in the noncore region of RAG2 is highly conserved from zebrafish to humans. Knock-in mice carrying a zinc finger mutation (C478Y) exhibit decreased V(D)J recombination efficiency and serious impairment in T/B-cell development due to RAG2 instability. Further studies also reveal the importance of the zinc finger motif for RAG2 stability. Moreover, mice harboring a RAG2 noncore region mutation (N474S), which is located near C478 but is not zinc-binding, exhibit no impairment in either RAG2 stability or T/B-cell development. Taken together, our findings contribute to defining critical functions of the RAG2 zinc finger motif and provide insights into the relationships between the mutations within this motif and immunodeficiency diseases. PMID:26692406

  2. DistAMo: A Web-Based Tool to Characterize DNA-Motif Distribution on Bacterial Chromosomes

    PubMed Central

    Sobetzko, Patrick; Jelonek, Lukas; Strickert, Marc; Han, Wenxia; Goesmann, Alexander; Waldminghaus, Torsten

    2016-01-01

    Short DNA motifs are involved in a multitude of functions such as for example chromosome segregation, DNA replication or mismatch repair. Distribution of such motifs is often not random and the specific chromosomal pattern relates to the respective motif function. Computational approaches which quantitatively assess such chromosomal motif patterns are necessary. Here we present a new computer tool DistAMo (Distribution Analysis of DNA Motifs). The algorithm uses codon redundancy to calculate the relative abundance of short DNA motifs from single genes to entire chromosomes. Comparative genomics analyses of the GATC-motif distribution in γ-proteobacterial genomes using DistAMo revealed that (i) genes beside the replication origin are enriched in GATCs, (ii) genome-wide GATC distribution follows a distinct pattern, and (iii) genes involved in DNA replication and repair are enriched in GATCs. These features are specific for bacterial chromosomes encoding a Dam methyltransferase. The new software is available as a stand-alone or as an easy-to-use web-based server version at http://www.computational.bio.uni-giessen.de/distamo. PMID:27014208

  3. DistAMo: A Web-Based Tool to Characterize DNA-Motif Distribution on Bacterial Chromosomes.

    PubMed

    Sobetzko, Patrick; Jelonek, Lukas; Strickert, Marc; Han, Wenxia; Goesmann, Alexander; Waldminghaus, Torsten

    2016-01-01

    Short DNA motifs are involved in a multitude of functions such as for example chromosome segregation, DNA replication or mismatch repair. Distribution of such motifs is often not random and the specific chromosomal pattern relates to the respective motif function. Computational approaches which quantitatively assess such chromosomal motif patterns are necessary. Here we present a new computer tool DistAMo (Distribution Analysis of DNA Motifs). The algorithm uses codon redundancy to calculate the relative abundance of short DNA motifs from single genes to entire chromosomes. Comparative genomics analyses of the GATC-motif distribution in γ-proteobacterial genomes using DistAMo revealed that (i) genes beside the replication origin are enriched in GATCs, (ii) genome-wide GATC distribution follows a distinct pattern, and (iii) genes involved in DNA replication and repair are enriched in GATCs. These features are specific for bacterial chromosomes encoding a Dam methyltransferase. The new software is available as a stand-alone or as an easy-to-use web-based server version at http://www.computational.bio.uni-giessen.de/distamo. PMID:27014208

  4. qPMS7: a fast algorithm for finding (ℓ, d)-motifs in DNA and protein sequences.

    PubMed

    Dinh, Hieu; Rajasekaran, Sanguthevar; Davila, Jaime

    2012-01-01

    Detection of rare events happening in a set of DNA/protein sequences could lead to new biological discoveries. One kind of such rare events is the presence of patterns called motifs in DNA/protein sequences. Finding motifs is a challenging problem since the general version of motif search has been proven to be intractable. Motifs discovery is an important problem in biology. For example, it is useful in the detection of transcription factor binding sites and transcriptional regulatory elements that are very crucial in understanding gene function, human disease, drug design, etc. Many versions of the motif search problem have been proposed in the literature. One such is the (ℓ, d)-motif search (or Planted Motif Search (PMS)). A generalized version of the PMS problem, namely, Quorum Planted Motif Search (qPMS), is shown to accurately model motifs in real data. However, solving the qPMS problem is an extremely difficult task because a special case of it, the PMS Problem, is already NP-hard, which means that any algorithm solving it can be expected to take exponential time in the worse case scenario. In this paper, we propose a novel algorithm named qPMS7 that tackles the qPMS problem on real data as well as challenging instances. Experimental results show that our Algorithm qPMS7 is on an average 5 times faster than the state-of-art algorithm. The executable program of Algorithm qPMS7 is freely available on the web at http://pms.engr.uconn.edu/downloads/qPMS7.zip. Our online motif discovery tools that use Algorithm qPMS7 are freely available at http://pms.engr.uconn.edu or http://motifsearch.com. PMID:22848493

  5. Resource type influences the effects of reserves and connectivity on ecological functions.

    PubMed

    Yabsley, Nicholas A; Olds, Andrew D; Connolly, Rod M; Martin, Tyson S H; Gilby, Ben L; Maxwell, Paul S; Huijbers, Chantal M; Schoeman, David S; Schlacher, Thomas A

    2016-03-01

    Connectivity is a pivotal feature of landscapes that affects the structure of populations and the functioning of ecosystems. It is also a key consideration in conservation planning. But the potential functional effects of landscape connectivity are rarely evaluated in a conservation context. The removal of algae by herbivorous fish is a key ecological function on coral reefs that promotes coral growth and recruitment. Many reef herbivores are harvested and some use other habitats (like mangroves) as nurseries or feeding areas. Thus, the effects of habitat connectivity and marine reserves can jointly promote herbivore populations on coral reefs, thereby influencing reef health. We used a coral reef seascape in eastern Australia to test whether seascape connectivity and reserves influence herbivory. We measured herbivore abundance and rates of herbivory (on turf algae and macroalgae) on reefs that differed in both their level of connectivity to adjacent mangrove habitats and their level of protection from fishing. Reserves enhanced the biomass of herbivorous fish on coral reefs in all seascape settings and promoted consumption of turf algae. Consumption of turf algae was correlated with the biomass of surgeonfish that are exploited outside reserves. By contrast, both reserve status and connectivity influenced herbivory on macroalgae. Consumption of macroalgae was greatest on fished reefs that were far from mangroves and was not strongly correlated with any fish species. Our findings demonstrate that landscape connectivity and reserve status can jointly affect the functioning of ecosystems. Moreover, we show that reserve and connectivity effects can differ markedly depending on resource type (in this case turf algae vs. macroalgae). The effectiveness of conservation initiatives will therefore depend on our ability to understand how these multiple interactive effects structure the distribution of ecological functions. These findings have wider implications for the

  6. ET-Motif: Solving the Exact (l, d)-Planted Motif Problem Using Error Tree Structure.

    PubMed

    Al-Okaily, Anas; Huang, Chun-Hsi

    2016-07-01

    Motif finding is an important and a challenging problem in many biological applications such as discovering promoters, enhancers, locus control regions, transcription factors, and more. The (l, d)-planted motif search, PMS, is one of several variations of the problem. In this problem, there are n given sequences over alphabets of size [Formula: see text], each of length m, and two given integers l and d. The problem is to find a motif m of length l, where in each sequence there is at least an l-mer at a Hamming distance of [Formula: see text] of m. In this article, we propose ET-Motif, an algorithm that can solve the PMS problem in [Formula: see text] time and [Formula: see text] space. The time bound can be further reduced by a factor of m with [Formula: see text] space. In case the suffix tree that is built for the input sequences is balanced, the problem can be solved in [Formula: see text] time and [Formula: see text] space. Similarly, the time bound can be reduced by a factor of m using [Formula: see text] space. Moreover, the variations of the problem, namely the edit distance PMS and edited PMS (Quorum), can be solved using ET-Motif with simple modifications but upper bands of space and time. For edit distance PMS, the time and space bounds will be increased by [Formula: see text], while for edited PMS the increase will be of [Formula: see text] in the time bound. PMID:27152692

  7. [Influence of breakfast on cognitive functions of children from an urban area in Valencia, Venezuela].

    PubMed

    Márquez Acosta, M; Sutil de Naranjo, R; Rivas de Yépez, C E; Rincón Silva, M; Torres, M; Yépez, R D; Portillo, Z

    2001-03-01

    It's well known that physical growth and intellectual activity is influenced by nutritional status. With the purpose of evaluate the fasting effects on the cognitive functions, anthropometric state and cognitive functions (logic and school work performance), under fasting and post-breakfast condition were assessed in a group of 68 school children age 9 and 10 years, who studied in a private school (1998-1999). Logic reasoning was measured with Raven test and attention, precision, velocity and fatigue with the Lepez test. The main of the children (80%) were well-nourished and 20% had showed overweight. At breakfast condition all subjects were over 50 percentil for Raven test. Consumption of breakfast influence on logic reasoning (p < 0.001) and school work performance (p < 0.01). It is concluded that in these well nourished children, breakfast consumption improved cognitive performance. PMID:11515233

  8. Genome wide identification of regulatory motifs in Bacillus subtilis

    PubMed Central

    Mwangi, Michael M; Siggia, Eric D

    2003-01-01

    Background To explain the vastly different phenotypes exhibited by the same organism under different conditions, it is essential that we understand how the organism's genes are coordinately regulated. While there are many excellent tools for predicting sequences encoding proteins or RNA genes, few algorithms exist to predict regulatory sequences on a genome wide scale with no prior information. Results To identify motifs involved in the control of transcription, an algorithm was developed that searches upstream of operons for improbably frequent dimers. The algorithm was applied to the B. subtilis genome, which is predicted to encode for approximately 200 DNA binding proteins. The dimers found to be over-represented could be clustered into 317 distinct groups, each thought to represent a class of motifs uniquely recognized by some transcription factor. For each cluster of dimers, a representative weight matrix was derived and scored over the regions upstream of the operons to predict the sites recognized by the cluster's factor, and a putative regulon of the operons immediately downstream of the sites was inferred. The distribution in number of operons per predicted regulon is comparable to that for well characterized transcription factors. The most highly over-represented dimers matched σA, the T-box, and σW sites. We have evidence to suggest that at least 52 of our clusters of dimers represent actual regulatory motifs, based on the groups' weight matrix matches to experimentally characterized sites, the functional similarity of the component operons of the groups' regulons, and the positional biases of the weight matrix matches. All predictions are assigned a significance value, and thresholds are set to avoid false positives. Where possible, we examine our false negatives, drawing examples from known regulatory motifs and regulons inferred from RNA expression data. Conclusions We have demonstrated that in the case of B. subtilis our algorithm allows for the

  9. The Frequency of Internal Shine–Dalgarno-like Motifs in Prokaryotes

    PubMed Central

    Diwan, Gaurav D; Agashe, Deepa

    2016-01-01

    In prokaryotes, translation initiation typically depends on complementary binding between a G-rich Shine–Dalgarno (SD) motif in the 5′ untranslated region of mRNAs, and the 3′ tail of the 16S ribosomal RNA (the anti-SD sequence). In some cases, internal SD-like motifs in the coding region generate “programmed” ribosomal pauses that are beneficial for protein folding or accurate targeting. On the other hand, such pauses can also reduce protein production, generating purifying selection against internal SD-like motifs. This selection should be stronger in GC-rich genomes that are more likely to harbor the G-rich SD motif. However, the nature and consequences of selection acting on internal SD-like motifs within genomes and across species remains unclear. We analyzed the frequency of SD-like hexamers in the coding regions of 284 prokaryotes (277 with known anti-SD sequences and 7 without a typical SD mechanism). After accounting for GC content, we found that internal SD-like hexamers are avoided in 230 species, including three without a typical SD mechanism. The degree of avoidance was higher in GC-rich genomes, mesophiles, and N-terminal regions of genes. In contrast, 54 species either showed no signature of avoidance or were enriched in internal SD-like motifs. C-terminal gene regions were relatively enriched in SD-like hexamers, particularly for genes in operons or those followed closely by downstream genes. Together, our results suggest that the frequency of internal SD-like hexamers is governed by multiple factors including GC content and genome organization, and further empirical work is necessary to understand the evolution and functional roles of these motifs. PMID:27189998

  10. The Frequency of Internal Shine-Dalgarno-like Motifs in Prokaryotes.

    PubMed

    Diwan, Gaurav D; Agashe, Deepa

    2016-01-01

    In prokaryotes, translation initiation typically depends on complementary binding between a G-rich Shine-Dalgarno (SD) motif in the 5' untranslated region of mRNAs, and the 3' tail of the 16S ribosomal RNA (the anti-SD sequence). In some cases, internal SD-like motifs in the coding region generate "programmed" ribosomal pauses that are beneficial for protein folding or accurate targeting. On the other hand, such pauses can also reduce protein production, generating purifying selection against internal SD-like motifs. This selection should be stronger in GC-rich genomes that are more likely to harbor the G-rich SD motif. However, the nature and consequences of selection acting on internal SD-like motifs within genomes and across species remains unclear. We analyzed the frequency of SD-like hexamers in the coding regions of 284 prokaryotes (277 with known anti-SD sequences and 7 without a typical SD mechanism). After accounting for GC content, we found that internal SD-like hexamers are avoided in 230 species, including three without a typical SD mechanism. The degree of avoidance was higher in GC-rich genomes, mesophiles, and N-terminal regions of genes. In contrast, 54 species either showed no signature of avoidance or were enriched in internal SD-like motifs. C-terminal gene regions were relatively enriched in SD-like hexamers, particularly for genes in operons or those followed closely by downstream genes. Together, our results suggest that the frequency of internal SD-like hexamers is governed by multiple factors including GC content and genome organization, and further empirical work is necessary to understand the evolution and functional roles of these motifs. PMID:27189998

  11. The Geometry of Plasticity-Induced Sensitization in Isoinhibitory Rate Motifs.

    PubMed

    Kumar, Gautam; Ching, ShiNung

    2016-09-01

    A well-known phenomenon in sensory perception is desensitization, wherein behavioral responses to persistent stimuli become attenuated over time. In this letter, our focus is on studying mechanisms through which desensitization may be mediated at the network level and, specifically, how sensitivity changes arise as a function of long-term plasticity. Our principal object of study is a generic isoinhibitory motif: a small excitatory-inhibitory network with recurrent inhibition. Such a motif is of interest due to its overrepresentation in laminar sensory network architectures. Here, we introduce a sensitivity analysis derived from control theory in which we characterize the fixed-energy reachable set of the motif. This set describes the regions of the phase-space that are more easily (in terms of stimulus energy) accessed, thus providing a holistic assessment of sensitivity. We specifically focus on how the geometry of this set changes due to repetitive application of a persistent stimulus. We find that for certain motif dynamics, this geometry contracts along the stimulus orientation while expanding in orthogonal directions. In other words, the motif not only desensitizes to the persistent input, but heightens its responsiveness (sensitizes) to those that are orthogonal. We develop a perturbation analysis that links this sensitization to both plasticity-induced changes in synaptic weights and the intrinsic dynamics of the network, highlighting that the effect is not purely due to weight-dependent disinhibition. Instead, this effect depends on the relative neuronal time constants and the consequent stimulus-induced drift that arises in the motif phase-space. For tightly distributed (but random) parameter ranges, sensitization is quite generic and manifests in larger recurrent E-I networks within which the motif is embedded. PMID:27391684

  12. Subtle Changes in Motif Positioning Cause Tissue-Specific Effects on Robustness of an Enhancer's Activity

    PubMed Central

    Erceg, Jelena; Saunders, Timothy E.; Girardot, Charles; Devos, Damien P.; Hufnagel, Lars; Furlong, Eileen E. M.

    2014-01-01

    Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood. PMID:24391522

  13. Environmental Conditions Influence the Plant Functional Diversity Effect on Potential Denitrification

    PubMed Central

    Sutton-Grier, Ariana E.; Wright, Justin P.; McGill, Bonnie M.; Richardson, Curtis

    2011-01-01

    Global biodiversity loss has prompted research on the relationship between species diversity and ecosystem functioning. Few studies have examined how plant diversity impacts belowground processes; even fewer have examined how varying resource levels can influence the effect of plant diversity on microbial activity. In a field experiment in a restored wetland, we examined the role of plant trait diversity (or functional diversity, (FD)) and its interactions with natural levels of variability of soil properties, on a microbial process, denitrification potential (DNP). We demonstrated that FD significantly affected microbial DNP through its interactions with soil conditions; increasing FD led to increased DNP but mainly at higher levels of soil resources. Our results suggest that the effect of species diversity on ecosystem functioning may depend on environmental factors such as resource availability. Future biodiversity experiments should examine how natural levels of environmental variability impact the importance of biodiversity to ecosystem functioning. PMID:21311768

  14. The influence of espresso coffee on neurocognitive function in HIV-infected patients.

    PubMed

    Bragança, M; Marinho, M; Marques, J; Moreira, R; Palha, A; Marques-Teixeira, J; Esteves, M

    2016-09-01

    The aim of our study was to evaluate the impact of coffee intake on cognitive function in persons living with HIV (PLWH). 130 PLWH with CD4 > 200 cells/mm(3), undetectable viral load, treated with HAART were included. A structured interview was applied and relevant clinical and laboratory data were assessed, including coffee intake. For neuropsychological assessment, the HIV Neurobehavioral Research Center Battery was chosen. Univariate nonparametric statistics and multivariate regression model were used. A significant association between espresso coffee use and a better cognitive function was verified in five of the eight psychometric measurements. In the multivariate analysis, after variable adjustment, linear regression analysis showed that coffee intake was a positive predictor for attention/working memory, executive functions and Global Deficit Score. Although the mechanisms behind the influence of caffeine on cognitive functioning are controversial, regular espresso coffee intake may have favourable effects on cognitive deterioration caused by HIV. PMID:26932511

  15. Finite-difference models of ordinary differential equations - Influence of denominator functions

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.; Smith, Arthur

    1990-01-01

    This paper discusses the influence on the solutions of finite-difference schemes of using a variety of denominator functions in the discrete modeling of the derivative for any ordinary differential equation. The results obtained are a consequence of using a generalized definition of the first derivative. A particular example of the linear decay equation is used to illustrate in detail the various solution possibilities that can occur.

  16. Influence of Body Composition on Lung Function and Respiratory Muscle Strength in Children With Obesity

    PubMed Central

    Costa Junior, Dirceu; Peixoto-Souza, Fabiana S.; Araujo, Poliane N.; Barbalho-Moulin, Marcela C.; Alves, Viviane C.; Gomes, Evelim L. F. D.; Costa, Dirceu

    2016-01-01

    Background Obesity affects lung function and respiratory muscle strength. The aim of the present study was to assess lung function and respiratory muscle strength in children with obesity and determine the influence of body composition on these variables. Methods A cross-sectional study was conducted involving 75 children (40 with obesity and 35 within the ideal weight range) aged 6 - 10 years. Body mass index, z score, waist circumference, body composition (tetrapolar bioimpedance), respiratory muscle strength and lung function (spirometry) were evaluated. Results Children with obesity exhibited larger quantities of both lean and fat mass in comparison to those in the ideal weight range. No significant differences were found between groups regarding the respective reference values for respiratory muscle strength. Male children with obesity demonstrated significantly lower lung function values (forced expiratory volume in the first second % (FEV1%) and FEV1/forced vital capacity % (FVC%) : 93.76 ± 9.78 and 92.29 ± 3.8, respectively) in comparison to males in the ideal weight range (99.87 ± 9.72 and 96.31 ± 4.82, respectively). The regression models demonstrated that the spirometric variables were influenced by all body composition variables. Conclusion Children with obesity demonstrated a reduction in lung volume and capacity. Thus, anthropometric and body composition characteristics may be predictive factors for altered lung function. PMID:26767078

  17. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species of bacteria with lifestyles that require adapting to changing environmental conditions to survive are equipped with an assortment of genetic regulators to meet these challenges. The group IV or extracytoplasmic function (ECF) sigma factors regulate gene expression in response to specific en...

  18. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design

    PubMed Central

    Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html. PMID:27487245

  19. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design.

    PubMed

    Zhang, Shaoqiang; Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html. PMID:27487245

  20. The thin mirror deformation and stress distribution analysis based on different influence functions

    NASA Astrophysics Data System (ADS)

    Wang, Hongqiao; Fan, Bin; Wu, Yongqian; Liu, Haitao; Liu, Rong

    2014-08-01

    The active support technique can be applied in the fabrication of large thin meniscus mirror. It can reduce the grinding and polishing difficulty for thin mirror. Compare between two kinds of influence function, we correct the Zernike 5th, 6th, 10th and 11th mode deformation. The low-order Zernike modes which are prone to appearing during large primary mirror processing are revised with active support technology. Influence functions are expressed with Z coordinate value and Zernike coefficient of surface shape. This paper reports that respectively adopting different influence functions to solve correction forces and the correction forces compensates specific Zernike modes of mirror deformation. After comparing the PV and RMS values of amendatory residual of surface shape, we analyze the effect of different correction forces to the biggest stress on the underside of the primary mirror. We compare the two methods based on the PV and RMS values of the residual error and the Max-stress. Gain a conclusion that correction forces obtained from Z coordinate value of surface shape is superior to the one obtained from the Zernike coefficient of surface shape.

  1. Prevalent RNA recognition motif duplication in the human genome.

    PubMed

    Tsai, Yihsuan S; Gomez, Shawn M; Wang, Zefeng

    2014-05-01

    The sequence-specific recognition of RNA by proteins is mediated through various RNA binding domains, with the RNA recognition motif (RRM) being the most frequent and present in >50% of RNA-binding proteins (RBPs). Many RBPs contain multiple RRMs, and it is unclear how each RRM contributes to the binding specificity of the entire protein. We found that RRMs within the same RBP (i.e., sibling RRMs) tend to have significantly higher similarity than expected by chance. Sibling RRM pairs from RBPs shared by multiple species tend to have lower similarity than those found only in a single species, suggesting that multiple RRMs within the same protein might arise from domain duplication followed by divergence through random mutations. This finding is exemplified by a recent RRM domain duplication in DAZ proteins and an ancient duplication in PABP proteins. Additionally, we found that different similarities between sibling RRMs are associated with distinct functions of an RBP and that the RBPs tend to contain repetitive sequences with low complexity. Taken together, this study suggests that the number of RBPs with multiple RRMs has expanded in mammals and that the multiple sibling RRMs may recognize similar target motifs in a cooperative manner. PMID:24667216

  2. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases

    PubMed Central

    Zhao, Bryan M.; Keasey, Sarah L.; Tropea, Joseph E.; Lountos, George T.; Dyas, Beverly K.; Cherry, Scott; Raran-Kurussi, Sreejith; Waugh, David S.; Ulrich, Robert G.

    2015-01-01

    Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs) are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P) residue, but also the Ser(P) and Thr(P) residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined. We investigated the interactions of peptide substrates with select DUSPs of four types: MAP kinases (DUSP1 and DUSP7), atypical (DUSP3, DUSP14, DUSP22 and DUSP27), viral (variola VH1), and Cdc25 (A-C). Phosphatase recognition sites were experimentally determined by measuring dephosphorylation of 6,218 microarrayed Tyr(P) peptides representing confirmed and theoretical phosphorylation motifs from the cellular proteome. A broad continuum of dephosphorylation was observed across the microarrayed peptide substrates for all phosphatases, suggesting a complex relationship between substrate sequence recognition and optimal activity. Further analysis of peptide dephosphorylation by hierarchical clustering indicated that DUSPs could be organized by substrate sequence motifs, and peptide-specificities by phylogenetic relationships among the catalytic domains. The most highly dephosphorylated peptides represented proteins from 29 cell-signaling pathways, greatly expanding the list of potential targets of DUSPs. These newly identified DUSP substrates will be important for examining structure-activity relationships with physiologically relevant targets. PMID:26302245

  3. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E.

    2013-01-01

    Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm. PMID:23615029

  4. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.

    PubMed

    Parlea, Lorena G; Sweeney, Blake A; Hosseini-Asanjan, Maryam; Zirbel, Craig L; Leontis, Neocles B

    2016-07-01

    RNA 3D motifs occupy places in structured RNA molecules that correspond to the hairpin, internal and multi-helix junction "loops" of their secondary structure representations. As many as 40% of the nucleotides of an RNA molecule can belong to these structural elements, which are distinct from the regular double helical regions formed by contiguous AU, GC, and GU Watson-Crick basepairs. With the large number of atomic- or near atomic-resolution 3D structures appearing in a steady stream in the PDB/NDB structure databases, the automated identification, extraction, comparison, clustering and visualization of these structural elements presents an opportunity to enhance RNA science. Three broad applications are: (1) identification of modular, autonomous structural units for RNA nanotechnology, nanobiology and synthetic biology applications; (2) bioinformatic analysis to improve RNA 3D structure prediction from sequence; and (3) creation of searchable databases for exploring the binding specificities, structural flexibility, and dynamics of these RNA elements. In this contribution, we review methods developed for computational extraction of hairpin and internal loop motifs from a non-redundant set of high-quality RNA 3D structures. We provide a statistical summary of the extracted hairpin and internal loop motifs in the most recent version of the RNA 3D Motif Atlas. We also explore the reliability and accuracy of the extraction process by examining its performance in clustering recurrent motifs from homologous ribosomal RNA (rRNA) structures. We conclude with a summary of remaining challenges, especially with regard to extraction of multi-helix junction motifs. PMID:27125735

  5. The RNA Binding Motif Protein 15B (RBM15B/OTT3) Is a Functional Competitor of Serine-Arginine (SR) Proteins and Antagonizes the Positive Effect of the CDK11p110-Cyclin L2α Complex on Splicing*

    PubMed Central

    Loyer, Pascal; Busson, Adeline; Trembley, Janeen H.; Hyle, Judith; Grenet, Jose; Zhao, Wei; Ribault, Catherine; Montier, Tristan; Kidd, Vincent J.; Lahti, Jill M.

    2011-01-01

    Here, we report the identification of the RNA binding motif protein RBM15B/OTT3 as a new CDK11p110 binding partner that alters the effects of CDK11 on splicing. RBM15B was initially identified as a binding partner of the Epstein-Barr virus mRNA export factor and, more recently, as a cofactor of the nuclear export receptor NXF1. In this study, we found that RBM15B co-elutes with CDK11p110, cyclin L2α, and serine-arginine (SR) proteins, including SF2/ASF, in a large nuclear complex of ∼1-MDa molecular mass following size exclusion chromatography. Using co-immunoprecipitation experiments and in vitro pulldown assays, we mapped two distinct domains of RBM15B that are essential for its direct interaction with the N-terminal extension of CDK11p110, cyclin L2α, and SR proteins such as 9G8 and SF2/ASF. Finally, we established that RBM15B is a functional competitor of the SR proteins SF2/ASF and 9G8, inhibits formation of the functional spliceosomal E complex, and antagonizes the positive effect of the CDK11p110-cyclin L2α complex on splicing both in vitro and in vivo. PMID:21044963

  6. The RNA binding motif protein 15B (RBM15B/OTT3) is a functional competitor of serine-arginine (SR) proteins and antagonizes the positive effect of the CDK11p110-cyclin L2α complex on splicing.

    PubMed

    Loyer, Pascal; Busson, Adeline; Trembley, Janeen H; Hyle, Judith; Grenet, Jose; Zhao, Wei; Ribault, Catherine; Montier, Tristan; Kidd, Vincent J; Lahti, Jill M

    2011-01-01

    Here, we report the identification of the RNA binding motif protein RBM15B/OTT3 as a new CDK11(p110) binding partner that alters the effects of CDK11 on splicing. RBM15B was initially identified as a binding partner of the Epstein-Barr virus mRNA export factor and, more recently, as a cofactor of the nuclear export receptor NXF1. In this study, we found that RBM15B co-elutes with CDK11(p110), cyclin L2α, and serine-arginine (SR) proteins, including SF2/ASF, in a large nuclear complex of ∼1-MDa molecular mass following size exclusion chromatography. Using co-immunoprecipitation experiments and in vitro pulldown assays, we mapped two distinct domains of RBM15B that are essential for its direct interaction with the N-terminal extension of CDK11(p110), cyclin L2α, and SR proteins such as 9G8 and SF2/ASF. Finally, we established that RBM15B is a functional competitor of the SR proteins SF2/ASF and 9G8, inhibits formation of the functional spliceosomal E complex, and antagonizes the positive effect of the CDK11(p110)-cyclin L2α complex on splicing both in vitro and in vivo. PMID:21044963

  7. Mechano-chemical selections of two competitive unfolding pathways of a single DNA i-motif

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Chen, Hu; Qu, Yu-Jie; Artem, K. Efremov; Li, Ming; Ouyang, Zhong-Can; Liu, Dong-Sheng; Yan, Jie

    2014-06-01

    The DNA i-motif is a quadruplex structure formed in tandem cytosine-rich sequences in slightly acidic conditions. Besides being considered as a building block of DNA nano-devices, it may also play potential roles in regulating chromosome stability and gene transcriptions. The stability of i-motif is crucial for these functions. In this work, we investigated the mechanical stability of a single i-motif formed in the human telomeric sequence 5'-(CCCTAA)3CCC, which revealed a novel pH and loading rate-dependent bimodal unfolding force distribution. Although the cause of the bimodal unfolding force species is not clear, we proposed a phenomenological model involving a direct unfolding favored at lower loading rate or higher pH value, which is subject to competition with another unfolding pathway through a mechanically stable intermediate state whose nature is yet to be determined. Overall, the unique mechano—chemical responses of i-motif-provide a new perspective to its stability, which may be useful to guide designing new i-motif-based DNA mechanical nano-devices.

  8. A conserved motif mediates both multimer formation and allosteric activation of phosphoglycerate mutase 5.

    PubMed

    Wilkins, Jordan M; McConnell, Cyrus; Tipton, Peter A; Hannink, Mark

    2014-09-01

    Phosphoglycerate mutase 5 (PGAM5) is an atypical mitochondrial Ser/Thr phosphatase that modulates mitochondrial dynamics and participates in both apoptotic and necrotic cell death. The mechanisms that regulate the phosphatase activity of PGAM5 are poorly understood. The C-terminal phosphoglycerate mutase domain of PGAM5 shares homology with the catalytic domains found in other members of the phosphoglycerate mutase family, including a conserved histidine that is absolutely required for catalytic activity. However, this conserved domain is not sufficient for maximal phosphatase activity. We have identified a highly conserved amino acid motif, WDXNWD, located within the unique N-terminal region, which is required for assembly of PGAM5 into large multimeric complexes. Alanine substitutions within the WDXNWD motif abolish the formation of multimeric complexes and markedly reduce phosphatase activity of PGAM5. A peptide containing the WDXNWD motif dissociates the multimeric complex and reduces but does not fully abolish phosphatase activity. Addition of the WDXNWD-containing peptide in trans to a mutant PGAM5 protein lacking the WDXNWD motif markedly increases phosphatase activity of the mutant protein. Our results are consistent with an intermolecular allosteric regulation mechanism for the phosphatase activity of PGAM5, in which the assembly of PGAM5 into multimeric complexes, mediated by the WDXNWD motif, results in maximal activation of phosphatase activity. Our results suggest the possibility of identifying small molecules that function as allosteric regulators of the phosphatase activity of PGAM5. PMID:25012655

  9. A Conserved Motif Mediates both Multimer Formation and Allosteric Activation of Phosphoglycerate Mutase 5*

    PubMed Central

    Wilkins, Jordan M.; McConnell, Cyrus; Tipton, Peter A.; Hannink, Mark

    2014-01-01

    Phosphoglycerate mutase 5 (PGAM5) is an atypical mitochondrial Ser/Thr phosphatase that modulates mitochondrial dynamics and participates in both apoptotic and necrotic cell death. The mechanisms that regulate the phosphatase activity of PGAM5 are poorly understood. The C-terminal phosphoglycerate mutase domain of PGAM5 shares homology with the catalytic domains found in other members of the phosphoglycerate mutase family, including a conserved histidine that is absolutely required for catalytic activity. However, this conserved domain is not sufficient for maximal phosphatase activity. We have identified a highly conserved amino acid motif, WDXNWD, located within the unique N-terminal region, which is required for assembly of PGAM5 into large multimeric complexes. Alanine substitutions within the WDXNWD motif abolish the formation of multimeric complexes and markedly reduce phosphatase activity of PGAM5. A peptide containing the WDXNWD motif dissociates the multimeric complex and reduces but does not fully abolish phosphatase activity. Addition of the WDXNWD-containing peptide in trans to a mutant PGAM5 protein lacking the WDXNWD motif markedly increases phosphatase activity of the mutant protein. Our results are consistent with an intermolecular allosteric regulation mechanism for the phosphatase activity of PGAM5, in which the assembly of PGAM5 into multimeric complexes, mediated by the WDXNWD motif, results in maximal activation of phosphatase activity. Our results suggest the possibility of identifying small molecules that function as allosteric regulators of the phosphatase activity of PGAM5. PMID:25012655

  10. qPMS9: An Efficient Algorithm for Quorum Planted Motif Search

    NASA Astrophysics Data System (ADS)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2015-01-01

    Discovering patterns in biological sequences is a crucial problem. For example, the identification of patterns in DNA sequences has resulted in the determination of open reading frames, identification of gene promoter elements, intron/exon splicing sites, and SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have led to domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, discovery of short functional motifs, etc. In this paper we focus on the identification of an important class of patterns, namely, motifs. We study the (l, d) motif search problem or Planted Motif Search (PMS). PMS receives as input n strings and two integers l and d. It returns all sequences M of length l that occur in each input string, where each occurrence differs from M in at most d positions. Another formulation is quorum PMS (qPMS), where the motif appears in at least q% of the strings. We introduce qPMS9, a parallel exact qPMS algorithm that offers significant runtime improvements on DNA and protein datasets. qPMS9 solves the challenging DNA (l, d)-instances (28, 12) and (30, 13). The source code is available at https://code.google.com/p/qpms9/.

  11. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase.

    PubMed

    Hertz, Emil Peter Thrane; Kruse, Thomas; Davey, Norman E; López-Méndez, Blanca; Sigurðsson, Jón Otti; Montoya, Guillermo; Olsen, Jesper V; Nilsson, Jakob

    2016-08-18

    Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface-exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes. PMID:27453045

  12. Two motifs target Batten disease protein CLN3 to lysosomes in transfected nonneuronal and neuronal cells.

    PubMed

    Kyttälä, Aija; Ihrke, Gudrun; Vesa, Jouni; Schell, Michael J; Luzio, J Paul

    2004-03-01

    Batten disease is a neurodegenerative disorder resulting from mutations in CLN3, a polytopic membrane protein, whose predominant intracellular destination in nonneuronal cells is the lysosome. The topology of CLN3 protein, its lysosomal targeting mechanism, and the development of Batten disease are poorly understood. We provide experimental evidence that both the N and C termini and one large loop domain of CLN3 face the cytoplasm. We have identified two lysosomal targeting motifs that mediate the sorting of CLN3 in transfected nonneuronal and neuronal cells: an unconventional motif in the long C-terminal cytosolic tail consisting of a methionine and a glycine separated by nine amino acids [M(X)9G], and a more conventional dileucine motif, located in the large cytosolic loop domain and preceded by an acidic patch. Each motif on its own was sufficient to mediate lysosomal targeting, but optimal efficiency required both. Interestingly, in primary neurons, CLN3 was prominently seen both in lysosomes in the cell body and in endosomes, containing early endosomal antigen-1 along neuronal processes. Because there are few lysosomes in axons and peripheral parts of dendrites, the presence of CLN3 in endosomes of neurons may be functionally important. Endosomal association of the protein was independent of the two lysosomal targeting motifs. PMID:14699076

  13. Effects of Rate-Limiting Steps in Transcription Initiation on Genetic Filter Motifs

    PubMed Central

    Häkkinen, Antti; Tran, Huy; Yli-Harja, Olli; Ribeiro, Andre S.

    2013-01-01

    The behavior of genetic motifs is determined not only by the gene-gene interactions, but also by the expression patterns of the constituent genes. Live single-molecule measurements have provided evidence that transcription initiation is a sequential process, whose kinetics plays a key role in the dynamics of mRNA and protein numbers. The extent to which it affects the behavior of cellular motifs is unknown. Here, we examine how the kinetics of transcription initiation affects the behavior of motifs performing filtering in amplitude and frequency domain. We find that the performance of each filter is degraded as transcript levels are lowered. This effect can be reduced by having a transcription process with more steps. In addition, we show that the kinetics of the stepwise transcription initiation process affects features such as filter cutoffs. These results constitute an assessment of the range of behaviors of genetic motifs as a function of the kinetics of transcription initiation, and thus will aid in tuning of synthetic motifs to attain specific characteristics without affecting their protein products. PMID:23940576

  14. A MOF platform for incorporation of complementary organic motifs for CO2 binding.

    PubMed

    Deria, Pravas; Li, Song; Zhang, Hongda; Snurr, Randall Q; Hupp, Joseph T; Farha, Omar K

    2015-08-11

    CO2 capture is essential for reducing the carbon footprint of coal-fired power plants. Here we show, both experimentally and computationally, a new design strategy for capturing CO2 in nanoporous adsorbents. The approach involves 'complementary organic motifs' (COMs), which have a precise alignment of charge densities that is complementary to the CO2 quadrupole. Two promising COMs were post-synthetically incorporated into a robust metal-organic framework (MOF) material using solvent-assisted ligand incorporation (SALI). We demonstrate that these COM-functionalized MOFs exhibit high capacity and selectivity for CO2 relative to other reported motifs. PMID:26145451

  15. Relationship between involvement and functional milk desserts intention to purchase. Influence on attitude towards packaging characteristics.

    PubMed

    Ares, Gastón; Besio, Mariángela; Giménez, Ana; Deliza, Rosires

    2010-10-01

    Consumers perceive functional foods as member of the particular food category to which they belong. In this context, apart from health and sensory characteristics, non-sensory factors such as packaging might have a key role on determining consumers' purchase decisions regarding functional foods. The aims of the present work were to study the influence of different package attributes on consumer willingness to purchase regular and functional chocolate milk desserts; and to assess if the influence of these attributes was affected by consumers' level of involvement with the product. A conjoint analysis task was carried out with 107 regular milk desserts consumers, who were asked to score their willingness to purchase of 16 milk dessert package concepts varying in five features of the package, and to complete a personal involvement inventory questionnaire. Consumers' level of involvement with the product affected their interest in the evaluated products and their reaction towards the considered conjoint variables, suggesting that it could be a useful segmentation tool during food development. Package colour and the presence of a picture on the label were the variables with the highest relative importance, regardless of consumers' involvement with the product. The importance of these variables was higher than the type of dessert indicating that packaging may play an important role in consumers' perception and purchase intention of functional foods. PMID:20609376

  16. The influence of the parents' educational level on the development of executive functions.

    PubMed

    Ardila, Alfredo; Rosselli, Monica; Matute, Esmeralda; Guajardo, Soledad

    2005-01-01

    Information about the influence of educational variables on the development of executive functions is limited. The aim of this study was to analyze the relation of the parents' educational level and the type of school the child attended (private or public school) to children's executive functioning test performance. Six hundred twenty-two participants, ages 5 to 14 years (276 boys, 346 girls) were selected from Colombia and Mexico and grouped according to three variables: age (5-6, 7-8, 9-10, 11-12, and 13-14 years), gender (boys and girls), and school type (private and public). Eight executive functioning tests taken from the Evaluacion Neuropsicologica Infantil; Matute, Rosselli, Ardila, & Ostrosky, (in press) were individually administered: Semantic Verbal Fluency, Phonemic Verbal Fluency, Semantic Graphic Fluency, Nonsemantic Graphic Fluency, Matrices, Similarities, Card Sorting, and the Mexican Pyramid. There was a significant effect of age on all the test scores and a significant effect of type of school attended on all but Semantic Verbal Fluency and Nonsemantic Graphic Fluency tests. Most children's test scores, particularly verbal test scores, significantly correlated with parents' educational level. Our results suggest that the differences in test scores between the public and private school children depended on some conditions existing outside the school, such as the parents' level of education. Implications of these findings for the understanding of the influence of environmental factors on the development of executive functions are presented. PMID:15992255

  17. IQ motif selectivity in human IQGAP1: binding of myosin essential light chain and S100B.

    PubMed

    Pathmanathan, Sevvel; Elliott, Sarah F; McSwiggen, Sara; Greer, Brett; Harriott, Pat; Irvine, G Brent; Timson, David J

    2008-11-01

    IQGAPs are cytoskeletal scaffolding proteins which link signalling pathways to the reorganisation of actin and microtubules. Human IQGAP1 has four IQ motifs each of which binds to calmodulin. The same region has been implicated in binding to two calmodulin-like proteins, the myosin essential light chain Mlc1sa and the calcium and zinc ion binding protein S100B. Using synthetic peptides corresponding to the four IQ motifs of human IQGAP1, we showed by native gel electrophoresis that only the first IQ motif interacts with Mlc1sa. This IQ motif, and also the fourth, interacts with the budding yeast myosin essential light chain Mlc1p. The first and second IQ motifs interact with S100B in the presence of calcium ions. This clearly establishes that S100B can interact with its targets through IQ motifs in addition to interacting via previously reported sequences. These results are discussed in terms of the function of IQGAP1 and IQ motif recognition. PMID:18587628

  18. The exploration of network motifs as potential drug targets from post-translational regulatory networks.

    PubMed

    Zhang, Xiao-Dong; Song, Jiangning; Bork, Peer; Zhao, Xing-Ming

    2016-01-01

    Phosphorylation and proteolysis are among the most common post-translational modifications (PTMs), and play critical roles in various biological processes. More recent discoveries imply that the crosstalks between these two PTMs are involved in many diseases. In this work, we construct a post-translational regulatory network (PTRN) consists of phosphorylation and proteolysis processes, which enables us to investigate the regulatory interplays between these two PTMs. With the PTRN, we identify some functional network motifs that are significantly enriched with drug targets, some of which are further found to contain multiple proteins targeted by combinatorial drugs. These findings imply that the network motifs may be used to predict targets when designing new drugs. Inspired by this, we propose a novel computational approach called NetTar for predicting drug targets using the identified network motifs. Benchmarking results on real data indicate that our approach can be used for accurate prediction of novel proteins targeted by known drugs. PMID:26853265

  19. The exploration of network motifs as potential drug targets from post-translational regulatory networks

    PubMed Central

    Zhang, Xiao-Dong; Song, Jiangning; Bork, Peer; Zhao, Xing-Ming

    2016-01-01

    Phosphorylation and proteolysis are among the most common post-translational modifications (PTMs), and play critical roles in various biological processes. More recent discoveries imply that the crosstalks between these two PTMs are involved in many diseases. In this work, we construct a post-translational regulatory network (PTRN) consists of phosphorylation and proteolysis processes, which enables us to investigate the regulatory interplays between these two PTMs. With the PTRN, we identify some functional network motifs that are significantly enriched with drug targets, some of which are further found to contain multiple proteins targeted by combinatorial drugs. These findings imply that the network motifs may be used to predict targets when designing new drugs. Inspired by this, we propose a novel computational approach called NetTar for predicting drug targets using the identified network motifs. Benchmarking results on real data indicate that our approach can be used for accurate prediction of novel proteins targeted by known drugs. PMID:26853265

  20. Quadruplex-single nucleotide polymorphisms (Quad-SNP) influence gene expression difference among individuals

    PubMed Central

    Baral, Aradhita; Kumar, Pankaj; Halder, Rashi; Mani, Prithvi; Yadav, Vinod Kumar; Singh, Ankita; Das, Swapan K.; Chowdhury, Shantanu

    2012-01-01

    Non-canonical guanine quadruplex structures are not only predominant but also conserved among bacterial and mammalian promoters. Moreover recent findings directly implicate quadruplex structures in transcription. These argue for an intrinsic role of the structural motif and thereby posit that single nucleotide polymorphisms (SNP) that compromise the quadruplex architecture could influence function. To test this, we analysed SNPs within quadruplex motifs (Quad-SNP) and gene expression in 270 individuals across four populations (HapMap) representing more than 14 500 genotypes. Findings reveal significant association between quadruplex-SNPs and expression of the corresponding gene in individuals (P < 0.0001). Furthermore, analysis of Quad-SNPs obtained from population-scale sequencing of 1000 human genomes showed relative selection bias against alteration of the structural motif. To directly test the quadruplex-SNP-transcription connection, we constructed a reporter system using the RPS3 promoter—remarkable difference in promoter activity in the ‘quadruplex-destabilized’ versus ‘quadruplex-intact’ promoter was noticed. As a further test, we incorporated a quadruplex motif or its disrupted counterpart within a synthetic promoter reporter construct. The quadruplex motif, and not the disrupted-motif, enhanced transcription in human cell lines of different origin. Together, these findings build direct support for quadruplex-mediated transcription and suggest quadruplex-SNPs may play significant role in mechanistically understanding variations in gene expression among individuals. PMID:22238381

  1. Irradiating of Bulk Soybeans: Influence on Their Functional and Sensory Properties for Soyfood Processing

    NASA Technical Reports Server (NTRS)

    Chia, Chiew-Ling; Wilson, Lester A.; Boylston, Terri; Perchonok, Michele; French, Stephen

    2006-01-01

    Soybeans were chosen for lunar and planetary missions, where soybeans will be supplied in bulk or grown locally, due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to consumption. Radiation that soybeans would be exposed to during bulk storage prior to and during a Mars mission may influence their germination and functional properties. The influence of radiation includes the affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (HACCP, CCP), and the affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants free radical formation, and oxidation-induced changes in the soybean will influence the nutritional value, texture, color, and aroma of soyfoods. The objective of this study was to determine the influence of pasteurization and sterilization surface radiation on whole soybeans using gamma and electron beam radiation. The influence of 0, 1, 5, 10, and 30kGy on microbial load, germination rate, ease of processing, and quality of soymilk and tofu were determined. Surface radiation of whole dry soybeans using electron beam or gamma rays from 1-30kGy did provide microbial safety for the astronauts. However, the lower dose levels had surviving yeasts and molds. These doses caused oxidative changes that resulted in soymilk and tofu with rancid aromas. GC-MS of the aroma compounds using SPME Headspace confirmed the presence of lipid oxidation compounds. Soybean germination ability was reduced as radiation dosage increased. While lower doses may reduce these problems, the ability to insure microbial safety of bulk soybeans will be lost. Counter measures could include vacuum packaging, nitrogen flushing, added antioxidants, and radiating under freezing conditions. Doses below 1kGy need to be investigated further to determine the influence of the radiation encountered

  2. Transcriptional up-regulation of the mouse cytosolic glutathione peroxidase gene in erythroid cells is due to a tissue-specific 3' enhancer containing functionally important CACC/GT motifs and binding sites for GATA and Ets transcription factors.

    PubMed Central

    O'Prey, J; Ramsay, S; Chambers, I; Harrison, P R

    1993-01-01

    Nuclear run-on experiments have shown that the high level of expression of the mouse cytosolic glutathione peroxidase mRNA in erythroid cells is due to up-regulation of the gene at the transcriptional level. Studies of the chromatin structure around the cytosolic glutathione peroxidase gene have revealed a series of DNase I hypersensitive sites (DHSS) in the 3' flanking region of the gene in erythroid and other high-expression tissues that are lacking in low-expression cells, in addition to a DHSS over the promoter region in both high- and low-expression tissues. Functional transfection experiments have demonstrated that one of the 3' DHSS regions functions as an enhancer in erythroid cells but not in a low-expression epithelial cell line; and site-directed mutagenesis and footprinting experiments reveal that the activity of the erythroid cell-specific enhancer requires a cluster of binding sites for the CACC/GT box factors and the GATA and Ets families of transcription factors. Images PMID:8413228

  3. Functional trait differences influence neighbourhood interactions in a hyperdiverse Amazonian forest.

    PubMed

    Fortunel, Claire; Valencia, Renato; Wright, S Joseph; Garwood, Nancy C; Kraft, Nathan J B

    2016-09-01

    As distinct community assembly processes can produce similar community patterns, assessing the ecological mechanisms promoting coexistence in hyperdiverse rainforests remains a considerable challenge. We use spatially explicit neighbourhood models of tree growth to quantify how functional trait and phylogenetic similarities predict variation in growth and crowding effects for the 315 most abundant tree species in a 25-ha lowland rainforest plot in Ecuador. We find that functional trait differences reflect variation in (1) species maximum potential growth, (2) the intensity of interspecific interactions for some species, and (3) species sensitivity to neighbours. We find that neighbours influenced tree growth in 28% of the 315 focal tree species. Neighbourhood effects are not detected in the remaining 72%, which may reflect the low statistical power to model rare taxa and/or species insensitivity to neighbours. Our results highlight the spectrum of ways in which functional trait differences can shape community dynamics in highly diverse rainforests. PMID:27358248

  4. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.

    PubMed

    Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P

    2015-08-01

    Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. PMID:25773686

  5. Genetic influence on exercise-induced changes in physical function among mobility-limited older adults.

    PubMed

    Buford, Thomas W; Hsu, Fang-Chi; Brinkley, Tina E; Carter, Christy S; Church, Timothy S; Dodson, John A; Goodpaster, Bret H; McDermott, Mary M; Nicklas, Barbara J; Yank, Veronica; Johnson, Julie A; Pahor, Marco

    2014-03-01

    To date, physical exercise is the only intervention consistently demonstrated to attenuate age-related declines in physical function. However, variability exists in seniors' responsiveness to training. One potential source of variability is the insertion (I allele) or deletion (D allele) of a 287 bp fragment in intron 16 of the angiotensin-converting enzyme (ACE) gene. This polymorphism is known to influence a variety of physiological adaptions to exercise. However, evidence is inconclusive regarding the influence of this polymorphism on older adults' functional responses to exercise. This study aimed to evaluate the association of ACE I/D genotypes with changes in physical function among Caucasian older adults (n = 283) following 12 mo of either structured, multimodal physical activity or health education. Measures of physical function included usual-paced gait speed and performance on the Short Physical Performance Battery (SPPB). After checking Hardy-Weinberg equilibrium, we used using linear regression to evaluate the genotype*treatment interaction for each outcome. Covariates included clinic site, body mass index, age, sex, baseline score, comorbidity, and use of angiotensin receptor blockers or ACE inhibitors. Genotype frequencies [II (19.4%), ID (42.4%), DD (38.2%)] were in Hardy-Weinberg equilibrium (P > 0.05). The genotype*treatment interaction was statistically significant for both gait speed (P = 0.002) and SPPB (P = 0.020). Exercise improved gait speed by 0.06 ± 0.01 m/sec and SPPB score by 0.72 ± 0.16 points among those with at least one D allele (ID/DD carriers), but function was not improved among II carriers. Thus, ACE I/D genotype appears to play a role in modulating functional responses to exercise training in seniors. PMID:24423970

  6. Cross-Disciplinary Detection and Analysis of Network Motifs

    PubMed Central

    Tran, Ngoc Tam L; DeLuccia, Luke; McDonald, Aidan F; Huang, Chun-Hsi

    2015-01-01

    The detection of network motifs has recently become an important part of network analysis across all disciplines. In this work, we detected and analyzed network motifs from undirected and directed networks of several different disciplines, including biological network, social network, ecological network, as well as other networks such as airlines, power grid, and co-purchase of political books networks. Our analysis revealed that undirected networks are similar at the basic three and four nodes, while the analysis of directed networks revealed the distinction between networks of different disciplines. The study showed that larger motifs contained the three-node motif as a subgraph. Topological analysis revealed that similar networks have similar small motifs, but as the motif size increases, differences arise. Pearson correlation coefficient showed strong positive relationship between some undirected networks but inverse relationship between some directed networks. The study suggests that the three-node motif is a building block of larger motifs. It also suggests that undirected networks share similar low-level structures. Moreover, similar networks share similar small motifs, but larger motifs define the unique structure of individuals. Pearson correlation coefficient suggests that protein structure networks, dolphin social network, and co-authorships in network science belong to a superfamily. In addition, yeast protein–protein interaction network, primary school contact network, Zachary’s karate club network, and co-purchase of political books network can be classified into a superfamily. PMID:25983553

  7. Cross-disciplinary detection and analysis of network motifs.

    PubMed

    Tran, Ngoc Tam L; DeLuccia, Luke; McDonald, Aidan F; Huang, Chun-Hsi

    2015-01-01

    The detection of network motifs has recently become an important part of network analysis across all disciplines. In this work, we detected and analyzed network motifs from undirected and directed networks of several different disciplines, including biological network, social network, ecological network, as well as other networks such as airlines, power grid, and co-purchase of political books networks. Our analysis revealed that undirected networks are similar at the basic three and four nodes, while the analysis of directed networks revealed the distinction between networks of different disciplines. The study showed that larger motifs contained the three-node motif as a subgraph. Topological analysis revealed that similar networks have similar small motifs, but as the motif size increases, differences arise. Pearson correlation coefficient showed strong positive relationship between some undirected networks but inverse relationship between some directed networks. The study suggests that the three-node motif is a building block of larger motifs. It also suggests that undirected networks share similar low-level structures. Moreover, similar networks share similar small motifs, but larger motifs define the unique structure of individuals. Pearson correlation coefficient suggests that protein structure networks, dolphin social network, and co-authorships in network science belong to a superfamily. In addition, yeast protein-protein interaction network, primary school contact network, Zachary's karate club network, and co-purchase of political books network can be classified into a superfamily. PMID:25983553

  8. RMOD: a tool for regulatory motif detection in signaling network.

    PubMed

    Kim, Jinki; Yi, Gwan-Su

    2013-01-01

    Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod. PMID:23874612

  9. Influence of Functional Movement Rehabilitation on Quality of Life in People with Parkinson’s Disease

    PubMed Central

    Cholewa, Joanna; Gorzkowska, Agnieszka; Szepelawy, Michal; Nawrocka, Agnieszka; Cholewa, Jaroslaw

    2014-01-01

    [Purpose] Parkinson’s disease is one of the most frequent diseases of the central nervous system. Thorough knowledge of reasons for movement defects may contribute to the ability to quality of life at a good level as far as motor abilities are concerned. The aim of the study was to evaluate the influence of functional movement rehabilitation on the degree of intensity of movement symptoms in Parkinson’s disease. [Subjects] The research was carried out in people diagnosed with stage III Parkinson’s disease, according to the Hoehn and Yahr scale classification. [Methods] In order to establish the clinical state of patients, parts I, II, and III of the Unified Parkinson’s Disease Rating Scale, the Schwab and England Activities of Daily Living scale, and the quality of life in Parkinson’s disease questionnaire were applied. The intervention group took part in 60 minutes of functional movement rehabilitation twice a week for a period of 15 weeks. The main emphasis was placed on the ability to cope with everyday activities. [Results] A significant difference in scores for the given scales between before and after research the intervention period was observed in the intervention group. [Conclusion] The obtained results revealed positive that the influence of applied rehabilitation program had a positive influence on the degree of intensity of movement symptoms in people with Parkinson’s disease. PMID:25276010

  10. QGRS-Conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs

    PubMed Central

    2014-01-01

    Background Nucleic acids containing guanine tracts can form quadruplex structures via non-Watson-Crick base pairing. Formation of G-quadruplexes is associated with the regulation of important biological functions such as transcription, genetic instability, DNA repair, DNA replication, epigenetic mechanisms, regulation of translation, and alternative splicing. G-quadruplexes play important roles in human diseases and are being considered as targets for a variety of therapies. Identification of functional G-quadruplexes and the study of their overall distribution in genomes and transcriptomes is an important pursuit. Traditional computational methods map sequence motifs capable of forming G-quadruplexes but have difficulty in distinguishing motifs that occur by chance from ones which fold into G-quadruplexes. Results We present Quadruplex forming ‘G’-rich sequences (QGRS)-Conserve, a computational method for calculating motif conservation across exomes and supports filtering to provide researchers with more precise methods of studying G-quadruplex distribution patterns. Our method quantitatively evaluates conservation between quadruplexes found in homologous nucleotide sequences based on several motif structural characteristics. QGRS-Conserve also efficiently manages overlapping G-quadruplex sequences such that the resulting datasets can be analyzed effectively. Conclusions We have applied QGRS-Conserve to identify a large number of G-quadruplex motifs in the human exome conserved across several mammalian and non-mammalian species. We have successfully identified multiple homologs of many previously published G-quadruplexes that play post-transcriptional regulatory roles in human genes. Preliminary large-scale analysis identified many homologous G-quadruplexes in the 5′- and 3′-untranslated regions of mammalian species. An expectedly smaller set of G-quadruplex motifs was found to be conserved across larger phylogenetic distances. QGRS-Conserve provides means

  11. Study Protocol: The influence of Running Therapy on executive functions and sleep of prisoners

    PubMed Central

    Meijers, Jesse; Harte, Joke; Meynen, Gerben; Cuijpers, Pim

    2015-01-01

    Background: Executive dysfunction appears to be related to increased recidivism. Of note is that sleep disturbances, which are highly prevalent in prisons, may attenuate executive functions. Thus, improving executive functions, either directly or indirectly through the improvement of sleep, may reduce recidivism. It is hypothesised that physical exercise, in the form of Running Therapy, has a direct positive effect on executive functions as well as an indirect effect through the improvement of sleep. Methods/Design: Seventy two (N = 72) detainees in various penitentiary institutions in the Netherlands will be recruited in this study. A baseline measurement, including six neuropsychological tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB), an assessment of sleep quality and duration using the Actiwatch (Actiwatch 2, Philips Respironics, Murrysville, PA, USA) and various other measurements will be administered before the start of the treatment. After 3 months of Running Therapy, participants will be assessed again with the same tests for neuropsychological and physical functioning. Primary outcomes are executive functioning and various sleep variables. Discussion: This study will be the first to investigate the possible influence of Running Therapy on the cognitive functioning, sleep and aggression in prisoners. PMID:26664703

  12. Merging Structural Motifs of Functionalized Amino Acids and α-Aminoamides Results in Novel Anticonvulsant Compounds with Significant Effects on Slow and Fast Inactivation of Voltage-Gated Sodium Channels and in the Treatment of Neuropathic Pain

    PubMed Central

    2011-01-01

    We recently reported that merging key structural pharmacophores of the anticonvulsant drugs lacosamide (a functionalized amino acid) with safinamide (an α-aminoamide) resulted in novel compounds with anticonvulsant activities superior to that of either drug alone. Here, we examined the effects of six such chimeric compounds on Na+-channel function in central nervous system catecholaminergic (CAD) cells. Using whole-cell patch clamp electrophysiology, we demonstrated that these compounds affected Na+ channel fast and slow inactivation processes. Detailed electrophysiological characterization of two of these chimeric compounds that contained either an oxymethylene ((R)-7) or a chemical bond ((R)-11) between the two aromatic rings showed comparable effects on slow inactivation, use-dependence of block, development of slow inactivation, and recovery of Na+ channels from inactivation. Both compounds were equally effective at inducing slow inactivation; (R)-7 shifted the fast inactivation curve in the hyperpolarizing direction greater than (R)-11, suggesting that in the presence of (R)-7 a larger fraction of the channels are in an inactivated state. None of the chimeric compounds affected veratridine- or KCl-induced glutamate release in neonatal cortical neurons. There was modest inhibition of KCl-induced calcium influx in cortical neurons. Finally, a single intraperitoneal administration of (R)-7, but not (R)-11, completely reversed mechanical hypersensitivity in a tibial-nerve injury model of neuropathic pain. The strong effects of (R)-7 on slow and fast inactivation of Na+ channels may contribute to its efficacy and provide a promising novel therapy for neuropathic pain, in addition to its antiepileptic potential. PMID:21765969

  13. Multiple Binding Modes between HNF4[alpha] and the LXXLL Motifs of PGC-1[alpha] Lead to Full Activation

    SciTech Connect

    Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.; Chi, Young-In

    2010-04-15

    Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4{alpha} interacts, peroxisome proliferation-activated receptor {gamma} (PPAR{gamma}) coactivator 1{alpha} (PGC-1{alpha}) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1{alpha} recruitment, we have determined the crystal structure of HNF4{alpha} in complex with a fragment of PGC-1{alpha} containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4{alpha} toward the LXXLL motifs of PGC-1{alpha} could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators.

  14. Superstatistics analysis of the ion current distribution function: Met3PbCl influence study.

    PubMed

    Miśkiewicz, Janusz; Trela, Zenon; Przestalski, Stanisław; Karcz, Waldemar

    2010-09-01

    A novel analysis of ion current time series is proposed. It is shown that higher (second, third and fourth) statistical moments of the ion current probability distribution function (PDF) can yield new information about ion channel properties. The method is illustrated on a two-state model where the PDF of the compound states are given by normal distributions. The proposed method was applied to the analysis of the SV cation channels of vacuolar membrane of Beta vulgaris and the influence of trimethyllead chloride (Met(3)PbCl) on the ion current probability distribution. Ion currents were measured by patch-clamp technique. It was shown that Met(3)PbCl influences the variance of the open-state ion current but does not alter the PDF of the closed-state ion current. Incorporation of higher statistical moments into the standard investigation of ion channel properties is proposed. PMID:20354691

  15. Effects of Cannabis on Neurocognitive Functioning: Recent Advances, Neurodevelopmental Influences, and Sex Differences

    PubMed Central

    Crane, Natania A.; Schuster, Randi Melissa; Fusar-Poli, Paolo; Gonzalez, Raul

    2012-01-01

    Decades of research have examined the effects of cannabis on neurocognition. Recent advances in this field provide us with a better understanding of how cannabis use influences neurocognition both acutely (during intoxication) and non-acutely (after acute effects subside). Evidence of problems with episodic memory is one of the most consistent findings reported; however, several other neurocognitive domains appear to be adversely affected by cannabis use under various conditions. There is significant variability in findings across studies, thus a discussion of potential moderators is increasingly relevant. The purpose of this review was to 1) provide an update on research of cannabis’ acute and non-acute effects on neurocognition, with a focus on findings since 2007 and 2) suggest and discuss how neurodevelopmental issues and sex differences may influence cannabis effects on neurocognition. Finally we discuss how future investigations may lead to better understanding of the complex interplay among cannabis, stages of neurodevelopment, and sex on neurocognitive functioning. PMID:23129391

  16. Inferring the evolutionary history of primate microRNA binding sites: overcoming motif counting biases.

    PubMed

    Simkin, Alfred T; Bailey, Jeffrey A; Gao, Fen-Biao; Jensen, Jeffrey D

    2014-07-01

    The first microRNAs (miRNAs) were identified as essential, conserved regulators of gene expression, targeting the same genes across nearly all bilaterians. However, there are also prominent examples of conserved miRNAs whose functions appear to have shifted dramatically, sometimes over very brief periods of evolutionary time. To determine whether the functions of conserved miRNAs are stable or dynamic over evolutionary time scales, we have here defined the neutral turnover rates of short sequence motifs in predicted primate 3'-UTRs. We find that commonly used approaches to quantify motif turnover rates, which use a presence/absence scoring in extant lineages to infer ancestral states, are inherently biased to infer the accumulation of new motifs, leading to the false inference of continually increasing regulatory complexity over time. Using a maximum likelihood approach to reconstruct individual ancestral nucleotides, we observe that binding sites of conserved miRNAs in fact have roughly equal numbers of gain and loss events relative to ancestral states and turnover extremely slowly relative to nearly identical permutations of the same motif. Contrary to case studies showing examples of functional turnover, our systematic study of miRNA binding sites suggests that in primates, the regulatory roles of conserved miRNAs are strongly conserved. Our revised methodology may be used to quantify the mechanism by which regulatory networks evolve. PMID:24723422

  17. Seafloor heterogeneity influences the biodiversity–ecosystem functioning relationships in the deep sea

    NASA Astrophysics Data System (ADS)

    Zeppilli, Daniela; Pusceddu, Antonio; Trincardi, Fabio; Danovaro, Roberto

    2016-05-01

    Theoretical ecology predicts that heterogeneous habitats allow more species to co-exist in a given area. In the deep sea, biodiversity is positively linked with ecosystem functioning, suggesting that deep-seabed heterogeneity could influence ecosystem functions and the relationships between biodiversity and ecosystem functioning (BEF). To shed light on the BEF relationships in a heterogeneous deep seabed, we investigated variations in meiofaunal biodiversity, biomass and ecosystem efficiency within and among different seabed morphologies (e.g., furrows, erosional troughs, sediment waves and other depositional structures, landslide scars and deposits) in a narrow geo-morphologically articulated sector of the Adriatic Sea. We show that distinct seafloor morphologies are characterized by highly diverse nematode assemblages, whereas areas sharing similar seabed morphologies host similar nematode assemblages. BEF relationships are consistently positive across the entire region, but different seabed morphologies are characterised by different slope coefficients of the relationship. Our results suggest that seafloor heterogeneity, allowing diversified assemblages across different habitats, increases diversity and influence ecosystem processes at the regional scale, and BEF relationships at smaller spatial scales. We conclude that high-resolution seabed mapping and a detailed analysis of the species distribution at the habitat scale are crucial for im