Science.gov

Sample records for influence regional atmospheric

  1. Regional atmospheric influence on the Chandler wobble

    NASA Astrophysics Data System (ADS)

    Zotov, L. V.; Bizouard, C.

    2015-03-01

    From the maps of regional contribution to atmospheric angular momentum (AAM) over the period 1948-2011 (NCEP/NCAR reanalysis data) time domain excitation in Chandler frequency band was extracted by Panteleev's filtering method. This permits us to investigate the evolution of the regional atmospheric influence on Chandler wobble. It appears that the temperate latitudes bring the strongest inputs. For pressure term they are limited to continents, and highlight the role of Europe. For the wind term they mostly result from ocean area, encompassing in particular North Atlantic. A quasi-20 year cycle is found in the regional patterns of the atmospheric excitation. The integrated AAM is finally compared with the geodetic excitation reconstructed from the observed polar motion.

  2. The influence of atmospheric circulation types on regional patterns of precipitation in Marmara (NW Turkey)

    NASA Astrophysics Data System (ADS)

    Baltacı, H.; Kındap, T.; Ünal, A.; Karaca, M.

    2015-10-01

    In this study, regional patterns of precipitation in Marmara are described for the first time by means of Ward's hierarchical cluster analysis. Daily values of winter precipitation data based on 19 meteorological stations were used for the period from 1960 to 2012. Five clusters of coherent zones were determined, namely Black Sea-Marmara, Black Sea, Marmara, Thrace, and Aegean sub-regions. To investigate the prevailing atmospheric circulation types (CTs) that cause precipitation occurrence and intensity in these five different rainfall sub-basins, objective Lamb weather type (LWT) methodology was applied to National Centers of Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis of daily mean sea level pressure (MSLP) data. Precipitation occurrence suggested that wet CTs (i.e. N, NE, NW, and C) offer a high chance of precipitation in all sub-regions. For the eastern (western) part of the region, the high probability of rainfall occurrence is shown under the influence of E (SE, S, SW) atmospheric CTs. In terms of precipitation intensity, N and C CTs had the highest positive gradients in all the sub-basins of the Marmara. In addition, although Marmara and Black Sea sub-regions have the highest daily rainfall potential during NE types, high daily rainfall totals are recorded in all sub-regions except the Black Sea during NW types.

  3. Influence of sea-land breezes on the tempospatial distribution of atmospheric aerosols over coastal region.

    PubMed

    Tsai, Hsieh-Hung; Yuan, Chung-Shin; Hung, Chung-Hsuang; Lin, Chitsan; Lin, Yuan-Chung

    2011-04-01

    The influence of sea-land breezes (SLBs) on the spatial distribution and temporal variation of particulate matter (PM) in the atmosphere was investigated over coastal Taiwan. PM was simultaneously sampled at inland and offshore locations during three intensive sampling periods. The intensive PM sampling protocol was continuously conducted over a 48-hr period. During this time, PM2.5 and PM(2.5-10) (PM with aerodynamic diameters < 2.5 microm and between 2.5 and 10 microm, respectively) were simultaneously measured with dichotomous samplers at four sites (two inland and two offshore sites) and PM10 (PM with aerodynamic diameters < or =10 microm) was measured with beta-ray monitors at these same 4 sites and at 10 sites of the Taiwan Air Quality Monitoring Network. PM sampling on a mobile air quality monitoring boat was further conducted along the coastline to collect offshore PM using a beta-ray monitor and a dichotomous sampler. Data obtained from the inland sites (n=12) and offshore sites (n=2) were applied to plot the PM10 concentration contour using Surfer software. This study also used a three-dimensional meteorological model (Pennsylvania State University/National Center for Atmospheric Research Meteorological Model 5) and the Comprehensive Air Quality Model with Extensions to simulate surface wind fields and spatial distribution of PM10 over the coastal region during the intensive sampling periods. Spatial distribution of PM10 concentration was further used in investigating the influence of SLBs on the transport of PM10 over the coastal region. Field measurement and model simulation results showed that PM10 was transported back and forth across the coastline. In particular, a high PM10 concentration was observed at the inland sites during the day because of sea breezes, whereas a high PM10 concentration was detected offshore at night because of land breezes. This study revealed that the accumulation of PM in the near-ocean region because of SLBs influenced the

  4. Local and Regional Influences on Atmospheric Nutrient Deposition in Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Allen, A. G.; Machado, C. M.; Cardoso, A. A.

    2009-05-01

    The objective of this work was to quantify sources of atmospheric nutrients, which are subsequently deposited to agricultural soils and natural ecosystems of São Paulo State (Brazil). The atmospheric concentrations of soluble ions (NO3-, NH4+, PO43-, SO42-, Cl-, K+, Na+, Mg2+ and Ca2+) in aerosol were evaluated, together with the gases NO2, NH3, HNO3 and SO2. Identification of nutrient sources was achieved using principal component analysis (PCA) followed by multiple linear regression analysis (MLRA). Dry deposition fluxes were estimated using the measured atmospheric concentrations together with dry deposition velocities of gases and aerosols to different surface types. Results showed that the main sources of nutrients to the regions atmosphere were fossil and biofuel combustion (N and S species), agricultural biomass burning (N, S, K and P), re-suspension of soils and dusts (Ca and Mg), and to a lesser extent long-range transport (S). NO2 concentrations were more influenced by local emissions and subsequent chemical transformations occurring on a scale of up to 200-300 km. HNO3 was much less spatially variable, with consistently higher concentrations during warmer, drier periods, indicating an agreement with gas phase/aerosol phase thermodynamic equilibrium theory. Scavenging of gaseous HNO3 was a source of nitrate, for which deposition fluxes were higher during the dry season, when significant relationships were obtained between nitrate concentrations and biomass burning intensity. Additional sources were indicated for particulate nitrate and sulphate, such as road transport and secondary reactions. During winter, the main source of gaseous ammonia was biomass burning, while emissions from soils and wastes predominated during summer. Modeled deposition fluxes were highest to tropical forest and lowest to water and pasture surfaces. In agricultural areas, the deposition fluxes of aerosol components N, P and K (0.37, 0.029 and 0.59 kg ha-1 yr-1, respectively

  5. Investigation of aerosol components influencing atmospheric transfer of UV radiation in Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Reinart, A.; Kikas, Ü.; Tamm, E.

    2006-01-01

    Linking of atmospheric aerosol size distributions and optical properties via predefined aerosol components was investigated. The measured aerosol volume distributions were decomposed to Optical Properties of Aerosols and Clouds (OPAC) components, and aerosol optical properties were calculated for a mixture of those components. The obtained aerosol optical properties were then used for modeling the surface UV irradiances with the libRadtran radiative transfer code. The results were verified with the columnar aerosol characteristics obtained from Aerosol Robotic Network (AERONET) station Tõravere (58.26°N, 26.46°E) and clear-sky surface UV measurements in Pärnu, Estonia (58.38°N, 24.51°E). The best decomposition results were obtained with four OPAC components, when their lookup characteristics varied within ±10%. Variation of aerosol optical properties in 17 days was influenced by the following aerosol components: soot, 1.2 ± 1.4%; insoluble, 23.1 ± 8.3%; water-soluble, 44.0 ± 10.8%; accumulation mode sea salt, 31.6 ± 6.2% of total aerosol volume. The average refractive index (for λ = 440 nm) of the component mixture was of 1.42 - 0.013i. Interpretation of the soot component was disputable, since similarly high soot concentrations corresponded to the secondary particles in polluted atmosphere and the nucleation bursts in clean atmosphere. The sea-salt component showed a correlation with the aerosol residence time over sea. The water-soluble component and the additional "biomass haze" component represented partly the same aerosol volume in the diameter range of 0.18-1.8 μm. The surface UV irradiances modeled with the AERONET data and the fitted aerosol components were highly correlated with each other, but both model results underestimated the UV extinction by aerosol.

  6. Influence of Atmospheric Solar Radiation Absorption on Photodestruction of Ions at D-Region Altitudes of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-07-01

    The influence of atmospheric solar radiation absorption on the photodetachment, dissociative photodetachment, and photodissociation rate coefficients (photodestruction rate coefficients) of O-, Cl-, O2 -, O3 -, OH-, NO2 -, NO3 -, O4 -, OH-(H2O), CO3 -, CO4 -, ONOO-, HCO3 -, CO3 -(H2O), NO3 -(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2-4, NO+(N2), and NO+(CO2) at D-region altitudes of the ionosphere is studied. A numerical one-dimensional time-dependent neutral atmospheric composition model has been developed to estimate this influence. The model simulations are carried out for the geomagnetically quiet time period of 15 October 1998 at moderate solar activity over the Boulder ozonesonde. If the solar zenith angle is not more than 90° then the strongest influence of atmospheric solar radiation absorption on photodestruction of ions is found for photodissociation of CO4 - ions when CO3 - ions are formed. It follows from the calculations that decreases in the photodestruction rate coefficients of ions under consideration caused by this influence are less than 2 % at 70 km altitude and above this altitude if the solar zenith angle does not exceed 90°.

  7. Influence of Atmospheric Solar Radiation Absorption on Photodestruction of Ions at D-Region Altitudes of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-04-01

    The influence of atmospheric solar radiation absorption on the photodetachment, dissociative photodetachment, and photodissociation rate coefficients (photodestruction rate coefficients) of O-, Cl-, O2 -, O3 -, OH-, NO2 -, NO3 -, O4 -, OH-(H2O), CO3 -, CO4 -, ONOO-, HCO3 -, CO3 -(H2O), NO3 -(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2-4, NO+(N2), and NO+(CO2) at D-region altitudes of the ionosphere is studied. A numerical one-dimensional time-dependent neutral atmospheric composition model has been developed to estimate this influence. The model simulations are carried out for the geomagnetically quiet time period of 15 October 1998 at moderate solar activity over the Boulder ozonesonde. If the solar zenith angle is not more than 90° then the strongest influence of atmospheric solar radiation absorption on photodestruction of ions is found for photodissociation of CO4 - ions when CO3 - ions are formed. It follows from the calculations that decreases in the photodestruction rate coefficients of ions under consideration caused by this influence are less than 2 % at 70 km altitude and above this altitude if the solar zenith angle does not exceed 90°.

  8. Influence of Large-scale Climate Modes on Atmospheric Rivers That Drive Regional Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Guan, B.; Molotch, N. P.; Waliser, D. E.; Fetzer, E. J.; Neiman, P. J.

    2014-12-01

    Atmospheric rivers (ARs) are narrow channels of enhanced meridional water vapor transport between the tropics and extratropics that drive precipitation extremes in the west coast areas of North America and other continents. The influence of large-scale climate modes on ARs is analyzed in terms of modulation on AR frequency and AR-related snow water equivalent (SWE) anomalies, with a focus on understanding the causes of the anomalously snowy winter season of 2010/2011 in California's Sierra Nevada. Mean SWE on 1 April 2011 was ~70% above normal averaged over 100 snow sensors. AR occurrence was anomalously high during the season, with 20 AR dates from November to March and 14 dates in the month of December 2010, compared to the mean occurrence of 9 dates per season. Most of the season's ARs occurred during negative phases of the Arctic Oscillation (AO) and the Pacific-North American (PNA) teleconnection pattern. Analysis of all winter ARs in California during water years 1998-2011 indicates more ARs occur during the negative phase of AO and PNA, with the increase between positive and negative phases being ~90% for AO, and ~50% for PNA. The circulation pattern associated with concurrent negative phases of AO and PNA, characterized by cyclonic anomalies centered northwest of California, provides a favorable dynamical condition for ARs. The analysis suggests that the massive Sierra Nevada snowpack during the 2010/2011 winter season is primarily related to anomalously high frequency of ARs favored by the joint phasing of -AO and -PNA, and that a secondary contribution is from increased snow accumulation during these ARs favored by colder air temperatures associated with -AO, -PNA and La Niña. The results have implications for subseasonal-to-seasonal predictability of AR activities and related weather and water extremes.

  9. Influence of halophyte plantings in arid regions on local atmospheric structure

    NASA Astrophysics Data System (ADS)

    Pielke, R. A.; Lee, T. J.; Glenn, E. P.; Avissar, R.

    1993-06-01

    The practicality of modifying climate in arid regions through irrigation has up to now been constrained by the availability of fresh water with which to grow crops. The present results suggest a new paradigm: the use of salt water to grow halophyte crops and modify local climate along coastal deserts and other arid regions where saline water supplies are available.

  10. Possible influence of atmospheric circulations on winter hazy pollution in Beijing-Tianjin-Hebei region, northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhang, X.; Gong, D.; Kim, S.-J.; Mao, R.; Zhao, X.

    2015-08-01

    Using the daily records derived from the synoptic weather stations and the NCEP/NCAR and ERA-Interim reanalysis data, the variability of the winter hazy pollutions (indicated by the mean visibility and number of hazy days) in Beijing-Tianjin-Hebei (BTH) region during the period 1981 to 2015 and its relationship to the atmospheric circulations in middle-high latitude were analyzed in this study. The winter hazy pollution in BTH had distinct inter-annual and inter-decadal variabilities without a significant long-term trend. According to the spatial distribution of correlation coefficients, six atmospheric circulation indices (I1 to I6) were defined from the key areas in sea level pressure (SLP), zonal and meridional winds at 850 hPa (U850, V850), geopotential height field at 500 hPa (H500), zonal wind at 200 hPa (U200), and air temperature at 200 hPa (T200), respectively. All of the six indices have significant and stable correlations with the winter visibility and number of hazy days in BTH. Both the visibility and number of hazy days can be estimated well by using the six indices and fitting and the cross-validation with leave-N-out method, respectively. The high level of the prediction statistics and the reasonable mechanism suggested that the winter hazy pollutions in BTH can be forecasted or estimated credibly based on the optimized atmospheric circulation indices. However, we also noted that the statistic estimation models would be largely influenced by the artificial control of a pollutant discharge. Thus it is helpful for government decision-making departments to take actions in advance in dealing with probably severe hazy pollutions in BTH indicated by the atmospheric circulation conditions.

  11. Solar Terrestrial Influences on the D Region as Shown by the Level of Atmospheric Radio Noise

    NASA Technical Reports Server (NTRS)

    Satori, G.; Schaning, B.

    1984-01-01

    Measurements of the integrated atmospheric radio noise field strength at 27 kHz, used here, were made from 1965 to 1975 at Uppsala, Kuhlungsborn, and Prague-Panska Ves. The large scale meteorological situation was considered by comparing solar disturbed and undisturbed periods under similar weather situations. In order to show the effects of the precipitating high energy particle (HEP) flux and of the Forbush decrease on the noise level between pairs of stations were computed as deviations from the monthly median. Delta E (dB), day by day for all six periods was studied. The correlation coefficients for noon as well as for night values were computed. The correlation coefficients were compared with those for solar undisturbed periods.

  12. Processes for Identifying Regional Influences of and Responses to Increasing Atmospheric CO sub 2 and Climate Change --- The MINK Project

    SciTech Connect

    Easterling, W.E. III; McKenney, M.S.; Rosenberg, N.J.; Lemon, K.M.

    1991-08-01

    The second report of a series Processes for Identifying Regional Influences of and Responses to Increasing Atmospheric CO{sub 2} and Climate Change -- The MINK Project is composed of two parts. This Report (IIB) deals with agriculture at the level of farms and Major Land Resource Areas (MLRAs). The Erosion Productivity Impact Calculator (EPIC), a crop growth simulation model developed by scientists at the US Department of Agriculture, is used to study the impacts of the analog climate on yields of main crops in both the 1984/87 and the 2030 baselines. The results of this work with EPIC are the basis for the analysis of the climate change impacts on agriculture at the region-wide level undertaken in this report. Report IIA treats agriculture in MINK in terms of state and region-wide production and resource use for the main crops and animals in the baseline periods of 1984/87 and 2030. The effects of the analog climate on the industry at this level of aggregation are considered in both baseline periods. 41 refs., 40 figs., 46 tabs.

  13. Relative Influence of Trans-Pacific and Regional Atmospheric Transport of PAHs in the Pacific Northwest, U.S.

    PubMed

    Lafontaine, Scott; Schrlau, Jill; Butler, Jack; Jia, Yuling; Harper, Barbara; Harris, Stuart; Bramer, Lisa M; Waters, Katrina M; Harding, Anna; Simonich, Staci L Massey

    2015-12-01

    The relative influences of trans-Pacific and regional atmospheric transport on measured concentrations of polycyclic aromatic hydrocarbons (PAHs), PAH derivatives (nitro- (NPAH) and oxy-(OPAH)), organic carbon (OC), and particulate matter (PM) less than 2.5 μm in diameter (PM2.5) were investigated in the Pacific Northwest, U.S. in 2010-2011. Ambient high volume PM2.5 air samples were collected at two sites in the Pacific Northwest: (1.) Mount Bachelor Observatory (MBO) in the Oregon Cascade Range (2763 m above sea level (asl)) and 2.) Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the Columbia River Gorge (CRG) (954 m asl). At MBO, the 1,8-dinitropyrene concentration was significantly positively correlated with the time a sampled air mass spent over Asia, suggesting that this NPAH may be a good marker for trans-Pacific atmospheric transport. At CTUIR, NOx, CO2, and SO2 emissions from a 585 MW coal fired power plant, in Boardman OR, were found to be significantly positively correlated with PAH, OPAH, NPAH, OC, and PM2.5 concentrations. By comparing the Boardman Plant operational time frames when the plant was operating to when it was shut down, the plant was found to contribute a large percentage of the measured PAH (67%), NPAH (91%), OPAH (54%), PM2.5 (39%), and OC (38%) concentrations at CTUIR and the CRG prior to Spring 2011 and likely masked trans-Pacific atmospheric transport events to the CRG. Upgrades installed to the Boardman Plant in the spring of 2011 dramatically reduced the plant's contribution to PAH and OPAH concentrations (by ∼72% and ∼40%, respectively) at CTUIR and the CRG, but not NPAH, PM2.5 or OC concentrations. PMID:26151337

  14. Relative Influence of Trans-Pacific and Regional Atmospheric Transport of PAHs in the Pacific Northwest, U.S.

    PubMed Central

    2015-01-01

    The relative influences of trans-Pacific and regional atmospheric transport on measured concentrations of polycyclic aromatic hydrocarbons (PAHs), PAH derivatives (nitro- (NPAH) and oxy-(OPAH)), organic carbon (OC), and particulate matter (PM) less than 2.5 μm in diameter (PM2.5) were investigated in the Pacific Northwest, U.S. in 2010–2011. Ambient high volume PM2.5 air samples were collected at two sites in the Pacific Northwest: (1.) Mount Bachelor Observatory (MBO) in the Oregon Cascade Range (2763 m above sea level (asl)) and 2.) Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the Columbia River Gorge (CRG) (954 m asl). At MBO, the 1,8-dinitropyrene concentration was significantly positively correlated with the time a sampled air mass spent over Asia, suggesting that this NPAH may be a good marker for trans-Pacific atmospheric transport. At CTUIR, NOx, CO2, and SO2 emissions from a 585 MW coal fired power plant, in Boardman OR, were found to be significantly positively correlated with PAH, OPAH, NPAH, OC, and PM2.5 concentrations. By comparing the Boardman Plant operational time frames when the plant was operating to when it was shut down, the plant was found to contribute a large percentage of the measured PAH (67%), NPAH (91%), OPAH (54%), PM2.5 (39%), and OC (38%) concentrations at CTUIR and the CRG prior to Spring 2011 and likely masked trans-Pacific atmospheric transport events to the CRG. Upgrades installed to the Boardman Plant in the spring of 2011 dramatically reduced the plant’s contribution to PAH and OPAH concentrations (by ∼72% and ∼40%, respectively) at CTUIR and the CRG, but not NPAH, PM2.5 or OC concentrations. PMID:26151337

  15. The effect of regional-scale soil-moisture deficits on mesoscale atmospheric dynamics that influence fire severity

    SciTech Connect

    Fast, J.D.

    1994-09-30

    This study employs a three-dimensional, nonhydrostatic mesoscale model to evaluate the effects of horizontally heterogeneous soil moisture and vegetation type on the atmosphere during two periods in which wildland fires occurred. Numerical sensitivity simulations demonstrate that evapotranspiration significantly affects the boundary-layer structure embedded in the synoptic-scale circulations. In regions with sufficiently moist soils, evapotranspiration increases the humidity and modifies the diurnally varying temperature near the surface. Occasionally, changes in the humidity and temperature fields can also be seen a significant distance downwind of the moist soil regions. The perturbations in the temperature fields ultimately affect the wind speed and direction over or at the boundaries of the moist-soil regions, but only at certain times during the simulation period. The higher humidity also increases the cloudiness and changes the precipitation amounts, indicating that soil moisture and vegetation may play an important role in modifying the spatial distribution and intensity of precipitation. A lower atmospheric stability index, that is an indicator of the potential for wildland fire, is also calculated from the model results. This index is also sensitive to the horizontal distribution of soil moisture and vegetation, especially in regions with relatively moist soils. While only two periods are examined in this study, the impact of surface inhomogeneities in soil moisture and vegetation type on the atmosphere is expected to be highly dependent on the particular synoptic conditions and upon the distribution of soil moisture.

  16. The use of an atmospheric dispersion model to determine influence regions in the Prince George, B.C. airshed from the burning of open wood waste piles.

    PubMed

    Ainslie, B; Jackson, P L

    2009-06-01

    A means of determining air emission source regions adversely influencing the city of Prince George, British Columbia, Canada from potential burning of isolated piles of mountain pine beetle-killed lodge pole pine is presented. The analysis uses the CALPUFF atmospheric dispersion model to identify safe burning regions based on atmospheric stability and wind direction. Model results show that the location and extent of influence regions is sensitive to wind speed, wind direction, atmospheric stability and a threshold used to quantify excessive concentrations. A concentration threshold based on the Canada Wide PM(2.5) Standard is used to delineate the influence regions while Environment Canada's (EC) daily ventilation index (VI) is used to quantify local atmospheric stability. Results from the analysis, to be used by air quality meteorologists in assessing daily requests for burning permits, are presented as a series of maps delineating acceptable burning locations for sources placed at various distances from the city center and under different ventilation conditions. The results show that no burning should be allowed within 10 km of the city center; under poor ventilation conditions, no burning should be allowed within 20 km of the city center; under good ventilation conditions, burning can be allowed within 10-15 km of the city center; under good to fair ventilation conditions, burning can be allowed beyond 15 km of the city center; and if the wind direction can be reliably forecast, burning can be allowed between 5 and 10 km downwind of the city center under good ventilation conditions. PMID:19303193

  17. Possible influence of atmospheric circulations on winter haze pollution in the Beijing-Tianjin-Hebei region, northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhang, X.; Gong, D.; Kim, S.-J.; Mao, R.; Zhao, X.

    2016-01-01

    Using the daily records derived from the synoptic weather stations and the NCEP/NCAR and ERA-Interim reanalysis data, the variability of the winter haze pollution (indicated by the mean visibility and number of hazy days) in the Beijing-Tianjin-Hebei (BTH) region during the period 1981 to 2015 and its relationship with the atmospheric circulations at middle-high latitude were analyzed in this study. The winter haze pollution in BTH had distinct inter-annual and inter-decadal variabilities without a significant long-term trend. According to the spatial distribution of correlation coefficients, six atmospheric circulation indices (I1 to I6) were defined from the key areas in sea level pressure (SLP), zonal and meridional winds at 850 hPa (U850, V850), geopotential height field at 500 hPa (H500), zonal wind at 200 hPa (U200), and air temperature at 200 hPa (T200), respectively. All of the six indices have significant and stable correlations with the winter visibility and number of hazy days in BTH. In the raw (unfiltered) correlations, the correlation coefficients between the six indices and the winter visibility (number of hazy days) varied from 0.57 (0.47) to 0.76 (0.6) with an average of 0.65 (0.54); in the high-frequency ( < 10 years) correlations, the coefficients varied from 0.62 (0.58) to 0.8 (0.69) with an average of 0.69 (0.64). The six circulation indices together can explain 77.7 % (78.7 %) and 61.7 % (69.1 %) variances of the winter visibility and the number of hazy days in the year-to-year (inter-annual) variability, respectively. The increase in Ic (a comprehensive index derived from the six individual circulation indices) can cause a shallowing of the East Asian trough at the middle troposphere and a weakening of the Siberian high-pressure field at sea level, and is then accompanied by a reduction (increase) of horizontal advection and vertical convection (relative humidity) in the lowest troposphere and a reduced boundary layer height in BTH and its

  18. Regional Biases in Droplet Activation Parameterizations: Strong Influence on Aerosol Second Indirect Effect in the Community Atmosphere Model v5.

    NASA Astrophysics Data System (ADS)

    Morales, R.; Nenes, A.

    2014-12-01

    Aerosol-cloud interactions constitute one of the most uncertain aspects of anthropogenic climate change estimates. The magnitude of these interactions as represented in climate models strongly depends on the process of aerosol activation. This process is the most direct physical link between aerosols and cloud microphysical properties. Calculation of droplet number in GCMs requires the computation of new droplet formation (i.e., droplet activation), through physically based activation parameterizations. Considerable effort has been placed in ensuring that droplet activation parameterizations have a physically consistent response to changes in aerosol number concentration. However, recent analyses using an adjoint sensitivity approach showed that parameterizations can exhibit considerable biases in their response to other aerosol properties, such as aerosol modal diameter or to the aerosol chemical composition. This is a potentially important factor in estimating aerosol indirect effects since changes in aerosol properties from pre-industrial times to present day exhibit a very strong regional signature. In this work we use the Community Atmosphere Model (CAM5) to show that the regional imprint of the changes in aerosol properties during the last century interacts with the droplet activation parameterization in a way that these biases are amplified over climatically relevant regions. Two commonly used activation routines, the CAM5 default, Abdul-Razzak and Ghan parameterization, as well as the Fountoukis and Nenes parameterization are used in this study. We further explored the impacts of Nd parameterization biases in the first and second aerosol indirect effects separately, by performing simulations were droplet number was not allowed to intervene in the precipitation initiation process. The simulations performed show that an unphysical response to changes in the diameter of accumulation mode aerosol translates into extremely high Nd concentrations over South

  19. Atmospheric composition - Influence of biology

    NASA Technical Reports Server (NTRS)

    Mcelroy, M. B.

    1983-01-01

    The variability of atmospheric constituents influenced by biological organisms over various time scales is examined, together with the human contribution to atmospheric sulfur. The biogeochemistry of nitrogen is discussed, with an emphasis on N2O, NO, and microbially mediated reactions in soil and water. Carbon species are bound up mainly in sediments and the deep ocean, but human activities involving combustion may cause a doubling of the atmospheric levels of CO2 in the near future, which could produce a general low-level atmospheric warming. Longer term measurements are required to assess the effects of CH4 augmentation in the atmosphere through fuel combustion. Coal burning effectively doubles the amount of SO2 produced by natural sources, and reduces the pH of rainwater, thus posing hazards to fish, plankton, and mollusc life.

  20. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    SciTech Connect

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

  1. Influence of runoff, high frequency atmospheric forcing and model resolution on deep water mass formation regions and Atlantic Meridional Overturning Circulation, from a numerical model.

    NASA Astrophysics Data System (ADS)

    Garcia Quintana, Yarisbel; Courtois, Peggy; Hu, Xianmin; Pennelly, Clark; Myers, Paul G.

    2016-04-01

    Water mass formation regions act as windows to the deep ocean where surface waters are transformed to intermediate and deep waters. Within the North Atlantic, Labrador Sea Water (LSW) is convectively produced in the Labrador Sea while in the Nordic Seas the source waters for Denmark Strait Overflow Water (DSOW) and Iceland-Scotland Overflow Water (NEADW) are formed. They are the main components of the North Atlantic Deep Water (NADW) which forms the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). We explore the changes of the LSW formation rates and in AMOC strength as consequence of runoff glacial melt, high frequency atmospheric forcing influence and variations in model's resolution. We use 1/4° resolution Arctic and Northern Hemisphere Atlantic (ANHA4) configuration from the Nucleus for European Modelling of the Ocean (NEMO) model. A nest using ANHA4 and the Adaptive Grid Refinement in FORTRAN (AGRIF) package was used to increase the resolution to 1/12° in the sub-polar gyre. The formation rate is calculated based upon a kinematic subduction approach where the exchange through the dynamic mixed layer base is calculated based on shallowing and deepening in the mixed layer, and convergence of horizontal transport into or out of the mixed layer. Lastly we use a Lagrangian tool (Ariane) to track the path of the DSOW and the NEADW from their formation source.

  2. [Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing].

    PubMed

    Qiu, Yu-bao; Shi, Li-juan; Shi, Jian-cheng; Zhao, Shao-jie

    2016-02-01

    Passive microwave remote sensing offers its all-weather work capabilities, but atmospheric influences on satellite microwave brightness temperature were different under different atmospheric conditions and environments. In order to clarify atmospheric influences on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), atmospheric radiation were simulated based on AMSR-E configuration under clear sky and cloudy conditions, by using radiative transfer model and atmospheric conditions data. Results showed that atmospheric water vapor was the major factor for atmospheric radiation under clear sky condition. Atmospheric transmittances were almost above 0.98 at AMSR-E's low frequencies (< 18.7 GHz) and the microwave brightness temperature changes caused by atmosphere can be ignored in clear sky condition. Atmospheric transmittances at 36.5 and 89 GHz were 0.896 and 0.756 respectively. The effects of atmospheric water vapor needed to be corrected when using microwave high-frequency channels to inverse land surface parameters in clear sky condition. But under cloud cover or cloudy conditions, cloud liquid water was the key factor to cause atmospheric radiation. When sky was covered by typical stratus cloud, atmospheric transmittances at 10.7, 18.7 and 36.5 GHz were 0.942, 0.828 and 0.605 respectively. Comparing with the clear sky condition, the down-welling atmospheric radiation caused by cloud liquid water increased up to 75.365 K at 36.5 GHz. It showed that the atmospheric correction under different clouds covered condition was the primary work to improve the accuracy of land surface parameters inversion of passive microwave remote sensing. The results also provided the basis for microwave atmospheric correction algorithm development. Finally, the atmospheric sounding data was utilized to calculate the atmospheric transmittance of Hailaer Region, Inner Mongolia province, in July 2013. The results indicated that atmospheric transmittances were close to 1

  3. A Regional Modeling Study of the Influence of Urban Land Cover Change on the Lower Atmosphere in Baltimore-Washington DC

    NASA Astrophysics Data System (ADS)

    Adegoke, J.; Gallo, K.; Pielke, R.; Rozoff, C.; Steyaert, L.

    2001-12-01

    The land-use and land cover (LULC) history of the Baltimore-Washington region has been intensively studied through a variety of environmental research collaborations and regional partnerships. One such partnership, the Baltimore-Washington Regional Collaboratory, involved multiple Federal and local agencies cooperating on a 200-year urban growth study in the Chesapeake region. Information from this study on pre-1900 and current LULC conditions for the Baltimore-Washington DC area was integrated with data from other sources to construct different lower boundary conditions for a series of simulations using the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS). We use the RAMS simulations to diagnose the extent and nature of the effect of urban anomalies in surface heat, moisture, and momentum on mid-summer local and regional climate. The experimental design adopted for this study takes advantage of the grid-nesting capability of RAMS. A fine grid with 1km horizontal resolution was nested into a coarser 5 km grid, which extends from southern Pennsylvania, Maryland, to parts of Virginia, and West Virginia. Two sets of month-long simulations for July 2000 were conducted with RAMS running in parallel on a 26-processor cluster of computers at the Cooperative Institute for Research in the Atmosphere (CIRA), CSU. In the first set of simulations, we initially used satellite-derived current land cover data as the lower boundary condition in a 31-day RAMS run. We then replaced this data with the pre-1900 land cover data for the same region and ran a similar RAMS simulation. Identical observed meteorology was retained for the lateral boundary conditions in both cases. The model results for the initial run were validated with July 2000 surface climate data and flux measurements of sensible and latent heat from sites located within the fine grid model domain. Additional simulations were conducted to compare RAMS model performance using prescribed land

  4. Energetic particle influences in Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Harrison, R. Giles; Nicoll, Keri; Rycroft, Michael; Briggs, Aaron

    2016-04-01

    Energetic particles from outer space, known as galactic cosmic rays, constantly ionise the entire atmosphere. During strong solar storms, solar energetic particles can also reach the troposphere and enhance ionisation. Atmospheric ionisation generates cluster ions. These facilitate current flow in the global electric circuit, which arises from charge separation in thunderstorms driven by meteorological processes. Energetic particles, whether solar or galactic in origin, may influence the troposphere and stratosphere through a range of different mechanisms, each probably contributing a small amount. Some of the suggested processes potentially acting over a wide spatial area in the troposphere include enhanced scavenging of charged aerosol particles, modification of droplet or droplet-droplet behavior by charging, and the direct absorption of infra-red radiation by the bending and stretching of hydrogen bonds inside atmospheric cluster-ions. As well as reviewing the proposed mechanisms by which energetic particles modulate atmospheric properties, we will also discuss new instrumentation for measurement of energetic particles in the atmosphere.

  5. Processes for identifying regional influences of and responses to increasing atmospheric CO{sub 2} and climate change - the MINK project: An overview

    SciTech Connect

    Rosenberg, N.J.; Crosson, P.R.

    1991-08-01

    Scientists believe that a serious change in the climate of the earth could occur in the course of the next two to five decades as a result of warming caused by the rapid accumulation of radiatively active trace gases in the atmosphere. There is concern that not only the amount of warming but the rate at which it occurs could be unprecedented, at least since the current interglacial period began. Scientific uncertainties remain in our understanding of the climatic changes that may follow from greenhouse warming. Nevertheless, large and rapid changes in regional climate are conceivable. General circulation models (GCMs) predict changes for the central U.S. as large as an 8{degrees}C increase in mean summertime temperature accompanied by a 1 mm/day decrease in mean precipitation. Most predictions are less extreme but, so long as the direction of change is credible, efforts are warranted to identify just what kinds of impacts to expect if society chooses to allow climate to change or cannot stop it from changing, and just what might be done to adjust to those impacts.

  6. Exploring the influence of surface waves in the carbon dioxide transfer velocity between the ocean and atmosphere in the coastal region

    NASA Astrophysics Data System (ADS)

    Ocampo-Torres, Francisco Javier; Francisco Herrera, Carlos; Gutiérrez-Loza, Lucía; Osuna, Pedro

    2016-04-01

    Field measurements have been carried out in order to better understand the possible influence of ocean surface waves in the transfer of carbon dioxide between the ocean and atmosphere in the coastal zone. The CO2 fluxes are being analysed and results are shown in a contribution by Gutiérrez-Loza et al., in this session. Here we try to highlight the findings regarding the transfer velocity (kCO2) once we have incorporated direct measurements of carbon dioxide concentration in the water side. In this study direct measurements of CO2 fluxes were obtained with an eddy covariance tower located in the shoreline equipped with an infrared open-path gas analyzer (LI-7500, LI-COR) and a sonic anemometer (R3-100 Professional Anemometer, Gill Instruments), both at about 13 m above the mean sea level, and sampling at 20 Hz. For some period of time simultaneous information of waves was recorded with a sampling rate of 2 Hz using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) at 10 m depth and 350 m away from the tower. Besides, recently the concentration of CO2 in water has also been recorded making use of a SAMI-CO2 instrument. A subtle effect of the wave field is detected in the estimated kCO2. Looking into details of the surface currents being detected very near the air-sea interface through an ADPC, a certain association can be found with the gas transfer velocity. Furthermore, some of the possible effects of breaking wave induced turbulence in the coastal zone is to be addressed. This work represents a RugDiSMar Project (CONACYT 155793) contribution. The support from CB-2011-01-168173 CONACYT project is greatly acknowledged.

  7. Regional effect on urban atmospheric nucleation

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Németh, Zoltán; Kerminen, Veli-Matti; Aalto, Pasi; Nieminen, Tuomo; Weidinger, Tamás; Molnár, Ágnes; Imre, Kornélia; Kulmala, Markku

    2016-07-01

    Secondary aerosol particle production via new particle formation (NPF) has been shown to be a major contributor to the global aerosol load. NPF has also been observed frequently in urban environments. Here, we investigate the effect of regional NPF on urban aerosol load under well-defined atmospheric conditions. The Carpathian Basin, the largest orogenic basin in Europe, represents an excellent opportunity for exploring these interactions. Based on long-term observations, we revealed that NPF seen in a central large city of the basin (Budapest) and its regional background occur in a consistent and spatially coherent way as a result of a joint atmospheric phenomenon taking place on large horizontal scales. We found that NPF events at the urban site are usually delayed by > 1 h relative to the rural site or even inhibited above a critical condensational sink level. The urban processes require higher formation rates and growth rates to be realized, by mean factors of 2 and 1.6, respectively, than the regional events. Regional- and urban-type NPF events sometimes occur jointly with multiple onsets, while they often exhibit dynamic and timing properties which are different for these two event types.

  8. Direct and Indirect ENSO Influences on Regional Climate

    NASA Astrophysics Data System (ADS)

    Wu, Renguang

    2016-04-01

    El Niño-Southern Oscillation (ENSO) is one of the strongest signals in the tropics and imposes large influences on climate in many regions, such as the Indian summer monsoon, central American precipitation, and the South China Sea precipitation. ENSO affects regional climate variability both directly and indirectly. The direct influence is through concurrent atmospheric circulation response to anomalous heating associated with equatorial central and eastern Pacific SST anomalies. The indirect influence is by first inducing regional SST anomalies through the so-called "atmospheric bridge" and then atmospheric circulation response to the regional SST anomalies. Previous studies are either focused on the direct influence of ENSO via concurrent atmospheric change or the indirect influence of ENSO via regional SST anomalies. In this talk, the presenter will distinguish the direct and indirect influences of ENSO and demonstrate how the two types of influences may play together in leading to regional climate variability. Summer climate anomalies in three regions will be used for illustration: the Indian summer monsoon, central American summer precipitation, and the South China Sea summer precipitation.

  9. Tampa Bay Regional Atmospheric Chemistry Experiment: Overview

    NASA Astrophysics Data System (ADS)

    Atkeson, T. D.

    2003-12-01

    The Tampa Bay Estuary Program (TBEP) was formed in 1991 to assist in developing a comprehensive plan to restore and protect Tampa Bay in Florida, USA. An ecological indicator of the health of the Bay is the coverage of seagrasses, historically in decline, which are important to the aquatic habitat and food web of the bay. Seagrass decline is linked to excess of plant-stimulating forms of nitrogen to the bay, promoting algae growth, which shades out light needed to sustain seagrasses. One element of the TBEP is a private-local-state, multi-agency Nitrogen Management Consortium that seeks to limit nitrogen loading to the Bay to the 1992-1994 average. Present estimates suggest atmospheric deposition comprises ~ 30% of the nitrogen budget of the Bay. This estimate was based, however, on limited ambient monitoring data and simple models, typical of such national estuary program efforts nationwide. In the Bay Regional Atmospheric Chemistry Experiment Florida DEP joined with TBEP to increase the intensity, sophistication and spatial scope of monitoring and modeling and provide better information on air quality in the Tampa Bay area. The result will be improved estimates of the effects of local and regional emissions of oxides of nitrogen (NOx) on the Bay and the benefits to be gained from implementation of emissions reduction strategies.

  10. Atmospheric chemistry - Response to human influence

    NASA Technical Reports Server (NTRS)

    Logan, J. A.; Prather, M. J.; Wofsy, S. G.; Mcelroy, M. B.

    1978-01-01

    Global atmospheric chemistry is surveyed, and the agreement of models with observed distribution of gases is considered. The influence of human perturbations due to combustion, agriculture, and chloro-carbon releases is examined with emphasis on ozone. Effects of combustion-related releases of CO on the abundances of other gases as well as possible effects of CO on tropospheric ozone are discussed. Other topics include the contribution of the chlorocarbon industry to stratospheric chloride and the recombination of nitrogen fixed by agriculture and combustion.

  11. Influence of CO on Titan atmospheric reactivity

    NASA Astrophysics Data System (ADS)

    Fleury, B.; Carrasco, N.; Gautier, T.; Mahjoub, A.; He, J.; Szopa, C.; Hadamcik, E.; Buch, A.; Cernogora, G.

    2014-08-01

    The atmosphere of Titan is mainly composed of N2 and CH4 which are the source of various CxHyNz photochemical volatiles products. Laboratory simulations of the Titan’s atmospheric reactivity were mainly interested in the study of the complex organic chemistry which leads to the formation of analogues of Titan’s aerosols, called tholins. These studies were mainly interested in the reactivity of the N2/CH4 gaseous mixture and with the primary products of reactions without oxygen. However, the atmosphere of Titan also contains oxygenated volatile species. The most abundant one to have been detected is CO with a concentration about 50 ppmv. The work presented here is an experimental simulation devoted to estimate the influence of CO on the Titan’s atmospheric reactivity. With this aim, CO is introduced in a standard N2/CH4 mixture at different mixing ratio up to 4.5%. The kinetics of the methane consumption is monitored with in situ mass spectrometry and the compositions of the gaseous phase and tholins produced in the reactor are characterized ex situ with GC-MS and elemental analysis. This work shows that CO modifies the composition of the gas phase with the detection of oxygenated compounds: CO2 and N2O. The presence of CO also drastically decreases the production rate of tholins, involving also a perturbation on the methane kinetics. Tholins are produced in lower global amounts, but their sizes are found to be significantly larger than without CO. The oxygen incorporation in tholins is found to be efficient, with an oxygen content of the same order of magnitude as the amount of CO in the initial gas mixture.

  12. Lunar influence on equatorial atmospheric angular momentum

    NASA Astrophysics Data System (ADS)

    Bizouard, Christian; Zotov, Leonid; Sidorenkov, Nikolay

    2014-11-01

    This study investigates the relationship between the equatorial atmospheric angular momentum oscillation in the nonrotating frame and the quasi-diurnal lunar tidal potential. Between 2 and 30 days, the corresponding equatorial component, called Celestial Atmospheric Angular Momentum (CEAM), is mostly constituted of prograde circular motions, especially of a harmonic at 13.66 days, a sidelobe at 13.63 days, and of a weekly broadband variation. A simple equilibrium tide model explains the 13.66 day pressure term as a result of the O1 lunar tide. The powerful episodic fluctuations between 5 and 8 days possibly reflect an atmospheric normal mode excited by the tidal waves Q1 (6.86 days) and σ1 (7.095 days). The lunar tidal influence on the spectral band from 2 to 30 days is confirmed by two specific features, not occurring for seasonal band dominated by the solar thermal effect. First, Northern and Southern Hemispheres contribute equally and synchronously to the CEAM wind term. Second, the pressure and wind terms are proportional, which follows from angular momentum budget considerations where the topographic and friction torques on the solid Earth are much smaller than the one resulting from the equatorial bulge. Such a configuration is expected for the case of tidally induced circulation, where the surface pressure variation is tesseral and cannot contribute to the topographic torque, and tidal winds blow only at high altitudes. The likely effects of the lunar-driven atmospheric circulation on Earth's nutation are estimated and discussed in light of the present-day capabilities of space geodetic techniques.

  13. Influence of Cenozoic Plateau Growth on Precipitation and Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Insel, N.; Poulsen, C. J.; Rowley, D. B.

    2011-12-01

    Large mountain ranges exhibit a first-order control on climate, but it is unclear how climate may have changed over time as topography developed. In this work we use global and regional general circulation models (Genesis3.0, RegCM4) to evaluate dynamical and physical atmospheric changes associated with variations in the Andean and Himalayan topography during the Cenozoic. Our model results show that orogenic plateaus play a critical role in the evolution of climate by affecting atmospheric circulation and precipitation patterns. The influence of high topography on regional climate is not purely mechanical through orographic lifting, but also due to modifications of dynamical processes. The uplift of the Andes and Himalaya influence atmospheric flow in the following ways: (1) Orogens act as a barrier to atmospheric flow, thereby changing low-level (800 mbar) wind patterns by causing a reversal and/or significant strengthening of the prevailing winds. The establishment and strength of low-level jets is directly related to mountain elevations. (2) In contrast, monsoonal circulations form without the existence of a plateau, but are modified by high topography through thermal and mechanical effects (e.g. sensible or latent heating, orographic blocking). (3) An increase in the surface pressure gradient between high mountain ranges and the foreland enhances convergence of low-level flow and draws in moisture from adjacent regions. The increase in moisture transport provides the latent heat required to drive convective updrafts and enhances convection and precipitation along the windward flanks of high topography. (4) Regional atmospheric circulation similar to modern are established and amplify as the mountains rise to ~50-75% of their modern elevation. Our model results are largely consistent with proxy evidence of regional climate change, and have implications for the timing and rate of surface plateau uplift. Most importantly, simulated changes in paleoclimate alter

  14. New atmospheric composition observations in the Karakorum region: Influence of local emissions and large-scale circulation during a summer field campaign

    NASA Astrophysics Data System (ADS)

    Putero, D.; Cristofanelli, P.; Laj, P.; Marinoni, A.; Villani, P.; Broquet, A.; Alborghetti, M.; Bonafè, U.; Calzolari, F.; Duchi, R.; Landi, T. C.; Verza, G. P.; Vuillermoz, E.; Bonasoni, P.

    2014-11-01

    In this work we provide an overview of short lived climate forcers (SLCFs) and carbon dioxide variability in the Karakorum, by presenting results deriving from a field campaign carried out at Askole (3015 m a.s.l., Pakistan Northern Areas), by Baltoro glacier. By using an innovative embedded and transportable system, continuous measurements of aerosol particle number concentration (Np, 1571 ± 2670 cm-3), surface ozone (O3, 31.7 ± 10.4 nmol/mol), carbon dioxide (CO2, 394.3 ± 6.9 μmol/mol) and meteorological parameters have been performed from August 20th to November 10th 2012. The domestic combustion from the Askole village emerged as a possible systematic source of contamination in the valley, with short-lasting pollution events probably related to domestic cooking activities characterized by high values of Np (6066 ± 5903 cm-3). By excluding these local contamination events, mountain thermal wind regime dominated the diurnal variability of Np, O3 and CO2. In comparison to night-time, we observed higher Np (+354 cm-3) and O3 (+7 nmol/mol) but lower CO2 (-8 μmol/mol) in air-masses coming from the lower valley during the central part of the day. Part of the day-to-day atmospheric composition variability can be also ascribed to synoptic circulation variability, as observed by using HYSPLIT 5-day back-trajectories.

  15. Influence of atmospheric forcing parameters on land surface simulation

    NASA Astrophysics Data System (ADS)

    Nayak, H. P.; Mandal, M.; Bhattacharya, A.

    2015-12-01

    The quality of atmospheric forcing plays important role on land surface simulation using decoupled land surface modeling system. In the present study, the influence of the various atmospheric forcing parameters on land surface simulation is assessed through sensitivity experiments. Numerical experiments are conducted towards preparation of land surface analysis for the period Jan-2011 - Dec-2013 using offline 2D-Noah land surface model (LSM) based land data assimilation system (LDAS) over Indian region (5 - 39N, 60 - 100E) hereafter referred as LDASI. The surface temperature, specific humidity, horizontal winds and pressure as atmospheric forcing parameters are derived from Modern-Era Retrospective Analysis for Research and Applications (MERRA). The downward (solar and thermal) radiation and precipitation is obtained from European Centre for Medium Range Forecast (ECMWF) and Tropical Rainfall Measuring Mission (TRMM) respectively. The sensitivity experiments are conducted by introducing perturbation in one atmospheric forcing parameter at a time keeping the other parameters unchanged. Influence of temperature, specific humidity, downward (shortwave and long wave) radiation, rain-rate and wind speed is investigated by conducted 13 numerical experiments. It is observed that the land surface analysis from LDASI is most sensitive to the downward longwave radiation and least sensitive to wind speed. The analysis is also substantially influenced by the surface air temperature. The annual mean soil moisture at 5 cm is decreased by 12-15% if the downward long-wave radiation is increased by 20% and it is increased by 15% if the downward long-wave radiation is decreased by 20%. The influence is even more in the Himalayan region but the increase in long-wave radiation leads to increase in soil moisture and similar influence on decrease because downward long-wave radiation leads glacier melting. The annual mean soil temperature in the analysis is increased by 2.2 K if surface

  16. Energetic Particle Influence on the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Mironova, Irina A.; Aplin, Karen L.; Arnold, Frank; Bazilevskaya, Galina A.; Harrison, R. Giles; Krivolutsky, Alexei A.; Nicoll, Keri A.; Rozanov, Eugene V.; Turunen, Esa; Usoskin, Ilya G.

    2015-11-01

    This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth's atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere.

  17. Region effects influence local tree species diversity

    PubMed Central

    Ricklefs, Robert E.; He, Fangliang

    2016-01-01

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species. PMID:26733680

  18. Region effects influence local tree species diversity.

    PubMed

    Ricklefs, Robert E; He, Fangliang

    2016-01-19

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species. PMID:26733680

  19. Data on atmospheric transmission in the IR spectral region

    NASA Technical Reports Server (NTRS)

    Paramonova, N. N.; Kazakova, K. V.; Brounshteyn, A. M.

    1979-01-01

    The weakening of radiation by the atmosphere in the infrared region of the spectrum was studied. The instrument used for the measurements was the IKAU-1 infrared atmospheric unit, and measurements were carried out both on an inclined path and a near-earth horizontal path.

  20. Topographic Influence and Atmospheric Dynamics in the Indian Wells Valley

    NASA Astrophysics Data System (ADS)

    Uher, Erich J.

    Indian Wells Valley (IWV) is home to the China Lake Naval Air Weapons Station (NAWS) whose operations necessitate regional forecasting and weather analysis relevant to aviation and plume release scenarios. In order to better understand the terrain influenced mesoscale circulations in the varied complex terrain of Indian Wells Valley surrounding Ridgecrest, four seasonal WRF simulations were analyzed using linear shallow water theory and nonlinear theory for flows over two-dimensional mountains. The goal is to better understand the relationships between atmospheric dynamical processes and the wind/thermal structure of the mesoscale at Indian Wells Valley. This will involve exploring relationships linking theoretical meteorology in complex terrain and advanced high resolution atmospheric modeling in this region. The WRF simulation results show several distinct circulations which rely on the interaction between complex terrain and the background weather conditions: 1) In calm synoptic conditions, diurnal processes guide the evolution of boundary layer stability and slope flows. 2) In periods of greatest seasonal surface heating (i.e. summer), the pressure gradient across the Sierra Nevada drives near surface westerlies across IWV. 3) In conditions with strong synoptic scale increase in stability and meridional winds across the Sierra Nevada, a downslope windstorm can develop in IWV. The downslope winds and compensatory gravity wave activity over IWV will conclude once there is a significant change in conditions aloft, or an increase in convective instability at the surface of IWV which prevents air aloft from sinking towards the surface. These results provide a better understanding of the mesoscale meteorology in this region and improve forecast and analysis for plume transport and aviation needs while also laying the groundwork for future projects managing environmental concerns in this region.

  1. Influence of solar activity on Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The influx of solar energy to different latitudes while Jupiter's orbital motion around the Sun varies significantly. This leads to a change in the optical and physical characteristics of its atmosphere. Analysis of the data for 1850-1991 on determination of the integral magnitude Mj Jupiter in the V filter, and a comparison with the changes of the Wolf numbers W, characterizing the variations of solar activity (SA) - showed that the change of Mj in maxima of the SA - has minima for odd, and maximums - for the even of SA cycles. That is, changing of the Jupiter brightness in visible light is much evident 22.3-year magnetic cycle, and not just about the 11.1-year cycle of solar activity. Analysis of the obtained in 1960-2015 data on the relative distribution of brightness along the central meridian of Jupiter, for which we calculated the ratio of the brightness Aj of northern to the southern part of the tropical and temperate latitudinal zones, allowed to approximate the change of Aj by sinusoid with a period of 11.91±0.07 earth years. Comparison of time variation of Aj from changes in the index of SA R, and the movement of the planet in its orbit - indicates the delay of response of the visible cloud layer in the atmosphere of the Sun's exposure mode for 6 years. This value coincides with the radiative relaxation of the hydrogen-helium atmosphere

  2. Atmospheric influence on volcano-acoustic signals

    NASA Astrophysics Data System (ADS)

    Matoza, Robin; de Groot-Hedlin, Catherine; Hedlin, Michael; Fee, David; Garcés, Milton; Le Pichon, Alexis

    2010-05-01

    Volcanoes are natural sources of infrasound, useful for studying infrasonic propagation in the atmosphere. Large, explosive volcanic eruptions typically produce signals that can be recorded at ranges of hundreds of kilometers propagating in atmospheric waveguides. In addition, sustained volcanic eruptions can produce smaller-amplitude repetitive signals recordable at >10 km range. These include repetitive impulsive signals and continuous tremor signals. The source functions of these signals can remain relatively invariant over timescales of weeks to months. Observed signal fluctuations from such persistent sources at an infrasound recording station may therefore be attributed to dynamic atmospheric propagation effects. We present examples of repetitive and sustained volcano infrasound sources at Mount St. Helens, Washington and Kilauea Volcano, Hawaii, USA. The data recorded at >10 km range show evidence of propagation effects induced by tropospheric variability at the mesoscale and microscale. Ray tracing and finite-difference simulations of the infrasound propagation produce qualitatively consistent results. However, the finite-difference simulations indicate that low-frequency effects such as diffraction, and scattering from topography may be important factors for infrasonic propagation at this scale.

  3. Regional climatic effects of atmospheric SO2 on Mars

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Fanale, F. P.

    1992-01-01

    The conditions under which the valley networks on Mars may have formed remains controversial. The magnitude of an atmospheric greenhouse effect by an early massive CO2 atmosphere has recently been questioned by Kasting. Recent calculations indicate that if solar luminosity were less than about 86 percent of its current value, formation of CO2 clouds in the Martian atmosphere would depress the atmospheric lapse rate and reduce the magnitude of surface warming. In light of recent revisions of magma generation on Mars during each Martian epoch, and the suggestions by Wanke et al. that the role of liquid SO2 should be more carefully explored, we have recalculated the potential greenhouse warming by atmospheric SO2 on Mars, with an emphasis on more localized effects. In the vicinity of an active eruption, the concentration of atmospheric SO2 will be higher than if it is assumed that the erupted SO2 is instantaneously globally distributed. The local steady-state concentration of SO2 is a function of the rate at which it is released, its atmospheric lifetime, and the rate at which local winds act to disperse the SO2. We have made estimates of eruption rates, length of eruption, and dispersion rates of volcanically released SO2, for a variety of atmospheric conditions and atmospheric lifetimes of SO2 to explore the maximum regional climatic effect of SO2.

  4. Atmospheric modes influence on Iberian Poleward Current variability

    NASA Astrophysics Data System (ADS)

    deCastro, M.; Gómez-Gesteira, M.; Álvarez, I.; Crespo, A. J. C.

    2011-04-01

    The inter-annual variability of the Iberian Poleward Current (IPC) along the northwestern coast of the Iberian Peninsula (IP) (40-43°N) and its intrusion in the Cantabrian Sea (Navidad, 6-8°W) were analyzed in terms of the atmospheric forcing. The January Sea Surface Temperature (J SST) was obtained from the advanced very high resolution radiometer (AVHRR) NOAA satellite from 1985 to 2006. It is a well documented fact that the existence of a tongue of water warmer than the surrounding ones (IPC) which circulates along the western Iberian shelf edge, turn eastward around Cape Finisterre, and enters in the Cantabrian Sea generating Navidad at the beginning of every winter. However, in the present study it has been highlighted that there are several years (1986, 1987, 1992, 1997, 1999, 2004 and 2005) during which water from coast to the adjacent shelf is much colder than the oceanic one remarking a weak or inexistent IPC during these Januaries. In addition, the dependence of SST on the most representative regional patterns with some influence upon the eastern North Atlantic region was analyzed by means of correlations between November-December atmospheric modes and J SST. The considered modes were: North Atlantic Oscillation pattern (NAO), Eastern Atlantic pattern (EA), Eastern Atlantic Western Russia pattern (EA/WR), Polar/Eurasia pattern (POL) and Scandinavia pattern (SCA). This analysis reveals that two atmospheric patterns (N-D NAO and N-D EA/WR) are responsible of the main variability of the J SST of the western and northern IP. J SST is negatively correlated with N-D NAO and positively correlated with N-D EA/WR. Multivariate analysis involving both modes provides correlation coefficients on the order of 0.7 on both coasts (western and northern). The influence of both modes on J SST was observed to be on the same order of magnitude but with different sign. These correlations were physically interpreted by means of an analysis of extreme events and Sea Level

  5. Sensitivity of Air-sea Exchange In A Regional Scale Coupled Ice/ocean/atmosphere Model

    NASA Astrophysics Data System (ADS)

    Schrum, C.; Hübner, U.; Jacob, D.; Podzun, R.

    The sub-systems ice, ocean and atmosphere are coupled on the global as well as the regional scale. However, regional coupled modeling is only in the beginning, full cou- pled models which are able to describe the interaction on the regional scale and the feedback mechanism are rare at the moment. For the North Sea and the Baltic Sea such a coupled model has been developed and exemplary integrated over a full seasonal cy- cle. By comparison of different regionalization studies the impact of the regional at- mospheric modeling and coupling on the air sea fluxes have been investigated. It was shown that the regionalization as well as the coupling show strong influence on the air/sea fluxes and thus on the oceanic conditions. Further problems in regional mod- eling like the description of storm track variability and its influence on the regional ocean model were identified.

  6. INFLUENCE OF AGRICULTURAL PRACTICES ON MICROMETEOROLOGICAL SPATIAL VARIATIONS AT THE LOCAL AND REGIONAL SCALES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil - vegetation - atmosphere transfers significantly influence interactions and feedbacks between vegetation and boundary layer, in relation with plant phenology and water status. The current study focused on linking micrometeorological conditions to cultural practices at the local and regional sc...

  7. Influence of Agricultural Practices on Micrometerological Spatial Variations at Local and Regional Scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-vegetation-atmosphere transfers significantly influence interactions and feedbacks between vegetation and boundary layer in relation with plant phenology and water status. The current study focused on linking micrometeorological conditions to cultural practices at the local and regional scales ...

  8. Io's surface - Its phase composition and influence on Io's atmosphere and Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Fanale, F. P.; Banerdt, W. B.; Elson, L. S.; Johnson, T. V.; Zurek, R. W.

    The evidence and interpretations pertaining to the surface phase composition of Io and the mechanisms by which Io's surface influences its atmosphere are discussed. The mechanism by which Io's surface and/or atmosphere supplies neutral and ionic species to the region around the satellite and ultimately to the Jovian magnetosphere is also discussed. A model is suggested in which the global SO2 gas abundance is primarily controlled by buffering in the brightest, coldest regions. The net SO2 flux across the disk is limited by regional cold trapping on high albedo regions and possibly by the resistance of a tenuous non-SO2 residual atmosphere. The continuing migration of SO2 toward cooler regions and those lacking SO2 sources is opposed by SO2 destruction and planetary ejection processes, including sputtering, thus preventing buildup of thick, ubiquitous SO2 coverage.

  9. Influences of Atmospheric Stability State on Wind Turbine Aerodynamic Loadings

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Ganesh; Lavely, Adam; Brasseur, James; Paterson, Eric; Kinzel, Michael

    2011-11-01

    Wind turbine power and loadings are influenced by the structure of atmospheric turbulence and thus on the stability state of the atmosphere. Statistical differences in loadings with atmospheric stability could impact controls, blade design, etc. Large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layer (NBL, MCBL) are used as inflow to the NREL FAST advanced blade-element momentum theory code to predict wind turbine rotor power, sectional lift and drag, blade bending moments and shaft torque. Using horizontal homogeneity, we combine time and ensemble averages to obtain converged statistics equivalent to ``infinite'' time averages over a single turbine. The MCBL required longer effective time periods to obtain converged statistics than the NBL. Variances and correlation coefficients among wind velocities, turbine power and blade loadings were higher in the MCBL than the NBL. We conclude that the stability state of the ABL strongly influences wind turbine performance. Supported by NSF and DOE.

  10. Atmospheric and Climate Aspects of Russian Regions Sustainability

    NASA Astrophysics Data System (ADS)

    Golitsyn, G. S.; Dubovsky, S. V.; Ginzburg, A. S.; Mokhov, I. I.; Khomyakov, P. M.

    Russia is one of the first countries created the national program of sustainable devel- opment. The Presidential Decree SOn the national strategy of the Russian Federation & cedil;in the environment protection and sustainable developmentT was issued by in 1994. Atmospheric and climate aspects play very important roles in the sustainable devel- opment at the regional level in Russia as well as at national one. Last year Russian Academy of Sciences in collaboration with some leaders of the local Russian au- thorities started the Project SSustainable development of Russia and its regionsT. In & cedil; this project the problems of Russian socio-economical development are considered together with regional atmospheric and climate changes, environmental and natural resources, population, urbanization, energetic and new technology development, and so on. The main problems of Russian regions socio-economical development related to global and local climate changes, environmental and natural resources, urbanization will be discussed.

  11. Identifying human influences on atmospheric temperature

    PubMed Central

    Santer, Benjamin D.; Painter, Jeffrey F.; Mears, Carl A.; Doutriaux, Charles; Caldwell, Peter; Arblaster, Julie M.; Cameron-Smith, Philip J.; Gillett, Nathan P.; Gleckler, Peter J.; Lanzante, John; Perlwitz, Judith; Solomon, Susan; Stott, Peter A.; Taylor, Karl E.; Terray, Laurent; Thorne, Peter W.; Wehner, Michael F.; Wentz, Frank J.; Wigley, Tom M. L.; Wilcox, Laura J.; Zou, Cheng-Zhi

    2013-01-01

    We perform a multimodel detection and attribution study with climate model simulation output and satellite-based measurements of tropospheric and stratospheric temperature change. We use simulation output from 20 climate models participating in phase 5 of the Coupled Model Intercomparison Project. This multimodel archive provides estimates of the signal pattern in response to combined anthropogenic and natural external forcing (the fingerprint) and the noise of internally generated variability. Using these estimates, we calculate signal-to-noise (S/N) ratios to quantify the strength of the fingerprint in the observations relative to fingerprint strength in natural climate noise. For changes in lower stratospheric temperature between 1979 and 2011, S/N ratios vary from 26 to 36, depending on the choice of observational dataset. In the lower troposphere, the fingerprint strength in observations is smaller, but S/N ratios are still significant at the 1% level or better, and range from three to eight. We find no evidence that these ratios are spuriously inflated by model variability errors. After removing all global mean signals, model fingerprints remain identifiable in 70% of the tests involving tropospheric temperature changes. Despite such agreement in the large-scale features of model and observed geographical patterns of atmospheric temperature change, most models do not replicate the size of the observed changes. On average, the models analyzed underestimate the observed cooling of the lower stratosphere and overestimate the warming of the troposphere. Although the precise causes of such differences are unclear, model biases in lower stratospheric temperature trends are likely to be reduced by more realistic treatment of stratospheric ozone depletion and volcanic aerosol forcing. PMID:23197824

  12. Application of the Regional Atmospheric Modeling System to the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Rafkin, Scot C. R.

    1998-01-01

    The core dynamics of the Regional Atmospheric Modeling System (RAMS), a widely used and powerful mesoscale Earth model, is adapted to the Martian Atmosphere and applied in the study of aeolian surface features. In particular, research efforts focused on the substitution of Martian planetary and atmospheric properties such as rotation rate, and thermodynamic constants in place of hard-wired Earth properties. Application of the model was restricted to three-dimensional flow impinging upon impact craters, and the search for plausible wind patterns that could produce the so-called light and dark streaks downwind of topographic barriers.

  13. Investigating causes of regional variations in atmospheric carbon dioxide concentrations

    NASA Astrophysics Data System (ADS)

    Corbin, Katherine D.

    Atmospheric CO2 concentrations are rapidly increasing due to anthropogenic activities; however, only about half of the emissions have accumulated in the atmosphere, and the fate of the remaining half remains uncertain. Since atmospheric CO2 concentrations contain information regarding carbon sources and sinks, it is important to understand CO 2 variability. This study investigated causes of atmospheric CO 2 variability, focusing on the relationship between CO2 concentrations and clouds, the impact of heterogeneous land cover and agricultural production, and the effect of redistributing fossil fuel emissions. Due to global coverage and sheer data volume, satellite CO2 concentrations will be used in inverse models to improve carbon source and sink estimates. Satellite concentrations will only retrieve CO2 measurements in clear conditions, and it is important to understand how CO 2 concentrations vary with cloud cover in order to optimally utilize these data. This study evaluated differences between clear-sky and mean concentrations on local, regional, and global scales. Analyses of in situ data, regional model simulations, and global model output all revealed clear-sky differences that were regionally coherent on sub-continental scales and that varied both with time and location. In the mid-latitudes, clear-sky CO2 concentrations were systematically lower than on average, and these differences were not due to biology, but rather to frontal convergence of large-scale gradients that were covered by clouds. Instead of using satellite data to represent temporal averages, inverse models and data assimilation systems that use satellite data to calculate carbon sources and sinks must be sampled consistently with the observations, including precise modeling of winds, clouds, fronts, and frontal timing. Just as CO2 concentrations vary with cloud cover, variability in atmospheric CO2 concentrations is also caused by heterogeneity in land cover and surface fluxes. This study

  14. Influence of atmospheric aerosols and desert reflectance properties on satellite radiance measurements

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.; Davis, R. E.

    1992-01-01

    The influence of surface bidirectional reflectance factors, including shadowing, and of atmospheric aerosol variability are modeled for their effects on the remote sensing of desert targets from space in the 0.7-micron region at high spatial resolution. The white sand reflectance data of Salomonson (1968) are used as the basis for the simulation. The effects of the surface bi-directional reflectance and atmospheric aerosol on the nadir-normalized reflectance measured at the satellite are discussed individually and jointly. The net influence of these two factors is shown to depend on the magnitude of other parameters, such as the surface reflectance and solar zenith angle.

  15. Geomagnetic Activity Influence on Thermobaric Characteristics of the Atmosphere.

    NASA Astrophysics Data System (ADS)

    Rubtsova, O. A.; Zherebtsov, G. A.; Kovalenko, V. A.; Molodykh, S. I.

    2009-10-01

    The main points of the model of the solar activity effect on the Earth climatic system are presented. The model is based on the physical mechanism of heliogeophysical factors influence on climatic characteristics and atmospheric circulation in the high-latitude troposphere through the atmospheric electricity. In accordance with this mechanism, the atmospheric electricity parameters in the high latitudes depend on the solar activity; at the same time, they influence the altitude distribution of charged condensation nuclei in the troposphere, as well as the cloudiness formation and radiation balance. The mechanism is proved to operate more efficiently in the high latitudes resulting in additional cloudiness formation in areas with adequate vapour concentration. We present complex analysis results of response of temperature and tropospheric pressure fields to different heliogeophysical disturbances. It is detected that regular changes of the temperature and pressure field dynamic accompany these disturbances.

  16. Fire Influences on Atmospheric Composition, Air Quality, and Climate

    NASA Technical Reports Server (NTRS)

    Voulgarakis, Apostolos; Field, Robert D.

    2015-01-01

    Fires impact atmospheric composition through their emissions, which range from long-lived gases to short-lived gases and aerosols. Effects are typically larger in the tropics and boreal regions but can also be substantial in highly populated areas in the northern mid-latitudes. In all regions, fire can impact air quality and health. Similarly, its effect on large-scale atmospheric processes, including regional and global atmospheric chemistry and climate forcing, can be substantial, but this remains largely unexplored. The impacts are primarily realised in the boundary layer and lower free troposphere but can also be noticeable in upper troposphere/lower stratosphere (UT/LS) region, for the most intense fires. In this review, we summarise the recent literature on findings related to fire impact on atmospheric composition, air quality and climate. We explore both observational and modelling approaches and present information on key regions and on the globe as a whole. We also discuss the current and future directions in this area of research, focusing on the major advances in emission estimates, the emerging efforts to include fire as a component in Earth system modelling and the use of modelling to assess health impacts of fire emissions.

  17. Improving SLCF Science in the Himalayan Region: ICIMOD's Atmosphere Initiative

    NASA Astrophysics Data System (ADS)

    Panday, A. K.; Pradhan, B. B.; Surapipith, V.

    2013-12-01

    What fraction of the black carbon arriving on Yala Glacier in Langtang, Nepal, is from cooking fires in the houses in the valley below? What fraction is from elsewhere in rural Nepal? What fraction is from industrial and transport sources in Kathmandu? What fraction is from northern India and beyond? What fraction is from the high altitude forest fires that take place during March or April? Effectively mitigating the impacts of black carbon and other short-lived climate forcers requires detailed understanding not just of emissions and impacts, but also of the atmospheric transport pathways that connect the two. In mountainous areas of the Hindu-Kush Himalaya detailed quantitative knowledge about emissions, atmospheric processes, and impacts is still largely missing. The International Centre for Integrated Mountain Development (ICIMOD) is an intergovernmental organization covering Afghanistan, Pakistan, India, Nepal, China, Bhutan, Bangladesh, and Myanmar. ICIMOD's recently established Atmosphere Initiative not only assesses mitigation options and contributes to policy and capacity building in the region, but also works actively to promote collaboration among researchers in the region, while building up an in-house team whose research will address key questions about SLCF. In Spring 2013 ICIMOD's Atmosphere Initiative, in collaboration with the Institute for Advanced Sustainability Studies (IASS) in Potsdam, Germany, carried out the largest field campaign to date in Nepal, hosting instruments belonging to dozens of institutions around the world, at nine field site within and upwind of the Kathmandu Valley, Nepal. The dataset that has been collected gives unprecedented insights into the emissions and atmospheric processes taking place downwind of and within the largest urban agglomeration in the Himalaya region. Meanwhile, in collaboration with national partner institutions, ICIMOD is in the process of setting up one atmospheric observatory each in Bhutan and in

  18. The Role of Precipitating Energetic Particles in Coupling Atmospheric Regions

    NASA Astrophysics Data System (ADS)

    Bailey, S. M.; Randall, C. E.; Solomon, S. C.; Yee, S.; Kozyra, J. U.; Baker, D. N.

    2010-12-01

    A key missing element in our understanding of the Sun-Earth system is the response of the atmosphere when precipitating particle energy is redistributed via dynamical, chemical, and radiative processes. Elucidating the coupling intrinsic to this response is a prerequisite for understanding and predicting variability in and across many atmospheric regions. A priority for future observations is the Energetic Particle Precipitation (EPP) Indirect Effect (IE), by which odd nitrogen compounds produced by EPP in the upper atmosphere descend to the stratosphere, perturbing ozone chemistry and thus the radiative balance of the middle atmosphere. It has been shown that EPP IE occurs nearly every year in both hemispheres, and is modulated by variability in both the EPP and atmospheric meteorology. In this talk, we will summarize the current state of knowledge of EPP IE, the observational evidence for it in the last few decades, and what is required of future observations. We will discuss the advantages and disadvantages of various measurement techniques for observing odd nitrogen and descent, along with uncertainties in the analysis methods.

  19. Arctic Storms in a Regionally Refined Atmospheric General Circulation Model

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Taylor, M.; Boslough, M.; Sullivan, S.

    2014-12-01

    Regional refinement in an atmospheric general circulation model is a new tool in atmospheric modeling. A regional high-resolution solution can be obtained without the computational cost of running a global high-resolution simulation as global climate models have increasing ability to resolve smaller spatial scales. Previous work has shown high-resolution simulations, i.e. 1/8 degree, and variable resolution utilities have resolved more fine-scale structure and mesoscale storms in the atmosphere than their low-resolution counterparts. We will describe an experiment designed to identify and study Arctic storms at two model resolutions. We used the Community Atmosphere Model, version 5, with the Spectral Element dynamical core at 1/8-degree and 1 degree horizontal resolutions to simulate the climatological year of 1850. Storms were detected using a low-pressure minima and vorticity maxima - finding algorithm. It was found the high-resolution 1/8-degree simulation had more storms in the Northern Hemisphere than the low-resolution 1-degree simulation. A variable resolution simulation with a global low resolution of 1-degree and a high-resolution refined region of 1/8 degree over a region in the Arctic is planned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-16460A

  20. Automated Detection of Oscillating Regions in the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Ireland, J.; Marsh, M. S.; Kucera, T. A.; Young, C. A.

    2010-01-01

    Recently observed oscillations in the solar atmosphere have been interpreted and modeled as magnetohydrodynamic wave modes. This has allowed for the estimation of parameters that are otherwise hard to derive, such as the coronal magnetic-field strength. This work crucially relies on the initial detection of the oscillations, which is commonly done manually. The volume of Solar Dynamics Observatory (SDO) data will make manual detection inefficient for detecting all of the oscillating regions. An algorithm is presented that automates the detection of areas of the solar atmosphere that support spatially extended oscillations. The algorithm identifies areas in the solar atmosphere whose oscillation content is described by a single, dominant oscillation within a user-defined frequency range. The method is based on Bayesian spectral analysis of time series and image filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to calculate rejection criteria for the observed signal, and it also provides estimates of oscillation frequency, amplitude, and noise, and the error in all of these quantities, in a self-consistent way. The algorithm also introduces the notion of quality measures to those regions for which a positive detection is claimed, allowing for simple post-detection discrimination by the user. The algorithm is demonstrated on two Transition Region and Coronal Explorer (TRACE) datasets, and comments regarding its suitability for oscillation detection in SDO are made.

  1. Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  2. Influence of dust loading on atmospheric ionizing radiation on Mars

    NASA Astrophysics Data System (ADS)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  3. Critical review of studies on atmospheric dispersion in coastal regions

    SciTech Connect

    Shearer, D.L.; Kaleel, R.J.

    1982-09-01

    This study effort was required as a preliminary step prior to initiation of field measurements of atmospheric dispersion in coastal regions. The Nuclear Regulatory Commission (NRC) is in the process of planning an extensive field measurement program to generate data which will serve as improved data bases for licensing decisions, confirmation of regulations, standards, and guides, and for site characterizations. The study being reported here is an effort directed to obtaining as much information as is possible from existing studies that is relevant toward NRC's objectives. For this study, reports covering research and meteorological measurements conducted for industrial purposes, utility needs, military objectives, and academic studies were obtained and critically reviewed in light of NRC's current data needs. This report provides an interpretation of the extent of existing usable information, an indication of the potential for tailoring existing research toward current NRC information needs, and recommendations for several follow-on studies which could provide valuable additional information through reanalysis of the data. Recommendations are also offered regarding new measurement programs. Emphasis is placed on the identification and acquisition of data from atmospheric tracer studies conducted in coastal regions. A total of 225 references were identified which deal with the coastal atmosphere, including meteorological and tracer measurement programs, theoretical descriptions of the relevant processes, and dispersion models.

  4. A Subtropical North Atlantic Regional Atmospheric Moisture Budget

    NASA Astrophysics Data System (ADS)

    Bingham, F.; D'Addezio, J. M.

    2014-12-01

    The synergistic effects of evaporation (E), precipitation (P), and Ekman transport make the SPURS (Salinity Processes in the Upper Ocean Regional Study) region in the subtropical North Atlantic (15-30°N, 30-45°W) the ideal location for the world's highest open ocean sea surface salinity. Using the MERRA and ERA-Interim atmospheric reanalyses, we reproduce the mean hydrologic state of the atmosphere over the SPURS region since 1979 and roughly deduce the change in salinity across the meridional domain due solely to interactions between E-P and Ekman transport. Our findings suggest a region that is highly evaporative at a mean rate of 4.87 mm/day with a standard deviation of 1.2 mm/day and little seasonality. Precipitation is much more variable with an annual fall maximum around 3 mm/day but only a mean rate of 1.37 mm/day with a standard deviation of 1.46 mm/day. The resulting E-P variable has a mean rate of 3.50 mm/day with a standard deviation of 1.92 mm/day and matches well with the moisture flux divergence term although the former is typically larger by a small margin. Strong prevailing easterly trade winds generate northward Ekman transports that advect water northward to the salinity maximum around 25°N. A short calculation shows that atmospheric moisture dynamics could potentially account for almost half of the change in salinity between 15°N and 25°N giving an estimate of the role that surface freshwater flux plays in the maintenance of the salinity maximum.

  5. A subtropical North Atlantic regional atmospheric moisture budget

    NASA Astrophysics Data System (ADS)

    D'Addezio, Joseph M.; Bingham, Frederick M.

    2014-12-01

    The synergistic effects of evaporation (E), precipitation (P), and Ekman transport make the Salinity Processes in the Upper Ocean Regional Study (SPURS-1) region in the subtropical North Atlantic (15-30°N, 30-45°W) the natural location for the world's highest open ocean SSS maximum. Using the MERRA and ERA-Interim atmospheric reanalyses, we reproduce the mean hydrologic state of the atmosphere over the SPURS-1 region since 1979 and roughly deduce the change in salinity across the meridional domain due solely to interactions between E-P and Ekman transport. Our findings suggest a region that is highly evaporative at a mean rate of 4.87 mm/d with a standard deviation of 1.2 mm/d and little seasonality. Precipitation is much more variable with an annual fall maximum around 3 mm/d but only a mean rate of 1.37 mm/d with a standard deviation of 1.46 mm/d. The resulting E-P variable has a mean rate of 3.50 mm/d with a standard deviation of 1.92 mm/d and matches well with the moisture flux divergence term although the former is typically larger by a small margin. Strong prevailing easterly trade winds generate northward Ekman transports that advect water toward the salinity maximum around 25°N. A short calculation shows that atmospheric moisture dynamics could potentially account for about one third of the change in salinity between 15°N and 25°N giving an estimate of the role that surface freshwater flux plays in the maintenance of the salinity maximum.

  6. Atmospheric Pollution and Emission Sources in South Asian Urban Region

    NASA Astrophysics Data System (ADS)

    Biswas, K. F.; Husain, Liaquat

    2009-04-01

    Rapid urbanization, and lack of efficient monitoring and control of pollution, along with phenomena like Asian Brown Haze or prolonged episodes of winter fog, makes the South Asian atmospheric chemistry a very complex one. The anthropogenic aerosols released from this region are projected to become the dominant component of anthropogenic aerosols worldwide in the next 25 years (Nakicenovic and Swart, 2000). The region is one of the most densely populated in the world, with present population densities of 100-500 persons km-2. There are six big cities, namely, Delhi, Dhaka, Karachi, Kolkata, Lahore, and Mumbai, each housing a population around or above 10 million. There is now a real concern about the sustainability of the region's ability to support the population due to air pollution, loss of biodiversity and soil degradation. Therefore, we conducted several extensive campaigns over last 10 years in Lahore, Karachi, and Islamabad in Pakistan to (1) chemically characterize the aerosols (PM2.5 mass, concentrations of trace elements, ions, black and organic carbon), and gaseous pollutants (concentrations of NH3, SO2, HONO, HNO3, HCl and (COOH)2, and (2) identify the major emission sources in this region. Exceedingly high concentrations of all species, relative to major urban areas of US and Europe, were observed. Concentrations of PM2.5, BC, Pb, SO42-, NH4+, HONO, NH3 respectively, up to 476, 110, 12, 66, 60, 19.6 and 50 μgm-3 were observed in these cities, which were far in excess of WHO and US EPA air quality standard (Biswas et al., 2008). We use air parcel back trajectories, intercomponent relationships and meteorological observations to explain chemistry and emission sources of aerosol constituents. Carbonaceous aerosols contributed up to 69% of the PM2.5 mass (Husain et al., 2007). Source apportionment was conducted using positive matrix factorization. The analysis has classified six emission sources of aerosol components, namely, industrial activities, wood

  7. The influence of variations of vegetation and soil moisture on surface weather and atmospheric circulation

    SciTech Connect

    Yang, R.

    1992-01-01

    The influence of variations of vegetation and soil moisture on surface weather and atmospheric circulation is studied through the use of the Simple Biosphere Model (SiB) and the Center for Ocean-Land-Atmosphere interactions (COLA) GCM. Tests for the SiB sensitivity to the conversion of the forest to other short vegetation or bare soil were performed at Amazonian and Great Plains sites, and a North Wales spruce forest site respectively. The results show that deforestation has a significant influence on the local surface energy budget and surface weather. The influence is especially prominent at the Amazon and Great Plains sites, and larger in summer than in other seasons. The influence on the partitioning of surface incoming radiative energy is generally constrained by the local atmospheric boundary condition. The sensitivity of the COLA GCM to changes in initial soil wetness (ISW) is determined by repeating three 10-day model integrations with the same initial and boundary conditions as the control runs except the values of ISW, which are revised at 69 model grid points covering much of the continental U.S. It is found that the relations between the changes in the 5-day mean forecast surface air temperature/surface specific humidity and the changes in ISW depend upon vegetation type and the values of ISW, and can be approximated by regression equations. These relations are also confirmed with independent data. With the ISW revised based on these regression equations the surface forecasts of the revised runs are consistently improved. The spatial scale of the ISW anomaly determines the degree and range of the influence. The influence of a small regional ISW change is mainly confined to the local region and to low atmospheric levels. The influence on surface fluxes is strong and persists for more than one month, but the effects on precipitation are relatively weak, changeable, and complex, particularly when an interactive cloud scheme is used.

  8. A new mechanism for regional atmospheric chemistry modeling

    NASA Astrophysics Data System (ADS)

    Stockwell, William R.; Kirchner, Frank; Kuhn, Michael; Seefeld, Stephan

    1997-11-01

    A new gas-phase chemical mechanism for the modeling of regional atmospheric chemistry, the "Regional Atmospheric Chemistry Mechanism" (RACM) is presented. The mechanism is intended to be valid for remote to polluted conditions and from the Earth's surface through the upper troposphere. The RACM mechanism is based upon the earlier Regional Acid Deposition Model, version 2 (RADM2) mechanism [Stockwell et al., 1990] and the more detailed Euro-RADM mechanism [Stockwell and Kley, 1994]. The RACM mechanism includes rate constants and product yields from the most recent laboratory measurements, and it has been tested against environmental chamber data. A new condensed reaction mechanism is included for biogenic compounds: isoprene, α-pinene, and d-limonene. The branching ratios for alkane decay were reevaluated, and in the revised mechanism the aldehyde to ketone ratios were significantly reduced. The relatively large amounts of nitrates resulting from the reactions of unbranched alkenes with NO3 are now included, and the production of HO from the ozonolysis of alkenes has a much greater yield. The aromatic chemistry has been revised through the use of new laboratory data. The yield of cresol production from aromatics was reduced, while the reactions of HO, NO3, and O3 with unsaturated dicarbonyl species and unsaturated peroxynitrate are now included in the RACM mechanism. The peroxyacetyl nitrate chemistry and the organic peroxy radical-peroxy radical reactions were revised, and organic peroxy radical +NO3 reactions were added.

  9. The Regional Environmental Impacts of Atmospheric Aerosols over Egypt

    NASA Astrophysics Data System (ADS)

    Zakey, Ashraf; Ibrahim, Alaa

    2015-04-01

    Identifying the origin (natural versus anthropogenic) and the dynamics of aerosols over Egypt at varying temporal and spatial scales provide valuable knowledge on the regional climate impacts of aerosols and their ultimate connections to the Earth's regional climate system at the MENA region. At regional scale, Egypt is exposed to air pollution with levels exceeding typical air-quality standards. This is particularly true for the Nile Delta region, being at the crossroads of different aerosol species originating from local urban-industrial and biomass-burning activities, regional dust sources, and European pollution from the north. The Environmental Climate Model (EnvClimA) is used to investigate both of the biogenic and anthropogenic aerosols over Egypt. The dominant natural aerosols over Egypt are due to the sand and dust storms, which frequently occur during the transitional seasons (spring and autumn). In winter, the maximum frequency reaches 2 to 3 per day in the north, which decreases gradually southward with a frequency of 0.5-1 per day. Monitoring one of the most basic aerosol parameters, the aerosol optical depth (AOD), is a main experimental and modeling task in aerosol studies. We used the aerosol optical depth to quantify the amount and variability of aerosol loading in the atmospheric column over a certain areas. The aerosols optical depth from the model is higher in spring season due to the impacts of dust activity over Egypt as results of the westerly wind, which carries more dust particles from the Libyan Desert. The model result shows that the mass load of fine aerosols has a longer life-time than the coarse aerosols. In autumn season, the modelled aerosol optical depth tends to increase due to the biomass burning in the delta of Egypt. Natural aerosol from the model tends to scatter the solar radiation while most of the anthropogenic aerosols tend to absorb the longwave solar radiation. The overall results indicate that the AOD is lowest in winter

  10. Investigation of the influence of atmospheric stability and turbulence on land-atmosphere exchange

    NASA Astrophysics Data System (ADS)

    Osibanjo, O.; Holmes, H.

    2015-12-01

    Surface energy fluxes are exchanged between the surface of the earth and the atmosphere and impact weather, climate, and air quality. The radiation from the sun triggers the surface-atmosphere interaction during the day as heat is transmitted to the surface and the surface heats the air directly above generating wind (i.e., thermal turbulence) that transports heat, moisture, and momentum in the atmospheric boundary layer (ABL). This process is impacted by greenhouse gasses (i.e., water vapor, carbon dioxide and other trace gases) that absorb heat emitted by the earth's surface. The concentrations of atmospheric greenhouse gasses are increasing leading to changes in ABL dynamics as a result of the changing surface energy balance. The ABL processes are important to characterize because they are difficult to parameterize in global and regional scale atmospheric models. Empirical data can be collected using eddy covariance micrometeorological methods to measure turbulent fluxes (e.g., sensible heat, moisture, and CO2) and quantify the exchange between the surface and the atmosphere. The objective of this work is to calculate surface fluxes using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10m tower was placed in a small valley depression to isolate nighttime cold air pools. This work will present observations of momentum, sensible heat, moisture, and carbon dioxide fluxes from data collected at a sampling frequency of 10Hz at four heights. Atmospheric stability is determined using Monin-Obukov length and flux Richardson number, and the impact of stability on surface-atmosphere exchange is investigated. This work will provide a better understanding of surface fluxes and mixing, particularly during stable ABL periods, and the results can be used to compare with numerical models.

  11. Polychlorinated biphenyls and organochlorine pesticides in atmospheric air of the Northern Hovsgol region in 2008-2013

    NASA Astrophysics Data System (ADS)

    Mamontova, E. A.; Tarasova, E. N.; Goreglyad, A. V.; Tkachenko, L. L.; Mamontov, A. A.; Kuzmin, M. I.

    2015-10-01

    Results of the study of organochlorine pesticides (OCP) and polychlorinated biphenyls (PCB) from the listing of the Stockholm Convention in atmospheric air of the Northern Hovsgol region at the base of the "Khankh" stationary, Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, in 2008-2013 in the absence of clear sources of these compounds are considered. Quantitative and qualitative changes in the concentration of PCB and OCP in atmospheric air of the Northern Hovsgol region in 2008-2013 characterizing the influence of natural (annual temperature variations) and anthropogenic (atmospheric transportation from the territories of neighboring countries) are shown.

  12. Analysis of the cathodic region of atmospheric pressure discharges

    NASA Astrophysics Data System (ADS)

    Schmitz, H.; Riemann, K.-U.

    2002-07-01

    The cathodic region of atmospheric pressure arcs is dominated by a number of different mechanisms. This makes a theoretical model extremely difficult. A description of this region based on fundamental physical principles is given. Using a previously published model of the inhomogeneous boundary layer of a Saha plasma (Schmitz H and Riemann K-U 2001 J. Phys. D: Appl. Phys. 34 1193), the description is set on a firm theoretical basis. A number of equations including the energy balances of plasma boundary and cathode body lead to a maximum closure of the system. The values for the boundary conditions toward the plasma column could be motivated by a simple minimum principle argument thus eliminating all arbitrary fitting parameters. Results are given for a variety of external parameters and three different discharge gases. The comparison with experimental results shows excellent agreement.

  13. Characteristics of atmospheric CO2 and CH4 at the Shangdianzi regional background station in China

    NASA Astrophysics Data System (ADS)

    Fang, Shuang-xi; Tans, Pieter P.; Dong, Fan; Zhou, Huaigang; Luan, Tian

    2016-04-01

    Atmospheric CO2 and CH4 have been continuously measured at the Shangdianzi regional background station (SDZ) in China from 2009 to 2013. Based on the influences of local surface wind and long-distance transport, the observed records were flagged into locally influenced, Beijing-Tianjin-Hebei (BTH) influenced, and Russia, Mongolia, and Inner Mongolia autonomous region influenced (RMI). ∼ 81.4% of CO2 and ∼75.6% of CH4 mole fractions were flagged as locally representative, indicating that the atmospheric CO2 and CH4 at SDZ were strongly influenced by local sources and sinks. Cluster analysis of back trajectories proved that the atmospheric CO2 and CH4 were influenced by air masses from northwest (RMI) or from south and southeast (BTH). The CO2 and CH4 mole fractions in BTH are always higher than in RMI, with the largest difference of 11.5 ± 0.3 ppm for CO2 and 102 ± 1 ppb for CH4 in July. The annual growth rates of CO2 and CH4 in BTH are 3.8 ± 0.01 ppm yr-1 and 10 ± 0.1 ppb yr-1, respectively, which are apparently higher than those of the RMI and the global means. The long-term trends of CO2 and CH4 in BTH are deviating from those in RMI, with ratios of ∼1.0 ppm yr-1 for CO2 and ∼2 ppb yr-1 for CH4, indicating the strengths of CO2 and CH4 emission in Beijing-Tianjin-Hebei plain increased more than 20% every year.

  14. Synergies Between Grace and Regional Atmospheric Modeling Efforts

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Springer, A.; Ohlwein, C.; Hartung, K.; Longuevergne, L.; Kollet, S. J.; Keune, J.; Dobslaw, H.; Forootan, E.; Eicker, A.

    2014-12-01

    In the meteorological community, efforts converge towards implementation of high-resolution (< 12km) data-assimilating regional climate modelling/monitoring systems based on numerical weather prediction (NWP) cores. This is driven by requirements of improving process understanding, better representation of land surface interactions, atmospheric convection, orographic effects, and better forecasting on shorter timescales. This is relevant for the GRACE community since (1) these models may provide improved atmospheric mass separation / de-aliasing and smaller topography-induced errors, compared to global (ECMWF-Op, ERA-Interim) data, (2) they inherit high temporal resolution from NWP models, (3) parallel efforts towards improving the land surface component and coupling groundwater models; this may provide realistic hydrological mass estimates with sub-diurnal resolution, (4) parallel efforts towards re-analyses, with the aim of providing consistent time series. (5) On the other hand, GRACE can help validating models and aids in the identification of processes needing improvement. A coupled atmosphere - land surface - groundwater modelling system is currently being implemented for the European CORDEX region at 12.5 km resolution, based on the TerrSysMP platform (COSMO-EU NWP, CLM land surface and ParFlow groundwater models). We report results from Springer et al. (J. Hydromet., accept.) on validating the water cycle in COSMO-EU using GRACE and precipitation, evapotranspiration and runoff data; confirming that the model does favorably at representing observations. We show that after GRACE-derived bias correction, basin-average hydrological conditions prior to 2002 can be reconstructed better than before. Next, comparing GRACE with CLM forced by EURO-CORDEX simulations allows identifying processes needing improvement in the model. Finally, we compare COSMO-EU atmospheric pressure, a proxy for mass corrections in satellite gravimetry, with ERA-Interim over Europe at

  15. Relative Influence of Initial Surface and Atmospheric Conditions on Seasonal Water and Energy Balances

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Roads, John O.; Robertson, Franklin R.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    We constructed and analyzed wet and dry soil moisture composites for the mid-latitude GCIP region of the central US using long climate model simulations made with the NCAR CCM3 and reanalysis products from NCEP. Using the diagnostic composites as a guide, we have completed a series of predictability experiments in which we imposed soil water initial conditions in CCM3 for the GCIP region for June 1 from anomalously wet and dry years, with atmospheric initial conditions taken from June 1 of a year with 'near-normal' soil water, and initial soil water from the near-normal year and atmospheric initial conditions from the wet and dry years. Preliminary results indicate that the initial state of the atmosphere is more important than the initial state of soil water determining the subsequent late spring and summer evolution of sod water over the GCIP region. Surprisingly, neither the composites or the predictability experiments yielded a strong influence of soil moisture on the atmosphere. To explore this further, we have made runs with extreme dry soil moisture initial anomalies imposed over the GCIP region (the soil close to being completely dry). These runs did yield a very strong effect on the atmosphere that persisted for at least three months. We conclude that the magnitude of the initial soil moisture anomaly is crucial, at least in CCM3, and are currently investigating whether a threshold exists, below which little impact is seen. In a complementary study, we compared the impact of the initial condition of snow cover versus the initial atmospheric state over the western US (corresponding to the westward extension of the GAPP program follow-on to GCIP). In this case, the initial prescription of snow cover is far more important than the initial atmospheric state in determining the subsequent evolution of snow cover. We are currently working to understand the very different soil water and snow cover results.

  16. Atmospheric gravitational influence on geodetic satellite orbits - Starlette analysis

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Chan, Joseph C.

    1992-01-01

    The atmosphere is constantly in motion. The changing gravitational force due to the air mass movement will slightly perturb the orbit of a satellite. As the instrument accuracy for geodetic satellites improves, failure to model this perturbation can result in significant systematic errors in the orbit determination. The latter, in turn, will degrade the Earth's gravity solutions. A direct modeling technique to analyze the atmospheric gravitational influence on geodetic satellite is developed. We use the global surface pressure data from the ECMWF Initial Analysis Database to compute the gravitational force due to atmospheric perturbation exerted on given satellite as a function of time during selected orbital arcs. Satellite Laser Ranging (SLR) tracking data for selected Starlette (altitude 900 km) orbital arcs are used to test the computed force model. Although only a slight reduction in the rms residuals is observed when the atmospheric gravitational perturbation is included in the force model for data reduction of the SLR data, significant improvement is obtained in the predictability of the satellite orbit. Comprehensive studies involving more definitive test criteria and more refined models are still needed.

  17. Ozone formation in biomass burning plumes: Influence of atmospheric dilution

    NASA Astrophysics Data System (ADS)

    Poppe, D.; Koppmann, R.; Rudolph, J.

    Biomass burning in the tropics contributes substantially to the emission of organic compounds and nitrogen oxides into the troposphere and has an important impact on the global budget of ozone in the troposphere. Since ozone formation is a nonlinear chemical process the rate of formation is also influenced by atmospheric dilution and transport. This paper addresses the production of ozone in a plume emerging from a biomass burning site. Atmospheric mixing processes downwind the fire are expected to influence the total amount of ozone produced. A sensitivity study to assess the influence of dilution on the maximum ozone mixing ratio and on the amount of ozone formed in the entire plume (excess ozone) reveals that both quantities depend strongly on the time scale and the final value of the dilution. Up to 70% difference of the excess ozone as function of the characteristic time of the dilution was observed. Since many global models do not treat the early development of the plume with sufficient resolution in space and time a substantial uncertainty of model predicted ozone formation from biomass burning plumes is to be expected.

  18. Factors influencing atmospheric composition over subarctic North America during summer

    NASA Technical Reports Server (NTRS)

    Wofsy, Steven C.; Fan, S. -M.; Blake, D. R.; Bradshaw, J. D.; Sandholm, S. T.; Singh, H. B.; Sachse, G. W.; Harriss, R. C.

    1994-01-01

    Elevated concentrations of hydrocarbons, CO, and nitrogen oxides were observed in extensive haze layers over northeastern Canada in the summer of 1990, during ABLE 3B. Halocarbon concentrations remained near background in most layers, indicating a source from biomass wildfires. Elevated concentrations of C2Cl4 provided a sensitive indicator for pollution from urban/industrial sources. Detailed analysis of regional budgets for CO and hydrocarbons indicates that biomass fires accounted for approximately equal to 70% of the input to the subarctic for most hydrocarbons and for acetone and more than 50% for CO. Regional sources for many species (including CO) exceeded chemical sinks during summer, and the boreal region provided a net source to midlatitudes. Interannual variations and long-term trends in atmospheric composition are sensitive to climatic change; a shift to warmer, drier conditions could increase the areas burned and thus the sources of many trace gases.

  19. Middle Atmosphere Program. Handbook for MAP. Volume 16: Atmospheric Structure and Its Variation in the Region 20 to 120 Km. Draft of a New Reference Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Labitzke, K. (Editor); Barnett, J. J. (Editor); Edwards, B. (Editor)

    1985-01-01

    A draft of a new reference atmosphere for the region between 20 and 80 km which depends largely on recent satellite experiments covering the globe from 80 deg S to 80 deg N is given. A separate international tropical reference atmosphere is given, as well as reference ozone models for the middle atmosphere.

  20. Atmospheric Impact of Large Methane Emission in the Arctic Region

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Cameron-Smith, P. J.; Bergmann, D.; Reagan, M. T.; Collins, W.; Elliott, S. M.; Maltrud, M. E.

    2011-12-01

    A highly potent greenhouse gas, methane, is locked in the solid phase as ice-like deposits containing a mixture of water and gas (mostly methane) called clathrates, in ocean sediments and underneath permafrost regions. Clathrates are stable under high pressure and low temperatures. Recent estimates suggest that about 1600 - 2000GtC of clathrates are present in oceans and 400GtC in Arctic permafrost (Archer et al.2009) which is about 4000 times that of current annual emissions. In a warming climate, increase in ocean temperatures could alter the geothermal gradient, which in turn could lead to dissociation of the clathrates and release of methane into the ocean and subsequently into the atmosphere as well. This could be of particular importance in the shallow part of the Arctic Ocean where the clathrates are found in depths of only 300m. In this presentation, we shall show results from our ongoing simulation of a scenario of large scale methane outgassing from clathrate dissociation due to warming ocean temperatures in the Arctic based on ocean sediment modeling. To that end we use the CESM (Community Earth System Model) version 1 with fully active coupled atmosphere-ocean-land model together with fast atmospheric chemistry module to simulate the response to increasing methane emissions in the Barents Sea, Canadian Archipelago and the Sea of Okhotsk. The simulation shows the effect these methane emissions could have on global surface methane, surface ozone, surface air temperature and other related indices. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-491764

  1. Large-scale atmospheric response to eastern Mediterranean summer-autumn SST anomalies and the associated regional impact

    NASA Astrophysics Data System (ADS)

    García-Serrano, J.; Polo, I.; Rodríguez-Fonseca, B.; Losada, T.

    2013-11-01

    Since the Mediterranean Sea is halfway between subtropical and middle latitudes, and it represents a marginal oceanic region, research has tended to focus on how large-scale modes of atmospheric variability modulate its surface temperature. Conversely, the present study examines the potential influence of the Mediterranean Sea surface temperature (SST) anomalies on the Northern Hemisphere atmospheric circulation. In particular, this work explores the large-scale changes in the global circulation forced/influenced by the eastern Mediterranean summer-autumn SST pattern. To isolate the atmospheric response, AGCM sensitivity experiments with prescribed SST over the Mediterranean Sea and climatology elsewhere are analysed. Observational diagnostics upon the period used to define the boundary conditions (1979-2002) are also interpreted. Our results support the hypothesis of an atmospheric pattern initiated in the Mediterranean basin, pointing out both a local baroclinic response and a barotropic circumglobal anomaly. This atmospheric teleconnection pattern projects onto a hemispheric wave-like structure, reflecting the waveguide effect of the westerly jets. Results suggest, thereby, that the recurrent summer-autumn circumglobal teleconnection pattern can be excited locally by changes in the atmosphere over the Mediterranean region. A linear behaviour is found upon a regional impact over northeastern Africa. The remote impacts present however a nonlinear signature: anomalous warm conditions influencing on northern Europe and Euro-Asia, whereas anomalous cold conditions impacting more on the North Pacific basin. Limitations in our model setup are also discussed.

  2. Atmospheric energetics in regions of intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1977-01-01

    Synoptic-scale budgets of kinetic and total potential energy are computed using 3- and 6-h data at nine times from NASA's fourth Atmospheric Variability Experiment (AVE IV). Two intense squall lines occurred during the period. Energy budgets for areas that enclose regions of intense convection are shown to have systematic changes that relate to the life cycles of the convection. Some of the synoptic-scale energy processes associated with the convection are found to be larger than those observed in the vicinity of mature cyclones. Volumes enclosing intense convection are found to have large values of cross-contour conversion of potential to kinetic energy and large horizontal export of kinetic energy. Although small net vertical transport of kinetic energy is observed, values at individual layers indicate large upward transport. Transfer of kinetic energy from grid to subgrid scales of motion occurs in the volumes. Latent heat release is large in the middle and upper troposphere and is thought to be the cause of the observed cyclic changes in the budget terms. Total potential energy is found to be imported horizontally in the lower half of the atmosphere, transported aloft, and then exported horizontally. Although local changes of kinetic energy and total potential energy are small, interaction between volumes enclosing convection with surrounding larger volumes is quite large.

  3. Regional forecasting with global atmospheric models; Final report

    SciTech Connect

    Crowley, T.J.; Smith, N.R.

    1994-05-01

    The purpose of the project was to conduct model simulations for past and future climate change with respect to the proposed Yucca Mtn. repository. The authors report on three main topics, one of which is boundary conditions for paleo-hindcast studies. These conditions are necessary for the conduction of three to four model simulations. The boundary conditions have been prepared for future runs. The second topic is (a) comparing the atmospheric general circulation model (GCM) with observations and other GCMs; and (b) development of a better precipitation data base for the Yucca Mtn. region for comparisons with models. These tasks have been completed. The third topic is preliminary assessments of future climate change. Energy balance model (EBM) simulations suggest that the greenhouse effect will likely dominate climate change at Yucca Mtn. for the next 10,000 years. The EBM study should improve rational choice of GCM CO{sub 2} scenarios for future climate change.

  4. Simulation of fog influence on laser beam distribution in atmosphere

    NASA Astrophysics Data System (ADS)

    Vasinek, Vladimir; Latal, Jan; Koudelka, Petr; Vitasek, Jan; Witas, Karel; Hejduk, Stanislav

    2012-10-01

    Optical fibreless data networks P2P offer fast data transmissions with big transmittance from 1- 10 Gbps on a distance of 1- 6 km. Perfections of such networks are especially flexibility, rapid creation of communications. Sensitivity to atmospheric influences, necessity of light on sight belongs to disadvantages. Transmission through atmosphere be characterized by non-stationarity, inhomogeneity, the influences have random character. It means immediately that it is possible only with difficulty to project conclusions concerning to the measurement on one line upon fiberless line in another position. Contribution tackles a question of forming of the artificial hazy atmospheres, finding the statistical parameters of artificially created foggy atmospheres that could be reproduced to real environment. This work describes created laboratory apparatus powered with fog generator, heat source and ventilating fans, which allow in a controlled way to change the optical transmission inside the bounded space. Laser diode radiation at wavelength of 850 nm is transmitted into created space like this which is scanned with optical power meter after passing of artificially created turbulent vaporous environment. Changes in intensity of the passed lights are captured; the mean value and maximum deviation from the mean value are computed. In this way it is possible to change the reached specific attenuation in dB/km. Owing to turbulences it happens to deviations from the mean value, these abnormalities are characterized by the distribution function that describes the size of turbulences in time. By the help of ergodic theorem then it is possible to deduce that the distribution function of the foggy turbulences gained at continuous time evaluation has same history like the distribution function gained behind the same conditions in the setup in other times. It holds as well that these distribution functions are the same for variety of points in experimental space, provided there are

  5. Assessing the contribution of natural sources to regional atmospheric mercury budgets

    SciTech Connect

    Gustin, M.S.; Lindberg, S.E.

    1997-12-31

    Contributions to the global atmospheric mercury budget originate from natural and anthropogenic sources. Constraining inputs from anthropogenic point sources has been the emphasis of past research leaving the contribution from diffuse natural and anthropogenic mercury enriched landscapes poorly constrained and underestimated. From September 1--4, 1997 mercury researchers convened in Reno, NV, US to intercompare methods used to determine in situ mercury flux from a naturally enriched landscape. Data collected indicate that naturally mercury-enriched areas constitute a significant atmospheric Hg source term. Mercury fluxes of 30 to 2,000 ng/m{sup 2} h were measured at the Steamboat springs Geothermal Area. These values are one to three orders of magnitude greater than that applied for natural sources in global mercury budgets. Air concentrations measured in the area indicate that natural sources can increase ambient levels above background concentrations. Assessment of these and other data indicate that natural sources constitute a significant source of atmospheric mercury that is available to the global mercury budget, and that the strength of the source is influenced significantly by environmental factors. Determining the contribution of mercury to the atmosphere from diffuse terrestrial sources is necessary to develop local and regional baselines for environmental regulations and risk assessments, and valid emission inventories. A scaling up mercury fluxes measured for diffuse terrestrial surfaces suggests that the natural atmospheric mercury source term in the US is comparable to the anthropogenic source term.

  6. Local, regional, and global views of tropospheric carbon monoxide from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    McMillan, W. Wallace; Yurganov, Leonid

    2008-04-01

    More than five years of CO retrievals from the Atmospheric InfraRed Sounder (AIRS) onboard NASA's Aqua satellite reveal variations in tropospheric CO on timescales from twelve hours to five years and on spatial scales from local to global. The shorter timescales are invaluable to monitor daily variations in CO emissions, to enable three-dimensional tracking of atmospheric motions, and to enhance insights into atmospheric mixing. Previous studies have utilized AIRS CO retrievals over the course of days to weeks to track plumes from large forest fires. On the local scale, we will present AIRS observations of pollution from several northern hemisphere Megacities. On the regional scale, we will present AIRS observations of the Mexico City pollution plume. We will illustrate global scale AIRS CO observations of interannual variations linked to the influence of large-scale atmospheric perturbations from the El Nino Southern Oscillation (ENSO). In particular, we observe a quasi-biennial variation in CO emissions from Indonesia with varying magnitudes in peak emission occurring in 2002, 2004, and 2006. Examining satellite rainfall measurements over Indonesia, we find the enhanced CO emission correlates with occasions of less rainfall during the month of October. Continuing this satellite record of tropospheric CO with measurements from the European IASI instrument will permit construction of a long time-series useful for further investigations of climatological variations in CO emissions and their impact on the health of the atmosphere.

  7. Interactive coupling of regional atmosphere with biosphere in the new generation regional climate system model REMO-iMOVE

    NASA Astrophysics Data System (ADS)

    Wilhelm, C.; Rechid, D.; Jacob, D.

    2014-06-01

    The main objective of this study is the coupling of the regional climate model REMO with a new land surface scheme including dynamic vegetation phenology, and the evaluation of the new model version called REMO with interactive MOsaic-based VEgetation: REMO-iMOVE. First, we focus on the documentation of the technical aspects of the new model constituents and the coupling mechanism. The representation of vegetation in iMOVE is based on plant functional types (PFTs). Their geographical distribution is prescribed to the model which can be derived from different land surface data sets. Here, the PFT distribution is derived from the GLOBCOVER 2000 data set which is available on 1 km × 1 km horizontal resolution. Plant physiological processes like photosynthesis, respiration and transpiration are incorporated into the model. The vegetation modules are fully coupled to atmosphere and soil. In this way, plant physiological activity is directly driven by atmospheric and soil conditions at the model time step (two minutes to some seconds). In turn, the vegetation processes and properties influence the exchange of substances, energy and momentum between land and atmosphere. With the new coupled regional model system, dynamic feedbacks between vegetation, soil and atmosphere are represented at regional to local scale. In the evaluation part, we compare simulation results of REMO-iMOVE and of the reference version REMO2009 to multiple observation data sets of temperature, precipitation, latent heat flux, leaf area index and net primary production, in order to investigate the sensitivity of the regional model to the new land surface scheme and to evaluate the performance of both model versions. Simulations for the regional model domain Europe on a horizontal resolution of 0.44° had been carried out for the time period 1995-2005, forced with ECMWF ERA-Interim reanalyses data as lateral boundary conditions. REMO-iMOVE is able to simulate the European climate with the same

  8. Lichens as indicators of the atmosphere state in the oil exploration district of Tomsk Region

    NASA Astrophysics Data System (ADS)

    Bolshunova, Tatiana; Ivan, Podkozlin

    2013-04-01

    Lichens are widespread in the vegetative cover of West Siberia, particularly in the north. They play an important role in the migration and transformation of chemical pollutants. Lichens lack waxy cuticles and are largely dependent on the atmosphere for their water and nutrient uptake. Lichens are not only studied and used as indicators, but also as accumulators, e.g. for trace and heavy metals. In fact, lichens are known for their ability to accumulate airborne substances to concentrations far greater those in the atmosphere, and the element contents of lichen thalli proved to be directly correlated with environmental levels. Monitoring of the atmosphere pollution using lichens is more efficient than that using snow cover. Because of the long lichen life it is possible to obtain persistent mean characteristics of the ecosystems state. Epiphytic lichens, growing on tree stems are more appropriate to use than that which grow on soil. Epiphytic lichens are more sensitive to changes of the chemical composition of the atmosphere. Pollutants penetrate in the lichen thalli from the atmosphere together with precipitations and dust. Moreover the precipitations are saturated with pollutants when going through crowns of trees and trickling down the steams and branches. Lichen studies are especially important in territories subjected to excessive human activity. Because a great part of Tomsk region (West Siberia, Russia) is the territory of the oil-field exploration, there the atmosphere monitoring is a necessary part of the whole environmental monitoring. The aim of this investigation is the estimation of the influence of oil exploration industry in Tomsk region on the atmosphere by means of the study of epiphytic lichens. Lichen samples were collected in August and September 2010-2011. Sampling net included seven areas distributed inside the oil-exploration districts of Tomsk region. In total 27 samples were collected. In these samples 53 chemical elements were detected by

  9. The Influence of Large Solar Proton Events on the Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.

    2012-01-01

    Solar proton events (SPEs) can cause changes in constituents in the Earth s polar middle atmosphere. A number of large SPEs have occurred over the past 50 years and tend to happen most frequently near solar maximum. The highly energetic protons cause ionizations, excitations, dissociations, and dissociative ionizations of the background constituents. Complicated ion chemistry leads to HOx (H, OH, HO2) production and dissociation of N2 leads to NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2) production. Both the HOx and NOy increases can result in changes to ozone in the stratosphere and mesosphere. The HOx increases lead to short-lived (days) ozone decreases in the mesosphere and upper stratosphere. The NOy increases lead to long-lived (several months) stratospheric ozone changes because of the long lifetime of NOy constituents in this region. UARS HALogen Occultation Experiment (HALOE) instrument observations showed SPE-caused polar stratospheric NOx (NO+NO2) increases over 10 ppbv in September 2000 due to the very large SPE of July 2000, which are reasonably well simulated with the Whole Atmosphere Community Climate Model (WACCM). WACCM-computed SPE-caused polar stratospheric ozone decreases >10% continued for up to 5 months past the largest events in the past 50 years, however, SPE-caused total ozone changes were not found to be statistically significant. Small polar middle atmospheric temperature changes of <4 K have also been predicted to occur as a result of the larger SPEs. The polar atmospheric effects of large SPEs during solar cycle 23 and 24 will be emphasized in this presentation.

  10. Influence of the Laurentian Great Lakes on Regional Climate

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Holman, K.; Zarrin, A.; Fluck, E.; Vavrus, S. J.; Bennington, V.

    2012-12-01

    The influence of the Laurentian Great Lakes on climate is assessed by comparing two decade-long simulations, with the lakes either included or excluded, using the Abdus Salam International Centre for Theoretical Physics Regional Climate Model Version 4. The Great Lakes dampen the variability in near-surface air temperature across the surrounding region, while reducing the amplitude of the diurnal cycle and annual cycle of air temperature. The impacts of the Great Lakes on the regional surface energy budget include an increase (decrease) in turbulent fluxes during the cold (warm) season and an increase in surface downward shortwave radiation flux during summer due to diminished atmospheric moisture and convective cloud amount. Changes in the hydrologic budget due to the presence of the Great Lakes include increases in evaporation and precipitation during October-March and decreases during May-August, along with springtime reductions in snowmelt-related runoff. Circulation responses consist of a regionwide decrease in sea-level pressure in autumn-winter and an increase in summer, with enhanced ascent and descent in the two seasons, respectively. The most pronounced simulated impact of the Great Lakes on synoptic systems traversing the basin is a weakening of cold-season anticyclones.

  11. Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King

    2003-01-01

    Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.

  12. The influence of ionization events on atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.

    1979-01-01

    Atmospheric ionization events can modify the concentration of neutral species in the stratosphere and mesosphere. In particular, ozone is destroyed because of the production of significant quantities of odd nitrogen and hydrogen compounds which react photochemically to destroy ozone. Direct evidence of ozone depletion comes from data taken during and following two solar flares generating large fluxes of 10-100 Mev protons, which bombarded the polar stratosphere and mesosphere. Observations of ozone taken during X-ray emission by solar flares and energetic electron precipitation during aurorae indicates ozone destruction above 50 km by ionization produced odd hydrogen. Lightning is apparently a large contributor to the tropospheric odd nitrogen budget. Ion propulsion induced dumping of the inner proton radiation belt represents a human activity which may influence stratospheric NOx.

  13. Influence of wind direction on pollen concentration in the atmosphere

    NASA Astrophysics Data System (ADS)

    Silva Palacios, I.; Tormo Molina, R.; Muñoz Rodríguez, A. F.

    The daily pollen concentration in the atmosphere of Badajoz (SW Spain) was analysed over a 6-year period (1993-1998) using a volumetric aerobiological trap. The results for the main pollination period are compared with the number of hours of wind each day in the four quadrants: 1 (NE), 2 (SE), 3 (SW) and 4 (NW). The pollen source distribution allowed 16 pollen types to be analysed as a function of their distribution in the four quadrants with respect to the location of the trap. Four of them correspond to species growing in an irrigated farmland environment (Amaranthaceae-Chenopodiaceae, Plantago, Scirpus, and Typha), five to riparian and woodland species (Salix, Fraxinus, Alnus, Populus, and Eucalyptus), four to urban ornamentals (Ulmus, Arecaceae, Cupressaceae, and Casuarina), and three which include the most frequent pollen grains of widely distributed species (Poaceae, Quercus, and Olea). The results show that the distribution of the sources and the wind direction play a very major role in determining the pollen concentration in the atmosphere when these sources are located in certain quadrants, and that the widely distributed pollen sources show no relationship with wind direction. In some years the values of the correlations were not maintained, which leads one to presume that, in order to draw significant conclusions and establish clear patterns of the influence of wind direction, a continuous and more prolonged study will be required.

  14. Factors influencing atmospheric concentrations of polybrominated diphenyl ethers in Japan.

    PubMed

    Dien, Nguyen Thanh; Hirai, Yasuhiro; Miyazaki, Toru; Sakai, Shin-ichi

    2016-02-01

    We used polybrominated diphenyl ether (PBDE) data in air at 38 sites across Japan (2009-2012), which were measured by the Japan Ministry of Environment (JMOE), to elucidate the time trend and seasonality of atmospheric PBDEs. In order to address few (7% for BDE-47) to many (63% for BDE-153 and 183) non-detect data, Tobit model, also called a censored regression model was used. The model revealed that the concentrations of PBDE congeners were influenced by a combination of year, temperature, rainfall rate, and population density. Greater declines were observed for BDE-47, -99, -153 and -183 (-21, -25, -17, -23%/year, p < 0.05) than for BDE-209 (-6%/year, p = 0.065). These trends were consistent with the estimated trends of penta-, octa- and deca-BDE contained in in-use products based on domestic demand for PBDEs in Japan and product lifespan. Seasonal patterns were opposite for light congeners (BDE-47 and -99), which increased with temperature, and heavy congeners (BDE-183, and -209), which decreased with temperature. Temperature-dependent emission (evaporation) for light congeners and temperature-independent emission (abrasion) for heavy congeners, coupled with seasonality of atmospheric boundary layer height, might explain these seasonal patterns. Human population density showed a positive correlation with all PBDE congener concentrations, whereas PBDEs showed negative correlation with rainfall rate. PMID:26583289

  15. Regional High-resolution Coupled Atmosphere Ocean Modelling in the North Sea Region

    NASA Astrophysics Data System (ADS)

    Dumenil-Gates, Lydia; Bülow, Katharina; Ganske, Anette; Heinrich, Hartmut; Klein, Birgit; Klein, Holger; Möller, Jens; Rosenhagen, Gudrun; Schade, Nils; Hüttl-Kabus, Sabine; Tinz, Birger

    2015-04-01

    The analysis of climate projections in the North Sea area is one of the research tasks of the research programme KLIWAS of the German Federal Ministry of Transport and Digital Infrastructure. A multi-model ensemble of three coupled regional atmosphere-ocean models was set up comprising very high resolution simulations for the German coastal regions of the North Sea and the Baltic to represent the complex land-sea-atmosphere conditions in the region. The ensemble consists of simulations made in cooperation with the Swedish Meteorological and Hydrological Institute, the Climate Service Centre and the Max-Planck-Institute for the period of 1950 to 2100. The KLIWAS project thereby adds coupled models to the band-width of possible future climate conditions in the atmosphere as given by the ENSEMBLES project, which were also analyzed. The coupled results are evaluated for present-day climate using a North Sea climatology of maritime conditions at a matching high resolution. In the future climate, while air and water temperatures will rise to the year 2100, the mean wind speed does not show a significant trend, but large decadal variability. The frequency of occurrence of westerly wind directions increases in the majority of simulations and results in an increase of significant wave height in the eastern parts of the North Sea. In an interdisciplinary approach, these results are used to provide regional to local information for the development of adaptation strategies for the estuary, and climate-proofing of infrastructure in the wider context of the project.

  16. Influence of seasonal cycles in Martian atmosphere on entry, descent and landing sequence

    NASA Astrophysics Data System (ADS)

    Marčeta, Dušan; Šegan, Stevo; Rašuo, Boško

    2014-05-01

    The phenomena like high eccentricity of Martian orbit, obliquity of the orbital plane and close alignment of the winter solstice and the orbital perihelion, separately or together can significantly alter not only the level of some Martian atmospheric parameters but also the characteristics of its diurnal and seasonal cycle. Considering that entry, descent and landing (EDL) sequence is mainly driven by the density profile of the atmosphere and aerodynamic characteristic of the entry vehicle. We have performed the analysis of the influence of the seasonal cycles of the atmospheric parameters on EDL profiles by using Mars Global Reference Atmospheric Model (Mars-GRAM). Since the height of the deployment of the parachute and the time passed from the deployment to propulsion firing (descent time) are of crucial importance for safe landing and the achievable landing site elevation we paid special attention to the influence of the areocentric longitude of the Sun (Ls) on these variables. We have found that these variables have periodic variability with respect to Ls and can be very well approximated with a sine wave function whose mean value depends only on the landing site elevation while the amplitudes and phases depend only on the landing site latitude. The amplitudes exhibit behavior which is symmetric with respect to the latitude but the symmetry is shifted from the equator to the northern mid-tropics. We have also noticed that the strong temperature inversions which are usual for middle and higher northern latitudes while Mars is around its orbital perihelion significantly alter the descent time without influencing the height of the parachute deployment. At last, we applied our model to determine the dependence of the accessible landing region on Ls and found that this region reaches maximum when Mars is around the orbital perihelion and can vary 50° in latitude throughout the Martian year.

  17. Influence of longitudinal argon flow on DC glow discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhu, Sha; Jiang, Weiman; Tang, Jie; Xu, Yonggang; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2016-05-01

    A one-dimensional self-consistent fluid model was employed to investigate the influence of longitudinal argon flow on the DC glow discharge at atmospheric pressure. It is found that the charges exhibit distinct dynamic behaviors at different argon flow velocities, accompanied by a considerable change in the discharge structure. The positive argon flow allows for the reduction of charge densities in the positive column and negative glow regions, and even leads to the disappearance of negative glow. The negative argon flow gives rise to the enhancement of charge densities in the positive column and negative glow regions. These observations are attributed to the fact that the gas flow convection influences the transport of charges through different manners by comparing the argon flow velocity with the ion drift velocity. The findings are important for improving the chemical activity and work efficiency of the plasma source by controlling the gas flow in practical applications.

  18. Natural sources of atmospheric aerosols influencing air quality across Europe.

    PubMed

    Viana, M; Pey, J; Querol, X; Alastuey, A; de Leeuw, F; Lükewille, Anke

    2014-02-15

    Atmospheric aerosols are emitted by natural and anthropogenic sources. Contributions from natural sources to ambient aerosols vary widely with time (inter-annual and seasonal variability) and as a function of the distance to source regions. This work aims to identify the main natural sources of atmospheric aerosols affecting air quality across Europe. The origin, frequency, magnitude, and spatial and temporal variability of natural events were assessed for the years 2008 and 2009. The main natural sources of atmospheric aerosols identified were African dust, sea spray and wildfires. Primary biological particles were not included in the present work. Volcanic eruptions did not affect air quality significantly in Europe during the study period. The impact of natural episodes on air quality was significant in Southern and Western Europe (Cyprus, Spain, France, UK, Greece, Malta, Italy and Portugal), where they contributed to surpass the PM10 daily and annual limit values. In Central and Northern Europe (Germany, Austria and Latvia) the impact of these events was lower, as it resulted in the exceedance of PM daily but not annual limit values. Contributions from natural sources to mean annual PM10 levels in 2008 and 2009 ranged between 1 and 2 μg/m(3) in Italy, France and Portugal, between 1 and 4 μg/m(3) in Spain (10 μg/m(3) when including the Canary Islands), 5 μg/m(3) in UK, between 3 and 8 μg/m(3) in Greece, and reached up to 13 μg/m(3) in Cyprus. The evaluation of the number of monitoring stations per country reporting natural exceedances of the daily limit value (DLV) is suggested as a potential tool for air quality monitoring networks to detect outliers in the assessment of natural contributions. It is strongly suggested that a reference methodology for the identification and quantification of African dust contributions should be adopted across Europe. PMID:24342088

  19. Regional and Global Atmospheric CO2 Measurements Using 1.57 Micron IM-CW Lidar

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Obland, Michael; Nehrir, Amin; Browell, Edward; Harrison, F. Wallace; Dobler, Jeremy; Campbell, Joel; Kooi, Susan; Meadows, Byron; Fan, Tai-Fang; Liu, Zhaoyan

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate, and knowledge of its distribution and variations influences predictions of the Earth's future climate. Accurate observations of atmospheric CO2 are also crucial to improving our understanding of CO2 sources, sinks and transports. To meet these science needs, NASA is developing technologies for the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, which is aimed at global CO2 observations. Meanwhile an airborne investigation of atmospheric CO2 distributions as part of the NASA Suborbital Atmospheric Carbon and Transport â€" America (ACT-America) mission will be conducted with lidar and in situ instrumentation over the central and eastern United States during all four seasons and under a wide range of meteorological conditions. In preparing for the ASCENDS mission, NASA Langley Research Center and Exelis Inc./Harris Corp. have jointly developed and demonstrated the capability of atmospheric CO2 column measurements with an intensity-modulated continuous-wave (IM-CW) lidar. Since 2005, a total of 14 flight campaigns have been conducted. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved, and the lidar CO2 measurements also agree well with in-situ observations. Significant atmospheric CO2 variations on various spatiotemporal scales have been observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200A-300 sq km over Iowa during a summer 2014 flight. Results from recent flight campaigns are presented in this paper. The ability to achieve the science objectives of the ASCENDS mission with an IM-CW lidar is also discussed in this paper, along with the plans for the ACT-America aircraft investigation that begins in the winter of 2016.

  20. Soil occupation and atmospheric variations over Sobradinho Lake area. Part two: a regional modeling study

    NASA Astrophysics Data System (ADS)

    Correia, M. F.; da Silva Dias, M. A. F.; da Silva Aragão, M. R.

    2006-11-01

    The impact of the changes on soil cover and land use brought about by the construction of the Sobradinho Dam in the semi-arid region of the São Francisco River Hydrographic Basin is analyzed by means of a numerical model RAMS. Disregarding the influence of a large scale flow, a set of factors were responsible for the creation of a rather complex circulation system that includes mountain-valley winds, lake breeze (LB) and non-conventional circulation all induced by the surface non-homogeneous aspect. Results have demonstrated that the implementation of works of such magnitude brings about environmental changes in an area that stretches far beyond the surroundings of the reservoir. The soil cover alterations due to the ever increasing development of the area with the presence of irrigated crops in a sparsely vegetated region ( caatinga) does affect land surface characteristics, occasioning for that matter the splitting of the available energy into latent and sensible heat fluxes. LB behavior varies in accordance with atmospheric conditions and also in view of the type of vegetation found in the lake surrounding areas. Hydro availability in root zones, even under adverse atmospheric conditions (high temperature and low air humidity) brings up the high rates of evaporation and plant transpiration that contribute towards the increase of humidity and the fall of temperature in lower atmospheric layers.

  1. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the

  2. Regional scale evaporation and the atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Parlange, Marc B.; Eichinger, William E.; Albertson, John D.

    1995-01-01

    In this review we briefly summarize some current models of evaporation and the atmospheric boundary layer (ABL) and discuss new experimental and computational oppurtunities that may aid our understanding of evaporation at these larger scales. In particular, consideration is given to remote sensing of the atmosphere, computational fluid dynamics and the role numerical models can play in understanding land-atmosphere interactions. These powerful modeling and measurement tools are allowing us to visualize and study spatial and temporal scales previously untouched, thereby increasing the oppurtunities to improve our understanding of land-atmosphere interaction.

  3. Global and Regional Constraints on Exchanges of CO2 Between the Atmosphere and Terrestrial Biosphere

    NASA Astrophysics Data System (ADS)

    Piper, S. C.

    2001-12-01

    , respectively. Both the O2 and 13C/12C methods have complications and limitations that will be discussed. To partition the global biospheric flux further to zonal or regional detail or to shorter time steps, atmospheric models are required to simulate the transport of tracer from source regions to individual stations where air is sampled. An ongoing collaborative project to compare atmospheric models has highlighted significant differences in transport characteristics, mainly owing to differences in how the boundary layer is modeled. Accordingly, a recent compilation of model calculations showed a wide range of estimates for the tropical biosphere, from a significant release of CO2 to an uptake over recent decades; however, the calculations showed reasonable agreement on a significant northern biospheric sink. Fluxes of biospheric CO2 can be determined accurately at the global scale as well as at individual sites. An ingenious blend of observations and models will be required to bridge the gap between these two extreme spatial scales, and thereby gain an understanding sufficient to predict the influence of the terrestrial biosphere on variations in atmospheric CO2.

  4. Atmospheric emitted radiance interferometer (AERI): Status and the aerosol explanation for extra window region emissions

    SciTech Connect

    Revercomb, H.E.; Knuteson, R.O.; Best, F.A.; Dirkx, T.P.

    1996-04-01

    High spectral resolution observations of downwelling emission from 3 to 19 microns have been made by the Atmospheric Emitted Radiance Interferometer (AERI) Prototype at the Southern Great Plains (SGP) Cloud and Radiative Testbed (CART) site for over two years. The spectral data set from AERI provides a basis for improving clear sky radiative transfer; determining the radiative impact of clouds, including the derivation of cloud radiative properties; defining the influences of aerosols in the window regions; and retrieving boundary layer state properties, including temperature, water vapor, and other trace gases. The data stream of radiometrically and spectrally calibrated radiances is routinely provided by Pacific Northwest Laboratory (PNL) to those science teams requesting it, and further information on the instrument and data characteristics is available in the ARM Science Team proceedings for 1993 and 1994 and in several conference publications. This paper describes the AERI status, calibration, field experiment wit a new AERI-01 and schedule, window region emissions, and future AERI plans.

  5. The impacts of precipitation on land- atmosphere interaction over the semi-arid Loess Plateau region

    NASA Astrophysics Data System (ADS)

    WANG, G.; Huang, J.

    2015-12-01

    To understand the impacts of precipitation on land-atmosphere interactions over semi-arid regions, 6-year continuous measurements data in situ were analyzed to investigate the influence of precipitation on soil moisture, evapotranspiration, energy partitioning and plant growing over Loess Plateau in northwest China. Results show that annual precipitation had obvious inter-annual variability, and the variation of soil moisture; evaporation and CO2 flux were very consistently with the annual cycle and intensity of precipitation. Soil moisture is the key participant in land-atmosphere interaction. However, as the water shortage and disconnected from water table over the semi-arid region, it is much more sensitive with precipitation compensation and evaporation feedbacks. Soil water can cooling the near surface air temperature by evaporation (latent heat flux), and also as the main energy partitioning consumer of net radiation in humid area or pluvial period in arid area, yet it was water limited in arid and semi-arid region, sensible heat flux predominated net radiation for enhancing the surface air temperature. We also found that soil moisture profile significantly affected the plant physiology, which was also consistent with the annual cycle and intensity of precipitation.

  6. Regional Feedbacks Between the Ocean and the Atmosphere in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Thompson, L.; Garcia, M.; Kelly, K. A.; Booth, J. F.

    2012-12-01

    The ocean acts to buffer changes in the climate system with the upper 800m of the ocean taking up more than 90% of the excess heat in the climate system. On interannual time scales, surface heat fluxes damp the low-frequency heat content anomalies in some areas of the ocean where heat anomalies can be released back to the atmosphere. Analysis of satellite altimetry observations of SSH (sea surface height) as a proxy for upper ocean heat content and net suface heat flux from OAFlux (Objectively Analyzed air-sea fluxes) 993-2009 allows the identification of the times of the year and the locations in the North Atlantic where heat content anomalies are driving surface fluxes. Heat content has six month persistence while surface flux has at most one month persistence. Times series for each month of the year at each location are created to examine the lagged correlation between upper ocean heat content and the net surface heat fluxes. The heat content anomalies south of the Gulf Stream in June through November are negatively correlated with surface fluxes in November with a warmer ocean leading to surface fluxes out of the ocean. In this region, the mixed-layer by November reaches 100 m and the previous summer's stored heat is accessible to the atmosphere. The high correlations continue into December and January. By February, the correlation is no longer significant. In the region between 15N and 40N off the coast of Africa, January through May heat content are anti-correlated with surface fluxes in May. In May at this location, the climatological sensible heat flux is into the ocean, the planetary boundary layer is stable and stratocumulus clouds are common. Significant correlations in the summer are also found in the central subpolar North Atlantic. This analysis suggests that locally ocean heat content anomalies can feedback to the atmosphere, but only during certain times of the year. The impact on the atmosphere in late fall and early winter can influence of the

  7. The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.

    2008-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated

  8. The Anthropogenic Influence on Atmospheric Carbonyl Sulfide: Implications for Inverse Analysis of Process-Level Carbon Cycle Fluxes

    NASA Astrophysics Data System (ADS)

    Zumkehr, A. L.; Hilton, T. W.; Whelan, M.; Smith, S. J.; Campbell, J. E.

    2014-12-01

    Carbonyl sulfide (COS) is the most abundant sulfur containing gas in the troposphere and a significant precursor to stratospheric aerosol. Recent insights on the plant uptake of atmospheric COS suggest that plant uptake is the largest component of the global COS budget and that COS may provide a powerful new tool for partitioning sources and sinks of atmospheric CO2 at regional to global scales. However, alternative sources and sinks of COS must also be accounted for to minimize the uncertainty of this carbon cycle tracer approach. Here we focus on direct and indirect sources of atmospheric COS from anthropogenic activities. We construct bottom-up gridded inventories of anthropogenic COS sources and compare these to previous estimates that were based on relatively sparse emissions data. Furthermore, we simulate COS concentrations with an regional atmospheric chemistry model to show the influence of these alternative source estimates in relation to plant uptake at a range of surface and airborne monitoring sites.

  9. A study of the influence of forest gaps on fire-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Kiefer, Michael T.; Heilman, Warren E.; Zhong, Shiyuan; Charney, Joseph J.; Bian, Xindi

    2016-07-01

    Much uncertainty exists regarding the possible role that gaps in forest canopies play in modulating fire-atmosphere interactions in otherwise horizontally homogeneous forests. This study examines the influence of gaps in forest canopies on atmospheric perturbations induced by a low-intensity fire using the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization. A series of numerical experiments are conducted with a stationary low-intensity fire, represented in the model as a line of enhanced surface sensible heat flux. Experiments are conducted with and without forest gaps, and with gaps in different positions relative to the fire line. For each of the four cases considered, an additional simulation is performed without the fire to facilitate comparison of the fire-perturbed atmosphere and the background state. Analyses of both mean and instantaneous wind velocity, turbulent kinetic energy, air temperature, and turbulent mixing of heat are presented in order to examine the fire-perturbed atmosphere on multiple timescales. Results of the analyses indicate that the impact of the fire on the atmosphere is greatest in the case with the gap centered on the fire and weakest in the case with the gap upstream of the fire. It is shown that gaps in forest canopies have the potential to play a role in the vertical as well as horizontal transport of heat away from the fire. Results also suggest that, in order to understand how the fire will alter wind and turbulence in a heterogeneous forest, one needs to first understand how the forest heterogeneity itself influences the wind and turbulence fields without the fire.

  10. Influence of Industrialization in the Campinas Rural Region.

    ERIC Educational Resources Information Center

    Ferrari, Alfonso Trujillo

    The Campinas region of Brazil was studied to determine if the introduction of industrial plants in rural areas influenced the life of the rural population. The purpose of this study was to obtain an insight into the manner by which the industrialization influence is functioning in the Campinas rural area. The region and its rural population were…

  11. Neutral Middle Atmospheric Influences by the Extremely Large October 2003 Solar Proton

    NASA Technical Reports Server (NTRS)

    Jackman, C. H.; Fleming, E. L.

    2004-01-01

    The huge coronal mass ejection (CME) on October 28, 2003 caused an extremely large solar proton event (SPE) 3t the Earth, which impacted the middle atmospheric polar cap regions. The highly energetic protons produce ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HO(x) (H, OH, HO2) and NO(y) (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The total production of middle atmospheric NO(y) molecules by individual SPEs can be used to compare their sizes. Using this scale, the extremely large October 2003 SPE was the fourth largest in the past 40 years and the second largest of solar cycle 23. Only the October 1989, August 1972, and July 2000 SPEs were larger. The Goddard Space Flight Center (CSFC) Two-dimensional (2D)) Model was used in computing the influence of this gigantic SPE The NO(y) amount was increased by over two orders of Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) measurements as a result of this noteworthy SPE. The model also calculated polar middle mesosphere ozone decreases of over 70% during the SPE. Other atmospheric impacts from both model predictions and measurements as a result of this major SPE will be discussed in this paper.

  12. Neutral Middle Atmospheric Influences by the Extremely Large October 2003 Solar Proton Event

    NASA Technical Reports Server (NTRS)

    Jackman, C. H.; Fleming, E. L.

    2004-01-01

    The huge coronal mass ejection (CME) on October 28,2003 caused an extremely large solar proton event (SPE) at the Earth, which impacted the middle atmospheric polar cap regions. The highly energetic protons produce ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HOx (H, OH, HO2) and NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The total production of middle atmospheric NOy molecules by individual SPEs can be used to compare their sizes. Using this scale, the extremely large October 2003 SPE was the fourth largest in the past 40 years and the second largest of solar cycle 23. Only the October 1989, August 1972, and July 2000 SPEs were larger. The Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model was used in computing the influence of this gigantic SPE. The NOy amount was increased by over two orders of magnitude in the mesosphere in both the GSFC 2D Model computations and Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) measurements as a result of this noteworthy SPE. The model also calculated polar middle mesospheric ozone decreases of over 70% during the SPE. Other atmospheric impacts from both model predictions and measurements as a result of this major SPE will be discussed in this paper.

  13. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years

    PubMed Central

    Han, Y. M.; Wei, C.; Huang, R.-J.; Bandowe, B. A. M.; Ho, S. S. H.; Cao, J. J.; Jin, Z. D.; Xu, B. Q.; Gao, S. P.; Tie, X. X.; An, Z. S.; Wilcke, W.

    2016-01-01

    Historical reconstruction of atmospheric black carbon (BC, in the form of char and soot) is still constrained for inland areas. Here we determined and compared the past 150-yr records of BC and polycyclic aromatic compounds (PACs) in sediments from two representative lakes, Huguangyan (HGY) and Chaohu (CH), in eastern China. HGY only receives atmospheric deposition while CH is influenced by riverine input. BC, char, and soot have similar vertical concentration profiles as PACs in both lakes. Abrupt increases in concentrations and mass accumulation rates (MARs) of soot have mainly occurred since ~1950, the establishment of the People’s Republic of China, when energy usage changed to more fossil fuel contributions reflected by the variations in the concentration ratios of char/soot and individual PACs. In HGY, soot MARs increased by ~7.7 times in the period 1980–2012 relative to the period 1850–1950. Similar increases (~6.7 times) were observed in CH. The increase in soot MARs is also in line with the emission inventory records in the literature and the fact that the submicrometer-sized soot particles can be dispersed regionally. The study provides an alternative method to reconstruct the atmospheric soot history in populated inland areas. PMID:26750586

  14. Rare earth element components in atmospheric particulates in the Bayan Obo mine region.

    PubMed

    Wang, Lingqing; Liang, Tao; Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM10) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m(3), and those for PM10 were 42.8 and 68.9 ng/m(3), in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM10 and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM10 were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N), Gd(N)/Yb(N)). PMID:24657942

  15. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years.

    PubMed

    Han, Y M; Wei, C; Huang, R-J; Bandowe, B A M; Ho, S S H; Cao, J J; Jin, Z D; Xu, B Q; Gao, S P; Tie, X X; An, Z S; Wilcke, W

    2016-01-01

    Historical reconstruction of atmospheric black carbon (BC, in the form of char and soot) is still constrained for inland areas. Here we determined and compared the past 150-yr records of BC and polycyclic aromatic compounds (PACs) in sediments from two representative lakes, Huguangyan (HGY) and Chaohu (CH), in eastern China. HGY only receives atmospheric deposition while CH is influenced by riverine input. BC, char, and soot have similar vertical concentration profiles as PACs in both lakes. Abrupt increases in concentrations and mass accumulation rates (MARs) of soot have mainly occurred since ~1950, the establishment of the People's Republic of China, when energy usage changed to more fossil fuel contributions reflected by the variations in the concentration ratios of char/soot and individual PACs. In HGY, soot MARs increased by ~7.7 times in the period 1980-2012 relative to the period 1850-1950. Similar increases (~6.7 times) were observed in CH. The increase in soot MARs is also in line with the emission inventory records in the literature and the fact that the submicrometer-sized soot particles can be dispersed regionally. The study provides an alternative method to reconstruct the atmospheric soot history in populated inland areas. PMID:26750586

  16. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Wei, C.; Huang, R.-J.; Bandowe, B. A. M.; Ho, S. S. H.; Cao, J. J.; Jin, Z. D.; Xu, B. Q.; Gao, S. P.; Tie, X. X.; An, Z. S.; Wilcke, W.

    2016-01-01

    Historical reconstruction of atmospheric black carbon (BC, in the form of char and soot) is still constrained for inland areas. Here we determined and compared the past 150-yr records of BC and polycyclic aromatic compounds (PACs) in sediments from two representative lakes, Huguangyan (HGY) and Chaohu (CH), in eastern China. HGY only receives atmospheric deposition while CH is influenced by riverine input. BC, char, and soot have similar vertical concentration profiles as PACs in both lakes. Abrupt increases in concentrations and mass accumulation rates (MARs) of soot have mainly occurred since ~1950, the establishment of the People’s Republic of China, when energy usage changed to more fossil fuel contributions reflected by the variations in the concentration ratios of char/soot and individual PACs. In HGY, soot MARs increased by ~7.7 times in the period 1980-2012 relative to the period 1850-1950. Similar increases (~6.7 times) were observed in CH. The increase in soot MARs is also in line with the emission inventory records in the literature and the fact that the submicrometer-sized soot particles can be dispersed regionally. The study provides an alternative method to reconstruct the atmospheric soot history in populated inland areas.

  17. Atmospheric moisture budget during winter seasons in the western Himalayan region

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2016-04-01

    Winter precipitation in the western Himalayas occurs under the influence of western disturbances (WDs) that move in synoptic timescale from west to east across the Himalayan region. The main objective of the study is to examine the water vapor budget during life cycles of WDs using the high-resolution global climate forecast system reanalysis data. It is found that over western Kashmir, even in climatological mean, a westerly trough is seen in moisture flux. Precipitation exceeds evaporation over most of Jammu and Kashmir, Hindukush region and the region to the west in winter seasons. Large interannual variability is noticed in all components of the moisture budget in the region. In order to understand the mechanism of moisture transport and atmospheric moisture budget over study area during the life cycle of WDs, an EOF analysis has been carried out using geopotential height at 500 hPa. The first two leading modes represent eastward moving WDs. Composite analysis of moisture budget (both atmospheric and surface) has been made using the dates from the EOF analysis. It is found that large variations in moisture transport occur during different phases of the WDs. When a cyclonic circulation is around 72°E, strong meridional moisture transport (from Arabian Sea) occurs and moisture convergence over western Himalayas enhances precipitation over the region. After the circulation moves further east, moisture convergence decreases and precipitation reduces. However, evaporation amount increases marginally due to clear sky conditions. During the life cycle of WDs, large variation in meridional transport of moisture flux is noticed as compared to zonal transport.

  18. Influence of aerosols on atmospheric variables in the HARMONIE model

    NASA Astrophysics Data System (ADS)

    Palamarchuk, Iuliia; Ivanov, Sergiy; Ruban, Igor; Pavlova, Hanna

    2016-03-01

    The mesoscale HARMONIE model is used to investigate the potential influence of aerosols on weather forecasts, and in particular, on precipitation. The study considers three numerical experiments over the Atlantic-Europe-Northern Africa region during 11-16 August 2010 with the following configurations: (a) no aerosols, (b) only the sea aerosols, and (c) the four types of the aerosols: sea, land, organic, and dust aerosols. The spatio-temporal analysis of forecast differences highlights the impact of aerosols on the prediction of main meteorological variables such as air temperature, humidity, precipitation, and cloud cover as well as their vertical profiles. The variations occur through changes in radiation fluxes and microphysics properties. The sensitivity experiments with the inclusion of climatological aerosol concentrations demonstrate the importance of aerosol effects on weather prediction.

  19. Two centuries of observed atmospheric variability and change over the North Sea region

    NASA Astrophysics Data System (ADS)

    Stendel, Martin; van den Besselaar, Else; Hannachi, Abdel; Kent, Elizabeth; Lefebvre, Christiana; Rosenhagen, Gudrun; Schenk, Frederik; van der Schrier, Gerard; Woollings, Tim

    2016-04-01

    In the upcoming North Sea Region Climate Change Assessment (NOSCCA), we present a synthesis of current knowledge about past, present and possible future climate change in the North Sea region. A climate change assessment from published scientific work has been conducted as a kind of regional IPCC report, and a book has been produced that will be published by Springer in 2016. In the framework of the NOSCCA project, we examine past and present studies of variability and changes in atmospheric variables within the North Sea region over the instrumental period, roughly the past 200 years, based on observations and reanalyses. The variables addressed in this presentation are large-scale circulation, pressure and wind, surface air temperature, precipitation and radiative properties (clouds, solar radiation, and sunshine duration). While air temperature over land, not unexpectedly, has increased everywhere in the North Sea region, with strongest trends in spring and in the north of the region, a precipitation increase has been observed in the north and a decrease in the south of the region. This pattern goes along with a north-eastward shift of storm tracks and is in agreement with climate model projections under enhanced greenhouse gas concentrations. For other variables, it is not obvious which part of the observed changes may be due to anthropogenic activities and which is internally forced. It remains also unclear to what extent atmospheric circulation over the North Sea region is influenced by distant factors, in particular Arctic sea-ice decline in recent decades. There are indications of an increase in the number of deep cyclones (but not in the total number of cyclones), while storminess since the late 19th century shows no robust trends. The persistence of circulation types appears to have increased over the last century, and consequently, there is an indication for 'more extreme' extreme events. However, changes in extreme weather events are difficult to assess

  20. Using Search Algorithms and Probabilistic Graphical Models to Understand the Influence of Atmospheric Circulation on Western US Drought

    NASA Astrophysics Data System (ADS)

    Malevich, S. B.; Woodhouse, C. A.

    2015-12-01

    This work explores a new approach to quantify cool-season mid-latitude circulation dynamics as they relate western US streamflow variability and drought. This information is used to probabilistically associate patterns of synoptic atmospheric circulation with spatial patterns of drought in western US streamflow. Cool-season storms transport moisture from the Pacific Ocean and are a primary source for western US streamflow. Studies overthe past several decades have emphasized that the western US hydroclimate is influenced by the intensity and phasing of ocean and atmosphere dynamics and teleconnections, such as ENSO and North Pacific variability. These complex interactions are realized in atmospheric circulation along the west coast of North America. The region's atmospheric circulation can encourage a preferential flow in winter storm tracks from the Pacific, and thus influence the moisture conditions of a given river basin over the course of the cool season. These dynamics have traditionally been measured with atmospheric indices based on values from fixed points in space or principal component loadings. This study uses collective search agents to quantify the position and intensity of potentially non-stationary atmosphere features in climate reanalysis datasets, relative to regional hydrology. Results underline the spatio-temporal relationship between semi-permanent atmosphere characteristics and naturalized streamflow from major river basins of the western US. A probabilistic graphical model quantifies this relationship while accounting for uncertainty from noisy climate processes, and eventually, limitations from dataset length. This creates probabilities for semi-permanent atmosphere features which we hope to associate with extreme droughts of the paleo record, based on our understanding of atmosphere-streamflow relations observed in the instrumental record.

  1. Mesoscale Modeling of Water Vapor and Dust in Valles Marineris: Atmospheric Influences on Recurring Slope Lineae.

    NASA Astrophysics Data System (ADS)

    Leung, C. W. S.; Rafkin, S. C.; McEwen, A. S.

    2015-12-01

    Extensive recurring slope lineae (RSL) activity has been detected in Valles Marineris on Mars and coincides with regions where water ice fogs appear [1]. The origin of the water driving RSL flow is not well understood, but observational evidence suggests atmospheric processes play a crucial role [2]. Provided the atmospheric vapor concentration is high enough, water ice fogs can form overnight if the surface temperature cools below the condensation temperature. Correlations between dust storms and flow rates suggest that atmospheric dust opacity, and its influence on air temperature, also has a significant effect on RSL activity. We investigate planetary boundary layer processes that govern the hydrological cycle and dust cycle on Mars using a mesoscale atmospheric model to simulate the distribution of water and dust with respect to regional atmospheric circulations. Our simulations in Valles Marineris show a curious temperature structure, where the inside of the canyon appears warmer relative to the plateaus immediately outside. For a well-mixed atmosphere, this temperature structure indicates that when the atmosphere inside the canyon is saturated and fog is present within Valles Marineris, fog and low-lying clouds should also be present on the cooler surrounding plateaus as well. However, images taken with the Mars Express High Resolution Stereo Camera (HRSC) show instances where water ice fog appeared exclusively inside the canyon. These results have important implications for the origin and concentration of water vapor in Valles Marineris, with possible connections to RSL. The potential temperatures from our simulations show a high level of stability inside the canyon produced dynamically by sinking air. However, afternoon updrafts along the canyon walls indicate that over time, water vapor within the chasm would escape along the sides of the canyon. Again, this suggests a local source or mechanism to concentrate water vapor is needed to explain the fog

  2. Investigating the atmospheric energy spectra using ECMWF analysis: Regional dependence

    NASA Astrophysics Data System (ADS)

    Mukherjee, P.; Zhang, M.

    2010-12-01

    The atmospheric turbulence energy spectrum has been a subject of active research for a long time. Beginning with Kolmogorov’s theory of three-dimensional turbulence, to Kraichnan’s two-dimensional turbulence and its extension to the quasi-geostrophic case by Charney, various theoretical models and hypothesis have tried to explain the energy spectrum slope. However, the success or failure of a theory can only be gauged by comparing its output with actual observational data. Nastrom and Gage were able to do just that by analyzing thousands of flight observation data and plotting the wave number spectra of wind and temperature in 1980’s. But, the flight data was confined only to the upper atmosphere and mostly mid-latitudes of northern hemisphere. We use the high-resolution ECMWF analysis data, as a part of Year of Tropical Convection (YOTC) to study the atmospheric energy spectra over a wide range of conditions. We compared and interpreted the differences of the atmospheric energy spectra in the tropics and mid-latitudes, in the winter (DJF) and summer (JJA), at the surface and in the upper troposphere. Our results conform to the previously observed -3 power law for mid-latitude data in the upper troposphere, but the slope of the energy spectrum from the surface wind data and for the tropics exhibited quite different shapes. The causes of these differences are discussed.

  3. REGIONAL MODELING OF THE ATMOSPHERIC TRANSPORT AND DEPOSITION OF ATRAZINE

    EPA Science Inventory

    A version of the Community Multiscale Air Quality (CMAQ) model has been developed by the U.S. EPA that is capable of addressing the atmospheric fate, transport and deposition of some common trace toxics. An initial, 36-km rectangular grid-cell application for atrazine has been...

  4. Rare earth element components in atmospheric particulates in the Bayan Obo mine region

    SciTech Connect

    Wang, Lingqing Liang, Tao Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM{sub 10}) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m{sup 3}, and those for PM{sub 10} were 42.8 and 68.9 ng/m{sup 3}, in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM{sub 10} and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM{sub 10} were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La{sub N}/Yb{sub N}, La{sub N}/Sm{sub N}, Gd{sub N}/Yb{sub N}). - Highlights: • TSP and PM{sub 10} samples were collected to analyze the levels and distributions of REE. • Enrichment factors indicated that REE enrichment was caused by anthropogenic sources. • The distribution of REEs showed a strong gradient in the prevailing wind direction. • Obvious fractionation between LREEs and HREEs is observed in atmospheric particulates.

  5. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m‑Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts

  6. The influence of ozone on Martian atmospheric temperature

    NASA Technical Reports Server (NTRS)

    Kuhn, W. R.; Atreya, S. K.; Postawko, S. E.

    1979-01-01

    Radiative equilibrium temperature calculations for Mars are presented, using the model of Kuhn et al. (1978). The maximum amount of ozone measured was 57 microns over the polar hood during winter. Results indicate that, although a minor constituent in the Martian atmosphere, ozone may play a significant role in controlling the rate of carbon dioxide deposition and thus the atmospheric pressure.

  7. Influence of Atmospheric CO2 Variation on Strom Track Behavior

    NASA Astrophysics Data System (ADS)

    Martynova, Yuliya; Krupchatnikov, Vladimir

    2015-04-01

    The storm tracks are the regions of strong baroclinicity where surface cyclones occur. The effect of increase with following decrease of anthropogenic load on storm tracks activity in the Northern Hemisphere was studied. The global climate system model of intermediate complexity ('Planet Simulator', Fraedrich K. et al., 2005) was used in this study. Anthropogenic forcing was set according to climatic scenario RCP8.5 continued till 4000 AD with fixed CO2 concentration till 3000 AD and linear decrease of anthropogenic load to preindustrial value at two different rates: for 100 and 1000 years. Modeling data analysis showed meridional shift of storm tracks due to atmospheric CO2 concentration variation. When CO2 concentration increases storm tracks demonstrate poleward shifting. When CO2 concentration decreases to preindustrial value storm tracks demonstrate a tendency to equator-ward shifting. Storm tracks, however, don't recover their original activity and location to the full. This manifests itself particularly for 'fast' CO2 concentration decrease. Heat and moisture fluxes demonstrate the same behavior. In addition, analysis of eddy length scale (Kidston J. Et al., 2011) showed their increase at mid-latitudes and decrease at tropic latitudes due to intensive CO2 concentration increase. This might cause poleward shift of mid-latitude jets. Acknowledgements. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grant 13-05-12034, 13-05-00480, 14-05-00502 and grant of the President of the Russian Federation. Fraedrich K., Jansen H., Kirk E., Luksch U., and Lunkeit F. The Planet Simulator: Towards a user friendly model // Meteorol. Zeitschrift. 2005, 14, 299-304. Kidston J., Vallis G.K., Dean S.M., Renwick J.A. Can the increase in the eddy length scale ander global warming cause the poleward shift of the jet streams? // J. Climate. 2011, V.24. P. 3764-3780.

  8. On validation of regional atmosphere and wave models for the Black Sea region

    NASA Astrophysics Data System (ADS)

    Dulov, Vladimir; Shokurov, Mikhail; Chechina, Katerina; Soukissian, Takvor; Malinovsky, Vladimir

    2014-05-01

    Mesoscale atmospheric models MM5 and WRF adapted to the Black Sea region in Marine Hydrophysical Institute (MHI, National Academy of Sciences of Ukraine) together with wave model WAM are widely using in the last decade. Black Sea meteorological and wave climate assessing, 3-5 days operational forecast, researches of various physical phenomena typical for the Black Sea coastal zone are examples of application of such regional model calculations. Therefore we made some inspection of their quality. Results of operational regional forecast of catastrophic weather events in the Black Sea region are considered. Flooding of 6-7 July 2012 in the Krasnodar Region, Russia caused a loss of more than 170 lives and huge economic damage. Hazardous storm of 11 November 2007 near the Crimean coast caused accidents and sinks of many vessels including ones carrying fuel oil and sulfur, more than 20 members of the crews were missing and severe ecological damage was suffered. However, the forecast of rainfall intensity had appeared five days before the flood at free access on the Internet website http://vao.hydrophys.org and the forecast of the wave height appeared on the same website three days before the storm. Quality of the regional forecast and its advantages over the global forecast are discussed. In situ wave data including 2D wave spectra obtained at the MHI Black Sea Research Platform in 2012-2013 over all seasons were compared with model calculations. The distance of the Platform to the shore is 0.5 km where the sea depth is 28 m. Only part of wave spectrum belonging to wave frequencies lower than 0.4 Hz was considered to filter out waves developing from the coastal line. It is concluded that scatter indexes for modeled significant wave height and mean frequency are about of 50% and 15%. Some systematic defects of model calculations are revealed but the use of the model-based forecasts could lead to significant reduction in human losses and economic damage from catastrophic

  9. Internal wave activity in the polar atmospheric regions during 2006 - 2009 revealed by COSMIC radio occultation data

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander; Liou, Yuei-An

    ) and Scandinavian Peninsula. In this work, the results of an analysis of the wave activity and factors influencing upon it in the polar stratosphere of Arctic and Antarctic have been presented and discussed. A statistical analysis of the IGW activity in Polar Regions (latitudes more than 60º) of the Earth’s atmosphere using Formosat-3/COSMIC RO temperature data collected from July 2006 to March 2009 is performed. Geographic and seasonal distributions of the IGW potential energy per unit mass (wave activity indicator) in the altitude interval from 15 to 35 km are determined and analyzed. This work was partially supported by the RFBR grant 13-02-00526-а and Program 22 of the RAS Presidium.

  10. High frequency and wavenumber ocean-ice-atmosphere coupling in the Regional Arctic Climate Model

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Maslowski, W.; Jakacki, J.; Higgins, M.; Craig, T.; Cassano, J. J.; Gutowski, W. J.; Lettenmaier, D. P.

    2011-12-01

    We present results from the fully coupled version of the Regional Arctic Climate Model (RACM) on the spectral and noise characteristics of high-frequency (20-minute) dynamic coupling between the 9km Parallel Ocean Program/Community Ice Code (POP/CICE) and 50km Weather Research and Forecast model (WRF) using the CPL7 framework. We have employed an array of signal processing techniques to investigate: 1) Synchronization of the inertial response of POP and CICE to the passage of storms in WRF, and wavelet coherence of these results with in-situ observations of drift and deformation in the Arctic Ocean; 2) High-wavenumber signals in the sea ice deformation pattern resulting super-inertial coupling and aliasing of the wind field in CPL7, and the influence of these factors on the transmission of wind stress curl into the deep ocean; 3) The impact of high frequency ocean-ice-atmosphere coupling on the modeled sea ice thickness distribution. For this last set of experiments, we have run a set of winter band-limited integrations, filtering out high-frequency WRF inputs to the sea ice and ocean components. These experiments suggest the most pronounced regional influence of super-inertial coupling on sea ice mass extends from the Greenland Sea through Fram Strait to the North Pole, although there is also a significant basin-wide deformation pattern emanating from high spatiotemporal coupling in RACM.

  11. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry MechanismsChemistry Mechanisms

    EPA Science Inventory

    We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RAC...

  12. Regional forecasting with global atmospheric models; Fourth year report

    SciTech Connect

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    The scope of the report is to present the results of the fourth year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  13. Regional Assimilation of NASA Atmospheric Infrared Sounder (AIRS) Data

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Lapenta, William; Jediovec, Gary J.; McCarty, William; Mecikalski, John R.

    2004-01-01

    The NASA Short-term Prediction Research and Transition (SPORT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NW S forecast operations and decision-making. The Atmospheric Infrared Sounder (AIRS), is expected to advance climate research and weather prediction into the 21 st century. It is one of six instruments onboard Aqua, a satellite that is part of NASA s Earth Observing System. AIRS, along with two partner microwave sounding instruments, represents the most advanced atmospheric sounding system ever deployed in space. The system is capable of measuring the atmospheric temperature in the troposphere with radiosonde accuracies of 1 K over 1 km-thick layers under both clear and cloudy conditions, while the accuracy of the derived moisture profiles will exceed that obtained by radiosondes. It is imperative that the scientific community is prepared to take full advantage of next-generation satellite data that will become available within the next decade. The purpose of this paper is to describe a procedure designed to optimally assimilate AIRS data at high spatial resolution over both land and ocean. The assimilation system used in this study is the Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory used extensively around the globe. Results will focus on quality control issues associated with AIRS, optimal assimilation strategies, and the impact of the AIRS data on subsequent numerical forecasts at 12 km produced by the next generation Weather Research and Forecast (WRF) model.

  14. Regionality of Soil Moisture-Atmosphere Feedback in the Central United States

    NASA Astrophysics Data System (ADS)

    Tentinger, B.; Pan, Z.

    2006-12-01

    Soil moisture has been found to greatly impact the partitioning of energy fluxes at the surface-atmosphere interface and thus precipitation systems. Using the NCAR/Penn State mesoscale model MM5 with the NOAH land surface scheme, this study carried out four experiments to examine this impact along with soil moisture- precipitation feedbacks over different regions of varying climate regimes. The first and second experiments were performed by multiplying the initial soil moisture values by 0.5 and 1.5 (SMinitX0.5 and SMinitX1.5) for the 1-month simulation. The third and forth experiments were carried out by forcing the soil moisture to the saturation and wilting-point values (SatSM and WiltSM) throughout the month-long simulation. The SMinitX0.5 and SMinitX1.5 mimic circumstances with pre-existing abnormally dry or wet soil conditions, while SatSM and WiltSM represent situations where the soil surface was kept at extreme levels and not allowed to dry out or recharge for the month. The results show that on a sub-seasonal scale (a month) during summer, in the dry Great Plains region, soil moisture can have a significant effect on both local atmospheric processes, and downstream remote atmospheric structure and stability. In contrast in the relatively wet Midwest, soil moisture was found to have a much weaker influence. The differences in soil moisture effects are associated with varying responses of boundary-layer heights, convective stability, and the low-level jets. In the Great Plains where the boundary layer is deeper and convection is more surfaced-based, soil moisture tends to play a larger role, whereas in the Midwest where the boundary layer is generally shallower and convection is more elevated, soil moisture plays a smaller role. Among all four experiments, the SatSM simulation produced shallowest boundary layer and weakest low-level jets, and thus resulted in the least amount of rainfall for both regions, suggesting that soil moisture has a negative feedback

  15. Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange.

    PubMed

    Alden, Caroline B; Miller, John B; Gatti, Luciana V; Gloor, Manuel M; Guan, Kaiyu; Michalak, Anna M; van der Laan-Luijkx, Ingrid T; Touma, Danielle; Andrews, Arlyn; Basso, Luana S; Correia, Caio S C; Domingues, Lucas G; Joiner, Joanna; Krol, Maarten C; Lyapustin, Alexei I; Peters, Wouter; Shiga, Yoichi P; Thoning, Kirk; van der Velde, Ivar R; van Leeuwen, Thijs T; Yadav, Vineet; Diffenbaugh, Noah S

    2016-10-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  16. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    NASA Astrophysics Data System (ADS)

    Schweitzer, S.; Kirchengast, G.; Proschek, V.

    2011-10-01

    LEO-LEO infrared-laser occultation (LIO) is a new occultation technique between Low Earth Orbit (LEO) satellites, which applies signals in the short wave infrared spectral range (SWIR) within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO) method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms) of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We conclude that

  17. A zonally symmetric model for volcanic influence upon atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Mayr, H. G.; Harris, I.; Taylor, H. A., Jr.

    1984-01-01

    The effects of volcanic activity upon zonal wind flow in a model atmosphere are considered. A low latitude volcanic eruption could lower the tropospheric pole to equator temperature difference and thereby affect the atmospheric motions. When the temperature contrast decreases, the zonal wind velocities at high altitudes are reduced. To conserve angular momentum, the velocities in the lower atmosphere near the surface must increase, thus providing a momentum source for ocean currents. It is suggested that this momentum source may have played a role as a trigger for inducing the 1982-83 anomalous El Nino and possibly other climate changes.

  18. Effect of East Asia summer blocking on the atmospheric circulation over the region

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Park, Yong-Jun

    2015-04-01

    The influence of the boreal summer blocking on atmospheric circulation in East Asia was examined. The summer blocking occurred mostly in North Europe, Ural region, Sea of Okhotsk (OK), and northeastern Pacific. The summer blocking was the major mode in these four regions according to principal component analysis using 500 hPa geopotential heights. Among the four blocking regions, OK blocking frequencies (OK BFs) showed negative and positive correlations with summer temperature and precipitation of Northeast Asia centered around the East Sea/Sea of Japan, respectively. In particular, the OK BF had a statistically significant correlation coefficient of -0.54 with summer temperatures in the Korean Peninsula. This indicates that the summer temperature and precipitation in this region were closely related to the OK blocking. According to the composite analysis for the years of higher-than-average BF (positive BF years), the OK High became stronger and expanded, while the North Pacific High was weakened over the Korean Peninsula and Japan and an anomalously deep trough was developed in the upper layer (200 hPa). As the cool OK High expanded, the temperature decreased over Northeast Asia centered around the East Sea/Sea of Japan and the lower level (850 hPa) air converged cyclonically, resulting in the increased precipitation, which induced the divergence in the upper layer and thereby strengthened the jet stream. Thus, the boreal summer OK blocking systematically influencing the area as the most dominant mode. Acknowledgements This work was carried out with the support of Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under grant project PJ009353 and Korea Meteorological Administration Research and Development Program under grant CATER 2012-3100, Republic of Korea.

  19. Influences of land-ocean-atmosphere dynamics and emissions sectors on atmospheric chemical transport during VOCALS REx

    NASA Astrophysics Data System (ADS)

    Spak, S.; Mena, M.; Carmichael, G. R.

    2009-12-01

    Measurements and modeling from the VOCALS REx campaign have identified a range of transport regimes based on synoptic meteorology, and suggested roles for the marine boundary layer inversion, downslope katabatic winds from the Andean cordillera, and Hadley cell subsidence as primary causes for observed aerosol and trace gas concentration gradients over the Southeast Pacific. This study employs atmospheric chemical transport modeling and airmass trajectory analyses to more directly address the influence of orographic winds, boundary layer dynamics, coastal circulations, and large-scale circulation by the subtropical high on the diurnal and episodic variability of pollution transport in the region. Using hourly simulations with the Weather Research and Forecasting model and the STEM chemical transport model at 12 km x 12 km resolution, we introduce tracer emissions within and above the boundary layer at representative locations--including the western slopes of the Andes, on-shore and off-shore coastal areas, metropolitan Santiago, the Chilean altiplano, and the free troposphere over the open ocean--and follow their transport and fate throughout the REx experiment of October-November 2008. Comparison between trajectories and tracer concentrations illustrate long range airmass history and allow for an understanding of the representativeness of instantaneous trajectories on transport phenomena. We further assess the contributions of emissions from power generation, copper smelters, natural sources, and anthropogenic area sources to aerosol concentrations over the Southeast Pacific, identifying their role in each transport regime.

  20. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China.

    PubMed

    Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing

    2015-12-01

    Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall. PMID:26298336

  1. Ionospheric E-region electron density and neutral atmosphere variations

    NASA Technical Reports Server (NTRS)

    Stick, T. L.

    1976-01-01

    Electron density deviations from a basic variation with the solar zenith angle were investigated. A model study was conducted in which the effects of changes in neutral and relative densities of atomic and molecular oxygen on calculated electron densities were compared with incoherent scatter measurements in the height range 100-117 km at Arecibo, Puerto Rico. The feasibility of determining tides in the neutral atmosphere from electron density profiles was studied. It was determined that variations in phase between the density and temperature variation and the comparable magnitudes of their components make it appear improbable that the useful information on tidal modes can be obtained in this way.

  2. Atmospheric Rivers Induced Heavy Precipitation and Flooding in the Western U.S. Simulated by the WRF Regional Climate Model

    SciTech Connect

    Leung, Lai R.; Qian, Yun

    2009-02-12

    Twenty years of regional climate simulated by the Weather Research and Forecasting model for North America has been analyzed to study the influence of the atmospheric rivers and the role of the land surface on heavy precipitation and flooding in the western U.S. Compared to observations, the simulation realistically captured the 95th percentile extreme precipitation, mean precipitation intensity, as well as the mean precipitation and temperature anomalies of all the atmospheric river events between 1980-1999. Contrasting the 1986 President Day and 1997 New Year Day atmospheric river events, differences in atmospheric stability are found to have an influence on the spatial distribution of precipitation in the Coastal Range of northern California. Although both cases yield similar amounts of heavy precipitation, the 1997 case was found to produce more runoff compared to the 1986 case. Antecedent soil moisture, the ratio of snowfall to total precipitation (which depends on temperature), and existing snowpack all seem to play a role, leading to a higher runoff to precipitation ratio simulated for the 1997 case. This study underscores the importance of characterizing or simulating atmospheric rivers and the land surface conditions for predicting floods, and for assessing the potential impacts of climate change on heavy precipitation and flooding in the western U.S.

  3. Regional spatial and temporal interpolation of atmospheric PCBs: Interpretation of Lake Michigan mass balance data

    SciTech Connect

    Green, M.L.; Depinto, J.V.; Sweet, C.; Hornbuckle, K.C.

    2000-05-01

    During the Lake Michigan Mass Balance (LMMB) Project, over 600 atmospheric samples were collected at eight shoreline sites and during seven cruises. These samples were analyzed for persistent organic pollutants, including PCB congeners, atrazine, and trans-nonachlor. The authors have developed a method for interpreting the gas-phase data that includes fractionating the observed PCB concentration into land- and water-based sources. This approach accounts for differences in gas-phase atmospheric PCB concentration over water and over land. Using this fractionation approach, they have interpolated the measured data over time and space to predict PCB air concentrations over the lake during the LMMB field period. The results predict gas-phase {Sigma}PCB (sum of {approximately}98 congener groups) concentrations for each of 2,319 grid cells over the lake, on a monthly basis. The authors estimate that lake-wide monthly average {sigma}PCB gas-phase concentrations range from 0.136 to 1.158 ng/m{sup 3}, with an annual average PCB concentration of 0.457 ng/m{sup 3}. As expected, the highest concentrations of PCBs over the lake when the winds are from the southwest (out of the Chicago-Gary region) and when land surface temperatures are elevated. The predicted influence of Chicago is described on a monthly basis as a zone of elevated PCB concentrations for approximately 40 km into Lake Michigan.

  4. Solar activity influences on atmospheric electricity and on some structures in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Reiter, Reinhold

    1989-01-01

    Only processes in the troposphere and the lower stratosphere are reviewed. General aspects of global atmospheric electricity are summarized in Chapter 3 of NCR (1986); Volland (1984) has outlined the overall problems of atmospheric electrodynamics; and Roble and Hays (1982) published a summary of solar effects on the global circuit. The solar variability and its atmospheric effects (overview by Donelly et al, 1987) and the solar-planetary relationships (survey by James et al. 1983) are so extremely complex that only particular results and selected papers of direct relevance or historical importance are compiled herein.

  5. Atmospheric correction analysis on LANDSAT data over the Amazon region. [Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dias, L. A. V.; Dossantos, J. R.; Formaggio, A. R.

    1983-01-01

    The Amazon Region natural resources were studied in two ways and compared. A LANDSAT scene and its attributes were selected, and a maximum likelihood classification was made. The scene was atmospherically corrected, taking into account Amazonic peculiarities revealed by (ground truth) of the same area, and the subsequent classification. Comparison shows that the classification improves with the atmospherically corrected images.

  6. The influence of scales of atmospheric motion on air pollution over Portugal

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Trigo, Ricardo; Mendes, Manuel; Jerez, Sonia; Gouveia, Célia Marina

    2014-05-01

    Air pollution is determined by the combination of different factors, namely, emissions, physical constrains, meteorology and chemical processes [1,2,3]. The relative importance of such factors is influenced by their interaction on diverse scales of atmospheric motion. Each scale depicts different meteorological conditions, which, when combined with the different air pollution sources and photochemistry, result in varying ambient concentrations [2]. Identifying the dominant scales of atmospheric motion over a given airshed can be of great importance for many applications such as air pollution and pollen dispersion or wind energy management [2]. Portugal has been affected by numerous air pollution episodes during the last decade. These episodes are often related to peak emissions from local industry or transport, but can also be associated to regional transport from other urban areas or to exceptional emission events, such as forest fires. This research aims to identify the scales of atmospheric motion which contribute to an increase of air pollution. A method is proposed for differentiating between the scales of atmospheric motion that can be applied on a daily basis from data collected at several wind-measuring sites in a given airshed and to reanalysis datasets. The method is based on the daily mean wind recirculation and the mean and standard deviation between sites. The determination of the thresholds between scales is performed empirically following the approach of Levy et al. [2] and also through a automatic statistical approach computed taking into account the tails of the distributions (e.g. 95% and 99% percentile) of the different wind samples. A comparison is made with two objective approaches: 1) daily synoptic classification for the same period over the region [4] and 2) a 3-D backward trajectory approach [5,6] for specific episodes. Furthermore, the outcomes are expected to support the Portuguese authorities on the implementation of strategies for a

  7. The Influence of Solar Proton Events in Solar Cycle 23 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; vonKonig, Miriam; Anderson, John; Roble, Raymond G.; McPeters, Richard D.; Fleming, Eric L.; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) can cause changes in constituents in the Earth's middle atmosphere. The highly energetic protons cause ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HO(x) (H, OH, HO2) and NO(y) (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HO(x) increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HO, constituents. The NO(x) increases lead to long-lived stratospheric ozone changes because of the long lifetime of NO(y) constituents in this region. Solar cycle 23 was quite active with SPEs and very large fluxes of high energy protons occurred in July and November 2000, November 200 1, and April 2002. Smaller, but still substantial, proton fluxes impacted the Earth during other months in the 1997-2003 time period. The impact of the very large SPEs on the neutral middle atmosphere during solar cycle 23 will be discussed, including the HO(x), NO(y), ozone variations and induced atmospheric transport changes. Two multi-dimensional models, the Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model and the Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM), were used in computing the influence of the SPEs. The results of the GSFC 2D Model and the TIME-GCM will be shown along with comparisons to the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments.

  8. The solar atmosphere and the structure of active regions

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1974-01-01

    The existence of 'holes' in the corona is reported characterized by abnormally low densities and temperatures. It was found that such coronal holes appear to be the source of high-velocity, enhanced-density streams in the solar wind as observed at the earth's orbit. It was further noted that coronal holes appear to be associated with regions of diverging magnetic fields in the corona. Models were developed to accomplish the objective for the principal energy flows in the transition region and corona.

  9. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  10. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    NASA Astrophysics Data System (ADS)

    Schweitzer, S.; Kirchengast, G.; Proschek, V.

    2011-05-01

    be as well made negligible by a design with a close time spacing (within 5 ms) of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by a design allowing retrieval of a cloud layering profile from reference signals and its use in trace species retrieval when scanning through intermittent upper tropospheric cloudiness. Wind can have a small influence via Doppler shift resulting in a slightly modified trace species absorption in comparison to calm air, which can be made negligible by using a simultaneously retrieved wind speed profile or a moderately accurate (to about 10 m s-1) background wind profile. Considering all these influences, we conclude that the set of SWIR channels proposed for implementing the LMIO method (Kirchengast et al., 2010; Kirchengast and Schweitzer, 2011) provides adequate sensitivity to accurately retrieve eight greenhouse gas/isotope trace species of key importance to climate and atmospheric chemistry (H2O, 12CO2, 13CO2, C18OO, CH4, N2O, O3, CO) in the upper troposphere/lower stratosphere region outside clouds under all atmospheric conditions. Two further isotope species (HDO, H218O) can be retrieved in the upper troposphere.

  11. MODELING REGIONAL-SCALE ATMOSPHERIC MERCURY USING RELMAP

    EPA Science Inventory

    The Regional Lagrangian Model of Air Pollution (RELMAP) is used to simulate the emission, transport and diffusion, chemical transformation, and wet and dry deposition of elemental mercury gas, divalent mercury gas and particulate mercury. ased on recent modeling advances in Europ...

  12. Regional earth-atmosphere energy balance estimates based on assimilations with a GCM

    NASA Technical Reports Server (NTRS)

    Alexander, Michael A.; Schubert, Siegfried D.

    1990-01-01

    The Oort and Vonder Haar (1976) column-budget technique is presently used to evaluate the physical consistency and accuracy of regional earth-atmosphere energy balance estimates for (1) atmospheric budget terms, (2) net radiation at the top of the atmosphere, and (3) time tendency and flux divergence of energy, for Special Observing Periods of the FGGE year. It is found that, during winter, the midlatitude oceans supply large quantities of energy to the overlying atmosphere, which then transports the energy to the continental heat-sinks; the energy flows in the opposite direction during summer.

  13. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.

    PubMed

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B; Jaffe, Daniel A; Kleinman, Lawrence; Sedlacek, Arthur J; Briggs, Nicole L; Hee, Jonathan; Fortner, Edward; Shilling, John E; Worsnop, Douglas; Yokelson, Robert J; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K; Pekour, Mikhail S; Springston, Stephen; Zhang, Qi

    2016-08-16

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (∼2700 m a.s.l.) as well as near their sources using an aircraft. The regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), an index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (∼1 h old) and emissions sampled after atmospheric transport (6-45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. These results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate. PMID:27398804

  14. Regional scale atmospheric dispersion simulation of accidental releases of radionuclides from Fukushima Dai-ichi reactor

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Venkatesan, R.; Baskaran, R.; Rajagopal, V.; Venkatraman, B.

    2012-12-01

    This paper presents the results of regional scale atmospheric dispersion simulation of accidental emission of radionuclides from the Fukushima Daiichi Reactor, Japan following the Tohoku earthquake and tsunami event on 11 March 2011. The objective was to study the temporal behaviour of plume trajectory, concentration, deposition and radiation dose pattern over an 80 km range around the reactor. The time-varying meteorological parameters during the release period were simulated with a multi-scale nested atmospheric model WRF ARW and the trajectory, plume dispersion were computed with Lagrangian Particle Dispersion models HYSPLIT, FLEXPART using the available information on accidental source term. The simulations indicated that the wind flow over Japan during the release period was driven by the large scale extra-tropical westerly waves and associated low pressure systems. In the lower levels, the flow was influenced by the local topography/sea breeze causing occasional landward wind shift on the east coast of Japan. Simulated airflow trajectories revealed that the plume stayed over the ocean by westerly winds on most days and the radioactivity dispersed over sea surface. Landward trajectories were found on a few days due to southeasterly, easterly and northeasterly flow (15-17, 19-21 March 2011) during which much of the radionuclides deposited over the land region. The hotspot of depositions occurred over east Pacific Ocean near to Japan. Over the land relatively high depositions were simulated in a narrow zone of 20 km width and 80 km length in the northwest sector in agreement with monitor data. Simulations showed wet depositions over the land to be higher than the dry depositions during 12-30 March due to occurrence of rainfall on some days. Comparison of activity deposition and air dose values with available observations confirmed that the plume pattern in a finer length scale around the site could be simulated realistically and agree with the measurements

  15. Coordinated radar observations of atmospheric diurnal tides in equatorial regions

    NASA Astrophysics Data System (ADS)

    Tsuda, Toshitaka; Ohnishi, Kazunori; Isoda, Fusako; Nakamura, Takuji; Vincent, Robert A.; Reid, Iain M.; Harijono, Sri Woro B.; Sribimawati, Tien; Nuryanto, Agus; Wiryosumarto, Harsono

    1999-07-01

    The long-term behavior of atmospheric tides in the mesosphere and lower thermosphere has been observed with the meteor wind radar (MWR) in Jakarta, Indonesia (6°S, 107°E) from November 1992 to August 1997. The amplitudes and phases of the diurnal tides show systematic seasonal variations, particularly distinct in the meridional component. In addition, substantial interannual variability is evident, characterized by a biennial periodicity of tidal parameters, and considerably small tidal amplitudes exclusively seen in 1996. The MWR results are compared with the Global Scale Wave Model (GSWM) as well as MF radar data collected in two equatorial sites in Pontianak (0.03°N, 109°E) and Christmas Island (2°N, 158°W) for November 1995-July 1997 and January 1996-October 1997, respectively. Comparison studies of these radar data have revealed the detailed latitudinal structure of the diurnal tide near the equator. The GSWM has successfully described the general characteristics of the radar results, although some discrepancies are recognized. In 1996 when radar data are available at all the three sites, the monthly mean values of tidal amplitudes at 90 km agreed very well between Jakarta and Pontianak, while significant discrepancy was found for Christmas Island, suggesting the existence of geographical effects such as non-migrating tides.

  16. Atmospheric Extreme Events in the North Atlantic Region

    NASA Astrophysics Data System (ADS)

    Franzke, C.

    2012-04-01

    An important part of European weather and climate are storms. European winter storms cause economic damage and insurance losses on the order of billions of Euro per year. European winter storms rank as the second highest cause of global natural catastrophe insurance loss. Many of these hazard events are not independent; for instance, severe storms can occur in trains of storms. Recent examples of such subsequently occurring storms include January 2008 (Paula and Resi) and March 2008 (Emma, Johanna and Kirsten). Each of these trains of storms caused damages on the order of ~€1bn. Extreme value statistics are based on the premise that extreme events are iid but this is rarely the case in natural systems where extreme events tend to cluster. Thus, no account is taken of memory and correlation that characterise many natural time series; this fundamentally limits our ability to forecast and to estimate return periods of extreme events. In my presentation I will discuss two possible causes of this clustering: (i) The propensity of extreme events to depend on large-scale circulation regimes and (ii) the long-range correlation properties of surface windspeeds enhances the likelihood of extreme events to cluster. These two characteristics affect the return periods of atmospheric extreme events and thus insurance pricing.

  17. Atmospheric winter conditions 2007/08 over the Arctic Ocean based on NP-35 data and regional model simulations

    NASA Astrophysics Data System (ADS)

    Mielke, M.; Zinoviev, N. S.; Dethloff, K.; Rinke, A.; Kustov, V. J.; Makshtas, A. P.; Sokolov, V. T.; Neuber, R.; Maturilli, M.; Klaus, D.; Handorf, D.; Graeser, J.

    2014-05-01

    Atmospheric measurements on the drifting Arctic sea ice station "North Pole-35" crossing the Eastern part of the Arctic Ocean during winter 2007/2008 have been compared with regional atmospheric HIRHAM model simulations. The observed near-surface temperature, mean sea level pressure and the vertical temperature, wind and humidity profiles are satisfactorily reproduced by the model. The strongest temperature differences between observations and the simulations occur near the surface due to an overestimated vertical mixing of heat in the stable Arctic boundary layer (ABL). The observations show very strong temperature inversions near the surface, whereas the simulated inversions occur frequently between the surface and 415 m at too high levels. The simulations are not able to reproduce the observed inversion strength. The regional model underestimates the wind speeds and the sharp vertical wind gradients. The strength of internal atmospheric dynamics on the temporal development of atmospheric surface variables and vertical profiles of temperature, wind and relative humidity has been examined. Although the HIRHAM model systematically overestimates relative humidity and produces too high long-wave downward radiation during winter, two different atmospheric circulation states, which are connected to higher or lower pressure systems over the Eastern part of the Arctic Ocean, are simulated in agreement with the NP-35 observations. Sensitivity studies with reduced vertical mixing of heat in the stable ABL have been carried out. A slower increase in the stability functions with decreasing Richardson number under stable stratification has an impact on the horizontal and vertical atmospheric structure. Changes in synoptical cyclones on time scales from 1-3 days over the North Atlantic cyclone path are generated, which influences the atmospheric baroclinic and planetary waves on time scales up to 20 days over the Arctic Ocean basin. The use of increased vertical stability in

  18. Volcanoes and atmospheres; catastrophic influences on the planets

    USGS Publications Warehouse

    Kieffer, S.W.

    1986-01-01

    For a rare and brief instant in geologic time, we can imagine that the sulfurous, chromatic surface of Io (one of the satellites of Jupiter) lies quiet. Perhaps stars glisten brilliantly through the tenuous nigh sky. Here and there, thick icy fogs enshroud fumaroles where sulfur dioxide leaks from the underworld. Suddenly, a fissure splits the surface and billowing clouds of sulfurous gases and ice hurl orange and black ash into the atmosphere. Minute by minute, the intensity of the eruption builds; stars begin disappearing from the night sky. The rising plume inhales the nearby atmosphere, mixing it with the exhalations from the volcano. Particles of sulfur, sulfur dioxide snow and ash rise to 300 kilometers, later raining down across the planet a thousand kilometers away. 

  19. Influence of Atmospheric Pressure Torch Plasma Irradiation on Plant Growth

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Yusuke; Hayashi, Nobuya; Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu

    2011-10-01

    Growth stimulation characteristics of plants seeds are investigated by an atmospheric discharge irradiation into plasma seeds. Atmospheric pressure plasma torch is consisted of alumina ceramics tube and the steel mesh electrodes wind inside and outside of the tube. When AC high voltage (8 kHz) is applied to the electrode gap, the barrier discharge plasma is produced inside the alumina ceramics tube. The barrier discharge plasma is blown outside with the gas flow in ceramics tube. Radish sprouts seeds locate at 1 cm from the torch edge. The growth stimulation was observed in the length of a stem and a root after the plasma irradiation. The stem length increases approximately 2.8 times at the cultivation time of 24 h. And the growth stimulation effect is found to be maintained for 40 h, after sowing seeds. The mechanism of the growth stimulation would be the redox reaction inside plant cells induced by oxygen radicals.

  20. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    SciTech Connect

    Penner, J.E.

    1994-09-01

    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  1. Atmospheric Mercury Transport Across Southern Lake Michigan: Influence from the Chicago/Gary Urban Area

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Keeler, G. J.; Dvonch, J. T.

    2008-12-01

    The local and regional impacts of mercury emissions from major urban and industrial areas are critical to quantify in order to further understand mercury cycling in the environment. The Chicago/Gary urban area is one such location in which mercury emissions from industrial sources are significant and regional mercury transport needs to be further examined. Speciated atmospheric mercury was measured in Chicago, IL and Holland, MI from July to November 2007 to better characterize the impact of Chicago/Gary on southwest Michigan. Previous work under the 1994-1995 Lake Michigan Mass Balance Study (LMMBS) indicated that the highest levels of mercury deposition in southwest Michigan occurred with transport from the Chicago/Gary area, particularly with rapid transport where less mercury was deposited close to sources(1). However, at that time it was not possible to measure reactive gas phase mercury (RGM), a highly-soluble form of mercury in industrial emissions that is readily removed from the atmosphere. Since the LMMBS, the development of speciated mercury systems has made it possible to continuously monitor gaseous elemental mercury (Hg0), particulate mercury (HgP), and RGM. These measurements are useful for understanding atmospheric mercury chemistry and differentiating between local and regional source impacts due to the different behaviors of reactive and elemental mercury. Results from 2007 show that, on average, Hg0 and HgP were 1.5 times higher and RGM was 2 times higher in Chicago than in Holland. Mean mercury wet deposition was nearly 3 times higher in Chicago than in Holland. Meteorological analysis indicates that transport across the lake from Chicago/Gary occurred frequently during the study. Additional measurements of O3, SO2, meteorological parameters, event mercury and trace element precipitation samples, and modeled back-trajectories are used to discern regional transport events from local deposition and characterize the impact of the Chicago/Gary urban

  2. Influence of the solar atmosphere on the p-mode eigenoscillations

    NASA Astrophysics Data System (ADS)

    Dzhalilov, N. S.; Staude, J.; Arlt, K.

    2000-09-01

    An asymptotic theory of global adiabatic p-modes is developed, taking into account the influence of the solar atmosphere. It is shown that waves of the whole frequency range nu ~ 2-10 mHz may reach the chromosphere-corona transition region (CCTR) by means of a tunneling through the atmospheric barriers. The primary acoustic cavity inside the Sun becomes considerably extended by this way, leading to a change of frequencies: low frequencies are increased, while high frequencies are decreased. The transition from low p-mode frequencies to high peak frequencies (nu >~ 6;mHz) is smooth. The locations of the turning points are determined from the wave equation for {div}*/rightarrow{v}. It is shown that the internal turning point of the acoustic cavity is strongly shifted toward the center of the Sun, while the upper turning point is shifted from the surface to CCTR. That means, the turning points cannot be located in the convective zone. A new complex integral dispersion relation for the eigenfrequencies is derived. The imaginary parts of the frequencies indicate a decay of the amplitudes, resulting from considerable energy losses by tunneling from the main cavity. It is shown that waves with a decaying amplitude (complex frequency) may exist in a limited area only, penetration of linear p-modes to the corona is impossible. The CCTR acts as a free surface. We conclude that the p-modes may drive forced surface gravity waves at this surface.

  3. Regional model studies of the atmospheric dispersion of fine volcanic ash after the eruption of Eyjafjallajoekull

    NASA Astrophysics Data System (ADS)

    Langmann, B.; Hort, M. K.

    2010-12-01

    During the eruption of Eyjafjallajoekull on Iceland in April/May 2010 air traffic over Europe was repeatedly interrupted because of volcanic ash in the atmosphere. This completely unusual situation in Europe leads to the demand of improved crisis management, e.g. European wide regulations of volcanic ash thresholds and improved forecasts of theses thresholds. However, the quality of the forecast of fine volcanic ash concentrations in the atmosphere depends to a great extent on a realistic description of the erupted mass flux of fine ash particles, which is rather uncertain. Numerous aerosol measurements (ground based and satellite remote sensing, and in situ measurements) all over Europe have tracked the volcanic ash clouds during the eruption of Eyjafjallajoekull offering the possibility for an interdisciplinary effort between volcanologists and aerosol researchers to analyse the release and dispersion of fine volcanic ash in order to better understand the needs for realistic volcanic ash forecasts. This contribution describes the uncertainties related to the amount of fine volcanic ash released from Eyjafjallajoekull and its influence on the dispersion of volcanic ash over Europe by numerical modeling. We use the three-dimensional Eulerian atmosphere-chemistry/aerosol model REMOTE (Langmann et al., 2008) to simulate the distribution of volcanic ash as well as its deposition after the eruptions of Eyjafjallajoekull during April and May 2010. The model has been used before to simulate the fate of the volcanic ash after the volcanic eruptions of Kasatochi in 2008 (Langmann et al., 2010) and Mt. Pinatubo in 1991. Comparing our model results with available measurements for the Eyjafjallajoekull eruption we find a quite good agreement with available ash concentrations data measured over Europe as well as with the results from other models. Langmann, B., K. Zakšek and M. Hort, Atmospheric distribution and removal of volcanic ash after the eruption of Kasatochi volcano

  4. Precipitating electron interaction with the atmosphere. II - The dayside cusp region

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.; Strickland, D. J.; Chiu, Y. T.

    1985-01-01

    Interaction of precipitating low-energy magnetosheath electrons with the atmosphere in the dayside cusp region has been studied. Both pitch angle and energy distributions of the fluxes as well as excitation functions for selected N2 and O UV emissions were obtained by numerically solving the multiangle equations of electron transport. There is some possibility that atmospheric emissions may be used for remote measurements of incident soft energy flux, because the ratios of molecular to atomic emission line intensities in the low-energy region are quite different from those in the high-energy region.

  5. Studies of regional-scale climate variability and change. Hidden Markov models and coupled ocean-atmosphere modes

    SciTech Connect

    Ghil, M.; Kravtsov, S.; Robertson, A. W.; Smyth, P.

    2008-10-14

    This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influence large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.

  6. The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification

    SciTech Connect

    Khaykin, M.N.; Kadygrove, E.N.; Golitsyn, G.S.

    2005-03-18

    Investigations of the changing in the atmospheric boundary layer (ABL) radiation balance as cased by natural and anthropogenic reasons is an important topic of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program. The influence of aerosol on temperature stratification of ABL while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region (Russia) with the transport of combustion products from peat-bog and forest fires in July-September, 2002. At this time the visibility was some times at about 100-300 m. Aerosol concentration measured by Moscow University Observatory and A.M. Obukhov Institute of Atmospheric Physics field station in Zvenigorod (55.7 N; 36.6 E) for several days was in 50-100 times more than background one (Gorchakov at al 2003). The high aerosol concentration can change the radiation balance at ABL, and so to change thermal stratification in ABL above the mega lopolis. For the analysis the data were used of synchronous measurements by MTP-5 (Microwave Temperature Profiler operating at wavelength 5 mm) in two locations, namely: downtown Moscow and country-side which is 50 km apart to the West (Zvenigorod station). (Kadygrov and Pick 1998; Westwater at al 1999; Kadygrov at al 2002). Zvenigorod station is located in strongly continental climate zone which is in between of the climates of ARM sites (NSANorth Slope of Alaska and SGP-Southern Great Plains). The town of Zvenigorod has little industry, small traffic volume and topography conductive to a good air ventilation of the town. For these reasons Zvenigorod can be considered as an undisturbed rural site. For the analysis some days were chosen with close meteorological parameters (average temperature, humidity, wind, pressure and cloud form) but strongly differing in aerosol concentration level.

  7. Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor

    NASA Astrophysics Data System (ADS)

    Chambers, Scott D.; Wang, Fenjuan; Williams, Alastair G.; Xiaodong, Deng; Zhang, Hua; Lonati, Giovanni; Crawford, Jagoda; Griffiths, Alan D.; Ianniello, Antonietta; Allegrini, Ivo

    2015-04-01

    Commercially-available "stability monitors" based on in situ atmospheric radon progeny measurements remain underutilised as a tool for urban pollution studies, due in part to difficulties experienced in relating their standard output directly to the atmospheric mixing state in a consistent manner. The main confounding factor has been a lack of attention to the fact that the observed near-surface atmospheric radon concentration includes large synoptic and fetch-related components in addition to the local stability influence. Here, a technique recently developed for stability classification using a research-quality dual-flow-loop two-filter radon detector is adapted for use with a commercially-available radon-based stability monitor. Performance of the classification scheme is then tested in Lanzhou, China, a topographically-complex region renowned for low mean annual wind speeds (0.8 m s-1) and winter stagnation episodes. Based on an 11-month composite, a factor of seven difference is estimated between peak NOx concentrations in the city's industrial region and a rural background location under stable conditions. The radon-based scheme is evaluated against the Pasquil-Gifford "radiation" (PGR) scheme, and assigns pollutant concentrations more consistently between defined atmospheric stability states than the PGR scheme. Furthermore, the PGR scheme consistently underestimates all peak pollutant concentrations under stable conditions compared with the radon-based scheme, in some cases (e.g. CO in the industrial region) by 25%.

  8. Influence of interplanetary trajectory selection on Mars atmospheric entry velocity

    NASA Technical Reports Server (NTRS)

    Striepe, Scott A.; Braun, Robert D.; Powell, Richard W.; Fowler, Wallace T.

    1993-01-01

    Many current manned Mars mission studies are using low lift-to-drag ratio (L/D) vehicles to aerobrake at both Mars and Earth. The use of these low L/D vehicles could limit the allowable velocity at the atmospheric interface. This paper will demonstrate that if entry velocity constraints are incorporated into the interplanetary analysis of aerobraking Mars missions, many opportunities can be achieved for a small increase in initial mass in low-Earth orbit (IMLEO). These opportunities result from varying the initial launch date and the encounter dates and possibly using a powered Venus swingby on either the inbound or outbound transfer. This paper demonstrates this technique by using three atmospheric entry velocity ranges at Mars arrival (6.0-8.5, 6.4-8.1, and 7.2-7.3 km/s), unconstrained Mars entry velocities, and an Earth return entry velocity below 14 km/s. The results indicate that, by carefully selecting the interplanetary trajectory, an optimum IMLEO mission can be found for even highly restrictive entry velocity missions in practically all of the 15 yr studied.

  9. Influence of modified atmosphere packaging on 'Star Ruby' grapefruit phytochemicals.

    PubMed

    Chaudhary, Priyanka R; Jayaprakasha, G K; Porat, Ron; Patil, Bhimanagouda S

    2015-01-28

    Modified atmosphere packaging (MAP) can extend the shelf life of salads, vegetables, and fruits by generating a storage environment with low O2, high CO2, and high humidity. The current study investigates the effect of modified atmosphere and humidity generated by two plastic films, microperforated bags (MIPBs) and macroperforated bags (MAPBs), on the levels of phytochemicals present in 'Star Ruby' grapefruits (Citrus paradisi, Macf.) stored for 16 weeks at 10 °C. Control fruits were stored without any packaging film. Juice samples were analyzed every 4 weeks for ascorbic acid, carotenoids, limonoids, flavonoids, and furocoumarins and assessed for quality parameters. MAP significantly reduced weight loss compared to control grapefruits. Control fruits had more β-carotene, lycopene, and furocoumarin compared with the fruits in MAP. Flavonoid content was highest in fruits stored in MAPB (P < 0.05), while fruits stored in MIPB showed no significant difference in flavonoid content compared to control (P > 0.05). The MAP treatments did not significantly affect ascorbic acid, limonoids, or fruit quality parameters, including total soluble solids, acidity, ripening ratio, decay and disorders, fruit taste, and off-flavors after 16 weeks of storage. These results suggest that MAP can be used to maintain the quality of 'Star Ruby' grapefruit with no detrimental effect on health-promoting phytochemicals. PMID:25547121

  10. Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Luecken, D. J.; Hutzell, W. T.; Strum, M. L.; Pouliot, G. A.

    2012-02-01

    Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical production, although 25% or more result from direct emissions in urban areas during winter. Isoprene is the major precursor of formaldehyde in most areas during summer, contributing 20-60% of total production, with the magnitude being spatially variable. Other alkenes from anthropogenic and/or biogenic emissions dominate formaldehyde production in winter, contributing 60-85% of total formation, and are prominent contributors in summer. Alkenes, including biogenic alkenes, dominate acetaldehyde production during both seasons. These conclusions are based on the degradation of emitted VOCs described by the SAPRC07TB chemical mechanism, but even this detailed model has difficulty reproducing observed values better than a factor of 2. The substantial role of isoprene and other alkenes in aldehyde formation emphasizes that we examine and improve emission estimates of these compounds. Until we can estimate the emissions and understand the chemistry of VOC precursors to aldehyde formation with greater certainty, it will be difficult to accurately predict atmospheric concentrations of aldehydes and develop strategies to reduce their concentrations.

  11. Atmospheric sensitivity to roughness length in a regional atmospheric model over the Ohio-Tennessee River Valley

    NASA Astrophysics Data System (ADS)

    Quintanar, Arturo I.; Mahmood, Rezaul; Suarez, Astrid; Leeper, Ronnie

    2016-06-01

    The response of a regional atmospheric model to small changes in roughness length of two vegetation categories (crops and deciduous broadleaf forest) was analyzed for three synoptic events in June 2006. These were characterized by two convective events (June 11 and 22) and one prefrontal event (June 17). The responses of the model, for precipitation, equivalent potential temperature and wind field were notable in general. However, the response became muted as roughness lengths were increased or decreased. Atmospheric response to these changes varied for different convective events. A small dependence on roughness length was found for the sensible and latent heat fluxes and planetary boundary layer heights during the convective event of June 11. For the June 22 event, the model response was weaker for the crop-only and forest-only roughness length experiments compared to the response when both the crop and forest-only roughness length were changed in combination.

  12. Atmospheric sensitivity to roughness length in a regional atmospheric model over the Ohio-Tennessee River Valley

    NASA Astrophysics Data System (ADS)

    Quintanar, Arturo I.; Mahmood, Rezaul; Suarez, Astrid; Leeper, Ronnie

    2015-11-01

    The response of a regional atmospheric model to small changes in roughness length of two vegetation categories (crops and deciduous broadleaf forest) was analyzed for three synoptic events in June 2006. These were characterized by two convective events (June 11 and 22) and one prefrontal event (June 17). The responses of the model, for precipitation, equivalent potential temperature and wind field were notable in general. However, the response became muted as roughness lengths were increased or decreased. Atmospheric response to these changes varied for different convective events. A small dependence on roughness length was found for the sensible and latent heat fluxes and planetary boundary layer heights during the convective event of June 11. For the June 22 event, the model response was weaker for the crop-only and forest-only roughness length experiments compared to the response when both the crop and forest-only roughness length were changed in combination.

  13. Regional Atmospheric Transport Code for Hanford Emission Tracking, Version 2(RATCHET2)

    SciTech Connect

    Ramsdell, James V.; Rishel, Jeremy P.

    2006-07-01

    This manual describes the atmospheric model and computer code for the Atmospheric Transport Module within SAC. The Atmospheric Transport Module, called RATCHET2, calculates the time-integrated air concentration and surface deposition of airborne contaminants to the soil. The RATCHET2 code is an adaptation of the Regional Atmospheric Transport Code for Hanford Emissions Tracking (RATCHET). The original RATCHET code was developed to perform the atmospheric transport for the Hanford Environmental Dose Reconstruction Project. Fundamentally, the two sets of codes are identical; no capabilities have been deleted from the original version of RATCHET. Most modifications are generally limited to revision of the run-specification file to streamline the simulation process for SAC.

  14. Comparison of Regional Carbon Dioxide Fluxes from Atmospheric Inversions and Inventories in the Mid-Continent Intensive

    NASA Astrophysics Data System (ADS)

    Ogle, S. M.; Cooley, D. S.; Schuh, A. E.; Denning, A.; Davis, K. J.; West, T. O.; Breidt, F. J.

    2009-12-01

    Atmospheric inversions and inventories represent two lines of evidence on the carbon budget of regions. Inversions rely on repeated CO2 concentration measurements to infer fluxes between the terrestrial surface and atmosphere. Inventories are typically conducted using models to predict changes in C pools, or CO2 fluxes directly, based on various driving variables influencing uptake and release of CO2 from the terrestrial surface. Both of the approaches have their strengths and weaknesses, and one of the key objectives of the Mid-Continent Intensive (MCI) for the North American Carbon Program (NACP) is to reconcile differences in estimates between these approaches, to the extent possible. An exploratory approach has been undertaken to compare inventory and inversions using graphical tools, testing for spatial and temporal autocorrelations, and a regression analysis where the differences between the inventories and inversions are regressed against both inventory estimates and land-use characteristics. Results from a pre-campaign time period (2000-05) suggest limited agreement between the inversions and inventory results that is due to a lack of atmospheric observations in the MCI region. However, sampling density is much greater during the campaign years (2007-08), and inventory and inversion data are more comparable given the improved observational constraint on the high resolution inversions. Overall, this synthesis activity is improving diagnosis of regional carbon fluxes, which is a key objective of the NACP.

  15. The evolution of solar ultraviolet luminosity. [influence on planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.; Walker, J. C. G.

    1982-01-01

    Astronomical observations of stars analogous to the sun are used to construct a tentative account of the evolution of solar UV luminosity. Evidence exists that the young sun was a much more powerful source of energetic particles and radiation than it is today, and while on the main sequence, solar activity has declined as an inverse power law of age as a consequence of angular momentum loss to the solar wind. Observations of pre-main sequence stars indicate that before the sun reached the main sequence, it may have emitted as much as ten thousand times the amount of ultraviolet radiation that it does today. The impact of the results on knowledge of photochemistry and escape of constituents of primordial planetary atmospheres is discussed.

  16. Atmospheric general circulation and its low frequency variance - Radiative influences

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.

    1987-01-01

    The possible effects of radiation on the evolution of the atmosphere on time scales ranging from about a week to about 90 days are examined with reference to the available observational and modeling studies. The clear-sky and cloud radiative processes are shown to exert significant vertical, latitudinal, and longitudinal gradients in the diabatic heating within the troposphere and the stratosphere. The meridional heating gradient, which drives the general circulation, is altered significantly by clouds. The major conclusion of the study is that the observed negative anomalies in the outgoing IR radiation following intense warm episodes of tropicl sea-surface temperature (El Nino) are indeed anomalies in the cloud-radiative forcing.

  17. Spectroscopy in the study of planetary atmospheres - Abundances from the visible region

    NASA Technical Reports Server (NTRS)

    Lutz, B. L.

    1978-01-01

    Spectrophotometric studies of three molecular constituents - hydrogen, methane, and ammonia - identified in the visible region of the spectra of the outer planets are reviewed. The history of quadrupole line observations for hydrogen molecules and the significance of the HD molecule for the dipole spectrum are considered. Approaches to quantitative estimates of methane concentration in planetary atmospheres are explained, and the detection of ammonia in the atmospheres of Jupiter and Saturn is described.

  18. Sensitivity of Boreal-Summer Circulation and Precipitation to Atmospheric Aerosols in Selected Regions. Part 2; The Americas

    NASA Technical Reports Server (NTRS)

    Wilcox, E. M.; Sud, Y. C.; Walker, G.

    2009-01-01

    Aerosol perturbations over selected land regions are imposed in Version-4 of the Goddard Earth Observing System (GEOS-4) general circulation model (GCM) to assess the influence of increasing aerosol concentrations on regional circulation patterns and precipitation in four selected regions: India, Africa, and North and South America. Part 1 of this paper addresses the responses to aerosol perturbations in India and Africa. This paper presents the same for aerosol perturbations over the Americas. GEOS-4 is forced with prescribed aerosols based on climatological data, which interact with clouds using a prognostic scheme for cloud microphysics including aerosol nucleation of water and ice cloud hydrometeors. In clear-sky conditions the aerosols interact with radiation. Thus the model includes comprehensive physics describing the aerosol direct and indirect effects on climate (hereafter ADE and AIE respectively). Each simulation is started from analyzed initial conditions for 1 May and was integrated through June-July-August of each of the six years: 1982 1987 to provide a 6-ensemble set. Results are presented for the difference between simulations with double the climatological aerosol concentration and one-half the climatological aerosol concentration for three experiments: two where the ADE and AIE are applied separately and one in which both the ADE and AIE are applied. The ADE and AIE both yield reductions in net radiation at the top of the atmosphere and surface while the direct absorption of shortwave radiation contributes a net radiative heating in the atmosphere. A large net heating of the atmosphere is also apparent over the subtropical North Atlantic Ocean that is attributable to the large aerosol perturbation imposed over Africa. This atmospheric warming and the depression of the surface pressure over North America contribute to a northward shift of the inter-Tropical Convergence Zone over northern America, an increase in precipitation over Central America

  19. Water vapor transport from the Indian monsoon region: the phenomenon of Atmospheric River

    NASA Astrophysics Data System (ADS)

    Raghav R., Sree; Mrudula, G.

    2016-05-01

    An Atmospheric/Tropospheric River (AR/TR) is a relatively narrow corridor of concentrated moisture where horizontal transport occurs in the lower atmosphere. They transport moisture from tropical regions towards the poles across the mid latitudes. Research of Atmospheric River over the Indian Monsoon region is not reported in literature. In this paper an attempt is made to examine the existence of AR in Indian Ocean and surrounding region. Meteorological parameters such as precipitable water, rainfall, air temperature and wind have been analyzed for the same. Analysis shows a clear evidence of the presence of Atmospheric River during the pre-monsoon and monsoon period. It is seen that there are variations in the origin, orientation, duration and also the formation of the river according to the vapor content in the Indian Ocean. During Elnino phase there is a pronounced transport of moisture through an Atmospheric River and also a high intensity transport occurs during monsoon period (JJA), even if moisture prevails over Indian monsoon region during other seasons also. Detailed results and extension to model forecasts will be presented in the paper.

  20. Atmospheric modes influence on the inter- annual variability of the Iberian Poleward Current from 1985 to 2006

    NASA Astrophysics Data System (ADS)

    Decastro, M.; Gómez-Gesteira, M.; Álvarez, I.; Crespo, A. J. C.; Ramos, A. M.

    2009-04-01

    The inter-annual variability of the Iberian poleward current (IPC) along the northwestern coast of the Iberian Peninsula (IP) (40- 43N) and its intrusion in the Cantabrian Sea (Navidad, 6- 8W) were analyzed. The January Sea Surface Temperature (J SST) was obtained from the advanced very high resolution radiometer (AVHRR) NOAA satellite from 1985 to 2006. In addition, the dependence of IPC SST on the most representative regional patterns with some influence upon the eastern North Atlantic region was analyzed by means of correlations between November- December atmospheric modes and J SST. The considered modes were: North Atlantic Oscillation pattern (NAO), Eastern Atlantic pattern (EA), Eastern Atlantic Western Russia pattern (EA/WR), Polar/Eurasia pattern (POL) and Scandinavia pattern (SCA). In the present study it has been highlighted that: (1) there are several years (1986, 1987, 1992, 1995, 1997, 1999, 2004 and 2005) during which water in the IPC region is colder than the oceanic one remarking a weak or inexistent IPC during these Januaries and (2) three atmospheric patterns (N-D NAO, N-D EA/WR and N-D POL) are responsible of the main variability of the J SST in the IPC region of the western IP and only two indices (N-D EA/WR, N-D NAO) have shown to be significant to explain the variability of the J SST in the IPC region of the northern IP region.

  1. Use of a regional atmospheric model to simulate lake-atmosphere feedbacks associated with Pleistocene Lakes Lahontan and Bonneville

    USGS Publications Warehouse

    Hostetler, S.W.; Giorgi, F.

    1992-01-01

    A regional model of the atmosphere (version 4 of the NCAR mesoscale model, MM4) was used to assess whether lake-effect precipitation was a significant component of the late-Pleistocene hydrologic budgets of Lakes Lahontan and Bonneville. Control simulations for January and July of 1979 were made using MM4, and the Pleistocene highstand surface areas of the lakes were added to the model and the simulations repeated. In the January simulations, 18% of the moisture added to the modeled atmosphere by Lake Lahontan returned to the Lahontan basin as precipitation, while 32% of the water evaporated from Lake Bonneville fell as precipitation over the Bonneville basin. In the July simulations, 7% of the moisture added to the modeled atmosphere by Lake Lahontan returned to the Lahontan basin as precipitation, and 4% of the water evaporated from Lake Bonneville fell as precipitation over the Bonneville basin. An additonal January simulation was made with the lake surface areas set at onehalf their highstand extents (the average surface area 20 to 15 ka BP). Results from this simulation were similar to the simulation with the highstand lakes, indicating lake-effect precipitation could have been a significant component of the hyrologic budgets of the lakes before and during the highstand period. ?? 1992 Springer-Verlag.

  2. Processes influencing rainfall features in the Amazonian region

    NASA Astrophysics Data System (ADS)

    Gerken, T.; Chamecki, M.; Fuentes, J. D.; Katul, G. G.; Fitzjarrald, D. R.; Manzi, A. O.; Nascimento dos Santos, R. M.; von Randow, C.; Stoy, P. C.; Tota, J.; Trowbridge, A.; Schumacher, C.; Machado, L.

    2014-12-01

    The Amazon is globally unique as it experiences the deepest atmospheric convection with important teleconnections to other parts of the Earth's climate system. In the Amazon Basin a large fraction of the local evapotranspiration is recycled through the formation of deep convective precipitating storms. Deep convection occurs due to moist thermodynamic conditions associated with elevated amounts of convective available potential energy. Aerosols invigorate the formation of convective storms in the Amazon via their unique concentrations, physical size, and chemical composition to activate into cloud condensation nuclei (CCN), but important aspects of aerosol/precipitation feedbacks remain unresolved. During the wet season, low atmospheric aerosol concentrations prevail in the pristine tropical air masses. These conditions have led to the Green Ocean hypothesis, which compares the clean tropical air to maritime air-masses and emphasizes biosphere-atmosphere feedbacks, to explain the features of the convective-type rainfall events in the Amazon. Field studies have been designed to investigate these relationships and the development of mesoscale convective systems through the Green Ocean Amazon project and the GOAmazon Boundary Layer Experiment. From March to October 2014 a field experiment was conducted at the Cuieiras Biological Reserve (2°51' S, 54°58' W), 80 km north of the city of Manaus, Brazil. This investigation spans the biological, chemical, and physical conditions influencing emissions and reactions of precursors (biogenic and anthropogenic volatile organic compounds, VOCs), formation of aerosols and CCNs and transport out of the ABL, and their role in cloud formation and precipitation triggers. In this presentation we will show results on the magnitude turbulent fluxes of latent and sensible heat, CCN concentrations, and rain droplet size distribution for both the wet and dry season. Such influencing factors on precipitation, will be contrasted with the

  3. Influence of atmospheric deposition on Okefenokee National Wildlife Refuge

    SciTech Connect

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1995-12-31

    Designation of Okefenokee National Wildlife Refuge (Georgia) as a Class 1 Air Quality Area affords mandatory protection of the airshed through permit-review processes for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments in the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations in various matrices of the swamp, with emphasis on mercury and lead, were determined during this study. Chemistry of rainfall was measured on an event basis from one site and quarterly on surface water, pore water, floc, and sediment from four locations. A sediment core collected from the Refuge concentrations of 9 ng/L and 0.1 ng/L, respectively. Surface waters were acidic (pH 4.7--4.9), with average total and methyl mercury highly organic (dissolved organic carbon 35--50 mg/L). Total mercury was 1--3.5 ng/L in surface and pore water, and methyl mercury was 0.02--0.20 ng/L. Total mercury in sediments and floc was 100--200 ng/g dry weight, and methyl mercury was 4--16ng/g. Lead was 0--1.7 {micro}g/L in rainfall, not detectable in surface water, 3.4--5.4 {micro}g/L in pore water, and 3.9--4.9 mg/kg in floc and sediment. Historical patterns of mercury deposition showed an increase in total mercury from pre-1800 concentrations of 250 ng/g to 500 ng/g in 1950, with concentrations declining thereafter to present.

  4. Influence of atmospheric deposition on Okefenokee National Wildlife Refuge

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1995-01-01

    Designation of Okefenokee National Wildlife Refuge (Georgia) as a Class I Air Quality Area affords mandatory protection of the airshed through permit-review processes for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments in the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations in various matrices of the swamp, with emphasis on mercury and lead, were determined during this study. Chemistry of rainfall was measured on an event basis from one site and quarterly on surface water, pore water, floc, and sediment from four locations. A sediment core collected from the Refuge interior was sectioned, aged, and analyzed for mercury. Rainfall was acidic (pH 4.7-4.9), with average total and methyl mercury concentrations of 9 ng/L and 0.1 ng/L, respectively. Surface waters were acidic (pH 3.8-4.1), dilute (specific conductance 35-60 pS), and highly organic (dissolved organic carbon 35-50 mg/L). Total mercury was 1-3.5 ng/L in surface and pore water, and methyl mercury was 0.02-0.20 ng/L. Total mercury in sediments and floc was 100-200 ng/g dry weight, and methyl mercury was 4-16 ng/g. Lead was 0-1.7 pg/L in rainfall, not detectable in surface water, 3.4-5.4 pg/L in pore water, and 3.9-4.9 mg/kg in floc and sediment. Historical patterns of mercury deposition showed an increase in total mercury from pre-1800 concentrations of 250 ng/g to 500 ng/g in 1950, with concentrations declining thereafter to present.

  5. The Influence of Tropospheric Processes in Modeling the Middle Atmosphere with Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Drob, D. P.; Porter, H. S.

    2002-01-01

    Our Numerical Spectral Model (NSM) extends from the ground up into the thermosphere and has a vertical grid point resolution of about 0.5 km to resolve the interactions of gravity waves (GWs) described with Hines' Doppler Spread Parameterization (DSP). This model produces in the stratosphere and mesosphere the major features of QBO, SAO, tides, and planetary waves. The purpose of this paper is to discuss results from an initial study with our 3D model that shows how certain tropospheric processes can affect the dynamics of the middle atmosphere. Under the influence of tropospheric heating, and augmented by GW interactions, two distinct but related processes can be identified. (1) A meridional circulation develops in the stratosphere, with rising motions at low latitudes that are in magnitude comparable to the downward propagation of the QBO. As Dunkerton pointed out, a larger GW source is then required to reproduce the observed QBO, which tends to move us closer to the values recommended for the DSP. This has significant consequences for our model results that describe the upper mesosphere, considering the general importance of GWs for this region and in influencing planetary waves (e.g., 2-day wave) and tides in particular. (2) Tropospheric heating produces zonal jets near the tropopause that are related to latitudinal variations in pressure and reversing temperature variations (resembling the dynamical conditions near the mesopause), which in turn is conducive to generate baroclinic instability. Modeling results show that our ability to generate the QBO critically depends on the magnitude of the temperature reversal that is a measure of this instability. Planetary waves are generated in this process, which can apparently interfere with or augment the GW interactions. As originally demonstrated by Lindzen and Holton, the eastward propagating Kelvin waves and westward propagating Rossby gravity waves (generated by tropospheric convection) can in principle provide

  6. Vertical variations in the influence of the amount effect: South American Summer Monsoon Region

    NASA Astrophysics Data System (ADS)

    Samuels-Crow, K. E.; Galewsky, J.; Worden, J. R.

    2014-12-01

    Recent theoretical studies have shown that convective recycling of atmospheric water vapor gives rise to the isotope "amount effect" in which d values are lower than predicted by simple Rayleigh distillation processes (i.e. (DdD = dDvapor ­- dDRayleigh < 0‰). Several studies have linked isotopes in precipitation [e.g. Vimeux et al., 2009] and atmospheric water vapor [e.g. Samuels-Crow et al., 2014] in the tropical Andes to upwind convection associated with the South American Summer Monsoon (SASM). The vertical structure of this convective influence, however, remains unknown. Understanding the vertical structure of the amount effect over South America is essential for improving theoretical constraints and developing better models of the influence of the SASM on southern hemisphere humidity. Additionally, evaluating the vertical and lateral extent of the SASM's convective influence can provide important constraints for interpreting paleoclimate proxies in the region. We use data from the Tropospheric Emission Spectrometer (TES) to examine the vertical structure of the amount effect associated with the SASM and relate these results to regional convective precipitation and local subcloud equivalent potential temperature. Preliminary results show that DdD is below 0‰ from the boundary layer through the mid-troposphere over tropical South America during austral summer, and meridional averages show that convective precipitation is highest over these areas where DdD < 0‰ extends higher in the atmosphere. We hypothesize that the depth of convection in the monsoon region controls the vertical structure of DdD, which should also be coherently linked to local equivalent potential temperature. References Vimeux et al. (2009), Palaeogeogr Palaeocl, 281(3-4), 229-241, doi:10.1016/j.palaeo.2008.03.054. Samuels-Crow et al. (2014), J Geophys Res-Atmos, doi:10.1002/(ISSN)2169-8996.

  7. Permafrost Thaw and Redistribution of Carbon from Lands and Oceans to the Atmosphere: the East Siberian Region

    NASA Astrophysics Data System (ADS)

    Semiletov, I. P.; Shakhova, N. E.; Pipko, I.; Dudarev, O.; Charkin, A.

    2014-12-01

    Unlike other oceans, the Arctic Ocean is completely surrounded by permafrost, which is being degraded at an increasing rate under warming conditions most pronounced in East Siberian region and Alaska. The thaw and release of organic carbon (OC) from Arctic permafrost is postulated to be one of the most powerful mechanisms causing the net redistribution of carbon from lands and oceans to the atmosphere. The East Siberian Arctic shelf (ESAS) is the world's largest continental shelf, containing more than 80 % of the world oceans' subsea permafrost and the largest hydrocarbon reservoir on the planet, while the stability of this sequestered carbon, which exists primarily as CH4, is highly uncertain. This area is heavily influenced by subsea permafrost thaw, and CH4 seeps from subsea permafrost reservoirs under warming conditions. Various other phenomena influence the area, including coastal erosion, mostly caused by onshore permafrost/coastal ice complex thaw; the input of dissolved and particulate OC through the Lena, Indigirka, and Kolyma rivers. The ESAS is also of particular interest for its carbon-climate couplings because thawing of onshore and offshore permafrost leads to the CH4 and CO2 emission to the atmosphere. The overall goal of the current research is to provide a quantitative, observation-based assessment of the dynamics of different ESAS carbon cycle components with emphasize on the emission of CO2 and CH4 to the atmosphere under changing climatic and environmental conditions.

  8. Quantifying Carbon-Climate Processes at the Regional Scale Using Atmospheric Carbonyl Sulfide

    SciTech Connect

    Campbell, Elliott; Berry, Joe; Torn, Margaret; David, Billesbach; Seibt, Ulrike

    2013-10-08

    Atmospheric carbonyl sulfide (COS) analysis has the potentially transformative capability for partitioning the regional carbon flux into respiration and photosynthesis components. This emerging approach is based on the observation that continental atmospheric CO2 gradients are dominated by net ecosystem fluxes while continental atmospheric COS gradients are dominated by photosynthesis-related plant uptake. Regional flux partitioning represents a critical knowledge gap due to a lack of robust methods for regional-scale flux partitioning and large uncertainties in forecasting carbon-climate feedbacks. Our completed project characterized the relationship between COS and CO2 surface fluxes using a novel measurement and modeling system in a winter wheat field at the U.S. Department of Energy?s Atmospheric and Radiation Measurement program Central Facility (DOE-ARM CF). The scope of this project included canopy flux measurements, soil flux measurements, regional atmospheric modeling, and analysis of COS and CO2 airborne observations at SGP. Three critical discoveries emerged from this investigation: (1) the new measurement system provided the first field evidence of a robust relationship between COS leaf fluxes and GPP; (2) a previously unknown seasonal soil source of COS was observed and characterized; (3) the regional atmospheric analysis of airborne measurements provided the first COS-based constraints on GPP parameterizations used in earth systems models. Dissemination of these results includes three publications [Billesbach et al., In Press; Campbell et al., In Preparation; Seibt et al., In Review], three presentations at the AGU Fall Meeting (2012), and four invited presentations to department seminars. We have leveraged this foundational project to continue our work on understanding carbon cycle processes at large scales through one funded project (DOE Lab Fee, 2012-2015) and one proposal that is under review (DOE/NASA/USDA/NOAA, 2014-2016).

  9. The Influence of Atmospheric Transport Regimes on Polychlorinated Biphenyl (PCB) Concentrations Measured at Zeppelin

    NASA Astrophysics Data System (ADS)

    Ubl, S.; Scheringer, M.; Hungerbuehler, K.

    2013-12-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) of exclusively anthropogenic origin. PCBs are toxic, bioaccumulative and have a great potential of long-range transport. PCBs have been banned globally under the Stockholm convention on POPs since 2004. We analysed times series of 21 PCB congeners ranging from PCB 18 to PCB 187 that have been measured at Zeppelin (Spitsbergen) since 1993. Although primary PCB emissions have been steadily reduced, a strong decreasing trend is not observed in the PCB concentrations in the Arctic. In order to investigate the influence of atmospheric transport on the PCB concentrations and to identify the potential source regions of the PCBs, we calculated footprints for the Zeppelin measurement site using the Lagrangian Particle Dispersion Model FLEXPART. Footprints can be interpreted as potential source regions where PCBs may have been picked up. Based on various statistical analyses of the footprints (cluster analysis, k-medoid, silhouette), we identified the prevailing transport regimes for Zeppelin which were represented by 5 different clusters. Cluster 1 and 3 belong to transport regimes with highest residence times over Europe (cluster 1) and North-America (cluster 3); both transport regimes dominantly occur from late fall to early spring. Clusters 2 and 4 represent air masses with surface contact predominantly over the Atlantic Ocean (cluster 2), only occurring during the summer months, and the Arctic Ocean (cluster 4) mainly observed in spring and autumn, but also in summer. Cluster 5 is representative of air originating from the Pacific ocean and eastern Asia; this transport regime occurs mainly in spring and fall. We grouped the PCB concentrations measured at Zeppelin according to the 5 different clusters and calculated the median for each cluster and PCB congener. The median for medium to heavier PCBs is highest for cluster 1 and 3, which represent transport regimes over the continent, suggesting that

  10. A profile of UK unemployment: regional versus demographic influences.

    PubMed

    Brown, S; Sessions, J G

    1997-06-01

    "This paper profiles the incidence of unemployment in the [United Kingdom] over the period 1985-91 using data derived from the British Social Attitudes Survey. The approach of the paper is to quantify the differential probabilities of unemployment faced by particular groups within the population, focusing in particular on the relative effects of demographic and regional influences. Our results indicate that, even after controlling for a plethora of demographic characteristics, regional disparities in unemployment risk are prevalent, with individuals in Northern Ireland, Wales, the North and West Midlands of England facing a higher chance of unemployment ceteris paribus." (EXCERPT) PMID:12293417

  11. The atmospheric frontal response to SST perturbations in the Gulf Stream region

    NASA Astrophysics Data System (ADS)

    Parfitt, Rhys; Czaja, Arnaud; Minobe, Shoshiro; Kuwano-Yoshida, Akira

    2016-03-01

    The link between sea surface temperature (SST) gradients and atmospheric fronts is explored in a general circulation model across the Gulf Stream (GS) region from December to February 1981-2000. Two model experiments are analyzed, one with a realistic control SST distribution and one with a spatially smoothed SST distribution. The analysis shows a noticeable change in regional atmospheric frontal frequency between the two experiments (up to 30%), with the distribution of change exhibiting a clear imprint of the GS SST front. Further analysis of the surface sensible heat flux gradient across cold fronts reveals the pattern of change to be mediated by a thermal interaction between the oceanic and atmospheric fronts ("thermal damping and strengthening"). These results not only emphasize the significance of the GS SST gradient for storm development in the North Atlantic but also highlight the importance of resolution in assessing the role of frontal air-sea interaction in midlatitude climate variability.

  12. Influence of high-resolution surface databases on the modeling of local atmospheric circulation systems

    NASA Astrophysics Data System (ADS)

    Paiva, L. M. S.; Bodstein, G. C. R.; Pimentel, L. C. G.

    2014-08-01

    Large-eddy simulations are performed using the Advanced Regional Prediction System (ARPS) code at horizontal grid resolutions as fine as 300 m to assess the influence of detailed and updated surface databases on the modeling of local atmospheric circulation systems of urban areas with complex terrain. Applications to air pollution and wind energy are sought. These databases are comprised of 3 arc-sec topographic data from the Shuttle Radar Topography Mission, 10 arc-sec vegetation-type data from the European Space Agency (ESA) GlobCover project, and 30 arc-sec leaf area index and fraction of absorbed photosynthetically active radiation data from the ESA GlobCarbon project. Simulations are carried out for the metropolitan area of Rio de Janeiro using six one-way nested-grid domains that allow the choice of distinct parametric models and vertical resolutions associated to each grid. ARPS is initialized using the Global Forecasting System with 0.5°-resolution data from the National Center of Environmental Prediction, which is also used every 3 h as lateral boundary condition. Topographic shading is turned on and two soil layers are used to compute the soil temperature and moisture budgets in all runs. Results for two simulated runs covering three periods of time are compared to surface and upper-air observational data to explore the dependence of the simulations on initial and boundary conditions, grid resolution, topographic and land-use databases. Our comparisons show overall good agreement between simulated and observational data, mainly for the potential temperature and the wind speed fields, and clearly indicate that the use of high-resolution databases improves significantly our ability to predict the local atmospheric circulation.

  13. Snow-atmosphere coupling and extremes over North America in the Canadian Regional Climate Model (CRCM5)

    NASA Astrophysics Data System (ADS)

    Diro, G. T.; Sushama, L.; Huziy, O.

    2015-12-01

    Given the importance of land in the climate system, we investigate the influence of land surface, in particular the variation in snow characteristics, on climate variability and extremes over North America using the fifth generation of Canadian Regional Climate Model (CRCM5). To this end, we carried out two CRCM5 simulations driven by ERA-Interim reanalysis, where snow is either prescribed (uncoupled) or evolves interactively (coupled) during the model integration. Results indicate a systematic influence of snow on the inter-annual variability of air and surface temperature throughout the winter and spring seasons. In the coupled simulations, where the snow depth and snow cover were allowed to evolve freely, the inter-annual variability of surface and near surface air temperatures were found to be larger. Comparison with the uncoupled simulation suggests that snow depth/cover variability accounts for about 70% of the total surface temperature variability over the northern Great Plains and Canadian Prairies for the winter and spring seasons. The snow-atmosphere coupling is stronger in spring than in winter, since in spring season both the albedo and the latent heat flux contribute to the variability in temperature. Snow is also found to modulate extreme temperature events such as the number of cold days over Prairies during weak La-Nina episodes. These results suggest that initializing forecast models with realistic snow condition could potentially help to improve seasonal/sub-seasonal prediction skill over these snow-atmosphere coupling hotspot regions.

  14. REPRESENTATION OF ATMOSPHERIC MOTION IN MODELS OF REGIONAL-SCALE AIR POLLUTION

    EPA Science Inventory

    A method is developed for generating ensembles of wind fields for use in regional scale (1000 km) models of transport and diffusion. The underlying objective is a methodology for representing atmospheric motion in applied air pollution models that permits explicit treatment of th...

  15. Understanding hydrologic sensitivity and land-atmosphere interactions through remote sensing and high resolution regional model

    NASA Astrophysics Data System (ADS)

    Kumar, Anil

    2016-05-01

    In this study we investigated the impact of land surface surface process & land-atmospheric interaction on weather and surface hydrology. The ultimate goal is to integrate remote sense data into numerical mesoscale weather prediction and regional climate model in order to improve prediction of the impacts of land-atmosphere interactions and land-surface processes on regional weather, and hydrology. We have used climatology based green vegetation fraction and 8-day Moderate Resolution Imaging Spectroradiometer (MODIS) based green vegetation fraction and integrated in the Land Information System to conduct uncoupled simulation to understand the impact on surface and hydrological parameters in the summer season. The vegetation response is also realized through coupled regional climate simulation in which climatological based greenness and 8-days varying vegetation is investigated and quantify the impact of vegetation on summertime precipitation process. This study has bought following findings (a) Satellite based vegetation indices captures vegetation temporal patterns more realistic than climatological vegetation data and detects early/late spring signature through vegetation indices, (b) Integrated satellite vegetation greenness input data in regional weather model resolved much better soil moisture and soil temperature including the diurnal cycle of surface heat fluxes and surface temperature in the simulation. Secondly, integration of the TRMM based satellite rainfall product into coupled hydrological and Atmospheric model and results shows better resolved soil moisture patterns in the remote regions of the Asia Mountain regions.

  16. Non-stationarities in land-atmosphere-climate interactions in Europe and the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Romberg, Karin; Hertig, Elke; Jacobeit, Jucundus

    2016-04-01

    Interactions between the land surface and the atmosphere are of major importance for the regional and global climate. Soil moisture thereby plays a key role: availability of water in the soils is one of the drivers of evaporation and thus impacts on temperature and precipitation. Regions of strong soil moisture-atmosphere coupling include the Mediterranean area while in other regions of Europe non-local effects such as the advection of dry (moist) air are more important. However, previous studies have also shown that climate is fundamentally non-stationary and that such non-stationarities occur on various spatial and temporal scales. These studies have mainly focused on sea-surface-atmosphere interactions or circulation-climate interactions. Thus, the question arises whether soil-moisture-atmosphere-climate interactions also show a non-stationary behavior. As a first step, Varimax-rotated s-mode principal component analysis (PCA) is used to reduce dimensions of soil moisture fields, circulation variables as well as of 2m temperature fields. The resulting PC loadings represent the spatial patterns while the PC scores are the corresponding time coefficients. For the analysis of non-stationarities, the time coefficients of soil moisture and temperature are further used in 30-year running correlation and feedback parameter analyses. Furthermore, correlation analyses are carried out for the circulation variables and soil moisture or temperature, as changes of the atmospheric circulation are a potential source of non-stationarities. All analyses focus on the boreal summer season 1950-2009. Results show substantial non-stationaries in the relationship between soil moisture and temperature in several regions in the European and Mediterranean domain. Depending on the region considered, these changes are accompanied by modifications in different large-scale circulation patterns such as the North Atlantic Oscillation, the Scandinavia pattern or a high pressure system centered

  17. Influence of the E region dynamo on equatorial spread F

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Sanatani, S.; Patterson, T. N. L.

    1983-01-01

    The integrated E region Pedersen conductivity can be an important parameter in determining whether the bottomside of the equatorial F layer will be stable against the Rayleigh-Taylor gravitational instability. The F layer is observed to become unstable when it rises to great heights after sunset. One effect of this height rise is to decrease the stabilizing influence of ion-neutral collisions at F region heights. It is shown here that the same eastward electric field that raises the F layer also decreases the Pedersen conductivity of the E region, which further destabilizes convective overturning. Because the conductivity of magnetic tubes that penetrate the main F layer is large compared to the E layer contribution, these effects are important only for the bottomside of the equatorial F layer.

  18. Mapping Distant Continental Influences in the Remote Pacific Atmosphere; Simulations of CO Relevant to the Photochemistry of Oxidants

    NASA Technical Reports Server (NTRS)

    Chatfield Robert B.; Guo, Z.; Sachse, G.; Singh, H.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    An animated sequence of maps of simulated carbon monoxide concentrations graphically portrays the extent of residual continental influence upon the tropical Pacific Ocean as studied by NASA aircraft during the PEM-Tropics B intensive sampling campaign. We used the MM5 at a 90 km resolution in a globally wrapped grid to simulate the meteorology of transport, and our GRACES model to follow the basic chemistry. The CO we simulate derives from different sources, and so we distinguish anthropogenic, natural terpenoid oxidation, biomass burning, and pervasive CH4-oxidation influences. "Influence" is always judged with an implicit timescale, and these maps describe influence on the 15-45 day timescale appropriate for CO oxidation. In consequence, the maps are useful in assessing the origins of slowly reacting compounds like acetone, methanol, and the lightest hydrocarbons. At 8 km altitude, The Eastern South Pacific to ca. 130 W (eastern Polynesia) was frequently affected by continental influences but NASA's DC-8's flight path did not happen to take it into these regions very often. Near the surface, continentally influenced air crossed into t he Western South Pacific, in the region northwest of the Southern Pacific Convergence Zone but south of the Intertropical Convergence Zone. This air originated from the NE Pacific, and partly from North America. Comparisons are made to CO and other compounds measured aboard the DC-8 and the P-3 aircraft. We will also use tracers to describe the influence of marine convection in the upper troposphere. As time allows, we will discuss the "age" of ozone within the very cleanest region sampled in portions of the near-equatorial Western South Pacific, using a simple chemical mechanism for ozone levels. These simulations describe the chemistry of an atmosphere with very low ozone.

  19. Flood regionalization: A hybrid geographic and predictor-variable region-of-influence regression method

    USGS Publications Warehouse

    Eng, K.; Milly, P.C.D.; Tasker, Gary D.

    2007-01-01

    To facilitate estimation of streamflow characteristics at an ungauged site, hydrologists often define a region of influence containing gauged sites hydrologically similar to the estimation site. This region can be defined either in geographic space or in the space of the variables that are used to predict streamflow (predictor variables). These approaches are complementary, and a combination of the two may be superior to either. Here we propose a hybrid region-of-influence (HRoI) regression method that combines the two approaches. The new method was applied with streamflow records from 1,091 gauges in the southeastern United States to estimate the 50-year peak flow (Q50). The HRoI approach yielded lower root-mean-square estimation errors and produced fewer extreme errors than either the predictor-variable or geographic region-of-influence approaches. It is concluded, for Q50 in the study region, that similarity with respect to the basin characteristics considered (area, slope, and annual precipitation) is important, but incomplete, and that the consideration of geographic proximity of stations provides a useful surrogate for characteristics that are not included in the analysis. ?? 2007 ASCE.

  20. The large-scale biosphere-atmosphere experiment in Amazonia: Analyzing regional land use change effects

    NASA Astrophysics Data System (ADS)

    Keller, Michael; Silva-Dias, Maria Assunção; Nepstad, Daniel C.; Silva-Andreae, Meinrat O.

    The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is a multi-disciplinary, multinational scientific project led by Brazil. LBA researchers seek to understand Amazonia in its global context especially with regard to regional and global climate. Current development activities in Amazonia including deforestation, logging, cattle ranching, and agriculture significantly perturb regional and global carbon budgets and the atmospheric radiation budget through both greenhouse gas inputs and the increase in atmospheric particulates generated by fires. The Brazilian Amazon currently releases about 0.2 Pg-C to the atmosphere each year as a result of net deforestation. Logging and forest fire activity are poorly quantified but certainly increase this amount by more than 10%. Fires associated with land management activities generate smoke that leads to heating of the lower atmosphere, decreases in overall cloudiness, increases in cloud lifetimes, and the suppression of rainfall. There are considerable uncertainties associated with our understanding of smoke effects. Present development trends point to agricultural intensification in the Brazilian Amazon. This intensification and the associated generation of wealth present an opportunity to enhance governance on the frontier and to minimize the damaging effects of fires.

  1. Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation

    NASA Astrophysics Data System (ADS)

    Ludwig, Patrick; Schaffernicht, Erik J.; Shao, Yaping; Pinto, Joaquim G.

    2016-03-01

    The Last Glacial Maximum (LGM) exhibits different large-scale atmospheric conditions compared to present-day climate due to altered boundary conditions. The regional atmospheric circulation and associated precipitation patterns over Europe are characterized for the first time with a weather typing approach (circulation weather types, CWT) for LGM paleoclimate simulations. The CWT approach is applied to four representative regions across Europe. While the CWTs over Western Europe are prevailing westerly for both present-day and LGM conditions, considerable differences are identified elsewhere: Southern Europe experienced more frequent westerly and cyclonic CWTs under LGM conditions, while Central and Eastern Europe was predominantly affected by southerly and easterly flow patterns. Under LGM conditions, rainfall is enhanced over Western Europe but is reduced over most of Central and Eastern Europe. These differences are explained by changing CWT frequencies and evaporation patterns over the North Atlantic Ocean. The regional differences of the CWTs and precipitation patterns are linked to the North Atlantic storm track, which was stronger over Europe in all considered models during the LGM, explaining the overall increase of the cyclonic CWT. Enhanced evaporation over the North Atlantic leads to higher moisture availability over the ocean. Despite the overall cooling during the LGM, this explains the enhanced precipitation over southwestern Europe, particularly Iberia. This study links large-scale atmospheric dynamics to the regional circulation and associated precipitation patterns and provides an improved regional assessment of the European climate under LGM conditions.

  2. Distinct atmospheric patterns and associations with acute heat-induced mortality in five regions of England.

    PubMed

    Petrou, Ilias; Dimitriou, Konstantinos; Kassomenos, Pavlos

    2015-10-01

    The main objective of this paper was to identify possible acute heat-induced summer mortality in five regions of England namely the Yorkshire and the Humber, West Midlands, North East, North West and South East regions and reveal associations with specific air flows. For this purpose, backward air mass trajectories corresponding to daily episodes of increased temperatures were produced and divided to clusters, in order to define atmospheric pathways associated with warm air mass intrusions. A statistically significant at 95 % confidence interval increase in daily total mortality (DTMORT) was observed during the selected episodes at all five regions and thus, heat-induced mortality was indicated. The calculated raise was more intense in the West Midlands, North West and South East regions, whereas the results in the North East and Yorkshire and the Humber regions were less evident. Large fractions of thermal episodes, elevated average temperature values and higher average DTMORT levels were primarily associated with the short-medium range South West (SW) and/or East-South East (E-SE) trajectory clusters, suggesting relations among heat-induced mortality and specific atmospheric circulations. Short-medium length of SW and E-SE airflows, calculated by an application of Haversine formula along the centroid trajectory of each cluster, implies the arrival of slow moving air masses. Atmospheric stagnation could enhance human thermal stress due to low wind speed. PMID:25605407

  3. Distinct atmospheric patterns and associations with acute heat-induced mortality in five regions of England

    NASA Astrophysics Data System (ADS)

    Petrou, Ilias; Dimitriou, Konstantinos; Kassomenos, Pavlos

    2015-10-01

    The main objective of this paper was to identify possible acute heat-induced summer mortality in five regions of England namely the Yorkshire and the Humber, West Midlands, North East, North West and South East regions and reveal associations with specific air flows. For this purpose, backward air mass trajectories corresponding to daily episodes of increased temperatures were produced and divided to clusters, in order to define atmospheric pathways associated with warm air mass intrusions. A statistically significant at 95 % confidence interval increase in daily total mortality (DTMORT) was observed during the selected episodes at all five regions and thus, heat-induced mortality was indicated. The calculated raise was more intense in the West Midlands, North West and South East regions, whereas the results in the North East and Yorkshire and the Humber regions were less evident. Large fractions of thermal episodes, elevated average temperature values and higher average DTMORT levels were primarily associated with the short-medium range South West (SW) and/or East-South East (E-SE) trajectory clusters, suggesting relations among heat-induced mortality and specific atmospheric circulations. Short-medium length of SW and E-SE airflows, calculated by an application of Haversine formula along the centroid trajectory of each cluster, implies the arrival of slow moving air masses. Atmospheric stagnation could enhance human thermal stress due to low wind speed.

  4. Intra-annual variation of atmospheric static stability in the Mediterranean region: a 60-year climatology

    NASA Astrophysics Data System (ADS)

    Lolis, C. J.; Bartzokas, A.; Lagouvardos, K.; Metaxas, D. A.

    2012-10-01

    The seasonal characteristics of atmospheric static stability in the Mediterranean region are examined, for the 60-year period 1948-2007 and for the four 15-year sub-periods 1948-1962, 1963-1977, 1978-1992 and 1993-2007. S-Mode and T-Mode Factor Analysis are applied to the mean 5-day values of K static stability index over the Mediterranean region. Three dominant modes are revealed for both, the intra-annual variation and the spatial distribution of K-index. It is found that these modes are connected to the seasonal characteristics of the main atmospheric circulation systems affecting the region and the thermal properties of the Earth's surface (land or sea). The differences among the results of the four sub-periods partially reflect the inter-decadal variations of the strength of the above factors.

  5. Influence of atmospheric properties on detection of wood-warbler nocturnal flight calls.

    PubMed

    Horton, Kyle G; Stepanian, Phillip M; Wainwright, Charlotte E; Tegeler, Amy K

    2015-10-01

    Avian migration monitoring can take on many forms; however, monitoring active nocturnal migration of land birds is limited to a few techniques. Avian nocturnal flight calls are currently the only method for describing migrant composition at the species level. However, as this method develops, more information is needed to understand the sources of variation in call detection. Additionally, few studies examine how detection probabilities differ under varying atmospheric conditions. We use nocturnal flight call recordings from captive individuals to explore the dependence of flight call detection on atmospheric temperature and humidity. Height or distance from origin had the largest influence on call detection, while temperature and humidity also influenced detectability at higher altitudes. Because flight call detection varies with both atmospheric conditions and flight height, improved monitoring across time and space will require correction for these factors to generate standardized metrics of songbird migration. PMID:25601781

  6. Influence of atmospheric properties on detection of wood-warbler nocturnal flight calls

    NASA Astrophysics Data System (ADS)

    Horton, Kyle G.; Stepanian, Phillip M.; Wainwright, Charlotte E.; Tegeler, Amy K.

    2015-10-01

    Avian migration monitoring can take on many forms; however, monitoring active nocturnal migration of land birds is limited to a few techniques. Avian nocturnal flight calls are currently the only method for describing migrant composition at the species level. However, as this method develops, more information is needed to understand the sources of variation in call detection. Additionally, few studies examine how detection probabilities differ under varying atmospheric conditions. We use nocturnal flight call recordings from captive individuals to explore the dependence of flight call detection on atmospheric temperature and humidity. Height or distance from origin had the largest influence on call detection, while temperature and humidity also influenced detectability at higher altitudes. Because flight call detection varies with both atmospheric conditions and flight height, improved monitoring across time and space will require correction for these factors to generate standardized metrics of songbird migration.

  7. Influence of Elevated Atmospheric Carbon Dioxide on Transcriptional Responses of Bradyrhizobium japonicum in the Soybean Rhizoplane

    PubMed Central

    Sugawara, Masayuki; Sadowsky, Michael J.

    2013-01-01

    Elevated atmospheric CO2 can influence the structure and function of rhizoplane and rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizoplane and rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizoplane of soybean plants exposed to elevated atmospheric CO2. The results of microarray analyses indicated that elevated atmospheric CO2 concentration indirectly influenced the expression of a large number of genes in Bradyrhizobium attached to soybean roots. In addition, relative to plants and bacteria grown under ambient CO2 growth conditions, genes involved in C1 metabolism, denitrification and FixK2-associated genes, including those involved in nitrogen fixation, microaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2 in the rhizosphere. The expression profile of genes involved in lipochitooligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, the results of these studies indicate that the growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizoplane, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency. PMID:23666536

  8. Improved PPP Ambiguity Resolution Considering the Stochastic Characteristics of Atmospheric Corrections from Regional Networks.

    PubMed

    Li, Yihe; Li, Bofeng; Gao, Yang

    2015-01-01

    With the increased availability of regional reference networks, Precise Point Positioning (PPP) can achieve fast ambiguity resolution (AR) and precise positioning by assimilating the satellite fractional cycle biases (FCBs) and atmospheric corrections derived from these networks. In such processing, the atmospheric corrections are usually treated as deterministic quantities. This is however unrealistic since the estimated atmospheric corrections obtained from the network data are random and furthermore the interpolated corrections diverge from the realistic corrections. This paper is dedicated to the stochastic modelling of atmospheric corrections and analyzing their effects on the PPP AR efficiency. The random errors of the interpolated corrections are processed as two components: one is from the random errors of estimated corrections at reference stations, while the other arises from the atmospheric delay discrepancies between reference stations and users. The interpolated atmospheric corrections are then applied by users as pseudo-observations with the estimated stochastic model. Two data sets are processed to assess the performance of interpolated corrections with the estimated stochastic models. The results show that when the stochastic characteristics of interpolated corrections are properly taken into account, the successful fix rate reaches 93.3% within 5 min for a medium inter-station distance network and 80.6% within 10 min for a long inter-station distance network. PMID:26633400

  9. Improved PPP Ambiguity Resolution Considering the Stochastic Characteristics of Atmospheric Corrections from Regional Networks

    PubMed Central

    Li, Yihe; Li, Bofeng; Gao, Yang

    2015-01-01

    With the increased availability of regional reference networks, Precise Point Positioning (PPP) can achieve fast ambiguity resolution (AR) and precise positioning by assimilating the satellite fractional cycle biases (FCBs) and atmospheric corrections derived from these networks. In such processing, the atmospheric corrections are usually treated as deterministic quantities. This is however unrealistic since the estimated atmospheric corrections obtained from the network data are random and furthermore the interpolated corrections diverge from the realistic corrections. This paper is dedicated to the stochastic modelling of atmospheric corrections and analyzing their effects on the PPP AR efficiency. The random errors of the interpolated corrections are processed as two components: one is from the random errors of estimated corrections at reference stations, while the other arises from the atmospheric delay discrepancies between reference stations and users. The interpolated atmospheric corrections are then applied by users as pseudo-observations with the estimated stochastic model. Two data sets are processed to assess the performance of interpolated corrections with the estimated stochastic models. The results show that when the stochastic characteristics of interpolated corrections are properly taken into account, the successful fix rate reaches 93.3% within 5 min for a medium inter-station distance network and 80.6% within 10 min for a long inter-station distance network. PMID:26633400

  10. The Influence of Atmospheric Conditions on the Production of Ozone during VOC Oxidation

    NASA Astrophysics Data System (ADS)

    Coates, J.; Butler, T. M.

    2015-12-01

    Tropospheric ozone is a short-lived climate forcing pollutant that is detrimental to human health and crop growth. Reactions involving volatile organic compounds (VOC) and nitrogen oxides (NOx) in the presence of sunlight produce ozone. Ozone production is a non-linear function of the concentrations of both NOx and VOC, with VOC acting as the "fuel" for ozone production and NOx as the "catalyst". Different VOC, due to their differing structure and carbon content, have different maximum potential to produce ozone. Due to different degrees of reactivity, VOC also differ in the time taken to reach this maximum ozone production potential under ideal conditions. Ozone production is also influenced by meteorological factors such as radiation, temperature, advection and mixing, which may alter the rate of ozone production, and the degree to which VOC are able to reach their maximum ozone production potential. Identifying the chemical and meteorological processes responsible for controlling the degree to which VOC are able to reach their maximum ozone production potential could inform decisions on emission control to efficiently tackle high levels of tropospheric ozone. In this study we use a boxmodel to determine the chemical processes affecting ozone production under different meteorological and chemical conditions. The chemistry scheme used by the boxmodel is "tagged" for each initial VOC enabling attribution of ozone production to its VOC source. We systematically vary a number of meteorological parameters along with the source of NOx within the box model to simulate a range of atmospheric conditions. These simulations are compared with a control simulation done under conditions of maximum ozone formation to determine which parameters affect the rate at which VOC produce ozone and the extent to which they reach their maximum potential to produce ozone. We perform multi-day simulations in order to examine whether these processes can influence ozone production over

  11. Long-range atmospheric transport of heavy metals from industrial regions of Ural and Norilsk to siberian environment

    NASA Astrophysics Data System (ADS)

    Vinogradova, Anna; Maksimenkov, Leonid; Pogarskii, Fedor

    2010-05-01

    The main idea of the work is to analyze atmospheric transport of heavy metals (Ni, Cu, Pb) from the industries of the region of Norilsk, and the Ural over the territory of Siberia. The basic data were 5-days air mass trajectories from the sources calculated for every day of January, April, July, and October during 28 years from 1981 to 2008. NCEP/NCAR Reanalysis Data Files and HYSPLIT 4 model were used. Spatial, seasonal and long-term variations in heavy metal (HM) concentrations in surface air and precipitations, as well as in fluxes of these elements onto the surface were studied. The obtained results (presented as maps) may be used as assessment of anthropogenic influence of the sources under investigation on the environment of remote and hard-to-reach areas. The HM air concentrations and fluxes onto the surface depend on surface properties and precipitation regime, and experience great seasonal and spatial variations. The maximal air concentrations are in cold seasons, whereas the maximal fluxes onto the surface occur in warm period. In comparison anthropogenic loadings at different places the cleanest air does not guarantees the minimal vertical fluxes. The pollution trends (modulo) caused only by the transformation of air circulation processes are quite comparable with the contributions of source-emissions' changes. The main result is the decreasing of Siberian environment pollution through the atmosphere from regarded sources during the last years. At a distance about 2000 km from a large source under investigation its atmospheric emissions form only the background levels of HM in the surface environment, and the real pollution levels are determined by local anthropogenic sources (with less emissions) if they exist. So, for the Lake Baikal the HM inputs from our distant sources through atmosphere to the water surface are insignificant in comparison with the flowing rivers' ones, and lake water pollution occurs mainly due to rivers' pollution. However, annual

  12. Predictability and Ensemble Modeling of the Space-Atmosphere Interaction Region

    NASA Astrophysics Data System (ADS)

    Matsuo, T.; Fuller-Rowell, T. J.; Akmaev, R. A.; Wang, H.; Fang, T. W.; Ide, K.; Kleist, D. T.; Whitaker, J. S.; Yue, X.; Codrescu, M.; Richmond, A. D.; Immel, T. J.; Anderson, B. J.; Paxton, L. J.; Liu, J. Y.

    2014-12-01

    The Space-Atmosphere Interaction Region (SAIR), encompassing the mesosphere, thermosphere and ionosphere, is an intersection between geospace and the Earth's atmosphere, and is exposed to vacillating conditions of both space and terrestrial weather. Recent observational and modeling studies have revealed clear reaches of terrestrial weather far beyond the mesosphere lower-thermosphere region into the topside ionosphere. At the same time, the region lends itself to forcing originating from the Sun and solar-wind magnetosphere interactions. The predictability of the SAIR is a fundamental question in Heliophysics, and calls for a paradigm shift from a deterministic to a probabilistic modeling framework. To meet with this contemporary modeling and simulation challenge, we will systematically compare and combine ensemble simulations of a comprehensive whole atmosphere model, coupled with an ionosphere and plasmasphere model called the Integrated Dynamics in Earth's Atmosphere (IDEA) with global Earth and geospace observations. Building on the National Weather Service's operational ensemble forecasting and data assimilation systems as well as our earlier efforts, we will construct an ensemble forecasting and data assimilation system that will ultimately be capable of assimilating observations from the ground to SAIR. We will present the project overview along with some initial results from our new interdisciplinary initiatives.

  13. XeCl laser ablation of polyimide: Influence of ambient atmosphere on particulate and gaseous products

    NASA Astrophysics Data System (ADS)

    Singleton, Donald L.; Paraskevopoulos, George; Irwin, Robert S.

    1989-10-01

    The gaseous and particulate products of the XeCl (308 nm) laser ablation of polyimide (Kapton H) are quantitatively determined and compared with the mass loss of the polymer in atmospheres of He, N2, air, or O2. In air and in pure O2, the observed mass balance is about 90%, but is lower for inert atmospheres. With increasing oxygen content in the atmosphere, the yield of CO2 increases at the expense of particulates and acetylene. The influence of laser fluence and nature of the ambient atmosphere on the product distribution is interpreted in terms of ejection of small reactive species which are involved in the competitive reactions of particulate formation and oxidation to CO2.

  14. Influence of atmospheric turbulence on optical measurement: a case report and review of literature

    NASA Astrophysics Data System (ADS)

    Yao, Linshen; Shang, Yang; Fu, Dan

    2016-01-01

    When videogammetry (optical measurement) was carried outdoor or under cruel indoor circumstance, the results would be inevitably affected by the atmosphere turbulence. As a result, the precision of surveying was destroyed. The field of air turbulence's impact on optical measurement was neglected by scholars for a long time, the achievements massed about laser optics and optical communications. The mostly adapted method was noise filtration when the pixel wandering could not be rejected in engineering application, which got little improvement on usual conditions. The principle of influence under atmospheric turbulence on optical measurement is presented in this paper. And experiments data and applications are carried out to announce the impact of atmospheric turbulence. Combining with relevant researches, some essential issues and expectations of the atmospheric turbulence research are proposed.

  15. Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory

    NASA Astrophysics Data System (ADS)

    Cheruy, F.; Campoy, A.; Dupont, J.-C.; Ducharne, A.; Hourdin, F.; Haeffelin, M.; Chiriaco, M.; Idelkadi, A.

    2013-05-01

    The identification of the land-atmosphere interactions as one of the key source of uncertainty in climate models calls for process-level assessment of the coupled atmosphere/land continental surface system in numerical climate models. To this end, we propose a novel approach and apply it to evaluate the standard and new parametrizations of boundary layer/convection/clouds in the Earth System Model (ESM) of Institut Pierre Simon Laplace (IPSL), which differentiate the IPSL-CM5A and IPSL-CM5B climate change simulations produced for the Coupled Model Inter-comparison Project phase 5 exercise. Two different land surface hydrology parametrizations are also considered to analyze different land-atmosphere interactions. Ten-year simulations of the coupled land surface/atmospheric ESM modules are confronted to observations collected at the SIRTA (Site Instrumental de Recherche par Télédection Atmosphérique), located near Paris (France). For sounder evaluation of the physical parametrizations, the grid of the model is stretched and refined in the vicinity of the SIRTA, and the large scale component of the modeled circulation is adjusted toward ERA-Interim reanalysis outside of the zoomed area. This allows us to detect situations where the parametrizations do not perform satisfactorily and can affect climate simulations at the regional/continental scale, including in full 3D coupled runs. In particular, we show how the biases in near surface state variables simulated by the ESM are explained by (1) the sensible/latent heat partitionning at the surface, (2) the low level cloudiness and its radiative impact at the surface, (3) the parametrization of turbulent transport in the surface layer, (4) the complex interplay between these processes. We also show how the new set of parametrizations can improve these biases.

  16. The Influence of the Extreme Ultraviolet Spectral Energy Distribution on the Structure and Composition of the Upper Atmosphere of Exoplanets

    NASA Astrophysics Data System (ADS)

    Guo, J. H.; Ben-Jaffel, Lotfi

    2016-02-01

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400-900 Å), which pushes the transition of H/H+ to low altitudes. In contrast, the transition of H/H+ moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50-400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.

  17. Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere

    NASA Astrophysics Data System (ADS)

    Myhre, C. Lund; Ferré, B.; Platt, S. M.; Silyakova, A.; Hermansen, O.; Allen, G.; Pisso, I.; Schmidbauer, N.; Stohl, A.; Pitt, J.; Jansson, P.; Greinert, J.; Percival, C.; Fjaeraa, A. M.; O'Shea, S. J.; Gallagher, M.; Le Breton, M.; Bower, K. N.; Bauguitte, S. J. B.; Dalsøren, S.; Vadakkepuliyambatta, S.; Fisher, R. E.; Nisbet, E. G.; Lowry, D.; Myhre, G.; Pyle, J. A.; Cain, M.; Mienert, J.

    2016-05-01

    We find that summer methane (CH4) release from seabed sediments west of Svalbard substantially increases CH4 concentrations in the ocean but has limited influence on the atmospheric CH4 levels. Our conclusion stems from complementary measurements at the seafloor, in the ocean, and in the atmosphere from land-based, ship and aircraft platforms during a summer campaign in 2014. We detected high concentrations of dissolved CH4 in the ocean above the seafloor with a sharp decrease above the pycnocline. Model approaches taking potential CH4 emissions from both dissolved and bubble-released CH4 from a larger region into account reveal a maximum flux compatible with the observed atmospheric CH4 mixing ratios of 2.4-3.8 nmol m-2 s-1. This is too low to have an impact on the atmospheric summer CH4 budget in the year 2014. Long-term ocean observatories may shed light on the complex variations of Arctic CH4 cycles throughout the year.

  18. Influence of stochastic sea ice parametrization on climate and the role of atmosphere-sea ice-ocean interaction.

    PubMed

    Juricke, Stephan; Jung, Thomas

    2014-06-28

    The influence of a stochastic sea ice strength parametrization on the mean climate is investigated in a coupled atmosphere-sea ice-ocean model. The results are compared with an uncoupled simulation with a prescribed atmosphere. It is found that the stochastic sea ice parametrization causes an effective weakening of the sea ice. In the uncoupled model this leads to an Arctic sea ice volume increase of about 10-20% after an accumulation period of approximately 20-30 years. In the coupled model, no such increase is found. Rather, the stochastic perturbations lead to a spatial redistribution of the Arctic sea ice thickness field. A mechanism involving a slightly negative atmospheric feedback is proposed that can explain the different responses in the coupled and uncoupled system. Changes in integrated Antarctic sea ice quantities caused by the stochastic parametrization are generally small, as memory is lost during the melting season because of an almost complete loss of sea ice. However, stochastic sea ice perturbations affect regional sea ice characteristics in the Southern Hemisphere, both in the uncoupled and coupled model. Remote impacts of the stochastic sea ice parametrization on the mean climate of non-polar regions were found to be small. PMID:24842027

  19. Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation

    NASA Astrophysics Data System (ADS)

    Ludwig, Patrick; Schaffernicht, Erik; Shao, Yaping; Pinto, Joaquim

    2016-04-01

    The Last Glacial Maximum (LGM) exhibits different large-scale atmospheric patterns compared to present-day climate due to altered boundary conditions. The impacts on the regional atmospheric circulation and associated precipitation patterns over Europe for the LGM are characterized for the first time with a weather typing approach (circulation weather types, CWT) from (paleo-) climate simulations. While the CWTs over Western Europe are prevailing westerly for both present-day and LGM conditions, considerable differences are identified elsewhere: Southern Europe experienced more frequent westerly and cyclonic CWTs under LGM conditions, while Central and Eastern Europe was predominantly affected by southerly and easterly flow patterns. Precipitation patterns under LGM conditions show increased rainfall in Western Europe but are reduced over most of Central and Eastern Europe. These differences are explained by changing CWT frequencies and evaporation patterns over the North Atlantic Ocean. The regional differences of the CWTs and precipitation patterns are linked to the North Atlantic storm track, which was stronger over Europe in all considered models during LGM, explaining the overall increase of the cyclonic CWT. Enhanced evaporation over the North Atlantic lead to an increased amount of available moisture over the ocean. Despite the overall cooling during the LGM, this explains the enhanced precipitation amounts over southwestern parts of Europe, particularly Iberia. This study links large scale atmospheric dynamics to the regional circulation and associated precipitation patterns and provides an improved regional assessment for climate conditions in Europe under LGM conditions.

  20. Charge structure of a summer thunderstorm in North China: Simulation using a Regional Atmospheric Model System

    NASA Astrophysics Data System (ADS)

    Liu, Dongxia; Qie, Xiushu; Peng, Liang; Li, Wanli

    2014-09-01

    Electrification and simple discharge schemes are coupled into a 3D Regional Atmospheric Model System (RAMS) as microphysical parameterizations, in accordance with electrical experiment results. The dynamics, microphysics, and electrification components are fully integrated into the RAMS model, and the inductive and non-inductive electrification mechanisms are considered in the charging process. The results indicate that the thunderstorm mainly had a normal tripole charge structure. The simulated charge structure and lightning frequency are basically consistent with observations of the lightning radiation source distribution. The non-inductive charging mechanism contributed to the electrification during the whole lifetime of the thunderstorm, while the inductive electrification mechanism played a significant role in the development period and the mature stage when the electric field reached a large value. The charge structure in the convective region and the rearward region are analyzed, showing that the charge density in the convective region was double that in the rearward region.

  1. Yak dung combustion aerosols in the Tibetan Plateau: Chemical characteristics and influence on the local atmospheric environment

    NASA Astrophysics Data System (ADS)

    Chen, Pengfei; Kang, Shichang; Bai, Jiankun; Sillanpää, Mika; Li, Chaoliu

    2015-04-01

    The study of the source areas of atmospheric pollutants in the Tibetan Plateau (TP) - one of the most remote regions in the world - has raised a great deal of concern. It is generally considered that the majority of pollutants in this region are transported from outside the TP. This research investigated the water soluble elements and carbonaceous matter from aerosols emitted from yak dung combustion by local residents and re-analyzed previous OC and BC data at Nam Co - a remote area of the TP. The compositions of the water soluble elements of the studied aerosols were similar to those in precipitation and snow samples of the region under investigation. Some heavy metal elements (e.g. Cd and As) even had higher enrichment factor (EF) values (1793 and 2355, respectively) compared to those in precipitation and snow samples, implying that previously reported high EF values for precipitation and snow did not completely reflect the long-range transported pollutants from outside the TP. Accordingly, the contributions of local sources needed to be considered. Organic carbon (OC) and black carbon (BC) accounted for 55.2% and 3.63% of the studied aerosol, respectively. The OC/BC ratio of the studied aerosols was close to the corresponding value for the outdoor aerosols, further indicating the influence of local sources on the atmosphere of Nam Co. It was proposed that air masses from South Asia cause high BC concentrations in the Nam Co region. It was, however, discovered that air masses from the TP itself also induce high BC concentrations, suggesting that not all the BC of Nam Co was transported from South Asia. Therefore, it is proposed that pollutants of atmospheric aerosols of the Nam Co region were derived from a variety of sources from both the TP and outside. In other words, the influence of yak dung burning by local residents on the atmosphere of the TP cannot be overlooked. Correspondingly, long-range transported pollutants can penetrate into the inland TP only

  2. The influence of an atmospheric Two-Way coupled model system on the predictability of extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Schuster, Mareike; Thürkow, Markus; Weiher, Stefan; Kirchner, Ingo; Ulbrich, Uwe; Will, Andreas

    2016-04-01

    A general bias of global atmosphere ocean models, and also of the MPI-ESM, is an under-representation of the high latitude cyclone activity and an overestimation of the mid latitude cyclone activity in the North Atlantic, thus representing the extra-tropical storm track too zonal. We will show, that this effect can be antagonized by applying an atmospheric Two-Way Coupling (TWC). In this study we present a newly developed Two-Way Coupled model system, which is based on the MPI-ESM, and show that it is able to capture the mean storm track location more accurate. It also influences the sub-decadal deterministic predictability of extra-tropical cyclones and shows significantly enhanced skill compared to the "uncoupled" MPI-ESM standalone system. This study evaluates a set of hindcast experiments performed with said Two-Way Coupled model system. The regional model COSMO CLM is Two-Way Coupled to the atmosphere of the global Max-Plack-Institute Earth System Model (MPI-ESM) and therefore integrates and exchanges the state of the atmosphere every 10 minutes (MPI-TWC-ESM). In the coupled source region (North Atlantic), mesoscale processes which are relevant for the formation and early-stage development of cyclones are expected to be better represented, and therefore influence the large scale dynamics of the target region (Europe). The database covers 102 "uncoupled" years and 102 Two-Way Coupled years of the recent climate (1960-2010). Results are validated against the ERA-Interim reanalysis. Besides the climatological point of view, the design of this single model ensemble allows for an analysis of the predictability of the first and second leadyears of the hindcasts. As a first step to understand the improved predictability of cyclones, we will show a detailed analysis of climatologies for specific cyclone categories, sorted by season and region. Especially for cyclones affecting Europe, the TWC is capable to counteract the AOGCM's biases in the North Atlantic. Also

  3. Influence of solar-probe inherent atmosphere on in-situ observations

    SciTech Connect

    Hassanein, A.; Konkashbaev, A.I.; Konkashbaev, I.K.; Nikandrov, L.B.

    1998-08-01

    The solar corona is the source of the solar wind, which is responsible for the heliosphere and plays a crucial role in solar/terrestrial phenomena. A comprehensive understanding of these phenomena can be established only by directly measuring ion and electron velocity distributions, plasma waves, and fluxes of energetic particles near the sun. The problem resulting from the inherent atmosphere of a spacecraft moving in the vicinity of the sun and the influence of this atmosphere on in-situ measurements of the solar corona plasma is key to the realization and success of any solar probe mission. To evaluate the influence of the probe-inherent atmosphere on in-situ observations, the authors have developed comprehensive radiation hydrodynamic models. The physics of plasma/probe/vapor interaction are also being developed in a self-consistent model to predict the effect of probe inherent atmosphere on in-situ measurements of corona parameters during solar flares. Interaction of the ionized atmosphere with the ambient natural plasma will create a turbulent shock wave that can affect in-situ measurements and must be taken into account in designing the spacecraft and its scientific components.

  4. Characteristics in the jet region of helium radio-frequency atmospheric-pressure glow discharge with array generators

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Bin; Nie, Qiu-Yue

    2015-09-01

    The two-dimensional spatially extended atmospheric plasma arrays by many parallel radio-frequency glow discharge plasma jets packed densely, represent a feature option of large-scale low-temperature atmospheric plasma technologies with distinct capability of directed delivery of reactive species and good insusceptibility to sample variations. However, it is still a challenge to form plasma jet with large area of uniform active species on a downstream substrate due to the complex interactions between individual jets. This paper proposes to numerically study the strategy and mechanism of control/modulation for the array discharge to produce two-dimensional plasma uniformity in the downstream working area. In this work, a two dimensional fluid model is employed to investigate the characteristics in the jet region of helium radio-frequency atmospheric-pressure glow discharge (RF APGD) with array generators. The influences of upstream discharge characteristics, gas flow and their cooperative effects on the distribution of species densities, gas temperatures and the uniformity of active species in the material treating area is studied, and the essential strategy for the modulation method is acquired. The results will be significant for deep understanding of coupling behaviors of multiple plasma plumes in the RF APGD array and applications of the technology.

  5. On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Döscher, Ralf; Koenigk, Torben

    2015-08-01

    Impacts of spectral nudging on simulations of Arctic climate in coupled simulations have been investigated in a set of simulations with a regional climate model (RCM). The dominantly circumpolar circulation in the Arctic lead to weak constraints on the lateral boundary conditions (LBCs) for the RCM, which causes large internal variability with strong deviations from the driving model. When coupled to an ocean and sea ice model, this results in sea ice concentrations that deviate from the observed spatial distribution. Here, a method of spectral nudging is applied to the atmospheric model RCA4 in order to assess the potentials for improving results for the sea ice concentrations when coupled to the RCO ocean-sea ice model. The spectral nudging applied to reanalysis driven simulations significantly improves the generated sea ice regarding its temporal evolution, extent and inter-annual trends, compared to simulations with standard LBC nesting. The method is furthermore evaluated with driving data from two CMIP5 GCM simulations for current and future conditions. The GCM biases are similar to the RCA4 biases with ERA-Interim, however, the spectral nudging still improves the surface winds enough to show improvements in the simulated sea ice. For both GCM downscalings, the spectrally nudged version retains a larger sea ice extent in September further into the future. Depending on the sea ice formulation in the GCM, the temporal evolution of the regional sea ice model can deviate strongly.

  6. On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Döscher, Ralf; Koenigk, Torben

    2016-06-01

    Impacts of spectral nudging on simulations of Arctic climate in coupled simulations have been investigated in a set of simulations with a regional climate model (RCM). The dominantly circumpolar circulation in the Arctic lead to weak constraints on the lateral boundary conditions (LBCs) for the RCM, which causes large internal variability with strong deviations from the driving model. When coupled to an ocean and sea ice model, this results in sea ice concentrations that deviate from the observed spatial distribution. Here, a method of spectral nudging is applied to the atmospheric model RCA4 in order to assess the potentials for improving results for the sea ice concentrations when coupled to the RCO ocean-sea ice model. The spectral nudging applied to reanalysis driven simulations significantly improves the generated sea ice regarding its temporal evolution, extent and inter-annual trends, compared to simulations with standard LBC nesting. The method is furthermore evaluated with driving data from two CMIP5 GCM simulations for current and future conditions. The GCM biases are similar to the RCA4 biases with ERA-Interim, however, the spectral nudging still improves the surface winds enough to show improvements in the simulated sea ice. For both GCM downscalings, the spectrally nudged version retains a larger sea ice extent in September further into the future. Depending on the sea ice formulation in the GCM, the temporal evolution of the regional sea ice model can deviate strongly.

  7. Influence of flowing helium gas on plasma plume formation in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Konda, Kohmei; Ogura, Kazuo

    2015-05-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and a foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. The helium gas flowing out of quartz tube mixes with air, and the flow channel is composed of the regions of flowing helium gas and air. The plasma plume length is equivalent to the reachable distance of flowing helium gas. Although the amount of helium gas on the flow channel increases by increasing the inner diameter of quartz tube at the same gas flow velocity, the plasma plume length peaks at around 8 m/s of gas flow velocity, which is the result that a flow of helium gas is balanced with the amount of gas. The plasma plume is formed at the boundary region where the flow of helium gas is kept to the wall of the air.

  8. [Concentration distribution of metal elements in atmospheric aerosol under different weather conditions in Qingdao Coastal Region].

    PubMed

    Chen, Xiao-Jing; Qi, Jian-Hua; Liu, Ning; Zhang, Xiang-Yu; Shen, Heng-Qing; Liu, Ming-Xu

    2014-10-01

    To know the influence of different weather conditions on the concentration of metal elements in aerosols in the coastal region, total suspended particles (TSP) samples were collected from April to May 2012, and August 2012 to March 2013 in the Qingdao coastal region, and common trace metals were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Al, Ca, Fe, Na, K and Mg were the dominant metal elements in TSP, and the sum of the six elements accounted for 94.2% of the sum of all metals. TSP and metal elements had significant monthly variations, Fe, Al, K, Ca, Mg, Zn, Ba, Mn, Ti, Sr and Li had the highest concentration in November and January, while Be, Sc, Co, Ni and Cr showed the highest value in January. Na had the highest concentration in August, November and February, and the lowest in December. Pb had the highest concentration in January and February, and the lowest in August and December. Enrichment factors indicated that Be, Co, Al, Ca, Fe, K, Mg, Mn, Sr and Ti were mainly affected by natural sources; Li, Cr, Ni, Zn, Ba and Na were affected by natural sources and part of anthropogenic sources; Pb was mainly from anthropogenic sources. Different weather conditions had great impact on TSP and metal elements concentrations, all the measured metals had the highest concentrations in smog except Ti. Compared with the sunny day, the concentration of atmospheric particulate Ti decreased, while the other elements increased by 1 to 4 times in smog. Li, Be, Cr, Ni, Al, Fe, Mg and Mn had little variation in concentration in foggy day, and the concentration of Pb and Na increased considerably. The concentration of Co, Ca and Ti reduced obviously in fog. Except for Cr, Co and Ti, the other elements increased by 1 to 3 times in haze. Most of the elements had the minimal enrichment factors in sunny day, while the other had the maximal enrichment factor in

  9. Climate change and climate systems influence and control the atmospheric dispersion of desert dust: implications for human health

    USGS Publications Warehouse

    Griffin, Dale W.

    2010-01-01

    The global dispersion of desert dust through Earth’s atmosphere is greatly influenced by temperature. Temporal analyses of ice core data have demonstrated that enhanced dust dispersion occurs during glacial events. This is due to an increase in ice cover, which results in an increase in drier terrestrial cover. A shorter temporal analysis of dust dispersion data over the last 40 years has demonstrated an increase in dust transport. Climate systems or events such as the North Atlantic Oscillation, the Indian Ocean subtropical High, Pacific Decadal Oscillation, and El Nino-Sothern Oscillation are known to influence global short-term dust dispersion occurrence and transport routes. Anthropogenic influences on dust transport include deforestation, harmful use of topsoil for agriculture as observed during the American Dust Bowl period, and the creation of dry seas (Aral Sea) and lakes (Lake Owens in California and Lake Chad in North Africa) through the diversion of source waters (for irrigation and drinking water supplies). Constituents of desert dust both from source regions (pathogenic microorganisms, organic and inorganic toxins) and those scavenged through atmospheric transport (i.e., industrial and agricultural emissions) are known to directly impact human and ecosystem health. This presentation will present a review of global scale dust storms and how these events can be both a detriment and benefit to various organisms in downwind environments.

  10. Vertical and horizontal structure of atmospheric waves observed with the Indonesian regional CPEA radar network

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Sridharan, S.; Tsuda, T.; Vincent, R.; Kozu, T.

    Although the global structure of tides and planetary waves in the middle atmosphere including MLT Mesosphere Lower Thermosphere has extensively been studied with ground-based and satellite observations structures of atmospheric waves within thousands of km are rarely reported by observations Such structures of a regional scale should reflect locality and are expected to include information of wave sources as well as interactions with smaller scale waves We have carried out meteor MF radar observations in the MLT region at three locations Kototabang 100E 0S West Sumatra Pontianak 109E 0N West Kalimantan and Pameungpeuk 107 5E 7 5S West Jawa in Indonesia as an activity of CPEA Coupling Processes of Equatorial Atmosphere project The diurnal variaiton of wind velocities over the equator at Pontianak and Kototabang with an average amplitude of 10 - 20 m s at 86 - 90 km showed significant difference indicating strong effect of non-migrating diurnal tides The significant phase difference between the two site 9 deg distance suggesting existence of high zonal wave number 4 waves Enhancement of diurnal variation of MLT wind seems to correlate with the enhancement of diurnal oscillation in the OLR outgoing longwave radiation of the Asia-Pacific area Vertical propagation of tides and other atmospheric waves are also addressed by comparing OLR data radiosonde observations during CPEA campaigns and other observational data

  11. Regional US carbon sinks from three-dimensional atmospheric CO2 sampling

    PubMed Central

    Crevoisier, Cyril; Sweeney, Colm; Gloor, Manuel; Sarmiento, Jorge L.; Tans, Pieter P.

    2010-01-01

    Studies diverge substantially on the actual magnitude of the North American carbon budget. This is due to the lack of appropriate data and also stems from the difficulty to properly model all the details of the flux distribution and transport inside the region of interest. To sidestep these difficulties, we use here a simple budgeting approach to estimate land-atmosphere fluxes across North America by balancing the inflow and outflow of CO2 from the troposphere. We base our study on the unique sampling strategy of atmospheric CO2 vertical profiles over North America from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory aircraft network, from which we infer the three-dimensional CO2 distribution over the continent. We find a moderate sink of 0.5 ± 0.4 PgC y-1 for the period 2004–2006 for the coterminous United States, in good agreement with the forest-inventory-based estimate of the first North American State of the Carbon Cycle Report, and averaged climate conditions. We find that the highest uptake occurs in the Midwest and in the Southeast. This partitioning agrees with independent estimates of crop uptake in the Midwest, which proves to be a significant part of the US atmospheric sink, and of secondary forest regrowth in the Southeast. Provided that vertical profile measurements are continued, our study offers an independent means to link regional carbon uptake to climate drivers. PMID:20937899

  12. Regional US carbon sinks from three-dimensional atmospheric CO2 sampling.

    PubMed

    Crevoisier, Cyril; Sweeney, Colm; Gloor, Manuel; Sarmiento, Jorge L; Tans, Pieter P

    2010-10-26

    Studies diverge substantially on the actual magnitude of the North American carbon budget. This is due to the lack of appropriate data and also stems from the difficulty to properly model all the details of the flux distribution and transport inside the region of interest. To sidestep these difficulties, we use here a simple budgeting approach to estimate land-atmosphere fluxes across North America by balancing the inflow and outflow of CO(2) from the troposphere. We base our study on the unique sampling strategy of atmospheric CO(2) vertical profiles over North America from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory aircraft network, from which we infer the three-dimensional CO(2) distribution over the continent. We find a moderate sink of 0.5 ± 0.4 PgC y(-1) for the period 2004-2006 for the coterminous United States, in good agreement with the forest-inventory-based estimate of the first North American State of the Carbon Cycle Report, and averaged climate conditions. We find that the highest uptake occurs in the Midwest and in the Southeast. This partitioning agrees with independent estimates of crop uptake in the Midwest, which proves to be a significant part of the US atmospheric sink, and of secondary forest regrowth in the Southeast. Provided that vertical profile measurements are continued, our study offers an independent means to link regional carbon uptake to climate drivers. PMID:20937899

  13. Regional-scale evaluation of a land surface scheme from atmospheric boundary layer observations

    NASA Astrophysics Data System (ADS)

    Noilhan, J.; Donier, S.; LacarrèRe, P.; Sarrat, C.; Le Moigne, P.

    2011-01-01

    The study describes an evaluation of three configurations of the Interactions Soil-Biosphere-Atmosphere (ISBA) land surface scheme fully coupled with the Meso-NH mesoscale atmospheric model. The ability of the modeling system to correctly reproduce the screen-level variables as well as the boundary layer characteristics is examined for more than 30 clear convective days monitored during the CERES 2005 and 2007 field campaigns. For the horizontal resolution considered (8 km), this study shows that the boundary layer characteristics and the low-level variables are better simulated when the subgrid-scale surface process variability is simulated explicitly using the so-called "tiling method." An additional improvement is brought when the CO2 diurnal cycle is used interactively because of the physical link between the stomatal conductance used both for CO2 assimilation and plant transpiration. The parameterization of this link between CO2 and evaporation fluxes improves the simulation of the Bowen ratio and therefore of the atmospheric boundary layer. The last part of the paper discusses the realism of the simulated regional field of CO2 when the carbon configuration is activated in the mesoscale model. Large regional variability of CO2 within the atmospheric boundary layer is found in response to the spatial and seasonal variability of CO2 surface fluxes with respect to the three main land covers in the area: pine forest, extensive winter (wheat), and summer (maize) crops.

  14. Assessment of dynamical downscaling in Japan using the Regional Atmospheric Modeling System (RAMS)

    NASA Astrophysics Data System (ADS)

    Dairaku, K.; Pielke, R. A.; Beltran-Przekurat, A. B.; Iizuka, S.; Sasaki, W.

    2009-12-01

    The responses of the climate system to increases in carbon dioxide concentrations and to changes in land use/land cover and the subsequent impacts of climatic variability on humans and natural ecosystems are of fundamental concern. Because regional responses of surface hydrological and biogeochemical changes are particularly complex, it is necessary to add spatial resolution to accurately assess critical interactions within the regional climate system for climate change impacts assessments. We quantified the confidence and the uncertainties of Type II dynamical downscaling which the lateral and bottom boundary conditions were obtained from Japanese 25-year ReAnalysis (JRA-25) and assessed the value (skill) added by the downscaling to a climate simulation in Japan. We investigated the reproducibility of present climate using two regional climate models with 20 km horizontal grid spacing, the atmosphere-biosphere-river coupling regional climate model (NIED-RAMS) and the Meteorological Research Institute Nonhydrostatic Model (MRI-NHM), both of which used JRA-25 as boundary conditions. Two key variables for impact studies, surface air temperature and precipitation, were compared with the Japanese high-resolution surface observation, Automated Meteorological Data Acquisition System (AMeDAS) on 78 river basins. Results simulated by the two models were relatively in good agreement with the observation on the basin scale. The NIED-RAMS bias of 2 m air temperature (2mT) were less than 0.5K and the bias of precipitation (P) were around 10% in most of the river basins on annual averages for three years (2002-2004). The biases over 29 years shown in the long term experiment are similar to those of the three year simulation. The model could add some information as to where the larger scale information was obtained. A regional climate model often has sensitivity to model configurations, such as domain size and nudging scheme. We conducted sensitivity experiments to domain size

  15. Snow-atmosphere coupling in current and future climates over North America in the Canadian Regional Climate Model (CRCM5)

    NASA Astrophysics Data System (ADS)

    Tefera Diro, Gulilat; Sushama, Laxmi

    2016-04-01

    The influence of snow variation on climate variability over North America is assessed using the fifth generation of Canadian Regional Climate Model (CRCM5). For this, we first carried out a suite of CRCM5 simulations driven by ERA-Interim reanalysis, whereby the snow was either prescribed (uncoupled) or allowed to evolve interactively (coupled) during the model integration. Results indicate a systematic influence of snow on the inter-annual variability of air and surface temperature throughout winter and spring seasons. In the coupled simulations, where the snow depth and snow cover were allowed to evolve freely, the inter-annual variability of surface and near surface air temperatures were found to be larger and explains up to 70% of the surface temperature variation over northern Great Plains and Canadian Prairies. The impact of snow is found to be stronger in spring than in winter, since in spring season both albedo and hydrological effects contribute to the variability in temperature. To study projected changes to snow-atmosphere coupling in future climate, coupled and uncoupled CRCM5 simulations, driven by coupled GCMs, were performed, for current (1981-2010) and future (2071-2100) climates. Coupling regions in the GCM-driven current climate simulations are similar to those obtained with ERA-Interim driven CRCM5 simulations discussed above. In future climate, snow-temperature coupling shows some change in spatial structures and in magnitudes. These results suggest that accurate initialization of snow condition could potentially be helpful to improve seasonal prediction skill over these snow-atmosphere coupling hotspot regions.

  16. Source regions of some persistent organic pollutants measured in the atmosphere at Birkenes, Norway

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Breivik, K.; Li, Y. F.; Manø, S.; Stohl, A.

    2009-09-01

    A key feature of POPs (Persistent Organic Pollutants) is their potential for long-range atmospheric transport. In order to better understand and predict atmospheric source-receptor relationships of POPs, we have modified an existing Lagrangian transport model (FLEXPART) to include some of the key processes that control the atmospheric fate of POPs. We also present four years (2004-2007) of new atmospheric measurement data for polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs) obtained at Birkenes, an EMEP (European Monitoring and Evaluation Programme) site in southern Norway. The model overestimates measured PCB-28 and γ-HCH concentrations by factors of 2 and 8, respectively, which is most likely because the emissions used as input to the model are overestimated. FLEXPART captures the temporal variability in the measurements very well and, depending on season, explains 31-67% (14-62%) of the variance of measured PCB-28 (γ-HCH) concentrations. FLEXPART, run in a time-reversed (adjoint) mode, was used to identify the source regions responsible for the POP loading at the Birkenes station. Emissions in Central Europe and Eastern Europe contributed 32% and 24%, respectively, to PCB-28 at Birkenes, while Western Europe was found to be the dominant source (50%) for γ-HCH. Intercontinental transport from North America contributed 13% γ-HCH. While FLEXPART has no treatment of the partitioning of POPs between different surface media, it was found a very useful tool for studying atmospheric source-receptor relationships for POPs and POP-like chemicals that do not sorb strongly to atmospheric particles and whose atmospheric levels are believed to be mainly controlled by primary sources.

  17. Atmospheric water balance over oceanic regions as estimated from satellite, merged, and reanalysis data

    NASA Astrophysics Data System (ADS)

    Park, Hyo-Jin; Shin, Dong-Bin; Yoo, Jung-Moon

    2013-05-01

    The column integrated atmospheric water balance over the ocean was examined using satellite-based and merged data sets for the period from 2000 to 2005. The data sets for the components of the atmospheric water balance include evaporation from the HOAPS, GSSTF, and OAFlux and precipitation from the HOAPS, CMAP, and GPCP. The water vapor tendency was derived from water vapor data of HOAPS. The product for water vapor flux convergence estimated using satellite observation data was used. The atmospheric balance components from the MERRA reanalysis data were also examined. Residuals of the atmospheric water balance equation were estimated using nine possible combinations of the data sets over the ocean between 60°N and 60°S. The results showed that there was considerable disagreement in the residual intensities and distributions from the different combinations of the data sets. In particular, the residuals in the estimations of the satellite-based atmospheric budget appear to be large over the oceanic areas with heavy precipitation such as the intertropical convergence zone, South Pacific convergence zone, and monsoon regions. The lack of closure of the atmospheric water cycle may be attributed to the uncertainties in the data sets and approximations in the atmospheric water balance equation. Meanwhile, the anomalies of the residuals from the nine combinations of the data sets are in good agreement with their variability patterns. These results suggest that significant consideration is needed when applying the data sets of water budget components to quantitative water budget studies, while climate variability analysis based on the residuals may produce similar results.

  18. Regional Variation and Trends in IASI-Observed Atmospheric Ammonia Concentrations over the United States

    NASA Astrophysics Data System (ADS)

    Schiferl, L. D.; Heald, C. L.; Van Damme, M.; Clerbaux, C.; Coheur, P.

    2013-12-01

    Quantifying atmospheric ammonia is a critical first step in investigating its role in the formation of fine particulate matter and ecosystem change. This study uses five years (2008-2012) of a new measurement of ammonia column concentrations derived from the Infrared Atmospheric Sounding Interferometer (IASI) instrument to explore ammonia levels in several regions (e.g. the Midwest, California, the Southeast) of the United States. These satellite measurements offer extensive daily coverage, providing a constraint on the evolution and spatial variation of ammonia across the United States. We identify observed ammonia variation between the regions in terms of both intra-annual (seasonal) change and trends throughout the entire time period. These variations are related to factors controlling ammonia emissions, chemistry and deposition, such as human and animal populations, farming practices, land use change and meteorological variables. These variations can also be used to drive Earth system model simulations of ammonia's effects on air quality, radiation balance and environmental degradation.

  19. Studies of Molecular Lasers, Atmospheric Molecules and Imaging in the Millimeter/submillimeter Spectral Region.

    NASA Astrophysics Data System (ADS)

    Crownover, Richard L.

    The millimeter/submillimeter portion of the electromagnetic spectrum is able to address fundamental questions in astronomy, cosmology, atmospheric science, molecular physics, quantum electronics, plasma physics, and other fields. Also, this spectral region has transmission characteristics which make it desirable for communications within the atmosphere and potentially for imaging. In order to demonstrate that detector technology in this region is sufficiently mature to permit the construction of reliable quasi-optical devices using off the shelf components, we have generated passive images using a broadband detector cooled to 0.35 K with a commercially produced ^3He refrigerator. We have shown the possibility of an extremely simple, highly sensitive, passive imaging system which operates in an attractive spectral region and is capable of upscaling to provide practical spatial resolution and real time operation over useful ranges. International public concern about acid rain, ozone depletion, and urban smog has spurred intense study of atmospheric chemistry. Spectra of two minor atmospheric constituents (HNO_3, ^ {16}O^{18}O) have been studied in the laboratory to assist with remote monitoring of atmospheric dynamics, modelling of atmospheric chemistry, and selection of communication frequencies which have some immunity to atmospheric perturbations. The nitric acid observations have allowed us to determine effective rotational constants for the first five vibrational states (nu_0, nu_9 , nu_7, nu _6, nu_8) and assign transitions in the perturbed nu_5 state. In addition, the concentration of ^{16}O^{18 }O in interstellar molecular clouds has been identified as a key discriminator between competing models of stellar formation; the measurements presented here will assist astronomers attempting to determine the abundance of this species in molecular clouds and proto-stars. We have recorded and analyzed the spectra of two important lasing species (^{12} CH_3F, ^{12 }CH_2

  20. Regional emission and loss budgets of atmospheric methane (2002-2012)

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Patra, P. K.; Dlugokencky, E. J.; Ishijima, K.; Umezawa, T.; Ito, A.; Aoki, S.; Morimoto, S.; Kort, E. A.; Crotwell, A. M.; Ravi Kumar, K.; Nakazawa, T.

    2015-12-01

    Methane (CH4) plays important roles in atmospheric chemistry and short-term forcing of climate. Clear understanding of atmospheric CH4's budget of emissions and losses is required to aid sustainable development of Earth's future environment. We used an atmospheric chemistry-transport model (JAMSTEC's ACTM) for simulating atmospheric CH4. An inverse modeling system has been developed for estimating CH4 emissions (7 ensemble cases) from 53 land regions for 2002-2012 using measurements at 39 sites. Global net CH4 emissions varied between 505-509 and 524-545 Tg/yr during 2002-2004 and 2010-2012, respectively (ranges based on 6 inversion cases), with a step like increase in 2007 in agreement with atmospheric measurement. The inversion system did not account for interannual variations in radicals reacting with CH4 in atmosphere. Our results suggest that the recent update of EDGAR inventory (version 4.2FT2010) overestimated global total emissions by at least 25 Tg/yr in 2010. Increase in CH4 emission since 2004 originated in the tropical and southern hemisphere regions, with timing consistent with an increase of non-dairy cattle stocks by ~10% in 2012 from 1056 million heads in 2002, leading to ~10 Tg/yr increase in emissions from enteric fermentation. All 7 inversions robustly estimated the interannual variations in emissions, but poorly constrained the seasonal cycle amplitude or phase consistently for all regions due to sparse observational network. Forward simulation results using both the a priori and a posteriori emissions are compared with independent aircraft measurements for validation. By doing that we are able to reject the upper limit (545 Tg/yr) of global total emissions as 14 Tg/yr too high during 2008-2012, which allows us to further conclude that CH4 emission increase rate over the East Asia (China mainly) region was 7-8 Tg/yr between the 2002-2006 and 2008-2012 periods, contrary to 1-17 Tg/yr in the a priori emissions.

  1. The Influence of Atmospheric Aerosols on Air Quality Status of the Egyptian Nile Delta

    NASA Astrophysics Data System (ADS)

    El-Askary, H. M.; Zakey, A.

    2014-12-01

    Due to the combination of natural and anthropogenic sources of emission over the Nile Delta region, the air quality status is very poor and has a significant health hazards impacts on the population. Here we focused on the optical and chemical characterizations of atmospheric aerosols in the Nile Delta using the online integrated Environmental-Climate Aerosols model (EnvClimA) during a 10 year period 2000-2010. Observations from MODIS and SeaWiFS measurements supplemented by CALIPSO and some ground-based data from AERONET, are used to validate the EnvClimA model and to illustrate the aerosol characteristics and their sources. CALIPSO measurements were used to characterize the vertical structure of aerosols and their shapes (spherical and non-spherical) for major dust storms and biomass burning events. In this study we discussed the synoptic patterns and features, which are associated with either the dust storm or high pollution events. We used MODIS derived aerosol parameters to study seasonal changes in aerosol parameters due to the influence of dust storms, anthropogenic pollution and biomass (crop residue) burning. MODIS derived deep blue AOD provided better representation of aerosol loading over north Africa (Sahara region) along with dark-target AOD and related parameters. AERONET data provided aerosol optical depth, angstrom, fine mode fraction, size fraction, volume, effective radius, refractive index, single scattering albedo, and radiative forcing during different seasons dominated by dust storms, anthropogenic pollution and biomass burning (black cloud phenomena). The results indicated that the observed AOD decreases in the summer and increases again in the fall due to agricultural burning events. Ground-based AERONET data support the "Dark Product" MODIS retrievals, as they typically show a fall peak in the 500 nm region. The number of dust distribution frequencies over Egypt has more frequency in the southeast and northwest of Egypt (5-7.5 days

  2. The Influence of Locally Increased Gravity Wave Drag on the Middle Atmosphere Circulation - A Model Study

    NASA Astrophysics Data System (ADS)

    Lilienthal, Friederike; Sacha, Petr; Jacobi, Christoph; Pisoft, Petr

    2016-04-01

    Internal gravity waves (GW) are one of the most dominant features in the middle atmosphere. They are a main contributor for energy and angular momentum transport and thus play an important role for atmospheric dynamics such as the Quasi Biennial Oscillation or the Brewer-Dobson circulation (BDC). GPS radio occultation measurements (e.g. Sacha et al., 2015) have shown that GW can appear in local hotspots, e.g. in the lower stratosphere of the Eastern Asia/North-western Pacific (EA/NP) region. Using these data as an input for the GW parameterization of a 3D primitive equation model for the middle and upper atmosphere (MUAM) we study the dynamical effects of such a localized breaking region. We further introduce an additional artificial GW drag in the lower stratosphere EA/NP region and show that a localized GW forcing is more efficient in creating planetary waves (PWs) than zonally uniform GW forcing. We observe PWs propagating both equatorward and poleward and upward along the edge of the polar vortex. Possible consequences for the polar vortex stability and stratosphere-troposphere exchange in the tropical region are discussed. Finally, applying 3D wave activity flux and 3D residual circulation diagnostics, we investigated the possible role of this area in the longitudinal variability of the BDC with a hypothesis of its enhanced downwelling branch in this region.

  3. Influence of ocean surface conditions on atmospheric vertical thermodynamic structure and deep convection

    NASA Technical Reports Server (NTRS)

    Fu, Rong; Del Genio, Anthony D.; Rossow, William B.

    1994-01-01

    The authors analyze the influence of Sea Surface Temperature (SST) and surface wind divergence on atmospheric thermodynamic structure and the resulting effects on the occurrence of deep convection using National Meteorological Center radiosonde data and International Satellite Cloud Climatology Program data for July 1983-July 1985. The onset of deep convection requires not only the existence of positive convective available potential energy (CAPE), but also an unstable planetary boundary layer (PBL). A stable PBL is observed to suppress deep convection even when CAPE is positive. Variations of SST have a major effect on CAPE, but surface wind divergence can also affect deep convection by changing the lapse rate in the lower troposphere and humidity in the PBL. Specifically, when SST is greater than or equal to 28 C, CAPE is always positive, and surface wind divergence does not qualitatively change the buoyancy profile above the PBL. Strong surface wind divergence, however, stabilizes the PBL so as to suppress the initiation of deep convection. In warm SST regions, CAPE is greater than 0 regardless of assumptions about condensate loading, although the pseudoadiabatic limit is more consistent with the observed deep convection than the reversible moist-adiabatic limit under these circumstances. When SST is less than 27 C, CAPE is usually negative and inhibits convection, but strong surface wind convergence can destabilize the inversion layer and moisten the PBL enough to make the atmosphere neutrally stable in the mean. As a result, deep convection is generally enhanced either when SST is greater than or equal to 28 C in the absence of strong surface wind divergence or when strong surface wind convergence occurs even if SST is less than 27 C. The anomalous suppression of deep convection in the warm area of the equatorial west Pacific lying between the intertropical convergence zone (ITCZ) and south Pacific convergence zone (SPCZ) is probably caused by dryness in the

  4. On the simulation of allergenic pollen exposition and its atmospheric transport on regional scale

    NASA Astrophysics Data System (ADS)

    Biernath, Christian; Klein, Christian; Hoffmann, Peter; Gayler, Sebastian; Priesack, Eckart

    2013-04-01

    In Germany approximately 30% of the population is vulnerable to pollinosis (hay fever). Exposure to allergenic pollen affects vulnerable persons recurring seasonally, but depending on the individual susceptibility to individual pollen species. To prevent the suffering the patients usually use preventive drugs and rely on the current pollen forecast. However, recently used pollen forecast models mainly consider temperature sums to predict pollen exposition by different plant species. The models often fail to describe the impact of regionally variable environmental conditions on plant growth which depends on the soil characteristics that affect the water and nutrient availability. Furthermore, water and nutrient availability may significantly affect the pollen yield and its allergenic potential. Thus, the improvement of the simulations of the exposition of allergenic pollen by plants and atmospheric pollen loads on the regional scale could improve the preventive medication of vulnerable persons. We propose a new soil-plant-atmosphere model system that allows a dynamic ressource aquisition for the plant biomass growth to account for the allergenic potential of exposed pollen and the subsequent pollen transport in the atmosphere. Therefore, to simulate pollen exposure the land surface model Expert-N (soil-plant-system model) was coupled to the Weather Research and Forecast model (WRF). Expert-N uses site specific physical soil properties to simulate the nutrient and water transport, and the carbon and nitrogen turnover, as well as the interactions between plant and soil. The allergenic potential of pollen yield is simulated using a new C- and N-allocation model which accounts for the production of carbon-based secondary compounds (CBSCs). These CBSCs are involved in the determination of the allergenic potential of pollen. The WRF model is used to predict the weather conditions for plant growth. Depending on the weather conditions pollen exposed by the plants is then

  5. Influence of atmospheric turbulence on detecting performance of all-day star sensor

    NASA Astrophysics Data System (ADS)

    Pan, Yue; Wang, Hu; Shen, Yang; Xue, Yaoke; Liu, Jie

    2016-01-01

    All-day star sensor makes it possible to observe stars in all-day time in the atmosphere. But the detecting performance is influenced by atmospheric turbulence. According to the characteristic of turbulence in long-exposure model, the modulation transfer function, point spread function and encircled power of the imaging system have been analyzed. Combined with typical star sensor optical system, the signal to noise ratio and the detectable stellar magnitude limit affected by turbulence have been calculated. The result shows the ratio of aperture diameter to atmospheric coherence length is main basis for the evaluation of the impact of turbulence. In condition of medium turbulence in day time, signal to noise ratio of the star sensor with diameter 120mm will drop about 4dB at most in typical work environment, and the detectable stellar limit will drop 1 magnitude.

  6. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    PubMed

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-01

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility. PMID:27286140

  7. Influence of Subtropical Region Strawberry Cultivars on Jelly Characteristics.

    PubMed

    Curi, Paula Nogueira; de Sousa Tavares, Bruna; de Almeida, Aline Botelho; Pio, Rafael; Peche, Pedro Maranha; de Souza, Vanessa Rios

    2016-06-01

    At the end of the production period of strawberries grown in subtropical regions, postharvest durability is severely diminished due to rising temperatures which compromises the commercialization of fresh fruit. An ideal option would be to process strawberries in the form of preserves, jams, and jellies. Along this line it becomes extremely important to conduct a survey of which cultivars grown in subtropical regions are more suitable for processing in the form of jelly, as well as to understand what the consumer profile is for this product. The objective of this study was to evaluate the influence of different strawberry cultivars grown in subtropical regions of Brazil (Camarosa, Festival, San Andreas, Oso Grande, Camino Real, and Albion) on the physicochemical characteristics, rheological properties and sensory acceptance of the resulting jelly in order to identify cultivars with the greatest potential for industrial use. The strawberry cultivars presented different physicochemical characteristics which resulted in jellies with different physicochemical and rheological characteristics. In this study, however, we verified that all cultivars have potential to be processed in the form of jelly due to good acceptance of all formulations prepared. In general consumers prefer a lighter-colored strawberry jelly, with a less intense red color, more acidic, and less consistent/firm. PMID:27115540

  8. Evaluating Observation Influence on Regional Water Budgets in Reanalyses

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Chern, Jiun-Dar; Mocko, David; Robertson, Franklin R.; daSilva, Arlindo M.

    2014-01-01

    The assimilation of observations in reanalyses incurs the potential for the physical terms of budgets to be balanced by a term relating the fit of the observations relative to a forecast first guess analysis. This may indicate a limitation in the physical processes of the background model, or perhaps inconsistencies in the observing system and its assimilation. In the MERRA reanalysis, an area of long term moisture flux divergence over land has been identified over the Central United States. Here, we evaluate the water vapor budget in this region, taking advantage of two unique features of the MERRA diagnostic output; 1) a closed water budget that includes the analysis increment and 2) a gridded diagnostic output data set of the assimilated observations and their innovations (e.g. forecast departures). In the Central United States, an anomaly occurs where the analysis adds water to the region, while precipitation decreases and moisture flux divergence increases. This is related more to a change in the observing system than to a deficiency in the model physical processes. MERRAs Gridded Innovations and Observations (GIO) data narrow the observations that influence this feature to the ATOVS and Aqua satellites during the 06Z and 18Z analysis cycles. Observing system experiments further narrow the instruments that affect the anomalous feature to AMSUA (mainly window channels) and AIRS. This effort also shows the complexities of the observing system, and the reactions of the regional water budgets in reanalyses to the assimilated observations.

  9. Influence of 21st century atmospheric and sea surface temperature forcing on West African climate

    SciTech Connect

    Skinner, Chris B; Ashfaq, Moetasim; Diffenbaugh, Noah

    2011-01-01

    he persistence of extended drought events throughout West Africa during the 20th century has motivated a substantial effort to understand the mechanisms driving African climate variability, as well as the possible response to elevated greenhouse gas (GHG) forcing. We use an ensemble of global climate model experiments to examine the relative roles of future direct atmospheric radiative forcing and SST forcing in shaping potential future changes in boreal summer precipitation over West Africa. We find that projected increases in precipitation throughout the Western Sahel result primarily from direct atmospheric radiative forcing. The changes in atmospheric forcing generate a slight northward displacement and weakening of the African easterly jet (AEJ), a strengthening of westward monsoon flow onto West Africa and an intensification of the tropical easterly jet (TEJ). Alternatively, we find that the projected decreases in precipitation over much of the Guinea Coast region are caused by SST changes that are induced by the atmospheric radiative forcing. The changes in SSTs generate a weakening of the monsoon westerlies and the TEJ, as well as a decrease in low-level convergence and resultant rising air throughout the mid levels of the troposphere. Our experiments suggest a potential shift in the regional moisture balance of West Africa should global radiative forcing continue to increase, highlighting the importance of climate system feedbacks in shaping the response of regional-scale climate to global-scale changes in radiative forcing.

  10. Atmospheric constraints on Plant Water Use Efficiency - drivers and regional patterns of change since 1900

    NASA Astrophysics Data System (ADS)

    Groenendijk, M.; Cox, P.; Lambert, F. H.; Booth, B.; Huntingford, C.

    2013-12-01

    Water Use Efficiency (WUE) defines the relationship between land-atmosphere water and carbon fluxes. With this simple mechanism, hydrological and carbon-cycle responses of vegetation to climate change can be more easily quantified. WUE increases with atmospheric carbon dioxide (CO2) concentration but also depends on changes in humidity and temperature. A positive CO2 fertilization effect can be locally constrained by humidity and temperature. By combining observed trends of these three climate variables over the 20th century regional trends in WUE can be calculated. The ecosystem WUEe is defined as a ratio of gross primary production and transpiration fluxes. On the leaf scale this is equal to the atmospheric WUEa, which is a function of the ambient and internal CO2 concentration, the saturated specific humidity (a function of temperature) and relative humidity. Using Fluxnet and CRU TS3.2 observations, and the JULES and HadCM3 models we explore the temporal and spatial variation of WUEe and WUEa, and how they respond to climate change. Leaf level definitions are valid at site level, where WUEe and WUEa simulated with JULES are equal and linearly increasing with atmospheric CO2 concentration for a range of sites. For drier sites lower values of both were simulated. The simulated values are within the same range as values derived from eddy covariance observations. Having shown the near equivalence between WUEe and WUEa for specific sites, we can use the formula for WUEa to estimate the change in global plant WUE over the 20th century, using observed climatological data and CO2 concentrations. The global average WUE increased by 25% since 1900, closely following the atmospheric CO2 concentration. But we identify large regional variation, with regions where WUE increased, but some significant regions where WUE has actually decreased during the last century. Here the CO2 fertilization effect is overtaken by an increasing offsetting temperature and related saturated

  11. Effects of land-conversion in a biosphere-atmosphere model of Northern South America - Part 1: Regional differences in hydrometeorology

    NASA Astrophysics Data System (ADS)

    Knox, R. G.; Longo, M.; Swann, A. L. S.; Zhang, K.; Levine, N. M.; Moorcroft, P. R.; Bras, R. L.

    2013-12-01

    This work investigates how landuse changes over northern South America, driven by human interventions, have affected the regional patterns of hydrology. Comparisons are made to scenarios where no human disturbance of the regional vegetation is assumed. A numerical model of the terrestrial biosphere (Ecosystem Demography Model 2 - ED2) is combined with an atmospheric model (Brazilian Regional Atmospheric Modeling System - BRAMS) to investigate how land conversion in the Amazon and Northern South America have changed the hydrology of the region. Two numerical realizations of the structure and composition of terrestrial vegetation are used as boundary conditions in a simulation of the regional land surface and atmosphere. One realization seeks to capture the present day vegetation condition that includes deforestation and land-conversion, the other is an estimate of the potential structure and composition of the region without human influence. Model output is assessed for consistent and significant pattern differences in hydrometeorology. Results show that South American land conversion has a consistent impact on the regional patterning of precipitation. Land-conversion was not associated with a significant bias in continental mean precipitation, but was associated with a negative bias in mean continental evaporation and a positive bias in continental runoff. A companion paper continues this analysis, with case studies that focus on specific areas that show significant differential hydrologic response.

  12. The influence of several changes in atmospheric states over semi-arid areas on the incidence of mental health disorders

    NASA Astrophysics Data System (ADS)

    Yackerson, Naomy S.; Zilberman, Arkadi; Todder, Doron; Kaplan, Zeev

    2011-05-01

    The incidence of suicide attempts [Deliberate Self Harm (DSH); ICD-10: X60-X84] and psychotic attacks (PsA; ICD-10, F20-F29) in association with atmospheric states, typical for areas close to big deserts, was analyzed. A retrospective study is based on the 4,325 cases of DSH and PsA registered in the Mental Health Center (MHC) of Ben-Gurion University (Be'er-Sheva, Israel) during 2001-2003. Pearson and Spearman test correlations were used; the statistical significance was tested at p < 0.1. The influence of temperature and humidity on suicide attempts ( N SU ) and psychotic attacks ( N PS ) was weakly pronounced ( p > 0.1). Correlation coefficients between N SU and N PS and speed WS of westerly wind reaches 0.3 ( p < 0.05), while their dependence on easterly WS was weaker ( p > 0.09). Variations in easterly wind direction WD influence N SU and N PS values ( p < 0.04), but no corresponding correlation with westerly winds was found ( p > 0.3). Obviously ,in transition areas located between different regions ,the main role of air streams in meteorological-biological impact can scarcely be exaggerated. An unstable balance in the internal state of a weather-sensitive person is disturbed when the atmospheric state is changed by specific desert winds, which can provoke significant perturbations in meteorological parameters. Results indicate the importance of wind direction, defining mainly the atmospheric situation in semi-arid areas: changes in direction of the easterly wind influence N SU and N PS , while changes in WS are important for mental health under westerly air streams. Obviously, N SU and N PS are more affected by the disturbance of weather from its normal state, for a given season, to which the local population is accustomed, than by absolute values of meteorological parameters.

  13. Titan's atmospheric and surface properties of the Ontario Lacus region from Cassini/VIMS remote sensing

    NASA Astrophysics Data System (ADS)

    Negrão, A.; Adriani, A.; Moriconi, M.; Coradini, A.; D'Aversa, E.; Filacchione, G.; Lunine, J.

    2009-04-01

    The existence of oceans or lakes of liquid hydrocarbons on Titan's surface was predicted more than 20 years ago. These would serve as a source of atmospheric methane and would also contain the end products of the photochemical reactions occurring high in the atmosphere. Although no oceans were ever found, lake-like features poleward of 70°N were first detected by the radar instrument onboard Cassini on July 2006. Before that, Cassini Imaging Science Subsystem (ISS) images of the south pole from June 2005 revealed an intriguing lake-like dark feature named Ontario Lacus. Recently an interesting and important result has been published about the identification of liquid ethane contained within Ontario Lacus (Brown et al. 2008). The authors analysed a near-infrared Visual and Infrared Mapping Spectrometer (VIMS) observation of the Ontario Lacus performed the 2007 December 4, during the T38 flyby. Their result needs nevertheless to be confirmed and improved using a more detailed methodology. Here we report on the analysis of this observation using a radiative transfer model (the libRadtran package) to simulate the atmospheric contribution. LibRadtran is a library of tools developed for radiative transfer calculations in the Earth's atmosphere, but adapted here to Titan's atmospheric conditions. Extinction sources were calculated for atmospheric methane and aerosols as a function of altitude and wavelength. Using the DISORT solver we were able to invert the surface spectrum of the lake interior and of an adjacent, non-lake region, in the near-infrared methane windows. The surface spectra were then compared with spectra of different ices and liquid hydrocarbons, yielding constraints on the possible constituents of Titan's lakes and their adjacent areas. Reference: Brown, R. et al. 2008. The identification of liquid ethane in Titan's Ontario Lacus, Nature 454, 607-610.

  14. Statistical study of emerging flux regions and the response of the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Li, Hui

    2012-12-01

    We statistically study the properties of emerging flux regions (EFRs) and response of the upper solar atmosphere to the flux emergence using data from the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Parameters including total emerged flux, flux growth rate, maximum area, duration of the emergence and separation speed of the opposite polarities are adopted to delineate the properties of EFRs. The response of the upper atmosphere is addressed by the response of the atmosphere at different wavelengths (and thus at different temperatures). According to our results, the total emerged fluxes are in the range of (0.44-11.2)×1019 Mx while the maximum area ranges from 17 to 182 arcsec2. The durations of the emergence are between 1 and 12 h, which are positively correlated to both the total emerged flux and the maximum area. The maximum distances between the opposite polarities are 7-25 arcsec and are also positively correlated to the duration. The separation speeds are from 0.05 to 1.08 km s-1, negatively correlated to the duration. The derived flux growth rates are (0.1-1.3)×1019 Mx h-1, which are positively correlated to the total emerging flux. The upper atmosphere first responds to the flux emergence in the 1600Å chromospheric line, and then tens to hundreds of seconds later, in coronal lines, such as the 171Å (T = 105.8 K) and 211Å (T = 106.3 K) lines almost simultaneously, suggesting the successive heating of the atmosphere from the chromosphere to the corona.

  15. Influence of high-resolution surface databases on the modeling of local atmospheric circulation systems

    NASA Astrophysics Data System (ADS)

    Paiva, L. M. S.; Bodstein, G. C. R.; Pimentel, L. C. G.

    2013-12-01

    Large-eddy simulations are performed using the Advanced Regional Prediction System (ARPS) code at horizontal grid resolutions as fine as 300 m to assess the influence of detailed and updated surface databases on the modeling of local atmospheric circulation systems of urban areas with complex terrain. Applications to air pollution and wind energy are sought. These databases are comprised of 3 arc-sec topographic data from the Shuttle Radar Topography Mission, 10 arc-sec vegetation type data from the European Space Agency (ESA) GlobCover Project, and 30 arc-sec Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation data from the ESA GlobCarbon Project. Simulations are carried out for the Metropolitan Area of Rio de Janeiro using six one-way nested-grid domains that allow the choice of distinct parametric models and vertical resolutions associated to each grid. ARPS is initialized using the Global Forecasting System with 0.5°-resolution data from the National Center of Environmental Prediction, which is also used every 3 h as lateral boundary condition. Topographic shading is turned on and two soil layers with depths of 0.01 and 1.0 m are used to compute the soil temperature and moisture budgets in all runs. Results for two simulated runs covering the period from 6 to 7 September 2007 are compared to surface and upper-air observational data to explore the dependence of the simulations on initial and boundary conditions, topographic and land-use databases and grid resolution. Our comparisons show overall good agreement between simulated and observed data and also indicate that the low resolution of the 30 arc-sec soil database from United States Geological Survey, the soil moisture and skin temperature initial conditions assimilated from the GFS analyses and the synoptic forcing on the lateral boundaries of the finer grids may affect an adequate spatial description of the meteorological variables.

  16. Multiyear measurements of the oceanic and atmospheric boundary layers at the Brazil-Malvinas confluence region

    NASA Astrophysics Data System (ADS)

    Pezzi, Luciano Ponzi; de Souza, Ronald Buss; Acevedo, OtáVio; Wainer, Ilana; Mata, Mauricio M.; Garcia, Carlos A. E.; de Camargo, Ricardo

    2009-10-01

    This study analyzes and discusses data taken from oceanic and atmospheric measurements performed simultaneously at the Brazil-Malvinas Confluence (BMC) region in the southwestern Atlantic Ocean. This area is one of the most dynamical frontal regions of the world ocean. Data were collected during four research cruises in the region once a year in consecutive years between 2004 and 2007. Very few studies have addressed the importance of studying the air-sea coupling at the BMC region. Lateral temperature gradients at the study region were as high as 0.3°C km-1 at the surface and subsurface. In the oceanic boundary layer, the vertical temperature gradient reached 0.08°C m-1 at 500 m depth. Our results show that the marine atmospheric boundary layer (MABL) at the BMC region is modulated by the strong sea surface temperature (SST) gradients present at the sea surface. The mean MABL structure is thicker over the warmside of the BMC where Brazil Current (BC) waters predominate. The opposite occurs over the coldside of the confluence where waters from the Malvinas (Falkland) Current (MC) are found. The warmside of the confluence presented systematically higher MABL top height compared to the coldside. This type of modulation at the synoptic scale is consistent to what happens in other frontal regions of the world ocean, where the MABL adjusts itself to modifications along the SST gradients. Over warm waters at the BMC region, the MABL static instability and turbulence were increased while winds at the lower portion of the MABL were strong. Over the coldside of the BC/MC front an opposite behavior is found: the MABL is thinner and more stable. Our results suggest that the sea-level pressure (SLP) was also modulated locally, together with static stability vertical mixing mechanism, by the surface condition during all cruises. SST gradients at the BMC region modulate the synoptic atmospheric pressure gradient. Postfrontal and prefrontal conditions produce opposite thermal

  17. Regional Sea Level Variations from GRACE, InSAR and a Regional Atmospheric Climate Model Output Products

    NASA Astrophysics Data System (ADS)

    Hsu, C. W.; Velicogna, I.; Rignot, E. J.; Wahr, J. M.

    2014-12-01

    We generate static regional sea level variations (sea level fingerprints, SLF) from ice sheets, glaciers and land hydrology using 10 years of monthly NASA/DLR GRACE satellite data and 40 years of ice sheet mass balance from the mass budget method (surface mass balance from a regional atmospheric climate model minus ice discharge along the periphery). We evaluate the impact of the spatial distribution in ice sheet mass balance on the inferred regional sea level pattern. Based on the results, we derive requirements on the spatial scale of mass loss needed to resolve the regional pattern of sea level change. In the calculation of the water and ice mass changes over land, we also need to restore the amplitude of the GRACE signal before calculating the regional sea level pattern. Here, we describe an improved scaling factor method that comprises both a seasonal and a long-term component. We discuss the impact of these components on the retrieved regional sea level pattern. Using the SLF, we identify the sources of observed sea level variations. We show that the cumulative SLF describe a large portion of the trend and annual amplitude of the observed sea level variations at both the global and basin scales. When comparing the cumulative SLF with observations of sea level change from steric corrected altimetry, we find an excellent agreement at the global and basin scales. We discuss differences in sea level pattern between the last decade and the prior 40 years. This work was conducted at the University of California Irvine and at Caltech's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  18. Precipitation recycling in West Africa - regional modeling, evaporation tagging and atmospheric water budget analysis

    NASA Astrophysics Data System (ADS)

    Arnault, Joel; Kunstmann, Harald; Knoche, Hans-Richard

    2015-04-01

    Many numerical studies have shown that the West African monsoon is highly sensitive to the state of the land surface. It is however questionable to which extend a local change of land surface properties would affect the local climate, especially with respect to precipitation. This issue is traditionally addressed with the concept of precipitation recycling, defined as the contribution of local surface evaporation to local precipitation. For this study the West African monsoon has been simulated with the Weather Research and Forecasting (WRF) model using explicit convection, for the domain (1°S-21°N, 18°W-14°E) at a spatial resolution of 10 km, for the period January-October 2013, and using ERA-Interim reanalyses as driving data. This WRF configuration has been selected for its ability to simulate monthly precipitation amounts and daily histograms close to TRMM (Tropical Rainfall Measuring Mission) data. In order to investigate precipitation recycling in this WRF simulation, surface evaporation tagging has been implemented in the WRF source code as well as the budget of total and tagged atmospheric water. Surface evaporation tagging consists in duplicating all water species and the respective prognostic equations in the source code. Then, tagged water species are set to zero at the lateral boundaries of the simulated domain (no inflow of tagged water vapor), and tagged surface evaporation is considered only in a specified region. All the source terms of the prognostic equations of total and tagged water species are finally saved in the outputs for the budget analysis. This allows quantifying the respective contribution of total and tagged atmospheric water to atmospheric precipitation processes. The WRF simulation with surface evaporation tagging and budgets has been conducted two times, first with a 100 km2 tagged region (11-12°N, 1-2°W), and second with a 1000 km2 tagged region (7-16°N, 6°W -3°E). In this presentation we will investigate hydro-atmospheric

  19. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  20. Atmospheric Profiling using GPS Radio Occultation over the Australian and Antarctic regions

    NASA Astrophysics Data System (ADS)

    Norman, R.; Le Marshall, J.; Carter, B. A.; Kirchengast, G.; Alexander, S.; Wang, C. S.; Zhang, K.

    2014-12-01

    The space-based Global Positioning System (GPS) Radio Occultation (RO) technique is ideal for sounding the Earth's atmosphere. The GPS RO technique uses GPS receiver's on-board Low Earth Orbit (LEO) satellites to measure the received radio signals from GPS satellites. Atmospheric parameter profiles of electron density, temperature, pressure and water vapor can then be obtained using well defined and robust retrieval processes. In this study atmospheric parameter profiles were retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) GPS RO measurements for the years 2007 to 2013 over Australia, Antarctica and their surrounding oceans. The yearly and bi-monthly tropopause height and temperature and climatic trends are investigated and co-located GPS RO and radiosonde atmospheric profiles are compared. Forecast skill scores with and without GPS RO data over the Australian and Antarctic regions are also assessed. Finally, a 3-D ray tracing technique was developed to investigate and improve the GPS RO technique. Simulated results from a tropospheric storm event on GPS RO signal propagation are investigated.

  1. Martian bore waves of the Tharsis regions - A comparison with Australian atmospheric waves of elevation

    NASA Astrophysics Data System (ADS)

    Pickersgill, A. O.

    1984-04-01

    A phenomenon which has appeared in the Martian atmosphere during three Northern Hemisphere springs and early summers has been termed the Martian bore wave; it resembles an atmospheric undular bore of the type observed in the terrestrial atmosphere. This paper examines three of these observations, two resembling a wave train and one a solitary wave. A comparison is made with the Morning Glory of the Gulf of Carpentaria and the solitary wave in the arid interior of Australia, both of which have been identified as internal undular bores. The Martian waves are investigated using a theoretical treatment of a class of long internal waves of permanent form with finite amplitude. It is assumed that the density of the atmosphere decays exponentially with height in a layer of depth h, nearest the ground in which the air velocity has a linear profile. Calculations show that to the south of Pavonis Mons, in a region of strong boundary layer velocity gradients associated with katabatic drainage winds, the phase speed c of the clouds associated with these waves is related to the upper layer velocity U(bar) by (c - U/bar/)/Nh much less than 1 for Brunt-Vaisala frequency N in the boundary layer.

  2. Human and Natural Influences on the Changing Thermal Structure of the Atmosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Santer, B. D.; Painter, J.; Bonfils, C.; Mears, C. A.; Solomon, S.; Wigley, T. M.; Gleckler, P. J.; Schmidt, G. A.; Doutriaux, C.; Gillett, N. P.; Taylor, K. E.; Thorne, P.; Wentz, F. J.

    2013-12-01

    Since the late 1970s, satellite-based instruments have monitored global changes in atmospheric temperature. These measurements reveal multi-decadal tropospheric warming and stratospheric cooling, punctuated by short-term volcanic signals of reverse sign. Similar long- and short-term temperature signals occur in model simulations driven by human- caused changes in atmospheric composition and natural variations in volcanic aerosols. Most previous comparisons of modeled and observed atmospheric temperature changes have used results from individual models and individual observational records. In contrast, we rely on a large multi-model archive and multiple observational data sets. We show that a human-caused latitude/altitude pattern of atmospheric temperature change can be identified with high statistical confidence in satellite data. Results are robust to current uncertainties in models and observations. Virtually all previous research in this area has attempted to discriminate an anthropogenic signal from internal variability. Here, we present the first evidence that a human-caused signal can also be identified relative to the larger "total" natural variability arising from sources internal to the climate system, solar irradiance changes, and volcanic forcing. Consistent signal identification occurs because both internal and total natural variability (as simulated by state-of-the-art models) cannot produce sustained global-scale tropospheric warming and stratospheric cooling. Our results provide clear evidence for a discernible human influence on the thermal structure of the atmosphere.

  3. Human and natural influences on the changing thermal structure of the atmosphere

    PubMed Central

    Santer, Benjamin D.; Painter, Jeffrey F.; Bonfils, Céline; Mears, Carl A.; Solomon, Susan; Wigley, Tom M. L.; Gleckler, Peter J.; Schmidt, Gavin A.; Doutriaux, Charles; Gillett, Nathan P.; Taylor, Karl E.; Thorne, Peter W.; Wentz, Frank J.

    2013-01-01

    Since the late 1970s, satellite-based instruments have monitored global changes in atmospheric temperature. These measurements reveal multidecadal tropospheric warming and stratospheric cooling, punctuated by short-term volcanic signals of reverse sign. Similar long- and short-term temperature signals occur in model simulations driven by human-caused changes in atmospheric composition and natural variations in volcanic aerosols. Most previous comparisons of modeled and observed atmospheric temperature changes have used results from individual models and individual observational records. In contrast, we rely on a large multimodel archive and multiple observational datasets. We show that a human-caused latitude/altitude pattern of atmospheric temperature change can be identified with high statistical confidence in satellite data. Results are robust to current uncertainties in models and observations. Virtually all previous research in this area has attempted to discriminate an anthropogenic signal from internal variability. Here, we present evidence that a human-caused signal can also be identified relative to the larger “total” natural variability arising from sources internal to the climate system, solar irradiance changes, and volcanic forcing. Consistent signal identification occurs because both internal and total natural variability (as simulated by state-of-the-art models) cannot produce sustained global-scale tropospheric warming and stratospheric cooling. Our results provide clear evidence for a discernible human influence on the thermal structure of the atmosphere. PMID:24043789

  4. Using regional-scale atmospheric δ13C of CO2 as an indicator of ecosystem health and function

    NASA Astrophysics Data System (ADS)

    Alden, C. B.; Miller, J. B.; White, J. W.; Yadav, V.; Michalak, A. M.

    2012-12-01

    optimized fluxes are interpreted at monthly and regional (~106 km2) scales. Influence functions (footprints) are generated with FLEXPART, driven by National Centers for Environmental Prediction Global Forecast System meteorology. Prior information is from CarbonTracker 2011 and SiB, and background CO2 and δ13C values are from NOAA/ESRL marine boundary layer and aircraft data. Quasi-daily atmospheric observations are from NOAA/ESRL Global Monitoring Division tall towers in Park Falls, Wisconsin; Argyle, Maine; Moody, Texas; West Branch, Iowa; and Beech Island, South Carolina. Weekly observations are from Environment Canada tall towers in Estevan Point, British Columbia; Sable Island, Nova Scotia; Fraserdale, Ontario; Churchill, Manitoba; and East Trout Lake, Saskatchewan. We will present optimized, monthly spatial fields of 13C plant discrimination for North America. By comparing these posterior results to the SiB prior, we will begin to evaluate potential shortcomings in SiB with regard to both C3/C4 distribution and conductance.

  5. Influence of ab initio chemistry models on simulations of the Ionian atmosphere

    NASA Astrophysics Data System (ADS)

    Parsons, Neal; Levin, Deborah A.; Walker, Andrew C.; Moore, Chris H.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence

    2014-09-01

    There is significant scientific interest in simulating the unique atmospheric conditions on the Jovian moon Io that range from cold surface temperatures to hyperthermal interactions which possibly supply the Jovian plasma torus. The Direct Simulation Monte Carlo (DSMC) method is well suited to model the rarefied, predominantly SO2, Ionian atmosphere. High speed collisions between SO2 and the hypervelocity O atoms and ions that compose the plasma torus are a significant mechanism in determining the composition of the atmosphere; therefore, high-fidelity modeling of their interactions is crucial to the accuracy of such simulations. Typically, the Total Collision Energy (TCE) model is used to determine molecular dissociation probabilities and the Variable Hard Sphere (VHS) model is used to determine collision cross sections. However, the parameters for each of these baseline models are based on low-temperature experimental data and thus have unknown reliability for the hyperthermal conditions in the Ionian atmosphere. Recently, Molecular Dynamics/Quasi-Classical Trajectory (MD/QCT) studies have been conducted to generate accurate collision and chemistry models for the SO2-O collision pair in order to replace the baseline models. However, the influence of MD/QCT models on Ionian simulations compared to the previously used models is not well understood. In this work, 1D simulations are conducted using both the MD/QCT-based and baseline models in order to determine the effect of MD/QCT models on Ionian simulations. It is found that atmospheric structure predictions are highly sensitive to the chemistry and collision models. Specifically, the MD/QCT model predicts approximately half the SO2 atmospheric dissociation due to O and O+ bombardment compared to TCE models, and also predicts a temperature rise due to plasma heating further from the Ionian surface than the existing baseline methodologies. These findings indicate that the accurate MD/QCT chemistry and collision

  6. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.

    PubMed

    Percival, Carl J; Welz, Oliver; Eskola, Arkke J; Savee, John D; Osborn, David L; Topping, David O; Lowe, Douglas; Utembe, Steven R; Bacak, Asan; McFiggans, Gordon; Cooke, Michael C; Xiao, Ping; Archibald, Alexander T; Jenkin, Michael E; Derwent, Richard G; Riipinen, Ilona; Mok, Daniel W K; Lee, Edmond P F; Dyke, John M; Taatjes, Craig A; Shallcross, Dudley E

    2013-01-01

    Carbonyl oxides ("Criegee intermediates"), formed in the ozonolysis of alkenes, are key species in tropospheric oxidation of organic molecules and their decomposition provides a non-photolytic source of OH in the atmosphere (Johnson and Marston, Chem. Soc. Rev., 2008, 37, 699, Harrison et al, Sci, Total Environ., 2006, 360, 5, Gäb et al., Nature, 1985, 316, 535, ref. 1-3). Recently it was shown that small Criegee intermediates, C.I.'s, react far more rapidly with SO2 than typically represented in tropospheric models, (Welz, Science, 2012, 335, 204, ref. 4) which suggested that carbonyl oxides could have a substantial influence on the atmospheric oxidation of SO2. Oxidation of 502 is the main atmospheric source of sulphuric acid (H2SO4), which is a critical contributor to aerosol formation, although questions remain about the fundamental nucleation mechanism (Sipilä et al., Science, 2010, 327, 1243, Metzger et al., Proc. Natl. Acad. Sci. U. S. A., 2010 107, 6646, Kirkby et al., Nature, 2011, 476, 429, ref. 5-7). Non-absorbing atmospheric aerosols, by scattering incoming solar radiation and acting as cloud condensation nuclei, have a cooling effect on climate (Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis, Cambridge University Press, 2007, ref. 8). Here we explore the effect of the Criegees on atmospheric chemistry, and demonstrate that ozonolysis of alkenes via the reaction of Criegee intermediates potentially has a large impact on atmospheric sulphuric acid concentrations and consequently the first steps in aerosol production. Reactions of Criegee intermediates with SO2 will compete with and in places dominate over the reaction of OH with SO2 (the only other known gas-phase source of H2SO4) in many areas of the Earth's surface. In the case that the products of Criegee intermediate reactions predominantly result in H2SO4 formation, modelled particle nucleation rates can be substantially increased by the improved

  7. Correlating CCM upper atmosphere parameters to surface observations for regional climate change predictions

    SciTech Connect

    Li, Xiangshang; Sailor, D.J.

    1997-11-01

    This paper explores the use of statistical downscaling of General Circulation Model (GCM) results for the purpose of regional climate change analysis. The strong correlation between surface observations and GCM upper air predictions is used in an approach very similar to the Model Output Statistics approach used in numerical weather prediction. The primary assumption in this analysis is that the statistical relationships remain unchanged under conditions of climatic change. These relations are applied to GCM upper atmosphere predictions for future (2*CO{sub 2}) climate predictions. The result is a set of regional climate change predictions conceptually valid at the scale of cities. The downscaling for specific cities within a GCM grid cell reveals some of the anticipated variability within the grid cell. In addition, multiple linear regression analysis may indicate warming that is significantly higher or lower for a particular region than the raw data from the GCM runs. 3 refs., 3 figs., 2 tabs.

  8. Earth-atmosphere system and surface reflectivities in arid regions from LANDSAT multispectral scanner measurements

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Fraser, R. S.

    1976-01-01

    Programs for computing atmospheric transmission and scattering solar radiation were used to compute the ratios of the Earth-atmosphere system (space) directional reflectivities in the vertical direction to the surface reflectivity, for the four bands of the LANDSAT multispectral scanner (MSS). These ratios are presented as graphs for two water vapor levels, as a function of the surface reflectivity, for various sun elevation angles. Space directional reflectivities in the vertical direction are reported for selected arid regions in Asia, Africa and Central America from the spectral radiance levels measured by the LANDSAT MSS. From these space reflectivities, surface vertical reflectivities were computed applying the pertinent graphs. These surface reflectivities were used to estimate the surface albedo for the entire solar spectrum. The estimated albedos are in the range 0.34-0.52, higher than the values reported by most previous researchers from space measurements, but are consistent with laboratory measurements.

  9. An overview of the regional experiments for land-atmosphere exchanges 2012 (REFLEX 2012) campaign

    NASA Astrophysics Data System (ADS)

    Timmermans, Wim; Van der Tol, Christiaan; Timmermans, Joris; Ucer, Murat; Chen, Xuelong; Alonso, Luis; Moreno, Jose; Carrara, Arnaud; Lopez, Ramon; de la Cruz Tercero, Fernando; Corcoles, Horacio L.; de Miguel, Eduardo; Sanchez, Jose A. G.; Pérez, Irene; Franch, Belen; Munoz, Juan-Carlos J.; Skokovic, Drazen; Sobrino, Jose; Soria, Guillem; MacArthur, Alasdair; Vescovo, Loris; Reusen, Ils; Andreu, Ana; Burkart, Andreas; Cilia, Chiara; Contreras, Sergio; Corbari, Chiara; Calleja, Javier F.; Guzinski, Radoslaw; Hellmann, Christine; Herrmann, Ittai; Kerr, Gregoire; Lazar, Adina-Laura; Leutner, Benjamin; Mendiguren, Gorka; Nasilowska, Sylwia; Nieto, Hector; Pachego-Labrador, Javier; Pulanekar, Survana; Raj, Rahul; Schikling, Anke; Siegmann, Bastian; von Bueren, Stefanie; Su, Zhongbo (Bob)

    2014-12-01

    The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made.

  10. Atmospheric CO2 Inversions of the Mid-Continental Intensive (MCI) Region (Invited)

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Denning, A.; Ogle, S. M.; Corbin, K.; Uliasz, M.; Davis, K. J.; Lauvaux, T.; Miles, N.; Andrews, A. E.; Petron, G.; Huntzinger, D. N.

    2009-12-01

    We combine the SiB3 biosphere model with the RAMS mesoscale meteorology model and associated Lagrangian particle dispersion model (LPDM) and use CO2 observations from an extensive tower network in 2007 to correct a priori ecosystem respiration (ER) and gross primary productivity (GPP) fluxes for a domain consisting of most of North America. In particular, eight of these towers are located in a concentrated ring around the Mid-Continent Intensive (MCI) region of the United States providing one of the densest tower networks (CO2) in the world, in the midst of one of the strongest areas of seasonal carbon flux in the world. The unique area combined with dense observations and relatively simple atmospheric transport provides an incredible test-bed to investigate atmospheric CO2 inversions. Multiple inversion approaches are compared and contrasted. The results are then investigated for sensitivity to a priori inversion designs, boundary inflow contributions, and network density.

  11. An Overview of the Regional Experiments for Land-Atmosphere Exchanges 2012 (Reflex 2012) Campaign

    NASA Astrophysics Data System (ADS)

    Timmermans, Wim J.; Tol, Christiaan van der; Timmermans, Joris; Ucer, Murat; Chen, Xuelong; Alonso, Luis; Moreno, Jose; Carrara, Arnaud; Lopez, Ramon; de la Cruz Tercero, Fernando; Corcoles, Horacio L.; De Miguel, Eduardo; Sanchez, Jose A. G.; Pérez, Irene; Franch, Belen; Munoz, Juan-Carlos J.; Skokovic, Drazen; Sobrino, Jose; Soria, Guillem; MacArthur, Alasdair; Vescovo, Loris; Reusen, Ils; Andreu, Ana; Burkart, Andreas; Cilia, Chiara; Contreras, Sergio; Corbari, Chiara; Calleja, Javier F.; Guzinski, Radoslaw; Hellmann, Christine; Herrmann, Ittai; Kerr, Gregoire; Lazar, Adina-Laura; Leutner, Benjamin; Mendiguren, Gorka; Nasilowska, Sylwia; Nieto, Hector; Pachego-Labrador, Javier; Pulanekar, Survana; Raj, Rahul; Schikling, Anke; Siegmann, Bastian; von Bueren, Stefanie; Su, Zhongbo

    2015-12-01

    The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made.

  12. Identification of atmospheric mercury sources and transport pathways on local and regional sales

    NASA Astrophysics Data System (ADS)

    Gratz, Lynne E.

    Mercury (Hg) is a hazardous air pollutant and bioaccumulative neurotoxin whose intricate atmospheric chemistry complicates our ability to define Hg source-receptor relationships on all scales. Our detailed measurements of Hg in its different forms together with atmospheric tracers have improved our understanding of Hg chemistry and transport. Daily-event precipitation samples collected from 1995 to 2006 in Underhill, VT were examined to identify Hg wet deposition trends and source influences. Analysis revealed that annual Hg deposition at this fairly remote location did not vary significantly over the 12-year period. While a decreasing trend in volume-weighted mean Hg concentration was observed, Hg wet deposition did not decline as transport of emissions from the Midwest and along the Atlantic Coast consistently contributed to the largest observed Hg wet deposition events. Receptor modeling of Hg and trace elements in precipitation indicated that ---60% of Hg wet deposition at Underhill could be attributed to emissions from coal-fired utility boilers (CFUBs), and their contribution to Hg wet deposition did not change significantly over time. Hybrid-receptor modeling further defined these CFUBs to be located predominantly in the Midwestern U.S. Atmospheric Hg chemistry and transport from the Chicago urban/industrial area was the focus of speciated Hg measurements performed in the southern Lake Michigan basin during summer 2007. Transport from Chicago, IL to Holland, MI occurred during 27% of the study period, resulting in a five-fold increase in divalent reactive gaseous Hg (RGM) at the downwind Holland site. Dispersion modeling of case study periods demonstrated that under southwesterly flow approximately half of the RGM in Holland could be attributed to primary RGM emissions from Chicago after transport and dispersion, with the remainder due to Hg0 oxidation in the atmosphere en route. Precipitation and ambient vapor phase samples were also collected in Chicago

  13. Inferring global and regional methane sources and sinks using isotopic observations and atmospheric chemical transport models

    NASA Astrophysics Data System (ADS)

    Rigby, M. L.; Wenger, A.; O'Doherty, S.; Lunt, M. F.; Ganesan, A.; Manning, A.; Prinn, R. G.

    2015-12-01

    Measurements of the major isotopologues of atmospheric methane have the potential to improve our understanding of the methane budget at the global and regional scale. Using global and regional chemical transport models, we can predict the atmospheric variations in 13C-CH4 and D-CH4, for given assumptions about source isotope ratios and fractionation due to methane sinks. This information can then be used to test the impact that various measurement techniques, technologies and sampling strategies have on our knowledge of the methane budget. We show that, at the global scale, an extensive and accurate network of isotopic measurements can lead to a reduction in the uncertainties in the major global sources. Furthermore, measurements of the D/H ratio in methane may provide some level of uncertainty reduction in the magnitude of the OH sink. Uncertainties can be reduced with improved precision and accuracy of the atmospheric observations. However, to make the most of an atmospheric methane isotope network, we show that the characterisation of source isotope ratios must also be improved. Finally, we put the theory into practice by deriving sector-specific methane sources at the national scale using 13C-CH4 samples collected as part of the Greenhouse gAs Uk and Global Emissions (GAUGE) project. GAUGE measurements are made from a tall tower site to the east of the UK, a background station on the west coast of Ireland and during intensive aircraft sampling campaigns. We will discuss the challenges and benefits associated with adding isotopic information to a national greenhouse gas sampling network and outline a strategy for improvements in the future.

  14. On how climate variability influences regional sea level change

    NASA Astrophysics Data System (ADS)

    Brunnabend, Sandra-Esther; Kusche, Jürgen; Rietbroek, Roelof; Forootan, Ehsan

    2016-04-01

    Regional trends in sea level change are strongly influenced by climate variations, such as ENSO (El-Nino Southern Oscillation), the IOD (Indian Ocean Dipole), or the PDO (Pacific Decadal Oscillation). Hence, before computing long term regional sea level change, these sea level variations need to be taken into account as they lead to strong dependencies of computed regional sea level trends on the time period of the investigation. In this study, sea level change during the years 1993 to 2013 is analysed to identify the dominant modes of sea level change caused by climate variations. Here, two different gridded altimetry products are analysed, namely ESA's combined CCI SeaLevel v1.1 ECV product (doi: 10.5270/esa-sea_level_cci-1993_2013-v_1.1-201412), and absolute dynamic topography produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes (http://www.aviso.altimetry.fr/duacs/). Reconstructions using the different decomposition techniques including the standard principle component analysis (PCA), rotated empirical orthogonal functions (REOF) and independent component analysis (ICA) method are analysed. They are compared with sea level change modelled with the global finite-element sea-ice ocean model (FESOM). The results indicate that from the applied methods, ICA is most suitable to separate the individual climate variability signals in independent modes of sea level change. This especially holds for extracting the ENSO contribution in sea level changes, which was better separated by applying ICA, from both altimetry and modelled sea level products. In addition, it is presented how modelled sea level change reflects climate variations compared to that identified in the altimetry products.

  15. Regional and Local Carbon Flux Information from a Continuous Atmospheric CO2 Network in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Heck, S. L.; Stephens, B.; Watt, A.

    2007-12-01

    We will present preliminary carbon flux estimates from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON). In order to improve our understanding of regional carbon fluxes in the Rocky Mountain West, we have developed and deployed autonomous, inexpensive, and robust CO2 analyzers (AIRCOA) at five sites throughout Colorado and Utah, and plan additional deployments on the Navajo Reservation, Arizona in September 2007 and atop Mount Kenya, Africa in November 2007. We have used a one- dimensional CO2 budget equation, following Bakwin et al. (2004), to estimate regional monthly-mean fluxes from our continuous CO2 concentrations. These comparisons between our measurements and estimates of free- tropospheric background concentrations reveal regional-scale CO2 flux signals that are generally consistent with one another across the Rocky RACCOON sites. We will compare the timing and magnitude of these estimates with expectations from local-scale eddy-correlation flux measurements and bottom-up ecosystem models. We will also interpret the differences in monthly-mean flux signals between our sites in terms of their varying upwind areas of influence and inferred regional variations in CO2 fluxes. Our measurements will be included in future CarbonTracker assimilation runs and other planned model-data fusion efforts. However, questions still exist concerning the ability of these models to accurately represent the various influences on CO2 concentrations in continental boundary layers, and at mountaintop sites in particular. We will present an analysis of the diurnal cycles in CO2 concentration and CO2 variability at our sites, and compare these to various model estimates. Several of our sites near major population centers reflect the influence of industrial CO2 sources in afternoon upslope flows, with CO2 concentration increasing and variable in the mid to late afternoon. Other more remote sites show more consistent and decreasing CO2

  16. Statistical analysis of the MODIS atmosphere products for the Tomsk region

    NASA Astrophysics Data System (ADS)

    Afonin, Sergey V.; Belov, Vladimir V.; Engel, Marina V.

    2005-10-01

    The paper presents the results of using the MODIS Atmosphere Products satellite information to study the atmospheric characteristics (the aerosol and water vapor) in the Tomsk Region (56-61°N, 75-90°E) in 2001-2004. The satellite data were received from the NASA Goddard Distributed Active Archive Center (DAAC) through the INTERNET.To use satellite data for a solution of scientific and applied problems, it is very important to know their accuracy. Despite the results of validation of the MODIS data have already been available in the literature, we decided to carry out additional investigations for the Tomsk Region. The paper presents the results of validation of the aerosol optical thickness (AOT) and total column precipitable water (TCPW), which are in good agreement with the test data. The statistical analysis revealed some interesting facts. Thus, for example, analyzing the data on the spatial distribution of the average seasonal values of AOT or TCPW for 2001-2003 in the Tomsk Region, we established that instead of the expected spatial homogeneity of these distributions, they have similar spatial structures.

  17. Coupling of regional atmospheric-ocean models for climate applications in the Mediterranean basin by using CORDEX-compliant simulations

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, Pedro; Montávez, Juan P.; Lorente-Plazas, Raquel

    2013-04-01

    Nowadays, most regional climate models (RCMs) are essentially composed of an atmospheric component coupled to a land surface scheme and driven over ocean areas by prescribed sea surface temperature (SST). Although such a RCM can be sufficient for many applications, there are cases (like in the Mediterranean basin) in which fine scale feedbacks associated with air-sea interactions can substantially influence the spatial and temporal structure of regional climates. Therefore, in this work we present the first testing phase of the application of a coupled atmospheric-ocean regional climate model (AORCM) for the Mediterranean basin under the framework of the CORWES project. CORWES is a Spanish consortium of research groups using the Weather Research and Forecasting (WRF) model to contribute to the Coordinated Regional Climate Downscaling Experiment (CORDEX). We use WRF and ROMS models as the atmospheric and oceanic component, respectively. Coupling between WRF and ROMS is achieved in the following way: on a prescribed interval of 2 h, WRF sends wind stress, surface heat and water fluxes to ROMS time-averaged over the previous two hours. One hour later, and also with a prescribed interval of 2 h, ROMS sends time-averaged SST to WRF. Here, we mainly focus on the performance of the coupled system in reproducing the ocean surface temperatures. To separate effects of the coupling on SST, additional uncoupled atmospheric simulations are also done in parallel. The case study covers the years 2001-2005 and is described below. The resolution of the domain used is 12 km. The number of vertical levels is 30 for WRF. The ROMS domain, with 32 vertical levels, is slightly smaller than WRF innermost nest and has a higher resolution of 4 km. The lateral atmospheric boundary conditions for WRF are taken from ERA-Interim reanalysis. The lateral oceanic boundary conditions for ROMS come from the downscaling of the Simple Ocean Data Assimilation analysis (SODA) by an uncoupled nested ROMS

  18. Coupling of a regional atmospheric model (RegCM3) and a regional oceanic model (FVCOM) over the maritime continent

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Malanotte-Rizzoli, Paola; Eltahir, Elfatih A. B.; Xue, Pengfei; Xu, Danya

    2014-09-01

    Climatological high resolution coupled climate model simulations for the maritime continent have been carried out using the regional climate model (RegCM) version 3 and the finite volume coastal ocean model (FVCOM) specifically designed to resolve regions characterized by complex geometry and bathymetry. The RegCM3 boundary forcing is provided by the EMCWF-ERA40 re-analysis. FVCOM is embedded in the Global MITgcm which provides boundary forcing. The domain of the coupled regional model covers the entire South China Sea with its through-flow, the entire Indonesian archipelago with the Indonesian through-flow (ITF) and includes a large region in the western Pacific and eastern Indian oceans. The coupled model is able to provide stable and realistic climatological simulations for a specific decade of atmospheric-oceanic variables without flux correction. The major focus of this work is on oceanic properties. First, the coupled simulation is assessed against ocean-only simulations carried out under two different sets of air-sea heat fluxes. The first set, provided by the MITgcm, is proved to be grossly deficient as the heat fluxes are evaluated by a two-dimensional, zonally averaged atmosphere and the simulated SST have anomalous cold biases. Hence the MITgcm fluxes are discarded. The second set, the NCEP re-analysis heat fluxes, produces a climatological evolution of the SST with an average cold bias of ~-0.8 °C. The coupling eliminates the cold bias and the coupled SST evolution is in excellent agreement with the analogous evolution in the SODA re-analysis data. The detailed comparison of oceanic circulation properties with the International Nusantara Stratification and Transport observations shows that the coupled simulation produces the best estimate of the total ITF transport through the Makassar strait while the transports of three ocean-only simulations are all underestimated. The annual cycle of the transport is also very well reproduced. The coupling also

  19. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    NASA Astrophysics Data System (ADS)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-04-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  20. Extreme regimes of atmospheric circulation and their role in the formation of temperature and precipitation fields in the Arctic region

    NASA Astrophysics Data System (ADS)

    Irina, Kulikova; Ekaterina, Kruglova; Dmitry, Kiktev; Vladimir, Tischenco; Valentina, Khan

    2016-04-01

    In the present study, the extreme regimes of atmospheric circulation in the Northern Hemisphere as well as their role in the formation of monthly and seasonal anomalies of temperature and precipitation fields over Arctic region were examined using NCEP / NCAR-2 reanalysis data. To identify extreme modes, climate indexes were quantitatively assessed. The mapping of monthly and seasonal temperature and precipitation fields for the different phases of indices using composite analysis was developed. It is allowed to identify allocated geographic areas in which the influence of modes of circulation for temperature and precipitation fields in Arctic is statistically significant. Quantitative estimations of contingency of atmospheric circulation modes in the Northern Hemisphere were analyzed. Special attention has been paid to the extreme episodes of the climate circulation indices, associated with formation of significant anomalies of air temperature and precipitation. The results of numerical experiments to reproduce the extreme events on monthly and seasonal time scale on the basis of the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia, have been discussed. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  1. RSL: A parallel Runtime System Library for regional atmospheric models with nesting

    SciTech Connect

    Michalakes, J.G.

    1997-08-01

    RSL is a parallel runtime system library developed at Argonne National Laboratory that is tailored to regular-grid atmospheric models with mesh refinement in the form of two-way interacting nested grids. RSL provides high-level stencil and interdomain communication, irregular domain decomposition, automatic local/global index translation, distributed I/O, and dynamic load balancing. RSL was used with Fortran90 to parallelize a well-known and widely used regional weather model, the Penn State/NCAR Mesoscale model.

  2. Influence of thermal deformations of resonators on propagation properties of laser annular beams through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Peng, Yufeng; Peng, Fang; Han, Junpeng

    2013-02-01

    Based on the laser field from a positive confocal unstable resonator, considering the influence of thermal distortion of the internal resonator mirror on the annular beam, the propagation characteristics of the annular beam through turbulent atmosphere are investigated by means of the fast Fourier transform algorithm (FFT). The intensity distributions of the output laser far-field are obtained to analyze the propagation characteristics of laser annular beam through the turbulent atmosphere, which is a function about different propagation distances. The results show that the peak intensity of the laser pattern becomes depressed and the spread of the far field diagram patterns is broadened under the increasing of the transmission distance and the thermal distortion of the laser resonator. β-parameter and strehl ratio are introduced to estimate the annular beam quality characteristics. It is found that the annular beam through strong turbulence influences much less obviously than the annular beam through weak turbulence on the quality characteristics with thermal distortion. In the same atmospheric conditions with a certain distance, the greater the mirror thermal distortion is, the worse the annular beam quality characteristics is.

  3. Lessons Learned from the Bay Region Atmospheric Chemistry Experiment (BRACE) and Implications for Nitrogen Management of Tampa Bay

    EPA Science Inventory

    Results from air quality modeling and field measurements made as part of the Bay Region Atmospheric Chemistry Experiment (BRACE) along with related scientific literature were reviewed to provide an improved estimate of atmospheric reactive nitrogen (N) deposition to Tampa Bay, to...

  4. Influence of a high aerosol concentration on the thermal structure of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Khaikin, M. N.; Kuznetsova, I. N.; Kadygrov, E. N.

    2006-12-01

    The influence of increased concentrations of submicron aerosol produced by forest fires on thermal characteristics of the atmospheric boundary layer (ABL) in Moscow and its remote vicinity (the town of Zvenigorod) are analyzed on the basis of regular remote measurements of the ABL temperature profile with the use of MTP-5 profilers. In the air basin of a large city, additional aerosol and accompanying pollutants in early morning hours (at small heights of the Sun) most frequently did not cause substantial changes in the ABL thermal structure. In the locality remote from the megalopolis (Zvenigorod), the atmospheric pollution by aerosol led to noticeable changes in the ABL thermal characteristics. Especially strong changes were observed in the daytime, during the maximum supply of solar radiation. In morning hours, the heating rate of the lower 100-m layer of the polluted air exceeded the heating rate of a relatively pure air by more than one degree. In higher layers, the differences between the rates of temperature changes in a relatively clean atmosphere and in an atmosphere polluted by aerosol (in the suburb) were insignificant.

  5. THE INFLUENCE OF ATMOSPHERIC SCATTERING AND ABSORPTION ON OHMIC DISSIPATION IN HOT JUPITERS

    SciTech Connect

    Heng, Kevin

    2012-03-20

    Using semi-analytical, one-dimensional models, we elucidate the influence of scattering and absorption on the degree of Ohmic dissipation in hot Jovian atmospheres. With the assumption of Saha equilibrium, the variation in temperature is the main driver of the variations in the electrical conductivity, induced current, and Ohmic power dissipated. Atmospheres possessing temperature inversions tend to dissipate most of the Ohmic power superficially, at high altitudes, whereas those without temperature inversions are capable of greater dissipation deeper down. Scattering in the optical range of wavelengths tends to cool the lower atmosphere, thus reducing the degree of dissipation at depth. Purely absorbing cloud decks (in the infrared), of a finite extent in height, allow for localized reductions in dissipation and may reverse a temperature inversion if they are dense and thick enough, thus greatly enhancing the dissipation at depth. If Ohmic dissipation is the mechanism for inflating hot Jupiters, then variations in the atmospheric opacity (which may be interpreted as arising from variations in metallicity and cloud/haze properties) and magnetic field strength naturally produce a scatter in the measured radii at a given strength of irradiation. Future work will determine if these effects are dominant over evolutionary effects, which also contribute a scatter to the measured radii.

  6. Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams.

    PubMed

    Li, Jinhong; Wang, Weiwei; Duan, Meiling; Wei, Jinlin

    2016-09-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function (WDF), the analytical expressions for the propagation factors (M2-factors) and Strehl ratio SR of the Gaussian Schell-model (GSM) vortex beams and GSM non-vortex beams propagation through non-Kolmogorov atmospheric turbulence are derived, and used to study the influence of non-Kolmogorov atmospheric turbulence on beam quality of the GSM vortex beams. It is shown that the smaller the generalized structure constant and the outer scale of turbulence are, and the bigger the inner scale of turbulence is, the smaller the normalized propagation factor is, the bigger the Strehl ratio is, and the better the beam quality of GSM vortex beams in atmospheric turbulence is. The variation of beam quality with the generalized exponent α is nonmonotonic, when α = 3.11, the beam quality of the GSM vortex beams is the poorest through non-Kolmogorov atmospheric turbulence. GSM vortex beams is less affected by turbulence than GSM non-vortex beams under certain condition, and will be useful in long-distance free-space optical communications. PMID:27607647

  7. NO Detection by Pulsed Polarization of Lambda Probes–Influence of the Reference Atmosphere

    PubMed Central

    Fischer, Sabine; Schönauer-Kamin, Daniela; Pohle, Roland; Fleischer, Maximilian; Moos, Ralf

    2013-01-01

    The pulsed polarization measurement technique using conventional thimble type lambda probes is suitable for low ppm NOx detection in exhaust gas applications. To evaluate the underlying sensor mechanism, the unknown influence of the reference atmosphere on the NO sensing behavior is investigated in this study. Besides answering questions with respect to the underlying principle, this investigation can resolve the main question of whether a simplified sensor element without reference may be also suitable for NO sensing using the pulsed polarization measurement technique. With an adequate sensor setup, the reference atmosphere of the thimble type lambda probe is changed completely after a certain diffusion time. Thus, the sensor response regarding NO is compared with and without different gas atmospheres on both electrodes. It is shown that there is still a very good NO sensitivity even without reference air, although the NO response is reduced due to non-existing overlying mixed potential type voltage, which is otherwise caused by different atmospheres on both electrodes. Considering these results, we see an opportunity to simplify the standard NOx sensor design by omitting the reference electrode.

  8. Complex topography influences atmospheric nitrate deposition in a neotropical mountain rainforest

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, Sandro; Rollenbeck, Rütger; Fabian, Peter; Bendix, Jörg

    2013-11-01

    Future increase of atmospheric nitrogen deposition in tropical regions is expected to have negative impacts on forests ecosystems and related biogeochemical processes. In tropical mountain forests topography causes complex streamflow and rainfall patterns, governing the atmospheric transport of pollutants and the intensity and spatial variability of deposition. The main goal of the current study is to link spatio-temporal patterns of upwind nitrogen emissions and nitrate deposition in the San Francisco Valley (eastern Andes of southern Ecuador) at different altitudinal levels. The work is based on Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) retrieved-NO2 concentrations, NOx biomass burning emissions from the Global Fire Emissions Database (GFEDv3), and regional vehicle emissions inventory (SA-INV) for urban emissions in South America. The emission data is used as input for lagrangian atmospheric backward trajectory modeling (FLEXTRA) to model the transport to the study area. The results show that NO concentrations in occult precipitation samples are significantly correlated to long-range atmospheric secondary nitrogen transport at the highest meteorological stations (MSs) only, whereas for NO concentrations in rain samples this correlation is more pronounced at the lower MSs. We conclude that ion concentrations in occult precipitation at the uppermost MSs are mainly linked to distant emission sources via the synoptic circulation impinging the more exposed higher sites. Lower correlations close to the valley bottom are due to a lower occult precipitation frequency and point to a contamination of the samples by local pollution sources not captured by the used emission data sources.

  9. A new approach to the convective parameterization of the regional atmospheric model BRAMS

    NASA Astrophysics Data System (ADS)

    Dos Santos, A. F.; Freitas, S. R.; de Campos Velho, H. F.; Luz, E. F.; Gan, M. A.; de Mattos, J. Z.; Grell, G. A.

    2013-05-01

    The summer characteristics of January 2010 was performed using the atmospheric model Brazilian developments on the Regional Atmospheric Modeling System (BRAMS). The convective parameterization scheme of Grell and Dévényi was used to represent clouds and their interaction with the large scale environment. As a result, the precipitation forecasts can be combined in several ways, generating a numerical representation of precipitation and atmospheric heating and moistening rates. The purpose of this study was to generate a set of weights to compute a best combination of the hypothesis of the convective scheme. It is an inverse problem of parameter estimation and the problem is solved as an optimization problem. To minimize the difference between observed data and forecasted precipitation, the objective function was computed with the quadratic difference between five simulated precipitation fields and observation. The precipitation field estimated by the Tropical Rainfall Measuring Mission satellite was used as observed data. Weights were obtained using the firefly algorithm and the mass fluxes of each closure of the convective scheme were weighted generating a new set of mass fluxes. The results indicated the better skill of the model with the new methodology compared with the old ensemble mean calculation.

  10. Surface-Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia.

    PubMed

    Ford, Trent W; Frauenfeld, Oliver W

    2016-01-01

    Climate models simulate an intensifying Arctic hydrologic cycle in response to climatic warming, however the role of surface-atmosphere interactions from degrading frozen ground is unclear in these projections. Using Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in high-latitude Eurasia, we examine long-term variability in surface-atmosphere coupling as represented by the statistical relationship between surface evaporative fraction (EF) and afternoon precipitation. Changes in EF, precipitation, and their statistical association are then related to underlying permafrost type and snow cover. Results indicate significant positive trends in July EF in the Central Siberian Plateau, corresponding to significant increases in afternoon precipitation. The positive trends are only significant over continuous permafrost, with non-significant or negative EF and precipitation trends over isolated, sporadic, and discontinuous permafrost areas. Concurrently, increasing EF and subsequent precipitation are found to coincide with significant trends in May and June snowmelt, which potentially provides the moisture source for the observed enhanced latent heating and moisture recycling in the region. As climate change causes continuous permafrost to transition to discontinuous, discontinuous to sporadic, sporadic to isolated, and isolated permafrost disappears, this will also alter patterns of atmospheric convection, moisture recycling, and hence the hydrologic cycle in high-latitude land areas. PMID:26777288

  11. Surface–Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia

    PubMed Central

    Ford, Trent W.; Frauenfeld, Oliver W.

    2016-01-01

    Climate models simulate an intensifying Arctic hydrologic cycle in response to climatic warming, however the role of surface-atmosphere interactions from degrading frozen ground is unclear in these projections. Using Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in high-latitude Eurasia, we examine long-term variability in surface-atmosphere coupling as represented by the statistical relationship between surface evaporative fraction (EF) and afternoon precipitation. Changes in EF, precipitation, and their statistical association are then related to underlying permafrost type and snow cover. Results indicate significant positive trends in July EF in the Central Siberian Plateau, corresponding to significant increases in afternoon precipitation. The positive trends are only significant over continuous permafrost, with non-significant or negative EF and precipitation trends over isolated, sporadic, and discontinuous permafrost areas. Concurrently, increasing EF and subsequent precipitation are found to coincide with significant trends in May and June snowmelt, which potentially provides the moisture source for the observed enhanced latent heating and moisture recycling in the region. As climate change causes continuous permafrost to transition to discontinuous, discontinuous to sporadic, sporadic to isolated, and isolated permafrost disappears, this will also alter patterns of atmospheric convection, moisture recycling, and hence the hydrologic cycle in high-latitude land areas. PMID:26777288

  12. Surface-Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia

    NASA Astrophysics Data System (ADS)

    Ford, Trent W.; Frauenfeld, Oliver W.

    2016-01-01

    Climate models simulate an intensifying Arctic hydrologic cycle in response to climatic warming, however the role of surface-atmosphere interactions from degrading frozen ground is unclear in these projections. Using Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in high-latitude Eurasia, we examine long-term variability in surface-atmosphere coupling as represented by the statistical relationship between surface evaporative fraction (EF) and afternoon precipitation. Changes in EF, precipitation, and their statistical association are then related to underlying permafrost type and snow cover. Results indicate significant positive trends in July EF in the Central Siberian Plateau, corresponding to significant increases in afternoon precipitation. The positive trends are only significant over continuous permafrost, with non-significant or negative EF and precipitation trends over isolated, sporadic, and discontinuous permafrost areas. Concurrently, increasing EF and subsequent precipitation are found to coincide with significant trends in May and June snowmelt, which potentially provides the moisture source for the observed enhanced latent heating and moisture recycling in the region. As climate change causes continuous permafrost to transition to discontinuous, discontinuous to sporadic, sporadic to isolated, and isolated permafrost disappears, this will also alter patterns of atmospheric convection, moisture recycling, and hence the hydrologic cycle in high-latitude land areas.

  13. Investigation Spectral Image the Upper Atmosphere over Regions with Thunderstorm Using Data from the Sv

    NASA Astrophysics Data System (ADS)

    Grichshenko, Valentina

    2016-07-01

    The results of the two-level experiment, including registration of the electric field in the surface layer during thunderstorm on TSCRS (Almaty) and synchronous image the top of the cloud cover over the test range from satellite "Terra / MODIS" are presented. Spectral image of the upper atmosphere over of the thunderstorm related to lighting discharge has been created. As a result of the processing of satellite images Terra / MODIS created a new index of "lightning discharge," which will be used to search for and investigation of optical phenomena (such as Sprites, Elves, Blue Jet) over the regions with thunderstorm activity. The developed technique of space picture processing will be used for studying optical phenomena above other regions too.

  14. Structure of the disturbed region of the atmosphere after the nuclear explosion in Hiroshima

    NASA Astrophysics Data System (ADS)

    Shcherbin, M. D.; Pavlyukov, K. V.; Salo, A. A.; Pertsev, S. F.; Rikunov, A. V.

    2013-09-01

    An attempt is undertaken to describe the development of the disturbed region of the atmosphere caused by the nuclear explosion over Hiroshima on August 6, 1945. Numerical simulation of the phenomenon is performed using the dynamic equations for a nonconducting inviscid gas taking into account the combustion of urban buildings, phase changes of water, electrification of ice particles, and removal of soot particles. The results of the numerical calculation of the development of the disturbed region indicate heavy rainfall, the formation of a storm cloud with lightning discharges, removal of soot particles, and the formation of vertical vortices. The temporal sequence of these meteorological phenomena is consistent with the data of observations. Because of the assumptions and approximations used in solving the problem, the results are of qualitative nature. Refinement of the results can be obtained by a more detailed study of the approximate initial and boundary conditions of the problem.

  15. Chemistry-turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Yuan, B.; Mauldin, R. L.; Cantrell, C. A.; Guenther, A. B.; Patton, E. G.; Weinheimer, A. J.; Knote, C.; Orlando, J.; Emmons, L.; Apel, E.; Hornbrook, R.; Shertz, S.; Ullmann, K.; Hall, S.; Graus, M.; Gouw, J.; Zhou, X.; Ye, C.

    2015-12-01

    The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene-dominated environments has suggested missing radical sources leading to significant overestimation of the lifetime of isoprene. Here we report, for the first time, a comprehensive experimental budget of isoprene in the planetary boundary layer based on airborne flux measurements along with in situ OH observations in the Southeast and Central U.S. Our findings show that surface heterogeneity of isoprene emissions lead to a physical separation of isoprene and OH resulting in an effective slowdown in the chemistry. Depending on surface heterogeneity, the intensity of segregation (Is) could locally slow down isoprene chemistry up to 30%. The effect of segregated reactants in the planetary boundary layer on average has an influence on modeled OH radicals that is comparable to that of recently proposed radical recycling mechanisms.

  16. Premixed Atmosphere and Convection Influences on Flame Inhibition and Combustion (PACIFIC)

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1995-01-01

    Under NASA-Lewis Grant NAG3-1611, starting date 6/1/94, a three-year experimental and theoretical study of the effects of ambient atmosphere on the properties of flame spread over thin and thick solid fuel beds has been initiated. In particular the effect of the type of inert gas, which affects the Lewis numbers of fuel and oxidant, and the effect of the addition of sub-flammability-limit concentrations of gaseous fuels to the oxidizing atmosphere will be studied. The effect of convection will be studied through one-g and mu g experiments with and without a forced flow. Moreover, the influence of thermal radiation, whose effect is known to be markedly different depending on the convection level, will be addressed.

  17. Tracing industrial ammonium in atmospheric deposition in the Athabasca Oil Sands Region, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Mayer, B.; Proemse, B. C.; Fenn, M. E.

    2013-12-01

    The expanding industrial development in the Athabasca oil sands region (AOSR) in northeastern Alberta, Canada, has raised concerns about increasing nitrogen (N) emissions from oil sands operations and their potential effects on the surrounding terrestrial and aquatic ecosystems. Stable isotope techniques may help to trace industrial emissions provided that they are isotopically distinct from background isotope ratios of atmospheric N compounds. Ammonium deposition rates (NH4-N) typically exceed nitrate deposition rates (NO3-N) in the AOSR (Proemse et al., 2013), suggesting that emissions of reduced nitrogen compounds play a significant role for the atmospheric nitrogen budget in the AOSR. We collected atmospheric ammonium in open field bulk deposition and throughfall using ion exchange resins over ~6 months time periods from summer 2007 to summer 2011 located at distances between 3 to 113 km to one of the major oil sands developments in the AOSR. Ammonium deposition rates and δ15N-NH4 values were determined using ion chromatography and the ammonium diffusion method (Sebilo et al., 2004) on resin extracts. Atmospheric ammonium deposition rates in open field bulk collectors and throughfall collectors ranged from 1.0 to 4.7 kg ha-1 yr-1 NH4-N, and from 1.0 to 18.3 kg ha-1 yr-1 NH4-N, respectively. δ15N-NH4 values varied from -6.3 to +14.8‰ with the highest δ15N values typically associated with elevated NH4-N deposition rates. δ15N-NH4 values of up to +20.1‰ were observed for industrially emitted NH4 in particulate matter (PM2.5) emissions (Proemse et al., 2012) suggesting that industrial NH3 and NH4 emissions are associated with elevated δ15N values providing a potential tracer. Applying a two-end-member mixing analysis using a background δ15N-NH4 value of -3.6‰ for summer and -3.2‰ for winter periods revealed that particularly sites within ~30 km radius from the main oil sands developments are significantly affected by industrial contributions to

  18. Evidence of the observed change in the atmosphere-ocean interactions over the South China Sea during summer in a regional climate model

    NASA Astrophysics Data System (ADS)

    Jang, Hye-Yeong; Yeh, Sang-Wook; Chang, Eun-Chul; Kim, Baek-Min

    2016-01-01

    The South China Sea plays a key role to change the precipitation variability in East Asia by influencing the northward moisture transport. Previous study found that there exist changes in atmosphere-ocean interactions over the South China Sea (SCS) before and after the late 1990s during boreal summer (June-July-August) in the observations. This study further supports such changes using two simulations of the atmospheric regional climate model (RCM) forced by historical sea surface temperature (SST). The control run is forced by historical SSTs, which are prescribed in the entire domain in the RCM. In addition to the control run, an additional idealized experiment is conducted, i.e., the historical SSTs are prescribed in the SCS only and the climatological SST is prescribed outside the SCS to examine the changes in the atmosphere-ocean interactions in the SCS. It is found that the simultaneous correlation coefficient between SST and precipitation changes significantly over the SCS before and after the late 1990s. This result supports the notion that there are significant changes in atmosphere-ocean interactions over the SCS before and after the late 1990, which affects the ability of the RCM to simulate precipitation variability accurately relative to observation. This result implies that the simulations of atmospheric circulation model results forced by observed SST before the late 1990 should be cautiously interpreted because the observed SST anomalies are forced by the atmosphere.

  19. Spatial Variation of Soil Type and Soil Moisture in the Regional Atmospheric Modeling System

    SciTech Connect

    Buckley, R.

    2001-06-27

    Soil characteristics (texture and moisture) are typically assumed to be initially constant when performing simulations with the Regional Atmospheric Modeling System (RAMS). Soil texture is spatially homogeneous and time-independent, while soil moisture is often spatially homogeneous initially, but time-dependent. This report discusses the conversion of a global data set of Food and Agriculture Organization (FAO) soil types to RAMS soil texture and the subsequent modifications required in RAMS to ingest this information. Spatial variations in initial soil moisture obtained from the National Center for Environmental Predictions (NCEP) large-scale models are also introduced. Comparisons involving simulations over the southeastern United States for two different time periods, one during warmer, more humid summer conditions, and one during cooler, dryer winter conditions, reveals differences in surface conditions related to increases or decreases in near-surface atmospheric moisture con tent as a result of different soil properties. Three separate simulation types were considered. The base case assumed spatially homogeneous soil texture and initial soil moisture. The second case assumed variable soil texture and constant initial soil moisture, while the third case allowed for both variable soil texture and initial soil moisture. The simulation domain was further divided into four geographically distinct regions. It is concluded there is a more dramatic impact on thermodynamic variables (surface temperature and dewpoint) than on surface winds, and a more pronounced variability in results during the summer period. While no obvious trends in surface winds or dewpoint temperature were found relative to observations covering all regions and times, improvement in surface temperatures in most regions and time periods was generally seen with the incorporation of variable soil texture and initial soil moisture.

  20. Regional frequency analysis conditioned on large-scale atmospheric or oceanic fields

    NASA Astrophysics Data System (ADS)

    Renard, Benjamin; Lall, Upmanu

    2014-12-01

    Many studies report that hydrologic regimes are modulated by large-scale modes of climate variability such as the El Niño Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). Climate-informed frequency analysis models have therefore been proposed to condition the distribution of hydrologic variables on climate indices. However, standard climate indices may be poor predictors in some regions. This paper therefore describes a regional frequency analysis framework that conditions the distribution of hydrologic variables directly on atmospheric or oceanic fields, as opposed to predefined climate indices. This framework is based on a two-level probabilistic model describing both climate and hydrologic data. The climate data set (predictor) is typically a time series of atmospheric of oceanic fields defined on a grid over some area, while the hydrologic data set (predictand) is typically a regional data set of station data (e.g., annual average flow at several gauging stations). A Bayesian estimation framework is used, so that a natural quantification of uncertainties affecting hydrologic predictions is available. A case study aimed at predicting the number of autumn flood events in 16 catchments located in Mediterranean France using geopotential heights at 500 hPa over the North-Atlantic region is presented. The temporal variability of hydrologic data is shown to be associated with a particular spatial pattern in the geopotential heights. A cross-validation experiment indicates that the resulting probabilistic climate-informed predictions are skillful: their reliability is acceptable and they are much sharper than predictions based on standard climate indices and baseline predictions that ignore climate information.

  1. Regional frequency analysis conditioned on large-scale atmospheric or oceanic fields

    NASA Astrophysics Data System (ADS)

    Renard, Benjamin; Lall, Upmanu

    2015-04-01

    Many studies report that hydrologic regimes are modulated by large-scale modes of climate variability such as the El Niño Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). Climate-informed frequency analysis models have therefore been proposed to condition the distribution of hydrologic variables on climate indices. However, standard climate indices may be poor predictors in some regions. This paper therefore describes a regional frequency analysis framework that conditions the distribution of hydrologic variables directly on atmospheric or oceanic fields, as opposed to predefined climate indices. This framework is based on a 2-level probabilistic model describing both climate and hydrologic data. The climate dataset (predictor) is typically a time series of atmospheric of oceanic fields defined on a grid over some area, while the hydrologic dataset (predictand) is typically a regional dataset of station data (e.g. annual peak flow at several gauging stations). A Bayesian estimation framework is used, so that a natural quantification of uncertainties affecting hydrologic predictions is available. A case study aimed at predicting the number of autumn flood events in 16 catchments located in Mediterranean France using geopotential heights at 500 hPa over the North-Atlantic region is presented. The temporal variability of hydrologic data is shown to be associated with a particular spatial pattern in the geopotential heights. A cross-validation experiment indicates that the resulting probabilistic climate-informed predictions are skillful: their reliability is acceptable and they are much sharper than predictions based on standard climate indices and baseline predictions that ignore climate information.

  2. Predicting wetland contamination from atmospheric deposition measurements of pesticides in the Canadian Prairie Pothole region

    NASA Astrophysics Data System (ADS)

    Messing, Paul G.; Farenhorst, Annemieke; Waite, Don T.; McQueen, D. A. Ross; Sproull, James F.; Humphries, David A.; Thompson, Laura L.

    2011-12-01

    Although it has been suggested that atmospheric deposition alone can result in detectable levels of pesticides in wetlands of the Pairie Pothole Region of Canada, this is the first field study to compare the masses of pesticides entering wetlands by atmospheric deposition with those concentrations of pesticides detected in the water-column of prairie wetlands. Weekly air and bulk deposition samples were collected from May 26th to Sept. 15th, 2008 at the Manitoba Zero Tillage Research Association (MZTRA) Farm, Brandon, Manitoba, with four on-site wetlands (approximate sizes 0.15-0.45 ha) monitored every second week. Twelve pesticides were detected in the air, with MCPA (one of the three pesticides applied on the farm in 2008 in addition to clopyralid and glyphosate), triallate, and γ-HCH being detected every week. Calculations were performed to predict wetland pesticide concentrations based on bulk deposits alone for those pesticides that had detectable concentrations in the bulk deposition samples (in order of the highest total seasonal deposition mass to the lowest): MCPA, glyphosate, 2,4-D, clopyralid, bromoxynil, atrazine, dicamba, metolachlor, and mecoprop. The estimated concentrations were closest to actual concentrations for MCPA (Pearson correlation coefficient's = 0.91 to 0.98; p-values < 0.001) and predictions were also reasonable for a range of other herbicides, but a source other than atmospheric deposition was clearly relevant to detections of clopyralid in the wetland water-column. Although the types and levels of pesticides detected in the wetlands of the current study suggest that regional pesticide applications can contribute to pesticide surface water contamination following atmospheric transport and deposition, the greater frequency and concentrations of clopyralid, MCPA, and glyphosate detections in wetlands confirm that on-farm pesticide applications have a greater impact on on-site water quality. Beneficial management practices that reduce

  3. Contribution of regional sources to atmospheric methane over the Amazon Basin in 2010 and 2011

    NASA Astrophysics Data System (ADS)

    Wilson, Chris; Gloor, Manuel; Gatti, Luciana V.; Miller, John B.; Monks, Sarah A.; McNorton, Joey; Bloom, A. Anthony; Basso, Luana S.; Chipperfield, Martyn P.

    2016-03-01

    We present an assessment of methane (CH4) atmospheric concentrations over the Amazon Basin for 2010 and 2011 using a 3-D atmospheric chemical transport model, two wetland emission models, and new observations made during biweekly flights made over four locations within the basin. We attempt to constrain basin-wide CH4 emissions using the observations, and since 2010 was an unusually dry year, we assess the effect of this drought on Amazonian methane emissions. We find that South American emissions contribute up to 150 ppb to concentrations at the sites, mainly originating from within the basin. Our atmospheric model simulations agree reasonably well with measurements at three of the locations (0.28 ≤ r2 ≤ 0.63, mean bias ≤ 9.5 ppb). Attempts to improve the simulated background CH4 concentration through analysis of simulated and observed sulphur hexafluoride concentrations do not improve the model performance, however. Through minimisation of seasonal biases between the simulated and observed atmospheric concentrations, we scale our prior emission inventories to derive total basin-wide methane emissions of 36.5-41.1 Tg(CH4)/yr in 2010 and 31.6-38.8 Tg(CH4)/yr in 2011. These totals suggest that the Amazon contributes significantly (up to 7%) to global CH4 emissions. Our analysis indicates that factors other than precipitation, such as temperature variations or tree mortality, may have affected microbial emission rates. However, given the uncertainty of our emission estimates, we cannot say definitively whether the noncombustion emissions from the region were different in 2010 and 2011, despite contrasting meteorological conditions between the two years.

  4. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters, and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.

  5. Atmospheric pollutants and their influence on acidification of rain water at an industrial location on the West Coast OF India

    NASA Astrophysics Data System (ADS)

    Khemani, L. T.; Momin, G. A.; Rao, P. S. P.; Pillai, A. G.; Safai, P. D.; Mohan, K.; Rao, M. G.

    The chemical analysis of rain water samples at 11 locations along with measurements of atmospheric aerosols and their size distributions were made to study the influence of pollutants on acidification of rain water during the monsoon season of 1990 at Chembur-Trombay area, a highly industrialized belt in Bombay region located on the west coast of India. The concentrations of acid precursor gases, namely, SO 2 and NO, emanating from industries were low and their influence on acidification was limited to a few kilometer radius of their sources. Whereas, the deposition of ionic components (Na +, K +, Ca 2+, Mg 2+ and CI -) whose sources are natural (sea and soil) were uniformly distributed throughout the region as compared to those released from man-made sources. The high concentration of alkaline components, especially Ca 2+ from natural sources and NH 3 released from a fertilizer plant, were responsible for neutralising H + ion concentration generated from the acidic components (SO 42- and N0 3-). The variation from acidic (1970s) to alkaline (1990s) nature of rainwater in the area maybe due to the change in the use of fuel from coal to natural gas, which contains less sulphur and also, the pollution control measures taken by the industries.

  6. Projected changes in atmospheric river events in Arizona as simulated by global and regional climate models

    NASA Astrophysics Data System (ADS)

    Rivera, Erick R.; Dominguez, Francina

    2015-12-01

    Inland-penetrating atmospheric rivers (ARs) affect the United States Southwest and significantly contribute to cool season precipitation. In this study, we examine the results from an ensemble of dynamically downscaled simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and their driving general circulation models (GCMs) in order to determine statistically significant changes in the intensity of the cool season ARs impacting Arizona and the associated precipitation. Future greenhouse gas emissions follow the A2 emission scenario from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations. We find that there is a consistent and clear intensification of the AR-related water vapor transport in both the global and regional simulations which reflects the increase in water vapor content due to warmer atmospheric temperatures, according to the Clausius-Clapeyron relationship. However, the response of AR-related precipitation intensity to increased moisture flux and column-integrated water vapor is weak and no significant changes are projected either by the GCMs or the NARCCAP models. This lack of robust precipitation variations can be explained in part by the absence of meaningful changes in both the large-scale water vapor flux convergence and the maximum positive relative vorticity in the GCMs. Additionally, some global models show a robust decrease in relative humidity which may also be responsible for the projected precipitation patterns.

  7. Influence of monsoons on atmospheric CO2 spatial variability and ground-based monitoring over India.

    PubMed

    Tiwari, Yogesh K; Vellore, Ramesh K; Ravi Kumar, K; van der Schoot, Marcel; Cho, Chun-Ho

    2014-08-15

    This study examines the role of Asian monsoons on transport and spatial variability of atmospheric CO2 over the Indian subcontinent, using transport modeling tools and available surface observations from two atmospheric CO2 monitoring sites Sinhagad (SNG) and Cape Rama (CRI) in the western part of peninsular India. The regional source contributions to these sites arise from the horizontal flow in conduits within the planetary boundary layer. Greater CO2 variability, greater than 15 ppm, is observed during winter, while it is reduced nearly by half during summer. The SNG air sampling site is more susceptible to narrow regional terrestrial fluxes transported from the Indo-Gangetic Plains in January, and to wider upwind marine source regions from the Arabian Sea in July. The Western Ghats mountains appear to play a role in the seasonal variability at SNG by trapping polluted air masses associated with weak monsoonal winds. A Lagrangian back-trajectory analysis further suggests that the horizontal extent of regional sensitivity increases from north to south over the Indian subcontinent in January (Boreal winter). PMID:24880546

  8. Influence of Surface Seawater and Atmospheric Conditions on the Ccn Activity of Ocean-Derived Aerosol

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T. S.; Russell, L. M.; Frossard, A. A.; Keene, W. C.; Kieber, D. J.; Hakala, J. P.

    2012-12-01

    Ocean-derived aerosols are produced from direct injection into the atmosphere (primary production) and gas-to-particle conversion in the atmosphere (secondary production). These different production mechanisms result in a broad range of particle sizes that has implications for the impact of ocean-derived aerosol on climate. The chemical composition of ocean-derived aerosols is a result of a complex mixture of inorganic sea salt and organic matter including polysaccharides, proteins, amino acids, microorganisms and their fragments, and secondary oxidation products. Both production mechanisms and biological processes in the surface ocean impact the ability of ocean-derived aerosol to act as cloud condensation nuclei (CCN). In addition, CCN activity can be impacted by atmospheric processing that modifies particle size and composition after the aerosol is emitted from the ocean. To understand relationships between production mechanism, surface ocean biology, and atmospheric processing, measurements were made of surface ocean chlorophyll and dissolved organic matter; nascent sea spray aerosol freshly emitted from the ocean surface; and ambient marine aerosol. These measurements were made along the coast of California and in the North Atlantic between the northeast US and Bermuda. These regions include both eutrophic and oligotraphic waters and, thus, provide for observations over a wide range of ocean conditions.

  9. Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets

    NASA Technical Reports Server (NTRS)

    Mathur, Rohit

    1997-01-01

    This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

  10. Towards a regional CO2 budget for New Zealand from atmospheric measurements and backward Lagrangian modeling

    NASA Astrophysics Data System (ADS)

    Steinkamp, K.; Mikaloff-Fletcher, S.; Brailsford, G. W.; Moore, S.

    2013-12-01

    Between 1990 and 2011, the reported average annual growth in total greenhouse gas emissions had been 1.0% for New Zealand, with emissions reaching 73 Mt CO2-e in 2011. At the same time the net emissions (total plus LULUCF) grew by 4.2% each year on average and reached 59 Mt CO2-e in 2011, according to the Ministry for the Environment. This implies a shrinking sink for greenhouse gases in areas of land use/ land use change and forests (LULUCF). The uptake of CO2 by forests is the largest contributor to this sink and, therefore, plays a crucial role in New Zealand's carbon budget. Yet, it is among the least well-known components. In this study, we aim to develop a regional atmosphere inversion system to estimate net CO2 uptake by land areas in 2011 and 2012. This will serve as an alternative to the bottom-up estimates outlined above. We use the UK Met Office's Lagrangian dispersion model NAME III to link CO2 measurements at stations directly to atmospheric transport and potential source regions at the surface. By running the model in backward mode, we identify the degree to which potential regional sources of CO2 contribute to observed mid-afternoon mixing ratios, i.e., the footprint of a station. Footprints are computed over 2011-2012 for three stations across New Zealand: Baring Head, Lauder and Rainbow Mountain. NAME III uses hourly meteorological input from the regional forecast model NZLAM-12 over a domain covering New Zealand and the Tasman Sea at a horizontal resolution of 12 km. The footprints are then used in a regional inversion to find the optimal distribution of CO2 sources and sinks, i.e., the one leading to the best match with the measurements at all stations. We present results from the footprint analysis and show that the three stations are sensitive to distinct source regions that do not overlap and, together, cover large parts of New Zealand. Hence, the data from the stations carry complementary information on CO2 sinks in sources throughout the

  11. The Influence of Arctic Amplification on Mid-Latitude Atmospheric Circulation and Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Vavrus, S. J.; Francis, J. A.

    2012-12-01

    We expand on our recent work that provided evidence for a mechanism linking Arctic Amplification to changes in mid-latitude circulation patterns that favor extreme weather events (Francis and Vavrus, 2012). Here we analyze greenhouse-forced projections from the Community Climate System Model (CCSM4) to assess the future evolution of Arctic change on Northern Hemisphere weather patterns. We hypothesize that remote impacts of changes in the energy budget of the Arctic surface will influence the atmospheric circulation in middle latitudes through changes in large-scale, deep-tropospheric, meridional thickness gradients that induce generally weaker zonal flow and higher amplitude large-scale waves aloft. Because such features are slow-moving and associated with persistent weather conditions, they favor more frequent and severe extreme weather episodes resulting from prolonged cold-air outbreaks, heat waves, droughts, and heavy precipitation. The primary physical mechanism driving this change is an enhanced and seasonally varying Arctic heating: in fall/winter it is ocean-based due to substantial sea ice loss, while in warmer months it is land-based due to earlier snow melt and reduced soil moisture. Simulations by CCSM4 support our hypothesized linkages, as the projected climate changes depict a seasonally varying circulation response hinging on the enhanced warming and resulting geopotential height increases aloft in the Arctic. During boreal autumn and winter, sea ice loss leads to upper-air height increases mainly over the Arctic Ocean with compensating decreases over mid-latitudes, which reduces the poleward gradient. During spring and summer, however, the band of maximum ridging shifts southward over high-latitude land. This behavior resembles the upper-air circulation changes induced by prescribed reductions in sea ice and snow cover in previous versions of the model. The associated seasonal changes in mid-tropospheric zonal winds exhibit a nearly symmetrical

  12. The puzzling chemical composition of GJ 436B'S atmosphere: Influence of tidal heating on the chemistry

    SciTech Connect

    Agúndez, Marcelino; Selsis, Franck; Venot, Olivia; Iro, Nicolas

    2014-02-01

    The dissipation of the tidal energy deposited on eccentric planets may induce a heating of the planet that affects its atmospheric thermal structure. Here we study the influence of tidal heating on the atmospheric composition of the eccentric (e = 0.16) 'hot Neptune' GJ 436b, for which inconclusive chemical abundances are retrieved from multiwavelength photometric observations carried out during primary transit and secondary eclipse. We build up a one-dimensional model of GJ 436b's atmosphere in the vertical direction and compute the pressure-temperature and molecular abundances profiles for various plausible internal temperatures of the planet (up to 560 K) and metallicities (from solar to 100 times solar), using a radiative-convective model and a chemical model which includes thermochemical kinetics, vertical mixing, and photochemistry. We find that the CO/CH{sub 4} abundance ratio increases with metallicity and tidal heating, and ranges from 1/20 to 1000 within the ranges of metallicity and internal temperature explored. Water vapor locks most of the oxygen and reaches a very high abundance, whatever the metallicity and internal temperature of the planet. The CO{sub 2}/H{sub 2}O abundance ratio increases dramatically with metallicity, and takes values between 10{sup –5}-10{sup –4} with solar elemental abundances and ∼0.1 for a metallicity 100 times solar. None of the atmospheric models based on solid physical and chemical grounds provide a fully satisfactory agreement with available observational data, although the comparison of calculated spectra and observations seems to point to models with a high metallicity and efficient tidal heating, in which high CO/CH{sub 4} abundance ratios and warm temperatures in the dayside atmosphere are favored.

  13. Atmosphere

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Mitra, S. K.

    2014-05-01

    This paper investigates the high-temperature corrosion behavior of microstructurally different regions of the weldment of 9 Cr-1 Mo steel used in thermal power plant boiler in SO2 + O2 environment. The weldment is produced by tungsten inert gas welding method, and the different regions of the weldment (weld metal, heat-affected zone, and base metal) are exposed in SO2 + O2 (ratio 2:1) environment at 973 K for 120 h. The reaction kinetics and corrosion growth rate of different regions of weldment in isothermal condition are evaluated. The post corroded scales of the different specimens are studied in SEM, EDS, and XRD. The results indicate that the weld metal shows higher corrosion rate followed by HAZ and base metal. The higher rate of corrosion of weldmetal is mainly attributed to the least protective inner scale of Cr2O3 with minimum Cr Content. This is due to the formation of delta ferrite, which leads to the precipitation of the Cr-based secondary phases and depletes the free Cr from the matrix. The thermal cycles during welding at high temperature are favorable for the formation of delta ferrite. On the other hand, in absence of delta ferrite, the base metal and HAZ regions of the weldment show lower corrosion rate than weld metal. The difference in corrosion rate in the three regions of the weldment is supplemented by post-corroded scale characterizations.

  14. Large-scale atmospheric influence on the physical and biogeochemical properties of the Benguela upwelling system

    NASA Astrophysics Data System (ADS)

    Tim, Nele; Zorita, Eduardo; Hünicke, Birgit

    2014-05-01

    The Namibian upwelling region is one of the four Eastern Boundary Upwelling Ecosystems and among the most productive areas in the World Ocean. Here, upwelling indices have been defined in three ways. First, by performing EOF analyses of Sea Surface Temperature (SST) observations HadlSST1 and high resolution ocean model simulations (MPI-OM (STORM) and MOM4), driven by meteorological reanalysis. Second, water vertical velocity of STORM and MOM4. Third, the area between the 13°C isotherm and the coastline was used to indicate the intensity of the upwelling. Correlations with observed atmospheric variables (NCEP reanalysis) over the whole southern Atlantic show which conditions favour upwelling: higher than normal South Atlantic anticyclone, strong and southerly wind/wind stress and pressure and air temperature contrast between ocean and land. Separating the coastal area off southern Africa at Lüderitz (28°S) depicts the differences between the northern and southern Benguela upwelling region. Northern Benguela is characterised by a negative trend in upwelling over the last 60 year, Southern Benguela by a positive one. Furthermore, Northern Benguela upwelling seems to be influenced strongly by the conditions described above while the wind field correlated with the upwelling south of 28°S do not show stronger southerly winds. Additionally, the southern upwelling index of MOM4 is not reflected properly in the corresponding SST field. A reason for this could be an overlaying signal, possibly the advection of warm air from the Indian or the central Atlantic Ocean. The sea level pressure (SLP) gradient between land and ocean of NCEP reanalysis provide a opposite trend to the one postulated by Bakun (¹). We did not find an indication for a stronger pressure contrast between land and ocean. Correlations with indices of El Niño Southern Oscillation (ENSO), the Antarctic Oscillation (AAO) and an index of the tropical Atlantic SST variability. None of these correlations is

  15. Influence of atmospheric turbulence on OAM-based FSO system with use of realistic link model

    NASA Astrophysics Data System (ADS)

    Li, Ming; Yu, Zhongyuan; Cvijetic, Milorad

    2016-04-01

    We study the influence of atmospheric turbulence on OAM-based free-space optical (FSO) communication by using the Pump turbulence spectrum model which accurately characterizes the realistic FSO link. A comprehensive comparison is made between the Pump and Kolmogorov spectrum models with respect to the turbulence impact. The calculated results show that obtained turbulence-induced crosstalk is lower, which means that a higher channel capacity is projected when the realistic Pump spectrum is used instead of the Kolmogorov spectrum. We believe that our results prove that performance of practical OAM-based FSO is better than one predicted by using the original Kolmogorov turbulence model.

  16. Influence of GNSS Configuration and Map Interpolation Method on InSAR Atmospheric Phase Assessment

    NASA Astrophysics Data System (ADS)

    Simonetto, Elisabeth; Durand, Frederic; Morel, Laurent; El Hamri, Yassine; Froger, Jean-Luc; Nicolas, Joelle; Durand, Stephane; Polidori, Laurent

    2015-05-01

    Radar interferometry has proven to be a relevant technique in many application contexts. However, although the development of advanced processing, the interpretation of interferometric measurements is still disturbed by the presence of an atmospheric signal. In this work, we deal with the correction of interferograms using tropospheric delays measured from GNSS stations. We propose some experiments that enhance the influence of different factors in the processing of tropospheric maps. The results show that the interpolation strategy and the GNSS network geometry have a significant impact on the correction.

  17. The influence of land-atmosphere interactions on variability of the North American Monsoon

    NASA Technical Reports Server (NTRS)

    Small, Eric; Lakshmi, Venkat

    2005-01-01

    Our project focused on the influence of land-atmosphere interactions on variability of North American Monsoon System (NAMS) precipitation is summarized in seven published manuscripts (listed below). Three of these manuscripts (Matsui et al. 2003; Matsui et al. 2005; Small and Kurc 2003) were completed solely with support from this NASA project. The remaining four were completed with additional support from NOAA. Our primary results are summarized: 1) Test of Rocky Mountains snowcover-NAMS rainfall hypothesis. Testing radiation and convective precipitation parameterization in MM5. Analysis of soil moisture-radiation feedbacks in semiarid environments from field observations and modeling.

  18. Bog Plant Tissue Chemistry as Indicators of Regionally Elevated Atmospheric N and S Deposition in the Alberta Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Wieder, R.; Vile, M. A.; Scott, K. D.; Vitt, D. H.; Quinn, J.

    2011-12-01

    Nitrogen oxide and sulfur oxide emission from ongoing development of oil sands in northern Alberta results in regionally elevated atmospheric deposition of N and S in an area where background deposition of both N and S is exceptionally low (less than 1 kg/ha/yr). Because bogs, which represent major landforms in the Alberta oil sands region, are believed to be N-limited and potentially sensitive to S inputs, we have been investigating the effects of elevated N deposition on C, N, and S cycling in bogs, as well as the potential of bogs to serve as monitors of N and S deposition. Toward this latter end, we have measured seasonal variation (5 sampling dates between June and October 2009) concentrations of N and S, as well as δ15N value, in leaf tissues (Picea mariana (ectomycorrhizal); Ledum groenlandicum, Oxycoccos microcarpon, Vaccinium vitis-idaea (ericoid mycorrhizal); Rubus chamaemorus, and Smilacina trifolia (nonmycorrhizal), Sphagnum (S. fuscum, S. capillifolium, S. magellanicum, S. angustifolium) moss capitula (top 1-cm of plant) and lichens (Cladina mitis and Evernia mesomorpha) at 5 bogs at distances ranging from 14 to 300 km from the heart of the oil sands mining area. Averaged across all sites and sampling dates, N concentrations in ectomycorrhizal, ericoid mycorrhizal, nonmycorrhizal, Sphagnum, and lichens was 8.6 + 0.2, 11.9 + 0.2, 26.3 + 0.6, 10.2 + 0.1, 7.2 + 0.2 mg/g, respectively; δ15N values were -10.3 + 0.1, -6.0 + 0.1, 1.7 + 0.2, -5.3 + 0.1, -4.7 + 0.1 mg/g, respectively, and S concentrations were 1.07 + 0.2, 1.31 + 0.2, 1.94 + 0.6, 1.46 + 0.2, 1.11 + 0.3 mg/g, respectively. Plant functional groups and individual species behaved differently with respect to both seasonal variation and site differences, often with significant interactions when analyzed using two-way analyses of variance. Some species exhibited seasonal variation in some aspects

  19. Decadal trends of ocean and land carbon fluxes from a regional joint ocean-atmosphere inversion

    NASA Astrophysics Data System (ADS)

    Steinkamp, K.; Gruber, N.

    2015-12-01

    From 1980 until 2010, the combined CO2 sink strengths of ocean and land increased by nearly 50% (-0.55 Pg C yr-1 decade-1), but the spatial distribution of this trend is not well known. We address this by performing a joint cyclostationary ocean-atmosphere inversion for the three decades 1980-1989, 1990-1999, and 2000-2008, using only carbon data from the ocean and atmosphere as constraints, i.e., without applying any prior information about the land fluxes. We find that in the inversion, most of the 30 year sink trend stems from the ocean (-0.44 Pg C yr-1 decade-1). The contribution of the terrestrial biosphere is commensurably smaller but has more decadal variability. First, the land sink strength intensified in the 1990s by 0.4 (±0.3) Pg C yr-1 compared to the 1980s but then weakened slightly by 0.2 (±0.4) Pg C yr-1 in the 2000s. The different land regions contributed very variedly to these global trends. While the northern extratropical land acted as an increasing carbon sink throughout the examined period primarily driven by boreal regions, the tropical land is estimated to have acted as an increasing source of CO2, with source magnitude and trend dominated by enhanced release in tropical America during the Amazon mean wet season. This pattern is largely unchanged if the oceanic inversion constraint, which is based on a stationary ocean circulation, is replaced by an estimate based on simulation results from an ocean biogeochemical general circulation model that includes year-to-year variability in the air-sea CO2 fluxes and also has a trend (-0.07 Pg C yr-1 decade-1) that is at the very low end of current estimates. However, the land/ocean partitioning of the trend contribution is adjusted accordingly. Oceanic carbon data has a major impact on carbon exchange for all tropical regions and southern Africa but also for observationally better constrained regions in North America and temperate Asia. The European trend exhibits a strong sensitivity to the choice

  20. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  1. Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.

  2. REGIONAL APPLICATION OF A BIOGEOCHEMICAL MODEL (PNET-BGC) TO THE ADIRONDACK REGION OF NEW YORK: RESPONES TO CURRENT AND FUTURE CHANGES IN ATMOSPHERIC DEPOSITION

    EPA Science Inventory

    Understanding the response of soil and surface waters to changes in atmospheric deposition is critical for guiding future legislation on air pollutants. In this study, the regional response of soil and surface waters in 37 lake watersheds in the Adirondack region of New York to c...

  3. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Costa, P.; Pacyna, J. M.; Ferrara, R.

    This report discusses past, current and projected mercury emissions to the atmosphere from major industrial sources, and presents a first assessment of the contribution to the regional mercury budget from selected natural sources. Emissions (1995 estimates) from fossil fuels combustion (29.8 t yr -1) , cement production (28.8 t yr -1) and incineration of solid wastes (27.6 t yr -1) , all together account for about 82% of the regional anthropogenic total (105.7 t yr -1) . Other industrial sources in the region are smelters (4.8 t yr -1) , iron-steel plants (4.8 t yr -1) and other minor sources (chlor-alkali plants, crematoria, chemicals production) that have been considered together in the miscellaneous category (9.6 t yr -1) . Regional emissions from anthropogenic sources increased at a rate of 3% yr-1 from 1983 to 1995 and are projected to increase at a rate of 1.9% yr-1 in the next 25 years, if no improvement in emission control policy occurs. On a country-by-country basis, France is the leading emitter country with 22.6 t yr -1 followed by Turkey (16.1 t yr -1) , Italy (11.4 t yr -1) , Spain (9.1 t yr -1) , the former Yugoslavia 7.9 ( t yr -1) , Morocco (6.9 t yr -1) , Bulgaria (6.8 t yr -1) , Egypt (6.1 t yr -1) , Syria (3.6 t yr -1) , Libya (2.9 t yr -1) , Tunisia (2.8 t yr -1) and Greece (2.7 t yr -1) , whereas the remaining countries account for less than 7% of the regional total. The annual emission from natural sources is 110 t yr -1, although this figure only includes the volatilisation of elemental mercury from surface waters and emissions from volcanoes, whereas the contribution due to the degassing of mercury from top soil and vegetation has not been included in this first assessment. Therefore, natural and anthropogenic sources in the Mediterranean region release annually about 215 t of mercury, which represents a significant contribution to the total mercury budget released in Europe and to the global atmosphere.

  4. The multiyear surface climatology of a regional atmospheric model over the western United States

    SciTech Connect

    Giorgi, F.; Bates, G.T.; Nieman, S.J. )

    1993-01-01

    This paper presents a validation analysis of the climatology of a version of the National Center for Atmospheric Research-Pennsylvania State University limited-area model (MM4) developed for application to regional climate simulation over the western United States. Two continuous multiyear simulations, for the periods 1 January 1982-31 December 1983 and 1 January 1988-25 April 1989, were performed over this region with the MM4 driven by ECMWF analyses of observations and run at a horizontal resolution of 60 km. The model used includes horizontal diffusion on terrain-following [sigma] coordinates, a Kuo-type cumulus parameterization, sophisticated radiative transfer and surface physics-soil hydrology packages, and a relaxation boundary-conditions procedure. Model-produced surface air temperatures, precipitation, and snow depths were compared with observations from about 390 stations distributed throughout the western United States. The base-model run reproduced the seasonal cycle of temperature and precipitation well. The effects of topography on the regional distribution of precipitation were well reproduced. When regionally averaged, absolute model-precipitation biases were mostly in the range of 10%-50% of observations. The model generally simulated precipitation better in the cold season than in the warm season, and over coastal regions than in the continental interior. The simulated seasonal cycles of snowpack formation and melting were realistic. Over the Rocky Mountain regions the model reproduced wintertime precipitation amounts well but over-predicted summertime precipitation. However, modifications were found to provide an improved simulation of summer precipitation while not substantially altering wintertime precipitation. This work shows that it is feasible to apply current limited-area models to climate studies. 30 refs., 12 figs., 5 tabs.

  5. Statistical study of atmospheric gravity waves in the mesopause region observed by a lidar chain in eastern China

    NASA Astrophysics Data System (ADS)

    Gong, Shaohua; Yang, Guotao; Dou, Xiankang; Xu, Jiyao; Chen, Chunxia; Gong, Shunsheng

    2015-08-01

    Atmospheric gravity wave activities in the mesopause region have been observed and statistically investigated with a sodium lidar chain in eastern China. In total, there were 471 gravity waves identified from over 5400 h of observations at Hainan (19.99°N, 110.34°E), Hefei (31.87°N, 117.23°E), and Beijing (40.47°N, 115.97°E). These waves typically had vertical wavelengths of λz = 2 - 4 km, observed periods of Tob = 1 - 4 h, amplitude growth factors of β = - 0.025 ~ + 0.05 km-1, and wave amplitudes of Aeβ * 90km = 1.5 - 6 %. Strong systematic parameter relationships were found, and they agree with the predictions of diffusive filtering theory. Statistical results show that the seasonal variability of gravity wave activity had a summer-maximum and winter-minimum characteristics in the mesopause region over eastern China. A qualitative interpretation is proposed regarding the seasonal and geographic variability observed by the lidar chain, based on analysis of source properties and influences from background wind, which vary by season.

  6. Morphology and Chemical composition of Atmospheric Particles over Semi-Arid region (Jaipur, Rajasthan) of India

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Agnihotri, R.; Yadav, P.; Singh, S.; Tawale, J. S.; Rashmi, R.; Prasad, M.; Arya, B. C.; Mishra, N.

    2012-12-01

    Uncertainties associated with the radiative forcing of atmospheric dust particles is highest, owing to lack of region-specific dust morphology (particle shape, size) and mineralogy (chemical composition) database, needed for modeling their optical properties (Mishra and Tripathi, 2008). To fill this gap for the Indian region, we collected atmospheric particles (with aerodynamic size <5um, PM5 and a few bulk particles; TSP) from seven sites of Jaipur and nearby locales (semi-arid region, in the vicinity of Thar Desert of Rajasthan) at varying altitude, during late winters of ca. 2012. PM5 particles were collected on Teflon filters (for bulk chemical analyses), while pure Tin substrates (~1×1 mm2) were used for investigating individual particle morphology. Using Scanning Electron Microscope equipped with Energy Dispersive X ray (SEM-EDX) facility at NPL, images of individual particles were recorded and the morphological parameters (e.g. Aspect ratio; AR, Circulatory parameter; CIR.) were retrieved following Okada et al. (2001), whereas chemical compositions of individual particles were determined by EDX and bulk samples by X ray fluorescence (XRF). The geometrical size distributions of atmospheric particles were generated for each site. Based on NIST (National Institute of Standard and Technology, USA) morphology database, the site-specific individual particle shapes reveal predominance of "Layered" (calcite and quartz rich), "Angular" structures (quartz rich) and "Flattened" particles over all the sites. Particles were found to be highly non-spherical with irregular shapes (CIR varying from 1 to 0.22 with median value ~0.76; AR varying from 1 to 5.4 with median value ~1.64). Noteworthy to mention, that unit values of AR and CIR represent spherical particles. Chemical analyses of PM5 particles revealed dominance of crustal elements e.g. Si, Al, Fe, Ca, Mg, in general. Particles over Kukas Hill (27.027° N, 75.919° E; ~800 MAGL) showed highest Fe mass fractions (~43

  7. Characteristics of modern atmospheric dust deposition in snow in the Mt. Yulong region, southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, Hewen; He, Yuanqing; Lu, Xixi; Dong, Zhiwen; Zhao, Guoyong; Zhang, Tao; Du, Jiankuo

    2014-11-01

    We evaluated the concentration, size and distribution, and temporal variation of insoluble dust micro-particles in the snow, rainfall and water taken from the areas surrounding the Mt. Yulong to define the characteristics of modern atmospheric dust deposition and the contributions of different dust sources. The mean mass concentration (4511 μg kg-1) of micro-particles with 0.57 < d < 26 μm, and the diameter (11.5 μm) of dust contained in the water bodies of the Mt. Yulong are roughly similar to those observed in other sites, implying that dust is primarily supplied through short-range transport from proximal source regions (several or hundreds of km distances). The mean mass concentrations of micro-particles with 0.57 < d < 26 μm is lower in the rainfall than in the snow and the river water, suggesting the rain water is an ideal source/carrier for detecting the characteristics of modern atmospheric micro-particles. Volume size distributions of micro-particles in the snow and water showed single modal structures having volume median diameters from 3 to 26 μm. Number concentrations of micro-particles in the snow were higher than that in the rainfall, the river water contains the least amount of micro-particles. Vertical profiles of the snowpits show that there is a strong lateral correlation among the dust peaks, indicating a regional uniformity of dust deposition and suitability of snow analysis for dust deposition. In addition, the bare rock of snow-free terrain in the Mt. Yulong region and the mineral particles from local rock weathering are also important sources for the dust deposition.

  8. Stellar Winds and High-Energy Radiation: Evolution and influences on planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Johnstone, C.; Tu, L.; Güdel, M.; Lüftinger, T.; Lammer, H.; Kislyakova, K.; Fichtinger, B.

    2015-10-01

    As part of the Austrian research network "Pathways to Habitability: From Disks to Active Stars, Planets and Life" (path.univie.ac.at), we study the evolution of stellar output (e.g. winds, high-energy radiation) over the lifetimes of solar-like stars and the influence of stellar output on the development of habitable planetary environments. We have developed a coupled stellar rotation-wind-radiation model that describes the long term evolution of stellar output over the course of a star's life. We show that the initial rotation rate of a star can significantly influence the evolution of winds and high-energy radiation and therefore the development of planetary atmospheres.

  9. The Influence of Indian Ocean Atmospheric Circulation on Warm Pool Hydroclimate During the Holocene Epoch

    NASA Technical Reports Server (NTRS)

    Tierney, J.E.; Oppo, D. W.; LeGrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.

    2012-01-01

    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.

  10. Analysis of seasonality and annual mean distribution of atmospheric potential oxygen (APO) in the Pacific region

    NASA Astrophysics Data System (ADS)

    Tohjima, Yasunori; Minejima, Chika; Mukai, Hitoshi; Machida, Toshinobu; Yamagishi, Hiroaki; Nojiri, Yukihiro

    2012-12-01

    We present a data set of atmospheric potential oxygen (APO = O2 + 1.1 × CO2) based on the atmospheric O2/N2 and CO2 measurements of flask samples collected at two monitoring stations in Japan and on commercial cargo ships sailing between Japan and U.S./Canada and Australia/New Zealand. Since APO is invariant with respect to the terrestrial biotic exchange, its variation mainly reflects the spatiotemporal distribution in the air-to-sea gas exchange. From the observed APO for the years 2002-2008, we find: (1) elevated annual mean values near the equator, (2) elevated annual mean values and large seasonal amplitudes in the northwestern North Pacific, and (3) a deep trough of low annual mean values at latitudes 20-40°N in the Western Pacific. In addition, latitudinal distributions in the timing of the observed seasonal maximum and minimum show asymmetric patterns across the equator. Comparing these observations with a series of simulated APO generated in the NIES99 atmospheric transport model driven by a set of climatological oceanic O2 and CO2 flux fields, we find a good agreement except for the observed deep trough at the midlatitude. Simulations with different transport mechanisms and fluxes reveal that the seasonal covariation between oceanic O2 flux and atmospheric transport contribute significantly to the observed APO variations in the northern North Pacific; also the seasonal variation in the meridional transport affects the latitudinal difference in the seasonal cycle. The observed latitudinal gradient of the annual mean APO in the Southern Hemisphere is better reproduced by the model based on the recently revised ocean CO2 flux distribution than that based on the previous CO2 flux distribution. The observed APO trough at 36°N in the Western Pacific is about 10 per meg lower than the simulation with the more recent pCO2 data, suggesting the existence of additional APO sinks in that latitudinal region. Indeed, a model simulation performed with an additional

  11. Surface pretreatment of plastics with an atmospheric pressure plasma jet - Influence of generator power and kinematics

    SciTech Connect

    Moritzer, E. Leister, C.

    2014-05-15

    The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help of statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.

  12. Medium term modelling of coupled hydrodynamics, turbulence and sediment pathways in a region of freshwater influence.

    NASA Astrophysics Data System (ADS)

    Amoudry, Laurent; Brown, Jenny; Souza, Alex; Norman, Danielle; Olsen, Karine

    2014-05-01

    Liverpool Bay, in the northwest of the UK, is a shallow, hypertidal region of freshwater influence. In this region, baroclinic processes significantly affect the residual circulation, which in turn influences the long term transport of sediment. A nested modelling system is implemented to simulate the coupled hydro and sediment dynamics in the bay. We use the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS), which is based on a three-dimensional baroclinic numerical model formulated in spherical polar terrain-following coordinates. The hydrodynamic model solves the three-dimensional, hydrostatic, Boussinesq equations of motion separated into depth-varying and depth-independent parts to allow time splitting between barotropic and baroclinic components. This model is coupled to the General Ocean Turbulence Model (GOTM), to the WAve Model (WAM), and includes state-of-the-art Eulerian and Lagrangian sediment transport models. We implement POLCOMS to Liverpool Bay at a horizontal resolution of approximately 180 m. The bathymetry consists of digitized hydrographic charts combined with LIDAR and multibeam data. Three-dimensional baroclinic effects, river inputs, surface heating and offshore density structure are all considered. Liverpool Bay is subjected to a spring tidal range in excess of 10 m and thus intertidal areas are significant. Wetting and drying algorithms are therefore also implemented. A nesting approach is employed to prescribe offshore boundary conditions for elevations, currents, temperature and salinity. Boundary values are obtained from numerical simulations for the entire Irish and are then used to force the three-dimensional hydrodynamics in the Liverpool Bay domain. Atmospheric forcing consists of hourly wind velocity and atmospheric pressure, and three-hourly cloud cover, humidity and air temperature. We focus here on numerical simulations for a full year, 2008, which is considered to be a typical year for atmospheric

  13. Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urban-industrial region near Pensacola, Florida, USA

    NASA Astrophysics Data System (ADS)

    Demers, Jason D.; Sherman, Laura S.; Blum, Joel D.; Marsik, Frank J.; Dvonch, J. Timothy

    2015-10-01

    Identifying the anthropogenic and natural sources of mercury (Hg) emissions contributing to atmospheric mercury on local, regional, and global scales continues to be a grand challenge. The relative importance of various direct anthropogenic emissions of mercury, in addition to natural geologic sources and reemission of previously released and deposited mercury, differs regionally and temporally. In this study, we used local-scale, mesoscale, and synoptic-scale meteorological analysis to couple the isotopic composition of ambient atmospheric mercury with potential sources of mercury contributing to a coastal urban-industrial setting near a coal-fired power plant in Pensacola, Florida, USA. We were able to broadly discern four influences on the isotopic composition of ambient atmospheric mercury impacting this coastal urban-industrial region: (1) local to regional urban-industrial anthropogenic emissions (mean δ202Hg = 0.44 ± 0.05‰, 1SD, n = 3), (2) marine-influenced sources derived from the Gulf of Mexico (mean δ202Hg = 0.77 ± 0.15‰, 1SD, n = 4), (3) continental sources associated with north-northwesterly flows from within the planetary boundary layer (mean δ202Hg = 0.65 ± 0.04‰, 1SD, n = 3), and (4) continental sources associated with north-northeasterly flows at higher altitudes (i.e., 2000 m above ground level; mean δ202Hg = 1.10 ± 0.21‰, 1SD, n = 8). Overall, these data, in conjunction with previous studies, suggest that the background global atmospheric mercury pool is characterized by moderately positive δ202Hg values; that urban-industrial emissions drive the isotopic composition of ambient atmospheric mercury toward lower δ202Hg values; and that air-surface exchange dynamics across vegetation and soils of terrestrial ecosystems drive the isotopic composition of ambient atmospheric mercury toward higher positive δ202Hg values. The data further suggest that mass-independent fractionation (MIF) of both even-mass- and odd-mass-number isotopes

  14. The Influence of the Several Very Large Solar Proton Events in Years 2000-2003 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Sinnhuber, Miriam; Anderson, John; McPeters, Richard D.; FLeming, Eric L.; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) are known to have caused changes in constituents in the Earth's neutral middle atmosphere. The highly energetic protons produce ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HOx (H, OH, HO2) and NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HOx increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HOx constituents. The NOy increases lead to long-lived stratospheric ozone changes because of the long lifetime of the NOy family in this region. The past four years, 2000-2003, have been replete with SPEs and huge fluxes of high energy protons occurred in July and November 2000, September and November 2001, April 2002, and October 2003. Smaller, but still substantial, proton fluxes impacted the Earth during other months from year 2000 to 2003. The Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model was used in computing the influence of the SPEs. The impact of these extremely large SPEs was calculated to be especially large in the upper stratosphere and mesosphere. The results of the GSFC 2D Model will be shown along with comparisons to the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments.

  15. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble

    NASA Astrophysics Data System (ADS)

    Lorenz, Ruth; Argüeso, Daniel; Donat, Markus G.; Pitman, Andrew J.; Hurk, Bart; Berg, Alexis; Lawrence, David M.; Chéruy, Frédérique; Ducharne, Agnès.; Hagemann, Stefan; Meier, Arndt; Milly, P. C. D.; Seneviratne, Sonia I.

    2016-01-01

    We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This protocol enables separate examinations of the influences of soil moisture variability and trends on the intensity, frequency, and duration of climate extremes by the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) emission scenario. Removing soil moisture variability significantly reduces temperature extremes over most continental surfaces, while wet precipitation extremes are enhanced in the tropics. Projected drying trends in soil moisture lead to increases in intensity, frequency, and duration of temperature extremes by the end of the 21st century. Wet precipitation extremes are decreased in the tropics with soil moisture trends in the simulations, while dry extremes are enhanced in some regions, in particular the Mediterranean and Australia. However, the ensemble results mask considerable differences in the soil moisture trends simulated by the six climate models. We find that the large differences between the models in soil moisture trends, which are related to an unknown combination of differences in atmospheric forcing (precipitation, net radiation), flux partitioning at the land surface, and how soil moisture is parameterized, imply considerable uncertainty in future changes in climate extremes.

  16. Influence of atmospheric pressure supplied on permittivity of air-film of aerostatic bearing

    NASA Astrophysics Data System (ADS)

    Li, Min; Zhang, Yubing; Li, Dong-sheng

    2013-01-01

    Influence of atmospheric pressure supplied on permittivity of the air-film is researched based on the capacitive testing method of the air film thickness of aerostatic bearing. An experiment platform is designed. The experimental results illustrate that permittivity has significant negative correlation with atmospheric pressure which varies from 0.1MPa to 0.48MPa when other environmental conditions remain unchanged. The curves conform to the fourth-order polynomial approximately. All of the values of R2 are beyond 0.944 which means that trend lines fit the data curves well. Relative permittivity of the air film is between 0.996 and 1.324. This interval shows that weak current exists between restrictor and flat of the experiment which are not absolutely insulating and atmosphere of the air film is not pure. This result provides a basis both for establishing accurate mathematical model of air film thickness and capacitance value of the aerostatic bearing and for other exploratory experiments later.

  17. Modelling Europa's interaction with Jupiter's magnetosphere: Influence of plumes in Europa's atmosphere on the plasma environment

    NASA Astrophysics Data System (ADS)

    Bloecker, A.; Saur, J.; Roth, L.

    2015-12-01

    We study the influence of plumes in Europa's atmosphere on the interaction with Jupiter's magnetosphere and the plasma environment. We apply a three-dimensional magnetohydrodynamic (MHD) model, which includes plasma production and loss due to electron impact ionization and dissociative recombination, and electromagnetic induction in a subsurface water ocean.The model considers the magnetospheric and ionospheric electrons separately. We show that an atmospherical inhomogeneity, such as a plume, affects the plasma interaction in the way that a pronounced north-south asymmetry in the near and the Alfvénic far field develops. Furthermore, a "small Alfvén winglet" within Europa's Alfvén wing forms. We also investigate if such signatures of atmospherical inhomogeneities are visible in magnetic field measurements of the Galileo magnetometer. In addition to our MHD model we apply an analytical approach based on the model by Saur et al. (2007) for our studies. We compare the model results with the observed magnetic field data from three flybys of Europa that occurred during the Alfvén wing crossing.

  18. Flood Frequency of Unregulated Streams of Tennessee Using Regional-Regression Equations and the Region-of-Influence Method

    USGS Publications Warehouse

    Law, G.S.; Tasker, Gary D.

    2003-01-01

    The region-of-influence method and regional-regression equations are used to predict flood frequency of unregulated and ungaged rivers and streams of Tennessee. The prediction methods have been developed using strem-gage records from unregulated streams draining basins having 1-30% total impervious area. A computer application automates the calculation of the flood frequencies of the unregulated streams. Average deleted-residual prediction errors for the region-of-influence method are found to be slightly smaller than those for the regional regression methods.

  19. Simulating influence of QBO phase on planetary waves during a stratospheric warming in a general circulation model of the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Koval, Andrey; Gavrilov, Nikolai; Pogoreltsev, Alexander; Savenkova, Elena

    2016-04-01

    One of the important factors of dynamical interactions between the lower and upper atmosphere is energy and momentum transfer by atmospheric internal gravity waves. For numerical modeling of the general circulation and thermal regime of the middle and upper atmosphere, it is important to take into account accelerations of the mean flow and heating rates produced by dissipating internal waves. The quasi-biennial oscillations (QBOs) of the zonal mean flow at lower latitudes at stratospheric heights can affect the propagation conditions of planetary waves. We perform numerical simulation of global atmospheric circulation for the initial conditions corresponding to the years with westerly and easterly QBO phases. We focus on the changes in amplitudes of stationary planetary waves (SPWs) and traveling normal atmospheric modes (NAMs) in the atmosphere during SSW events for the different QBO phases. For these experiments, we use the global circulation of the middle and upper atmosphere model (MUAM). There is theory of PW waveguide describing atmospheric regions where the background wind and temperature allow the wave propagation. There were introduced the refractive index for PWs and found that strongest planetary wave propagation is in areas of large positive values of this index. Another important PW characteristic is the Eliassen-Palm flux (EP-flux). These characteristics are considered as useful tools for visualizing the PW propagation conditions. Sudden stratospheric warming (SSW) event has significant influence on the formation of the weather anomalous and climate changes in the troposphere. Also, SSW event may affect the dynamical and energy processes in the upper atmosphere. The major SSW events imply significant temperature rises (up to 30 - 40 K) at altitudes 30 - 50 km accompanying with corresponding decreases, or reversals, of climatological eastward zonal winds in the stratosphere.

  20. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    PubMed

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. PMID:25889542

  1. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  2. Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region

    SciTech Connect

    Steiner, A. L.; Tawfik, A. B.; Shalaby, A.; Zakey, A. S.; Abdel Wahab, M. M.; Salah, Z.; Solmon, F.; Sillman, S.; Zaveri, Rahul A.

    2014-04-16

    An integrated chemistry-climate model (RegCM4-CHEM) simulates present-day climate, ozone and tropospheric aerosols over Egypt with a focus on Greater Cairo (GC) region. The densley populated GC region is known for its severe air quality issues driven by high levels of anthropogenic pollution in conjuction with natural sources such as dust and agricultural burning events. We find that current global emission inventories underestimate key pollutants such as nitrogen oxides and anthropogenic aerosol species. In the GC region, average-ground-based NO2 observations of 40-60 ppb are substantially higher than modeled estimates (5-10 ppb), likely due to model grid resolution, improper boundary layer representation, and poor emissions inventories. Observed ozone concentrations range from 35 ppb (winter) to 80 ppb (summer). The model reproduces the seasonal cycle fairly well, but modeled summer ozone is understimated by approximately 15 ppb and exhibits little interannual variability. For aerosols, springtime dust events dominate the seasonal aerosol cycle. The chemistry-climate model captures the springtime peak aerosol optical depth (AOD) of 0.7-1 but is slightly greater than satellite-derived AOD. Observed AOD decreases in the summer and increases again in the fall due to agricultural burning events in the Nile Delta, yet the model underestimates this fall observed AOD peak, as standard emissions inventories underestimate this burning and the resulting aerosol emissions. Our comparison of modeled gas and particulate phase atmospheric chemistry in the GC region indicates that improved emissions inventories of mobile sources and other anthropogenic activities are needed to improve air quality simulations in this region.

  3. The Use of Atmospheric Science to Determine Optimal Air Quality Management Regions.

    NASA Astrophysics Data System (ADS)

    Mauzerall, D. L.

    2002-05-01

    The Clean Air Act (CAA) has required that states meet the National Ambient Air Quality Standards (NAAQS) through the development of State Implementation Plans (SIPs). In the case of relatively long-lived pollutants such as tropospheric ozone and fine particulate matter it is often not possible for an individual state to attain compliance with the NAAQS simply by controlling its own emissions because of long-range transport of these pollutants and their precursors from outside the state. Recognizing this problem, the 1990 CAA amendments provided for the establishment of multi-state air quality management regions. One such region is the eleven northeastern states which form the Northeast Ozone Transport Region (OTR). These states have cooperated in the creation of a NOx emissions trading program among large stationary sources. However, cooperation has been problematic and numerous lawsuits have resulted. If federal authority existed to define non-attainment areas such that they included all sources which contributed to the violation, regardless of whether they were in different states, attainment of environmental goals would be facilitated. The use of atmospheric chemical tracer models in conjunction with measurements of ambient concentrations of pollutants could be used to determine the distribution of the sources that significantly contribute to the violation of the NAAQS in a given region and the spatial and temporal dependences of the air quality violations on the emission sources. With federal authority, a non-attainment region could then be defined and addressed in a scientifically coherent fashion rather than in a way determined by political jurisdictions. In this talk I will discuss how a national policy goal of determining appropriate scales for air quality control could catalyze additional scientific research including analysis of measurements of ambient pollutant concentrations, improvements in air quality models, and the development of chemical weather

  4. The National Science Foundation's Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Student Community

    NASA Astrophysics Data System (ADS)

    Sox, L.; Duly, T.; Emery, B.

    2014-12-01

    The National Science Foundation sponsors Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Workshops, which have been held every summer, for the past 29 years. CEDAR Workshops are on the order of a week long and at various locations with the goal of being close to university campuses where CEDAR type scientific research is done. Although there is no formal student group within the CEDAR community, the workshops are very student-focused. Roughly half the Workshop participants are students. There are two Student Representatives on the CEDAR Science Steering Committee (CSSC), the group of scientists who organize the CEDAR Workshops. Each Student Representative is nominated by his or her peers, chosen by the CSSC and then serves a two year term. Each year, one of the Student Representatives is responsible for organizing and moderating a day-long session targeted for students, made up of tutorial talks, which aim to prepare both undergraduate and graduate students for the topics that will be discussed in the main CEDAR Workshop. The theme of this session changes every year. Past themes have included: upper atmospheric instrumentation, numerical modeling, atmospheric waves and tides, magnetosphere-ionosphere coupling, equatorial aeronomy and many others. Frequently, the Student Workshop has ended with a panel of post-docs, researchers and professors who discuss pressing questions from the students about the next steps they will take in their careers. As the present and past CSSC Student Representatives, we will recount a brief history of the CEDAR Workshops, our experiences serving on the CSSC and organizing the Student Workshop, a summary of the feedback we collected about the Student Workshops and what it's like to be student in the CEDAR community.

  5. Water Vapor Tacers as Diagnostics of the Regional Atmospheric Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle, especially in North America where moisture transport and local evaporation are important sources of water for precipitation. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. All evaporative sources of water are accounted for by tracers, and the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The Geostationary Operational Environmental Satellites General Circulation Model (GEOS GCM) is used to simulate several summer periods to determine the source regions of precipitation for the United States and India. Using this methodology, a detailed analysis of the recycling of water, interannual variability of the sources of water and links to the Great Plains low-level jet and North American monsoon will be presented. Potential uses in GCM sensitivity studies, predictability studies and data assimilation especially regarding the North American monsoon and GEWEX America Prediction Project (GAPP) will be discussed.

  6. Elevated atmospheric carbon dioxide and leaf litter chemistry: Influences on microbial respiration and net nitrogen mineralization

    SciTech Connect

    Randlett, D.L.; Zak, D.R.; Pregitzer, K.S.; Curtis, P.S.

    1996-09-01

    Elevated atmospheric CO{sub 2} has the potential to influence rates of C and N cycling in terrestrial ecosystems by altering plant litter chemistry and slowing rates of organic matter decomposition. We tested the hypothesis that the chemistry of leaf litter produced at elevated CO{sub 2} would slow C and N transformations in soil. Soils were amended with Populus leaf produced under two levels of atmospheric CO{sub 2} (ambient and twice-ambient) and soil N availability (low and high). Kinetic parameters for microbial respiration and net N mineralization were determined on soil with and without litter during a 32-wk lab incubation. Product accumulation curves for CO{sub 2}-C and inorganic N were fit to a first order rate equation [y=A(1-e{sup -kt})] using nonlinear regression analyses. Although CO{sub 2} treatment affected soluble sugar concentration in leaf litter (ambient =120 g kg{sup -1}, elevated =130 g kg{sup -1}), it did not affect starch concentration or C/N ratio. Microbial respiration, microbial biomass, and leaf litter C/N ratio were affected by soil N availability but not by atmospheric CO{sub 2}. Net N mineralization was a linear function of time and was not significantly different for leaves grown at ambient (50 mg N kg{sup -1}) and elevated CO{sub 2} (35 mg N kg{sup -1}). Consequently, we found no evidence for the hypothesis that leaf litter produced at elevated atmospheric CO{sub 2} will dampen the rates of C and N cycling in soil. 35 refs., 1 fig., 4 tabs.

  7. Influence of solar forcing, climate variability and atmospheric circulation patterns on summer floods in Switzerland

    NASA Astrophysics Data System (ADS)

    Peña, J. C.; Schulte, L.; Badoux, A.; Barriendos, M.; Barrera-Escoda, A.

    2014-12-01

    The higher frequency of severe flood events in Switzerland in recent decades has given fresh impetus to the study of flood patterns and their possible forcing mechanisms, particularly in mountain environments. This paper presents an index of summer flood damage that considers severe and catastrophic summer floods in Switzerland between 1800 and 2009, and explores the influence of solar and climate forcings on flood frequencies. In addition, links between floods and low-frequency atmospheric circulation patterns are examined. The flood damage index provides evidence that the 1817-1851, 1881-1927, 1977-1990 and 2005-present flood clusters occur mostly in phase with palaeoclimate proxies. The cross-spectral analysis documents that the periodicities detected in the coherency and phase spectra of 11 (Schwabe cycle) and 104 years (Gleissberg cycle) are related to a high frequency of flooding and solar activity minima, whereas the 22 year cyclicity detected (Hale cycle) is associated with solar activity maxima and a decrease in flood frequency. The analysis of atmospheric circulation patterns shows that Switzerland lies close to the border of the summer principal mode: the Summer North Atlantic Oscillation. The Swiss river catchments situated on the centre and southern flank of the Alps are affected by atmospherically unstable areas defined by the positive phase of the Summer North Atlantic Oscillation pattern, while those basins located in the northern slope of the Alps are predominantly associated with the negative phase of the pattern. Furthermore, a change in the low-frequency atmospheric circulation pattern related to the major floods occurred over the period from 1800 to 2009: the Summer North Atlantic Oscillation persists in negative phase during the last cool pulses of the Little Ice Age (1817-1851 and 1881-1927 flood clusters), whereas the positive phases of SNAO prevail during warmer climate of the last four decades (flood clusters from 1977 to present).

  8. Atmospheric CO2 source and sink patterns over the Indian region

    NASA Astrophysics Data System (ADS)

    Fadnavis, Suvarna; Kumar, K. Ravi; Tiwari, Yogesh K.; Pozzoli, Luca

    2016-02-01

    In this paper we examine CO2 emission hot spots and sink regions over India as identified from global model simulations during the period 2000-2009. CO2 emission hot spots overlap with locations of densely clustered thermal power plants, coal mines and other industrial and urban centres; CO2 sink regions coincide with the locations of dense forest. Fossil fuel CO2 emissions are compared with two bottom-up inventories: the Regional Emission inventories in ASia (REAS v1.11; 2000-2009) and the Emission Database for Global Atmospheric Research (EDGAR v4.2) (2000-2009). Estimated fossil fuel emissions over the hot spot region are ˜ 500-950 gC m-2 yr-1 as obtained from the global model simulation, EDGAR v4.2 and REAS v1.11 emission inventory. Simulated total fluxes show increasing trends, from 1.39 ± 1.01 % yr-1 (19.8 ± 1.9 TgC yr-1) to 6.7 ± 0.54 % yr-1 (97 ± 12 TgC yr-1) over the hot spot regions and decreasing trends of -0.95 ± 1.51 % yr-1 (-1 ± 2 TgC yr-1) to -5.7 ± 2.89 % yr-1 (-2.3 ± 2 TgC yr-1) over the sink regions. Model-simulated terrestrial ecosystem fluxes show decreasing trends (increasing CO2 uptake) over the sink regions. Decreasing trends in terrestrial ecosystem fluxes imply that forest cover is increasing, which is consistent with India State of Forest Report (2009). Fossil fuel emissions show statistically significant increasing trends in all the data sets considered in this study. Estimated trend in simulated total fluxes over the Indian region is ˜ 4.72 ± 2.25 % yr-1 (25.6 TgC yr-1) which is slightly higher than global growth rate ˜ 3.1 % yr-1 during 2000-2010.

  9. Grassland/atmosphere response to changing climate: Coupling regional and local scales. Final report

    SciTech Connect

    Coughenour, M.B.; Kittel, T.G.F.; Pielke, R.A.; Eastman, J.

    1993-10-01

    The objectives of the study were: to evaluate the response of grassland ecosystems to atmospheric change at regional and site scales, and to develop multiscaled modeling systems to relate ecological and atmospheric models with different spatial and temporal resolutions. A menu-driven shell was developed to facilitate use of models at different temporal scales and to facilitate exchange information between models at different temporal scales. A detailed ecosystem model predicted that C{sub 3} temperate grasslands wig respond more strongly to elevated CO{sub 2} than temperate C{sub 4} grasslands in the short-term while a large positive N-PP response was predicted for a C{sub 4} Kenyan grassland. Long-term climate change scenarios produced either decreases or increases in Colorado plant productivity (NPP) depending on rainfall, but uniform increases in N-PP were predicted in Kenya. Elevated CO{sub 2} is likely to have little effect on ecosystem carbon storage in Colorado while it will increase carbon storage in Kenya. A synoptic climate classification processor (SCP) was developed to evaluate results of GCM climate sensitivity experiments. Roughly 80% agreement was achieved with manual classifications. Comparison of lx and 2xCO{sub 2} GCM Simulations revealed relatively small differences.

  10. Health risk assessment for residents exposed to atmospheric diesel exhaust particles in southern region of Taiwan

    NASA Astrophysics Data System (ADS)

    Chio, Chia-Pin; Liao, Chung-Min; Tsai, Ying-I.; Cheng, Man-Ting; Chou, Wei-Chun

    2014-03-01

    Evidence shows a strong association among air pollution, oxidative stress (OS), deoxyribonucleic acid (DNA) damage, and diseases. Recent studies indicated that the aging, human neurodegenerative diseases and cancers resulted from mitochondrial dysfunction and OS. The purpose of this study is to provide a probabilistic risk assessment model to quantify the atmospheric diesel exhaust particles (DEP)-induced pre-cancer biomarker response and cancer incidence risk for residents in south Taiwan. We conducted entirely monthly particulate matter sampling data at five sites in Kaohsiung of south Taiwan in the period 2002-2003. Three findings were found: (i) the DEP dose estimates and cancer risk quantification had heterogeneously spatiotemporal difference in south Taiwan, (ii) the pre-cancer DNA damage biomarker and cancer incidence estimates had a positive yet insignificant association, and (iii) all the estimates of cancer incidence in south Taiwan populations fell within and slight lower than the values from previous cancer epidemiological investigations. In this study, we successfully assessed the tumor incidence for residents posed by DEP exposure in south Taiwan compared with the epidemiological approach. Our approach provides a unique way for assessing human health risk for residences exposed to atmospheric DEP depending on specific combinations of local and regional conditions. Our work implicates the importance of incorporating both environmental and health risk impacts into models of air pollution exposure to guide adaptive mitigation strategies.

  11. Dynamic coupling of regional atmosphere to biosphere in the new generation regional climate system model REMO-iMOVE

    NASA Astrophysics Data System (ADS)

    Wilhelm, C.; Rechid, D.; Jacob, D.

    2013-05-01

    The main objective of this study is the coupling of the regional climate model REMO to a 3rd generation land surface scheme and the evaluation of the new model version of REMO, called REMO with interactive MOsaic-based VEgetation: REMO-iMOVE. Attention is paid to the documentation of the technical aspects of the new model constituents and the coupling mechanism. We compare simulation results of REMO-iMOVE and of the reference version REMO2009, to investigate the sensitivity of the regional model to the new land surface scheme. An 11 yr climate model run (1995-2005), forced with ECMWF ERA-Interim lateral boundary conditions, over Europe in 0.44° resolution of both model versions was carried out, to represent present day European climate. The result of these experiments are compared to multiple temperature, precipitation, heat flux and leaf area index observation data, to determine the differences in the model versions. The new model version has further the ability to model net primary productivity for the given plant functional types. This new feature is thoroughly evaluated by literature values of net primary productivity of different plant species in European climatic regions. The new model version REMO-iMOVE is able to model the European climate in the same quality as the parent model version REMO2009 does. The differences in the results of the two model versions stem from the differences in the dynamics of vegetation cover and density and can be distinct in some regions, due to the influences of these parameters to the surface heat and moisture fluxes. The modeled inter-annual variability in the phenology as well as the net primary productivity lays in the range of observations and literature values for most European regions. This study also reveals the need for a more sophisticated soil moisture representation in the newly developed model version REMO-iMOVE to be able to treat the differences in plant functional types. This gets especially important if the

  12. Characterization of atmospheric aerosols in the Po valley during the supersito campaigns - Part 3: Contribution of wood combustion to wintertime atmospheric aerosols in Emilia Romagna region (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Pietrogrande, Maria Chiara; Bacco, Dimitri; Ferrari, Silvia; Kaipainen, Jussi; Ricciardelli, Isabella; Riekkola, Marja-Liisa; Trentini, Arianna; Visentin, Marco

    2015-12-01

    This paper investigates the influence of wood combustion on PM in fall/winter that are the most favorable seasonal periods with presumed intense biomass burning for residential heating due to low temperatures. As a part of the Supersito project, nearly 650 PM2.5 samples were daily collected at urban and rural sites in Emilia Romagna (Northern Italy) in five intensive experimental campaigns throughout the years from 2011 to 2014. From specific compounds related to wood combustion a set of 58 organic compounds was determined, such as anhydrosugars, primary biological sugars, low-molecular-weight carboxylic acids, methoxylated phenols, PAHs and carbonaceous components (EC/OC). Levoglucosan was by far the most dominant anhydrosugar, both on a relative and an absolute basis (35-1043 ng m-3), followed by mannosan (7-121 ng m-3) and galactosan (4-52 ng m-3), indicating that wood burning for domestic heating is a diffuse regional source during the seasons studied. Different diagnostic ratios between anhydrosugars and methoxylated phenols were computed to discriminate the prevalent contribution of hardwood as combustion fuel. The investigated 19 high molecular weight PAHs were more abundant at the urban than at the rural site, with mean total value of 4.3 and 3.2 ng m-3 at MS and SP, respectively. The strong contribution of wood combustion to atmospheric PAHs was indicated by the positive correlation between levoglucosan and the most abundant PAHs (R2 = 0.71÷0.79) and individually with benzo(a)pyrene (R2 = 0.79). By using this correlation, it was estimated that wood burning contributed nearly 77% to BaP concentration in the winter months. Based on the ratio between levoglucosan and OC data, it could be concluded that the wood burning contributed about 35% to OC during the cold November-February periods and the contribution was similar at both sampling sites.

  13. Simultaneous Factor Analysis of Coupled Aerosol and VOC Mass Spectra in Regions of Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Slowik, Jay; Chang, Rachel; Hayden, Katherine; Li, Shao-Meng; Liggio, John; Sjostedt, Steven; Vlasenko, Alexander; Leaitch, Richard; Abbatt, Jonathan

    2010-05-01

    Recent studies suggest that the traditional binary treatments of atmospheric organics as either gases or particles may be inadequate, highlighting the need for analytical techniques capable of simultaneously considering particle and gas-phase species. Organic mass spectra of particles and volatile organic compounds (VOCs) were collected using an Aerodyne time-of-flight aerosol mass spectrometer (C-ToF-AMS), and a proton transfer reaction-mass spectrometer (PTR-MS), respectively. The particle and VOC mass spectra were combined into a single dataset, which was analyzed using the positive matrix factorization (PMF) receptor modeling technique. The relative weights of the AMS and PTR-MS data were balanced in the PMF analysis according to the criteria that the scaled residuals within a solution be independent of the measuring instrument. Instrument relative weight is controlled by the application of a scaling factor to the PTR-MS uncertainties. The AMS and PTR-MS instruments were deployed from mid-May to mid-June at two sites in Canada: (1) Egbert, ON (2007), a semirural site ~70 km north of Toronto, and (2) Whistler, BC (2008), a remote site ~120 km north of Vancouver. The Egbert site is influenced by anthropogenic emissions from Toronto and populated regions to the south, biogenic emissions from boreal forests to the north, and biomass burning emissions. The Whistler site is strongly influenced by boreal forest terpene emissions, with lesser contributions from long-range transport and anthropogenic emissions.

  14. Numerical modeling of solar wind influences on the dynamics of the high-latitude upper atmosphere

    NASA Astrophysics Data System (ADS)

    Förster, M.; Prokhorov, B. E.; Namgaladze, A. A.; Holschneider, M.

    2012-09-01

    Neutral thermospheric wind patterns at high latitudes obtained from cross-track acceleration measurements of the CHAMP satellite above both polar regions are used to deduce statistical neutral wind vorticity distributions and were analyzed in their dependence on the Interplanetary Magnetic Field (IMF). The average pattern confirms the large duskside anticyclonic vortex seen in the average wind pattern and reveals a positive (cyclonic) vorticity on the dawnside, which is almost equal in magnitude to the duskside negative one. The IMF dependence of the vorticity pattern resembles the characteristic field-aligned current (FAC) and ionospheric plasma drift pattern known from various statistical studies obtained under the same sorting conditions as, e.g., the EDI Cluster statistical drift pattern. There is evidence for hemispheric differences in the average magnitudes of the statistical patterns both for plasma drift and even more for the neutral wind vorticity. The paper aims at a better understanding of the globally interconnected complex plasma physical and electrodynamic processes of Earth's upper atmosphere by means of first-principle numerical modeling using the Upper Atmosphere Model (UAM). The simulations of, e.g., thermospheric neutral wind and mass density at high latitudes are compared with CHAMP observations for varying IMF conditions. They show an immediate response of the upper atmosphere and its high sensitivity to IMF changes in strength and orientation.

  15. A fully coupled regional atmospheric numerical model for integrated air quality and weather forecasting.

    NASA Astrophysics Data System (ADS)

    Freitas, S. R.; Longo, K. M.; Marecal, V.; Pirre, M.; Gmai, T.

    2012-04-01

    A new numerical modelling tool devoted to local and regional studies of atmospheric chemistry from surface to the lower stratosphere designed for both operational and research purposes will be presented. This model is based on the limited-area model CATT-BRAMS (Coupled Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System, Freitas et al. 2009, Longo et al. 2010) which is a meteorological model (BRAMS) including transport processes of gaseous and aerosols (CATT model). BRAMS is a version of the RAMS model (Walko et al. 2000) adapted to better represent tropical and subtropical processes and several new features. CATT-BRAMS has been used operationally at CPTEC (Brazilian Center for Weather Prediction and Climate Studies) since 2003 providing coupled weather and air quality forecast. In the Chemistry-CATT-BRAMS (called hereafter CCATT-BRAMS) a chemical module is fully coupled to the meteorological/tracer transport model CATT-BRAMS. This module includes gaseous chemistry, photochemistry, scavenging and dry deposition. The CCATT-BRAMS model takes advantages of the BRAMS specific development for the tropics/subtropics and of the recent availability of preprocessing tools for chemical mechanisms and of fast codes for photolysis rates. Similarly to BRAMS this model is conceived to run for horizontal resolutions ranging from a few meters to more than a hundred kilometres depending on the chosen scientific objective. In the last decade CCATT-BRAMS has being broadly (or extensively) used for applications mainly over South America, with strong emphasis over the Amazonia area and the main South American megacities. An overview of the model development and main applications will be presented.

  16. Characterizing the Influence of Hemispheric Transport on Regional Air Pollution

    EPA Science Inventory

    Expansion of the coupled WRF-CMAQ modeling system to hemispheric scales is pursued to enable the development of a robust modeling framework in which the interactions between atmospheric processes occurring at various spatial and temporal scales can be examined in a consistent man...

  17. Limitations When Using Proxies of Atmospheric Circulation to Infer Regional Temperature

    NASA Astrophysics Data System (ADS)

    Kelsey, E. P.; Wake, C. P.; Osterberg, E. C.; Kreutz, K. J.

    2011-12-01

    One objective of ice core paleoclimatology is to reconstruct past variability of climate parameters such as surface air temperature. Stable isotope ratios of ice cores collected from some locations can be used with confidence to reconstruct regional air temperature. Other glaciochemical records (e.g., major ions) have been used as proxies for regional atmospheric circulation patterns, including the Arctic Oscillation and Pacific-North American pattern, typically based on the strength of semi-permanent sea level pressure centers such as the Icelandic Low and Aleutian Low. The Arctic Oscillation and Pacific North American pattern are associated with regional air temperature anomalies, and consequently ice core proxies of these circulation patterns could be used to infer paleotemperature patterns. However, detailed analysis of the 20th Century Reanalysis dataset (1871-2008) for the Northern Hemisphere winter suggests that these atmospheric circulation patterns do not always result in the same regional air temperature anomalies. A principal component analysis of detrended and area-weighted winter (December-March) temperature and sea level pressure was performed, and the leading eigenmodes were compared, along with the winter mean positions of the Icelandic and Aleutian Lows. Robust results based on multiple statistical analyses were obtained only when the extreme seasonal values of these variables were examined. Although statistically significant results were obtained when looking at temperature patterns associated with specific sea level pressure patterns and the positions of the Icelandic and Aleutian Lows, more consistent relationships were found when examining sea level pressure patterns associated with the leading eigenmodes of temperature. The seasons of extreme eigenvalues of the leading temperature eigenmodes are associated with mean positions of the Icelandic and Aleutian Lows at climatologically extreme north/south and west/east locations, respectively

  18. OASIS: Ocean-Atmosphere-Sea-Ice-Snowpack Interactions in Polar Regions

    NASA Astrophysics Data System (ADS)

    Bottenheim, J. W.; Abbatt, J.; Beine, H.; Berg, T.; Bigg, K.; Domine, F.; Leck, C.; Lindberg, S.; Matrai, P.; MacDonald, R.; McConnell, J.; Platt, U.; Raspopov, O.; Shepson, P.; Shumilov, O.; Stutz, J.; Wolff, E.

    2004-05-01

    While Polar regions encompass a large part of the globe, little attention has been paid to the interactions between the atmosphere and its extensive snow-covered surfaces. Recent discoveries in the Arctic and Antarctic show that the top ten centimeters of snow is not simply a white blanket but in fact is a surprisingly reactive medium for chemical reactions in the troposphere. It has been concluded that interlinked physical, chemical, and biological mechanisms, fueled by the sun and occurring in the snow, are responsible for depletion of tropospheric ozone and gaseous mercury. At the same time production of highly reactive compounds (e.g. formaldehyde, nitrogen dioxide) has been observed at the snow surface. Air-snow interactions also have an impact on the chemical composition of the snow and hence the nature and amounts of material released in terrestrial/marine ecosystems during the melting of seasonal snow-packs. Many details of these possibly naturally occurring processes are yet to be discovered. For decades humans have added waste products including acidic particles (sulphates) and toxic contaminants such as gaseous mercury and POPs (persistent organic pollutants) to the otherwise pristine snow surface. Virtually nothing is known about transformations of these contaminants in the snowpack, making it impossible to assess the risk to the polar environment, including humans. This is especially disconcerting when considering that climate change will undoubtedly alter the nature of these transformations involving snow, ice, atmosphere, ocean, and, ultimately, biota. To address these topics an interdisciplinary group of scientists from North America, Europe and Japan is developing a set of coordinated research activities under the banner of the IGBP programs IGAC and SOLAS. The program of Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) interactions has been established with a mission statement aimed at determining the impact of OASIS chemical exchange on tropospheric

  19. On transient events in the upper atmosphere generated away of thunderstorm regions

    NASA Astrophysics Data System (ADS)

    Morozenko, V.; Garipov, G.; Khrenov, B.; Klimov, P.; Panasyuk, M.; Sharakin, S.; Zotov, M.

    2011-12-01

    Experimental data on transient events in UV and Red-IR ranges obtained in the MSU missions "Unversitetsky-Tatiana" (wavelengths 300-400 nm) and "Unversitetsky-Tatiana-2" (wavelengths 300-400 nm and 600-800 nm), published by Garipov et al, in 2010 at COSPAR session http://www.cospar2010.org, at TEPA conference http://www.aragats.am/Conferences/tepa2010 and in 2011 by Sadovnichy et al, Solar System Research, 45, #1, 3-29 (2011); Vedenkin et al, JETP, v. 140, issue 3(9), 1-11 (2011) demonstrated existence of transients at large distances (up to thousands km) away of cloud thunderstorm regions. Those "remote" transients are short (1-5 msec) and are less luminous than the transients above thunderstorm regions. The ratio of Red-IR to UV photon numbers in those transients indicates high altitude of their origin (~70 km). Important observation facts are also: 1. a change of the exponent in transient distribution on luminosity Q ("-1" for photon numbers Q=1020 -1023 to "-2" for Q>1023), 2. a change of global distribution of transient with their luminosity (transients with Q>1023 are concentrated in equatorial range above continents, while transients with low luminosity are distributed more uniformly), 3. a phenomenon of transient sequences in one satellite orbit which is close to geomagnetic meridian. In the present paper phenomenological features of transients are explained in assumption that the observed transients have to be divided in two classes: 1. transients related to local, lower in the atmosphere, lightning at distance not more than hundreds km from satellite detector field of view in the atmosphere and 2. transients generated by far away lightning. Local transients are luminous and presumably are events called "transient luminous events" (TLE). In distribution on luminosity those events have some threshold Q~1023 and their differential luminosity distribution is approximated by power law exponent "-2". Remote transients have to be considered separately. Their

  20. Atmospheric deposition of mercury and methylmercury to landscapes and waterbodies of the Athabasca oil sands region.

    PubMed

    Kirk, Jane L; Muir, Derek C G; Gleason, Amber; Wang, Xiaowa; Lawson, Greg; Frank, Richard A; Lehnherr, Igor; Wrona, Fred

    2014-07-01

    Atmospheric deposition of metals originating from a variety of sources, including bitumen upgrading facilities and blowing dusts from landscape disturbances, is of concern in the Athabasca oil sands region of northern Alberta, Canada. Mercury (Hg) is of particular interest as methylmercury (MeHg), a neurotoxin which bioaccumulates through foodwebs, can reach levels in fish and wildlife that may pose health risks to human consumers. We used spring-time sampling of the accumulated snowpack at sites located varying distances from the major developments to estimate winter 2012 Hg loadings to a ∼20 000 km(2) area of the Athabasca oil sands region. Total Hg (THg; all forms of Hg in a sample) loads were predominantly particulate-bound (79 ± 12%) and increased with proximity to major developments, reaching up to 1000 ng m(-2). MeHg loads increased in a similar fashion, reaching up to 19 ng m(-2) and suggesting that oil sands developments are a direct source of MeHg to local landscapes and water bodies. Deposition maps, created by interpolation of measured Hg loads using geostatistical software, demonstrated that deposition resembled a bullseye pattern on the landscape, with areas of maximum THg and MeHg loadings located primarily between the Muskeg and Steepbank rivers. Snowpack concentrations of THg and MeHg were significantly correlated (r = 0.45-0.88, p < 0.01) with numerous parameters, including total suspended solids (TSS), metals known to be emitted in high quantities from the upgraders (vanadium, nickel, and zinc), and crustal elements (aluminum, iron, and lanthanum), which were also elevated in this region. Our results suggest that at snowmelt, a complex mixture of chemicals enters aquatic ecosystems that could impact biological communities of the oil sands region. PMID:24873895

  1. Ice-ocean-atmosphere coupling in the Regional Arctic System Model

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Brunke, M.; Cassano, J. J.; Craig, A.; Duvivier, A.; Hughes, M.; Maslowski, W.; Nijssen, B.; Osinski, R.

    2013-12-01

    This work demonstrates the sea ice model performance in the latest version of the Regional Arctic System Model (RASM), which is a fully coupled regional climate model developed by a group of U.S. institutions as a regional counterpart to the Community Earth System Model (CESM). RASM is comprised of the Parallel Ocean Program (POP), Los Alamos Sea Ice Model (CICE), Variable Infiltration Capacity (VIC) hydrology model and the Weather Research and Forecasting (WRF) Model. It uses the same coupling infrastructure as CESM, with important physics differences that we have found to be important in our high-resolution model. Model evaluations using SSM/I sea ice extent and concentration, ICESat sea ice thickness measurements, ice-ocean buoys, and satellite retrievals of sea ice drift and deformation, lead us to adjust the standard CESM Monin-Obukhov ice-ocean-atmospheric coupling and ice-ocean stress term used for coupling with POP-CICE at eddy-permitting resolution of 1/12 degree with the 50km resolution WRF and VIC models. Evaluation metrics based on scaling laws and wavelet techniques illustrate that 20-minute coupling produces deformation and drift statistics commensurate with high temporal and spatial resolution measurements. However, dynamical interactions are compromised when typical radiative settings are used as in stand-alone POP-CICE and WRF. This highlights the limitations of surface polar boundary conditions in stand-alone models relative to fully coupled interactions. Our results suggest that use of uncoupled models as testbeds for improved polar components of next-generation global Earth System Models may introduce biases into fully coupled systems, and these can be reduced using a regional coupled climate system model, such as RASM, as a testbed instead.

  2. Solar influences on spatial patterns of Eurasian winter temperature and atmospheric general circulation anomalies

    NASA Astrophysics Data System (ADS)

    Chen, Haishan; Ma, Hedi; Li, Xing; Sun, Shanlei

    2015-09-01

    Solar influences on spatial patterns of Eurasian winter climate and possible mechanisms are investigated based on a multiple linear regression method and multisource observational and reanalysis data. Robust and significant solar signals are detected in Eurasian surface air temperature (SAT), and strong solar activity evidently warms most area of the continent. The spatial pattern of sea level pressure (SLP) responses to solar activity is similar but not identical to that of the North Atlantic Oscillation (NAO). Compared to the NAO, geographic distribution of solar-induced SLP anomalies shifts eastward, with significantly enhanced influences over northern Eurasia. Relatively weaker solar signals were also found in mid-to-upper troposphere. The spatial pattern of 500 hPa geopotential anomalies resembles a negative Scandinavia teleconnection pattern, and the 200 hPa subtropical jet is weakened, while zonal wind at high latitudes is enhanced due to strong solar activity. The anomalous zonal circulations can be attributed to the "top-down" mechanism. During high solar activity winters, an enhanced stratospheric zonal wind anomaly propagates downward, causing zonal wind anomalies in the troposphere. However, the "bottom-up" mechanisms may provide more reasonable explanations of the distinct solar influences on Eurasian climate. Solar-induced strong warm advection in lower atmosphere tends to increase SAT but decrease SLP, resulting in enhanced solar influences over northern Eurasia. Meanwhile, change in the land-ocean thermal contrast (LOTC) could also amplify the circulation anomaly. Inhomogeneous surface heating caused by anomalous solar activity modifies LOTC, which probably enhances the solar-induced circulation patterns. Such a positive feedback may potentially strengthen the solar influences.

  3. Atmospheric aerosols local-regional discrimination for a semi-urban area in India

    NASA Astrophysics Data System (ADS)

    Hooda, R. K.; Hyvärinen, A.-P.; Vestenius, M.; Gilardoni, S.; Sharma, V. P.; Vignati, E.; Kulmala, M.; Lihavainen, H.

    2016-02-01

    In the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI), measurements were carried out with a sequential filter-based aerosol sampler and on-line instruments for aerosol composition and behaviour at Gual Pahari, close to New Delhi. In fine mode (PM2.5), the secondary organic carbon (SOC) to total organic carbon ratio was 46%. This indicated that condensation of SOC on fine size particles could occur rapidly which may be related to the growth of aerosols and the potential to the size of cloud condensation nuclei in the region. Source region discrimination was improved significantly through coupling conditional probability functions with receptor modelling, and validation through volume size distribution. The air masses from industrial and dense populated regions show a mix of local as well as regional emissions to fine mode aerosols. The back-trajectory analysis captured the long-range transport of sea-salt aerosols enriched with mineral dust. The surface wind directions identified the influence of local emission activities.

  4. Biomass burning influences on atmospheric composition: A case study to assess the impact of aerosol data assimilation

    NASA Astrophysics Data System (ADS)

    Keslake, Tim; Chipperfield, Martyn; Mann, Graham; Flemming, Johannes; Remy, Sam; Dhomse, Sandip; Morgan, Will

    2016-04-01

    The C-IFS (Composition Integrated Forecast System) developed under the MACC series of projects and to be continued under the Copernicus Atmospheric Monitoring System, provides global operational forecasts and re-analyses of atmospheric composition at high spatial resolution (T255, ~80km). Currently there are 2 aerosol schemes implemented within C-IFS, a mass-based scheme with externally mixed particle types and an aerosol microphysics scheme (GLOMAP-mode). The simpler mass-based scheme is the current operational system, also used in the existing system to assimilate satellite measurements of aerosol optical depth (AOD) for improved forecast capability. The microphysical GLOMAP scheme has now been implemented and evaluated in the latest C-IFS cycle alongside the mass-based scheme. The upgrade to the microphysical scheme provides for higher fidelity aerosol-radiation and aerosol-cloud interactions, accounting for global variations in size distribution and mixing state, and additional aerosol properties such as cloud condensation nuclei concentrations. The new scheme will also provide increased aerosol information when used as lateral boundary conditions for regional air quality models. Here we present a series of experiments highlighting the influence and accuracy of the two different aerosol schemes and the impact of MODIS AOD assimilation. In particular, we focus on the influence of biomass burning emissions on aerosol properties in the Amazon, comparing to ground-based and aircraft observations from the 2012 SAMBBA campaign. Biomass burning can affect regional air quality, human health, regional weather and the local energy budget. Tropical biomass burning generates particles primarily composed of particulate organic matter (POM) and black carbon (BC), the local ratio of these two different constituents often determining the properties and subsequent impacts of the aerosol particles. Therefore, the model's ability to capture the concentrations of these two

  5. The Influence of Glacial Ice Sheets on Atlantic Meridional Overturning Circulation Through Atmospheric Circulation Change under Glacial Climate

    NASA Astrophysics Data System (ADS)

    Sherriff-Tadano, S.; Abe-Ouchi, A.; Yoshimori, M.; Oka, A.; Chan, W. L.

    2014-12-01

    It is well known that glacial ice sheets (Laurentide, Fennoscandian and Antarctic ice sheets) exert a large influence on the climate including the atmospheric circulation. Moreover, recent climate modeling studies suggest that glacial ice sheets have a large impact on the Atlantic meridional overturning circulation (AMOC). However, the process by which the ice sheets impact on the AMOC is not yet fully understood. On the other hand, recent studies showed that surface wind changes play a crucial role on changes to the AMOC under glacial climate. Therefore, in this study, we investigate in detail, the process by which the ice sheet modifies the AMOC through surface wind change. Here we conduct numerical experiments using an atmospheric general circulation model (AGCM) and an ocean general circulation model (OGCM) separately. Our method consists of 2 steps. First, from AGCM experiments, we evaluate the effect of glacial ice sheets on the surface wind. Second, from OGCM experiments, we evaluate the influence of the wind stress change on the AMOC by applying the surface wind change as a boundary condition, while leaving other boundary conditions (surface heat and water fluxes) unchanged. In addition, we conduct several sensitivity experiments. Using the AGCM, we explore individual ice sheet effect, ice sheet topography effect and albedo effect on surface wind change. Moreover, using the OGCM, we change the surface wind gradually or apply the surface wind change only at a specific region in order to explore the wind change effect in detail. We find that glacial ice sheets largely intensify the AMOC by surface wind change under glacial climate. Compare to other regions, it reveals that the wind change at the North Atlantic (NA) is a key region. There, the northern glacial ice sheet topography intensifies the Icelandic Low and anti-cyclonic circulation over the Laurentide ice sheet. However, this wind effect is effective only when the NA is not widely covered by sea ice

  6. Investigating the Influence of Atmospheric Changes on the Variability of the North Pacific Using a Fully Coupled GCM

    NASA Astrophysics Data System (ADS)

    Gomez, P.; Poulsen, C. J.; Stott, L. D.

    2004-12-01

    In this study we attempt to investigate whether changes in atmospheric concentrations in ozone and greenhouse gases (GHGs), including CO2, N2O, and methane, have an influence on decadal-scaled oceanic and atmospheric dynamics in the Northeast Pacific. Using a coupled ocean-atmosphere GCM (FOAM1.5) we simulate climatic conditions for the pre-industry and the present day while focusing on the North Pacific. We explore how the ozone hole over the Southern Hemisphere and increased concentrations in GHGs observed in the present day influence the Pacific (Inter)Decadal Oscillation (PDO) and the North Pacific High (NPH), two dominant modes of variability in the North Pacific. In each model we examine the spatial and temporal patterns of the NPH, sea-surface temperatures and salinities (SSTs, SSSs) as well as wind and ocean currents on the order of interannual to interdecadal time scales. We find that within these simulations the influence of the prescribed atmospheric perturbations is small. We observe that the present-day SST and SSS fields of the Northeast Pacific are similar in both model runs as well as sea level pressure. In both simulations the PDO dominates the patterns of variability in the North Pacific and does not appear to change either in character or expression as a result of the atmospheric perturbations. The atmospheric change caused by the rise in GHG concentrations and the decline in ozone is not prominent as a primary influence on the decadal scale variability within the Northeast Pacific.

  7. Variability of atmospheric greenhouse gases as a biogeochemical processing signal at regional scale in a karstic ecosystem

    NASA Astrophysics Data System (ADS)

    Borràs, Sílvia; Vazquez, Eusebi; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier

    2015-04-01

    The South-eastern area of the Iberian Peninsula is an area where climatic conditions reach extreme climatic conditions during the year, and is also heavily affected by the ENSO and NAO. The Natural Park of Cazorla, Segura de la Sierra and Las Villas is located in this region, and it is the largest protected natural area in Spain (209920 Ha). This area is characterized by important climatic and hydrologic contrasts: although the mean annual precipitation is 770 nm, the karstic soils are the main cause for water scarcity during the summer months, while on the other hand it is in this area where the two main rivers of Southern Spain, the Segura and the Guadalquivir, are born. The protected area comprises many forested landscapes, karstic areas and reservoirs like Tranco de Beas. The temperatures during summer are high, with over 40°C heatwaves occurring each year. But during the winter months, the land surface can be covered by snow for periods of time up until 30 days. The ENSO and NAO influences cause also an important inter annual climatic variability in this area. Under the ENSO, autumnal periods are more humid while the following spring is drier. In this area vegetal Mediterranean communities are dominant. But there are also a high number of endemic species and derelict species typical of temperate climate. Therefore it is a protected area with high specific diversity. Additionally, there is an important agricultural activity in the fringe areas of the Natural Park, mainly for olive production, while inside the Park this activity is focused on mountain wheat production. Therefore the diverse vegetal communities and landscapes can easily be under extreme climatic pressures, affecting in turn the biogeochemical processes at the regional scale. The constant, high-frequency monitoring of greenhouse gases (GHG) (CO2 and CH4) integrates the biogeochemical signal of changes in this area related to the carbon cycle at the regional scale, capturing the high diversity of

  8. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices. PMID:24308778

  9. Long-range atmospheric transport Beryllium-7 to region the Sea of Japan.

    PubMed

    Neroda, Andrey S; Goncharova, Anna A; Goryachev, Vladimir A; Mishukov, Vasily F; Shlyk, Natalia V

    2016-08-01

    Concentrations of cosmogenic beryllium-7((7)Be) and atmospheric aerosols were measured in the atmosphere of the coastal zone of Vladivostok in 2013-2014. The (7)Be concentrations ranged from 0.5 to 4.1 mBq/m(3), with the lowest values in summer and the highest in spring and autumn; the mean value was 2.2 mBq/m(3). Analysis of meteorological data in the synoptic scale showed an inverse correlation with wet deposition rates R = -0.55 (p = 0.0001) and H2O mixing ratio R = -0.49 (p = 0.0001) and a positive with an average maximum height of 120-h backward trajectories of air masses R = 0.65 (p = 0.0001). Angular cluster analysis showed the (7)Be concentration to be dependent on the north-western (R = 0.53, p = 0.001) and eastern winds (R = -0.7, p = 0.0001 for 2013 and R = -0.49, p = 0.002 for 2014). The multiple regression analysis identified five factors in (7)Be concentration: altitudes (b = 0.44), air temperature (b = 0.36), a portion of trajectories in the pacific (North-East direction) cluster (b = -0.32), aerosol concentrations (b = 0.28) and wet precipitation rates (b = -0.24). The model has a good correlation with the data (adjusted R(2) = 0.55). It was found that the direction and height of the air masses trajectories in the lower troposphere strongly influence the concentration of (7)Be. PMID:27156169

  10. Atmospheric solar absorption measurements in the 9 to 11 mu m region using a diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Hoell, J. M., Jr.

    1980-01-01

    A tunable diode laser heterodyne radiometer was developed for ground-based measurements of atmospheric solar absorption spectra in the 8 to 12 microns spectral range. The performance and operating characteristics of this Tunable Infrared Heterodyne Radiometer (TIHR) are discussed along with atmospheric solar absorption spectra of HNO3, O3, CO2, and H2O in the 9 to 11 microns spectral region.

  11. [In situ measurement of atmospheric HCFC-22 at the Shangdianzi GAW regional station].

    PubMed

    Yao, Bo; Zhou, Ling-xi; Zhang, Fang; Zhang, Xiao-chun; Xu, Lin; Zhang, Xiao-ling; Zhou, Huai-gang; Dong, Fan; Zhou, Li-yan

    2010-08-01

    An in situ GC-ECD monitoring system was established at the Shangdianzi GAW Regional station from April 2007 to March 2008, and the mixing ratio of atmospheric HCFC-22 was (278.1 +/- 113.6) x 10(-12) (mol/mol). A "R" statistical software was applied to the HCFC-22 time series to separate background and pollution data. The background HCFC-22 mixing ratio was (199.5 +/- 5.1) x 10(-12), close to northern hemisphere background level observed at Mace Head and Trinidad Head stations. The pollution HCFC-22 mixing ratio was (312.1 +/- 121.0) x 10(-12) due to anthropogenic emission from various regions and air mass transport. There was no significant seasonal variability of background data. However, pollution data was much higher in summer than that in winter, and elevated up to 100.9 x 10(-12) in July than in January attribute to seasonal emission characteristics. The mean HCFC-22 mixing ratio from southwest wind sector (327.3 x 10(-12)) was much higher than that of northeast sector (236.2 x 10(-12)). The W-WSW-SW wind sector has a positive contribution to the HCFC-22 level, while NNE-N-NE has a large negative contribution. PMID:21090288

  12. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion.

    PubMed

    Terada, Hiroaki; Katata, Genki; Chino, Masamichi; Nagai, Haruyasu

    2012-10-01

    Regional-scale atmospheric dispersion simulations were carried out to verify the source term of (131)I and (137)Cs estimated in our previous studies, and to analyze the atmospheric dispersion and surface deposition during the Fukushima Dai-ichi Nuclear Power Plant accident. The accuracy of the source term was evaluated by comparing the simulation results with measurements of daily and monthly surface depositions (fallout) over land in eastern Japan from March 12 to April 30, 2011. The source term was refined using observed air concentrations of radionuclides for periods when there were significant discrepancies between the calculated and measured daily surface deposition, and when environmental monitoring data, which had not been used in our previous studies, were now available. The daily surface deposition using the refined source term was predicted mostly to within a factor of 10, and without any apparent bias. Considering the errors in the model prediction, the estimated source term is reasonably accurate during the period when the plume flowed over land in Japan. The analysis of regional-scale atmospheric dispersion and deposition suggests that the present distribution of a large amount of (137)Cs deposition in eastern Japan was produced primarily by four events that occurred on March 12, 15-16, 20, and 21-23. The ratio of wet deposition to the total varied widely depending on the influence by the particular event. PMID:22721917

  13. The influence of glacial ice sheets on Atlantic meridional overturning circulation through atmospheric circulation change under glacial climate

    NASA Astrophysics Data System (ADS)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2016-04-01

    Recent coupled modeling studies have shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). Since this may play an important role in maintaining a strong AMOC over the last glacial period, which is suggested by recent reconstruction study, it is very important to understand the process by which glacial ice sheets intensify the AMOC. Here, a decoupled simulation is conducted to investigate the effect of wind change due to glacial ice sheets on the AMOC, the crucial region where wind modifies the AMOC and the mechanism, which remained elusive in previous studies. First, from atmospheric general circulation model (AGCM) experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model (OGCM) experiments, the influence of the wind stress change on the AMOC is evaluated by applying only the changes in the surface wind as a boundary condition, while leaving surface heat and freshwater fluxes unchanged. Moreover, several sensitivity experiments are conducted. Using the AGCM, glacial ice sheets are applied individually. Using the OGCM, changes in the wind are applied regionally or at different magnitudes, ranging from the full glacial to modern levels. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress curl mainly at the North Atlantic mid-latitudes. This intensification is caused by the increased Ekman upwelling and gyre transport of salt while the change in sea ice transport works as a negative, though minor, feedback.

  14. Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2006-11-01

    We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized) explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. Our analysis shows that, per kiloton of yield, low yield weapons can produce 100 times as many fatalities and 100 times as much smoke from fires as high-yield weapons, if they are targeted at city centers. A single "small'' nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce'' nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2006) show that the smoke would subsequently rise deep into the stratosphere due to atmospheric heating, and then might induce significant climatic anomalies on global scales.We also

  15. Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2007-04-01

    We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized) explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. We find that low yield weapons, which new nuclear powers are likely to construct, can produce 100 times as many fatalities and 100 times as much smoke from fires per kt yield as previously estimated in analyses for full scale nuclear wars using high-yield weapons, if the small weapons are targeted at city centers. A single "small" nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce" nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2007) show that the smoke would subsequently rise deep into the stratosphere due

  16. Model assessment of atmospheric pollution control schemes for critical emission regions

    NASA Astrophysics Data System (ADS)

    Zhai, Shixian; An, Xingqin; Liu, Zhao; Sun, Zhaobin; Hou, Qing

    2016-01-01

    In recent years, the atmospheric environment in portions of China has become significantly degraded and the need for emission controls has become urgent. Because more international events are being planned, it is important to implement air quality assurance targeted at significant events held over specific periods of time. This study sets Yanqihu (YQH), Beijing, the location of the 2014 Beijing APEC (Asia-Pacific Economic Cooperation) summit, as the target region. By using the atmospheric inversion model FLEXPART, we determined the sensitive source zones that had the greatest impact on the air quality of the YQH region in November 2012. We then used the air-quality model Models-3/CMAQ and a high-resolution emissions inventory of the Beijing-Tianjian-Hebei region to establish emission reduction tests for the entire source area and for specific sensitive source zones. This was achieved by initiating emission reduction schemes at different ratios and different times. The results showed that initiating a moderate reduction of emissions days prior to a potential event is more beneficial to the air quality of Beijing than initiating a high-strength reduction campaign on the day of the event. The sensitive source zone of Beijing (BJ-Sens) accounts for 54.2% of the total source area of Beijing (BJ), but its reduction effect reaches 89%-100% of the total area, with a reduction efficiency 1.6-1.9 times greater than that of the entire area. The sensitive source zone of Huabei (HuaB-Sens.) only represents 17.6% of the total area of Huabei (HuaB), but its emission reduction effect reaches 59%-97% of the entire area, with a reduction efficiency 4.2-5.5 times greater than that of the total area. The earlier that emission reduction measures are implemented, the greater the effect they have on preventing the transmission of pollutants. In addition, expanding the controlling areas to sensitive provinces and cities around Beijing (HuaB-sens) can significantly accelerate the reduction

  17. Multivariate weather prediction with atmospheric analogs: predictors and probabilistic prediction skill for different European regions

    NASA Astrophysics Data System (ADS)

    Raynaud, Damien; Hingray, Benoit; Chardon, Jeremy; Anquetin, Sandrine; Favre, Anne-Catherine; François, Baptiste; Vautard, Robert; Tobin, Isabelle

    2015-04-01

    of the method in terms of predictors (variable, atmospheric level, shape and size of the geographical domain used for the analogs identification). Predictors are extracted from ERA-Interim reanalyses. Predictants are obtained from the European Climate Assessment and Dataset for precipitation and temperature and derived from high resolution Weather Research and Forecasting model simulations (Tobin et al., 2014) for wind and solar radiation pseudo-observations. We evaluate the method's ability to correctly reproduce the recent past climate of the regions and we discuss how the results vary depending on the target region. We also discuss for each predictant the loss of prediction performances due to the multivariate approach compared to the usual univariate one. Lorenz, E. N., (1969) Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636-646. Tobin, I., Vautard, R., Balog, I., Bréon, F. M., Jerez, S., Ruti, P. M., ... & Yiou, P. (2014). Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Climatic Change, 1-14.

  18. Analyzing the Influence of Tropical Deforestation on the Northern Hemisphere Climate Through Atmospheric Teleconnections

    NASA Astrophysics Data System (ADS)

    Snyder, P. K.; Hitchman, M. H.; Foley, J. A.

    2004-12-01

    Previous studies have identified the regional-scale climate response to tropical deforestation through changes to the biophysical exchanges of water, energy, and momentum between the land surface and the atmosphere; however, little is known about the effects of tropical deforestation on the global climate. Current research has focused on climate responses in the extratropics with little analyses of the mechanisms responsible for propagating the signal out of the tropics. Here, we present a detailed study of the physical processes important in propagating a signal resulting from deforestation out of the tropics to the Northern Hemisphere in winter. Through complete deforestation of the tropics we analyze changes to the deep moist convection and reductions in high-level outflow as well as the anomalous forcing of Rossby waves out of the tropics. Our study indicates that an anomalous Rossby wave forcing resulting from tropical deforestation modifies the East Asian Jet strength and structure as well as other features of the Northern Hemisphere mean circulation patterns. Furthermore, our results indicate that tropical deforestation can amplify different modes of the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) through a redistribution of atmospheric mass caused by fundamental changes to the strength and positioning of the storm tracks and synoptic eddy activity. Different modes of variability cause different climate responses across Siberia and result in anomalous changes to the low-level winds that can significantly enhance the advection of warm air into Eurasia from the south and west. While theoretical, our approach illustrates the potentially important processes connecting regional-scale changes in the tropical climate to regional-scale changes in the extratropics.

  19. The influence of spectral nudging on typhoon formation in regional climate models

    NASA Astrophysics Data System (ADS)

    Feser, Frauke; Barcikowska, Monika

    2012-03-01

    Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden-Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model

  20. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  1. Influence of oxygen traces on an atmospheric-pressure radio-frequency capacitive argon plasma discharge

    SciTech Connect

    Li Shouzhe; Wu Qi; Yan Wen; Wang Dezhen; Uhm, Han S.

    2011-10-15

    An atmospheric-pressure capacitive discharge source driven by radio-frequency power supply at 13.56 MHz has been developed experimentally that is capable of producing a homogeneous and cold glow discharge in O{sub 2}/Ar. With respect to the influence of oxygen component when diluted into argon plasma discharge on the discharge characteristics, the measurements of the electrical parameters (impedance, phase angle, resistance, and reactance) are made systematically and the densities of the metastable and resonant state of argon are determined by means of optical emission spectroscopy (OES). It is shown that the admixture of oxygen into argon plasma not only changes the electric characteristics but also alters the optical emission spectra greatly due to strong interaction between the oxygen content and the argon in the plasma environment.

  2. Influence of scattering, atmospheric refraction, and ground effect on sound propagation through a pine forest.

    PubMed

    Swearingen, Michelle E; White, Michael J

    2007-07-01

    Sound propagation through a forest is affected by the microclimate in the canopy, scattering by trunks and stems, and ground reflection. Each of these effects is such a strong contributor to the attenuation of sound that mutual interactions between the phenomena could become important. A sound propagation model for use in a forest has been developed that incorporates scattering from trunks and branches and atmospheric refraction by modifying the effective wave number in the Green's function parabolic equation model. The ground effect for a hard-backed pine straw layer is approximated as a local reaction impedance condition. Comparisons to experimental data are made for frequencies up to 4,200 Hz. Cumulative influences of the separate phenomena are examined. The method developed in this paper is compared to previously published methods. The overall comparison with spectral transmission data is good, suggesting that the model captures the necessary details. PMID:17614470

  3. Atmospheric pressure plasma pretreatment of sugarcane bagasse: the influence of moisture in the ozonation process.

    PubMed

    Souza-Corrêa, J A; Oliveira, C; Wolf, L D; Nascimento, V M; Rocha, G J M; Amorim, J

    2013-09-01

    Sugarcane bagasse samples were pretreated with ozone via atmospheric O2 pressure plasma. A delignification efficiency of approximately 80 % was observed within 6 h of treatment. Some hemicelluloses were removed, and the cellulose was not affected by ozonolysis. The quantity of moisture in the bagasse had a large influence on delignification and saccharification after ozonation pretreatment of the bagasse, where 50 % moisture content was found to be best for delignification (65 % of the cellulose was converted into glucose). Optical absorption spectroscopy was applied to determine ozone concentrations in real time. The ozone consumption as a function of the delignification process revealed two main reaction phases, as the ozone molecules cleave the strong carbon-carbon bonds of aromatic rings more slowly than the weak carbon-carbon bonds of aliphatic chains. PMID:23817790

  4. Visual Empirical Region of Influence (VERI) Pattern Recognition Algorithms

    Energy Science and Technology Software Center (ESTSC)

    2002-05-01

    We developed new pattern recognition (PR) algorithms based on a human visual perception model. We named these algorithms Visual Empirical Region of Influence (VERI) algorithms. To compare the new algorithm's effectiveness against othe PR algorithms, we benchmarked their clustering capabilities with a standard set of two-dimensional data that is well known in the PR community. The VERI algorithm succeeded in clustering all the data correctly. No existing algorithm had previously clustered all the pattens inmore » the data set successfully. The commands to execute VERI algorithms are quite difficult to master when executed from a DOS command line. The algorithm requires several parameters to operate correctly. From our own experiences we realized that if we wanted to provide a new data analysis tool to the PR community we would have to provide a new data analysis tool to the PR community we would have to make the tool powerful, yet easy and intuitive to use. That was our motivation for developing graphical user interfaces (GUI's) to the VERI algorithms. We developed GUI's to control the VERI algorithm in a single pass mode and in an optimization mode. We also developed a visualization technique that allows users to graphically animate and visually inspect multi-dimensional data after it has been classified by the VERI algorithms. The visualization technique that allows users to graphically animate and visually inspect multi-dimensional data after it has been classified by the VERI algorithms. The visualization package is integrated into the single pass interface. Both the single pass interface and optimization interface are part of the PR software package we have developed and make available to other users. The single pass mode only finds PR results for the sets of features in the data set that are manually requested by the user. The optimization model uses a brute force method of searching through the cominations of features in a data set for features that produce

  5. Influence of dielectric materials on radial uniformity in non-equilibrium atmospheric pressure helium plasma

    NASA Astrophysics Data System (ADS)

    Oda, Akinori; Komori, Kyohei

    2015-09-01

    Non-equilibrium atmospheric pressure plasma has been utilized for various technological applications such as surface treatment, materials processing, bio-medical and bio-logical applications. For optimum control of the plasma for the above applications, numerous experimental and theoretical investigations on the plasma have been reported. Especially, controlling radial uniformity of the plasma are very important for utilizing materials processing. In this paper, an axially-symmetric three-dimensional fluid model, which is composed of the continuity equation for charged and neutral species, the Poisson equation, and the energy conservation equation for electrons, of non-equilibrium atmospheric pressure helium plasma has been developed. Then, influence of dielectric properties (e.g. relative permittivity, secondary electron emission coefficient, etc.) of dielectric materials on radial plasma uniformity (i.e. radial distributions of electron density, ion density, electric field in the plasma) was examined. This work was partly supported by KAKENHI (No. 26420247), and a ``Grant for Advanced Industrial Technology Development (No. 11B06004d)'' in 2011 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  6. Dietary intake of pollutant aerosols via vegetables influenced by atmospheric deposition and wastewater irrigation.

    PubMed

    Pandey, Richa; Shubhashish, Kumar; Pandey, Jitendra

    2012-02-01

    Pot culture experiments were conducted to study dietary intake of heavy metals via vegetables, spinach (Spinacia oleracea L.), radish (Raphanus sativus L.) and tomato (Lycopersicon esculentum Mill) grown under the influence of atmospheric deposition and wastewater irrigation. The results indicated substantial accumulation of heavy metals in vegetables, which contribute significantly to dietary intake of total heavy metals ranging from 1.34 to 110.40 μg g⁻¹ through leaves (spinach), 1.04 to 105.86 μg g⁻¹ through root (radish) and 0.608 to 82.19 μg g⁻¹ through fruits (tomato). Concentration of Cd, Ni and Pb in vegetables exceeded the safe limits of Prevention of Food Adulteration Act 1954. Health risk index for Cd and Pb exceeded the safe limits set by the United States Environmental Protection Agency. The study indicated that the atmospheric depositions as well as wastewater irrigation have significantly elevated the levels of heavy metals in dietary vegetables presenting a significant threat for the health of users. PMID:22019253

  7. Atmospheric sulfur hexafluoride in-situ measurements at the Shangdianzi regional background station in China.

    PubMed

    Yao, Bo; Zhou, Lingxi; Xia, Lingjun; Zhang, Gen; Guo, Lifeng; Liu, Zhao; Fang, Shuangxi

    2014-12-01

    We present in-situ measurements of atmospheric sulfur hexafluoride (SF6) conducted by an automated gas chromatograph-electron capture detector system and a gas chromatography/mass spectrometry system at a regional background site, Shangdianzi, in China, from June 2009 to May 2011, using the System for Observation of Greenhouse gases in Europe and Asia and Advanced Global Atmospheric Gases Experiment (AGAGE) techniques. The mean background and polluted mixing ratios for SF6 during the study period were 7.22 × 10⁻¹² (mol/mol, hereinafter) and 8.66 × 10⁻¹², respectively. The averaged SF6 background mixing ratios at Shangdianzi were consistent with those obtained at other AGAGE stations located at similar latitudes (Trinidad Head and Mace Head), but larger than AGAGE stations in the Southern Hemisphere (Cape Grim and Cape Matatula). SF6 background mixing ratios increased rapidly during our study period, with a positive growth rate at 0.30 × 10⁻¹² year⁻¹. The peak to peak amplitude of the seasonal cycle for SF6 background conditions was 0.07 × 10⁻¹², while the seasonal fluctuation of polluted conditions was 2.16 × 10⁻¹². During the study period, peak values of SF6 mixing ratios occurred in autumn when local surface horizontal winds originated from W/WSW/SW/SWS/S sectors, while lower levels of SF6 mixing ratios appeared as winds originated from N/NNE/NE/ENE/E sectors. PMID:25499493

  8. Present-day climate of Antarctica : A study with a regional atmospheric climate model

    NASA Astrophysics Data System (ADS)

    van de Berg, W. J.

    2008-02-01

    The present-day climate of Antarctica is studied with a regional climate model. In this research, foci are the surface mass balance, i.e. the accumulation of snow on the ice cap, and the heat budget of the atmosphere above Antarctica. Insight in the surface mass balance of the Antarctic ice cap is gained by explanation, evaluation and subsequently calibration of model-simulated surface mass balance patterns using more than 1900 in situ observations. Furthermore, a method is developed to quantify the uncertainty in the local and spatially integrated surface mass balance estimate. In our study, a good correlation between the observations and model results is found, giving reliability to the results presented. The final surface mass balance estimate primarily deviates in the coastal zones of Antarctica from earlier estimates. Our results strongly suggest much higher accumulation rates than previously assumed, leading to a 15% higher overall accumulation. Unfortunately, the coastal zone is poorly covered by observations, which makes a final assessment difficult. Analysis of the heat budget of the Antarctic atmosphere clarifies the dynamics of the Antarctic boundary layer and shows the coupling to the global climate. Our results show how the boundary layer develops from the interior of Antarctica to the coast; from shallow and extremely stable to deeper, mixed but still stable. Furthermore, the effect of surface undulations on the local near surface temperature is explained. Domes and ridges have a weakening effect on the surface inversion of the temperature through enhanced divergence of the near-surface wind field. Oppositely, valleys strengthen the surface inversion. This coupling of topography and temperature causes the spatial variability of surface temperatures on scales of typical a few hundred kilometers.

  9. LIDAR first results from the Oil Sands Region: A complex vertical atmosphere

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2012-12-01

    Environment Canada is using LIDAR technology to probe the complex vertical structure of the atmosphere over the oil sands region. This provided the critical vertical context for the interpretation of ground-based chemistry measurements and model verification and validation. In recent years, Environment Canada has designed an autonomous aerosol LIDAR system that can be deployed to remote areas such as the oil sands. The trailer that contains the LIDAR system includes a roof hatch assembly, basic meteorological tower, radar interlock system, climate control system and leveling stabilizers. A precipitation sensor is used to operate the roof hatch and three pan/tilt webcams capture sky conditions and monitor the Lidar system's health. A remote control interface is used to monitor all vital components of the system, including the ability to provide hard resets to the various electronic devices onboard. Every 10 seconds the system provides vertical aerosol profiles from near ground to 20 km. The LIDAR transmitter emits two wavelengths (1064nm and 532nm) and the detector assembly collects three channels (1064nm backscatter, 532nm backscatter and 532nm depolarization). The depolarization channel provided key information in identifying and discriminating the various aerosol layers aloft such as dust, forest fire plumes, industrial plume sources or ice crystals. It operates 24 hours a day, seven days a week except during precipitation events and when aircraft fly over the site. The system is operated remotely and the data are updated every hour to a website to allow near real-time capability. First results from an intensive field campaign will be presented. LIDAR false color plot showing the bottom 7 km of the atmosphere during a forest fire event. Note the forest fire plume is between 1.5 and 5 km.

  10. Influence of processing gases on the properties of cold atmospheric plasma SiOxCy coatings

    NASA Astrophysics Data System (ADS)

    Hamze, H.; Jimenez, M.; Deresmes, D.; Beaurain, A.; Nuns, N.; Traisnel, M.

    2014-10-01

    Thin layers of SiOxCy (y = 4-x and 3 ≤ x ≤ 4) were applied using a cold atmospheric plasma torch on glass substrates. The aim was to investigate using Atomic Force Microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (Tof-Sims) the influence of the gases used on the morphology and composition of the deposits. A hexamethyldisilane (HMDS) precursor was injected in post-discharge in an air or nitrogen plasma using a carrier gas (air or nitrogen) and was applied on the substrate previously pre-treated by an air or nitrogen plasma. The carrier gas and plasma gas flows and the distance between the substrate and the plasma torch, the scanning speed, and the precursor flows were kept constant during the study. The gas used during activation pre-treatment showed no particular influence on the characteristics of the deposit. When air is used both as plasma and carrier gas, the coating layer is thicker (96 nm) than when nitrogen is used (64 nm). It was also evidenced that the gas carrying the precursor has little influence on the hydrophobicity of the coating, contrary to the plasma gas. The latter significantly influences the surface characteristics of the coatings. When air is used as plasma gas, a compact coating layer is obtained and the surface has a water contact angle (WCA) of 82°. When nitrogen is used, the deposit is more hydrophobic (WCA of 100°) and the deposit morphology is different. This increase in hydrophobicity could be correlated to the increase of Sisbnd Osbnd C bonds in the upper surface layers evidenced by XPS analyzes. This observation was then confirmed by Tof-Sims analyzes carried out on these thin layers. A uniform distribution of Carbons in the siloxane coating could also be observed using Tof-Sims 2D reconstruction images of cross sections of the deposited layers.

  11. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    PubMed

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. PMID:27344510

  12. Regional Climate Simulations with COSMO-CLM for West Africa using different soil-vegetation-atmosphere-transfer module's (SVAT's)

    NASA Astrophysics Data System (ADS)

    Breil, Marcus; Panitz, Hans-Jürgen

    2013-04-01

    Climate predictions on decadal timescales constitute a new field of research, closing the gap between short-term and seasonal weather predictions and long-term climate projections. Therefore, the Federal Ministry of Education and Research in Germany (BMBF) has recently funded the research program MiKlip (Mittelfristige Klimaprognosen), which aims to create a model system that can provide reliable decadal climate forecasts. Recent studies have suggested that one region with high potential decadal predictability is West Africa. Therefore, the DEPARTURE project (DEcadal Prediction of African Rainfall and ATlantic HURricanE Activity) was established within the MiKlip program to assess the feasibility and the potential added value of regional decadal climate predictions for West Africa. To quantify the potential decadal climate predictability, a multi-model approach with the three different regional climate models REMO, WRF and COSMO-CLM (CCLM) will be realized. The presented research will contribute to DEPARTURE by performing hindcast ensemble simulations with CCLM, based on SST-driven global MPI-ESM-LR simulations. Thereby, one focus is on the dynamic soil-vegetation-climate interaction on decadal timescales. Recent studies indicate that there are significant feedbacks between the land-surface and the atmosphere, which might influence the decadal climate variability substantially. To investigate this connection, three different SVAT's (TERRA_ML, Community Land Model (CLM), and VEG3D) will be coupled with the CCLM. Thus, sensitive model parameters shall be identified, whereby the understanding of important processes might be improved. As a first step, the influence of the model domain on the CCLM results was examined. For this purpose, recent CCLM results from simulations for the official CORDEX domain were compared with CCLM results achieved by using an extended DEPARTURE model domain to about 60°W. This sensitivity analysis was performed with a horizontal resolution

  13. Influence of Sea Ice Dynamics on Atmospheric Mercury and Ozone Concentrations and Fluxes during the BROMEX Campaign

    NASA Astrophysics Data System (ADS)

    Moore, C. W.; Steffen, A.; Obrist, D.; Staebler, R. M.

    2012-12-01

    to below detection limits within 24 hours while GOM rapidly increased to the highest concentrations of the campaign (226 pg m-3), before rapidly decreasing to below detection limits. The strong GEM depletion and highest GOM levels were possibly related to halogen-rich, newly-formed sea ice initiating strong regional AMDEs. The later decrease in GOM concentrations observed at both stations demonstrates that the air masses remained depleted in GEM and GOM for several days showing the large spatial scale of the Hg depletion in the boundary layer. Approximately 24-hour after AMDEs, we find a consistent GEM surface emission which we attribute to photochemical reduction of deposited Hg and re-emission to the atmosphere. Our data therefore indicates that rapid freezing and thawing of sea ice has the potential to substantially influence the arctic Hg cycle.

  14. Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions

    NASA Astrophysics Data System (ADS)

    Singh, H. B.; Anderson, B. E.; Brune, W. H.; Cai, C.; Cohen, R. C.; Crawford, J. H.; Cubison, M. J.; Czech, E. P.; Emmons, L.; Fuelberg, H. E.; Huey, G.; Jacob, D. J.; Jimenez, J. L.; Kaduwela, A.; Kondo, Y.; Mao, J.; Olson, J. R.; Sachse, G. W.; Vay, S. A.; Weinheimer, A.; Wennberg, P. O.; Wisthaler, A.; The Arctas Science Team

    2010-11-01

    We analyze detailed atmospheric gas/aerosol composition data acquired during the 2008 NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) airborne campaign performed at high northern latitudes in spring (ARCTAS-A) and summer (ARCTAS-B) and in California in summer (ARCTAS-CARB). Biomass burning influences were widespread throughout the ARCTAS campaign. MODIS data from 2000 to 2009 indicated that 2008 had the second largest fire counts over Siberia and a more normal Canadian boreal forest fire season. Near surface arctic air in spring contained strong anthropogenic signatures indicated by high sulfate. In both spring and summer most of the pollution plumes transported to the Arctic region were from Europe and Asia and were present in the mid to upper troposphere and contained a mix of forest fire and urban influences. The gas/aerosol composition of the high latitude troposphere was strongly perturbed at all altitudes in both spring and summer. The reactive nitrogen budget was balanced with PAN as the dominant component. Mean ozone concentrations in the high latitude troposphere were only minimally perturbed (<5 ppb), although many individual pollution plumes sampled in the mid to upper troposphere, and mixed with urban influences, contained elevated ozone (ΔO 3/ΔCO = 0.11 ± 0.09 v/v). Emission and optical characteristics of boreal and California wild fires were quantified and found to be broadly comparable. Greenhouse gas emission estimates derived from ARCTAS-CARB data for the South Coast Air Basin of California show good agreement with state inventories for CO 2 and N 2O but indicate substantially larger emissions of CH 4. Simulations by multiple models of transport and chemistry were found to be broadly consistent with observations with a tendency towards under prediction at high latitudes.

  15. Increasing Mississippi river discharge throughout the twenty-first century influenced by changes in climate, land use and atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W. J.; Lohrenz, S. E.

    2014-12-01

    Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. Here we examined how river discharge in the Mississippi River basin in the 21st century might be influenced by these factors using the Dynamic Land Ecosystem Model driven by atmospheric CO2, downscaled GCMs climate and land use scenarios. Our results suggest that river discharge would be substantially enhanced (10.7-59.8%) by the 2090s compared to the recent decade (2000s), though large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high emission scenario (A2) of Intergovernmental Panel for Climate Change. Our study offers the first attempt to project potential changes in river discharge in response to multiple future environmental changes. It demonstrates the importance of land use change and atmospheric CO2 concentrations in projecting future changes in hydrologic processes. The projected increase river discharge implies that riverine fluxes of carbon, nutrients and pesticide from the MRB to the coastal regions would increase in the future, and thus may influence the states of ocean acidification and hypoxia and deteriorate ocean water quality. Further efforts will also be needed to account for additional environmental factors (such as nitrogen deposition, tropospheric ozone pollution, dam construction, etc.) in projecting changes in the hydrological cycle.

  16. Robust influences of superparameterized rainfall variability and intensity on land-atmosphere energetics including soil moisture, surface fluxes, and temperature

    NASA Astrophysics Data System (ADS)

    Kooperman, Gabriel; Pritchard, Michael

    2015-04-01

    Land-atmosphere coupling energetics can play critical roles in mediating local weather and climate. Interactions at this hydrologic interface impact the availability of freshwater, droughts, floods, and temperature extremes. Predicting how the hydrological cycle will respond to climate change requires a realistic representation of these complex energy exchange mechanisms in global climate models (GCMs). Conventional GCMs suggest that regions of strong coupling (i.e. where local rainfall and soil moisture fluctuations are correlated) will be most sensitive to climate change. However, these models do not capture some forms of organized convection and are known to distort the diurnal character of rainfall over land. Second-order characteristics of rainfall (variability, frequency, timing, and intensity), in addition to time-integrated climatology, can have a significant impact on the hydrologic cycle. They determine whether rainwater infiltrates the soil or runs off the surface and how much water collected on the vegetation canopy is available for re-evaporation. Here we investigate land-atmosphere interactions in a GCM that explicitly resolves convection, captures organized storms, and improves the diurnal cycle and intensity distribution of rain. In this multi-scale modeling approach called super-parameterization (SP), simplified cloud resolving models are embedded in each grid column of the NCAR Community Atmosphere Model (CAM) to replace conventional parameterizations. SP-CAM captures the broad rainfall intensity distribution and extreme events that are missing in conventional CAM, especially during the mid-latitude summer and in the tropics, exerting a strong influence during the growing season. More intense rainfall reduces canopy interception (and the re-evaporation of rainwater that is often exaggerated in GCMs), increases the rate of rainfall reaching the ground and thus running off the surface, and generally increases the demand on transpiration. As a result

  17. Evidence of Energy Supply by Active-Region Spicules to the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Zeighami, S.; Ahangarzadeh Maralani, A. R.; Tavabi, E.; Ajabshirizadeh, A.

    2016-03-01

    We investigate the role of active-region spicules in the mass balance of the solar wind and energy supply in heating the solar atmosphere. We use high-cadence observations from the Solar Optical Telescope (SOT) onboard the Hinode satellite in the Ca ii H-line filter obtained on 26 January 2007. The observational technique provides the high spatio-temporal resolution required to detect fine structures such as spicules. We apply a Fourier power spectrum and wavelet analysis to Hinode/SOT time series of an active-region data set to explore the existence of coherent intensity oscillations. Coherent waves could be evidence of energy transport that serves to heat the solar atmosphere. Using time series, we measure the phase difference between two intensity profiles obtained at two different heights, which gives information about the phase difference between oscillations at those heights as a function of frequency. The results of a fast Fourier transform (FFT) show peaks in the power spectrum at frequencies in the range from 2 to 8 mHz at four different heights (above the limb), while the wavelet analysis indicates dominant frequencies similar to those of the Fourier power spectrum results. A coherency study indicates coherent oscillations at about 5.5 mHz (3 min). We measure mean phase speeds in the range 250-425 km s^{-1} increasing with height. The energy flux of these waves is estimated to be F = 1.8 × 106-11.2 × 106 erg cm^{-2} s^{-1} or 1.8-11.2 kW m^{-2}, which indicates that they are sufficiently energetic to accelerate the solar wind and heat the corona to temperatures of several million degrees. We compute the the mass flux carried by spicules of 3 × 10^{-10}-2 × 10^{-9} g cm^{-2} s^{-1}, which is 10-60 times higher than the mass that is carried away from the corona because of the solar wind (about 3 × 10^{-11} g cm^{-2} s^{-1}). Therefore, our results indicate that about 0.02-0.1 of the spicule mass is ejected from the corona, while the remainder reverts

  18. The importance of source configuration in quantifying footprints of regional atmospheric sulphur deposition.

    PubMed

    Vieno, M; Dore, A J; Bealey, W J; Stevenson, D S; Sutton, M A

    2010-01-15

    An atmospheric transport-chemistry model is applied to investigate the effects of source configuration in simulating regional sulphur deposition footprints from elevated point sources. Dry and wet depositions of sulphur are calculated for each of the 69 largest point sources in the UK. Deposition contributions for each point source are calculated for 2003, as well as for a 2010 emissions scenario. The 2010 emissions scenario has been chosen to simulate the Gothenburg protocol emission scenario. Point source location is found to be a major driver of the dry/wet deposition ratio for each deposition footprint, with increased precipitation scavenging of SO(x) in hill areas resulting in a larger fraction of the emitted sulphur being deposited within the UK for sources located near these areas. This reduces exported transboundary pollution, but, associated with the occurrence of sensitive soils in hill areas, increases the domestic threat of soil acidification. The simulation of plume rise using individual stack parameters for each point source demonstrates a high sensitivity of SO(2) surface concentration to effective source height. This emphasises the importance of using site-specific information for each major stack, which is rarely included in regional atmospheric pollution models, due to the difficulty in obtaining the required input data. The simulations quantify how the fraction of emitted SO(x) exported from the UK increases with source magnitude, effective source height and easterly location. The modelled reduction in SO(x) emissions, between 2003 and 2010 resulted in a smaller fraction being exported, with the result that the reductions in SO(x) deposition to the UK are less than proportionate to the emission reduction. This non-linearity is associated with a relatively larger fraction of the SO(2) being converted to sulphate aerosol for the 2010 scenario, in the presence of ammonia. The effect results in less-than-proportional UK benefits of reducing in SO(2

  19. Influence of daily versus monthly fire emissions on atmospheric model applications in the tropics

    NASA Astrophysics Data System (ADS)

    Marlier, M. E.; Voulgarakis, A.; Faluvegi, G.; Shindell, D. T.; DeFries, R. S.

    2012-12-01

    Fires are widely used throughout the tropics to create and maintain areas for agriculture, but are also significant contributors to atmospheric trace gas and aerosol concentrations. However, the timing and magnitude of fire activity can vary strongly by year and ecosystem type. For example, frequent, low intensity fires dominate in African savannas whereas Southeast Asian peatland forests are susceptible to huge pulses of emissions during regional El Niño droughts. Despite the potential implications for modeling interactions with atmospheric chemistry and transport, fire emissions have commonly been input into global models at a monthly resolution. Recognizing the uncertainty that this can introduce, several datasets have parsed fire emissions to daily and sub-daily scales with satellite active fire detections. In this study, we explore differences between utilizing the monthly and daily Global Fire Emissions Database version 3 (GFED3) products as inputs into the NASA GISS-E2 composition climate model. We aim to understand how the choice of the temporal resolution of fire emissions affects uncertainty with respect to several common applications of global models: atmospheric chemistry, air quality, and climate. Focusing our analysis on tropical ozone, carbon monoxide, and aerosols, we compare modeled concentrations with available ground and satellite observations. We find that increasing the temporal frequency of fire emissions from monthly to daily can improve correlations with observations, predominately in areas or during seasons more heavily affected by fires. Differences between the two datasets are more evident with public health applications: daily resolution fire emissions increases the number of days exceeding World Health Organization air quality targets.

  20. A Study on the Influence of the Land Surface Processes on the Southwest Monsoon Simulations using a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Bhaskar Rao, D. V.; Hari Prasad, D.; Hari Prasad, K. B. R. R.; Baskaran, R.; Venkatraman, B.

    2015-10-01

    Influence of the land surface processes as an important mechanism in the development of the Indian Summer Monsoon is studied by performing simulations with a regional atmospheric model. Seasonal scale simulations are conducted for two contrasting summer monsoons (MJJAS months) in 2008 & 2009 with the Weather Research and Forecasting-Advanced Research regional model at a high resolution of 15 km using the boundary conditions derived from the National Centers for Environmental Prediction (NCEP) reanalysis data and using the NOAH land surface parameterization scheme. Simulations are evaluated by comparison of precipitation with 0.5° India Meteorological Department gridded rainfall data over land, atmospheric circulation fields with 1° resolution NCEP global final analysis, and surface fluxes with 0.75° resolution Era-Interim reanalysis. Results indicated significant variation in the evolution of the surface fluxes, air temperatures and flux convergence in the 2 contrasting years. A lower albedo, higher heating (sensible, latent heat fluxes), higher air temperatures, stronger flow and higher moisture flux convergence are noted over the subcontinent during the monsoon 2008 relative to the monsoon 2009. The simulated surface fluxes are in good comparison with observations. The stronger flow in 2008 is found to be associated with stronger heat flux gradients as well as stronger north-south geopotential/pressure gradients. The simulations revealed notable differences in many features such as zonal and meridional surface sensible heat gradients which, in turn, influenced the low-level pressure gradients, wind flow, and moisture transport. The present study reveals that, even at a regional scale, the physical processes of land-surface energy partitioning do influence the regional behavior of the monsoon system to a certain extent.

  1. R and D -- Seismic report on the influence of the source region on regional seismic waveforms as inferred from modeling

    SciTech Connect

    App, F.N.; Jones, E.M.; Bos, R.J.

    1997-11-01

    The identification of an underground nuclear test from its seismic signal recorded by seismometers at regional distances is one of the fundamental scientific goals of the Comprehensive Test Ban Treaty R and D Program. The work being reported here addresses the issue of event discrimination through the use of computer models that use realistic simulations of nuclear explosions in various settings for the generation of near-regional and regional synthetic seismograms. The study exercises some unique, recently developed computer modeling capabilities that heretofore have not been available for discrimination studies. A variety of source conditions and regional paths are investigated. Under the assumptions of the study, conclusions are: (1) spall, non-linear deformation, and depth-of-burial do not substantially influence the near-regional signal and (2) effects due to basins along the regional path very much dominate over source region geology in influencing the signal at regional distances. These conclusions, however, are relevant only for the frequencies addressed, which span the range from 0.1 to 1 Hz for the regional calculations and 0.1 to 3 Hz for the near-regional calculations. They also are relevant only for the crudely ``China-like`` basin, crust, and mantle properties used in the study. If it is determined that further investigations are required, researchers may use this study as a template for such work.

  2. Ground and shipboard measurements of atmospheric gaseous elemental mercury over the Yellow Sea region during 2007-2008

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc Luong; Kim, Jin Young; Shim, Shang-Gyoo; Zhang, Xiao-Shan

    2011-01-01

    The first ever shipboard measurements of atmospheric gaseous elemental mercury (GEM) over the Yellow Sea were carried out. Ground measurements were also performed at background and urban sites surrounding the Yellow Sea during 2007-2008. The GEM mean concentrations obtained from ground measurements at Ningbo, Chengshantou, and Deokjeok, and from shipboard measurements for the routes of Incheon-Qingdao, Incheon-Weihai, and Incheon-Jeju were 3.79 ± 1.29, 2.07 ± 0.91, 1.79 ± 0.80, 1.82 ± 0.51, 2.03 ± 0.66, and 2.43 ± 0.59 ng m -3, respectively. Compared with the GEM background concentration in the northern hemisphere, the slightly higher GEM regional background concentration of 2.08 ± 0.85 ng m -3 over the Yellow Sea region, based on shipboard measurements and ground measurements at background sites, gave implications for the impact of anthropogenic mercury sources surrounding the Yellow Sea. Shipboard measurements over the Yellow Sea showed a decrease of mercury concentration compared with aircraft measurements during ACE-ASIA campaign in 2001, though it was still generally higher than those from other seas or oceans around the world. The contrasting patterns in seasonal and diurnal variations of GEM concentration between background and urban sites were apparent due to the influence of different sources; for example, natural sources, such as vegetative and foliar emissions in background area, and local anthropogenic sources, such as coal combustion in urban area. The significantly elevated GEM concentrations at Deokjeok, a Korean background site, during the spring of 2008 were attributed to the long-range transport from the southern part of Liaoning province, one of the heaviest mercury-polluted areas in China.

  3. The influence of atmospheric blocking on extreme winter minimum temperatures in North America

    NASA Astrophysics Data System (ADS)

    Whan, Kirien; Zwiers, Francis; Sillmann, Jana

    2016-04-01

    Regional climate models (RCMs) are the primary source of high-resolution climate projections and it is of crucial importance to evaluate their ability to simulate extreme events under current climate conditions. Many extreme events are influenced by circulation features that occur outside, or on the edges of, RCM domains. Thus it is of interest to know whether such dynamically controlled aspects of extremes are well represented by RCMs. This study assesses the relationship between upstream blocking and cold temperature extremes over North America in observations, reanalysis products (ERA-Interim, NARR) and RCMs (CanRCM4, CRCM5, HIRHAM5, RCA4). Generalized extreme value distributions were fitted to winter minimum temperature (TNn) incorporating blocking frequency (BF) as a covariate, which has a significant influence on TNn. The magnitude of blocking influence in the RCMs is consistent with observations but the spatial extent varies. CRCM5 and HIRHAM5 reproduce the pattern of influence best compared to observations. CanRCM4 and RCA4 capture the influence of blocking in British Columbia and the northeastern United States but the extension of influence that is seen in observations and reanalysis, into the southern United States is not evident. The difference in the 20-year return value (20RV) of TNn between high and low BF indicates that blocking is associated with a decrease of up to 15°C in the 20RV over the majority of the United States and in western Canada. In northern North America the difference in the 20RV is positive as blocking is associated with warmer temperatures. The 20RVs are generally simulated well by the RCMs.

  4. Modelling soil-plant-atmosphere interactions by coupling the regional weather model WRF to mechanistic plant models

    NASA Astrophysics Data System (ADS)

    Klein, C.; Hoffmann, P.; Priesack, E.

    2012-04-01

    Climate change causes altering distributions of meteorological factors influencing plant growth and its interactions between the land surface and the atmosphere. Recent studies show, that uncertainties in regional and global climate simulations are also caused by lacking descriptions of the soil-plant-atmosphere system. Therefore, we couple a mechanistic soil-plant model to a regional climate and forecast model. The detailed simulation of the water and energy exchanges, especially the transpiration of grassland and forests stands, are the key features of the modelling framework. The Weather Research and Forecasting model (WRF) (Skamarock 2008) is an open source mesoscale numerical weather prediction model. The WRF model was modified in a way, to either choose its native, static land surface model NOAH or the mechanistic eco-system model Expert-N 5.0 individually for every single grid point within the simulation domain. The Expert-N 5.0 modelling framework provides a highly modular structure, enabling the development and use of a large variety of different plant and soil models, including heat transfer, nitrogen uptake/turnover/transport as well as water uptake/transport and crop management. To represent the key landuse types grassland and forest, we selected two mechanistic plant models: The Hurley Pasture model (Thornley 1998) and a modified TREEDYN3 forest simulation model (Bossel 1996). The models simulate plant growth, water, nitrogen and carbon flows for grassland and forest stands. A mosaic approach enables Expert-N to use high resolution land use data e.g. CORINE Land Cover data (CLC, 2006) for the simulation, making it possible to simulate different land use distributions within a single grid cell. The coupling results are analyzed for plausibility and compared with the results of the default land surface model NOAH (Fei Chen and Jimy Dudhia 2010). We show differences between the mechanistic and the static model coupling, with focus on the feedback effects

  5. Atmospheric composition in the Eastern Mediterranean: Influence of biomass burning during summertime using the WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Bossioli, E.; Tombrou, M.; Kalogiros, J.; Allan, J.; Bacak, A.; Bezantakos, S.; Biskos, G.; Coe, H.; Jones, B. T.; Kouvarakis, G.; Mihalopoulos, N.; Percival, C. J.

    2016-05-01

    The composition of the atmosphere over the Aegean Sea (AS) during an 'Etesian' outbreak under the influence of biomass burning (BB) activity is investigated. Simulations with the fully coupled WRF-Chem model during the Aegean-GAME campaign (29/8-9/9/2011) are used to examine the BB effect over the region. Two distinct Etesian flow patterns characterized by different transport conditions are analysed. The influence of the off-line calculated BB emissions on the atmospheric chemical composition over the AS under these conditions is estimated. In addition, sensitivity runs are used to examine the influence of the biogenic emissions calculated on-line and the realistic representation of the stratosphere-troposphere exchange processes are investigated through the time-varying chemical boundary conditions from the MOZART global chemical transport model. The horizontal and vertical distributions of gaseous and aerosol species are simulated under long-range transport conditions and interpreted in relation to the evolution of the Planetary Boundary Layer (PBL). In the case of a weaker synoptic system (medium-range transport conditions), even a small variability of meteorological parameters in limited areas become critical for the spatial distribution of gases and aerosols. The BB activity increases O3, PM2.5 and organic matter concentrations up to 5.5 ppb, 5.8 μg m-3 and 3.3 μg m-3, respectively. The spatial extent of the simulated BB plumes is further examined by comparison with airborne measurements of hydrogen cyanide (HCN). The estimated effect of biogenic emissions on O3 and PM2.5 concentrations is either positive or negative (±6 ppb for O3 and up to ± 1 μg m-3 for PM2.5) depending on the emission algorithm employed. The realistic representation of the chemical boundary conditions reproduces an observed layer rich in O3 above 4 km, but also increases O3 concentrations inside the PBL by up to 40%.

  6. Influence of preonset land atmospheric conditions on the Indian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Rai, Archana; Saha, Subodh K.; Pokhrel, Samir; Sujith, K.; Halder, Subhadeep

    2015-05-01

    A possible link between preonset land atmospheric conditions and the Indian summer monsoon rainfall (ISMR) is explored. It is shown that, the preonset positive (negative) rainfall anomaly over northwest India, Pakistan, Afghanistan, and Iran is associated with decrease (increase) in ISMR, primarily in the months of June and July, which in turn affects the seasonal mean. ISMR in the months of June and July is also strongly linked with the preonset 2 m air temperature over the same regions. The preonset rainfall/2 m air temperature variability is linked with stationary Rossby wave response, which is clearly evident in the wave activity flux diagnostics. As the predictability of Indian summer monsoon relies mainly on the El Niño-Southern Oscillation (ENSO), the found link may further enhance our ability to predict the monsoon, particularly during a non-ENSO year.

  7. Composition of LHB Comets and Their Influence on the Early Earth Atmosphere Composition

    NASA Technical Reports Server (NTRS)

    Tornow, C.; Kupper, S.; Ilgner, M.; Kuehrt, E.; Motschmann, U.

    2011-01-01

    Two main processes were responsible for the composition of this atmosphere: chemical evolution of the volatile fraction of the accretion material forming the planet and the delivery of gasses to the planetary surface by impactors during the late heavy bombardment (LHB). The amount and composition of the volatile fraction influences the outgassing of the Earth mantle during the last planetary formation period. A very weakened form of outgassing activity can still be observed today by examining the composition of volcanic gasses. An enlightenment of the second process is based on the sparse records of the LHB impactors resulting from the composition of meteorites, observed cometary comas, and the impact material found on the Moon. However, for an assessment of the influence of the outgassing on the one hand and the LHB event on the other, one has to supplement the observations with numerical simulations of the formation of volatiles and their incorporation into the accretion material which is the precursors of planetary matter, comets and asteroids. These simulations are performed with a combined hydrodynamic-chemical model of the solar nebula (SN). We calculate the chemical composition of the gas and dust phase of the SN. From these data, we draw conclusions on the upper limits of the water content and the amount of carbon and nitrogen rich volatiles incorporated later into the accretion material. Knowing these limits we determine the portion of major gas compounds delivered during the LHB and compare it with the related quantities of the outgassed species.

  8. Reactive Atmospheric Plasma Spraying of AlN Coatings: Influence of Aluminum Feedstock Particle Size

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2011-03-01

    Feedstock powder characteristics (size distribution, morphology, shape, specific mass, and injection rate) are considered to be one of the key factors in controlling plasma-sprayed coatings microstructure and properties. The influence of feedstock powder characteristics to control the reaction and coatings microstructure in reactive plasma spraying process (RPS) is still unclear. This study, investigated the influence of feedstock particle size in RPS of aluminum nitride (AlN) coatings, through plasma nitriding of aluminum (Al) feedstock powders. It was possible to fabricate AlN-based coatings through plasma nitriding of all kinds of Al powders in atmospheric plasma spray (APS) process. The nitriding ratio was improved with decreasing the particle size of feedstock powder, due to improving the nitriding reaction during flight. However, decreasing the particle size of feedstock powder suppressed the coatings thickness. Due to the loss of the powder during the injection, the excessive vaporization of fine Al particles and the completing nitriding reaction of some fine Al particles during flight. The feedstock particle size directly affects on the nitriding, melting, flowability, and the vaporization behaviors of Al powders during spraying. It concluded that using smaller particle size powders is useful for improving the nitriding ratio and not suitable for fabrication thick AlN coatings in reactive plasma spray process. To fabricate thick AlN coatings through RPS, enhancing the nitriding reaction of Al powders with large particle size during spraying is required.

  9. Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas

    USGS Publications Warehouse

    Stohlgren, T.J.; Chase, T.N.; Pielke, R.A., Sr.; Kittel, T.G.F.; Baron, J.S.

    1998-01-01

    We present evidence that land use practices in the plains of Colorado influence regional climate and vegetation in adjacent natural areas in the Rocky Mountains in predictable ways. Mesoscale climate model simulations using the Colorado State University Regional Atmospheric Modelling System (RAMS) projected that modifications to natural vegetation in the plains, primarily due to agriculture and urbanization, could produce lower summer temperatures in the mountains. We corroborate the RAMS simulations with three independent sets of data: (i) climate records from 16 weather stations, which showed significant trends of decreasing July temperatures in recent decades; (ii) the distribution of seedlings of five dominant conifer species in Rocky Mountain National Park, Colorado, which suggested that cooler, wetter conditions occurred over roughly the same time period; and (iii) increased stream flow, normalized for changes in precipitation, during the summer months in four river basins, which also indicates cooler summer temperatures and lower transpiration at landscape scales. Combined, the mesoscale atmospheric/land-surface model, short-term in regional temperatures, forest distribution changes, and hydrology data indicate that the effects of land use practices on regional climate may overshadow larger-scale temperature changes commonly associated with observed increases in CO2 and other greenhouse gases.

  10. Concentrations of PM 10, PM 2.5, and PM 1 influenced by atmospheric circulation and atmospheric boundary layer in the Korean mountainous coast during a duststorm

    NASA Astrophysics Data System (ADS)

    Choi, Hyo; Choi, Doo Sun

    2008-09-01

    Particle size concentrations of 100 ng m - 3 to 203" in the main text were changed to "100 ng m- 3". Please check if appropriate.--> μg m - 3 were measured at two sampling points over the eastern coastal region of Korea by two GRIMM aerosol samplers from March 7-17, 2004. One sampling point was located on the western upwind side of the mountains, and the other sampling point was located in the city of Kangnung in the coastal basin downwind and adjacent to the East Sea. Concentrations of PM 10, PM 2.5, and PM 1 were measured near the ground in Kangnung on March 8, 2004, until 1200 LST before the passage of a duststorm. Values of about 40, 35, and 30 μg m - 3 , respectively, were detected indicating little variation among sample concentrations. Before the duststorm, maximum concentrations for PM 10 occurred around 0800 and 1700 LST due to increased fuel combustion from road vehicles. From the afternoon of March 10-16 when the largest amount of dust from China had passed over Kangnung under the influence of a westerly wind, PM 10 concentration reached 340 μg m - 3 , and PM 2.5 and PM 1 concentrations reached 105 μg m - 3 and 60 μg m - 3 , respectively, indicating double the PM 10 concentration as compared to PM 2.5. Most of the dust transported from China consisted of particle sizes larger than PM 2.5 and PM 1. Dust transported from the western, upwind side of the mountains combined with the particulates emitted from road vehicles and industrial and residential boilers in the city after sunrise under the influence of westerly winds resulted in a high particulate concentration at 0900 LST. However, a low concentration of particulates in the city was detected near 1200 LST due to changes in the structure of the atmospheric boundary layer, while a high concentration over the mountains occurred due to a stable layer. High-particulate concentrations in the city occurred again after 1700 LST owing to increased fuel combustion from road vehicles and residential boilers

  11. Role of atmospheric heating over the South China Sea and western Pacific regions in modulating Asian summer climate under the global warming background

    NASA Astrophysics Data System (ADS)

    He, Bian; Yang, Song; Li, Zhenning

    2016-05-01

    The response of monsoon precipitation to global warming, which is one of the most significant climate change signals at the earth's surface, exhibits very distinct regional features, especially over the South China Sea (SCS) and adjacent regions in boreal summer. To understand the possible atmospheric dynamics in these specific regions under the global warming background, changes in atmospheric heating and their possible influences on Asian summer climate are investigated by both observational diagnosis and numerical simulations. Results indicate that heating in the middle troposphere has intensified in the SCS and western Pacific regions in boreal summer, accompanied by increased precipitation, cloud cover, and lower-tropospheric convergence and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS and western Pacific and continental South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The result highlights the important role of air-sea interaction in understanding the changes in Asian climate.

  12. Precipitation extremes over Amazonia - atmospheric and oceanic associated features observed and simulated by HADGEM2-ES, CPTEC/INPE AGCM and Eta/CPTEC regional model

    NASA Astrophysics Data System (ADS)

    Cavalcanti, I. F.

    2013-05-01

    Extreme monthly cases of precipitation (positive and negative anomalies) over Amazonia are analyzed to show the atmospheric and oceanic related features and the ability of CPTEC AGCM and HADGEM2-ES in simulating them. Humidity flux variability over the Tropical Atlantic region is analyzed related to the precipitation variability over Amazonia. Besides the Pacific Ocean influence, the Amazonia precipitation is affected by the Tropical Atlantic Ocean, both by the SST and atmospheric flux humidity. Correlations between Atlantic SST and Amazonia precipitation show that there are specific months and areas that are affected by SST anomalies. The extreme cases are obtained from the Standardized Precipitation Index (SPI) applied to monthly data in four areas of Amazonia: northwest, northeast, west and east areas. The period of analysis is 1981 to 2010 to GPCP observed precipitation and CPTEC/INPE AGCM. As this AGCM is the base of the Brazilian Model of Earth System, its behavior on the mechanisms leading to extremes over Amazonia, compared to observations is discussed. Projections of extremes over the region are analyzed with results from CMIP5 HADGEM2-ES during 2073-2099 compared to 1979-2005. The regional Eta CPTEC model is also analyzed in two periods: 1960 to 1990 and 2040 to 2070, with boundary conditions of CMIP3 HADCM3 A1B scenario. The relevance of this analysis is to identify changes in frequency and intensity of extremes in the Amazon region in a higher resolution than the global models.

  13. About the Influence of the initial Atmosphere on the Earth's Temperature Distribution during it's Accumulation

    NASA Astrophysics Data System (ADS)

    Khachay, Y.; Anfilogov, V.; Antipin, A.

    2012-04-01

    We suggested a new model for accumulation of planets of the Earth's group [1], which is based on the contemporary results of geochemical analyses, which allow to obtain the concentrations of short living radioactive isotopes of 26Al in the matter of the pre planet cloud [2]. With use of that data new estimations of temperature distribution into the growing planetary pre planetary bodies into the Earth's nebular zone had been obtained. For the further Earth's temperature evolution, as it had been showed by the results of numerical modeling, the main role belongs to the temperature distribution in the forming Earth's core and the existence of a dense and transparent atmosphere. The shadow influence of the initial atmosphere had been researched in the paper [3]. We shall give the main consideration to these problems in that paper. It had been shown in [1], that on the earliest accumulation stage the heat release by the decay of 26Al it is sufficient for forming a central melted area and solid relatively thin mainly silicate upper envelope in the pre planetary body, with dimensions, larger than (50-100) km. The impact velocities on that stage are yet not large, therefore by the bodies impact with these or near dimensions liquid and mainly iron their parts merge, but the masses of the pre planetary bodies are not sufficient to gravitational keeping of silicate parts of the cold solid envelope. On that stage they remain into the nebular zone of the proto planet and the mechanism of matter differentiation for the future core and mantle reservoirs realizes. The process takes place yet in small bodies and is in time to finish during less than 10 million years. The next forming of the core and mantle structure continues according to all known estimations about 100 million years. Because of the merging of inner liquid parts of impacting bodies occur due to inelastic impact, the main part of potential energy transforms into heat. That continues up to that time when the iron

  14. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  15. Aerosol variability and atmospheric transport in the Himalayan region from CALIOP 2007-2010 observations

    NASA Astrophysics Data System (ADS)

    Bucci, S.; Cagnazzo, C.; Cairo, F.; Di Liberto, L.; Fierli, F.

    2014-05-01

    This work quantifies the spatial distribution of different aerosol types, their seasonal variability and sources.The analysis of four years of CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) vertically resolved aerosol data allows the identification of spatial patterns of desert dust and carbonaceous particles in different atmospheric layers. Clusters of Lagrangian back trajectories highlight the transport pathways from source regions during the dusty spring season. The analysis shows a prevalence of dust; at low heights it occurs frequently (up to 70% of available observations) and is distributed north of the Tibetan Plateau with a main contribution from the Gobi and Taklamakan deserts, and west of the Tibetan Plateau, originating from the deserts of southwest Asia and advected by the Westerlies. Above the Himalayas the dust amount is minor but still not negligible (occurrence around 20%) and mainly affected by the transport from more distant deserts sources (Sahara and Arabian Peninsula). Carbonaceous aerosol, produced mainly in northern India and eastern China, is subject to shorter-range transport and is indeed observed closer to the sources, while there is a limited amount reaching the top of the plateau. Data analysis reveals a clear seasonal variability in the frequencies of occurrence for the main aerosol types; dust is regulated principally by the monsoon dynamics, with maximal occurrence in spring. We also highlight relevant interannual differences, showing a larger presence of aerosol in the region during 2007 and 2008. The characterization of the aerosol spatial and temporal distribution in terms of observational frequency is a key piece of information that can be directly used for the evaluation of global aerosol models.

  16. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  17. An evaluation of a coupled atmosphere-ocean modelling system for regional climate studies: extreme events in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Mooney, Priscilla A.; Mulligan, Frank J.

    2013-04-01

    We investigate the ability of a coupled regional atmosphere-ocean modelling system to simulate two extreme events in the North Atlantic. In this study we use the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner et al.) modelling system with only the atmosphere and ocean models activated. COAWST couples the atmosphere model (Weather Research and Forecasting model; WRF) to the ocean model (Regional Ocean Modelling System; ROMS) with the Model Coupling Toolkit. Results from the coupled system are compared with atmosphere only simulations of North Atlantic storms to evaluate the performance of the coupled modelling system. Two extreme events (Hurricane Katia and Hurricane Irene) were chosen to assess the level of improvement (or otherwise) arising from coupling WRF with ROMS. These two hurricanes involve different dynamics and present different challenges to the modeling system. This provides a robust assessment of the advantages or disadvantages of coupling WRF with ROMS for regional climate modelling studies of extreme events in the North Atlantic. We examine the ability of the coupled modelling system to simulate these two extreme events by comparing modelled storm tracks, storm intensities, wind speeds and sea surface temperatures with observations in all cases. The effect of domain size, and two different planetary boundary layers used in WRF are also reported.

  18. Local and regional factors affecting atmospheric mercury speciation at a remote location

    USGS Publications Warehouse

    Manolopoulos, H.; Schauer, J.J.; Purcell, M.D.; Rudolph, T.M.; Olson, M.L.; Rodger, B.; Krabbenhoft, D.P.

    2007-01-01

    Atmospheric concentrations of elemental (Hg0), reactive gaseous (RGM), and particulate (PHg) mercury were measured at two remote sites in the midwestern United States. Concurrent measurements of Hg0, PHg, and RGM obtained at Devil's Lake and Mt. Horeb, located approximately 65 km apart, showed that Hg0 and PHg concentrations were affected by regional, as well as local sources, while RGM was mainly impacted by local sources. Plumes reaching the Devil's Lake site from a nearby coal-fired power plant significantly impacted SO2 and RGM concentrations at Devil's Lake, but had little impact on Hg0. Our findings suggest that traditional modeling approaches to assess sources of mercury deposited that utilize source emissions and large-scale grids may not be sufficient to predict mercury deposition at sensitive locations due to the importance of small-scale sources and processes. We suggest the use of a receptor-based monitoring to better understand mercury source-receptor relationships. ?? 2007 NRC Canada.

  19. Regional Sea Level Changes Projected by the NASA/GISS Atmosphere-Ocean Model

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Gornitz, Vivien; Miller, James R.

    1999-01-01

    Sea level has been rising for the past century, and inhabitants of the Earth's coastal regions will want to understand and predict future sea level changes. In this study we present results from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. Model results are compared with observed sea level changes during the past 40 years at 17 coastal stations around the world. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in Co2 after 1990, model projections show that global sea level measured from 1950 will rise by 61 mm in the year 2000, by 212 mm in 2050, and by 408 mm in 2089. By 2089, two thirds of the global sea level rise will be due to thermal expansion and one third will be due to ocean mass changes. The spatial distribution of sea level rise is different than that projected by rigid lid ocean models.

  20. The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.

    PubMed

    Jones, Colin G; Wyser, Klaus; Ullerstig, Anders; Willén, Ulrika

    2004-06-01

    The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic. PMID:15264599

  1. Preliminary Evaluation of a Regional Atmospheric Chemical Data Assimilation System for Environmental Surveillance

    PubMed Central

    Lee, Pius; Liu, Yang

    2014-01-01

    We report the progress of an ongoing effort by the Air Resources Laboratory, NOAA to build a prototype regional Chemical Analysis System (ARLCAS). The ARLCAS focuses on providing long-term analysis of the three dimensional (3D) air-pollutant concentration fields over the continental U.S. It leverages expertise from the NASA Earth Science Division-sponsored Air Quality Applied Science Team (AQAST) for the state-of-science knowledge in atmospheric and data assimilation sciences. The ARLCAS complies with national operational center requirement protocols and aims to have the modeling system to be maintained by a national center. Meteorology and chemistry observations consist of land-, air- and space-based observed and quality-assured data. We develop modularized testing to investigate the efficacies of the various components of the ARLCAS. The sensitivity testing of data assimilation schemes showed that with the increment of additional observational data sets, the accuracy of the analysis chemical fields also increased incrementally in varying margins. The benefit is especially noted for additional data sets based on a different platform and/or a different retrieval algorithm. We also described a plan to apply the analysis chemical fields in environmental surveillance at the Centers for Disease Control and Prevention. PMID:25514141

  2. CMAQ (Community Multi-Scale Air Quality) atmospheric distribution model adaptation to region of Hungary

    NASA Astrophysics Data System (ADS)

    Lázár, Dóra; Weidinger, Tamás

    2016-04-01

    For our days, it has become important to measure and predict the concentration of harmful atmospheric pollutants such as dust, aerosol particles of different size ranges, nitrogen compounds, and ozone. The Department of Meteorology at Eötvös Loránd University has been applying the WRF (Weather Research and Forecasting) model several years ago, which is suitable for weather forecasting tasks and provides input data for various environmental models (e.g. DNDC). By adapting the CMAQ (Community Multi-scale Air Quality) model we have designed a combined ambient air-meteorological model (WRF-CMAQ). In this research it is important to apply different emission databases and a background model describing the initial distribution of the pollutant. We used SMOKE (Sparse Matrix Operator Kernel Emissions) model for construction emission dataset from EMEP (European Monitoring and Evaluation Programme) inventories and GEOS-Chem model for initial and boundary conditions. Our model settings were CMAQ CB05 (Carbon Bond 2005) chemical mechanism with 108 x 108 km, 36 x 36 km and 12 x 12 km grids for regions of Europe, the Carpathian Basin and Hungary respectively. i) The structure of the model system, ii) a case study for Carpathian Basin (an anticyclonic weather situation at 21th September 2012) are presented. iii) Verification of ozone forecast has been provided based on the measurements of background air pollution stations. iv) Effects of model attributes (f.e. transition time, emission dataset, parameterizations) for the ozone forecast in Hungary are also investigated.

  3. Preliminary evaluation of a regional atmospheric chemical data assimilation system for environmental surveillance.

    PubMed

    Lee, Pius; Liu, Yang

    2014-12-01

    We report the progress of an ongoing effort by the Air Resources Laboratory,NOAA to build a prototype regional Chemical Analysis System (ARLCAS). The ARLCAS focuses on providing long-term analysis of the three dimensional (3D) air-pollutant concentration fields over the continental U.S. It leverages expertise from the NASA Earth Science Division-sponsored Air Quality Applied Science Team (AQAST) for the state-of-science knowledge in atmospheric and data assimilation sciences. The ARLCAS complies with national operational center requirement protocols and aims to have the modeling system to be maintained by a national center. Meteorology and chemistry observations consist of land-, air- and space-based observed and quality-assured data.We develop modularized testing to investigate the efficacies of the various components of the ARLCAS. The sensitivity testing of data assimilation schemes showed that with the increment of additional observational data sets, the accuracy of the analysis chemical fields also increased incrementally in varying margins. The benefit is especially noted for additional data sets based on a different platform and/or a different retrieval algorithm.We also described a plan to apply the analysis chemical fields in environmental surveillance at the Centers for Disease Control and Prevention. PMID:25587606

  4. Evaluation of the Regional Atmospheric Modeling System in the Eastern Range Dispersion Assessment System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan

    2000-01-01

    The Applied Meteorology Unit is conducting an evaluation of the Regional Atmospheric Modeling System (RAMS) contained within the Eastern Range Dispersion Assessment System (ERDAS). ERDAS provides emergency response guidance for operations at the Cape Canaveral Air Force Station and the Kennedy Space Center in the event of an accidental hazardous material release or aborted vehicle launch. The prognostic data from RAMS is available to ERDAS for display and is used to initialize the 45th Range Safety (45 SW/SE) dispersion model. Thus, the accuracy of the 45 SW/SE dispersion model is dependent upon the accuracy of RAMS forecasts. The RAMS evaluation task consists of an objective and subjective component for the Florida warm and cool seasons of 1999-2000. The objective evaluation includes gridded and point error statistics at surface and upper-level observational sites, a comparison of the model errors to a coarser grid configuration of RAMS, and a benchmark of RAMS against the widely accepted Eta model. The warm-season subjective evaluation involves a verification of the onset and movement of the Florida east coast sea breeze and RAMS forecast precipitation. This interim report provides a summary of the RAMS objective and subjective evaluation for the 1999 Florida warm season only.

  5. Volcanic emissions of mercury to the atmosphere: global and regional inventories.

    PubMed

    Nriagu, Jerome; Becker, Christian

    2003-03-20

    A comprehensive, time-averaged inventory of subaerial emissions of mercury from volcanoes that were active between 1980 and 2000 is derived based on the Hg/SO(2) ratios of the exhalations. Worldwide flux of mercury from volcanic eruptions is estimated to be 57 t/year while the flux from degassing activities is 37.6 t/year. After correcting for 'unmeasured' SO(2) emissions, the total global flux of Hg to the atmosphere is estimated to be 112 t/year. There are regional differences in average emissions during the 20-year period, with the estimated fluxes being 29 t/year in South and Central America, 27 t/year in Southeast Asia; 24 t/year in North America (including Hawaii), 4.1 t/year in Australia, 3.4 t/year in Japan and northern Asia, 3.1 t/year in Europe and western Asia and 2.3 t/year in Africa. PMID:12663167

  6. The Evaluation of the Regional Atmospheric Modeling System in the Eastern Range Dispersion Assessment System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan

    2001-01-01

    The Applied Meteorology Unit (AMU) evaluated the Regional Atmospheric Modeling System (RAMS) contained within the Eastern Range Dispersion Assessment System (ERDAS). ERDAS provides emergency response guidance for Cape Canaveral Air Force Station and Kennedy Space Center operations in the event of an accidental hazardous material release or aborted vehicle launch. The RAMS prognostic data are available to ERDAS for display and are used to initialize the 45th Space Wing/Range Safety dispersion model. Thus, the accuracy of the dispersion predictions is dependent upon the accuracy of RAMS forecasts. The RAMS evaluation consisted of an objective and subjective component for the 1999 and 2000 Florida warm seasons, and the 1999-2000 cool season. In the objective evaluation, the AMU generated model error statistics at surface and upper-level observational sites, compared RAMS errors to a coarser RAMS grid configuration, and benchmarked RAMS against the nationally-used Eta model. In the subjective evaluation, the AMU compared forecast cold fronts, low-level temperature inversions, and precipitation to observations during the 1999-2000 cool season, verified the development of the RAMS forecast east coast sea breeze during both warm seasons, and examined the RAMS daily thunderstorm initiation and precipitation patterns during the 2000 warm season. This report summarizes the objective and subjective verification for all three seasons.

  7. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005

    NASA Astrophysics Data System (ADS)

    Jackman, C. H.; Marsh, D. R.; Vitt, F. M.; Roble, R. G.; Randall, C. E.; Bernath, P. F.; Funke, B.; López-Puertas, M.; Versick, S.; Stiller, G. P.; Tylka, A. J.; Fleming, E. L.

    2011-03-01

    Solar eruptions in early 2005 led to a substantial barrage of charged particles on the Earth's atmosphere during the 16-21 January period. Proton fluxes were greatly increased during these several days and led to the production of HOx (H, OH, HO2) and NOx (N, NO, NO2), which then caused the destruction of ozone. We focus on the Northern polar region, where satellite measurements and simulations with the Whole Atmosphere Community Climate Model (WACCM3) showed large enhancements in mesospheric HOx and NOx constituents, and associated ozone reductions, due to these solar proton events (SPEs). The WACCM3 simulations show enhanced short-lived OH throughout the mesosphere in the 60-82.5° N latitude band due to the SPEs for most days in the 16-21 January 2005 period, in reasonable agreement with the Aura Microwave Limb Sounder (MLS) measurements. Mesospheric HO2 is also predicted to be increased by the SPEs, however, the modeled HO2 results are somewhat larger than the MLS measurements. These HOx enhancements led to huge predicted and MLS-measured ozone decreases of greater than 40% throughout most of the northern polar mesosphere during the SPE period. Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements of hydrogen peroxide (H2O2) show increases throughout the stratosphere with highest enhancements of about 60 pptv in the lowermost mesosphere over the 16-18 January 2005 period due to the solar protons. WACCM3 predictions indicate H2O2 enhancements over the same time period of more than twice that amount. Measurements of nitric acid (HNO3) by both MLS and MIPAS show an increase of about 1 ppbv above background levels in the upper stratosphere during 16-29 January 2005. WACCM3 simulations show only minuscule HNO3 changes in the upper stratosphere during this time period. Polar mesospheric enhancements of NOx are computed to be greater than 50 ppbv during the SPE period due to the small loss rates during winter. Computed NOx increases

  8. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005

    NASA Astrophysics Data System (ADS)

    Jackman, C. H.; Marsh, D. R.; Vitt, F. M.; Roble, R. G.; Randall, C. E.; Bernath, P. F.; Funke, B.; López-Puertas, M.; Versick, S.; Stiller, G. P.; Tylka, A. J.; Fleming, E. L.

    2011-07-01

    Solar eruptions in early 2005 led to a substantial barrage of charged particles on the Earth's atmosphere during the 16-21 January period. Proton fluxes were greatly increased during these several days and led to the production of HOx (H, OH, HO2) and NOx (N, NO, NO2), which then caused the destruction of ozone. We focus on the Northern polar region, where satellite measurements and simulations with the Whole Atmosphere Community Climate Model (WACCM3) showed large enhancements in mesospheric HOx and NOx constituents, and associated ozone reductions, due to these solar proton events (SPEs). The WACCM3 simulations show enhanced short-lived OH and HO2 concentrations throughout the mesosphere in the 60-82.5° N latitude band due to the SPEs for most days in the 16-21 January 2005 period, somewhat higher in abundance than those observed by the Aura Microwave Limb Sounder (MLS). These HOx enhancements led to huge predicted and MLS-measured ozone decreases of greater than 40 % throughout most of the northern polar mesosphere during the SPE period. Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements of hydrogen peroxide (H2O2) show increases throughout the stratosphere with highest enhancements of about 60 pptv in the lowermost mesosphere over the 16-18 January 2005 period due to the solar protons. WACCM3 predictions indicate H2O2 enhancements over the same time period of about three times that amount. Measurements of nitric acid (HNO3) by both MLS and MIPAS show an increase of about 1 ppbv above background levels in the upper stratosphere during 16-29 January 2005. WACCM3 simulations show only minuscule HNO3 increases (<0.05 ppbv) in the upper stratosphere during this time period. Polar mesospheric enhancements of NOx are computed to be greater than 50 ppbv during the SPE period due to the small loss rates during winter. Computed NOx increases, which were statistically significant at the 95 % level, lasted about a month past the SPEs

  9. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    NASA Astrophysics Data System (ADS)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power

  10. Evaluation of size segregation of elemental carbon emission in Europe: influence on atmospheric long-range transportation

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Cheng, Y. F.; Nordmann, S.; Birmili, W.; Denier van der Gon, H. A. C.; Ma, N.; Wolke, R.; Wehner, B.; Sun, J.; Spindler, G.; Mu, Q.; Pöschl, U.; Su, H.; Wiedensohler, A.

    2015-11-01

    Elemental Carbon (EC) has significant impact on human health and climate change. In order to evaluate the size segregation of EC emission and investigation of its influence on atmospheric transport processes in Europe, we used the fully coupled online Weather Research and Forecasting/Chemistry model (WRF-Chem) at a resolution of 2 km focusing on a region in Germany, in conjunction with a high-resolution EC emission inventory. The ground meteorology conditions, vertical structure and wind pattern were well reproduced by the model. The simulations of particle number/mass size distributions were evaluated by observations taken at the central European background site Melpitz. The fine mode aerosol was reasonably well simulated, but the coarse mode was substantially overestimated by the model. We found that it was mainly due to the nearby point source plume emitting a high amount of EC in the coarse mode. The comparisons between simulated EC and Multi-angle Absorption Photometers (MAAP) measurements at Melpitz, Leipzig-TROPOS and Bösel indicated that coarse mode EC (ECc) emission in the nearby point sources might be overestimated by a factor of 2-10. The emission fraction of EC in coarse mode was overestimated by about 10-30 % for Russian and 5-10 % for Eastern Europe (e.g.: Poland and Belarus), respectively. This overestimation in ECc emission fraction makes EC particles having less opportunity to accumulate in the atmosphere and participate to the long range transport, due to the shorter lifetime of coarse mode aerosol. The deposition concept model showed that the transported EC mass from Warsaw and Moskva to Melpitz may be reduced by 25-35 and 25-55 % respectively, due to the overestimation of ECc emission fraction. This may partly explain the underestimation of EC concentrations for Germany under eastern wind pattern in some other modelling research.

  11. Improving estimations of greenhouse gas transfer velocities by atmosphere-ocean couplers in Earth-System and regional models

    NASA Astrophysics Data System (ADS)

    Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2015-09-01

    Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.

  12. Investigating the influence of regional climate and oceanography on marine radiocarbon reservoir ages in southwest New Zealand

    NASA Astrophysics Data System (ADS)

    Hinojosa, Jessica L.; Moy, Christopher M.; Prior, Christine A.; Eglinton, Timothy I.; McIntyre, Cameron P.; Stirling, Claudine H.; Wilson, Gary S.

    2015-12-01

    The New Zealand fjords are located at a latitude where distinct oceanic and atmospheric fronts separate carbon reservoirs of varying residence time. The marine radiocarbon reservoir age in this region is likely to deviate from the global average reservoir age over space and time as frontal boundaries migrate north and south. Here we present new estimates of modern radiocarbon reservoir age using the radiocarbon content of bivalve shells collected live before 1950. Multiple measurements from hydrographically distinct sites support the use of a ΔR, defined as the regional offset between measured and modeled marine radiocarbon reservoir age, of 59 ± 35 years for the New Zealand fjords. We also assess the radiocarbon content of bulk surface sediments throughout the fjord region. Sediment with a higher proportion of marine organic carbon has relatively less radiocarbon than more terrestrial sediment, suggesting a short residence time of organic carbon on land before deposition in the fjords. Additionally, we constrain reservoir age variability throughout the Holocene using coeval terrestrial and marine macrofossils. Although our modern results suggest spatial consistency in ΔR throughout the fjords, large deviations from the global average marine radiocarbon reservoir age exist in the paleo record. We find four ancient ΔR values, extending back to ˜10.2 cal kyr BP, to be negative or near zero. A likely cause of younger radiocarbon reservoir ages at select intervals throughout the Holocene is the increased influence of the Southern Hemisphere westerly winds, which cause extreme precipitation in the region that delivers terrestrial carbon, enriched in radiocarbon, to fjord basins. However, bivalve depth habitat may also influence radiocarbon content due to a stratified water column containing distinct carbon pools. This work highlights the need for thorough assessment of local radiocarbon cycling in similar regions of dynamic ocean/atmosphere frontal zones

  13. Trans-Pacific and Regional Atmospheric Transport of Polycyclic Aromatic Hydrocarbons and Pesticides in Biomass Burning Emissions to Western North America

    PubMed Central

    Genualdi, Susan A.; Killin, Robert K.; Woods, Jim; Wilson, Glenn; Schmedding, David; Massey Simonich, Staci L.

    2014-01-01

    The trans-Pacific and regional North American atmospheric transport of polycyclic aromatic hydrocarbons (PAHs) and pesticides in biomass burning emissions was measured in air masses from April to September 2003 at two remote sites in western North America. Mary’s Peak Observatory (MPO) is located in Oregon’s Coast Range and Cheeka Peak Observatory (CPO) is located on the tip of the Olympic Peninsula in Washington State. During this time period, both remote sites were influenced by PAH and pesticide emissions from forest fires in Siberia and regional fires in Oregon and Washington State. Concurrent samples were taken at both sites on June 2 and August 4, 2003. On these dates, CPO had elevated gas phase PAH, alpha-hexachlorocyclohexane and retene concentrations (p<0.05) and MPO had elevated retene, particulate phase PAH and levoglucosan concentrations due to trans-Pacific transport of emissions from fires in Siberia. In addition, during the April to September 2003 sampling period, CPO and MPO were influenced by emissions from regional fires that resulted in elevated levoglucosan, dacthal, endosulfan and gas phase PAH concentrations. Burned and unburned forest soil samples collected from the regional forest fire area showed that 34 to 100% of the pesticide mass was lost from soil due to burning. These data suggest that the transPacific and regional atmospheric transport of biomass burning emissions results in elevated PAH and pesticide concentrations in western North America. The elevated pesticide concentrations are likely due to re-emission of historically deposited pesticides from the soil and vegetation during the fire event. PMID:19320158

  14. Trans-Pacific and regional atmospheric transport of polycyclic aromatic hydrocarbons and pesticides in biomass burning emissions to western North America.

    PubMed

    Genualdi, Susan A; Killin, Robert K; Woods, Jim; Wilson, Glenn; Schmedding, David; Simonich, Staci L Massey

    2009-02-15

    The trans-Pacific and regional North American atmospheric transport of polycyclic aromatic hydrocarbons (PAHs) and pesticides in biomass burning emissions was measured in air masses from April to September 2003 at two remote sites in western North America. Mary's Peak Observatory (MPO) is located in Oregon's Coast Range and Cheeka Peak Observatory (CPO) is located on the tip of the Olympic Peninsula in Washington State. During this time period, both remote sites were influenced by PAH and pesticide emissions from forest fires in Siberia and regional fires in Oregon and Washington State. Concurrent samples were taken at both sites on June 2 and August 4, 2003. On these dates, CPO had elevated gas phase PAH, alpha-hexachlorocyclohexane, and retene concentrations (p < 0.05) and MPO had elevated retene, particulate phase PAH, and levoglucosan concentrations due to trans-Pacific transport of emissions from fires in Siberia. In addition, during the April to September 2003 sampling period, CPO and MPO were influenced by emissions from regional fires that resulted in elevated levoglucosan, dacthal, endosulfan, and gas phase PAH concentrations. Burned and unburned forest soil samples collected from the regional forest fire area showed that 34-100% of the pesticide mass was lost from soil due to burning. These data suggest that the trans-Pacific and regional atmospheric transport of biomass burning emissions results in elevated PAH and pesticide concentrations in western North America. The elevated pesticide concentrations are likely due to re-emission of historically deposited pesticides from the soil and vegetation during the fire event. PMID:19320158

  15. Greenhouse gas emissions derived from regional measurement networks and atmospheric inversions: Results from the MCI and INFLUX experiments

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Andrews, A. E.; Cambaliza, M.; Denning, A.; Gurney, K. R.; Lauvaux, T.; Miles, N. L.; Ogle, S. M.; Possolo, A.; Richardson, S.; Schuh, A. E.; Shepson, P. B.; Sweeney, C.; Turnbull, J. C.; West, T. O.; Whetstone, J. R.

    2010-12-01

    Atmospheric evaluation of emissions inventories is increasingly envisioned as a critical element of greenhouse gas emissions regulation. Atmospheric inversions utilizing dense regional networks of greenhouse gas measurements, however, are scarce. Discussions of the measurements and methods required to infer fluxes at spatial and temporal resolutions sufficient to meet the needs of policy makers, therefore, remain largely hypothetical. We present results from one past field experiment, the North American Carbon Program (NACP) Midcontinent Intensive (MCI) regional study, and preliminary results from a new experiment, the Indianapolis Flux project (INFLUX), both of which include high density regional greenhouse gas measurement networks. Both studies also include detailed regional inventory assessments of greenhouse gas sources and sinks. The MCI results show large amplitude, spatially coherent synoptic and seasonal patterns in boundary layer CO2 mixing ratios correlated with cropping patterns. Regional atmospheric inversions utilizing these data show corrections that tend towards the inventory estimates regardless of the prior flux estimates utilized in the inversion, and the region appears to have been slightly oversampled by the instrument density deployed. The uncertainty bounds associated with the inverted fluxes, however, remain fairly large despite the high density of atmospheric data, and the true uncertainty is difficult to assess. The INFLUX experiment will utilize a similar number of sensors deployed over a spatial domain two to three orders of magnitude smaller in area than the MCI domain, and will attempt to utilize similar techniques to infer anthropogenic emissions at high spatial resolution. We will present the experimental design for this project including the unique challenges of multi-species inversions and the need to deconvolve biological and fossil fuel fluxes. We anticipate that this experiment will serve as a benchmark regarding the accuracy and

  16. Influence of planetary scale waves on the upper atmospheric optical dayglow emissions over equatorial-low-latitude

    NASA Astrophysics Data System (ADS)

    Laskar, F. I.; Duggirala, P. R.; Thatiparthi, V. L.; Chakrabarti, S.; Reddy, M.; Raghavarao, R.; Pathan, B. M.; Khekale, P. V.

    2012-12-01

    Systematic measurement of optical dayglow emissions at multiple wavelengths, namely, 557.7nm , 630.0nm, and 777.4nm have been carried out over a large field-of-view using a newly built Multiwavelength Imaging Spectograph using Echelle-grating (MISE) during January-February 2011 from a low latitude station, Hyderabad (Geographic: 17.5 deg. N, 78.5 deg. E; Mag.: 8.6 deg. N, 151.8 deg. E), India. Several large and small scale features are seen in all the wavelengths. In contrast to the earlier measurement of OI-630.0nm red-line emission during the high solar activity period (2001), current optical dayglow measurements during relatively low solar epoch (2011) show no similarity with that of the solar flux. However, it is noted that the variation in strength of the equatorial electrojet (EEJ) seems to be similar to that of optical measurements in 2011. This is also in contrast with the measurements in 2001, where no similarity was seen between EEJ and OI-630.0nm dayglow intensity. Periodogram analysis of these two data sets (optical and EEJ) show a marked difference in the occurrence of the quasi-16-day planetary wave periods before noon and in the afternoon hours. In order to investigate the coupling of atmospheric regions, periodogram analysis of total electron content (TEC) and SABER measured mesosphere and lower thermosphere (MLT) temperature data were carried out. Interestingly, the TEC data from Bangalore (Mag. Lat 4 deg. N) shows contrasting behaviour in terms of periodicities before noon and afternoon similar to those in optical dayglow intensities, SABER temperatures, and the strength of the EEJ while the TEC periodicities of another further away station (Ahmedabad, Mag. Lat 15 deg. N) does not show any such behaviour. It is suggested that planetary wave of periods of quasi-9-day and quasi-16-day, which are observed in MLT have their influence on the behaviour of the upper atmosphere as seen in optical, radio and magnetic measurements. These results point to

  17. Tracking the MSL-SAM methane detection source location Through Mars Regional Atmospheric Modeling System (MRAMS)

    NASA Astrophysics Data System (ADS)

    Pla-García, Jorge

    2016-04-01

    olivine indicate could be the case, then it might explain the observed fast destruction of methane [7]. In an effort to better address the potential mixing and remaining questions, atmospheric circulation studies of Gale Crater were performed with the Mars Re-gional Atmospheric Modeling System (MRAMS). The model was focused on rover locations using nested grids with a spacing of 330 meters on the in-nermost grid that is centered over the landing [8, 9]. MRAMS is ideally suited for this investigation; the model is explicitly designed to simulate Mars' at-mospheric circulations at the mesoscale and smaller with realistic, high-resolution surface properties [10, 11]. In order to characterize seasonal mixing changes throughout the Martian year, simulations were con-ducted at Ls 0, 90, 180 and 270. Two additional sim-ulations at Ls 225 and 315 were explored to better understand the unique meteorological setting cen-tered around Ls 270. Ls 270 was shown to be an anomalous season when air within and outside the crater was well mixed by strong, flushing, northerly flow and large amplitude breaking mountain waves: air flowing downslope at night is cold enough to penetrate all the way to the surface. At other seasons, the air in the crater is more isolated -but not com-pletely- from the surrounding environment: mesoscale simulations indicate that the air flowing down the crater rims does not easily make it to the crater floor. Instead, the air encounters very cold and stable air pooled in the bottom of the crater, which forces the air to glide right over the colder, more dense air below. Thus, the mixing of near-surface crater air with the external environment is potentially more limited than around Ls 270. 2. Tracking methane source location The rise in concentration was reported to start around sol 300 (˜Ls 336), peaked shortly after sol 520 (˜Ls 82), and then dropped to background val-ues prior to sol 575 (˜Ls 103). Two scenarios are considered in the context of the

  18. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  19. A Regional Atmospheric Continuous CO2 Network In The Rocky Mountains (Rocky RACCOON)

    NASA Astrophysics Data System (ADS)

    Stephens, B.; de Wekker, S.; Watt, A.; Schimel, D.

    2005-12-01

    We have established a continuous CO2 observing network in the Rocky Mountains, building on technological and modeling advances made during the Carbon in the Mountains Experiment (CME), to improve our understanding of regional carbon fluxes and to fill key gaps in the North American Carbon Program (NACP). We will present a description of the Rocky RACCOON network and early results from the first three sites. There are strong scientific and societal motivations for determining CO2 exchanges on regional scales. NACP aims to address these concerns through a dramatic expansion in observations and modeling capabilities over North America. Mountain forests in particular represent a significant potential net CO2 sink in the U.S. and are highly sensitive to land-use practices and climate change. However, plans for new continuous CO2 observing sites have omitted the mountain west. This resulted from expensive instrumentation in the face of limited resources, and a perception that current atmospheric transport models are not sophisticated enough to interpret CO2 measurements made in complex terrain. Through our efforts in CME, we have a new autonomous, inexpensive, and robust CO2 analysis system and are developing mountain CO2 modeling tools that will help us to overcome these obstacles. Preliminary observational and modeling results give us confidence that continuous CO2 observations from mountain top observatories will provide useful constraints on regional carbon cycling and will be valuable in the continental inverse modeling efforts planned for NACP. We began at three Colorado sites in August 2005 and hope to add three to six sites in other western states in subsequent years, utilizing existing observatories to the maximum extent possible. The first three sites are at Niwot Ridge, allowing us to have an ongoing intercomparison with flask measurements made by NOAA CMDL; at Storm Peak Laboratory near Steamboat Springs, allowing us to investigate comparisons between these

  20. Atmospheric solar absorption measurements in the 9-11 micron region using a diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Hoell, J. M., Jr.

    1980-01-01

    A tunable diode laser heterodyne radiometer was developed for ground based measurements of atmospheric solar absorption spectra in the 9 to 12 micron spectral range. The performance and operating characteristics of this tunable infrared heterodyne radiometer (TIHR) is discussed along with recently measured heterodyne solar absorption spectra in the 10 to 11 micron spectral region.

  1. Atmospheric Modeling of the Martian Polar Regions: One Mars Year of CRISM EPF Observations of the South Pole

    NASA Astrophysics Data System (ADS)

    Brown, A. J.; Wolff, M. J.

    2009-03-01

    We have used CRISM Emission Phase Function gimballed observations to investigate atmospheric dust/ice opacity and surface albedo in the south polar region for the first Mars year of MRO operations. This covers the MY28 "dust event" and cap recession.