Science.gov

Sample records for influenza a virus h5n1 subtype

  1. Prepandemic influenza vaccine H5N1 (split virion, inactivated, adjuvanted) [Prepandrix]: a review of its use as an active immunization against influenza A subtype H5N1 virus.

    PubMed

    Carter, Natalie J; Plosker, Greg L

    2008-01-01

    Although rare, influenza pandemics are a recurrent event, and influenza A/H5N1 is generally considered to be the most likely causative agent of the next pandemic. Vaccines are widely considered to be the first line of defense for protecting populations in advance of an influenza pandemic. Because it is not known beforehand which strain of influenza A/H5N1 virus could give rise to a pandemic, prepandemic vaccines that impart broad cross-reactive immunogenicity are required. In addition, low doses of H5 hemagglutinin are preferable in order to make antigen supplies go further towards meeting global demands for prepandemic vaccines.Prepandemic influenza vaccine H5N1 [Prepandrix(trade mark); AS03-H5N1 vaccine] is a split virion, inactivated vaccine containing H5 hemagglutinin antigen adjuvanted with a novel 10% oil-in-water emulsion-based adjuvant system (AS03). It is approved in the EU for use as an active immunization against H5N1 subtype influenza A virus (influenza A/H5N1 virus) in adults aged 18-60 years. The recommended dosage in this population is two doses of 0.5 mL containing 3.75 microg of H5 hemagglutinin, administered > or =21 days apart. Adjuvantation of H5N1 vaccine with AS03 allows for a reduction in the H5 hemagglutinin dose required to elicit an adequate immune response, and administration of two doses of the adjuvanted vaccine met all criteria for the licensure of influenza vaccines set out in European Committee for Proprietary Medicinal Products (CPMP) and US FDA documents. In two clinical trials, two doses of AS03-H5N1 vaccine containing 3.75 microg of H5 hemagglutinin induced an immune response in healthy volunteers aged 18-60 years against the homologous, clade 1 vaccine strain, A/Vietnam/1194/2004, and the heterologous, drifted, clade 2 nonvaccine strains, A/Anhui/1/2005, A/Indonesia/5/2005, and A/turkey/Turkey/1/2005. This cross-clade response persisted for > or =6 months following administration of the first vaccine dose in the majority of

  2. Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1.

    PubMed

    Tompkins, Stephen Mark; Zhao, Zi-Shan; Lo, Chia-Yun; Misplon, Julia A; Liu, Teresa; Ye, Zhiping; Hogan, Robert J; Wu, Zhengqi; Benton, Kimberly A; Tumpey, Terrence M; Epstein, Suzanne L

    2007-03-01

    Changes in influenza viruses require regular reformulation of strain-specific influenza vaccines. Vaccines based on conserved antigens provide broader protection. Influenza matrix protein 2 (M2) is highly conserved across influenza A subtypes. To evaluate its efficacy as a vaccine candidate, we vaccinated mice with M2 peptide of a widely shared consensus sequence. This vaccination induced antibodies that cross-reacted with divergent M2 peptide from an H5N1 subtype. A DNA vaccine expressing full-length consensus-sequence M2 (M2-DNA) induced M2-specific antibody responses and protected against challenge with lethal influenza. Mice primed with M2-DNA and then boosted with recombinant adenovirus expressing M2 (M2-Ad) had enhanced antibody responses that crossreacted with human and avian M2 sequences and produced T-cell responses. This M2 prime-boost vaccination conferred broad protection against challenge with lethal influenza A, including an H5N1 strain. Vaccination with M2, with key sequences represented, may provide broad protection against influenza A. PMID:17552096

  3. Understanding of Drug-Target Interactions: A case Study in Influenza Virus A Subtype H5N1

    NASA Astrophysics Data System (ADS)

    Rungrotmongkol, Thanyada; Malaisree, Maturos; Decha, Panita; Laohpongspaisan, Chittima; Aruksakunwong, Ornjira; Intharathep, Pathumwadee; Pianwanit, Somsak; Sompornpisut, Pornthep; Parasuk, Vudhichai; Megnassan, Eugene; Frecer, Vladimir; Miertus, Stanislav; Hannongbua, Supot

    2007-12-01

    This study aims at gaining insight into molecular mechanisms of action of three drug targets of the life cycle of influenza virus A subtype H5N1, namely Hemagglutinin (H5), Neuraminidase (N1) and M2 ion channel (M2), using molecular mechanics and molecular dynamics techniques. In hemagglutinin, interest is focused on the high pathogenicity of the H5 due to the -RRRKK- insertion. MD simulations carried out for H5 in both high and low pathogenic forms (HPH5 and LPH5), aimed at understanding why HPH5 was experimentally observed to be 5-fold better cleaved by furin relative to the non-inserted sequence of LPH5. As the results, the cleavage loop of HPH5 was found to fit well and bind strongly into the catalytic site of human furin, serving as a conformation suitable for the proteolytic reaction. The second target, neuraminidase was studied by two different approaches. Firstly with MD simulations, rotation of the -NHAc and—OCHEt2 side chains of oseltamivir (OTV), leading directly to rearrangement of the catalytic cavity, was found to be a primary source of the lower susceptibility of OTV to neuraminidase subtype N1 than to N2 and N9. In addition, three inhibitiors, OTV, zanamivir (ZNV) and peramivir (PRV), complexed with neuraminidase subtype N1 were studied to understand the drug-target interactions. The structural properties, position and conformation of PRV and its side chains are uniformly preferential, i.e., its conformation fits very well with the N1 active site. At the N1 target, another approach, combinatorial chemistry, was used to design a library of new potent inhibitors, which well fit to the active site and the 150-loop residues of N1. Investigation was also extended to the M2 proton channel. Five different protonation states of the selectivity filter residue (His) where 0H, 1H, 2aH, 2dH and 4H represent the systems with none, mono-protonated, di-protonated at adjacent and opposite positions, and tetra-protonated, respectively, were taken into account both

  4. Avian Influenza Virus (H5N1): a Threat to Human Health

    PubMed Central

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, and the next pandemic may well arise from a low-pathogenicity virus. The rationale for particular concern about an H5N1 pandemic is not its inevitability but its potential severity. An H5N1 pandemic is an event of low probability but one of high human health impact and poses a predicament for public health. Here, we review the ecology and evolution of highly pathogenic avian influenza H5N1 viruses, assess the pandemic risk, and address aspects of human H5N1 disease in relation to its epidemiology, clinical presentation, pathogenesis, diagnosis, and management. PMID:17428885

  5. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    PubMed Central

    2010-01-01

    Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268

  6. Issues encountered in development of enzyme-linked immunosorbent assay for use in detecting influenza A virus subtype H5N1 exposure in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential mechanism by which highly pathogenic avian influenza H5N1 viruses could become established in humans is through the infection of and adaptation in pigs. To detect the occurrence of such adaptation, monitoring of the pig populations in endemic H5N1 areas through serological screening woul...

  7. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    PubMed

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08. PMID:20521659

  8. Avian Influenza A(H5N1) Virus in Egypt.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  9. Avian Influenza A(H5N1) Virus in Egypt

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Maatouq, Asmaa M.; Cai, Zhipeng; McKenzie, Pamela P.; Webby, Richard J.; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A.

    2016-01-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  10. Highly Pathogenic Avian Influenza Virus Subtype H5N1 Escaping Neutralization: More than HA Variation

    PubMed Central

    Höper, Dirk; Kalthoff, Donata; Hoffmann, Bernd

    2012-01-01

    Influenza A viruses are one of the major threats in modern health care. Novel viruses arise due to antigenic drift and antigenic shift, leading to escape from the immune system and resulting in a serious problem for disease control. In order to investigate the escape process and to enable predictions of escape, we serially passaged influenza A H5N1 virus in vitro 100 times under immune pressure. The generated escape viruses were characterized phenotypically and in detail by full-genome deep sequencing. Mutations already found in natural isolates were detected, evidencing the in vivo relevance of the in vitro-induced amino acid substitutions. Additionally, several novel alterations were triggered. Altogether, the results imply that our in vitro system is suitable to study influenza A virus evolution and that it might even be possible to predict antigenic changes of influenza A viruses circulating in vaccinated populations. PMID:22090121

  11. Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1).

    PubMed

    Makkoch, Jarika; Poomipak, Witthaya; Saengchoowong, Suthat; Khongnomnan, Kritsada; Praianantathavorn, Kesmanee; Jinato, Thananya; Poovorawan, Yong; Payungporn, Sunchai

    2016-02-01

    MicroRNAs (miRNAs) play an important role in regulation of gene silencing and are involved in many cellular processes including inhibition of infected viral replication. This study investigated cellular miRNA expression profiles operating in response to influenza virus in early stage of infection which might be useful for understanding and control of viral infection. A549 cells were infected with different subtypes of influenza virus (pH1N1, H3N2 and H5N1). After 24 h post-infection, miRNAs were extracted and then used for DNA library construction. All DNA libraries with different indexes were pooled together with equal concentration, followed by high-throughput sequencing based on MiSeq platform. The miRNAs were identified and counted from sequencing data by using MiSeq reporter software. The miRNAs expressions were classified into up and downregulated miRNAs compared to those found in non-infected cells. Mostly, each subtype of influenza A virus triggered the upregulated responses in miRNA expression profiles. Hsa-miR-101, hsa-miR-193b, hsa-miR-23b, and hsa-miR-30e* were upregulated when infected with all three subtypes of influenza A virus. Target prediction results showed that virus infection can trigger genes in cellular process, metabolic process, developmental process and biological regulation. This study provided some insights into the cellular miRNA profiling in response to various subtypes of influenza A viruses in circulation and which have caused outbreaks in human population. The regulated miRNAs might be involved in virus-host interaction or host defense mechanism, which should be investigated for effective antiviral therapeutic interventions. PMID:26518627

  12. Immunogenicity and efficacy of a recombinant adenovirus expressing hemagglutinin from the H5N1 subtype of swine influenza virus in mice.

    PubMed

    Wu, Yunpu; Qiao, Chuanling; Yang, Huanliang; Chen, Yan; Xin, Xiaoguang; Chen, Hualan

    2014-04-01

    The H5N1 influenza viruses infect a range of avian species and have recently been isolated from humans and pigs. In this study we generated a replication-defective recombinant adenovirus (rAd-H5HA-EGFP) expressing the hemagglutinin (HA) gene of H5N1 A/Swine/Fujian/1/2001 (SW/FJ/1/01) and evaluated its immunogenicity and protective efficacy in BALB/c mice. The recombinant virus induced high levels of hemagglutination inhibition (HI) antibody at a median tissue culture infective dose of 10(8) or 10(7). Compared with mice in the control groups, the mice vaccinated with rAd-H5HA-EGFP did not show apparent weight loss after challenge with either the homologous SW/FJ/1/01 or the heterologous H5N1 A/Chicken/Hunan/77/2005 (CK/HuN/77/05). Replication of the challenge virus was partially or completely inhibited, and viruses were detected at significantly lower numbers in the organs of the vaccinated mice, all of which survived the challenge with CK/HuN/77/05, whereas most of the control mice did not. These results indicate that rAd-H5HA-EGFP can provide effective immune protection from highly pathogenic H5N1 viruses in mice and is therefore a promising new candidate vaccine against H5N1 influenza in animals. PMID:24688173

  13. A SPR Aptasensor for Detection of Avian Influenza Virus H5N1

    PubMed Central

    Bai, Hua; Wang, Ronghui; Hargis, Billy; Lu, Huaguang; Li, Yanbin

    2012-01-01

    Rapid and specific detection of avian influenza virus (AIV) is urgently needed due to the concerns over the potential outbreaks of highly pathogenic H5N1 influenza in animals and humans. Aptamers are artificial oligonucleic acids that can bind specific target molecules, and show comparable affinity for target viruses and better thermal stability than monoclonal antibodies. The objective of this research was to use a DNA-aptamer as the specific recognition element in a portable Surface Plasmon Resonance (SPR) biosensor for rapid detection of AIV H5N1 in poultry swab samples. A SPR biosensor was fabricated using selected aptamers that were biotinylated and then immobilized on the sensor gold surface coated with streptavidin via streptavidin-biotin binding. The immobilized aptamers captured AIV H5N1 in a sample solution, which caused an increase in the refraction index (RI). After optimizing the streptavidin and aptamer parameters, the results showed that the RI value was linearly related (R2 = 0.99) to the concentration of AIV in the range of 0.128 to 1.28 HAU. Negligible signal (<4% of H5N1) was observed from six non-target AIV subtypes. The AIV H5N1 in poultry swab samples with concentrations of 0.128 to 12.8 HAU could be detected using this aptasensor in 1.5 h. PMID:23112728

  14. Highly Pathogenic Avian Influenza Virus Subtype H5N1 in Africa: A Comprehensive Phylogenetic Analysis and Molecular Characterization of Isolates

    PubMed Central

    Cattoli, Giovanni; Monne, Isabella; Fusaro, Alice; Joannis, Tony M.; Lombin, Lami H.; Aly, Mona M.; Arafa, Abdel S.; Sturm-Ramirez, Katharine M.; Couacy-Hymann, Emmanuel; Awuni, Joseph A.; Batawui, Komla B.; Awoume, Kodzo A.; Aplogan, Gilbert L.; Sow, Adama; Ngangnou, Andrè C.; El Nasri Hamza, Iman M.; Gamatié, Djibo; Dauphin, Gwenaelle; Domenech, Joseph M.; Capua, Ilaria

    2009-01-01

    Highly pathogenic avian influenza virus A/H5N1 was first officially reported in Africa in early 2006. Since the first outbreak in Nigeria, this virus spread rapidly to other African countries. From its emergence to early 2008, 11 African countries experienced A/H5N1 outbreaks in poultry and human cases were also reported in three of these countries. At present, little is known of the epidemiology and molecular evolution of A/H5N1 viruses in Africa. We have generated 494 full gene sequences from 67 African isolates and applied molecular analysis tools to a total of 1,152 A/H5N1 sequences obtained from viruses isolated in Africa, Europe and the Middle East between 2006 and early 2008. Detailed phylogenetic analyses of the 8 gene viral segments confirmed that 3 distinct sublineages were introduced, which have persisted and spread across the continent over this 2-year period. Additionally, our molecular epidemiological studies highlighted the association between genetic clustering and area of origin in a majority of cases. Molecular signatures unique to strains isolated in selected areas also gave us a clearer picture of the spread of A/H5N1 viruses across the continent. Mutations described as typical of human influenza viruses in the genes coding for internal proteins or associated with host adaptation and increased resistance to antiviral drugs have also been detected in the genes coding for transmembrane proteins. These findings raise concern for the possible human health risk presented by viruses with these genetic properties and highlight the need for increased efforts to monitor the evolution of A/H5N1 viruses across the African continent. They further stress how imperative it is to implement sustainable control strategies to improve animal and public health at a global level. PMID:19290041

  15. A Novel Humanized Antibody Neutralizes H5N1 Influenza Virus via Two Different Mechanisms

    PubMed Central

    Tan, Yunrui; Ng, Qingyong; Jia, Qiang

    2015-01-01

    ABSTRACT Highly pathogenic avian influenza virus subtype H5N1 continues to be a severe threat to public health, as well as the poultry industry, because of its high lethality and antigenic drift rate. Neutralizing monoclonal antibodies (MAbs) can serve as a useful tool for preventing, treating, and detecting H5N1. In the present study, humanized H5 antibody 8A8 was developed from a murine H5 MAb. Both the humanized and mouse MAbs presented positive activity in hemagglutination inhibition (HI), virus neutralization, and immunofluorescence assays against a wide range of H5N1 strains. Interestingly, both human and murine 8A8 antibodies were able to detect H5 in Western blot assays under reducing conditions. Further, by sequencing of escape mutants, the conformational epitope of 8A8 was found to be located within the receptor binding domain (RBD) of H5. The linear epitope of 8A8 was identified by Western blotting of overlapping fragments and substitution mutant forms of HA1. Reverse genetic H5N1 strains with individual mutations in either the conformational or the linear epitope were generated and characterized in a series of assays, including HI, postattachment, and cell-cell fusion inhibition assays. The results indicate that for 8A8, virus neutralization mediated by RBD blocking relies on the conformational epitope while binding to the linear epitope contributes to the neutralization by inhibiting membrane fusion. Taken together, the results of this study show that a novel humanized H5 MAb binds to two types of epitopes on HA, leading to virus neutralization via two mechanisms. IMPORTANCE Recurrence of the highly pathogenic avian influenza virus subtype H5N1 in humans and poultry continues to be a serious public health concern. Preventive and therapeutic measures against influenza A viruses have received much interest in the context of global efforts to combat the current and future pandemics. Passive immune therapy is considered to be the most effective and

  16. A VLP Vaccine Induces Broad-Spectrum Cross-Protective Antibody Immunity against H5N1 and H1N1 Subtypes of Influenza A Virus

    PubMed Central

    Wu, Chia-Ying; Yeh, Yi-Chun; Chan, Jia-Tsrong; Yang, Yu-Chih; Yang, Ji-Rong; Liu, Ming-Tsan; Wu, Ho-Sheng; Hsiao, Pei-Wen

    2012-01-01

    The recent threats of influenza epidemics and pandemics have prioritized the development of a universal vaccine that offers protection against a wider variety of influenza infections. Here, we demonstrate a genetically modified virus-like particle (VLP) vaccine, referred to as H5M2eN1-VLP, that increased the antigenic content of NA and induced rapid recall of antibody against HA2 after viral infection. As a result, H5M2eN1-VLP vaccination elicited a broad humoral immune response against multiple viral proteins and caused significant protection against homologous RG-14 (H5N1) and heterologous A/California/07/2009 H1N1 (CA/07) and A/PR/8/34 H1N1 (PR8) viral lethal challenges. Moreover, the N1-VLP (lacking HA) induced production of a strong NA antibody that also conferred significant cross protection against H5N1 and heterologous CA/07 but not PR8, suggesting the protection against N1-serotyped viruses can be extended from avian-origin to CA/07 strain isolated in humans, but not to evolutionally distant strains of human-derived. By comparative vaccine study of an HA-based VLP (H5N1-VLP) and NA-based VLPs, we found that H5N1-VLP vaccination induced specific and strong protective antibodies against the HA1 subunit of H5, thus restricting the breadth of cross-protection. In summary, we present a feasible example of direction of VLP vaccine immunity toward NA and HA2, which resulted in cross protection against both seasonal and pandemic influenza strains, that could form the basis for future design of a better universal vaccine. PMID:22879951

  17. Virtual screening of Indonesian flavonoid as neuraminidase inhibitor of influenza a subtype H5N1

    NASA Astrophysics Data System (ADS)

    Parikesit, A. A.; Ardiansah, B.; Handayani, D. M.; Tambunan, U. S. F.; Kerami, D.

    2016-02-01

    Highly Pathogenic Avian Influenza (HPAI) H5N1 poses a significant threat to animal and human health worldwide. The number of H5N1 infection in Indonesia is the highest during 2005-2013, with a mortality rate up to 83%. A mutation that occurred in H5N1 strain made it resistant to commercial antiviral agents such as oseltamivir and zanamivir, so the more potent antiviral agent is needed. In this study, virtual screening of Indonesian flavonoid as neuraminidase inhibitor of H5N1 was conducted. Total 491 flavonoid compound obtained from HerbalDB were screened. Molecular docking was performed using MOE 2008.10. This research resulted in Guajavin B as the best ligand.

  18. Temperature drops and the onset of severe avian influenza A H5N1 virus outbreaks.

    PubMed

    Liu, Chung-Ming; Lin, Shu-Hua; Chen, Ying-Chen; Lin, Katherine Chun-Min; Wu, Tsung-Shu Joseph; King, Chwan-Chuen

    2007-01-01

    Global influenza surveillance is one of the most effective strategies for containing outbreaks and preparing for a possible pandemic influenza. Since the end of 2003, highly pathogenic avian influenza viruses (HPAI) H5N1 have caused many outbreaks in poultries and wild birds from East Asia and have spread to at least 48 countries. For such a fast and wide-spreading virulent pathogen, prediction based on changes of micro- and macro-environment has rarely been evaluated. In this study, we are developing a new climatic approach by investigating the conditions that occurred before the H5N1 avian influenza outbreaks for early predicting future HPAI outbreaks and preventing pandemic disasters. The results show a temperature drop shortly before these outbreaks in birds in each of the Eurasian regions stricken in 2005 and 2006. Dust storms, like those that struck near China's Lake Qinghai around May 4, 2005, exacerbated the spread of this HPAI H5N1 virus, causing the deaths of a record number of wild birds and triggering the subsequent spread of H5N1. Weather monitoring could play an important role in the early warning of outbreaks of this potentially dangerous virus. PMID:17297505

  19. Highly Pathogenic Influenza A(H5N1) Virus Survival in Complex Artificial Aquatic Biotopes

    PubMed Central

    Horm, Viseth Srey; Gutiérrez, Ramona A.; Nicholls, John M.; Buchy, Philippe

    2012-01-01

    Background Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI) H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. Methodology/Principal Findings The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna) relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates) was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. Conclusions/Significance Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs. PMID:22514622

  20. Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3.2.1c with PB2 gene of H9N2 subtype into Indian poultry.

    PubMed

    Tosh, Chakradhar; Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Venkatesh, Govindarajulu; Shukla, Shweta; Mishra, Amit; Mishra, Pranav; Agarwal, Sonam; Singh, Bharati; Dubey, Prashant; Tripathi, Sushil; Kulkarni, Diwakar D

    2016-09-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are a threat to poultry in Asia, Europe, Africa and North America. Here, we report isolation and characterization of H5N1 viruses isolated from ducks and turkeys in Kerala, Chandigarh and Uttar Pradesh, India between November 2014 and March 2015. Genetic and phylogenetic analyses of haemagglutinin gene identified that the virus belonged to a new clade 2.3.2.1c which has not been detected earlier in Indian poultry. The virus possessed molecular signature for high pathogenicity to chickens, which was corroborated by intravenous pathogenicity index of 2.96. The virus was a reassortant which derives its PB2 gene from H9N2 virus isolated in China during 2007-2013. However, the neuraminidase and internal genes are of H5N1 subtype. Phylogenetic and network analysis revealed that after detection in China in 2013/2014, the virus moved to Europe, West Africa and other Asian countries including India. The analyses further indicated multiple introductions of H5N1 virus in Indian poultry and internal spread in Kerala. One of the outbreaks in ducks in Kerala is linked to the H5N1 virus isolated from wild birds in Dubai suggesting movement of virus probably through migration of wild birds. However, the outbreaks in ducks in Chandigarh and Uttar Pradesh were from an unknown source in Asia which also contributed gene pools to the outbreaks in Europe and West Africa. The widespread incidence of the novel H5N1 HPAI is similar to the spread of clade 2.2 ("Qinghai-like") virus in 2005, and should be monitored to avoid threat to animal and public health. PMID:27174088

  1. Microevolution of Highly Pathogenic Avian Influenza A(H5N1) Viruses Isolated from Humans, Egypt, 2007–2011

    PubMed Central

    Younan, Mary; Poh, Mee Kian; Elassal, Emad; Davis, Todd; Rivailler, Pierre; Balish, Amanda L.; Simpson, Natosha; Jones, Joyce; Deyde, Varough; Loughlin, Rosette; Perry, Ije; Gubareva, Larisa; ElBadry, Maha A.; Truelove, Shaun; Gaynor, Anne M.; Mohareb, Emad; Amin, Magdy; Cornelius, Claire; Pimentel, Guillermo; Earhart, Kenneth; Naguib, Amel; Abdelghani, Ahmed S.; Refaey, Samir; Klimov, Alexander I.; Kandeel, Amr

    2013-01-01

    We analyzed highly pathogenic avian influenza A(H5N1) viruses isolated from humans infected in Egypt during 2007–2011. All analyzed viruses evolved from the lineage of subtype H5N1 viruses introduced into Egypt in 2006; we found minimal evidence of reassortment and no exotic introductions. The hemagglutinin genes of the viruses from 2011 formed a monophyletic group within clade 2.2.1 that also included human viruses from 2009 and 2010 and contemporary viruses from poultry; this finding is consistent with zoonotic transmission. Although molecular markers suggestive of decreased susceptibility to antiviral drugs were detected sporadically in the neuraminidase and matrix 2 proteins, functional neuraminidase inhibition assays did not identify resistant viruses. No other mutations suggesting a change in the threat to public health were detected in the viral proteomes. However, a comparison of representative subtype H5N1 viruses from 2011 with older subtype H5N1 viruses from Egypt revealed substantial antigenic drift. PMID:23260983

  2. Avian influenza A H5N1 virus: a continuous threat to humans

    PubMed Central

    To, Kelvin KW; Ng, Kenneth HL; Que, Tak-Lun; Chan, Jacky MC; Tsang, Kay-Yan; Tsang, Alan KL; Chen, Honglin; Yuen, Kwok-Yung

    2012-01-01

    We report the first case of severe pneumonia due to co-infection with the emerging avian influenza A (H5N1) virus subclade 2.3.2.1 and Mycoplasma pneumoniae. The patient was a returning traveller who had visited a poultry market in South China. We then review the epidemiology, virology, interspecies barrier limiting poultry-to-human transmission, clinical manifestation, laboratory diagnosis, treatment and control measures of H5N1 clades that can be transmitted to humans. The recent controversy regarding the experiments involving aerosol transmission of recombinant H5N1 virus between ferrets is discussed. We also review the relative contribution of the poor response to antiviral treatment and the virus-induced hyperinflammatory damage to the pathogenesis and the high mortality of this infection. The factors related to the host, virus or medical intervention leading to the difference in disease mortality of different countries remain unknown. Because most developing countries have difficulty in instituting effective biosecurity measures, poultry vaccination becomes an important control measure. The rapid evolution of the virus would adversely affect the efficacy of poultry vaccination unless a correctly matched vaccine was chosen, manufactured and administered in a timely manner. Vigilant surveillance must continue to allow better preparedness for another poultry or human pandemic due to new viral mutants. PMID:26038430

  3. Development of vaccines against influenza A virus (H5N1).

    PubMed

    Li, Wen-Chen; Huang, Yhu-Chering

    2007-01-01

    Three influenza pandemics took place during the 20th century, including the 1918 pandemic, which killed an estimated 50 million people. We are facing the threat of another pandemic, which may be caused by an A/H5N1 influenza virus. These viruses have expanded their territory from Asia to the Middle East, Africa and Europe and have caused more than 190 human deaths up to the present. Vaccines in response to this pandemic threat are currently under development. Reverse-genetics-based inactivated whole-virion vaccines and adjuvanted split-virion vaccines are undergoing clinical trials and are among possible candidates to be approved as H5N1 vaccines for human beings. Problems, including low immunogenicity in the generally naive human population, a lack of data on these vaccines in relation to immunocompromised Dr. Yhu-Chering Huang patients, young children and the elderly and the currently limited global capacity to manufacture influenza vaccines, all need to be resolved. Several innovative approaches, such as the use of novel adjuvants, an antigen-sparing policy and the use of adenoviral-vector-based or DNA vaccines, are being used to develop more efficient vaccines. Every effort should be made to shorten the gap that remains and improve greatly influenza pandemic vaccine access. PMID:17939259

  4. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents

    PubMed Central

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-01-01

    Background Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. Objectives We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. Methods We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Results Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. Conclusions We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. PMID:24828535

  5. A computationally optimized broadly reactive H5 hemagglutinin vaccine provides protection against homologous and heterologous H5N1 highly pathogenic avian influenza virus infection in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its emergence in 1996 in China, H5N1 highly pathogenic avian influenza (HPAI) virus has continuously evolved into different genetic clades that have created challenges to maintaining antigenically relevant H5N1 vaccine seeds. Therefore, a universal (multi-hemagglutinin [HA] subtype) or more c...

  6. Development of a new candidate H5N1 avian influenza virus for pre-pandemic vaccination production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND. Highly pathogenic H5N1 avian influenza viruses currently circulating in birds have caused hundreds of human infections, and pose a significant pandemic threat. Vaccines are a major component of the public health sector preparedness for this likely event. The rapid evolution of H5N1 vi...

  7. Molecular Determinants of Virulence and Stability of a Reporter-Expressing H5N1 Influenza A Virus

    PubMed Central

    Zhao, Dongming; Fukuyama, Satoshi; Yamada, Shinya; Lopes, Tiago J. S.; Maemura, Tadashi; Katsura, Hiroaki; Ozawa, Makoto; Watanabe, Shinji; Neumann, Gabriele

    2015-01-01

    ABSTRACT We previously reported that an H5N1 virus carrying the Venus reporter gene, which was inserted into the NS gene segment from the A/Puerto Rico/8/1934(H1N1) virus (Venus-H5N1 virus), became more lethal to mice, and the reporter gene was stably maintained after mouse adaptation compared with the wild-type Venus-H5N1 (WT-Venus-H5N1) virus. However, the basis for this difference in virulence and Venus stability was unclear. Here, we investigated the molecular determinants behind this virulence and reporter stability by comparing WT-Venus-H5N1 virus with a mouse-adapted Venus-H5N1 (MA-Venus-H5N1) virus. To determine the genetic basis for these differences, we used reverse genetics to generate a series of reassortants of these two viruses. We found that reassortants with PB2 from MA-Venus-H5N1 (MA-PB2), MA-PA, or MA-NS expressed Venus more stably than did WT-Venus-H5N1 virus. We also found that a single mutation in PB2 (V25A) or in PA (R443K) increased the virulence of the WT-Venus-H5N1 virus in mice and that the presence of both of these mutations substantially enhanced the pathogenicity of the virus. Our results suggest roles for PB2 and PA in the stable maintenance of a foreign protein as an NS1 fusion protein in influenza A virus. IMPORTANCE The ability to visualize influenza viruses has far-reaching benefits in influenza virus research. Previously, we reported that an H5N1 virus bearing the Venus reporter gene became more pathogenic to mice and that its reporter gene was more highly expressed and more stably maintained after mouse adaptation. Here, we investigated the molecular determinants behind this enhanced virulence and reporter stability. We found that mutations in PB2 (V25A) and PA (R443K) play crucial roles in the stable maintenance of a foreign protein as an NS1 fusion protein in influenza A virus and in the virulence of influenza virus in mice. Our findings further our knowledge of the pathogenicity of influenza virus in mammals and will help

  8. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China

    PubMed Central

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-01-01

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c. PMID:27162026

  9. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-01-01

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c. PMID:27162026

  10. Continuing Threat of Influenza (H5N1) Virus Circulation in Egypt

    PubMed Central

    El-Shesheny, Rabeh; Kutkat, Mohamed A.; Kandeil, Ahmed M.; Mostafa, Ahmed; Ducatez, Mariette F.; McKenzie, Pamela P.; Govorkova, Elena A.; Nasraa, Mohamed H.; Webster, Robert G.; Webby, Richard J.; Ali, Mohamed A.

    2011-01-01

    Reservoirs for the continuing influenza (H5N1) outbreaks in Egypt are ill-defined. Through active surveillance, we detected highly pathogenic influenza subtype H5 viruses in all poultry sectors; incidence was 5%. No other subtypes were found. Continued circulation of influenza (H5N1) viruses in various regions and poultry sectors perpetuates human exposure in Egypt. PMID:22172626

  11. [Construction and experimental immunity of recombinant replication-competent canine adenovirus type 2 expressing hemagglutinin gene of H5N1 subtype tiger influenza virus].

    PubMed

    Gao, Yu-Wei; Xia, Xian-Zhu; Wang, Li-Gang; Liu, Dan; Huang, Geng

    2006-04-01

    H5N1 highly pathogenic avian influenza virus was highly pathogenic and sometimes even fatal for tigers and cats. To develop a new type of vaccine for Felidae influenza prevention, recombinant replication-competent canine adenovirus Type 2 expressing hemagglutinin gene of H5N1 subtype tiger influenza virus was constructed. A/tiger/Harbin/01/2003 (HSN1) HA gene was cloned into PVAX1. The HA expression cassette which included CMV and HA and PolyA was ligated into the E3 deletion region of pVAXdeltaE. The recombinant plasmid was named pdeltaEHA. The pdelta EHA and the pPoly2-CAV2 were digested with Nru I /Sal I, respectively. The purified Nru I/Sal I DNA fragment containing the HA expression cassette was cloned into pPoly2-CAV2 to generate the recombinant plasmid pCAV-2/HA. The recombinant genome was released from pCAV-2/HA, and was transfected into MDCK cells by Lipofectamine. The recombinant virus named CAV2/HA was gained. Anti-H5N1 influenza virus HI antibody (1:8 - 1:16) was detected in the cat immunized with CAV-2/HA. PMID:16736595

  12. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015

    PubMed Central

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F.; Shi, Weifeng; Lei, Fumin

    2015-01-01

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health. PMID:26259704

  13. Evolutionary features of influenza A/H5N1 virus populations in Egypt: poultry and human health implications.

    PubMed

    Naguib, Mahmoud M; Abdelwhab, E M; Harder, Timm C

    2016-07-01

    Since 2006, in Egypt, highly pathogenic avian influenza virus (HPAIV) H5N1 has established endemic status in poultry. Bayesian evolutionary analysis sampling trees suggested an introduction date in the third quarter of 2005. Evolutionary dynamics using Bayesian analysis showed that H5N1 viruses of clade 2.2.1.1 evolved at higher rates than those of clade 2.2.1.2. Bayesian skyline plot analysis of the HA gene of 840 and NA gene of 401 Egyptian H5N1 viruses from 2006-2015 identified two waves of viral population expansion correlating with the stepwise emergence of the 2.2.1.1 variant lineage in 2008 and with the newly emerging 2.2.1.2 cluster in late 2014. H5N1 infections in human hosts in 2014-2015 were statistically linked to a contemporary poultry outbreak. PMID:27068161

  14. Extrapolating theoretical efficacy of inactivated influenza A/H5N1 virus vaccine from human immunogenicity studies.

    PubMed

    Feldstein, Leora R; Matrajt, Laura; Elizabeth Halloran, M; Keitel, Wendy A; Longini, Ira M

    2016-07-19

    Influenza A virus subtype H5N1 has been a public health concern for almost 20years due to its potential ability to become transmissible among humans. Phase I and II clinical trials have assessed safety, reactogenicity and immunogenicity of inactivated influenza A/H5N1 virus vaccines. A shortage of vaccine is likely to occur during the first months of a pandemic. Hence, determining whether to give one dose to more people or two doses to fewer people to best protect the population is essential. We use hemagglutination-inhibition antibody titers as an immune correlate for avian influenza vaccines. Using an established relationship to obtain a theoretical vaccine efficacy from immunogenicity data from thirteen arms of six phase I and phase II clinical trials of inactivated influenza A/H5N1 virus vaccines, we assessed: (1) the proportion of theoretical vaccine efficacy achieved after a single dose (defined as primary response level), and (2) whether theoretical efficacy increases after a second dose, with and without adjuvant. Participants receiving vaccine with AS03 adjuvant had higher primary response levels (range: 0.48-0.57) compared to participants receiving vaccine with MF59 adjuvant (range: 0.32-0.47), with no observed trends in primary response levels by antigen dosage. After the first and second doses, vaccine with AS03 at dosage levels 3.75, 7.5 and 15mcg had the highest estimated theoretical vaccine efficacy: Dose (1) 45% (95% CI: 36-57%), 53% (95% CI: 42-63%) and 55% (95% CI: 44-64%), respectively and Dose (2) 93% (95% CI: 89-96%), 97% (95% CI: 95-98%) and 97% (95% CI: 96-100%), respectively. On average, the estimated theoretical vaccine efficacy of lower dose adjuvanted vaccines (AS03 and MF59) was 17% higher than that of higher dose unadjuvanted vaccines, suggesting that including an adjuvant is dose-sparing. These data indicate adjuvanted inactivated influenza A/H5N1 virus vaccine produces high theoretical efficacy after two doses to protect individuals

  15. Ecologic risk factor investigation of clusters of avian influenza A (H5N1) virus infection in Thailand.

    PubMed

    Tiensin, Thanawat; Ahmed, Syed Sayeem Uddin; Rojanasthien, Suvichai; Songserm, Thaweesak; Ratanakorn, Parntep; Chaichoun, Kridsada; Kalpravidh, Wantanee; Wongkasemjit, Surapong; Patchimasiri, Tuangthong; Chanachai, Karoon; Thanapongtham, Weerapong; Chotinan, Suwit; Stegeman, Arjan; Nielen, Mirjam

    2009-06-15

    This study was conducted to investigate space and time clusters of highly pathogenic avian influenza A (H5N1) virus infection and to determine risk factors at the subdistrict level in Thailand. Highly pathogenic avian influenza A (H5N1) was diagnosed in 1890 poultry flocks located in 953 subdistricts during 2004-2007. The ecologic risk for H5N1 virus infection was assessed on the basis of a spatial-based case-control study involving 824 case subdistricts and 3296 control subdistricts from 6 study periods. Risk factors investigated in clustered areas of H5N1 included human and animal demographic characteristics, poultry production systems, and wild birds and their habitats. Six variables remained statistically significant in the final model: flock density of backyard chickens (odds ratio [OR], 0.98), flock density of fighting cocks (OR, 1.02), low and high human density (OR, 0.60), presence of quail flocks (OR, 1.21), free-grazing duck flocks (OR, 2.17), and a poultry slaughterhouse (OR, 1.33). We observed a strong association between subdistricts with H5N1 virus-infected poultry flocks and evidence of prior and concomitant H5N1 infection in wild birds in the same subdistrict. PMID:19416075

  16. New Carbocyclic Amino Acid Derivatives Inhibit Infection Caused by Highly Pathogenic Influenza A Virus Strain (H5N1).

    PubMed

    Shibnev, V A; Garaev, T M; Deryabin, P G; Finogenova, M P; Botikov, A G; Mishin, D V

    2016-06-01

    New amino acid derivatives with carbocycles of adamantine and quinaldic acid were synthesized and their in vitro antiviral activity against influenza A/H5N1 virus was evaluated. Experiments on cultured embryonic porcine kidney epithelial cells showed that amino acid derivatives suppressed viral replication. Tret-butyloxycarbonyl-DL-methionylsulfonyl-1-adamantayl ethylamine and benzyloxycarbonyl-L-trypthophanyl-1-adamantayl ethylamine compounds demonstrated high activity in all in vitro experiments. Moreover, some compounds showed virucidal activity against influenza A/H5N1 virus. PMID:27383164

  17. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a surrogate for humans in influenza pathogenicity a...

  18. Influenza A strain-dependent pathogenesis in fatal H1N1 and H5N1 subtype infections of mice.

    PubMed

    Garigliany, Mutien Marie; Habyarimana, Adélite; Lambrecht, Bénédicte; Van de Paar, Els; Cornet, Anne; van den Berg, Thierry; Desmecht, Daniel

    2010-04-01

    To determine if fatal infections caused by different highly virulent influenza A viruses share the same pathogenesis, we compared 2 different influenza A virus subtypes, H1N1 and H5N1. The subtypes, which had shown no pathogenicity in laboratory mice, were forced to evolve by serial passaging. Although both adapted viruses evoked diffuse alveolar damage and showed a similar 50% mouse lethal dose and the same peak lung concentration, each had a distinct pathologic signature and caused a different course of acute respiratory distress syndrome. In the absence of any virus labeling, a histologist could readily distinguish infections caused by these 2 viruses. The different histologic features described in this study here refute the hypothesis of a single, universal cytokine storm underlying all fatal influenza diseases. Research is thus crucially needed to identify sets of virulence markers and to examine whether treatment should be tailored to the influenza virus pathotype. PMID:20350372

  19. Influenza A Strain-Dependent Pathogenesis in Fatal H1N1 and H5N1 Subtype Infections of Mice

    PubMed Central

    Garigliany, Mutien-Marie; Habyarimana, Adélite; Lambrecht, Bénédicte; Van de Paar, Els; Cornet, Anne; van den Berg, Thierry

    2010-01-01

    To determine if fatal infections caused by different highly virulent influenza A viruses share the same pathogenesis, we compared 2 different influenza A virus subtypes, H1N1 and H5N1. The subtypes, which had shown no pathogenicity in laboratory mice, were forced to evolve by serial passaging. Although both adapted viruses evoked diffuse alveolar damage and showed a similar 50% mouse lethal dose and the same peak lung concentration, each had a distinct pathologic signature and caused a different course of acute respiratory distress syndrome. In the absence of any virus labeling, a histologist could readily distinguish infections caused by these 2 viruses. The different histologic features described in this study here refute the hypothesis of a single, universal cytokine storm underlying all fatal influenza diseases. Research is thus crucially needed to identify sets of virulence markers and to examine whether treatment should be tailored to the influenza virus pathotype. PMID:20350372

  20. Increased Number of Human Cases of Influenza Virus A(H5N1) Infection, Egypt, 2014-15.

    PubMed

    Refaey, Samir; Azziz-Baumgartner, Eduardo; Amin, Marwa Mohamed; Fahim, Manal; Roguski, Katherine; Elaziz, Hanaa Abu Elsood Abd; Iuliano, A Danielle; Salah, Noha; Uyeki, Timothy M; Lindstrom, Steven; Davis, Charles Todd; Eid, Alaa; Genedy, Mohamed; Kandeel, Amr

    2015-12-01

    During November 2014-April 2015, a total of 165 case-patients with influenza virus A(H5N1) infection, including 6 clusters and 51 deaths, were identified in Egypt. Among infected persons, 99% reported poultry exposure: 19% to ill poultry and 35% to dead poultry. Only 1 person reported wearing personal protective equipment while working with poultry. PMID:26584397

  1. Tropism of Avian Influenza A (H5N1) Virus to Mesenchymal Stem Cells and CD34+ Hematopoietic Stem Cells

    PubMed Central

    Thanunchai, Maytawan; Kanrai, Pumaree; Wiboon-ut, Suwimon; Puthavathana, Pilaipan; Hongeng, Suradej; Thitithanyanont, Arunee

    2013-01-01

    The presence of abnormal hematologic findings such as lymphopenia, thrombocytopenia, and pancytopenia were diagnosed in severe cases of avian influenza A H5N1. Whether direct viral dissemination to bone marrow (BM) cells causes this phenomenon remains elusive. We explore the susceptibility of the two stem cell types; hematopoietic stem cells (HSCs) and mesenchymal stromal cells (MSCs) isolated from human BM cells or cord blood, to infection with avian H5N1 viruses. For the first time, we demonstrated that the H5N1 virus could productively infect and induce cell death in both human stem cell types. In contrast, these activities were not observed upon human influenza virus infection. We also determined whether infection affects the immunomodulatory function of MSCs. We noted a consequent dysregulation of MSC-mediated immune modulation as observed by high cytokine and chemokine production in H5N1 infected MSCs and monocytes cocultures. These findings provide a better understanding of H5N1 pathogenesis in terms of broad tissue tropism and systemic spread. PMID:24339969

  2. Efficacy of Parainfluenza Virus 5 Mutants Expressing Hemagglutinin from H5N1 Influenza A Virus in Mice

    PubMed Central

    Li, Zhuo; Gabbard, Jon D.; Mooney, Alaina; Chen, Zhenhai; Tompkins, S. Mark

    2013-01-01

    Parainfluenza virus 5 (PIV5) is a promising viral vector for vaccine development. PIV5 is safe, stable, efficacious, cost-effective to produce and, most interestingly, it overcomes preexisting antivector immunity. We have recently reported that PIV5 expressing the hemagglutinin (HA) from highly pathogenic avian influenza (HPAI) virus H5N1 (PIV5-H5) provides sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. It is thought that induction of apoptosis can lead to enhanced antigen presentation. Previously, we have shown that deleting the SH gene and the conserved C terminus of the V gene in PIV5 results in mutant viruses (PIV5ΔSH and PIV5VΔC) that enhance induction of apoptosis. In this study, we inserted the HA gene of H5N1 into PIV5ΔSH (PIV5ΔSH-H5) or PIV5VΔC (PIV5VΔC-H5) and compared their efficacies as vaccine candidates to PIV5-H5. We have found that PIV5ΔSH-H5 induced the highest levels of anti-HA antibodies, the strongest T cell responses, and the best protection against an H5N1 lethal challenge in mice. These results suggest that PIV5ΔSH is a better vaccine vector than wild-type PIV5. PMID:23804633

  3. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans.

    PubMed

    Kalthoff, Donata; Breithaupt, Angele; Teifke, Jens P; Globig, Anja; Harder, Timm; Mettenleiter, Thomas C; Beer, Martin

    2008-08-01

    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity. PMID:18680652

  4. An Anti-H5N1 Influenza Virus FcDART Antibody Is a Highly Efficacious Therapeutic Agent and Prophylactic against H5N1 Influenza Virus Infection

    PubMed Central

    Zanin, Mark; Keck, Zhen-Yong; Rainey, G. Jonah; Lam, Chia-Ying Kao; Boon, Adrianus C. M.; Rubrum, Adam; Darnell, Daniel; Wong, Sook-San; Griffin, Yolanda; Xia, Jinming; Webster, Robert G.; Johnson, Syd; Foung, Steven

    2015-01-01

    ABSTRACT Highly pathogenic H5N1 avian influenza viruses are associated with severe disease in humans and continue to be a pandemic threat. While vaccines are available, other approaches are required for patients that typically respond poorly to vaccination, such as the elderly and the immunocompromised. To produce a therapeutic agent that is highly efficacious at low doses and is broadly specific against antigenically drifted H5N1 influenza viruses, we developed two neutralizing monoclonal antibodies and combined them into a single bispecific Fc fusion protein (the Fc dual-affinity retargeting [FcDART] molecule). In mice, a single therapeutic or prophylactic dose of either monoclonal antibody at 2.5 mg/kg of body weight provided 100% protection against challenge with A/Vietnam/1203/04 (H5N1) or the antigenically drifted strain A/Whooper swan/Mongolia/244/05 (H5N1). In ferrets, a single 1-mg/kg prophylactic dose provided 100% protection against A/Vietnam/1203/04 challenge. FcDART was also effective, as a single 2.5-mg/kg therapeutic or prophylactic dose in mice provided 100% protection against A/Vietnam/1203/04 challenge. Antibodies bound to conformational epitopes in antigenic sites on the globular head of the hemagglutinin protein, on the basis of analysis of mutants with antibody escape mutations. While it was possible to generate escape mutants in vitro, they were neutralized by the antibodies in vivo, as mice infected with escape mutants were 100% protected after only a single therapeutic dose of the antibody used to generate the escape mutant in vitro. In summary, we have combined the antigen specificities of two highly efficacious anti-H5N1 influenza virus antibodies into a bispecific FcDART molecule, which represents a strategy to produce broadly neutralizing antibodies that are effective against antigenically diverse influenza viruses. IMPORTANCE Highly pathogenic H5N1 avian influenza viruses are associated with severe disease in humans and are a pandemic

  5. Development of a new candidate H5N1 avian influenza virus for pre‐pandemic vaccine production

    PubMed Central

    Dong, Jie; Matsuoka, Yumiko; Maines, Taronna R.; Swayne, David E.; O’Neill, Eduardo; Davis, C. Todd; Van‐Hoven, Neal; Balish, Amanda; Yu, Hong‐jie; Katz, Jacqueline M.; Klimov, Alexander; Cox, Nancy; Li, De‐xin; Wang, Yu; Guo, Yuan‐ji; Yang, Wei‐zhong; Donis, Ruben O.; Shu, Yue‐long

    2009-01-01

    Background  Highly pathogenic H5N1 avian influenza viruses currently circulating in birds have caused hundreds of human infections, and pose a significant pandemic threat. Vaccines are a major component of the public health preparedness for this likely event. The rapid evolution of H5N1 viruses has resulted in the emergence of multiple clades with distinct antigenic characteristics that require clade‐specific vaccines. A variant H5N1 virus termed clade 2.3.4 emerged in 2005 and has caused multiple fatal infections. Vaccine candidates that match the antigenic properties of variant viruses are necessary because inactivated influenza vaccines elicit strain‐specific protection. Objective  To address the need for a suitable seed for manufacturing a clade 2.3.4 vaccine, we developed a new H5N1 pre‐pandemic candidate vaccine by reverse genetics and evaluated its safety and replication in vitro and in vivo. Methods  A reassortant virus termed, Anhui/PR8, was produced by reverse genetics in compliance with WHO pandemic vaccine development guidelines and contains six genes from A/Puerto Rico/8/34 as well as the neuraminidase and hemagglutinin (HA) genomic segments from the A/Anhui/01/2005 virus. The multi‐basic cleavage site of HA was removed to reduce virulence. Results  The reassortant Anhui/PR8 grows well in eggs and is avirulent to chicken and ferrets but retains the antigenicity of the parental A/Anhui/01/2005 virus. Conclusion  These results indicate that the Anhui/PR8 reassortant lost a major virulent determinant and it is suitable for its use in vaccine manufacturing and as a reference vaccine virus against the H5N1 clade 2.3.4 viruses circulating in eastern China, Vietnam, Thailand, and Laos. PMID:19903211

  6. Dryocrassin ABBA, a novel active substance for use against amantadine-resistant H5N1 avian influenza virus.

    PubMed

    Ou, Changbo; Zhang, Qiang; Wu, Guojiang; Shi, Ningning; He, Cheng

    2015-01-01

    The occurrence of multi-drug resistant highly pathogenic avian influenza virus (HPAIV) strains highlights the urgent need for strategies for the prevention and control of avian influenza virus. The aim of our current study is to evaluate the antiviral activity of dryocrassin ABBA isolated from Rhizoma Dryopteridis Crassirhizomatis (RDC) against an amantadine-resistant H5N1 (A/Chicken/Hebei/706/2005) strain in a mouse model. Post inoculation with HPAIV H5N1 virus in mice, the survival rate was 87, 80, and 60% respectively in the 33, 18, and 12.5 mg/kg dryocrassin ABBA-treated groups. On the other hand, the survival rate was 53 and 20%, respectively in the amantadine-treated group and untreated group. Mice administered with dryocrassin ABBA or amantadine showed a significant weight increase compared to the untreated group. Moreover, 33 and 18 mg/kg dryocrassin ABBA have decreased lung index (P >0.05) and virus loads (P <0.01) compared to the untreated group on day 7. Also, on day 7 bronchoalveolar lavage fluid pro-inflammatory cytokines (IL-6, TNF-α, and IFN-γ) decreased significantly (P <0.01) while anti-inflammatory cytokines (IL-10 and MCP-1) were increased significantly (P <0.01) in the 33 and 18 mg/kg dryocrassin ABBA-treated groups compared to the amantadine group and the untreated group. Moreover, the concentrations of IL-12 in drug-treated groups were significantly (P < 0.01) lowered compared with the untreated group. Based on the above we conclude that orally administered dryocrassin ABBA provided mice protection against avian influenza virus H5N1 by inhibiting inflammation and reducing virus loads. Dryocrassin ABBA is a potential novel lead compound which had antiviral effects on amantadine-resistant avian influenza virus H5N1 infection. PMID:26136733

  7. Dryocrassin ABBA, a novel active substance for use against amantadine-resistant H5N1 avian influenza virus

    PubMed Central

    Ou, Changbo; Zhang, Qiang; Wu, Guojiang; Shi, Ningning; He, Cheng

    2015-01-01

    The occurrence of multi-drug resistant highly pathogenic avian influenza virus (HPAIV) strains highlights the urgent need for strategies for the prevention and control of avian influenza virus. The aim of our current study is to evaluate the antiviral activity of dryocrassin ABBA isolated from Rhizoma Dryopteridis Crassirhizomatis (RDC) against an amantadine-resistant H5N1 (A/Chicken/Hebei/706/2005) strain in a mouse model. Post inoculation with HPAIV H5N1 virus in mice, the survival rate was 87, 80, and 60% respectively in the 33, 18, and 12.5 mg/kg dryocrassin ABBA-treated groups. On the other hand, the survival rate was 53 and 20%, respectively in the amantadine-treated group and untreated group. Mice administered with dryocrassin ABBA or amantadine showed a significant weight increase compared to the untreated group. Moreover, 33 and 18 mg/kg dryocrassin ABBA have decreased lung index (P >0.05) and virus loads (P <0.01) compared to the untreated group on day 7. Also, on day 7 bronchoalveolar lavage fluid pro-inflammatory cytokines (IL-6, TNF-α, and IFN-γ) decreased significantly (P <0.01) while anti-inflammatory cytokines (IL-10 and MCP-1) were increased significantly (P <0.01) in the 33 and 18 mg/kg dryocrassin ABBA-treated groups compared to the amantadine group and the untreated group. Moreover, the concentrations of IL-12 in drug-treated groups were significantly (P < 0.01) lowered compared with the untreated group. Based on the above we conclude that orally administered dryocrassin ABBA provided mice protection against avian influenza virus H5N1 by inhibiting inflammation and reducing virus loads. Dryocrassin ABBA is a potential novel lead compound which had antiviral effects on amantadine-resistant avian influenza virus H5N1 infection. PMID:26136733

  8. A broadly protective vaccine against globally dispersed clade 1 and clade 2 H5N1 influenza viruses.

    PubMed

    Hoelscher, Mary A; Singh, Neetu; Garg, Sanjay; Jayashankar, Lakshmi; Veguilla, Vic; Pandey, Aseem; Matsuoka, Yumi; Katz, Jacqueline M; Donis, Ruben; Mittal, Suresh K; Sambhara, Suryaprakash

    2008-04-15

    Development of effective and immunogenic vaccines against highly pathogenic avian influenza H5N1 viruses with the potential to cause a pandemic is a public health priority. The global demand for a vaccine cannot be met in the event of an influenza pandemic because of the limited capacity to manufacture egg-derived vaccines as well as potential problems with the availability of embryonated eggs. Thus, there is an urgent need to develop alternative, egg-independent vaccines. We developed an adenoviral vector-based vaccine that contains hemagglutinin protein from clade 1 and clade 2 viruses, as well as conserved nucleoprotein, to broaden the vaccine coverage against H5N1 viruses. PMID:18462165

  9. Antigenic and genetic diversity of highly pathogenic avian influenza A (H5N1) viruses isolated in Egypt.

    PubMed

    Balish, Amanda L; Davis, C Todd; Saad, Magdi D; El-Sayed, Nasr; Esmat, Hala; Tjaden, Jeffrey A; Earhart, Kenneth C; Ahmed, Lu'ay E; Abd El-Halem, Mohamed; Ali, Abdel Hakem M; Nassif, Samir A; El-Ebiary, Elham A; Taha, M; Aly, Mona M; Arafa, Abdelstattar; O'Neill, Eduardo; Xiyan, Xu; Cox, Nancy J; Donis, Ruben O; Klimov, Alexander I

    2010-03-01

    Highly pathogenic avian influenza A virus (H5N1) has diverged antigenically and genetically since its initial detection in Asia in 1997. Viruses belonging to clade 2.2 in particular have been reported in numerous countries with the majority occurring in Egypt. Previous reports identified antigenic similarities between viruses belonging to clade 2.2. However, poultry and human viruses isolated in northern Egypt during 2007 and 2008 were found to be antigenically distinct from other clade 2.2 viruses from this country. Genetic analysis of the hemagglutinin revealed a high degree of nucleotide and amino acid divergence. The antigenic changes in Egyptian viruses isolated during 2007-08 necessitated that two of these strains be considered as potential H5N1 pre-pandemic vaccine candidates. PMID:20521654

  10. Phylogenetic and Pathogenic Analyses of Avian Influenza A H5N1 Viruses Isolated from Poultry in Vietnam

    PubMed Central

    Li, Yanbing; Jiang, Yongping; Liu, Liling; Chen, Hualan

    2012-01-01

    Despite great efforts to control the infection of poultry with H5N1 viruses, these pathogens continue to evolve and spread in nature, threatening public health. Elucidating the characteristics of H5N1 avian influenza virus will benefit disease control and pandemic preparation. Here, we sequenced the genomes of 15 H5N1 avian influenza viruses isolated in Vietnam in 2006 and 2007 and performed phylogenetic analyses to compare these sequences with those of other viruses available in the public databases. Molecular characterization of the H5N1 viruses revealed that seven genetically distinct clades of H5N1 viruses have appeared in Vietnam. Clade 2.3.4 viruses existed in Vietnam as early as 2005. Fifteen viruses isolated during 2006 and 2007 belonged to clade 1 and clade 2.3.4, and were divided into five genotypes. Reassortants between the clade 1 and clade 2.3.4 viruses were detected in both North and South Vietnam. We also assessed the replication and pathogenicity of these viruses in mice and found that these isolates replicated efficiently and exhibited distinct virulence in mice. Our results provide important information regarding the diversity of H5N1 viruses in nature. PMID:23226433

  11. Isocyanides as Influenza A Virus Subtype H5N1 Wild-Type M2 Channel Inhibitors.

    PubMed

    Wu, Shuwen; Huang, Jing; Gazzarrini, Sabrina; He, Si; Chen, Lihua; Li, Jun; Xing, Li; Li, Chufang; Chen, Ling; Neochoritis, Constantinos G; Liao, George P; Zhou, Haibing; Dömling, Alexander; Moroni, Anna; Wang, Wei

    2015-11-01

    Basic bulky amines such as amantadine are well-characterized M2 channel blockers, useful for treating influenza. Herein we report our surprising findings that charge-neutral, bulky isocyanides exhibit activities similar to--or even higher than--that of amantadine. We also demonstrate that these isocyanides have potent growth inhibitory activity against the H5N1 virus. The -NH2 to -N≡C group replacement within current anti-influenza drugs was found to give compounds with high activities at low-micromolar concentrations. For example, a tenfold improvement in potency was observed for 1-isocyanoadamantane (27), with an EC50 value of 0.487 μm against amantadine-sensitive H5N1 virus as determined by both MTT and plaque-reduction assays, without showing cytotoxicity. Furthermore, the isocyanide analogues synthesized in this study did not inhibit the V27A or S31N mutant M2 ion channels, according to electrophysiology experiments, and did not exhibit activity against amantadine-resistant virus strains. PMID:26506405

  12. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    PubMed Central

    2010-01-01

    Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1) virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1) through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1). The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1) is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation. PMID:20843329

  13. Molecular Basis of Replication of Duck H5N1 Influenza Viruses in a Mammalian Mouse Model

    PubMed Central

    Li, Zejun; Chen, Hualan; Jiao, Peirong; Deng, Guohua; Tian, Guobin; Li, Yanbing; Hoffmann, Erich; Webster, Robert G.; Matsuoka, Yumiko; Yu, Kangzhen

    2005-01-01

    We recently analyzed a series of H5N1 viruses isolated from healthy ducks in southern China since 1999 and found that these viruses had progressively acquired the ability to replicate and cause disease in mice. In the present study, we explored the genetic basis of this change in host range by comparing two of the viruses that are genetically similar but differ in their ability to infect mice and have different pathogenicity in mice. A/duck/Guangxi/22/2001 (DKGX/22) is nonpathogenic in mice, whereas A/duck/Guangxi/35/2001 (DKGX/35) is highly pathogenic. We used reverse genetics to create a series of single-gene recombinants that contained one gene from DKGX/22 and the remaining seven gene segments from DKGX/35. We find that the PA, NA, and NS genes of DKGX/22 could attenuate DKGX/35 virus to some extent, but PB2 of DKGX/22 virus attenuated the DKGX/35 virus dramatically, and an Asn-to-Asp substitution at position 701 of PB2 plays a key role in this function. Conversely, of the recombinant viruses in the DKGX/22 background, only the one that contains the PB2 gene of DKGX/35 was able to replicate in mice. A single amino acid substitution (Asp to Asn) at position 701 of PB2 enabled DKGX/22 to infect and become lethal for mice. These results demonstrate that amino acid Asn 701 of PB2 is one of the important determinants for this avian influenza virus to cross the host species barrier and infect mice, though the replication and lethality of H5N1 influenza viruses involve multiple genes and may result from a constellation of genes. Our findings may help to explain the expansion of the host range and lethality of the H5N1 influenza viruses to humans. PMID:16140781

  14. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Feeroz, Mohammed M; Rabiul Alam, SM; Kamrul Hasan, M; Akhtar, Sharmin; Jones-Engel, Lisa; Walker, David; McClenaghan, Laura; Rubrum, Adam; Franks, John; Seiler, Patrick; Jeevan, Trushar; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage. PMID:26038508

  15. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, D.E.; Suarez, D.L.; Senne, D.A.; Pedersen, J.C.; Killian, M.L.; Pasick, J.; Handel, K.; Pillai, S.P.S.; Lee, C.-W.; Stallknecht, D.; Slemons, R.; Ip, H.S.; Deliberto, T.

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10 5.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  16. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Somanathan Pillai, Smitha; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  17. Clinical Characteristics of 26 Human Cases of Highly Pathogenic Avian Influenza A (H5N1) Virus Infection in China

    PubMed Central

    Xiang, Nijuan; Zhou, Lei; Huai, Yang; Feng, Luzhao; Peng, Zhibin; Li, Zhongjie; Xu, Cuiling; Li, Junhua; Hu, Chengping; Li, Qun; Xu, Xiaoling; Liu, Xuecheng; Liu, Zigui; Xu, Longshan; Chen, Yusheng; Luo, Huiming; Wei, Liping; Zhang, Xianfeng; Xin, Jianbao; Guo, Junqiao; Wang, Qiuyue; Yuan, Zhengan; Zhou, Longnv; Zhang, Kunzhao; Zhang, Wei; Yang, Jinye; Zhong, Xiaoning; Xia, Shichang; Li, Lanjuan; Cheng, Jinquan; Ma, Erdang; He, Pingping; Lee, Shui Shan; Wang, Yu; Uyeki, Timothy M.; Yang, Weizhong

    2008-01-01

    Background While human cases of highly pathogenic avian influenza A (H5N1) virus infection continue to increase globally, available clinical data on H5N1 cases are limited. We conducted a retrospective study of 26 confirmed human H5N1 cases identified through surveillance in China from October 2005 through April 2008. Methodology/Principal Findings Data were collected from hospital medical records of H5N1 cases and analyzed. The median age was 29 years (range 6–62) and 58% were female. Many H5N1 cases reported fever (92%) and cough (58%) at illness onset, and had lower respiratory findings of tachypnea and dyspnea at admission. All cases progressed rapidly to bilateral pneumonia. Clinical complications included acute respiratory distress syndrome (ARDS, 81%), cardiac failure (50%), elevated aminotransaminases (43%), and renal dysfunction (17%). Fatal cases had a lower median nadir platelet count (64.5×109 cells/L vs 93.0×109 cells/L, p = 0.02), higher median peak lactic dehydrogenase (LDH) level (1982.5 U/L vs 1230.0 U/L, p = 0.001), higher percentage of ARDS (94% [n = 16] vs 56% [n = 5], p = 0.034) and more frequent cardiac failure (71% [n = 12] vs 11% [n = 1], p = 0.011) than nonfatal cases. A higher proportion of patients who received antiviral drugs survived compared to untreated (67% [8/12] vs 7% [1/14], p = 0.003). Conclusions/Significance The clinical course of Chinese H5N1 cases is characterized by fever and cough initially, with rapid progression to lower respiratory disease. Decreased platelet count, elevated LDH level, ARDS and cardiac failure were associated with fatal outcomes. Clinical management of H5N1 cases should be standardized in China to include early antiviral treatment for suspected H5N1 cases. PMID:18716658

  18. Initiation and regulation of immune responses to immunization with whole inactivated vaccines prepared from two genetically and antigenically distinct lineages of Egyptian influenza A virus subtype H5N1.

    PubMed

    Samy, Ahmed; El-Enbaawy, Mona I; El-Sanousi, Ahmed A; Nasef, Soad A; Hikono, Hirokazu; Saito, Takehiko

    2016-10-01

    Following the introduction of highly pathogenic avian influenza (HPAI) virus subtype H5N1, the Egyptian government implemented a massive poultry vaccination campaign as the cornerstone of its policies to control the virus. The efficacy of vaccination has been evaluated primarily by measuring titers of antibodies inhibiting the hemagglutinating activity of the viral hemagglutinin (HA). However, other aspects of the host response remain poorly understood. In the present study, in addition to hemagglutination inhibition (HI) titers, cytokine profiles were examined and IFNγ concentrations were measured in vivo after immunization with a whole inactivated virus (WIV) prepared from a classical strain of clade 2.2.1.2 (C121) and an antigenic drift variant of clade 2.2.1.1 (V1063). The results revealed an earlier response and higher HI titers and IFNγ levels in sera from chickens immunized with C121, accompanied by significantly higher expression of IL8, IL10, and IL18 in the spleen and IL6 and IL10 in the bursa, compared to those immunized with V1063. Furthermore, stimulation of the HD11 cell line with C121 induced gradual upregulation of pro-inflammatory cytokines, which was observed at 24 hours post-inoculation (hpi), and became more pronounced at 48 and 72 hpi, accompanied by upregulation of IFNα. Conversely, V1063 induced very early transient higher expression of pro-inflammatory cytokines at 3 and 6 hpi accompanied by upregulation of IL10, which then decreased at 24, 48 and 72 hpi. In summary, our results provide evidence of a correlation between adaptive immune responses induced by WIVs and higher expression of IL10 and IL18 in addition to early induction of IFNα. These findings could be used to improve immune responses induced by WIVs. PMID:27449156

  19. Lethal dissemination of H5N1 influenza virus is associated with dysregulation of inflammation and lipoxin signaling in a mouse model of infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Periodic outbreaks of highly pathogenic avian H5N1 influenza viruses, and the current H1N1 pandemic, highlight the need for a more detailed understanding of influenza virus pathogenesis. The continued emergence of new influenza viruses highlights the need to better understand influenza virus-host in...

  20. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus

    SciTech Connect

    Bornholdt, Zachary A.; Prasad, B.V. Venkataram

    2009-04-08

    The recent emergence of highly pathogenic avian (H5N1) influenza viruses, their epizootic and panzootic nature, and their association with lethal human infections have raised significant global health concerns. Several studies have underlined the importance of non-structural protein NS1 in the increased pathogenicity and virulence of these strains. NS1, which consists of two domains - a double-stranded RNA (dsRNA) binding domain and the effector domain, separated through a linker - is an antagonist of antiviral type-I interferon response in the host. Here we report the X-ray structure of the full-length NS1 from an H5N1 strain (A/Vietnam/1203/2004) that was associated with 60% of human deaths in an outbreak in Vietnam. Compared to the individually determined structures of the RNA binding domain and the effector domain from non-H5N1 strains, the RNA binding domain within H5N1 NS1 exhibits modest structural changes, while the H5N1 effector domain shows significant alteration, particularly in the dimeric interface. Although both domains in the full-length NS1 individually participate in dimeric interactions, an unexpected finding is that these interactions result in the formation of a chain of NS1 molecules instead of distinct dimeric units. Three such chains in the crystal interact with one another extensively to form a tubular organization of similar dimensions to that observed in the cryo-electron microscopy images of NS1 in the presence of dsRNA. The tubular oligomeric organization of NS1, in which residues implicated in dsRNA binding face a 20-{angstrom}-wide central tunnel, provides a plausible mechanism for how NS1 sequesters varying lengths of dsRNA, to counter cellular antiviral dsRNA response pathways, while simultaneously interacting with other cellular ligands during an infection.

  1. Efficacy of the New Neuraminidase Inhibitor CS-8958 against H5N1 Influenza Viruses

    PubMed Central

    Kiso, Maki; Kubo, Shuku; Ozawa, Makoto; Le, Quynh Mai; Nidom, Chairul A.; Yamashita, Makoto; Kawaoka, Yoshihiro

    2010-01-01

    Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 µg/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses

  2. Characterization of low pathogenicity H5N1 avian influenza viruses from North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low pathogenic H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 ...

  3. Elucidation of the molecular basis for the attenuation of a live, attenuated influenza A H5N1 cold-adapted vaccine virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recombinant, live influenza A H5N1 vaccine candidate with the hemagglutinin (HA) and neuraminidase (NA) genes derived from A/VietNam/1203/04 (H5N1) (H5N1 2004 wt) and the internal protein genes from A/Ann Arbor/6/60 (AA) (H2N2) cold-adapted (ca) virus has been previously shown to be attenuated in ...

  4. Spatial Modeling of Wild Bird Risk Factors for Highly Pathogenic A(H5N1) Avian Influenza Virus Transmission.

    PubMed

    Prosser, Diann J; Hungerford, Laura L; Erwin, R Michael; Ottinger, Mary Ann; Takekawa, John Y; Newman, Scott H; Xiao, Xiangming; Ellis, Erle C

    2016-05-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 yr, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae) are reported as secondary transmitters of HPAIV and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using geographic information software and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values and then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 to 30 km resolution for multiscale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications. PMID:27309075

  5. The Creation of a Contagious H5N1 Influenza Virus: Implications for the Education of Life Scientists

    PubMed Central

    Novossiolova, Tatyana; Minehata, Masamichi; Dando, Malcolm

    2012-01-01

    The paper contends that the ongoing controversy surrounding the creation of a contagious H5N1 influenza virus has already exposed the severe limitations of the possibility of preventing the hostile misuse of the life sciences by dint of oversight of proposals and publications. It further argues that in order to prevent the potential wholesale militarisation of the life sciences, it is essential that life scientists become aware of their responsibilities within the context of the Biological and Toxin Weapons Convention (BTWC) and actively contribute their expertise to strengthening the biological weapons non-proliferation regime . PMID:22984642

  6. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    SciTech Connect

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  7. Experimental infection of a North American raptor, American kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1)

    USGS Publications Warehouse

    Hall, J.S.; Ip, H.S.; Franson, J.C.; Meteyer, C.; Nashold, S.; Teslaa, J.L.; French, J.; Redig, P.; Brand, C.

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  8. Fitness Inference from Short-Read Data: Within-Host Evolution of a Reassortant H5N1 Influenza Virus

    PubMed Central

    Illingworth, Christopher J.R.

    2015-01-01

    We present a method to infer the role of selection acting during the within-host evolution of the influenza virus from short-read genome sequence data. Linkage disequilibrium between loci is accounted for by treating short-read sequences as noisy multilocus emissions from an underlying model of haplotype evolution. A hierarchical model-selection procedure is used to infer the underlying fitness landscape of the virus insofar as that landscape is explored by the viral population. In a first application of our method, we analyze data from an evolutionary experiment describing the growth of a reassortant H5N1 virus in ferrets. Across two sets of replica experiments we infer multiple alleles to be under selection, including variants associated with receptor binding specificity, glycosylation, and with the increased transmissibility of the virus. We identify epistasis as an important component of the within-host fitness landscape, and show that adaptation can proceed through multiple genetic pathways. PMID:26243288

  9. Identification of climate factors related to human infection with avian influenza A H7N9 and H5N1 viruses in China

    PubMed Central

    Li, Jing; Rao, Yuhan; Sun, Qinglan; Wu, Xiaoxu; Jin, Jiao; Bi, Yuhai; Chen, Jin; Lei, Fumin; Liu, Qiyong; Duan, Ziyuan; Ma, Juncai; Gao, George F.; Liu, Di; Liu, Wenjun

    2015-01-01

    Human influenza infections display a strongly seasonal pattern. However, whether H7N9 and H5N1 infections correlate with climate factors has not been examined. Here, we analyzed 350 cases of H7N9 infection and 47 cases of H5N1 infection. The spatial characteristics of these cases revealed that H5N1 infections mainly occurred in the South, Middle, and Northwest of China, while the occurrence of H7N9 was concentrated in coastal areas of East and South of China. Aside from spatial-temporal characteristics, the most adaptive meteorological conditions for the occurrence of human infections by these two viral subtypes were different. We found that H7N9 infections correlate with climate factors, especially temperature (TEM) and relative humidity (RHU), while H5N1 infections correlate with TEM and atmospheric pressure (PRS). Hence, we propose a risky window (TEM 4–14 °C and RHU 65–95%) for H7N9 infection and (TEM 2–22 °C and PRS 980-1025 kPa) for H5N1 infection. Our results represent the first step in determining the effects of climate factors on two different virus infections in China and provide warning guidelines for the future when provinces fall into the risky windows. These findings revealed integrated predictive meteorological factors rooted in statistic data that enable the establishment of preventive actions and precautionary measures against future outbreaks. PMID:26656876

  10. Identification of climate factors related to human infection with avian influenza A H7N9 and H5N1 viruses in China.

    PubMed

    Li, Jing; Rao, Yuhan; Sun, Qinglan; Wu, Xiaoxu; Jin, Jiao; Bi, Yuhai; Chen, Jin; Lei, Fumin; Liu, Qiyong; Duan, Ziyuan; Ma, Juncai; Gao, George F; Liu, Di; Liu, Wenjun

    2015-01-01

    Human influenza infections display a strongly seasonal pattern. However, whether H7N9 and H5N1 infections correlate with climate factors has not been examined. Here, we analyzed 350 cases of H7N9 infection and 47 cases of H5N1 infection. The spatial characteristics of these cases revealed that H5N1 infections mainly occurred in the South, Middle, and Northwest of China, while the occurrence of H7N9 was concentrated in coastal areas of East and South of China. Aside from spatial-temporal characteristics, the most adaptive meteorological conditions for the occurrence of human infections by these two viral subtypes were different. We found that H7N9 infections correlate with climate factors, especially temperature (TEM) and relative humidity (RHU), while H5N1 infections correlate with TEM and atmospheric pressure (PRS). Hence, we propose a risky window (TEM 4-14 °C and RHU 65-95%) for H7N9 infection and (TEM 2-22 °C and PRS 980-1025 kPa) for H5N1 infection. Our results represent the first step in determining the effects of climate factors on two different virus infections in China and provide warning guidelines for the future when provinces fall into the risky windows. These findings revealed integrated predictive meteorological factors rooted in statistic data that enable the establishment of preventive actions and precautionary measures against future outbreaks. PMID:26656876

  11. Vaccine Protection of Turkeys Against H5N1 Highly Pathogenic Avian Influenza Virus with a Recombinant Turkey Herpesvirus Expressing the Hemagglutinin Gene of Avian Influenza.

    PubMed

    Kapczynski, Darrell R; Dorsey, Kristi; Chrzastek, Klaudia; Moraes, Mauro; Jackwood, Mark; Hilt, Debra; Gardin, Yannick

    2016-06-01

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies by subtype and virulence of field virus. In this study, the efficacy of a recombinant turkey herpesvirus (rHVT) vector vaccine expressing the hemagglutinin gene from a clade 2.2 AI virus (A/Swan/Hungary/4999/2006) was evaluated in turkeys for protection against challenge with A/Whooper Swan/Mongolia/L244/2005 H5N1 HPAI clade 2.2. One-day-old turkeys received a single vaccination and were challenged at 4 wk postvaccination with 2 × 10(6) 50% embryo infectious dose per bird. The results demonstrate that following H5N1 HPAI challenge 96% protection was observed in rHVT-AI vaccinated turkeys. The oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared with sham-vaccinated birds. From respiratory and gastrointestinal tracts, there was a greater than 6 log10 reduction in shedding in vaccinated birds as compared with the controls. This study provides support for the use of a commercially available rHVT-AI vaccine to protect turkeys against H5N1 HPAI. PMID:27309280

  12. Evaluation of a conserved HA274-288 epitope to detect antibodies to highly pathogenic avian influenza virus H5N1 in Indonesian commercial poultry.

    PubMed

    Wawegama, Nadeeka K; Tarigan, Simson; Indriani, Risa; Selleck, Paul; Adjid, Rm Abdul; Syafriati, Tati; Hardiman; Durr, Peter A; Ignjatovic, Jagoda

    2016-08-01

    A peptide enzyme linked immunosorbent assay (ELISA) based on an epitope in the haemagglutinin (HA) of avian influenza virus H5N1, amino acid positions 274-288 (HA274-288) was evaluated for detection of H5N1-specific antibodies. An optimized ELISA based on the tetrameric form of the HA274-288 epitope designated MP15 gave low background with non-immune chicken sera and detected vaccinated and infected birds. The HA274-288 epitope was highly conserved in Indonesian H5N1 strains and antibody responses were detected in the majority of the vaccinated chickens regardless of the H5N1 strain used for vaccination. The HA274-288 epitope was also conserved in the majority of H5N1 strains from the neighbouring Asian region, and other H5 subtypes potentially allowing for a wider use of the MP15 ELISA in H5N1 vaccinated and infected flocks. The MP15 ELISA results correlated significantly with haemagglutination inhibition (HI) test results and test sensitivity and specificity were 87% and 92%, respectively. The MP15 ELISA titres were significantly higher than the HI titres in all immune sera allowing for sera to be tested at a single dilution of 1:400 which is of advantage in routine surveillance. The study indicated that the MP15 ELISA is potentially useful for serological detection of H5N1 vaccinated or infected poultry and to have some advantages over the standard HI test for routine monitoring of flocks' immunity after vaccination. PMID:27009612

  13. Pathogenicity of recombinant H5N1 avian influenza viruses with truncated NS1 gene in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NS1 protein of influenza A virus plays an important role in blocking the induction of type I interferon and other regulatory functions in infected cells. However, differences in length of the NS1 protein has been observed in highly pathogenic H5N1, H5N2, and H7N1 subtype avian influenza viruses...

  14. Characterization of H5N1 Influenza Virus Variants with Hemagglutinin Mutations Isolated from Patients

    PubMed Central

    Arai, Yasuha; Daidoji, Tomo; Kawashita, Norihito; Ibrahim, Madiha S.; El-Gendy, Emad El-Din M.; Hiramatsu, Hiroaki; Kubota-Koketsu, Ritsuko; Takagi, Tatsuya; Murata, Takeomi; Takahashi, Kazuo; Okuno, Yoshinobu; Nakaya, Takaaki; Suzuki, Yasuo; Ikuta, Kazuyoshi

    2015-01-01

    ABSTRACT A change in viral hemagglutinin (HA) receptor binding specificity from α2,3- to α2,6-linked sialic acid is necessary for highly pathogenic avian influenza (AI) virus subtype H5N1 to become pandemic. However, details of the human-adaptive change in the H5N1 virus remain unknown. Our database search of H5N1 clade 2.2.1 viruses circulating in Egypt identified multiple HA mutations that had been selected in infected patients. Using reverse genetics, we found that increases in both human receptor specificity and the HA pH threshold for membrane fusion were necessary to facilitate replication of the virus variants in human airway epithelia. Furthermore, variants with enhanced replication in human cells had decreased HA stability, apparently to compensate for the changes in viral receptor specificity and membrane fusion activity. Our findings showed that H5N1 viruses could rapidly adapt to growth in the human airway microenvironment by altering their HA properties in infected patients and provided new insights into the human-adaptive mechanisms of AI viruses. PMID:25852160

  15. Airborne transmission of H5N1 high pathogenicity avian influenza viruses during simulated home slaughter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most H5N1 human infections have occurred following exposure to H5N1 high pathogenicity avian influenza (HPAI) virus-infected poultry, especially when poultry are home slaughtered or slaughtered in live poultry markets. Previous studies have demonstrated that slaughter of clade 1 isolate A/Vietnam/1...

  16. Lethal dissemination of H5N1 influenza virus is associated with dysregulation of inflammation and lipoxin signaling in a mouse model of infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lessons learned from the Spanish influenza pandemic, the periodic outbreaks of highly pathogenic avian H5N1 influenza viruses, and the current H1N1 ("swine flu") pandemic highlight the need for a more detailed understanding of influenza virus pathogenesis and the host response to infection. To inve...

  17. Production of H5N1 Influenza Virus Matrix Protein 2 Ectodomain Protein Bodies in Tobacco Plants and in Insect Cells as a Candidate Universal Influenza Vaccine

    PubMed Central

    Mbewana, Sandiswa; Mortimer, Elizabeth; Pêra, Francisco F. P. G.; Hitzeroth, Inga Isabel; Rybicki, Edward P.

    2015-01-01

    The spread of influenza A viruses is partially controlled and prevented by vaccination. The matrix protein 2 ectodomain (M2e) is the most conserved sequence in influenza A viruses, and is therefore a good potential target for a vaccine to protect against multiple virus subtypes. We explored the feasibility of an M2e-based universal influenza A vaccine candidate based on the highly pathogenic avian influenza A virus, H5N1. A synthetic M2e gene was human- and plant-codon optimized and fused in-frame with a sequence encoding the N-terminal proline-rich domain (Zera®) of the γ-zein protein of maize. Zera®M2e was expressed transiently in Nicotiana benthamiana and Sf21 baculovirus/insect cell expression systems, and Zera®M2e protein bodies (PBs) were successfully produced in both expression systems. The plant-produced Zera®M2e PBs were purified and injected into Balb/c mice. Western blot analysis using insect cell-produced Zera®M2e PBs and multiple tandem M2e sequences (5xM2e) fused with the avian influenza H5N1 transmembrane and cytosolic tail (5xM2e_tHA) confirmed the presence of M2e-specific antibodies in immunized mice sera. The immunogenicity of the Zera®M2e indicates that our plant-produced protein has potential as an inexpensive universal influenza A vaccine. PMID:26697423

  18. Production of H5N1 Influenza Virus Matrix Protein 2 Ectodomain Protein Bodies in Tobacco Plants and in Insect Cells as a Candidate Universal Influenza Vaccine.

    PubMed

    Mbewana, Sandiswa; Mortimer, Elizabeth; Pêra, Francisco F P G; Hitzeroth, Inga Isabel; Rybicki, Edward P

    2015-01-01

    The spread of influenza A viruses is partially controlled and prevented by vaccination. The matrix protein 2 ectodomain (M2e) is the most conserved sequence in influenza A viruses, and is therefore a good potential target for a vaccine to protect against multiple virus subtypes. We explored the feasibility of an M2e-based universal influenza A vaccine candidate based on the highly pathogenic avian influenza A virus, H5N1. A synthetic M2e gene was human- and plant-codon optimized and fused in-frame with a sequence encoding the N-terminal proline-rich domain (Zera(®)) of the γ-zein protein of maize. Zera(®)M2e was expressed transiently in Nicotiana benthamiana and Sf21 baculovirus/insect cell expression systems, and Zera(®)M2e protein bodies (PBs) were successfully produced in both expression systems. The plant-produced Zera(®)M2e PBs were purified and injected into Balb/c mice. Western blot analysis using insect cell-produced Zera(®)M2e PBs and multiple tandem M2e sequences (5xM2e) fused with the avian influenza H5N1 transmembrane and cytosolic tail (5xM2e_tHA) confirmed the presence of M2e-specific antibodies in immunized mice sera. The immunogenicity of the Zera(®)M2e indicates that our plant-produced protein has potential as an inexpensive universal influenza A vaccine. PMID:26697423

  19. Detection and Isolation of H5N1 Influenza virus from Large Volumes of Natural Water

    PubMed Central

    Khalenkov, Alexey; Laver, W. Graeme; Webster, Robert G.

    2009-01-01

    Various species of aquatic or wetlands birds can be the natural reservoir of avian influenza A viruses of all hemagglutinin (HA) subtypes. Shedding of the virus into water leads to transmission between waterfowl and is a major threat for epidemics in poultry and pandemics in humans. Concentrations of the influenza virus in natural water reservoirs are often too low to be detected by most methods. The procedure was designed to detect low concentrations of the influenza virus in large volumes of water without the need for costly installations and reagents. The virus was adsorbed onto formalin-fixed erythrocytes and subsequently isolated in chicken embryos. Sensitivity of the method was determined using a reverse-genetic H5N1 virus. A concentration as low as 0.03 of the 50% egg infection dose per milliliter (EID50/ml) of the initial volume of water was effectively detected. The probability of detection was ∼13%, which is comparable to that of detecting the influenza virus M-gene by PCR amplification. The method can be used by field workers, ecologists, ornithologists, and researchers who need a simple method to isolate H5N1 influenza virus from natural reservoirs. The detection and isolation of virus in embryonated chicken eggs may help epidemiologic, genetic, and vaccine studies. PMID:18325605

  20. Duck migration and past influenza A (H5N1) outbreak areas

    USGS Publications Warehouse

    Gaidet, Nicolas; Newman, Scott H.; Hagemeijer, Ward; Dodman, Tim; Cappelle, Julien; Hammoumi, Saliha; De Simone, Lorenzo; Takekawa, John Y.

    2008-01-01

    In 2005 and 2006, the highly pathogenic avian influenza (HPAI) virus subtype H5N1 rapidly spread from Asia through Europe, the Middle East, and Africa. Waterbirds are considered the natural reservoir of low pathogenic avian influenza viruses (1), but their potential role in the spread of HPAI (H5N1), along with legal and illegal poultry and wildlife trade (2), is yet to be clarified.

  1. Highly Pathogenic Avian Influenza Virus (H5N1) Outbreak in Captive Wild Birds and Cats, Cambodia

    PubMed Central

    Marx, Nick; Ong, Sivuth; Gaidet, Nicolas; Hunt, Matt; Manuguerra, Jean-Claude; Sorn, San; Peiris, Malik; Van der Werf, Sylvie; Reynes, Jean-Marc

    2009-01-01

    From December 2003 through January 2004, the Phnom Tamao Wildlife Rescue Centre, Cambodia, was affected by the highly pathogenic influenza virus (H5N1). Birds from 26 species died. Influenza virus subtype H5N1 was detected in 6 of 7 species tested. Cats from 5 of 7 species were probably infected; none died. PMID:19239769

  2. Design, assembly, and validation of a nose-only inhalation exposure system for studies of aerosolized viable influenza H5N1 virus in ferrets

    PubMed Central

    2010-01-01

    Background The routes by which humans acquire influenza H5N1 infections have not been fully elucidated. Based on the known biology of influenza viruses, four modes of transmission are most likely in humans: aerosol transmission, ingestion of undercooked contaminated infected poultry, transmission by large droplets and self-inoculation of the nasal mucosa by contaminated hands. In preparation of a study to resolve whether H5N1 viruses are transmissible by aerosol in an animal model that is a surrogate for humans, an inhalation exposure system for studies of aerosolized H5N1 viruses in ferrets was designed, assembled, and validated. Particular attention was paid towards system safety, efficacy of dissemination, the viability of aerosolized virus, and sampling methodology. Results An aerosol generation and delivery system, referred to as a Nose-Only Bioaerosol Exposure System (NBIES), was assembled and function tested. The NBIES passed all safety tests, met expected engineering parameters, required relatively small quantities of material to obtain the desired aerosol concentrations of influenza virus, and delivered doses with high-efficacy. Ferrets withstood a mock exposure trial without signs of stress. Conclusions The NBIES delivers doses of aerosolized influenza viruses with high efficacy, and uses less starting material than other similar designs. Influenza H5N1 and H3N2 viruses remain stable under the conditions used for aerosol generation and sample collection. The NBIES is qualified for studies of aerosolized H5N1 virus. PMID:20573226

  3. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used ...

  4. Neuraminidase-Inhibiting Antibody Is a Correlate of Cross-Protection against Lethal H5N1 Influenza Virus in Ferrets Immunized with Seasonal Influenza Vaccine

    PubMed Central

    Brown, Lorena E.; Barr, Ian G.; Gilbertson, Brad; Lowther, Sue; Kachurin, Anatoly; Kachurina, Olga; Klippel, Jessica; Bodle, Jesse; Pearse, Martin; Middleton, Deborah

    2013-01-01

    In preparing for the threat of a pandemic of avian H5N1 influenza virus, we need to consider the significant delay (4 to 6 months) necessary to produce a strain-matched vaccine. As some degree of cross-reactivity between seasonal influenza vaccines and H5N1 virus has been reported, this was further explored in the ferret model to determine the targets of protective immunity. Ferrets were vaccinated with two intramuscular inoculations of trivalent inactivated split influenza vaccine or subcomponent vaccines, with and without adjuvant, and later challenged with a lethal dose of A/Vietnam/1203/2004 (H5N1) influenza virus. We confirmed that vaccination with seasonal influenza vaccine afforded partial protection against lethal H5N1 challenge and showed that use of either AlPO4 or Iscomatrix adjuvant with the vaccine resulted in complete protection against disease and death. The protection was due exclusively to the H1N1 vaccine component, and although the hemagglutinin contributed to protection, the dominant protective response was targeted toward the neuraminidase (NA) and correlated with sialic acid cleavage-inhibiting antibody titers. Purified heterologous NA formulated with Iscomatrix adjuvant was also protective. These results suggest that adjuvanted seasonal trivalent vaccine could be used as an interim measure to decrease morbidity and mortality from H5N1 prior to the availability of a specific vaccine. The data also highlight that an inducer of cross-protective immunity is the NA, a protein whose levels are not normally monitored in vaccines and whose capacity to induce immunity in recipients is not normally assessed. PMID:23283953

  5. A Unique and Conserved Neutralization Epitope in H5N1 Influenza Viruses Identified by an Antibody against the A/Goose/Guangdong/1/96 Hemagglutinin

    PubMed Central

    Zhu, Xueyong; Guo, Yong-Hui; Jiang, Tao; Wang, Ya-Di; Chan, Kwok-Hung; Li, Xiao-Feng; Yu, Wenli; McBride, Ryan; Paulson, James C.; Yuen, Kwok-Yung; Qin, Cheng-Feng

    2013-01-01

    Despite substantial efforts to control and contain H5N1 influenza viruses, bird flu viruses continue to spread and evolve. Neutralizing antibodies against conserved epitopes on the viral hemagglutinin (HA) could confer immunity to the diverse H5N1 virus strains and provide information for effective vaccine design. Here, we report the characterization of a broadly neutralizing murine monoclonal antibody, H5M9, to most H5N1 clades and subclades that was elicited by immunization with viral HA of A/Goose/Guangdong/1/96 (H5N1), the immediate precursor of the current dominant strains of H5N1 viruses. The crystal structures of the Fab′ fragment of H5M9 in complexes with H5 HAs of A/Vietnam/1203/2004 and A/Goose/Guangdong/1/96 reveal a conserved epitope in the HA1 vestigial esterase subdomain that is some distance from the receptor binding site and partially overlaps antigenic site C of H3 HA. Further epitope characterization by selection of escape mutants and epitope mapping by flow cytometry analysis of site-directed mutagenesis of HA with a yeast cell surface display identified four residues that are critical for H5M9 binding. D53, Y274, E83a, and N276 are all conserved in H5N1 HAs and are not in H5 epitopes identified by other mouse or human antibodies. Antibody H5M9 is effective in protection of H5N1 virus both prophylactically and therapeutically and appears to neutralize by blocking both virus receptor binding and postattachment steps. Thus, the H5M9 epitope identified here should provide valuable insights into H5N1 vaccine design and improvement, as well as antibody-based therapies for treatment of H5N1 infection. PMID:24049169

  6. Pathobiology of Asian highly pathogenic avian influenza H5N1 virus infection in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks and other wild aquatic birds are the natural reservoir of influenza type A viruses which normally are nonpathogenic in these birds. However, the Asian H5N1 avian influenza (AI) viruses have evolved from producing no disease or mild respiratory infections in ducks, to some strains producing se...

  7. Differences in pathogenicity of A/Duck/Vietnam/201/05 H5N1 highly pathogenic avian influenza virus reassortants in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand which viral genes contribute to the high virulence of A/Dk/Vietnam/201/05 H5N1 highly pathogenic avian influenza (HPAI) virus in ducks, we used reverse genetics to generate single-gene reassortant viruses with genes from A/Ck/Indonesia/7/03, a virus that produces mild disease ...

  8. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation.

    PubMed

    Arafa, A; Suarez, D; Kholosy, S G; Hassan, M K; Nasef, S; Selim, A; Dauphin, G; Kim, M; Yilma, J; Swayne, D; Aly, M M

    2012-10-01

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country, affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used as a part of the control strategy to help to control the disease. Epidemiological data with sequence analysis of H5N1 viruses is important to link the mechanism of virus evolution in Egypt. This study describes the evolutionary pattern of Egyptian H5N1 viruses based on molecular characterization for the isolates collected from commercial poultry farms and village poultry from 2006 to 2011. Genetic analysis of the hemagglutinin (HA) gene was done by sequencing of the full-length H5 gene. The epidemiological pattern of disease outbreaks in Egyptian poultry farms seems to be seasonal with no specific geographic distribution across the country. The molecular epidemiological data revealed that there are two major groups of viruses: the classic group of subclade 2.2.1 and a variant group of 2.2.1.1. The classic group is prevailing mainly in village poultry and had fewer mutations compared to the originally introduced virus in 2006. Since 2009, this group has started to be transmitted back to commercial sectors. The variant group emerged by late 2007, was prevalent mainly in vaccinated commercial poultry, mutated continuously at a higher rate until 2010, and started to decline in 2011. Genetic analysis of the neuraminidase (NA) gene and the other six internal genes indicates a grouping of the Egyptian viruses similar to that obtained using the HA gene, with no obvious reassortments. The results of this study indicate that HPAI-H5N1 viruses are progressively evolving and adapting in Egypt and continue to acquire new mutations every season. PMID:22760662

  9. Extent of antigenic cross-reactivity among highly pathogenic H5N1 influenza viruses.

    PubMed

    Ducatez, Mariette F; Cai, Zhipeng; Peiris, Malik; Guan, Yi; Ye, Zhiping; Wan, Xiu-Feng; Webby, Richard J

    2011-10-01

    Highly pathogenic H5N1 avian influenza viruses emerged in 1996 and have since evolved so extensively that a single strain can no longer be used as a prepandemic vaccine or diagnostic reagent. We therefore sought to identify the H5N1 strains that may best serve as cross-reactive diagnostic reagents. We compared the cross-reactivity of 27 viruses of clades 0, 1, 2.1, 2.2, 2.3, and 4 and of four computationally designed ancestral H5N1 strains by hemagglutination inhibition (HI) and microneutralization (MN) assays. Antigenic cartography was used to analyze the large quantity of resulting data. Cartographs of HI titers with chicken red blood cells were similar to those of MN titers, but HI with horse red blood cells decreased antigenic distances among the H5N1 strains studied. Thus, HI with horse red blood cells seems to be the assay of choice for H5N1 diagnostics. Whereas clade 2.2 antigens were able to detect antibodies raised to most of the tested H5N1 viruses (and clade 2.2-specific antisera detected most of the H5N1 antigens), ancestral strain A exhibited the widest reactivity pattern and hence was the best candidate diagnostic reagent for broad detection of H5N1 strains. PMID:21832017

  10. Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last two decades, transgenic plants have been explored as safe and cost effective alternative expression platforms for producing recombinant proteins. In this study, a synthetic hemagglutinin (HA) gene from the high pathogenicity avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1)...

  11. Birds and Influenza H5N1 Virus Movement to and within North America

    PubMed Central

    Hubálek, Zdenek

    2006-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 expanded considerably during 2005 and early 2006 in both avian host species and geographic distribution. Domestic waterfowl and migratory birds are reservoirs, but lethality of this subtype appeared to initially limit migrant effectiveness as introductory hosts. This situation may have changed, as HPAI H5N1 has recently expanded across Eurasia and into Europe and Africa. Birds could introduce HPAI H5N1 to the Western Hemisphere through migration, vagrancy, and importation by people. Vagrants and migratory birds are not likely interhemispheric introductory hosts; import of infected domestic or pet birds is more probable. If reassortment or mutation were to produce a virus adapted for rapid transmission among humans, birds would be unlikely introductory hosts because of differences in viral transmission mechanisms among major host groups (i.e., gastrointestinal for birds, respiratory for humans). Another possible result of reassortment would be a less lethal form of avian influenza, more readily spread by birds. PMID:17176561

  12. A human antibody recognizing a conserved epitope of H5 hemagglutinin broadly neutralizes highly pathogenic avian influenza H5N1 viruses.

    PubMed

    Hu, Hongxing; Voss, Jarrod; Zhang, Guoliang; Buchy, Philippi; Zuo, Teng; Wang, Lulan; Wang, Feng; Zhou, Fan; Wang, Guiqing; Tsai, Cheguo; Calder, Lesley; Gamblin, Steve J; Zhang, Linqi; Deubel, Vincent; Zhou, Boping; Skehel, John J; Zhou, Paul

    2012-03-01

    Influenza A virus infection is a persistent threat to public health worldwide due to its ability to evade immune surveillance through rapid genetic drift and shift. Current vaccines against influenza A virus provide immunity to viral isolates that are similar to vaccine strains. High-affinity neutralizing antibodies against conserved epitopes could provide immunity to diverse influenza virus strains and protection against future pandemic viruses. In this study, by using a highly sensitive H5N1 pseudotype-based neutralization assay to screen human monoclonal antibodies produced by memory B cells from an H5N1-infected individual and molecular cloning techniques, we developed three fully human monoclonal antibodies. Among them, antibody 65C6 exhibited potent neutralization activity against all H5 clades and subclades except for subclade 7.2 and prophylactic and therapeutic efficacy against highly pathogenic avian influenza H5N1 viruses in mice. Studies on hemagglutinin (HA)-antibody complexes by electron microscopy and epitope mapping indicate that antibody 65C6 binds to a conformational epitope comprising amino acid residues at positions 118, 121, 161, 164, and 167 (according to mature H5 numbering) on the tip of the membrane-distal globular domain of HA. Thus, we conclude that antibody 65C6 recognizes a neutralization epitope in the globular head of HA that is conserved among almost all divergent H5N1 influenza stains. PMID:22238297

  13. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    SciTech Connect

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J.

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  14. Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum.

    PubMed

    Jarocka, Urszula; Sawicka, Róża; Góra-Sochacka, Anna; Sirko, Agnieszka; Zagórski-Ostoja, Włodzimierz; Radecki, Jerzy; Radecka, Hanna

    2014-05-15

    This paper describes the development of an immunosensor for detection of anti-hemagglutinin antibodies. Its preparation consists of successive modification steps of glassy carbon electrodes: (i) creation of COOH groups, (ii) covalent immobilization of protein A with EDC/NHS coupling reaction, (iii) covering with anti-His IgG monoclonal antibody, (iv) immobilization of the recombinant His-tagged hemagglutinin (His6-H5 HA), (v) filling free space with BSA. The interactions between two variants of recombinant HA (short and long) from highly pathogenic avian influenza virus H5N1 and the anti-H5 HA monoclonal antibody (Mab 6-9-1) have been explored with electrochemical impedance spectroscopy (EIS). The impedimetric immunosensor displayed a very good detection limit (LOD) of 2.1 pg/mL, the quantification limit (LOQ) of 6.3 pg/mL and a dynamic range from 4 pg/mL to 20 pg/mL. In addition, this analytical device was applied for detection of antibodies against His6-H5 HA in serum of vaccinated hen using serial 10-fold dilutions of serum. The immunosensor proposed was able to detect antibody in hen serum diluted up to 7 × 10(7)-fold. The sensitivity of immunosensor was about four orders of magnitude much better than ELISA. PMID:24412426

  15. Adaptation of high-growth influenza H5N1 vaccine virus in Vero cells: implications for pandemic preparedness.

    PubMed

    Tseng, Yu-Fen; Hu, Alan Yung-Chih; Huang, Mei-Liang; Yeh, Wei-Zhou; Weng, Tsai-Chuan; Chen, Yu-Shuan; Chong, Pele; Lee, Min-Shi

    2011-01-01

    Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14), a reassortant virus between A/Vietnam/1194/2004 (H5N1) virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15) was generated and can grow over 10(8) TCID(50)/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes. PMID:22022351

  16. Highly Pathogenic Avian Influenza Virus A/H5N1 Infection in Vaccinated Meat Duck Flocks in the Mekong Delta of Vietnam.

    PubMed

    Cuong, N V; Truc, V N T; Nhung, N T; Thanh, T T; Chieu, T T B; Hieu, T Q; Men, N T; Mai, H H; Chi, H T; Boni, M F; van Doorn, H R; Thwaites, G E; Carrique-Mas, J J; Hoa, N T

    2016-04-01

    We investigated episodes of suspected highly pathogenic avian influenza (HPAI)-like illness among 12 meat duck flocks in two districts in Tien Giang province (Mekong Delta, Vietnam) in November 2013. In total, duck samples from 8 of 12 farms tested positive for HPAI virus subtype A/haemagglutinin 5 and neuraminidase 1 (H5N1) by real-time RT-PCR. Sequencing results confirmed clade of 2.3.2.1.c as the cause of the outbreaks. Most (7/8) laboratory-confirmed positive flocks had been vaccinated with inactivated HPAI H5N1 clade 2.3.4 vaccines <6 days prior to onset of clinical signs. A review of vaccination data in relation to estimated production in the area suggested that vaccination efforts were biased towards larger flocks and that vaccination coverage was low [21.2% ducks vaccinated with two shots (range by district 7.4-34.9%)]. The low-coverage data, the experimental evidence of lack of cross-protection conferred by the currently used vaccines based on clade 2.3.4 together with the short lifespan of meat duck flocks (60-70 days), suggest that vaccination is not likely to be effective as a tool for control of H5N1 infection in meat duck flocks in the area. PMID:26748550

  17. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian ...

  18. Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus

    PubMed Central

    Taft, Andrew S.; Ozawa, Makoto; Fitch, Adam; Depasse, Jay V.; Halfmann, Peter J.; Hill-Batorski, Lindsay; Hatta, Masato; Friedrich, Thomas C.; Lopes, Tiago J. S.; Maher, Eileen A.; Ghedin, Elodie; Macken, Catherine A.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Avian influenza viruses of the H5N1 subtype pose a serious global health threat due to the high mortality (>60%) associated with the disease caused by these viruses and the lack of protective antibodies to these viruses in the general population. The factors that enable avian H5N1 influenza viruses to replicate in humans are not completely understood. Here we use a high-throughput screening approach to identify novel mutations in the polymerase genes of an avian H5N1 virus that confer efficient polymerase activity in mammalian cells. Several of the identified mutations (which have previously been found in natural isolates) increase viral replication in mammalian cells and virulence in infected mice compared with the wild-type virus. The identification of amino-acid mutations in avian H5N1 influenza virus polymerase complexes that confer increased replication and virulence in mammals is important for the identification of circulating H5N1 viruses with an increased potential to infect humans. PMID:26082035

  19. Avian influenza A (H5N1) infection in a patient in China, 2006

    PubMed Central

    Chen, X.; Smith, G.J.D.; Zhou, B.; Qiu, C.; Wu, W.L.; Li, Y.; Lu, P.; Duan, L.; Liu, S.; Yuan, J.; Yang, G.; Wang, H.; Cheng, J.; Jiang, H.; Peiris, J.S.M.; Chen, H.; Yuen, K.Y.; Zhong, N.; Guan, Y.

    2008-01-01

    Background  Highly pathogenic avian influenza H5N1 virus has caused increasing human infection in Eurasia since 2004. So far, H5N1 human infection has been associated with over 50% mortality that is partly because of delay of diagnosis and treatment. Objectives and methods  Here, we report that an H5N1 influenza virus infected a 31‐year‐old patient in Shenzhen in June 2006. To identify the possible source of the infection, the human isolate and other H5N1 influenza viruses obtained from poultry and wild birds in southern China during the same period of time were characterized. Results  Genetic and antigenic analyses revealed that the human H5N1 influenza virus, Shenzhen/406H/06, is of purely avian origin and is most closely related to viruses detected in poultry and wild birds in Hong Kong in early 2006. Conclusions  The findings of the present study suggest that the continued endemicity of H5N1 influenza virus in the poultry in southern China increases the chance for introduction of the virus to humans. This highlights the importance of continued surveillance of poultry and wild birds for determining the source for human H5N1 infection. PMID:19453428

  20. Avian influenza H5N1 virus infections in vaccinated commercial and backyard poultry in Egypt.

    PubMed

    Hafez, M H; Arafa, A; Abdelwhab, E M; Selim, A; Khoulosy, S G; Hassan, M K; Aly, M M

    2010-08-01

    In this paper, we describe results from a high-pathogenic H5N1 avian influenza virus (AIV) surveillance program in previously H5-vaccinated commercial and family-backyard poultry flocks that was conducted from 2007 to 2008 by the Egyptian National Laboratory for Veterinary Quality Control on Poultry Production. The real-time reverse transcription PCR assay was used to detect the influenza A virus matrix gene and detection of the H5 and N1 subtypes was accomplished using a commercially available kit real-time reverse transcription PCR assay. The virus was detected in 35/3,610 (0.97%) and 27/8,682 (0.31%) of examined commercial poultry farms and 246/816 (30%) and 89/1,723 (5.2%) of backyard flocks in 2007 and 2008, respectively. Positive flocks were identified throughout the year, with the highest frequencies occurring during the winter months. Anti-H5 serum antibody titers in selected commercial poultry ranged from <2 (negative) to 9.6 log(2) when determined in the hemagglutination inhibition test using a H5 AIV antigen. In conclusion, despite the nationwide vaccination strategy of poultry in Egypt to combat H5N1 AIV, continuous circulation of the virus in vaccinated commercial and backyard poultry was reported and the efficacy of the vaccination using a challenge model with the current circulating field virus should be revised. PMID:20634514

  1. [Preliminary study of a universal vaccine based on the HA2 protein of the H5N1 influenza virus].

    PubMed

    Xin, Li; Yang, Xing-Yu; Yu, Zai-Jiang; Bo, Hong; Zhou, Jian-Fang; Qin, Kun; Shu, Yue-Long

    2014-09-01

    Fragments encoding amino acids 76-130 in the linear conserved region (LCR) of A/Hubei/1/2010 (H5N1) HA2 was fused to hepatitis B core antigen (HBc) to generate a LCR-HBe virus-like particle (VLP). Results showed that the fusion protein of LCR-HBc was highly expressed in this prokaryotic expression system. The purified LCR-HBc particle stimulated high levels of IgG production in mice with a titer of > 1:12 800, and provided 50% cross-protection against lethal challenge by H1N1 viruses. PMID:25562961

  2. A Duck Enteritis Virus-Vectored Bivalent Live Vaccine Provides Fast and Complete Protection against H5N1 Avian Influenza Virus Infection in Ducks ▿ † §

    PubMed Central

    Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan

    2011-01-01

    Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 106 PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks. PMID:21865383

  3. Ducks: the "Trojan horses" of H5N1 influenza.

    PubMed

    Kim, Jeong-Ki; Negovetich, Nicholas J; Forrest, Heather L; Webster, Robert G

    2009-07-01

    Wild ducks are the main reservoir of influenza A viruses that can be transmitted to domestic poultry and mammals, including humans. Of the 16 hemagglutinin (HA) subtypes of influenza A viruses, only the H5 and H7 subtypes cause highly pathogenic (HP) influenza in the natural hosts. Several duck species are naturally resistant to HP Asian H5N1 influenza viruses. These duck species can shed and spread virus from both the respiratory and intestinal tracts while showing few or no disease signs. While the HP Asian H5N1 viruses are 100% lethal for chickens and other gallinaceous poultry, the absence of disease signs in some duck species has led to the concept that ducks are the "Trojan horses" of H5N1 in their surreptitious spread of virus. An important unresolved issue is whether the HP H5N1 viruses are maintained in the wild duck population of the world. Here, we review the ecology and pathobiology of ducks infected with influenza A viruses and ducks' role in the maintenance and spread of HP H5N1 viruses. We also identify the key questions about the role of ducks that must be resolved in order to understand the emergence and control of pandemic influenza. It is generally accepted that wild duck species can spread HP H5N1 viruses, but there is insufficient evidence to show that ducks maintain these viruses and transfer them from one generation to the next. PMID:19627369

  4. Comparative epidemiology of human infections with avian influenza A(H7N9) and A(H5N1) viruses in China

    PubMed Central

    Cowling, Benjamin J.; Jin, Lianmei; Lau, Eric H. Y.; Liao, Qiaohong; Wu, Peng; Jiang, Hui; Tsang, Tim K.; Zheng, Jiandong; Fang, Vicky J.; Chang, Zhaorui; Ni, Michael Y.; Zhang, Qian; Ip, Dennis K. M.; Yu, Jianxing; Li, Yu; Wang, Liping; Tu, Wenxiao; Meng, Ling; Wu, Joseph T.; Luo, Huiming; Li, Qun; Shu, Yuelong; Li, Zhongjie; Feng, Zijian; Yang, Weizhong; Wang, Yu; Leung, Gabriel M.; Yu, Hongjie

    2013-01-01

    Background The novel influenza A(H7N9) virus recently emerged, while influenza A(H5N1) virus has infected humans since 2003 in mainland China. Both infections are thought to be predominantly zoonotic. We compared the epidemiologic characteristics of the complete series of laboratory-confirmed cases of both viruses in mainland China to date. Methods An integrated database was constructed with information on demographic, epidemiological, and clinical variables of laboratory-confirmed A(H7N9) and A(H5N1) cases that were reported to the Chinese Center for Disease Control and Prevention up to May 24, 2013. We described disease occurrence by age, sex and geography and estimated key epidemiologic parameters. Findings Among 130 and 43 patients with confirmed A(H7N9) and A(H5N1) respectively, the median ages were 62y and 26y. In urban areas, 74% of cases of both viruses were male whereas in rural areas the proportions were 62% for A(H7N9) and 33% for A(H5N1). Among cases of A(H7N9) and A(H5N1), 75% and 71% reported recent exposure to poultry. The mean incubation periods of A(H7N9) and A(H5N1) were 3.1 and 3.3 days, respectively. On average, 21 and 18 contacts were traced for each A(H7N9) case in urban and rural areas respectively; compared to 90 and 63 for A(H5N1). The hospitalization fatality risk was 35% (95% CI: 25%, 44%) for A(H7N9) and 70% (95% CI: 56%, 83%) for A(H5N1). Interpretation The sex ratios in urban compared to rural cases are consistent with poultry exposure driving the risk of infection. However the difference in susceptibility to serious illness with the two different viruses remains unexplained, given that most A(H7N9) cases were in older adults while most A(H5N1) cases were in younger individuals. Funding Ministry of Science and Technology, China; Research Fund for the Control of Infectious Disease and University Grants Committee, Hong Kong Special Administrative Region, China; and the US National Institutes of Health. PMID:23803488

  5. Amantadine resistance among highly pathogenic avian influenza viruses (H5N1) isolated from India.

    PubMed

    Jacob, Aron; Sood, Richa; Chanu, Kh Victoria; Bhatia, Sandeep; Khandia, Rekha; Pateriya, A K; Nagarajan, S; Dimri, U; Kulkarni, D D

    2016-02-01

    Emergence of antiviral resistance among H5N1 avian influenza viruses is the major challenge in the control of pandemic influenza. Matrix 2 (M2) inhibitors (amantadine and rimantadine) and neuraminidase inhibitors (oseltamivir and zanamivir) are the two classes of antiviral agents that are specifically active against influenza viruses and are used for both treatment and prophylaxis of influenza infections. Amantadine targets the M2 ion channel of influenza A virus and interrupts virus life cycle through blockade of hydrogen ion influx. This prevents uncoating of the virus in infected host cells which impedes the release of ribonucleoprotein required for transcription and replication of virion in the nucleus. The present study was carried out to review the status of amantadine resistance in H5N1 viruses isolated from India and to study their replicative capability. Results of the study revealed resistance to amantadine in antiviral assay among four H5N1 viruses out of which two viruses had Serine 31 Asparagine (AGT-AAT i.e., S31N) mutation and two had Valine 27 Alanine (GTT-GCT i.e., V27A) mutation. The four resistant viruses not only exhibited significant difference in effective concentration 50% (EC50) values of amantadine hydrochloride from that of susceptible viruses (P < 0.0001) but also showed significant difference between two different types (S31N and V27A) of mutant viruses (P < 0.05). Resistance to amantadine could also be demonstrated in a simple HA test after replication of the viruses in MDCK cells in presence of amantadine. The study identifies the correlation between in vitro antiviral assay and presence of established molecular markers of resistance, the retention of replicative capacity in the presence of amantadine hydrochloride by the resistant viruses and the emergence of resistant mutations against amantadine among avian influenza viruses (H5N1) without selective drug pressure. PMID:26639679

  6. Identification of Amino Acids in HA and PB2 Critical for the Transmission of H5N1 Avian Influenza Viruses in a Mammalian Host

    PubMed Central

    Gao, Yuwei; Zhang, Ying; Shinya, Kyoko; Deng, Guohua; Jiang, Yongping; Li, Zejun; Guan, Yuntao; Tian, Guobin; Li, Yanbing; Shi, Jianzhong; Liu, Liling; Zeng, Xianying; Bu, Zhigao; Xia, Xianzhu; Kawaoka, Yoshihiro; Chen, Hualan

    2009-01-01

    Since 2003, H5N1 influenza viruses have caused over 400 known cases of human infection with a mortality rate greater than 60%. Most of these cases resulted from direct contact with virus-contaminated poultry or poultry products. Although only limited human-to-human transmission has been reported to date, it is feared that efficient human-to-human transmission of H5N1 viruses has the potential to cause a pandemic of disastrous proportions. The genetic basis for H5N1 viral transmission among humans is largely unknown. In this study, we used guinea pigs as a mammalian model to study the transmission of six different H5N1 avian influenza viruses. We found that two viruses, A/duck/Guangxi/35/2001 (DKGX/35) and A/bar-headed goose/Qinghai/3/2005(BHGQH/05), were transmitted from inoculated animals to naïve contact animals. Our mutagenesis analysis revealed that the amino acid asparagine (Asn) at position 701 in the PB2 protein was a prerequisite for DKGX/35 transmission in guinea pigs. In addition, an amino acid change in the hemagglutinin (HA) protein (Thr160Ala), resulting in the loss of glycosylation at 158–160, was responsible for HA binding to sialylated glycans and was critical for H5N1 virus transmission in guinea pigs. These amino acids changes in PB2 and HA could serve as important molecular markers for assessing the pandemic potential of H5N1 field isolates. PMID:20041223

  7. Susceptibility of wood ducks (Aix sponsa) to H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is un...

  8. Pathogenicity of two Egyptian H5N1 highly pathogenic avian influenza viruses in domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Interestingly, the pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in ducks. These changes in vir...

  9. Determinants of pathogenicity of H5N1 highly pathogenic avian influenza viruses in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of the H5N1 highly pathogenic avian influenza (HPAI) viruses. The pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in very short time. The determinants of pathogenic...

  10. Growth determinants for H5N1 influenza vaccine seed viruses in MDCK cells.

    PubMed

    Murakami, Shin; Horimoto, Taisuke; Mai, Le Quynh; Nidom, Chairul A; Chen, Hualan; Muramoto, Yukiko; Yamada, Shinya; Iwasa, Ayaka; Iwatsuki-Horimoto, Kiyoko; Shimojima, Masayuki; Iwata, Akira; Kawaoka, Yoshihiro

    2008-11-01

    H5N1 influenza A viruses are exacting a growing human toll, with more than 240 fatal cases to date. In the event of an influenza pandemic caused by these viruses, embryonated chicken eggs, which are the approved substrate for human inactivated-vaccine production, will likely be in short supply because chickens will be killed by these viruses or culled to limit the worldwide spread of the infection. The Madin-Darby canine kidney (MDCK) cell line is a promising alternative candidate substrate because it supports efficient growth of influenza viruses compared to other cell lines. Here, we addressed the molecular determinants for growth of an H5N1 vaccine seed virus in MDCK cells, revealing the critical responsibility of the Tyr residue at position 360 of PB2, the considerable requirement for functional balance between hemagglutinin (HA) and neuraminidase (NA), and the partial responsibility of the Glu residue at position 55 of NS1. Based on these findings, we produced a PR8/H5N1 reassortant, optimized for this cell line, that derives all of its genes for its internal proteins from the PR8(UW) strain except for the NS gene, which derives from the PR8(Cambridge) strain; its N1 NA gene, which has a long stalk and derives from an early H5N1 strain; and its HA gene, which has an avirulent-type cleavage site sequence and is derived from a circulating H5N1 virus. Our findings demonstrate the importance and feasibility of a cell culture-based approach to producing seed viruses for inactivated H5N1 vaccines that grow robustly and in a timely, cost-efficient manner as an alternative to egg-based vaccine production. PMID:18768983

  11. Novel linear DNA vaccines induce protective immune responses against lethal infection with influenza virus type A/H5N1

    PubMed Central

    Kendirgi, Frédéric; Yun, Nadezda E.; Linde, Nathaniel S.; Zacks, Michele A.; Smith, Jeanon N.; Smith, Jennifer K.; McMicken, Harilyn; Chen, Yin; Paessler, Slobodan

    2008-01-01

    Vaccine development for possible influenza pandemics has been challenging. Conventional vaccines such as inactivated and live attenuated virus preparations are limited in terms of production speed and capacity. DNA vaccination has emerged as a potential alternative to conventional vaccines against influenza pandemics. In this study, we use a novel, cell-free DNA manufacturing process (synDNA™) to produce prototype linear DNA vaccines against the influenza virus type A/H5N1. This synDNA™ process does not require bacterial fermentation, so it avoids the use of antibiotic resistance genes and other nucleic acid sequences unrelated to the antigen gene expression in the actual therapeutic DNA construct. The efficacy of various vaccines expressing the hemagglutinin and neuraminidase proteins (H5N1 synDNA™), hemagglutinin alone (H5 synDNA™) or neuraminidase alone (N1 synDNA™) was evaluated in mice. Two of the constructs (H5 synDNA™ and H5N1 synDNA™) induced a robust protective immune response with up to 93% of treated mice surviving a lethal challenge of a virulent influenza A/Vietnam/1203/04 H5N1 isolate. In combination with a potent biological activity and simplified production footprint, these characteristics make DNA vaccines prepared with our synDNA™ process highly suitable as alternatives to other vaccine preparations. PMID:18443425

  12. Novel linear DNA vaccines induce protective immune responses against lethal infection with influenza virus type A/H5N1.

    PubMed

    Kendirgi, Frédéric; Yun, Nadezda E; Linde, Nathaniel S; Zacks, Michele A; Smith, Jeanon N; Smith, Jennifer K; McMicken, Harilyn; Chen, Yin; Paessler, Slobodan

    2008-01-01

    Vaccine development for possible influenza pandemics has been challenging. Conventional vaccines such as inactivated and live attenuated virus preparations are limited in terms of production speed and capacity. DNA vaccination has emerged as a potential alternative to conventional vaccines against influenza pandemics. In this study, we use a novel, cell-free DNA manufacturing process (synDNA) to produce prototype linear DNA vaccines against the influenza virus type A/H5N1. This synDNA process does not require bacterial fermentation, so it avoids the use of antibiotic resistance genes and other nucleic acid sequences unrelated to the antigen gene expression in the actual therapeutic DNA construct. The efficacy of various vaccines expressing the hemagglutinin and neuraminidase proteins (H5N1 synDNA), hemagglutinin alone (H5 synDNA) or neuraminidase alone (N1 synDNA) was evaluated in mice. Two of the constructs (H5 synDNA and H5N1 synDNA) induced a robust protective immune response with up to 93% of treated mice surviving a lethal challenge of a virulent influenza A/Vietnam/1203/04 H5N1 isolate. In combination with a potent biological activity and simplified production footprint, these characteristics make DNA vaccines prepared with our synDNA process highly suitable as alternatives to other vaccine preparations. PMID:18443425

  13. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 103 EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 106 EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  14. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses.

    PubMed

    He, Biao; Zheng, Bo-jian; Wang, Qian; Du, Lanying; Jiang, Shibo; Lu, Lu

    2015-02-01

    Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines. PMID:25479556

  15. Detection and Quantification of Infectious Avian Influenza A (H5N1) Virus in Environmental Water by Using Real-Time Reverse Transcription-PCR ▿

    PubMed Central

    Dovas, C. I.; Papanastassopoulou, M.; Georgiadis, M. P.; Chatzinasiou, E.; Maliogka, V. I.; Georgiades, G. K.

    2010-01-01

    Routes of avian influenza virus (AIV) dispersal among aquatic birds involve direct (bird-to-bird) and indirect (waterborne) transmission. The environmental persistence of H5N1 virus in natural water reservoirs can be assessed by isolation of virus in embryonated chicken eggs. Here we describe development and evaluation of a real-time quantitative reverse transcription (RT)-PCR (qRT-PCR) method for detection of H5N1 AIV in environmental water. This method is based on adsorption of virus particles to formalin-fixed erythrocytes, followed by qRT-PCR detection. The numbers of hemagglutinin RNA copies from H5N1 highly pathogenic AIV particles adsorbed to erythrocytes detected correlated highly with the infectious doses of the virus that were determined for three different types of artificially inoculated environmental water over a 17-day incubation period. The advantages of this method include detection and quantification of infectious H5N1 AIVs with a high level of sensitivity, a wide dynamic range, and reproducibility, as well as increased biosecurity. The lowest concentration of H5N1 virus that could be reproducibly detected was 0.91 50% egg infective dose per ml. In addition, a virus with high virion stability (Tobacco mosaic virus) was used as an internal control to accurately monitor the efficiency of RNA purification, cDNA synthesis, and PCR amplification for each individual sample. This detection system could be useful for rapid high-throughput monitoring for the presence of H5N1 AIVs in environmental water and in studies designed to explore the viability and epidemiology of these viruses in different waterfowl ecosystems. The proposed method may also be adapted for detection of other AIVs and for assessment of their prevalence and distribution in environmental reservoirs. PMID:20118369

  16. Early control of H5N1 influenza virus replication by the Type I interferon response in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Widespread distribution of highly pathogenic avian H5N1 influenza viruses in domesticated and wild birds continues to pose a threat to public health as interspecies transmission of virus has resulted in increasing numbers of human disease. Although the pathogenic mechanism(s) of H5N1 influenza viru...

  17. Erythrocyte binding preference of avian influenza H5N1 viruses.

    PubMed

    Louisirirotchanakul, Suda; Lerdsamran, Hatairat; Wiriyarat, Witthawat; Sangsiriwut, Kantima; Chaichoune, Kridsda; Pooruk, Phisanu; Songserm, Taweesak; Kitphati, Rungrueng; Sawanpanyalert, Pathom; Komoltri, Chulaluk; Auewarakul, Prasert; Puthavathana, Pilaipan

    2007-07-01

    Five erythrocyte species (horse, goose, chicken, guinea pig, and human) were used to agglutinate avian influenza H5N1 viruses by hemagglutination assay and to detect specific antibody by hemagglutination inhibition test. We found that goose erythrocytes confer a greater advantage over other erythrocyte species in both assays. PMID:17522271

  18. Improved protection against avian influenza H5N1 virus by a single vaccination with virus-like particles in skin using microneedles

    PubMed Central

    Song, Jae-Min; Kim, Yeu-Chun; Barlow, Peter G.; Hossain, M. Jaber; Park, Kyoung-Mi; Donis, Ruben O.; Prausnitz, Mark R.; Compans, Richard W.; Kang, Sang-Moo

    2010-01-01

    Summary To develop a more effective vaccination method against H5N1 virus, we investigated the immunogenicity and protective efficacy after skin vaccination using microneedles coated with influenza virus-like particles containing hemagglutinin derived from A/Vietnam/1203/04 H5N1 virus (H5 VLPs). A single microneedle vaccination of mice with H5 VLPs induced increased levels of antibodies and provided complete protection against lethal challenge without apparent disease symptoms. In contrast, intramuscular injection with the same vaccine dose showed low levels of antibodies and provided only partial protection accompanied by severe body weight loss. Post-challenge analysis suggested that improved protection was associated with lower lung viral titers and enhanced generation of recall antibody secreting cells by microneedle vaccination. Thus, this study provides evidence that skin delivery of H5 VLP vaccines using microneedles designed for self-administration induces improved protection compared to conventional intramuscular immunization. PMID:20851715

  19. Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong.

    PubMed

    Gao, P; Watanabe, S; Ito, T; Goto, H; Wells, K; McGregor, M; Cooley, A J; Kawaoka, Y

    1999-04-01

    An H5N1 avian influenza A virus was transmitted to humans in Hong Kong in 1997. Although the virus causes systemic infection and is highly lethal in chickens because of the susceptibility of the hemagglutinin to furin and PC6 proteases, it is not known whether it also causes systemic infection in humans. The clinical outcomes of infection in Hong Kong residents ranged widely, from mild respiratory disease to multiple organ failure leading to death. Therefore, to understand the pathogenesis of influenza due to these H5N1 isolates, we investigated their virulence in mice. The results identified two distinct groups of viruses: group 1, for which the dose lethal for 50% of mice (MLD50) was between 0.3 and 11 PFU, and group 2, for which the MLD50 was more than 10(3) PFU. One day after intranasal inoculation of mice with 100 PFU of group 1 viruses, the virus titer in lungs was 10(7) PFU/g or 3 log units higher than that for group 2 viruses. Both types of viruses had replicated to high titers (>10(6) PFU/g) in the lungs by day 3 and maintained these titers through day 6. More importantly, only the group 1 viruses caused systemic infection, replicating in nonrespiratory organs, including the brain. Immunohistochemical analysis demonstrated the replication of a group 1 virus in brain neurons and glial cells and in cardiac myofibers. Phylogenetic analysis of all viral genes showed that both groups of Hong Kong H5N1 viruses had formed a lineage distinct from those of other viruses and that genetic reassortment between H5N1 and H1 or H3 human viruses had not occurred. Since mice and humans harbor both the furin and the PC6 proteases, we suggest that the virulence mechanism responsible for the lethality of influenza viruses in birds also operates in mammalian hosts. The failure of some H5N1 viruses to produce systemic infection in our model indicates that multiple, still-to-be-identified, factors contribute to the severity of H5N1 infection in mammals. In addition, the ability

  20. The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals.

    PubMed

    Suguitan, Amorsolo L; Matsuoka, Yumiko; Lau, Yuk-Fai; Santos, Celia P; Vogel, Leatrice; Cheng, Lily I; Orandle, Marlene; Subbarao, Kanta

    2012-03-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtypes typically possess multiple basic amino acids around the cleavage site (MBS) of their hemagglutinin (HA) protein, a recognized virulence motif in poultry. To determine the importance of the H5 HA MBS as a virulence factor in mammals, recombinant wild-type HPAI A/Vietnam/1203/2004 (H5N1) viruses that possessed (H5N1) or lacked (ΔH5N1) the H5 HA MBS were generated and evaluated for their virulence in BALB/c mice, ferrets, and African green monkeys (AGMs) (Chlorocebus aethiops). The presence of the H5 HA MBS was associated with lethality, significantly higher virus titers in the respiratory tract, virus dissemination to extrapulmonary organs, lymphopenia, significantly elevated levels of proinflammatory cytokines and chemokines, and inflammation in the lungs of mice and ferrets. In AGMs, neither H5N1 nor ΔH5N1 virus was lethal and neither caused clinical symptoms. The H5 HA MBS was associated with mild enhancement of replication and delayed virus clearance. Thus, the contribution of H5 HA MBS to the virulence of the HPAI H5N1 virus varies among mammalian hosts and is most significant in mice and ferrets and less remarkable in nonhuman primates. PMID:22205751

  1. Increased virulence in ducks of H5N1 highly pathogenic avian influenza viruses from Egypt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks has increased over time. These changes in virulence have been reported with viruses from countries with high population of domestic ducks. Since 2006, H5N1 HPAI outbreaks in Egypt have been occurring in po...

  2. A novel neutralizing antibody against diverse clades of H5N1 influenza virus and its mutants capable of airborne transmission.

    PubMed

    Wu, Ruiping; Li, Xingxing; Leung, Ho-Chuen; Cao, Zhiliang; Qiu, Zonglin; Zhou, Yusen; Zheng, Bo-Jian; He, Yuxian

    2014-06-01

    Highly pathogenic avian influenza A virus H5N1 continues to spread among poultry and has frequently broken the species barrier to humans. Recent studies have shown that a laboratory-mutated or reassortant H5N1 virus bearing hemagglutinin (HA) with as few as four or five mutations was capable of transmitting more efficiently via respiratory droplets between ferrets, posing a serious threat to public health and underscoring the priority of effective vaccines and therapeutics. In this study, we identified a novel monoclonal antibody (mAb) named HAb21, that has a broadly neutralizing activity against all tested strains of H5N1 covering clades 0, 1, 2.2, 2.3.4, and 2.3.2.1. Importantly, HAb21 efficiently neutralized diverse H5N1 variants with single or combination forms of mutations capable of airborne transmission. We demonstrated that HAb21 blocked viral entry during the receptor-binding step by targeting a previously uncharacterized epitope at the tip of the HA head. This novel epitope closely neighbors the receptor-binding site (RBS) and the interface of HA trimer and is highly conserved among divergent H5N1 strains. Our studies provide a new tool for use either for therapeutic purposes or as a basis of vaccine development. PMID:24681124

  3. A Single-Amino-Acid Substitution in the NS1 Protein Changes the Pathogenicity of H5N1 Avian Influenza Viruses in Mice▿

    PubMed Central

    Jiao, Peirong; Tian, Guobin; Li, Yanbing; Deng, Guohua; Jiang, Yongping; Liu, Chang; Liu, Weilong; Bu, Zhigao; Kawaoka, Yoshihiro; Chen, Hualan

    2008-01-01

    In this study, we explored the molecular basis determining the virulence of H5N1 avian influenza viruses in mammalian hosts by comparing two viruses, A/Duck/Guangxi/12/03 (DK/12) and A/Duck/Guangxi/27/03 (DK/27), which are genetically similar but differ in their pathogenicities in mice. To assess the genetic basis for this difference in virulence, we used reverse genetics to generate a series of reassortants and mutants of these two viruses. We found that a single-amino-acid substitution of serine for proline at position 42 (P42S) in the NS1 protein dramatically increased the virulence of the DK/12 virus in mice, whereas the substitution of proline for serine at the same position (S42P) completely attenuated the DK/27 virus. We further demonstrated that the amino acid S42 of NS1 is critical for the H5N1 influenza virus to antagonize host cell interferon induction and for the NS1 protein to prevent the double-stranded RNA-mediated activation of the NF-κB pathway and the IRF-3 pathway. Our results indicate that the NS1 protein is critical for the pathogenicity of H5N1 influenza viruses in mammalian hosts and that the amino acid S42 of NS1 plays a key role in undermining the antiviral immune response of the host cell. PMID:18032512

  4. Cross-Reactive Neuraminidase-Inhibiting Antibodies Elicited by Immunization with Recombinant Neuraminidase Proteins of H5N1 and Pandemic H1N1 Influenza A Viruses

    PubMed Central

    Liu, Wen-Chun; Lin, Chia-Ying; Tsou, Yung-Ta; Jan, Jia-Tsrong

    2015-01-01

    ABSTRACT Neuraminidase (NA), an influenza virus envelope glycoprotein, removes sialic acid from receptors for virus release from infected cells. For this study, we used a baculovirus-insect cell expression system to construct and purify recombinant NA (rNA) proteins of H5N1 (A/Vietnam/1203/2004) and pandemic H1N1 (pH1N1) (A/Texas/05/2009) influenza viruses. BALB/c mice immunized with these proteins had high titers of NA-specific IgG and NA-inhibiting (NI) antibodies against H5N1, pH1N1, H3N2, and H7N9 viruses. H5N1 rNA immunization resulted in higher quantities of NA-specific antibody-secreting B cells against H5N1 and heterologous pH1N1 viruses in the spleen. H5N1 rNA and pH1N1 rNA immunizations both provided complete protection against homologous virus challenges, with H5N1 rNA immunization providing better protection against pH1N1 virus challenges. Cross-reactive NI antibodies were further dissected via pH1N1 rNA protein immunizations with I149V (NA with a change of Ile to Val at position 149), N344Y, and I365T/S366N NA mutations. The I365T/S366N mutation of pH1N1 rNA enhanced cross-reactive NI antibodies against H5N1, H3N2, and H7N9 viruses. It is our hope that these findings provide useful information for the development of an NA-based universal influenza vaccine. IMPORTANCE Neuraminidase (NA) is an influenza virus enzymatic protein that cleaves sialic acid linkages on infected cell surfaces, thus facilitating viral release and contributing to viral transmission and mucus infection. In currently available inactivated or live, attenuated influenza vaccines based on the antigenic content of hemagglutinin proteins, vaccine efficacy can be contributed partly through NA-elicited immune responses. We investigated the NA immunity of different recombinant NA (rNA) proteins associated with pH1N1 and H5N1 viruses. Our results indicate that H5N1 rNA immunization induced more potent cross-protective immunity than pH1N1 rNA immunization, and three mutated residues, I149V

  5. Two clusters of human infection with influenza A/H5N1 virus in the Republic of Azerbaijan, February-March 2006.

    PubMed

    Gilsdorf, A; Boxall, N; Gasimov, V; Agayev, I; Mammadzade, F; Ursu, P; Gasimov, E; Brown, C; Mardel, S; Jankovic, D; Pimentel, G; Ayoub, I Amir; Elassal, E Maher Labib; Salvi, C; Legros, D; Pessoa da Silva, C; Hay, A; Andraghetti, R; Rodier, G; Ganter, B

    2006-01-01

    Following the appearance of influenza A/H5 virus infection in several wild and domestic bird species in the Republic of Azerbaijan in February 2006, two clusters of potential human avian influenza due to A/H5N1 (HAI) cases were detected and reported by the Ministry of Health (MoH) to the World Health Organization (WHO) Regional Office for Europe during the first two weeks of March 2006. On 15 March 2006, WHO led an international team, including infection control, clinical management, epidemiology, laboratory, and communications experts, to support the MoH in investigation and response activities. As a result of active surveillance, 22 individuals, including six deaths, were evaluated for HAI and associated risk infections in six districts. The investigations revealed eight cases with influenza A/H5N1 virus infection confirmed by a WHO Collaborating Centre for Influenza and one probable case for which samples were not available. The cases were in two unrelated clusters in Salyan (seven laboratory confirmed cases, including four deaths) and Tarter districts (one confirmed case and one probable case, both fatal). Close contact with and de-feathering of infected wild swans was considered to be the most plausible source of exposure to influenza A/H5N1 virus in the Salyan cluster, although difficulties in eliciting information were encountered during the investigation, because of the illegality of some of the activities that might have led to the exposures (hunting and trading in wild birds and their products). These cases constitute the first outbreak worldwide where wild birds were the most likely source of influenza A/H5N1 virus infection in humans. The rapid mobilisation of resources to contain the spread of influenza A/H5 in the two districts was achieved through collaboration between the MoH, WHO and its international partners. Control activities were supported by the establishment of a field laboratory with real-time polymerase chain reaction (RT-PCR) capacity to

  6. Evolution of highly pathogenic avian H5N1 influenza viruses

    SciTech Connect

    Macken, Catherine A; Green, Margaret A

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data sets used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging avian H5N1 viruses.

  7. Detection of H5N1 high pathogenicity avian influenza virus in meat and tracheal samples from experimentally infected chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian H5N1 highly pathogenic avian influenza (HPAI) virus causes a systemic disease with high mortality of poultry and is potentially zoonotic. In both chickens and ducks, the virus has been demonstrated to replicate in both cardiac and skeletal muscle cells. Experimentally, H5N1 HPAI virus ha...

  8. Pathogenesis of H5N1 avian influenza virus reassortants in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic H5N1 avian influenza viruses produce severe disease and mortality in chickens. Identification of viral genes important for cell tropism and replication efficiency helps identify virulence factors. To determine which viral gene or genes contribute to the virulence of H5N1 avian in...

  9. Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3.

    PubMed

    Hui, Kenrie P Y; Li, Hung Sing; Cheung, Man Chun; Chan, Renee W Y; Yuen, Kit M; Mok, Chris K P; Nicholls, John M; Peiris, J S Malik; Chan, Michael C W

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus continues to pose pandemic threat, but there is a lack of understanding of its pathogenesis. We compared the apoptotic responses triggered by HPAI H5N1 and low pathogenic H1N1 viruses using physiologically relevant respiratory epithelial cells. We demonstrated that H5N1 viruses delayed apoptosis in primary human bronchial and alveolar epithelial cells (AECs) compared to H1N1 virus. Both caspase-8 and -9 were activated by H5N1 and H1N1 viruses in AECs, while H5N1 differentially up-regulated TRAIL. H5N1-induced apoptosis was reduced by TRAIL receptor silencing. More importantly, STAT3 knock-down increased apoptosis by H5N1 infection suggesting that H5N1 virus delays apoptosis through activation of STAT3. Taken together, we demonstrate that STAT3 is involved in H5N1-delayed apoptosis compared to H1N1. Since delay in apoptosis prolongs the duration of virus replication and production of pro-inflammatory cytokines and TRAIL from H5N1-infected cells, which contribute to orchestrate cytokine storm and tissue damage, our results suggest that STAT3 may play a previously unsuspected role in H5N1 pathogenesis. PMID:27344974

  10. Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3

    PubMed Central

    Hui, Kenrie P. Y.; Li, Hung Sing; Cheung, Man Chun; Chan, Renee W. Y.; Yuen, Kit M.; Mok, Chris K. P.; Nicholls, John M.; Peiris, J. S. Malik; Chan, Michael C. W.

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus continues to pose pandemic threat, but there is a lack of understanding of its pathogenesis. We compared the apoptotic responses triggered by HPAI H5N1 and low pathogenic H1N1 viruses using physiologically relevant respiratory epithelial cells. We demonstrated that H5N1 viruses delayed apoptosis in primary human bronchial and alveolar epithelial cells (AECs) compared to H1N1 virus. Both caspase-8 and -9 were activated by H5N1 and H1N1 viruses in AECs, while H5N1 differentially up-regulated TRAIL. H5N1-induced apoptosis was reduced by TRAIL receptor silencing. More importantly, STAT3 knock-down increased apoptosis by H5N1 infection suggesting that H5N1 virus delays apoptosis through activation of STAT3. Taken together, we demonstrate that STAT3 is involved in H5N1-delayed apoptosis compared to H1N1. Since delay in apoptosis prolongs the duration of virus replication and production of pro-inflammatory cytokines and TRAIL from H5N1-infected cells, which contribute to orchestrate cytokine storm and tissue damage, our results suggest that STAT3 may play a previously unsuspected role in H5N1 pathogenesis. PMID:27344974

  11. Timing of Influenza A(H5N1) in Poultry and Humans and Seasonal Influenza Activity Worldwide, 2004–2013

    PubMed Central

    Durand, Lizette O.; Glew, Patrick; Gross, Diane; Kasper, Matthew; Trock, Susan; Kim, Inkyu K.; Bresee, Joseph S.; Donis, Ruben; Uyeki, Timothy M.; Widdowson, Marc-Alain

    2015-01-01

    Co-circulation of influenza A(H5N1) and seasonal influenza viruses among humans and animals could lead to co-infections, reassortment, and emergence of novel viruses with pandemic potential. We assessed the timing of subtype H5N1 outbreaks among poultry, human H5N1 cases, and human seasonal influenza in 8 countries that reported 97% of all human H5N1 cases and 90% of all poultry H5N1 outbreaks. In these countries, most outbreaks among poultry (7,001/11,331, 62%) and half of human cases (313/625, 50%) occurred during January–March. Human H5N1 cases occurred in 167 (45%) of 372 months during which outbreaks among poultry occurred, compared with 59 (10%) of 574 months that had no outbreaks among poultry. Human H5N1 cases also occurred in 59 (22%) of 267 months during seasonal influenza periods. To reduce risk for co-infection, surveillance and control of H5N1 should be enhanced during January–March, when H5N1 outbreaks typically occur and overlap with seasonal influenza virus circulation. PMID:25625302

  12. Single-Domain Antibodies Targeting Neuraminidase Protect against an H5N1 Influenza Virus Challenge

    PubMed Central

    Cardoso, Francisco Miguel; Ibañez, Lorena Itatí; Van den Hoecke, Silvie; De Baets, Sarah; Smet, Anouk; Roose, Kenny; Schepens, Bert; Descamps, Francis J.; Fiers, Walter; Muyldermans, Serge

    2014-01-01

    ABSTRACT Influenza virus neuraminidase (NA) is an interesting target of small-molecule antiviral drugs. We isolated a set of H5N1 NA-specific single-domain antibodies (N1-VHHm) and evaluated their in vitro and in vivo antiviral potential. Two of them inhibited the NA activity and in vitro replication of clade 1 and 2 H5N1 viruses. We then generated bivalent derivatives of N1-VHHm by two methods. First, we made N1-VHHb by genetically joining two N1-VHHm moieties with a flexible linker. Second, bivalent N1-VHH-Fc proteins were obtained by genetic fusion of the N1-VHHm moiety with the crystallizable region of mouse IgG2a (Fc). The in vitro antiviral potency against H5N1 of both bivalent N1-VHHb formats was 30- to 240-fold higher than that of their monovalent counterparts, with 50% inhibitory concentrations in the low nanomolar range. Moreover, single-dose prophylactic treatment with bivalent N1-VHHb or N1-VHH-Fc protected BALB/c mice against a lethal challenge with H5N1 virus, including an oseltamivir-resistant H5N1 variant. Surprisingly, an N1-VHH-Fc fusion without in vitro NA-inhibitory or antiviral activity also protected mice against an H5N1 challenge. Virus escape selection experiments indicated that one amino acid residue close to the catalytic site is required for N1-VHHm binding. We conclude that single-domain antibodies directed against influenza virus NA protect against H5N1 virus infection, and when engineered with a conventional Fc domain, they can do so in the absence of detectable NA-inhibitory activity. IMPORTANCE Highly pathogenic H5N1 viruses are a zoonotic threat. Outbreaks of avian influenza caused by these viruses occur in many parts of the world and are associated with tremendous economic loss, and these viruses can cause very severe disease in humans. In such cases, small-molecule inhibitors of the viral NA are among the few treatment options for patients. However, treatment with such drugs often results in the emergence of resistant viruses

  13. Evidence for differing evolutionary dynamics of A/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry.

    PubMed

    Cattoli, Giovanni; Fusaro, Alice; Monne, Isabella; Coven, Fethiye; Joannis, Tony; El-Hamid, Hatem S Abd; Hussein, Aly Ahmed; Cornelius, Claire; Amarin, Nadim Mukhles; Mancin, Marzia; Holmes, Edward C; Capua, Ilaria

    2011-11-21

    Highly pathogenic avian influenza (HPAI) H5N1 (clade 2.2) was introduced into Egypt in early 2006. Despite the control measures taken, including mass vaccination of poultry, the virus rapidly spread among commercial and backyard flocks. Since the initial outbreaks, the virus in Egypt has evolved into a third order clade (clade 2.2.1) and diverged into antigenically and genetically distinct subclades. To better understand the dynamics of HPAI H5N1 evolution in countries that differ in vaccination policy, we undertook an in-depth analysis of those virus strains circulating in Egypt between 2006 and 2010, and compared countries where vaccination was adopted (Egypt and Indonesia) to those where it was not (Nigeria, Turkey and Thailand). This study incorporated 751 sequences (Egypt n=309, Indonesia n=149, Nigeria n=106, Turkey n=87, Thailand n=100) of the complete haemagglutinin (HA) open reading frame, the major antigenic determinant of influenza A virus. Our analysis revealed that two main Egyptian subclades (termed A and B) have co-circulated in domestic poultry since late 2007 and exhibit different profiles of positively selected codons and rates of nucleotide substitution. The mean evolutionary rate of subclade A H5N1 viruses was 4.07×10(-3) nucleotide substitutions per site, per year (HPD 95%, 3.23-4.91), whereas subclade B possessed a markedly higher substitution rate (8.87×10(-3); 95% HPD 7.0-10.72×10(-3)) and a stronger signature of positive selection. Although the direct association between H5N1 vaccination and virus evolution is difficult to establish, we found evidence for a difference in the evolutionary dynamics of H5N1 viruses among countries where vaccination was or was not adopted. In particular, both evolutionary rates and the number of positively selected sites were higher in virus populations circulating in countries applying avian influenza vaccination for H5N1, compared to viruses circulating in countries which had never used vaccination. We

  14. Replication and transcription activities of ribonucleoprotein complexes reconstituted from avian H5N1, H1N1pdm09 and H3N2 influenza A viruses.

    PubMed

    Ngai, Karry L K; Chan, Martin C W; Chan, Paul K S

    2013-01-01

    Avian influenza viruses pose a serious pandemic threat to humans. Better knowledge on cross-species adaptation is important. This study examined the replication and transcription efficiency of ribonucleoprotein complexes reconstituted by plasmid co-transfection between H5N1, H1N1pdm09 and H3N2 influenza A viruses, and to identify mutations in the RNA polymerase subunit that affect human adaptation. Viral RNA polymerase subunits PB1, PB2, PA and NP derived from influenza viruses were co-expressed with pPolI-vNP-Luc in human cells, and with its function evaluated by luciferase reporter assay. A quantitative RT-PCR was used to measure vRNA, cRNA, and mRNA levels for assessing the replication and transcription efficiency. Mutations in polymerase subunit were created to identify signature of increased human adaptability. H5N1 ribonucleoprotein complexes incorporated with PB2 derived from H1N1pdm09 and H3N2 viruses increased the polymerase activity in human cells. Furthermore, single amino acid substitutions at PB2 of H5N1 could affect polymerase activity in a temperature-dependent manner. By using a highly sensitive quantitative reverse transcription-polymerase chain reaction, an obvious enhancement in replication and transcription activities of ribonucleoproteins was observed by the introduction of lysine at residue 627 in the H5N1 PB2 subunit. Although less strongly in polymerase activity, E158G mutation appeared to alter the accumulation of H5N1 RNA levels in a temperature-dependent manner, suggesting a temperature-dependent mechanism in regulating transcription and replication exists. H5N1 viruses can adapt to humans either by acquisition of PB2 from circulating human-adapted viruses through reassortment, or by mutations at critical sites in PB2. This information may help to predict the pandemic potential of newly emerged influenza strains, and provide a scientific basis for stepping up surveillance measures and vaccine production. PMID:23750226

  15. The effect of age on the pathogenesis of a highly pathogenic avian influenza (HPAI) H5N1 virus in Pekin ducks (Anas platyrhynchos) infected experimentally

    PubMed Central

    Löndt, Brandon Z.; Núñez, Alejandro.; Banks, Jill; Alexander, Dennis J.; Russell, Christine; Richard‐ Löndt, Angela C.; Brown, Ian H.

    2009-01-01

    Background  Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. Objectives  To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Methods  Pekin ducks in two age‐matched groups (n = 18), 8 and 12 weeks old (wo) were each infected with 106 EID50/0·1 ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2·2). Each day for 5 days, birds were monitored clinically, and cloacal and oropharyngeal swabs collected, before three birds from each group were selected randomly for post‐mortem examination. Tissue samples were collected for examination by real‐time RT‐PCR, histopathology and immunohistochemistry (IHC). Results  Severe clinical signs, including incoordination and torticollis were observed in the 8 wo group resulting in 100% mortality by 4 dpi. Mild clinical signs were observed in the 12 wo group with no mortality. Real‐time RT‐PCR and IHC results demonstrated the systemic spread of H5N1 virus in birds of both age groups. Higher levels of virus shedding were detected in oropharyngeal swabs than in cloacal swabs, with similar levels of shedding detected in both age groups. Variations in level and temporal dissemination of virus within tissues of older ducks, and the presence of the virus in brain and heart were observed, which coincided with the appearance of clinical signs preceding death in younger birds. Conclusions  These results are consistent with reports of natural infections of wild waterfowl and poultry possibly indicating an age‐related association with dissemination and clinical outcome in ducks following infection with H5N1 HPAI virus. PMID:20021503

  16. H5N1 influenza A virus with K193E and G225E double mutations in haemagglutinin is attenuated and immunogenic in mice.

    PubMed

    Han, Peng-Fei; Li, Jing; Hu, Yi; Sun, Wei; Zhang, Sen; Yang, Yin-Hui; Li, Yu-Chang; Kang, Xiao-Ping; Wu, Xiao-Yan; Zhu, Shun-Ya; Zhang, Yu; Zhu, Qing-Yu; Qin, Cheng-Feng; Jiang, Tao

    2015-09-01

    Live-attenuated influenza vaccines (LAIVs) are now available for the prevention of influenza, with LAIV strains generally derived from serial passage in cultures or by reverse genetics (RG). The receptor-binding domain (RBD) in haemagglutinin (HA) of influenza virus is responsible for viral binding to the avian-type 2,3-α-linked or human-type 2,6-α-linked sialic acid receptor; however, the virulence determinants in the RBD of H5N1 virus remain largely unknown. In the present study, serial passage of H5N1 virus A/Vietnam/1194/2004 in Madin-Darby canine kidney cells resulted in the generation of adapted variants with large-plaque morphology, and genomic sequencing of selected variants revealed two specific amino acid substitutions (K193E and G225E) in the RBD. RG was used to generate H5N1 viruses containing either single or double substitutions in HA. The RG virus containing K193E and G225E mutations (rVN-K193E/G225E) demonstrated large-plaque morphology, enhanced replication and genetic stability after serial passage, without changing the receptor-binding preference. Importantly, in vivo virulence assessment demonstrated that rVN-K193E/G225E was significantly attenuated in mice. Microneutralization and haemagglutination inhibition assays demonstrated that immunization with rVN-K193E/G225E efficiently induced a robust antibody response against WT H5N1 virus in mice. Taken together, our experiments demonstrated that K193E and G225E mutations synergistically attenuated H5N1 virus without enhancing the receptor-binding avidity, and that the RG virus rVN-K193E/G225E represents a potential H5N1 LAIV strategy that deserves further development. These findings identify the RBD as a novel attenuation target for live vaccine development and highlight the complexity of RBD interactions. PMID:25998916

  17. Pathogenicity and tissue tropism of currently circulating highly pathogenic avian influenza A virus (H5N1; clade 2.3.2) in tufted ducks (Aythya fuligula).

    PubMed

    Bröjer, Caroline; van Amerongen, Geert; van de Bildt, Marco; van Run, Peter; Osterhaus, Albert; Gavier-Widén, Dolores; Kuiken, Thijs

    2015-11-18

    Reports describing the isolation of highly pathogenic avian influenza (HPAI) virus (H5N1) clade 2.3.2 in feces from apparently healthy wild birds and the seemingly lower pathogenicity of this clade compared to clade 2.2 in several experimentally infected species, caused concern that the new clade might be maintained in the wild bird population. To investigate whether the pathogenicity of a clade 2.3.2 virus was lower than that of clades previously occurring in free-living wild birds in Europe, four tufted ducks were inoculated with influenza A/duck/HongKong/1091/2011 (H5N1) clade 2.3.2 virus. The ducks were monitored and sampled for virus excretion daily during 4 days, followed by pathologic, immunohistochemical, and virological investigations. The virus produced severe disease as evidenced by clinical signs, presence of marked lesions and abundant viral antigen in several tissues, especially the central nervous system. The study shows that HPAI-H5N1 virus clade 2.3.2 is highly pathogenic for tufted ducks and thus, they are unlikely to maintain this clade in the free-living population or serve as long-distance vectors. PMID:26441012

  18. Susceptibility of selected wild avian species to experimental infection with H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in wide diversity of wild avian species but, to date, the role that different species play in the transmission and maintenance of H5N1 HPAI viruses is poorly understood. To begin to address these uncertainties a...

  19. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail.

    PubMed

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail. PMID:26900963

  20. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail

    PubMed Central

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail. PMID:26900963

  1. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge.

    PubMed

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin; Byun, Young-Ho; Seong, Baik Lin; Baek, Yun Hee; Song, Min-Suk; Choi, Young Ki; Na, Yun Jeong; Hwang, Inhwan; Sung, Young Chul; Lee, Chang Geun

    2009-12-20

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8(+) T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains. PMID:19836045

  2. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge

    SciTech Connect

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin; Byun, Young-Ho; Seong, Baik Lin; Baek, Yun Hee; Song, Min-Suk; Choi, Young Ki; Na, Yun Jeong; Hwang, Inhwan; Sung, Young Chul; Lee, Chang Geun

    2009-12-20

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8{sup +} T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.

  3. Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997-2015: a systematic review of individual case data.

    PubMed

    Lai, Shengjie; Qin, Ying; Cowling, Benjamin J; Ren, Xiang; Wardrop, Nicola A; Gilbert, Marius; Tsang, Tim K; Wu, Peng; Feng, Luzhao; Jiang, Hui; Peng, Zhibin; Zheng, Jiandong; Liao, Qiaohong; Li, Sa; Horby, Peter W; Farrar, Jeremy J; Gao, George F; Tatem, Andrew J; Yu, Hongjie

    2016-07-01

    Avian influenza A H5N1 viruses have caused many, typically severe, human infections since the first human case was reported in 1997. However, no comprehensive epidemiological analysis of global human cases of H5N1 from 1997 to 2015 exists. Moreover, few studies have examined in detail the changing epidemiology of human H5N1 cases in Egypt, especially given the outbreaks since November, 2014, which have the highest number of cases ever reported worldwide in a similar period. Data on individual patients were collated from different sources using a systematic approach to describe the global epidemiology of 907 human H5N1 cases between May, 1997, and April, 2015. The number of affected countries rose between 2003 and 2008, with expansion from east and southeast Asia, then to west Asia and Africa. Most cases (67·2%) occurred from December to March, and the overall case-fatality risk was 483 (53·5%) of 903 cases which varied across geographical regions. Although the incidence in Egypt has increased dramatically since November, 2014, compared with the cases beforehand, there were no significant differences in the fatality risk, history of exposure to poultry, history of patient contact, and time from onset to hospital admission in the recent cases. PMID:27211899

  4. Oral Delivery of a Novel Attenuated Salmonella Vaccine Expressing Influenza A Virus Proteins Protects Mice against H5N1 and H1N1 Viral Infection

    PubMed Central

    Ren, Xiaoguang; Gong, Hao; Reeves, Michael; Sheng, Jingxue; Wang, Yu; Pan, Zishu; Liu, Fenyong; Wu, Jianguo; Lu, Sangwei

    2015-01-01

    Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA) and neuraminidase (NA) of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses. PMID:26083421

  5. An Impedance Aptasensor with Microfluidic Chips for Specific Detection of H5N1 Avian Influenza Virus

    PubMed Central

    Lum, Jacob; Wang, Ronghui; Hargis, Billy; Tung, Steve; Bottje, Walter; Lu, Huaguang; Li, Yanbin

    2015-01-01

    In this research a DNA aptamer, which was selected through SELEX (systematic evolution of ligands by exponential enrichment) to be specific against the H5N1 subtype of the avian influenza virus (AIV), was used as an alternative reagent to monoclonal antibodies in an impedance biosensor utilizing a microfluidics flow cell and an interdigitated microelectrode for the specific detection of H5N1 AIV. The gold surface of the interdigitated microelectrode embedded in a microfluidics flow cell was modified using streptavidin. The biotinylated aptamer against H5N1 was then immobilized on the electrode surface using biotin–streptavidin binding. The target virus was captured on the microelectrode surface, causing an increase in impedance magnitude. The aptasensor had a detection time of 30 min with a detection limit of 0.0128 hemagglutinin units (HAU). Scanning electron microscopy confirmed the binding of the target virus onto the electrode surface. The DNA aptamer was specific to H5N1 and had no cross-reaction to other subtypes of AIV (e.g., H1N1, H2N2, H7N2). The newly developed aptasensor offers a portable, rapid, low-cost alternative to current methods with the same sensitivity and specificity. PMID:26230699

  6. Dogs are highly susceptible to H5N1 avian influenza virus

    PubMed Central

    Chen, Ying; Zhong, Gongxun; Wang, Guojun; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Zhang, Zhuo; Guan, Yuntao; Jiang, Yongping; Bu, Zhigao; Kawaoka, Yoshihiro; Chen, Hualan

    2010-01-01

    Replication of avian influenza viruses (AIVs) in dogs may facilitate their adaptation in humans; however, the data to date on H5N1 influenza virus infection in dogs are conflicting. To elucidate the susceptibility of dogs to this pathogen, we infected two groups of 6 beagles with 106 50% egg-infectious dose of H5N1 AIV A/bar-headed goose/Qinghai/3/05 (BHG/QH/3/05) intranasally (i.n.) and intratracheally (i.t.), respectively. The dogs showed disease symptoms, including anorexic, fever, conjunctivitis, labored breathing and cough, and one i.t. inoculated animal died on day 4 post-infection. Virus shedding was detected from all 6 animals inoculated i.n. and one inoculated i.t. Virus replication was detected in all animals that were euthanized on day 3 or 5 post-infection and in the animal that died on day 4 post-infection. Our results demonstrate that dogs are highly susceptible to H5N1 AIV and may serve as an intermediate host to transfer this virus to humans. PMID:20580396

  7. Susceptibility of wood ducks to H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in wild birds, especially for species in the Order Anseriformes. Although these infections document the susceptibili...

  8. Innate Immunity to H5N1 Influenza Viruses in Humans

    PubMed Central

    Ramos, Irene; Fernandez-Sesma, Ana

    2012-01-01

    Avian influenza virus infections in the human population are rare due to their inefficient direct human-to-human transmission. However, when humans are infected, a strong inflammatory response is usually induced, characterized by elevated levels of cytokines and chemokines in serum, believed to be important in the severe pathogenesis that develops in a high proportion of these patients. Extensive research has been performed to understand the molecular viral mechanisms involved in the H5N1 pathogenesis in humans, providing interesting insights about the virus-host interaction and the regulation of the innate immune response by these highly pathogenic viruses. In this review we summarize and discuss the most important findings in this field, focusing mainly on H5N1 virulence factors and their impact on the modulation of the innate immunity in humans. PMID:23342363

  9. Characterization and phylogenetic analysis of a highly pathogenic avian influenza H5N1 virus isolated from diseased ostriches (Struthio camelus) in the Kingdom of Saudi Arabia.

    PubMed

    Ismail, Mahmoud Moussa; El-Sabagh, I M; Al-Ankari, Abdul-Rahman

    2014-06-01

    During 2007, two outbreaks of avian influenza virus (AIV) in backyard and commercial ostrich flocks were first reported in the Kingdom of Saudi Arabia (KSA). The infected ostriches suffered from depression, anorexia, and diarrhea and some exhibited sudden death. A rapid AIV-group antigen detection and real-time reverse-transcription PCR (rtRT-PCR) were initially performed on cloacal and tracheal swabs collected from diseased birds. Pools from positive-tested swabs for each flock were utilized for virus isolation in specific-pathogen-free embryonating chicken eggs. H5N1 AIV was identified in the harvested allantoic fluids by hemagglutination followed by hemagglutination inhibition and rtRT-PCR. The viruses responsible for these two outbreaks were sequenced and characterized as HPAIV H5N1 (A/ostrich/Saudi Arabia/6732-3/2007 and A/ostrich/Saudi Arabia/3489-73VIR08/ 2007) from backyard and commercial flocks, respectively. Phylogenetic analysis of both isolates revealed that the two viruses belong to clade 2.2 sublineage II and cluster with the HPAIV H5N1 isolated from falcons and turkeys during 2007 in KSA. PMID:25055639

  10. Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development

    NASA Astrophysics Data System (ADS)

    Pham, Van Dong; Hoang, Ha; Hoang Phan, Trong; Conrad, Udo; Chu, Hoang Ha

    2012-12-01

    Preparation of colloidal gold conjugated antibodies specific for influenza A/H5N1 and its use in developing a virus A/H5N1 rapid diagnostic kit is presented. Colloidal gold nanoparticles (AuNPs) were prepared through citrate reduction. Single chain antibodies specific to H5N1 (scFv7 and scFv24) were produced using pTI2 + vector and E. coli strain HB2151. These antibodies were purified by affinity chromatography technique employing HiTrap Chelating HP columns pre-charged with Ni2 + . The method for preparation of antibody–colloidal gold conjugate was based on electrostatic force binding antibody with colloidal gold. The effect of factors such as pH and concentration of antibody has been quantitatively analyzed using spectroscopic methods after adding 1 wt% NaCl which induced AuNP aggregation. The morphological study by scanning electron microscopy (SEM) showed that the average size of the spherical AuNPs was 23 nm with uniform sizes. The spectroscopic properties of colloidal AuNPs showed the typical surface plasmon resonance band at 523 nm in UV-visible spectrum. The optimal pH of conjugated colloidal gold was found between 8.0 and 10.0. The activity of synthesized antibody labeled AuNPs for detection of H5N1 flu virus was checked by dot blot immunological method. The results confirmed the ability in detection of the A/H5N1 virus of the prepared antibody labeled gold particles and opened up the possibility of using them in manufacturing rapid detection kit for this virus.

  11. Characaterization of H5N1 highly pathogenic avian influenza viruses isolated from poultry in Pakistan 2006-2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine avian influenza viruses (AIV), H5N1 subtype, were isolated from dead poultry in the Karachi region of Pakistan from 2006-2008. The intravenous pathogenicity indices and HA protein cleavage sites of all nine viruses were consistent with highly pathogenic AIV. Based on phylogenetic analysis of ...

  12. Pandemic influenza – including a risk assessment of H5N1

    PubMed Central

    Taubenberger, J.K.; Morens, D.M.

    2009-01-01

    Summary Influenza pandemics and epidemics have apparently occurred since at least the Middle Ages. When pandemics appear, 50% or more of an affected population can be infected in a single year, and the number of deaths caused by influenza can dramatically exceed what is normally expected. Since 1500, there appear to have been 13 or more influenza pandemics. In the past 120 years there were undoubted pandemics in 1889, 1918, 1957, 1968, and 1977. Although most experts believe we will face another influenza pandemic, it is impossible to predict when it will appear, where it will originate, or how severe it will be. Nor is there agreement about the subtype of influenza virus most likely to cause the next pandemic. The continuing spread of H5N1 highly pathogenic avian influenza viruses has heightened interest in pandemic prediction. Despite uncertainties in the historical record of the pre-virology era, study of previous pandemics may help guide future pandemic planning and lead to a better understanding of the complex ecobiology underlying the formation of pandemic strains of influenza A viruses. PMID:19618626

  13. Assessment of route of administration and dose escalation for an adenovirus-based influenza A Virus (H5N1) vaccine in chickens.

    PubMed

    Steitz, Julia; Wagner, Robert A; Bristol, Tyler; Gao, Wentao; Donis, Ruben O; Gambotto, Andrea

    2010-09-01

    Highly pathogenic avian influenza (HPAI) virus causes one of the most economically devastating poultry diseases. An HPAI vaccine to prevent the disease in commercial and backyard birds must be effective, safe, and inexpensive. Recently, we demonstrated the efficacy of an adenovirus-based H5N1 HPAI vaccine (Ad5.HA) in chickens. To further evaluate the potential of the Ad5.HA vaccine and its cost-effectiveness, studies to determine the minimal effective dose and optimal route of administration in chickens were performed. A dose as low as 10(7) viral particles (vp) of adenovirus-based H5N1 vaccine per chicken was sufficient to generate a robust humoral immune response, which correlated with the previously reported level of protection. Several routes of administration, including intratracheal, conjunctival, subcutaneous, and in ovo routes, were evaluated for optimal vaccine administration. However, only the subcutaneous route of immunization induced a satisfactory level of influenza virus-specific antibodies. Importantly, these studies established that the vaccine-induced immunity was cross-reactive against an H5N1 strain from a different clade, emphasizing the potential of cross-protection. Our results suggest that the Ad5.HA HPAI vaccine is safe and effective, with the potential of cross-clade protection. The ease of manufacturing and cost-effectiveness make Ad5.HA an excellent avian influenza vaccine candidate with the ability to protect poultry from HPAI virus infection. Considering the limitations of the influenza vaccine technology currently used for poultry applications, any effort aimed at overcoming those limitations is highly significant. PMID:20660133

  14. The Influenza Virus H5N1 Infection Can Induce ROS Production for Viral Replication and Host Cell Death in A549 Cells Modulated by Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression.

    PubMed

    Lin, Xian; Wang, Ruifang; Zou, Wei; Sun, Xin; Liu, Xiaokun; Zhao, Lianzhong; Wang, Shengyu; Jin, Meilin

    2016-01-01

    Highly pathogenic H5N1 infections are often accompanied by excessive pro-inflammatory response, high viral titer, and apoptosis; as such, the efficient control of these infections poses a great challenge. The pathogenesis of influenza virus infection is also related to oxidative stress. However, the role of endogenic genes with antioxidant effect in the control of influenza viruses, especially H5N1 viruses, should be further investigated. In this study, the H5N1 infection in lung epithelial cells decreased Cu/Zn superoxide dismutase (SOD1) expression at mRNA and protein levels. Forced SOD1 expression significantly inhibited the H5N1-induced increase in reactive oxygen species, decreased pro-inflammatory response, prevented p65 and p38 phosphorylation, and impeded viral ribonucleoprotein nuclear export and viral replication. The SOD1 overexpression also rescued H5N1-induced cellular apoptosis and alleviated H5N1-caused mitochondrial dysfunction. Therefore, this study described the role of SOD1 in the replication of H5N1 influenza virus and emphasized the relevance of this enzyme in the control of H5N1 replication in epithelial cells. Pharmacological modulation or targeting SOD1 may open a new way to fight H5N1 influenza virus. PMID:26761025

  15. Susceptibility of five migratory aquatic birds to H5N1 highly pathogenic avian influenza virus (A/Chicken/Korea/IS/06)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is not known which migratory aquatic species are important in spreading H5N1 highly pathogenic avian influenza (HPAI) viruses, and the pathobiology of infections by such viruses. The objective of this investigation was to assess the susceptibility of Mute swans (Cygnus olor), Greylag geese (Anse...

  16. Homo- and Heterosubtypic Low Pathogenic Avian Influenza Exposure on H5N1 Highly Pathogenic Avian Influenza Virus Infection in Wood Ducks (Aix sponsa)

    PubMed Central

    Costa, Taiana P.; Brown, Justin D.; Howerth, Elizabeth W.; Stallknecht, David E.; Swayne, David E.

    2011-01-01

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations. PMID:21253608

  17. Intense circulation of A/H5N1 and other avian influenza viruses in Cambodian live-bird markets with serological evidence of sub-clinical human infections.

    PubMed

    Horm, Srey Viseth; Tarantola, Arnaud; Rith, Sareth; Ly, Sowath; Gambaretti, Juliette; Duong, Veasna; Y, Phalla; Sorn, San; Holl, Davun; Allal, Lotfi; Kalpravidh, Wantanee; Dussart, Philippe; Horwood, Paul F; Buchy, Philippe

    2016-01-01

    Surveillance for avian influenza viruses (AIVs) in poultry and environmental samples was conducted in four live-bird markets in Cambodia from January through November 2013. Through real-time RT-PCR testing, AIVs were detected in 45% of 1048 samples collected throughout the year. Detection rates ranged from 32% and 18% in duck and chicken swabs, respectively, to 75% in carcass wash water samples. Influenza A/H5N1 virus was detected in 79% of samples positive for influenza A virus and 35% of all samples collected. Sequence analysis of full-length haemagglutinin (HA) and neuraminidase (NA) genes from A/H5N1 viruses, and full-genome analysis of six representative isolates, revealed that the clade 1.1.2 reassortant virus associated with Cambodian human cases during 2013 was the only A/H5N1 virus detected during the year. However, multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of HA and NA genes revealed co-circulation of at least nine low pathogenic AIVs from HA1, HA2, HA3, HA4, HA6, HA7, HA9, HA10 and HA11 subtypes. Four repeated serological surveys were conducted throughout the year in a cohort of 125 poultry workers. Serological testing found an overall prevalence of 4.5% and 1.8% for antibodies to A/H5N1 and A/H9N2, respectively. Seroconversion rates of 3.7 and 0.9 cases per 1000 person-months participation were detected for A/H5N1 and A/H9N2, respectively. Peak AIV circulation was associated with the Lunar New Year festival. Knowledge of periods of increased circulation of avian influenza in markets should inform intervention measures such as market cleaning and closures to reduce risk of human infections and emergence of novel AIVs. PMID:27436362

  18. Gene expression responses to highly pathogenic avian influenza H5N1 virus infections in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in host response to infection with avian influenza (AI) viruses were investigated by identifying genes differentially expressed in tissues of infected ducks. Clear differences in pathogenicity were observed among ducks inoculated with five H5N1 HPAI viruses. Virus titers in tissues cor...

  19. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    PubMed

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts. PMID:25959557

  20. A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF).

    PubMed

    Pang, Yuanfeng; Rong, Zhen; Wang, Junfeng; Xiao, Rui; Wang, Shengqi

    2015-04-15

    A fluorescent aptasensor system has been designed for the sensitive detection of recombinant hemagglutinin (rHA) protein of the H5N1 influenza virus in human serum. Guanine-richen anti-rHA aptamers by SELEX were immobilized on the surface of the Ag@SiO2 nanoparticles which performed as a metal-enhanced fluorescence (MEF) sensing platform. Thiazole orange (TO) was used as fluorescent tag which reported to the G-quadruplex secondary structural induced by aptamer-rHA binding event. In the absence of rHA protein, TO was free in the solution with almost no fluorescence emission. When rHA protein was added to the solution, the aptamer strand bound rHA protein to form a stable G-quadruplex complex, which can bind TO and excite the fluorescence emission of TO. Moreover, the excited-state TO captured by the G-quadruplex complex was forced to the surface of the Ag@SiO2 nanoparticles and could experience a surface plasmon resonance enhancement which can be transformed into more efficient fluorescence emission signals, therefore, the fluorescence signal of TO can be amplified largely. This system does not require covalent labeling with fluorophores to the aptamer and the background noise is very low. The detection of rHA protein of the H5N1 influenza virus could be operated both in aqueous buffer and human serum with the detection limit of 2 and 3.5ng/mL respectively. More important, the whole detection process can be finished in a PE tube within 30min, which makes it suitable as a self-contained diagnostic kit for H5N1 influenza virus point-of-care (POC) diagnostic. PMID:25506900

  1. Spatial modeling of wild bird risk factors to investigate highly pathogenic A(H5N1) avian influenza virus transmission

    USGS Publications Warehouse

    Prosser, Diann J.; Hungerford, Laura L.; Erwin, R. Michael; Ottinger, Mary Ann; Takekawa, John Y.; Newman, Scott H.; Xiao, Xianming; Ellis, Erie C.

    2016-01-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 years, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae), are reported as secondary transmitters of HPAIV, and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using GIS and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 km to 30 km resolution for multi-scale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  2. Egg-independent vaccine strategies for highly pathogenic H5N1 influenza viruses.

    PubMed

    Pandey, Aseem; Singh, Neetu; Sambhara, Suryaprakash; Mittal, Suresh K

    2010-02-01

    The emergence of a highly pathogenic H5N1 influenza virus in Hong Kong in 1997 and the subsequent appearance of other H5N1 strains and their spread to several countries in southeast Asia, Africa, the Middle East and Europe has evoked fear of a global influenza pandemic. Vaccines offer the best hope to combat the threat of an influenza pandemic. However, the global demand for a pandemic vaccine cannot be fulfilled by the current egg-based vaccine manufacturing strategies, thus creating a need to explore alternative technologies for vaccine production and delivery. Several egg-independent vaccine approaches such as cell culture-derived whole virus or subvirion vaccines, recombinant protein-based vaccines, virus-like particle (VLP) vaccines, DNA vaccines and viral vector-based vaccines are currently being investigated and appear promising both in preclinical and clinical studies. The present review will highlight the various egg-independent alternative vaccine approaches for pandemic influenza. PMID:19875936

  3. Combinations of Oseltamivir and T-705 Extend the Treatment Window for Highly Pathogenic Influenza A(H5N1) Virus Infection in Mice.

    PubMed

    Marathe, Bindumadhav M; Wong, Sook-San; Vogel, Peter; Garcia-Alcalde, Fernando; Webster, Robert G; Webby, Richard J; Najera, Isabel; Govorkova, Elena A

    2016-01-01

    Current anti-influenza therapy depends on administering drugs soon after infection, which is often impractical. We assessed whether combinations of oseltamivir (a neuraminidase inhibitor) and T-705 (a nonspecific inhibitor of viral polymerases) could extend the window for treating lethal infection with highly pathogenic A(H5N1) influenza virus in mice. Combination therapy protected 100% of mice, even when delayed until 96 h postinoculation. Compared to animals receiving monotherapy, mice receiving combination therapy had reduced viral loads and restricted viral spread in lung tissues, limited lung damage, and decreased inflammatory cytokine production. Next-generation sequencing showed that virus populations in T-705-treated mice had greater genetic variability, with more frequent transversion events, than did populations in control and oseltamivir-treated mice, but no substitutions associated with resistance to oseltamivir or T-705 were detected. Thus, combination therapy extended the treatment window for A(H5N1) influenza infection in mice and should be considered for evaluation in a clinical setting. PMID:27221530

  4. Combinations of Oseltamivir and T-705 Extend the Treatment Window for Highly Pathogenic Influenza A(H5N1) Virus Infection in Mice

    PubMed Central

    Marathe, Bindumadhav M.; Wong, Sook-San; Vogel, Peter; Garcia-Alcalde, Fernando; Webster, Robert G.; Webby, Richard J.; Najera, Isabel; Govorkova, Elena A.

    2016-01-01

    Current anti-influenza therapy depends on administering drugs soon after infection, which is often impractical. We assessed whether combinations of oseltamivir (a neuraminidase inhibitor) and T-705 (a nonspecific inhibitor of viral polymerases) could extend the window for treating lethal infection with highly pathogenic A(H5N1) influenza virus in mice. Combination therapy protected 100% of mice, even when delayed until 96 h postinoculation. Compared to animals receiving monotherapy, mice receiving combination therapy had reduced viral loads and restricted viral spread in lung tissues, limited lung damage, and decreased inflammatory cytokine production. Next-generation sequencing showed that virus populations in T-705–treated mice had greater genetic variability, with more frequent transversion events, than did populations in control and oseltamivir-treated mice, but no substitutions associated with resistance to oseltamivir or T-705 were detected. Thus, combination therapy extended the treatment window for A(H5N1) influenza infection in mice and should be considered for evaluation in a clinical setting. PMID:27221530

  5. Vaccination focusing immunity on conserved antigens protects mice and ferrets against virulent H1N1 and H5N1 influenza A viruses.

    PubMed

    Price, Graeme E; Soboleski, Mark R; Lo, Chia-Yun; Misplon, Julia A; Pappas, Claudia; Houser, Katherine V; Tumpey, Terrence M; Epstein, Suzanne L

    2009-11-01

    Immunization against conserved virus components induces broad, heterosubtypic protection against diverse influenza A viruses, providing a strategy for controlling unexpected outbreaks or pandemics until strain-matched vaccines become available. This study characterized immunization to nucleoprotein (NP) and matrix 2 (M2) by DNA priming followed by parenteral or mucosal boosting in mice and ferrets. DNA vaccination followed by boosting with antigen-matched recombinant adenovirus (rAd) or cold-adapted (ca) influenza virus provided robust protection against virulent H1N1 and H5N1 challenges. Compared to other boosts, mucosal rAd induced stronger IgA responses, more virus-specific activated T-cells in the lung, and better protection against morbidity following challenge even eight months post-boost. In ferrets, both mucosal and parenteral rAd boosting protected from lethal H5N1 challenge. These findings demonstrate potent protection by vaccination highly focused on conserved antigens and identify immune response measures in mice that differed among vaccinations and correlated with outcome. PMID:19729082

  6. Evolutionary Dynamics of Multiple Sublineages of H5N1 Influenza Viruses in Nigeria from 2006 to 2008 ▿ †

    PubMed Central

    Fusaro, Alice; Nelson, Martha I.; Joannis, Tony; Bertolotti, Luigi; Monne, Isabella; Salviato, Annalisa; Olaleye, Olufemi; Shittu, Ismaila; Sulaiman, Lanre; Lombin, Lami H.; Capua, Ilaria; Holmes, Edward C.; Cattoli, Giovanni

    2010-01-01

    Highly pathogenic A/H5N1 avian influenza (HPAI H5N1) viruses have seriously affected the Nigerian poultry industry since early 2006. Previous studies have identified multiple introductions of the virus into Nigeria and several reassortment events between cocirculating lineages. To determine the spatial, evolutionary, and population dynamics of the multiple H5N1 lineages cocirculating in Nigeria, we conducted a phylogenetic analysis of whole-genome sequences from 106 HPAI H5N1 viruses isolated between 2006 and 2008 and representing all 25 Nigerian states and the Federal Capital Territory (FCT) reporting outbreaks. We identified a major new subclade in Nigeria that is phylogenetically distinguishable from all previously identified sublineages, as well as two novel reassortment events. A detailed analysis of viral phylogeography identified two major source populations for the HPAI H5N1 virus in Nigeria, one in a major commercial poultry area (southwest region) and one in northern Nigeria, where contact between wild birds and backyard poultry is frequent. These findings suggested that migratory birds from Eastern Europe or Russia may serve an important role in the introduction of HPAI H5N1 viruses into Nigeria, although virus spread through the movement of poultry and poultry products cannot be excluded. Our study provides new insight into the genesis and evolution of H5N1 influenza viruses in Nigeria and has important implications for targeting surveillance efforts to rapidly identify the spread of the virus into and within Nigeria. PMID:20071565

  7. Vaccination with Recombinant RNA Replicon Particles Protects Chickens from H5N1 Highly Pathogenic Avian Influenza Virus

    PubMed Central

    Halbherr, Stefan J.; Brostoff, Terza; Tippenhauer, Merve; Locher, Samira; Berger Rentsch, Marianne; Zimmer, Gert

    2013-01-01

    Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×108 infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry. PMID:23762463

  8. New Avian Influenza Virus (H5N1) in Wild Birds, Qinghai, China

    PubMed Central

    Li, Yanbing; Liu, Liling; Zhang, Yi; Duan, Zhenhua; Tian, Guobin; Zeng, Xianying; Shi, Jianzhong; Zhang, Licheng

    2011-01-01

    Highly pathogenic avian influenza virus (H5N1) (QH09) was isolated from dead wild birds (3 species) in Qinghai, China, during May–June 2009. Phylogenetic and antigenic analyses showed that QH09 was clearly distinguishable from classical clade 2.2 viruses and belonged to clade 2.3.2. PMID:21291602

  9. Studies on H5N1 avian influenza virus gene reassortants in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to determine which viral gene or genes contribute to the virulence of H5N1 avian influenza viruses in chickens, we used reverse genetics to generate single-gene recombinant viruses and examined their pathogenicity in chickens. Intranasal inoculation of two week-old chickens with the recomb...

  10. Pathogenicity of reassortant H5N1 highly pathogenic avian influenza viruses in domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks has increased over time. These changes in virulence have been reported with viruses from countries with high population of domestic ducks, including Egypt. In order to understand which viral genes are contri...

  11. H5N1 Highly pathogenic avian influenza virus in wild birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The existing H5N1 HPAI experimental infection data in wild avian species has validated observations made from field data and provided useful objective data on susceptibility, viral shedding, and pathobiology in different avian species. However, a complete understanding of the H5N1 HPAI virus epidem...

  12. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus

    NASA Astrophysics Data System (ADS)

    Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-09-01

    This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin–streptavidin–biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.

  13. Identifying risk factors of highly pathogenic avian influenza (H5N1 subtype) in Indonesia

    PubMed Central

    Leo, Loth; Marius, Gilbert; Jianmei, Wu; Christina, Czarnecki; Muhammad, Hidayat; Xiangming, Xiao

    2016-01-01

    Highly pathogenic avian influenza (HPAI), subtype H5N1, was first officially reported in Indonesia in 2004. Since then the disease has spread and is now endemic in large parts of the country. This study investigated the statistical relationship between a set of risk factors and the presence or absence of HPAI in Indonesia during 2006 and 2007. HPAI was evaluated through participatory disease surveillance (PDS) in backyard village chickens (the study population), and risk factors included descriptors of people and poultry distribution (separating chickens, ducks and production sectors), poultry movement patterns and agro-ecological conditions. The study showed that the risk factors “elevation”, “human population density” and “rice cropping” were significant in accounting for the spatial variation of the PDS-defined HPAI cases. These findings were consistent with earlier studies in Thailand and Vietnam. In addition “commercial poultry population”, and two indicators of market locations and transport; “human settlements” and “road length”, were identified as significant risk factors in the models. In contrast to several previous studies carried out in Southeast Asia, domestic backyard ducks were not found to be a significant risk factor in Indonesia. The study used surrogate estimates of market locations and marketing chains and further work should focus on the actual location of the live bird markets, and on the flow of live poultry and poultry products between them, so that patterns of possible transmission, and regions of particular risk could be better inferred. PMID:21813198

  14. Identifying risk factors of highly pathogenic avian influenza (H5N1 subtype) in Indonesia.

    PubMed

    Loth, Leo; Gilbert, Marius; Wu, Jianmei; Czarnecki, Christina; Hidayat, Muhammad; Xiao, Xiangming

    2011-10-01

    Highly pathogenic avian influenza (HPAI), subtype H5N1, was first officially reported in Indonesia in 2004. Since then the disease has spread and is now endemic in large parts of the country. This study investigated the statistical relationship between a set of risk factors and the presence or absence of HPAI in Indonesia during 2006 and 2007. HPAI was evaluated through participatory disease surveillance (PDS) in backyard village chickens (the study population), and risk factors included descriptors of people and poultry distribution (separating chickens, ducks and production sectors), poultry movement patterns and agro-ecological conditions. The study showed that the risk factors "elevation", "human population density" and "rice cropping" were significant in accounting for the spatial variation of the PDS-defined HPAI cases. These findings were consistent with earlier studies in Thailand and Vietnam. In addition "commercial poultry population", and two indicators of market locations and transport; "human settlements" and "road length", were identified as significant risk factors in the models. In contrast to several previous studies carried out in Southeast Asia, domestic backyard ducks were not found to be a significant risk factor in Indonesia. The study used surrogate estimates of market locations and marketing chains and further work should focus on the actual location of the live bird markets, and on the flow of live poultry and poultry products between them, so that patterns of possible transmission, and regions of particular risk could be better inferred. PMID:21813198

  15. Molecular dynamics simulation of the effects of single (S221P) and double (S221P and K216E) mutations in the hemagglutinin protein of influenza A H5N1 virus: a study on host receptor specificity.

    PubMed

    Behera, Abhisek Kumar; Chandra, Ishwar; Cherian, Sarah S

    2016-09-01

    Avian influenza viruses of subtype H5N1 circulating in animals continue to pose threats to human health. The binding preference of the viral surface protein hemagglutinin (HA) to sialosaccharides of receptors is an important area for understanding mutations in the receptor binding site that could be the cause for avian-to-human transmission. In the present work, we studied the effect of two receptor binding site mutations, S221P singly and in combination with another mutation K216E in the HA protein of influenza A H5N1 viruses. Docking of sialic acid ligands corresponding to both avian and human receptors and molecular dynamics simulations of the complexes for wild and mutant strains of H5N1 viruses were carried out. The H5N1 strain possessing the S221P mutation indicated decreased binding to α2,3-linked sialic acids (avian receptor, SAα2,3Gal) when compared to the binding of the wild-type strain that did not possess the HA-221 mutation. The binding to α2,6-linked sialic acids (human receptor, SAα2,6Gal) was found to be comparable, indicating that the mutant strain shows limited dual receptor specificity. On the other hand, the S221P mutation in synergism with the K216E mutation in the binding site, resulted in increased binding affinity for SAα2,6Gal when compared to SAα2,3Gal, indicative of enhanced binding to human receptors. The in-depth study of the molecular interactions in the docked complexes could explain how co-occurring mutations in the HA viral protein can aid in providing fitness advantage to the virus, in the context of host receptor specificity in emerging variants of H5N1 influenza viruses. PMID:26457729

  16. Genome analysis linking recent European and African influenza (H5N1) viruses.

    PubMed

    Salzberg, Steven L; Kingsford, Carl; Cattoli, Giovanni; Spiro, David J; Janies, Daniel A; Aly, Mona Mehrez; Brown, Ian H; Couacy-Hymann, Emmanuel; De Mia, Gian Mario; Dung, Do Huu; Guercio, Annalisa; Joannis, Tony; Maken Ali, Ali Safar; Osmani, Azizullah; Padalino, Iolanda; Saad, Magdi D; Savić, Vladimir; Sengamalay, Naomi A; Yingst, Samuel; Zaborsky, Jennifer; Zorman-Rojs, Olga; Ghedin, Elodie; Capua, Ilaria

    2007-05-01

    To better understand the ecology and epidemiology of the highly pathogenic avian influenza virus in its transcontinental spread, we sequenced and analyzed the complete genomes of 36 recent influenza A (H5N1) viruses collected from birds in Europe, northern Africa, and southeastern Asia. These sequences, among the first complete genomes of influenza (H5N1) viruses outside Asia, clearly depict the lineages now infecting wild and domestic birds in Europe and Africa and show the relationships among these isolates and other strains affecting both birds and humans. The isolates fall into 3 distinct lineages, 1 of which contains all known non-Asian isolates. This new Euro-African lineage, which was the cause of several recent (2006) fatal human infections in Egypt and Iraq, has been introduced at least 3 times into the European-African region and has split into 3 distinct, independently evolving sublineages. One isolate provides evidence that 2 of these sublineages have recently reassorted. PMID:17553249

  17. Genome Analysis Linking Recent European and African Influenza (H5N1) Viruses

    PubMed Central

    Kingsford, Carl; Cattoli, Giovanni; Spiro, David J.; Janies, Daniel A.; Aly, Mona Mehrez; Brown, Ian H.; Couacy-Hymann, Emmanuel; De Mia, Gian Mario; Dung, Do Huu; Guercio, Annalisa; Joannis, Tony; Ali, Ali Safar Maken; Osmani, Azizullah; Padalino, Iolanda; Saad, Magdi D.; Savić, Vladimir; Sengamalay, Naomi A.; Yingst, Samuel; Zaborsky, Jennifer; Zorman-Rojs, Olga; Ghedin, Elodie; Capua, Ilaria

    2007-01-01

    To better understand the ecology and epidemiology of the highly pathogenic avian influenza virus in its transcontinental spread, we sequenced and analyzed the complete genomes of 36 recent influenza A (H5N1) viruses collected from birds in Europe, northern Africa, and southeastern Asia. These sequences, among the first complete genomes of influenza (H5N1) viruses outside Asia, clearly depict the lineages now infecting wild and domestic birds in Europe and Africa and show the relationships among these isolates and other strains affecting both birds and humans. The isolates fall into 3 distinct lineages, 1 of which contains all known non-Asian isolates. This new Euro-African lineage, which was the cause of several recent (2006) fatal human infections in Egypt and Iraq, has been introduced at least 3 times into the European-African region and has split into 3 distinct, independently evolving sublineages. One isolate provides evidence that 2 of these sublineages have recently reassorted. PMID:17553249

  18. Prediction of mutation positions in H5N1 neuraminidases from influenza A virus by means of neural network.

    PubMed

    Yan, Shaomin; Wu, Guang

    2010-03-01

    Quantification of mutation capacity within a protein could be a way to model the mutation relationship not only because history might not leave many cues on the causes for mutations but also the evolved protein might no longer be subject to previous mutation causes. Randomness should play a constant role in engineering mutations in proteins because randomness suggests the maximal probability of occurrence by which a protein would be constructed with the least time and energy to meet the speed of rapidly changing environments. Since 1999, we have developed three approaches for quantifying of randomness of protein by which each amino acid has three numeric values. In this study, we model our three random numeric values in each amino acid with occurrence and non-occurrence of mutation, which are classified as unity and zero, using a 3-6-1 feedforward backpropagation neural network to predict the mutation positions in H5N1 neuraminidases. The results show that the neural network can capture the mutation relationship as measured by prediction sensitivity, specificity, and total correct rate. With the help of translation probability between RNA codes and mutated amino acids, we predict the would-be-mutated amino acids at predicted mutation positions. PMID:20336836

  19. Effects of preventive administration of oxidized dextran on liver injury and reparative regeneration in mice infected with influenza A/H5N1 virus.

    PubMed

    Shkurupy, V A; Potapova, O V; Sharkova, T V; Shestopalov, A M; Troitskii, A V

    2015-02-01

    Intranasal infection of outbred male mice with influenza A/H5N1 A/goose/Krasnoozerskoye/627/05 virus led to high (85%) mortality of animals. Morphological studies of liver specimens showed destructive changes in the parenchyma (93.5% hepatocytes), caused by long persistence of the virus in the liver. The virus persistence was conjugated with activation of cellular immunity, manifesting by an increase in the counts of cells with high expression of proinflammatory cytokines (TNF-α) and lysosomal enzymes (lysozyme, cathepsin D). Injections of oxidized dextran 3 and 1 days before infection reduced mortality and 2-fold attenuated destructive changes in the liver, presumably due to prevention of virus penetration into the target cells, modulation of immune reactions, and stimulation of reparative plastic processes. PMID:25708331

  20. Reassortant H5N1 avian influenza viruses containing PA or NP gene from an H9N2 virus significantly increase the pathogenicity in mice.

    PubMed

    Hao, Xiaoli; Hu, Jiao; Wang, Jiongjiong; Xu, Jing; Cheng, Hao; Xu, Yunpeng; Li, Qunhui; He, Dongchang; Liu, Xiaowen; Wang, Xiaoquan; Gu, Min; Hu, Shunlin; Xu, Xiulong; Liu, Huimou; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2016-08-30

    Reassortment between different influenza viruses is a crucial way to generate novel influenza viruses with unpredictable virulence and transmissibility, which may threaten the public health. As currently in China, avian influenza viruses (AIVs) of H9N2 and H5N1 subtypes are endemic in poultry in many areas, while they are prone to reassort with each other naturally. In order to evaluate the risk of the reassortment to public health, A/Goose/Jiangsu/k0403/2010 [GS/10(H5N1)] virus was used as a backbone to generate a series of reassortants, each contained a single internal gene derived from the predominant S genotype of the A/Chicken/Jiangsu/WJ57/2012 [WJ/57(H9N2)]. We next assessed the biological characteristics of these assortments, including pathogenicity, replication efficiency and polymerase activity. We found that the parental WJ/57(H9N2) and GS/10(H5N1) viruses displayed high genetic compatibility. Notably, the H5N1 reassortants containing the PA or NP gene from WJ/57(H9N2) virus significantly increased virulence and replication ability in mice, as well as markedly enhanced polymerase activity. Our results indicate that the endemicity of H9N2 and H5N1 in domestic poultry greatly increases the possibility of generating new viruses by reassortment that may pose a great threat to poultry industry and public health. PMID:27527770

  1. Pathogenesis of H5N1 avian influenza virus gene reassortants in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic H5N1 avian influenza viruses produce severe disease and mortality in chickens. Identification of viral genes important for cell tropism and replication efficiency helps identify and target virulence factors. To determine which viral gene or genes contribute to the virulence of H5...

  2. Chlorine inactivation of H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two Asian strains of H5N1 highly pathogenic avian influenza virus were studied to determine their resistance to chlorination. Experiments were conducted at two pH levels (pH 7 and 8) at 5 C. CT (chlorine concentration x exposure time) values were calculated for different levels of inactivation. R...

  3. Cross-Reactive, Cell-Mediated Immunity and Protection of Chickens from Lethal H5N1 Influenza Virus Infection in Hong Kong Poultry Markets

    PubMed Central

    Seo, Sang Heui; Webster, Robert G.

    2001-01-01

    In 1997, avian H5N1 influenza virus transmitted from chickens to humans resulted in 18 confirmed infections. Despite harboring lethal H5N1 influenza viruses, most chickens in the Hong Kong poultry markets showed no disease signs. At this time, H9N2 influenza viruses were cocirculating in the markets. We investigated the role of H9N2 influenza viruses in protecting chickens from lethal H5N1 influenza virus infections. Sera from chickens infected with an H9N2 influenza virus did not cross-react with an H5N1 influenza virus in neutralization or hemagglutination inhibition assays. Most chickens primed with an H9N2 influenza virus 3 to 70 days earlier survived the lethal challenge of an H5N1 influenza virus, but infected birds shed H5N1 influenza virus in their feces. Adoptive transfer of T lymphocytes or CD8+ T cells from inbred chickens (B2/B2) infected with an H9N2 influenza virus to naive inbred chickens (B2/B2) protected them from lethal H5N1 influenza virus. In vitro cytotoxicity assays showed that T lymphocytes or CD8+ T cells from chickens infected with an H9N2 influenza virus recognized target cells infected with either an H5N1 or H9N2 influenza virus in a dose-dependent manner. Our findings indicate that cross-reactive cellular immunity induced by H9N2 influenza viruses protected chickens from lethal infection with H5N1 influenza viruses in the Hong Kong markets in 1997 but permitted virus shedding in the feces. Our findings are the first to suggest that cross-reactive cellular immunity can change the outcome of avian influenza virus infection in birds in live markets and create a situation for the perpetuation of H5N1 influenza viruses. PMID:11222674

  4. The East Jakarta Project: surveillance for highly pathogenic avian influenza A(H5N1) and seasonal influenza viruses in patients seeking care for respiratory disease, Jakarta, Indonesia, October 2011-September 2012.

    PubMed

    Storms, A D; Kusriastuti, R; Misriyah, S; Praptiningsih, C Y; Amalya, M; Lafond, K E; Samaan, G; Triada, R; Iuliano, A D; Ester, M; Sidjabat, R; Chittenden, K; Vogel, R; Widdowson, M A; Mahoney, F; Uyeki, T M

    2015-12-01

    Indonesia has reported the most human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus worldwide. We implemented enhanced surveillance in four outpatient clinics and six hospitals for HPAI H5N1 and seasonal influenza viruses in East Jakarta district to assess the public health impact of influenza in Indonesia. Epidemiological and clinical data were collected from outpatients with influenza-like illness (ILI) and hospitalized patients with severe acute respiratory infection (SARI); respiratory specimens were obtained for influenza testing by real-time reverse transcription-polymerase chain reaction. During October 2011-September 2012, 1131/3278 specimens from ILI cases (34·5%) and 276/1787 specimens from SARI cases (15·4%) tested positive for seasonal influenza viruses. The prevalence of influenza virus infections was highest during December-May and the proportion testing positive was 76% for ILI and 36% for SARI during their respective weeks of peak activity. No HPAI H5N1 virus infections were identified, including hundreds of ILI and SARI patients with recent poultry exposures, whereas seasonal influenza was an important contributor to acute respiratory disease in East Jakarta. Overall, 668 (47%) of influenza viruses were influenza B, 384 (27%) were A(H1N1)pdm09, and 359 (25%) were H3. While additional data over multiple years are needed, our findings suggest that seasonal influenza prevention efforts, including influenza vaccination, should target the months preceding the rainy season. PMID:25912029

  5. Effectiveness of esterified whey proteins fractions against Egyptian Lethal Avian Influenza A (H5N1)

    PubMed Central

    2010-01-01

    Background Avian influenza A (H5N1) virus is one of the most important public health concerns worldwide. The antiviral activity of native and esterified whey proteins fractions (α- lactalbumin, β- lactoglobulin, and lactoferrin) was evaluated against A/chicken/Egypt/086Q-NLQP/2008 HPAI (H5N1) strain of clade 2.2.1 (for multiplicity of infection (1 MOI) after 72 h of incubation at 37°C in the presence of 5% CO2) using MDCK cell lines. Result Both the native and esterified lactoferrin seem to be the most active antiviral protein among the tested samples, followed by β- lactoglobulin. α-Lactalbumin had less antiviral activity even after esterification. Conclusion Esterification of whey proteins fractions especially lactoferrin and β-lactoglobulin enhanced their antiviral activity against H5N1 in a concentration dependent manner. PMID:21092081

  6. Identification of Hsp90 as a species independent H5N1 avian influenza A virus PB2 interacting protein.

    PubMed

    Jirakanwisal, Krit; Srisutthisamphan, Kanjana; Thepparit, Chutima; Suptawiwat, Ornpreya; Auewarakul, Prasert; Paemanee, Atchara; Roytrakul, Sittiruk; Smith, Duncan R

    2015-12-01

    The avian influenza polymerase protein PB2 subunit is an important mediator of cross species adaptation and adaptation to mammalian cells is strongly but not exclusively associated with an adaptive mutation of the codon at position 627 of the PB2 protein which alters the glutamate normally found at this position to a lysine. This study sought to identify host cell factors in both mammalian and avian cells that interacted in a species specific or species independent manner. Two PB2 fusion proteins differing only in codon 627 were generated and transfected into mammalian and avian cells and interacting proteins identified through co-immunoprecipitation. A number of proteins including Hsp90 were identified and further investigation showed that Hsp90 interacted with both isoforms of PB2 in both mammalian and avian cells. Hsp90 is thus identified as a species independent interacting protein, further confirming that this protein may be a suitable target for anti-influenza drug development. PMID:26616658

  7. 14-Deoxy-11,12-dehydroandrographolide exerts anti-influenza A virus activity and inhibits replication of H5N1 virus by restraining nuclear export of viral ribonucleoprotein complexes.

    PubMed

    Cai, Wentao; Li, Yongtao; Chen, Sunrui; Wang, Mengli; Zhang, Anding; Zhou, Hongbo; Chen, Huanchun; Jin, Meilin

    2015-06-01

    The highly pathogenic avian influenza H5N1 virus has become a worldwide public health threat, and current antiviral therapies have limited activity against the emerging, resistant influenza viruses. Therefore, effective drugs with novel targets against influenza A viruses, H5N1 strains in particular, should be developed. In the present study, 14-deoxy-11,12-dehydroandrographolide (DAP), a major component of the traditional Chinese medicine Andrographis paniculata, exerted potent anti-influenza A virus activity against A/chicken/Hubei/327/2004 (H5N1), A/duck/Hubei/XN/2007 (H5N1), A/PR/8/34 (H1N1), A/NanChang/08/2010 (H1N1) and A/HuNan/01/2014 (H3N2) in vitro. To elucidate the underlying mechanisms, a series of experiments was conducted using A/chicken/Hubei/327/2004 (H5N1) as an example. Our results demonstrated that DAP strongly inhibited H5N1 replication by reducing the production of viral nucleoprotein (NP) mRNA, NP and NS1proteins, whereas DAP had no effect on the absorption and release of H5N1 towards/from A549 cells. DAP also effectively restrained the nuclear export of viral ribonucleoprotein (vRNP) complexes. This inhibitory effect ought to be an important anti-H5N1 mechanism of DAP. Meanwhile, DAP significantly reduced the upregulated expression of all the tested proinflammatory cytokines (TNF-α, IL-6, IL-8, IFN-α, IL-1β and IFN-β) and chemokines (CXCL-10 and CCL-2) stimulated by H5N1. Overall results suggest that DAP impairs H5N1 replication at least in part by restraining nuclear export of vRNP complexes, and the inhibition of viral replication leads to a subsequent decrease of the intense proinflammatory cytokine/chemokine expression. In turn, the effect of modification of the host excessive immune response may contribute to overcoming H5N1. To our knowledge, this study is the first to reveal the antiviral and anti-inflammatory activities of DAP in vitro against H5N1 influenza A virus infection. PMID:25800824

  8. PDlim2 Selectively Interacts with the PDZ Binding Motif of Highly Pathogenic Avian H5N1 Influenza A Virus NS1

    PubMed Central

    Wang, Yu; Li, Bo; Li, Hongyue; Li, Yapeng; Zhou, Weihong; Zhang, Cuizhu; Wang, Yingying; Rao, Zihe; Bartlam, Mark; Cao, Youjia

    2011-01-01

    The multi-functional NS1 protein of influenza A virus is a viral virulence determining factor. The last four residues at the C-terminus of NS1 constitute a type I PDZ domain binding motif (PBM). Avian influenza viruses currently in circulation carry an NS1 PBM with consensus sequence ESEV, whereas human influenza viruses bear an NS1 PBM with consensus sequence RSKV or RSEV. The PBM sequence of the influenza A virus NS1 is reported to contribute to high viral pathogenicity in animal studies. Here, we report the identification of PDlim2 as a novel binding target of the highly pathogenic avian influenza virus H5N1 strain with an NS1 PBM of ESEV (A/Chicken/Henan/12/2004/H5N1, HN12-NS1) by yeast two-hybrid screening. The interaction was confirmed by in vitro GST pull-down assays, as well as by in vivo mammalian two-hybrid assays and bimolecular fluorescence complementation assays. The binding was also confirmed to be mediated by the interaction of the PDlim2 PDZ domain with the NS1 PBM motif. Interestingly, our assays showed that PDlim2 bound specifically with HN12-NS1, but exhibited no binding to NS1 from a human influenza H1N1 virus bearing an RSEV PBM (A/Puerto Rico/8/34/H1N1, PR8-NS1). A crystal structure of the PDlim2 PDZ domain fused with the C-terminal hexapeptide from HN12-NS1, together with GST pull-down assays on PDlim2 mutants, reveals that residues Arg16 and Lys31 of PDlim2 are critical for the binding between PDlim2 and HN12-NS1. The identification of a selective binding target of HN12-NS1 (ESEV), but not PR8-NS1 (RSEV), enables us to propose a structural mechanism for the interaction between NS1 PBM and PDlim2 or other PDZ-containing proteins. PMID:21625420

  9. Avian Influenza A(H5N1) Virus Outbreak Investigation: Application of the FAO-OIE-WHO Four-way Linking Framework in Indonesia.

    PubMed

    Setiawaty, V; Dharmayanti, N L P I; Misriyah; Pawestri, H A; Azhar, M; Tallis, G; Schoonman, L; Samaan, G

    2015-08-01

    WHO, FAO and OIE developed a 'four-way linking' framework to enhance the cross-sectoral sharing of epidemiological and virological information in responding to zoonotic disease outbreaks. In Indonesia, outbreak response challenges include completeness of data shared between human and animal health authorities. The four-way linking framework (human health laboratory/epidemiology and animal health laboratory/epidemiology) was applied in the investigation of the 193 rd human case of avian influenza A(H5N1) virus infection. As recommended by the framework, outbreak investigation and risk assessment findings were shared. On 18 June 2013, a hospital in West Java Province reported a suspect H5N1 case in a 2-year-old male. The case was laboratory-confirmed that evening, and the information was immediately shared with the Ministry of Agriculture. The human health epidemiology/laboratory team investigated the outbreak and conducted an initial risk assessment on 19 June. The likelihood of secondary cases was deemed low as none of the case contacts were sick. By 3 July, no secondary cases associated with the outbreak were identified. The animal health epidemiology/laboratory investigation was conducted on 19-25 June and found that a live bird market visited by the case was positive for H5N1 virus. Once both human and market virus isolates were sequenced, a second risk assessment was conducted jointly by the human health and animal health epidemiology/laboratory teams. This assessment concluded that the likelihood of additional human cases associated with this outbreak was low but that future sporadic human infections could not be ruled out because of challenges in controlling H5N1 virus contamination in markets. Findings from the outbreak investigation and risk assessments were shared with stakeholders at both Ministries. The four-way linking framework clarified the type of data to be shared. Both human health and animal health teams made ample data available, and there was

  10. Host Regulatory Network Response to Infection with Highly Pathogenic H5N1 Avian Influenza Virus ▿ †

    PubMed Central

    Li, Chengjun; Bankhead, Armand; Eisfeld, Amie J.; Hatta, Yasuko; Jeng, Sophia; Chang, Jean H.; Aicher, Lauri D.; Proll, Sean; Ellis, Amy L.; Law, G. Lynn; Waters, Katrina M.; Neumann, Gabriele; Katze, Michael G.; McWeeney, Shannon; Kawaoka, Yoshihiro

    2011-01-01

    During the last decade, more than half of humans infected with highly pathogenic avian influenza (HPAI) H5N1 viruses have died, yet virus-induced host signaling has yet to be clearly elucidated. Airway epithelia are known to produce inflammatory mediators that contribute to HPAI H5N1-mediated pathogenicity, but a comprehensive analysis of the host response in this cell type is lacking. Here, we leveraged a system approach to identify and statistically validate signaling subnetworks that define the dynamic transcriptional response of human bronchial epithelial cells after infection with influenza A/Vietnam/1203/2004 (H5N1, VN1203). Importantly, we validated a subset of transcripts from one subnetwork in both Calu-3 cells and mice. A more detailed examination of two subnetworks involved in the immune response and keratinization processes revealed potential novel mediators of HPAI H5N1 pathogenesis and host response signaling. Finally, we show how these results compare to those for a less virulent strain of influenza virus. Using emergent network properties, we provide fresh insight into the host response to HPAI H5N1 virus infection and identify novel avenues for perturbation studies and potential therapeutic interventions for fatal HPAI H5N1 disease. PMID:21865398

  11. Zoonotic transmission of avian influenza virus (H5N1), Egypt, 2006-2009.

    PubMed

    Kandeel, Amr; Manoncourt, Serge; Abd el Kareem, Eman; Mohamed Ahmed, Abdel Nasser; El-Refaie, Samir; Essmat, Hala; Tjaden, Jeffrey; de Mattos, Cecilia C; Earhart, Kenneth C; Marfin, Anthony A; El-Sayed, Nasr

    2010-07-01

    During March 2006-March 2009, a total of 6,355 suspected cases of avian influenza (H5N1) were reported to the Ministry of Health in Egypt. Sixty-three (1%) patients had confirmed infections; 24 (38%) died. Risk factors for death included female sex, age > or = 15 years, and receiving the first dose of oseltamivir >2 days after illness onset. All but 2 case-patients reported exposure to domestic poultry probably infected with avian influenza virus (H5N1). No cases of human-to-human transmission were found. Greatest risks for infection and death were reported among women > or = 15 years of age, who accounted for 38% of infections and 83% of deaths. The lower case-fatality rate in Egypt could be caused by a less virulent virus clade. However, the lower mortality rate seems to be caused by the large number of infected children who were identified early, received prompt treatment, and had less severe clinical disease. PMID:20587181

  12. Polyvalent DNA vaccines expressing HA antigens of H5N1 influenza viruses with an optimized leader sequence elicit cross-protective antibody responses.

    PubMed

    Wang, Shixia; Hackett, Anthony; Jia, Na; Zhang, Chunhua; Zhang, Lu; Parker, Chris; Zhou, An; Li, Jun; Cao, Wu-Chun; Huang, Zuhu; Li, Yan; Lu, Shan

    2011-01-01

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses are circulating among poultry populations in parts of Asia, Africa, and the Middle East, and have caused human infections with a high mortality rate. H5 subtype hemagglutinin (HA) has evolved into phylogenetically distinct clades and subclades based on viruses isolated from various avian species. Since 1997, humans have been infected by HPAI H5N1 viruses from several clades. It is, therefore, important to develop strategies to produce protective antibody responses against H5N1 viruses from multiple clades or antigenic groups. In the current study, we optimized the signal peptide design of DNA vaccines expressing HA antigens from H5N1 viruses. Cross reactivity analysis using sera from immunized rabbits showed that antibody responses elicited by a polyvalent formulation, including HA antigens from different clades, was able to elicit broad protective antibody responses against multiple key representative H5N1 viruses across different clades. Data presented in this report support the development of a polyvalent DNA vaccine strategy against the threat of a potential H5N1 influenza pandemic. PMID:22205966

  13. Global spatiotemporal and genetic footprint of the H5N1 avian influenza virus

    PubMed Central

    2014-01-01

    Background Since 2005, the Qinghai-like lineage of the highly pathogenic avian influenza A virus H5N1 has rapidly spread westward to Europe, the Middle East and Africa, reaching a dominant level at a global scale in 2006. Methods Based on a combination of genetic sequence data and H5N1 outbreak information from 2005 to 2011, we use an interdisciplinary approach to improve our understanding of the transmission pattern of this particular clade 2.2, and present cartography of global spatiotemporal transmission footprints with genetic characteristics. Results Four major viral transmission routes were derived with three sources— Russia, Mongolia, and the Middle East (Kuwait and Saudi Arabia)—in the three consecutive years 2005, 2006 and 2007. With spatiotemporal transmission along each route, genetic distances to isolate A/goose/Guangdong/1996 are becoming significantly larger, leading to a more challenging situation in certain regions like Korea, India, France, Germany, Nigeria and Sudan. Europe and India have had at least two incursions along multiple routes, causing a mixed virus situation. In addition, spatiotemporal distribution along the routes showed that 2007/2008 was a temporal separation point for the infection of different host species; specifically, wild birds were the main host in 2005–2007/2008 and poultry was responsible for the genetic mutation in 2009–2011. “Global-to-local” and “high-to-low latitude” transmission footprints have been observed. Conclusions Our results suggest that both wild birds and poultry play important roles in the transmission of the H5N1 virus clade, but with different spatial, temporal, and genetic dominance. These characteristics necessitate that special attention be paid to countries along the transmission routes. PMID:24885233

  14. Highly pathogenic avian influenza virus H5N1 infection in a long-distance migrant shorebird under migratory and non-migratory states.

    PubMed

    Reperant, Leslie A; van de Bildt, Marco W G; van Amerongen, Geert; Buehler, Debbie M; Osterhaus, Albert D M E; Jenni-Eiermann, Susi; Piersma, Theunis; Kuiken, Thijs

    2011-01-01

    Corticosterone regulates physiological changes preparing wild birds for migration. It also modulates the immune system and may lead to increased susceptibility to infection, with implications for the spread of pathogens, including highly pathogenic avian influenza virus (HPAIV) H5N1. The red knot (Calidris canutus islandica) displays migratory changes in captivity and was used as a model to assess the effect of high plasma concentration of corticosterone on HPAIV H5N1 infection. We inoculated knots during pre-migration (N = 6), fueling (N = 5), migration (N = 9) and post-migration periods (N = 6). Knots from all groups shed similar viral titers for up to 5 days post-inoculation (dpi), peaking at 1 to 3 dpi. Lesions of acute encephalitis, associated with virus replication in neurons, were seen in 1 to 2 knots per group, leading to neurological disease and death at 5 to 11 dpi. Therefore, the risk of HPAIV H5N1 infection in wild birds and of potential transmission between wild birds and poultry may be similar at different times of the year, irrespective of wild birds' migratory status. However, in knots inoculated during the migration period, viral shedding levels positively correlated with pre-inoculation plasma concentration of corticosterone. Of these, knots that did not become productively infected had lower plasma concentration of corticosterone. Conversely, elevated plasma concentration of corticosterone did not result in an increased probability to develop clinical disease. These results suggest that birds with elevated plasma concentration of corticosterone at the time of migration (ready to migrate) may be more susceptible to acquisition of infection and shed higher viral titers--before the onset of clinical disease--than birds with low concentration of corticosterone (not ready for take-off). Yet, they may not be more prone to the development of clinical disease. Therefore, assuming no effect of sub-clinical infection on the likelihood of

  15. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus inf...

  16. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI...

  17. A sensitive retroviral pseudotype assay for influenza H5N1‐neutralizing antibodies

    PubMed Central

    Temperton, Nigel J.; Hoschler, Katja; Major, Diane; Nicolson, Carolyn; Manvell, Ruth; Hien, Vo Minh; Ha, Do Quang; De Jong, Menno; Zambon, Maria; Takeuchi, Yasuhiro; Weiss, Robin A.

    2007-01-01

    Background  The World Health Organisation (WHO) recommended the development of simple, safe, sensitive and specific neutralization assays for avian influenza antibodies. We have used retroviral pseudotypes bearing influenza H5 hemagglutinin (HA) as safe, surrogate viruses for influenza neutralization assays which can be carried out at Biosafety Level 2. Results  Using our assay, sera from patients who had recovered from infection with influenza H5N1, and sera from animals experimentally immunized or infected with H5 tested positive for the presence of neutralizing antibodies to H5N1. Pseudotype neutralizing antibody titers were compared with titers obtained by hemagglutinin inhibition (HI) assays and microneutralization (MN) assays using live virus, and showed a high degree of correlation, sensitivity and specificity. Conclusions  The pseudotype neutralization assay is as sensitive as horse erythrocyte HI and MN for the detection of antibodies to H5N1. It is safer, and can be applied in a high‐throughput format for human and animal surveillance and for the evaluation of vaccines. PMID:19453415

  18. The influence of the multi-basic cleavage site of the H5 hemagglutinin on the attenuation, immunogenicity and efficacy of a live attenuated influenza A h5N1 cold-adapted vaccine virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recombinant live attenuated influenza virus (LAIV) deltaH5N1 vaccine with a modified hemagglutinin (HA) and intact neuraminidase genes from A/Vietnam/1203/04 (H5N1) and the six remaining genome segments from A/Ann Arbor/6/60 (H2N2) cold-adapted (AA ca) virus was attenuated in chickens, mice and fe...

  19. Highly Pathogenic Avian Influenza H5N1, Thailand, 2004

    PubMed Central

    Chaitaweesub, Prasit; Songserm, Thaweesak; Chaisingh, Arunee; Hoonsuwan, Wirongrong; Buranathai, Chantanee; Parakamawongsa, Tippawon; Premashthira, Sith; Amonsin, Alongkorn; Gilbert, Marius; Nielen, Mirjam; Stegeman, Arjan

    2005-01-01

    In January 2004, highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first confirmed in poultry and humans in Thailand. Control measures, e.g., culling poultry flocks, restricting poultry movement, and improving hygiene, were implemented. Poultry populations in 1,417 villages in 60 of 76 provinces were affected in 2004. A total of 83% of infected flocks confirmed by laboratories were backyard chickens (56%) or ducks (27%). Outbreaks were concentrated in the Central, the southern part of the Northern, and Eastern Regions of Thailand, which are wetlands, water reservoirs, and dense poultry areas. More than 62 million birds were either killed by HPAI viruses or culled. H5N1 virus from poultry caused 17 human cases and 12 deaths in Thailand; a number of domestic cats, captive tigers, and leopards also died of the H5N1 virus. In 2005, the epidemic is ongoing in Thailand. PMID:16318716

  20. Experimental study of the efficiency of oxidized dextran for prevention of influenza A/H5N1.

    PubMed

    Shkurupy, V A; Potapova, O V; Sharkova, T V; Troitskii, A V; Gulyaeva, E P; Bystrova, T N; Shestopalov, A M

    2014-11-01

    Oxidized dextran is suggested for prevention of infection induced by influenza A/H5N1 viruses, methods of its use and doses are determined. Two intravenous injections of dextran 3 and 1 days before experimental infection of outbred mice by influenza A/H5N1 A/goose/Krasnoozerskoye/627/05 virus resulted in a high preventive dose-dependent effect: the mean lifespan was 25% prolonged, the mortality decreased 3-fold. PMID:25403410

  1. Molecular Basis for Broad Neuraminidase Immunity: Conserved Epitopes in Seasonal and Pandemic H1N1 as Well as H5N1 Influenza Viruses

    PubMed Central

    Wan, Hongquan; Gao, Jin; Xu, Kemin; Chen, Hongjun; Couzens, Laura K.; Rivers, Katie H.; Easterbrook, Judy D.; Yang, Kevin; Zhong, Lei; Rajabi, Mohsen; Ye, Jianqiang; Sultana, Ishrat; Wan, Xiu-Feng; Liu, Xiufan; Perez, Daniel R.; Taubenberger, Jeffery K.

    2013-01-01

    Influenza A viruses, including H1N1 and H5N1 subtypes, pose a serious threat to public health. Neuraminidase (NA)-related immunity contributes to protection against influenza virus infection. Antibodies to the N1 subtype provide protection against homologous and heterologous H1N1 as well as H5N1 virus challenge. Since neither the strain-specific nor conserved epitopes of N1 have been identified, we generated a panel of mouse monoclonal antibodies (MAbs) that exhibit different reactivity spectra with H1N1 and H5N1 viruses and used these MAbs to map N1 antigenic domains. We identified 12 amino acids essential for MAb binding to the NA of a recent seasonal H1N1 virus, A/Brisbane/59/2007. Of these, residues 248, 249, 250, 341, and 343 are recognized by strain-specific group A MAbs, while residues 273, 338, and 339 are within conserved epitope(s), which allows cross-reactive group B MAbs to bind the NAs of seasonal H1N1 and the 1918 and 2009 pandemic (09pdm) H1N1 as well as H5N1 viruses. A single dose of group B MAbs administered prophylactically fully protected mice against lethal challenge with seasonal and 09pdm H1N1 viruses and resulted in significant protection against the highly pathogenic wild-type H5N1 virus. Another three N1 residues (at positions 396, 397, and 456) are essential for binding of cross-reactive group E MAbs, which differ from group B MAbs in that they do not bind 09pdm H1N1 viruses. The identification of conserved N1 epitopes reveals the molecular basis for NA-mediated immunity between H1N1 and H5N1 viruses and demonstrates the potential for developing broadly protective NA-specific antibody treatments for influenza. PMID:23785204

  2. Efficacy of commercial vaccines in chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  3. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus

    PubMed Central

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-01-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus. PMID:26038770

  4. Seasonal Oscillation of Human Infection with Influenza A/H5N1 in Egypt and Indonesia

    PubMed Central

    Murray, Eleanor J.; Morse, Stephen S.

    2011-01-01

    As of June 22, 2011, influenza A/H5N1 has caused a reported 329 deaths and 562 cases in humans, typically attributed to contact with infected poultry. Influenza H5N1 has been described as seasonal. Although several studies have evaluated environmental risk factors for H5N1 in poultry, none have considered seasonality of H5N1 in humans. In addition, temperature and humidity are suspected to drive influenza in temperate regions, but drivers in the tropics are unknown, for H5N1 as well as other influenza viruses. An analysis was conducted to determine whether human H5N1 cases occur seasonally in association with changes in temperature, precipitation and humidity. Data analyzed were H5N1 human cases in Indonesia (n = 135) and Egypt (n = 50), from January 1, 2005 (Indonesia) or 2006 (Egypt) through May 1, 2008 obtained from WHO case reports, and average daily weather conditions obtained from NOAA's National Climatic Data Center. Fourier time series analysis was used to determine seasonality of cases and associations between weather conditions and human H5N1 incidence. Human H5N1 cases in Indonesia occurred with a period of 1.67 years/cycle (p<0.05) and in Egypt, a period of 1.18 years/cycle (p≅0.10). Human H5N1 incidence in Egypt, but not Indonesia, was strongly associated with meteorological variables (κ2≥0.94) and peaked in Egypt when precipitation was low, and temperature, absolute humidity and relative humidity were moderate compared to the average daily conditions in Egypt. Weather conditions coinciding with peak human H5N1 incidence in Egypt suggest that human infection may be occurring primarily via droplet transmission from close contact with infected poultry. PMID:21909409

  5. Inadequate protection of ducks and geese against H5N1 high pathogenicity avian influenza virus by a single vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks and geese are an important sustainable food source in developing countries. Few studies have been conducted to test vaccine efficacy in either ducks or geese. This study was conducted to investigate whether a single vaccination could protect White Pekin ducks and White Chinese geese against ...

  6. THERMAL INACTIVATION OF H5N1 HIGH PATHOGENICITY AVIAN INFLUENZA VIRUS IN NATURALLY INFECTED CHICKEN MEAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal inactivation of the H5N1 high pathogenicity avian influenza (HPAI) virus strain A/chicken/Korea/ES/2003 (Korea/03) was quantitatively measured in thigh and breast meat harvested from infected chickens. The average Korea/03 titers in uncooked meat samples were 8.0 log 10 EID50/g (thigh) and 7...

  7. Design of new inhibitors for H5N1 avian influenza using a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Park, Jin Woo; Jo, Won Ho

    2008-03-01

    Recently, there has been a growing interest in the treatment of H5N1 avian influenza. One of the most widely used antiviral agents is oseltamivir. However, it has been reported that oseltamivir is not as effective against the neuraminidase subtype N1 as it is against subtypes N2 and N9. In our research we addressed this problem by designing new inhibitors and these altered inhibitor's binding affinities were calculated. In this study, we introduced chemical groups to the existing oseltamivir, so to fit into the newly discovered cavity in the subtype N1. When the binding strengths of the oseltamivir and the newly designed inhibitors for N1 were calculated to examine the drug efficiency through a molecular dynamics simulation, then compared with each other, it was found that one of the designed molecules exhibited a strong binding affinity, with more than twice the binding strength than that of oseltamivir. Since the aforementioned designed inhibitor appears to have the possibility for oral activity according to the criteria of human oral bioavailability, we propose that the inhibitor is a promising antiviral drug for H5N1 avian influenza.

  8. Characterization of conserved properties of hemagglutinin of H5N1 and human influenza viruses: possible consequences for therapy and infection control

    PubMed Central

    Veljkovic, Veljko; Veljkovic, Nevena; Muller, Claude P; Müller, Sybille; Glisic, Sanja; Perovic, Vladimir; Köhler, Heinz

    2009-01-01

    Background Epidemics caused by highly pathogenic avian influenza virus (HPAIV) are a continuing threat to human health and to the world's economy. The development of approaches, which help to understand the significance of structural changes resulting from the alarming mutational propensity for human-to-human transmission of HPAIV, is of particularly interest. Here we compare informational and structural properties of the hemagglutinin (HA) of H5N1 virus and human influenza virus subtypes, which are important for the receptor/virus interaction. Results Presented results revealed that HA proteins encode highly conserved information that differ between influenza virus subtypes H5N1, H1N1, H3N2, H7N7 and defined an HA domain which may modulate interaction with receptor. We also found that about one third of H5N1 viruses which are isolated during the 2006/07 influenza outbreak in Egypt possibly evolve towards receptor usage similar to that of seasonal H1N1. Conclusion The presented results may help to better understand the interaction of influenza virus with its receptor(s) and to identify new therapeutic targets for drug development. PMID:19351406

  9. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus.

    PubMed

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-01-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration. PMID:27507581

  10. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    NASA Astrophysics Data System (ADS)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-08-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.

  11. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    PubMed Central

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-01-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration. PMID:27507581

  12. Evolutionary dynamics of highly pathogenic avian influenza A/H5N1 HA clades and vaccine implementation in Vietnam

    PubMed Central

    Nguyen, Nga Thi Bich

    2014-01-01

    Based on hemagglutinin (HA) and neuraminidase (NA), influenza A virus is divided into 18 different HA (H1 to H18) and 11 NA types (N1 to N11), opening the possibility for reassortment between the HA and NA genes to generate new HxNy subtypes (where x could be any HA and y is any NA, possibly). In recent four years, since 2010, highly pathogenic avian influenza (HPAI) viruses of H5N1 subtype (HPAI A/H5N1) have become highly enzootic and dynamically evolved to form multiple H5 HA clades, particularly in China, Vietnam, Indonesia, Egypt, Cambodia, and Bangladesh. So far, after more than 10 years emerged in Vietnam (since late 2003), HPAI A/H5N1 is still posing a potential risk of causing outbreaks in poultry, with high frequency of annual endemics. Intragenic variation (referred to as antigenic drift) in HA (e.g., H5) has given rise to form numerous clades, typically marking the major timelines of the evolutionary status and vaccine application in each period. The dominance of genetically and antigenically diversified clade 2.3.2.1 (of subgroups a, b, c), clade 1.1 (1.1.1/1.1.2) and re-emergence of clade 7.1/7.2 at present, has urged Vietnam to the need for dynamically applied antigenicity-matching vaccines, i.e., the plan of importing Re-6 vaccine for use in 2014, in parallel use of Re-1/Re-5 since 2006. In this review, we summarize evolutionary features of HPAI A/H5N1 viruses and clade formation during recent 10 years (2004-2014). Dynamic of vaccine implementation in Vienam is also remarked. PMID:25003084

  13. MVA Vectors Expressing Conserved Influenza Proteins Protect Mice against Lethal Challenge with H5N1, H9N2 and H7N1 Viruses

    PubMed Central

    Hessel, Annett; Savidis-Dacho, Helga; Coulibaly, Sogue; Portsmouth, Daniel; Kreil, Thomas R.; Crowe, Brian A.; Schwendinger, Michael G.; Pilz, Andreas; Barrett, P. Noel; Falkner, Falko G.; Schäfer, Birgit

    2014-01-01

    Background The availability of a universal influenza vaccine able to induce broad cross-reactive immune responses against diverse influenza viruses would provide an alternative to currently available strain-specific vaccines. We evaluated the ability of vectors based on modified vaccinia virus Ankara (MVA) expressing conserved influenza proteins to protect mice against lethal challenge with multiple influenza subtypes. Methods Mice were immunized with MVA vectors expressing H5N1-derived nucleoprotein (NP), the stem region of hemagglutinin (HA), matrix proteins 1 and 2 (M1 and M2), the viral polymerase basic protein 1 (PB1), or the HA stem fused to a quadrivalent matrix protein 2 extracellular domain (M2e). Immunized mice were challenged with lethal doses of H5N1, H7N1 or H9N2 virus and monitored for disease symptoms and weight loss. To investigate the influence of previous exposure to influenza virus on protective immune responses induced by conserved influenza proteins, mice were infected with pandemic H1N1 virus (H1N1pdm09) prior to immunization and subsequently challenged with H5N1 virus. Antibody and T cell responses were assessed by ELISA and flow cytometry, respectively. Results MVA vectors expressing NP alone, or co-expressed with other conserved influenza proteins, protected mice against lethal challenge with H5N1, H7N1 or H9N2 virus. Pre-exposure to H1N1pdm09 increased protective efficacy against lethal H5N1 challenge. None of the other conserved influenza proteins provided significant levels of protection against lethal challenge. NP-expressing vectors induced high numbers of influenza-specific CD4+ and CD8+ T cells and high titer influenza-specific antibody responses. Higher influenza-specific CD4+ T cell responses and NP-specific CD8+ T cell responses were associated with increased protective efficacy. Conclusions MVA vectors expressing influenza NP protect mice against lethal challenge with H5N1, H7N1 and H9N2 viruses by a mechanism involving influenza

  14. Protective Efficacy of the Inactivated H5N1 Influenza Vaccine Re-6 Against Different Clades of H5N1 Viruses Isolated in China and the Democratic People's Republic of Korea.

    PubMed

    Zeng, Xianying; Deng, Guohua; Liu, Liling; Li, Yanbing; Shi, Jianzhong; Chen, Pucheng; Feng, Huapeng; Liu, Jingli; Guo, Xingfu; Mao, Shenggang; Yang, Fan; Chen, Zhiyu; Tian, Guobin; Chen, Hualan

    2016-05-01

    An inactivated H5N1 avian influenza (AI) vaccine (Re-6) that bears the HA and NA genes from a clade 2.3.2.1 H5N1 virus, A/duck/Guangdong/S1322/10 (DK/GD/S1322/10), has been used in domestic poultry in China and other Southeast Asian countries to control clade 2.3.2.1 H5N1viruses since 2012. The efficacy of this vaccine against H5N1 viruses isolated in recent years has not been reported. In this study, we evaluated the protection efficacy of the Re-6 vaccine in chickens against challenge with four clade 2.3.2.1 H5N1 viruses, one clade 2.3.4.4 H5N1 virus, and one clade 7.2 H5N1 virus; these viruses were isolated in mainland China, Hong Kong, and the Democratic People's Republic of Korea between 2011 and 2015. The vaccinated chickens were completely protected (no disease signs, virus shedding, or death) from the challenge with the four clade 2.3.2.1 H5N1 viruses. In the clade 7.2 virus-challenged group, all of the vaccinated chickens remained healthy and survived for the entire 2-wk observation period; virus shedding was only detected from 1 of 10 chickens on day 3 postchallenge. In the clade 2.3.4.4 virus-challenged group, 8 of the 10 vaccinated chickens remained healthy and survived the 2-wk observation period; however, virus shedding was detected from 8 of 10 chickens on day 5 postchallenge. These results indicate that the Re-6 vaccine provides solid protection against clade 2.3.2.1, good protection against clade 7.2, and poor protection against clade 2.3.4.4. PMID:27309061

  15. Truncation and Sequence Shuffling of Segment 6 Generate Replication-Competent Neuraminidase-Negative Influenza H5N1 Viruses

    PubMed Central

    Kalthoff, Donata; Röhrs, Susanne; Höper, Dirk; Hoffmann, Bernd; Bogs, Jessica; Stech, Jürgen

    2013-01-01

    Influenza viruses are highly genetically variable and escape from immunogenic pressure by antigenic changes in their surface proteins, referred to as “antigenic drift” and “antigenic shift.” To assess the potential genetic plasticity under strong selection pressure, highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 was passaged 50 times in embryonated chicken eggs in the presence of a neutralizing, polyclonal chicken serum. The resulting mutant acquired major alterations in the neuraminidase (NA)-encoding segment. Extensive deletions and rearrangements were detected, in contrast to only 12 amino acid substitutions within all other segments. Interestingly, this new neuraminidase segment resulted from complex sequence shuffling and insertion of a short fragment originating from the PA segment. Characterization of that novel variant revealed a loss of the neuraminidase protein and enzymatic activity, but its replication efficiency remained comparable to that of the wild type. Using reverse genetics, a recombinant virus consisting of the wild-type backbone and the shortened NA segment could be generated; however, generation of this recombinant virus required the polybasic hemagglutinin cleavage site. Two independent repetitions starting with egg passage 30 in the presence of alternative chicken-derived immune sera selected mutants with similar but different large deletions within the NA segment without any neuraminidase activity, indicating a general mechanism. In chicken, these virus variants were avirulent, even though the HPAIV polybasic hemagglutinin cleavage site was still present. Overall, the variants reported here are the first HPAIV H5N1 strains without a functional neuraminidase shown to grow efficiently without any helper factor. These novel HPAIV variants may facilitate future studies shedding light on the role of neuraminidase in virus replication and pathogenicity. PMID:24109212

  16. Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt

    PubMed Central

    Watanabe, Yohei; Ibrahim, Madiha S.; Ellakany, Hany F.; Kawashita, Norihito; Mizuike, Rika; Hiramatsu, Hiroaki; Sriwilaijaroen, Nogluk; Takagi, Tatsuya; Suzuki, Yasuo; Ikuta, Kazuyoshi

    2011-01-01

    Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60% mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1 virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A change in receptor binding affinity of the viral hemagglutinin (HA) from α2,3- to α2,6-linked sialic acid (SA) is thought to be necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics, we found that these H5 sublineages have acquired an enhanced binding affinity for α2,6 SA in combination with residual affinity for α2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1 viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to α2,6 SA, emerged during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence of new H5 sublineages with α2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in Egypt, and provided data for understanding the virus's pandemic potential. PMID:21637809

  17. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities.

    PubMed

    To, Kelvin K W; Chan, Jasper F W; Chen, Honglin; Li, Lanjuan; Yuen, Kwok-Yung

    2013-09-01

    Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear. PMID:23969217

  18. Phylogeography of influenza A H5N1 clade 2.2.1.1 in Egypt

    PubMed Central

    2013-01-01

    Background Influenza A H5N1 has killed millions of birds and raises serious public health concern because of its potential to spread to humans and cause a global pandemic. While the early focus was in Asia, recent evidence suggests that Egypt is a new epicenter for the disease. This includes characterization of a variant clade 2.2.1.1, which has been found almost exclusively in Egypt. We analyzed 226 HA and 92 NA sequences with an emphasis on the H5N1 2.2.1.1 strains in Egypt using a Bayesian discrete phylogeography approach. This allowed modeling of virus dispersion between Egyptian governorates including the most likely origin. Results Phylogeography models of hemagglutinin (HA) and neuraminidase (NA) suggest Ash Sharqiyah as the origin of virus spread, however the support is weak based on Kullback–Leibler values of 0.09 for HA and 0.01 for NA. Association Index (AI) values and Parsimony Scores (PS) were significant (p-value < 0.05), indicating that dispersion of H5N1 in Egypt was geographically structured. In addition, the Ash Sharqiyah to Al Gharbiyah and Al Fayyum to Al Qalyubiyah routes had the strongest statistical support. Conclusion We found that the majority of routes with strong statistical support were in the heavily populated Delta region. In particular, the Al Qalyubiyah governorate appears to represent a popular location for virus transition as it represented a large portion of branches in both trees. However, there remains uncertainty about virus dispersion to and from this location and thus more research needs to be conducted in order to examine this. Phylogeography can highlight the drivers of H5N1 emergence and spread. This knowledge can be used to target public health efforts to reduce morbidity and mortality. For Egypt, future work should focus on using data about vaccination and live bird markets in phylogeography models to study their impact on H5N1 diffusion within the country. PMID:24325606

  19. Modified H5 real-time reverse transcriptase-PCR oligonucleotides for detection of divergent avian influenza H5N1 viruses in Egypt.

    PubMed

    Abdelwhab, E M; Abdelwhab, El-Sayed M; Arafa, Abdel-Satar; Erfan, Ahmed M; Aly, Mona M; Hafez, Hafez M

    2010-12-01

    The efforts exerted to prevent circulation of highly pathogenic avian influenza (HPAI) H5N1 virus in birds are the best way to prevent the emergence of a new virus subtype with pandemic potential. Despite the blanket vaccination strategy against HPAI H5N1 in Egypt, continuous circulation of the virus in poultry has increased since late 2007 as a result of the presence of genetic and antigenic distinct variant strains that have escaped during the immune response of vaccinated birds. Although the suspected poultry flocks have had signs and lesions commonly seen in HPAI H5N1-infected birds, escape of variant strains from detection by real-time reverse transcriptase-PCR (RRT-PCR) was observed. Sequence analysis of these variants revealed multiple single nucleotide substitutions in the primers and probe target sequences of the H5 gene by real-time RT-PCR. This study describes the results of RRT-PCR, modified from an existing protocol with regard to the detection of the partial H5 gene segment of the Egyptian H5N1 divergent viruses and applied to nationwide surveillance. The modified RRT-PCR assay was more sensitive than the original one in the detection of Egyptian isolates, with 104% amplification efficiency. Sixty-one field samples were found to be positive in our assay, but only 51 samples tested positive by the original protocol and were more sensitive than matrix gene RRT-PCR detection assay. A detection limit of 10 mean embryo infective dose (EID50) with the updated oligonucleotides primers and probe set was found. For the foreseeable future, mutation of H5N1 viruses and the endemic situation in developing countries require continuous improvement of current diagnostics to aid in the containment of the H5N1 virus in poultry sectors and to lower the threat of influenza virus spread. PMID:21313854

  20. Risk Distribution of Human Infections with Avian Influenza H7N9 and H5N1 virus in China

    PubMed Central

    Li, Xin-Lou; Yang, Yang; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; Liu, Kun; Ma, Mai-Juan; Liang, Song; Yao, Hong-Wu; Gray, Gregory C.; Fang, Li-Qun; Cao, Wu-Chun

    2015-01-01

    It has been documented that the epidemiological characteristics of human infections with H7N9 differ significantly between H5N1. However, potential factors that may explain the different spatial distributions remain unexplored. We use boosted regression tree (BRT) models to explore the association of agro-ecological, environmental and meteorological variables with the occurrence of human cases of H7N9 and H5N1, and map the probabilities of occurrence of human cases. Live poultry markets, density of human, coverage of built-up land, relative humidity and precipitation were significant predictors for both. In addition, density of poultry, coverage of shrub and temperature played important roles for human H7N9 infection, whereas human H5N1 infection was associated with coverage of forest and water body. Based on the risks and distribution of ecological characteristics which may facilitate the circulation of the two viruses, we found Yangtze River Delta and Pearl River Delta, along with a few spots on the southeast coastline, to be the high risk areas for H7N9 and H5N1. Additional, H5N1 risk spots were identified in eastern Sichuan and southern Yunnan Provinces. Surveillance of the two viruses needs to be enhanced in these high risk areas to reduce the risk of future epidemics of avian influenza in China. PMID:26691585

  1. Risk Distribution of Human Infections with Avian Influenza H7N9 and H5N1 virus in China.

    PubMed

    Li, Xin-Lou; Yang, Yang; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; Liu, Kun; Ma, Mai-Juan; Liang, Song; Yao, Hong-Wu; Gray, Gregory C; Fang, Li-Qun; Cao, Wu-Chun

    2015-01-01

    It has been documented that the epidemiological characteristics of human infections with H7N9 differ significantly between H5N1. However, potential factors that may explain the different spatial distributions remain unexplored. We use boosted regression tree (BRT) models to explore the association of agro-ecological, environmental and meteorological variables with the occurrence of human cases of H7N9 and H5N1, and map the probabilities of occurrence of human cases. Live poultry markets, density of human, coverage of built-up land, relative humidity and precipitation were significant predictors for both. In addition, density of poultry, coverage of shrub and temperature played important roles for human H7N9 infection, whereas human H5N1 infection was associated with coverage of forest and water body. Based on the risks and distribution of ecological characteristics which may facilitate the circulation of the two viruses, we found Yangtze River Delta and Pearl River Delta, along with a few spots on the southeast coastline, to be the high risk areas for H7N9 and H5N1. Additional, H5N1 risk spots were identified in eastern Sichuan and southern Yunnan Provinces. Surveillance of the two viruses needs to be enhanced in these high risk areas to reduce the risk of future epidemics of avian influenza in China. PMID:26691585

  2. Evaluation of two live attenuated cold-adapted H5N1 influenza virus vaccines in healthy adults

    PubMed Central

    Karron, Ruth A.; Talaat, Kawsar; Luke, Catherine; Callahan, Karen; Thumar, Bhagvanji; DiLorenzo, Susan; McAuliffe, Josephine; Schappell, Elizabeth; Suguitan, Amorsolo; Mills, Kimberly; Chen, Grace; Lamirande, Elaine; Coelingh, Kathleen; Jin, Hong; Murphy, Brian R.; Kemble, George; Subbarao, Kanta

    2016-01-01

    Background Development of live attenuated influenza vaccines (LAIV) against avian viruses with pandemic potential is an important public health strategy. Methods and Findings We performed open-label trials to evaluate the safety, infectivity, and immunogenicity of H5N1 VN 2004 AA ca and H5N1 HK 2003 AA ca. Each of these vaccines contains a modified H5 hemagglutinin and unmodified N1 neuraminidase from the respective wild-type (wt) parent virus and the six internal protein gene segments of the A/Ann Arbor/6/60 cold-adapted (ca) master donor virus. The H5N1 VN 2004 AA ca vaccine virus was evaluated at dosages of 106.7 TCID50 and 107.5 TCID50, and the H5N1 HK 2003 AA ca vaccine was evaluated at a dosage of 107.5 TCID50. Two doses were administered intranasally to healthy adults in isolation at 4 to 8 week intervals. Vaccine safety was assessed through daily examinations and infectivity was assessed by viral culture and by realtime reverse transcription-polymerase chain reaction testing of nasal wash (NW) specimens. Immunogenicity was assessed by measuring hemagglutination-inhibition (HI) antibodies, neutralizing antibodies, and IgG or IgA antibodies to recombinant (r)H5 VN 2004 hemagglutinin (HA) in serum or NW. Fifty-nine participants were enrolled: 21 received 106.7 TCID50 and 21 received 107.5 TCID50 of H5N1 VN 2004 AA ca and 17 received H5N1 HK 2003 AA ca. Shedding of vaccine virus was minimal, as were HI and neutralizing antibody responses. Fifty-two percent of recipients of 107.5 TCID50 of H5N1 VN 2004 AA ca developed a serum IgA response to rH5 VN 2004 HA. Conclusions The live attenuated H5N1 VN 2004 and HK 2003 AA ca vaccines bearing avian H5 HA antigens were very restricted in replication and were more attenuated than seasonal LAIV bearing human H1, H3 or B HA antigens. The H5N1 AA ca LAIV elicited serum ELISA antibody but not HI or neutralizing antibody responses in healthy adults. (ClinicalTrials.gov Identifiers: NCT00347672 and NCT00488046). PMID:19540952

  3. Interventions for avian influenza A (H5N1) risk management in live bird market networks

    PubMed Central

    Fournié, Guillaume; Guitian, Javier; Desvaux, Stéphanie; Cuong, Vu Chi; Dung, Do Huu; Pfeiffer, Dirk Udo; Mangtani, Punam; Ghani, Azra C.

    2013-01-01

    Highly pathogenic avian influenza virus subtype H5N1 is endemic in Asia, with live bird trade as a major disease transmission pathway. A cross-sectional survey was undertaken in northern Vietnam to investigate the structure of the live bird market (LBM) contact network and the implications for virus spread. Based on the movements of traders between LBMs, weighted and directed networks were constructed and used for social network analysis and individual-based modeling. Most LBMs were connected to one another, suggesting that the LBM network may support large-scale disease spread. Because of cross-border trade, it also may promote transboundary virus circulation. However, opportunities for disease control do exist. The implementation of thorough, daily disinfection of the market environment as well as of traders’ vehicles and equipment in only a small number of hubs can disconnect the network dramatically, preventing disease spread. These targeted interventions would be an effective alternative to the current policy of a complete ban of LBMs in some areas. Some LBMs that have been banned still are very active, and they likely have a substantial impact on disease dynamics, exhibiting the highest levels of susceptibility and infectiousness. The number of trader visits to markets, information that can be collected quickly and easily, may be used to identify LBMs suitable for implementing interventions. This would not require prior knowledge of the force of infection, for which laboratory-confirmed surveillance would be necessary. These findings are of particular relevance for policy development in resource-scarce settings. PMID:23650388

  4. Interventions for avian influenza A (H5N1) risk management in live bird market networks.

    PubMed

    Fournié, Guillaume; Guitian, Javier; Desvaux, Stéphanie; Cuong, Vu Chi; Dung, Do Huu; Pfeiffer, Dirk Udo; Mangtani, Punam; Ghani, Azra C

    2013-05-28

    Highly pathogenic avian influenza virus subtype H5N1 is endemic in Asia, with live bird trade as a major disease transmission pathway. A cross-sectional survey was undertaken in northern Vietnam to investigate the structure of the live bird market (LBM) contact network and the implications for virus spread. Based on the movements of traders between LBMs, weighted and directed networks were constructed and used for social network analysis and individual-based modeling. Most LBMs were connected to one another, suggesting that the LBM network may support large-scale disease spread. Because of cross-border trade, it also may promote transboundary virus circulation. However, opportunities for disease control do exist. The implementation of thorough, daily disinfection of the market environment as well as of traders' vehicles and equipment in only a small number of hubs can disconnect the network dramatically, preventing disease spread. These targeted interventions would be an effective alternative to the current policy of a complete ban of LBMs in some areas. Some LBMs that have been banned still are very active, and they likely have a substantial impact on disease dynamics, exhibiting the highest levels of susceptibility and infectiousness. The number of trader visits to markets, information that can be collected quickly and easily, may be used to identify LBMs suitable for implementing interventions. This would not require prior knowledge of the force of infection, for which laboratory-confirmed surveillance would be necessary. These findings are of particular relevance for policy development in resource-scarce settings. PMID:23650388

  5. Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses.

    PubMed

    Ramey, Andrew M; Reeves, Andrew B; TeSlaa, Joshua L; Nashold, Sean; Donnelly, Tyrone; Bahl, Justin; Hall, Jeffrey S

    2016-06-01

    Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November-December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds. PMID:26944444

  6. Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew; Teslaa, Joshua L.; Nashold, Sean W.; Donnelly, Tyrone F.; Bahl, Justin; Hall, Jeffrey S.

    2016-01-01

    Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November–December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.

  7. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological outcome of H5N1 high pathogenicity avian influenza (HPAI) virus infection in wild waterfowl is poorly understood. This study examined infectivity and pathobiology of A/chicken/Korea/IS/06 (H5N1) HPAI virus infection in Mute swans (Cygnus olor), Greylag geese (Anser anser), Ruddy Sheld...

  8. Persistence of Highly Pathogenic Avian Influenza H5N1 Virus Defined by Agro-Ecological Niche

    PubMed Central

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced. Electronic supplementary material The online version of this article (doi:10.1007/s10393-010-0324-z) contains supplementary material, which is available to authorized users. PMID:20585972

  9. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche.

    PubMed

    Hogerwerf, Lenny; Wallace, Rob G; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-06-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004-2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced. PMID:20585972

  10. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche

    USGS Publications Warehouse

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced.

  11. The significance of naturally occurring neuraminidase quasispecies of H5N1 avian influenza virus on resistance to oseltamivir: a point of concern.

    PubMed

    Schaduangrat, Nalini; Phanich, Jiraphorn; Rungrotmongkol, Thanyada; Lerdsamran, Hatairat; Puthavathana, Pilaipan; Ubol, Sukathida

    2016-06-01

    Viral adaptability and survival arise due to the presence of quasispecies populations that are able to escape the immune response or produce drug-resistant variants. However, the presence of H5N1 virus with natural mutations acquired without any drug selection pressure poses a great threat. Cloacal samples collected from the 2004-2005 epidemics in Thailand from Asian open-billed storks revealed one major and several minor quasispecies populations with mutations on the oseltamivir (OTV)-binding site of the neuraminidase gene (NA) without prior exposure to a drug. Therefore, this study investigated the binding between the NA-containing novel mutations and OTV drug using molecular dynamic simulations and plaque inhibition assay. The results revealed that the mutant populations, S236F mutant, S236F/C278Y mutant, A250V/V266A/P271H/G285S mutant and C278Y mutant, had a lower binding affinity with OTV as compared with the WT virus due to rearrangement of amino acid residues and increased flexibility in the 150-loop. This result was further emphasized through the IC50 values obtained for the major population and WT virus, 104.74 nM and 18.30 nM, respectively. Taken together, these data suggest that H5N1 viruses isolated from wild birds have already acquired OTV-resistant point mutations without any exposure to a drug. PMID:26935590

  12. Testing of human specimens for the presence of highly pathogenic zoonotic avian influenza virus A(H5N1) in Poland in 2006-2008 - justified or unnecessary steps?

    PubMed

    Romanowska, Magdalena; Nowak, Iwona; Brydak, Lidia; Wojtyla, Andrzej

    2009-01-01

    Since 1997, human infections with highly pathogenic zoonotic avian influenza viruses have shown that the risk of influenza pandemic is significant. In Europe, infections caused by the highly pathogenic avian influenza A(H7N7) virus were confirmed in the human population in 2003 in the Netherlands. Moreover, outbreaks of A(H5N1) infections were observed in wild and farm birds in different European regions, including Poland in 2006-2008. This study presents 16 patients in Poland from whom clinical specimens were collected and tested for A(H5N1) highly pathogenic avian influenza. This article shows the results of laboratory tests and discusses the legitimacy of the collection and testing of the specimens. All patients were negative for A(H5N1) infection. Nevertheless, only two patients met clinical and epidemiological criteria from the avian influenza case definition. The conclusion is that there is still a strong necessity for increasing the awareness of medical and laboratory staff, as well as the awareness of some occupational groups about human infections with avian influenza viruses, including the importance of seasonal influenza vaccination. It should also be emphasized that in the case of patients suspected of being infected with avian influenza, the information about clinical symptoms is insufficient and must be accompanied by a wide epidemiological investigation. PMID:20047257

  13. Experimental and Field Results Regarding Immunity Induced by a Recombinant Turkey Herpesvirus H5 Vector Vaccine Against H5N1 and Other H5 Highly Pathogenic Avian Influenza Virus Challenges.

    PubMed

    Gardin, Yannick; Palya, Vilmos; Dorsey, Kristi Moore; El-Attrache, John; Bonfante, Francesco; Wit, Sjaak de; Kapczynski, Darrell; Kilany, Walid Hamdy; Rauw, Fabienne; Steensels, Mieke; Soejoedono, Retno D

    2016-05-01

    Vaccination against H5N1 highly pathogenic avian influenza (AI) virus (HPAIV) is one of the possible complementary means available for affected countries to control AI when the disease has become, or with a high risk of becoming, endemic. Efficacy of the vaccination against AI relies essentially, but not exclusively, on the capacity of the vaccine to induce immunity against the targeted virus (which is prone to undergo antigenic variations), as well as its capacity to overcome interference with maternal immunity transmitted by immunized breeding hens to their progeny. This property of the vaccine is a prerequisite for its administration at the hatchery, which assures higher and more reliable vaccine coverage of the populations than vaccination at the farm. A recombinant vector vaccine (Vectormune® AI), based on turkey herpesvirus expressing the hemagglutinin gene of an H5N1 HPAIV as an insert, has been used in several experiments conducted in different research laboratories, as well as in controlled field trials. The results have demonstrated a high degree of homologous and cross protection against different genetic clades of the H5N1 HPAIV. Furthermore, vaccine-induced immunity was not impaired by the presence of passive immunity, but on the contrary, cumulated with it for improved early protection. The demonstrated levels of protection against the different challenge viruses exhibited variations in terms of postchallenge mortality, as well as challenge virus shedding. The data presented here highlight the advantages of this vaccine as a useful and reliable tool to complement biosecurity and sanitary policies for better controlling the disease due to HPAIV of H5 subtypes, when the vaccination is applied as a control measure. PMID:27309060

  14. Molecular and antigenic evolution and geographical spread of H5N1 highly pathogenic avian influenza viruses in western Africa.

    PubMed

    Ducatez, M F; Olinger, C M; Owoade, A A; Tarnagda, Z; Tahita, M C; Sow, A; De Landtsheer, S; Ammerlaan, W; Ouedraogo, J B; Osterhaus, A D M E; Fouchier, R A M; Muller, C P

    2007-08-01

    In Africa, highly pathogenic avian influenza H5N1 virus was first detected in northern Nigeria and later also in other regions of the country. Since then, seven other African countries have reported H5N1 infections. This study reports a comparison of full-length genomic sequences of H5N1 isolates from seven chicken farms in Nigeria and chicken and hooded vultures in Burkina Faso with earlier H5N1 outbreaks worldwide. In addition, the antigenicity of Nigerian H5N1 isolates was compared with earlier strains. All African strains clustered within three sublineages denominated A (south-west Nigeria, Niger), B (south-west Nigeria, Egypt, Djibouti) and C (northern Nigeria, Burkina Faso, Sudan, Côte d'Ivoire), with distinct nucleotide and amino acid signatures and distinct geographical distributions within Africa. Probable non-African ancestors within the west Asian/Russian/European lineage distinct from the south-east Asian lineages were identified for each sublineage. All reported human cases in Africa were caused by sublineage B. Substitution rates were calculated on the basis of sequences from 11 strains from a single farm in south-west Nigeria. As H5N1 emerged essentially at the same time in the north and south-west of Nigeria, the substitution rates confirmed that the virus probably did not spread from the north to the south, given the observed sequence diversity, but that it entered the country via three independent introductions. The strains from Burkina Faso seemed to originate from northern Nigeria. At least two of the sublineages also circulated in Europe in 2006 as seen in Germany, further suggesting that the sublineages had already emerged outside of Africa and seemed to have followed the east African/west Asian and Black Sea/Mediterranean flyways of migratory birds. PMID:17622635

  15. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo.

    PubMed

    Chan, Michael C W; Kuok, Denise I T; Leung, Connie Y H; Hui, Kenrie P Y; Valkenburg, Sophie A; Lau, Eric H Y; Nicholls, John M; Fang, Xiaohui; Guan, Yi; Lee, Jae W; Chan, Renee W Y; Webster, Robert G; Matthay, Michael A; Peiris, J S Malik

    2016-03-29

    Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium's protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation. PMID:26976597

  16. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo

    PubMed Central

    Chan, Michael C. W.; Kuok, Denise I. T.; Leung, Connie Y. H.; Hui, Kenrie P. Y.; Valkenburg, Sophie A.; Lau, Eric H. Y.; Nicholls, John M.; Fang, Xiaohui; Guan, Yi; Lee, Jae W.; Chan, Renee W. Y.; Webster, Robert G.; Matthay, Michael A.; Peiris, J. S. Malik

    2016-01-01

    Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium’s protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation. PMID:26976597

  17. [Analysis of decrease in sensitivity in influenza A (H5N1) avian and human strains to neuraminidase inhibitors].

    PubMed

    Reina, J

    2008-03-01

    The options for efficient control of avian influenza A (H5N1) viruses include specific vaccination and antiviral prophylaxis and treatment. However, because H5N1 viruses undergo continuous antigen mutations, the production of a matched vaccine strain is currently not possible. Thus, during the early pandemic period, specific control measures would rely solely on antiviral drugs. Now only neuraminidase inhibitors (NIs) (zanamivir and oseltamivir) are considered for prophylaxis and therapy in patients with H5N1 infection. The sensitivies of H5N1 strains to the NIs fell into 3 groups. The clade I viruses isolated before 2004 were as sensitive to NIs than reference strains (first group). But the clade I viruses isolated from 2004 were 6 to 7-fold less sensitivity to NIs (second group). The clade II strains isolated from 2005 to 2007 demonstrated a 15 to 30 fold decrease in sensitivity to oseltamivir compared with clade I viruses (third group). The specific decrease in sensitivity to oseltamivir of both Cambodian and Indonesian clade 2 influenza H5N1 isolates is disturbing, especially because they maintain their pathogenicity and transmissibility in birds and are clearly pathogenic in humans. No altered sensitivity to zanamivir has been detected. Zanamivir may also play an important role in pandemic stockpiles. Because the clade 2 virus is now spread through parts of Europe and Africa, continued global collaboration and phenotypic testing of NIs sensitivity are critical for a future pandemic. PMID:18443931

  18. Differences in pathogenicity and response to vaccination between Pekin and Muscovy ducks infected with H5N1 highly pathogenic influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Vaccination of domestic ducks against H5N1 HPAI is being conducted as a method of control but with mixed results. One of the observations from the field is that Muscovy ducks (Cair...

  19. Survivability of Eurasian H5N1 highly pathogenic avian influenza viruses in water varies between strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic habitats play critical role in the transmission and maintenance of low pathogenic avian influenza (LPAI) viruses in wild waterfowl; however the importance of these environments in the ecology of H5N1 highly pathogenic avian influenza (HPAI) viruses is unknown. In laboratory-based studies, L...

  20. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses

    PubMed Central

    Arai, Yasuha; Kawashita, Norihito; Daidoji, Tomo; Ibrahim, Madiha S.; El-Gendy, Emad M.; Takagi, Tatsuya; Takahashi, Kazuo; Suzuki, Yasuo; Ikuta, Kazuyoshi; Nakaya, Takaaki; Shioda, Tatsuo; Watanabe, Yohei

    2016-01-01

    A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation. PMID:27097026

  1. PA-X-associated early alleviation of the acute lung injury contributes to the attenuation of a highly pathogenic H5N1 avian influenza virus in mice.

    PubMed

    Hu, Jiao; Mo, Yiqun; Gao, Zhao; Wang, Xiaoquan; Gu, Min; Liang, Yanyan; Cheng, Xin; Hu, Shunlin; Liu, Wenbo; Liu, Huimou; Chen, Sujuan; Liu, Xiaowen; Peng, Daxing; Liu, Xiufan

    2016-08-01

    PA-X is a novel discovered accessory protein encoded by the PA mRNA. Our previous study demonstrated that PA-X decreases the virulence of a highly pathogenic H5N1 strain A/Chicken/Jiangsu/k0402/2010 in mice. However, the underlying mechanism of virulence attenuation associated with PA-X is still unknown. In this study, we compared two PA-X-deficient mutant viruses and the parental virus in terms of induction of pathology and manipulation of host response in the mouse lung, stimulation of cell death and PA nuclear accumulation. We first found that down-regulated PA-X expression markedly aggravated the acute lung injury of the infected mice early on day 1 post-infection (p.i.). We then determined that loss of PA-X expression induced higher levels of cytokines, chemokines and complement-derived peptides (C3a and C5a) in the lung, especially at early time point's p.i. In addition, in vitro assays showed that the PA-X-deficient viruses enhanced cell death and increased expression of reactive oxygen species (ROS) in mammalian cells. Moreover, we also found that PA nuclear accumulation of the PA-X-null viruses accelerated in MDCK cells. These results demonstrate that PA-X decreases the level of complement components, ROS, cell death and inflammatory response, which may together contribute to the alleviated lung injury and the attenuation of the virulence of H5N1 virus in mice. PMID:27289459

  2. Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses.

    PubMed

    Lin, Shih-Chang; Liu, Wen-Chun; Jan, Jia-Tsrong; Wu, Suh-Chin

    2014-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus, a known trigger of diseases in poultry and humans, is perceived as a serious threat to public health. There is a clear need for a broadly protective H5N1 vaccine or vaccines for inducing neutralizing antibodies against multiple clades/subclades. We constructed single, double, and triple mutants of glycan-masked hemagglutiinin (HA) antigens at residues 83, 127 and 138 (i.e., g83, g127, g138, g83+g127, g127+g138, g83+g138 and g83+g127+g138), and then obtained their corresponding HA-expressing adenovirus vectors and recombinant HA proteins using a prime-boost immunization strategy. Our results indicate that the glycan-masked g127+g138 double mutant induced more potent HA-inhibition, virus neutralization antibodies, cross-clade protection against heterologous H5N1 clades, correlated with the enhanced bindings to the receptor binding sites and the highly conserved stem region of HA. The immune refocusing stem-specific antibodies elicited by the glycan-masked H5HA g127+g138 and g83+g127+g138 mutants overlapped with broadly neutralizing epitopes of the CR6261 monoclonal antibody that neutralizes most group 1 subtypes. These findings may provide useful information in the development of a broadly protective H5N1 influenza vaccine. PMID:24671139

  3. Highly Pathogenic H5N1 and Novel H7N9 Influenza A Viruses Induce More Profound Proteomic Host Responses than Seasonal and Pandemic H1N1 Strains.

    PubMed

    Simon, Philippe François; McCorrister, Stuart; Hu, Pingzhao; Chong, Patrick; Silaghi, Alex; Westmacott, Garrett; Coombs, Kevin M; Kobasa, Darwyn

    2015-11-01

    Influenza A viruses (IAV) are important human and animal pathogens with potential for causing pandemics. IAVs exhibit a wide spectrum of clinical illness in humans, from relatively mild infections by seasonal strains to acute respiratory distress syndrome during infections with some highly pathogenic avian influenza (HPAI) viruses. In the present study, we infected A549 human cells with seasonal H1N1 (sH1N1), 2009 pandemic H1N1 (pdmH1N1), or novel H7N9 and HPAI H5N1 strains. We used multiplexed isobaric tags for relative and absolute quantification to measure proteomic host responses to these different strains at 1, 3, and 6 h post-infection. Our analyses revealed that both H7N9 and H5N1 strains induced more profound changes to the A549 global proteome compared to those with low-pathogenicity H1N1 virus infection, which correlates with the higher pathogenicity these strains exhibit at the organismal level. Bioinformatics analysis revealed important modulation of the nuclear factor erythroid 2-related factor 2 (NRF2) oxidative stress response in infection. Cellular fractionation and Western blotting suggested that the phosphorylated form of NRF2 is not imported to the nucleus in H5N1 and H7N9 virus infections. Fibronectin was also strongly inhibited in infection with H5N1 and H7N9 strains. This is the first known comparative proteomic study of the host response to H7N9, H5N1, and H1N1 viruses and the first time NRF2 is shown to be implicated in infection with highly pathogenic strains of influenza. PMID:26381135

  4. Pathogenicity of an H5N1 avian influenza virus isolated in Vietnam in 2012 and reliability of conjunctival samples for diagnosis of infection

    PubMed Central

    Bui, Vuong N.; Dao, Tung D.; Nguyen, Tham T. H.; Nguyen, Lien T.; Bui, Anh N.; Trinh, Dai Q.; Pham, Nga T.; Inui, Kenjiro; Runstadler, Jonathan; Ogawa, Haruko; Nguyen, Khong V.; Imai, Kunitoshi

    2013-01-01

    The continued spread of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 among poultry in Vietnam poses a potential threat to animals and public health. To evaluate the pathogenicity of a 2012 H5N1 HPAIV isolate and to assess the utility of conjunctival swabs for viral detection and isolation in surveillance, an experimental infection with HPAIV subtype H5N1 was carried out in domestic ducks. Ducks were infected with 107.2 TCID50 of A/duck/Vietnam/QB1207/2012 (H5N1), which was isolated from a moribund domestic duck. In the infected ducks, clinical signs of disease, including neurological disorder, were observed. Ducks started to die at 3 days-post-infection (dpi), and the study mortality reached 67%. Viruses were recovered from oropharyngeal and conjunctival swabs until 7 dpi and from cloacal swabs until 4 dpi. In the ducks that died or were sacrificed on 3, 5, or 6 dpi, viruses were recovered from lung, brain, heart, pancreas and intestine, among which the highest virus titers were in the lung, brain or heart. Results of virus titration were confirmed by real-time RT-PCR. Genetic and phylogenetic analysis of the HA gene revealed that the isolate belongs to clade 2.3.2.1 similarly to the H5N1 viruses isolated in Vietnam in 2012. The present study demonstrated that this recent HPAI H5N1 virus of clade 2.3.2.1 could replicate efficiently in the systemic organs, including the brain, and cause severe disease with neurological symptoms in domestic ducks. Therefore, this HPAI H5N1 virus seems to retain the neurotrophic feature and has further developed properties of shedding virus from the oropharynx and conjunctiva in addition to the cloaca, potentially posing a higher risk of virus spread through cross-contact and/or environmental transmission. Continued surveillance and diagnostic programs using conjuntcival swabs in the field would further verify the apparent reliability of conjunctival samples for the detection of AIV. PMID:24211664

  5. H5N1 influenza virulence, pathogenicity and transmissibility: what do we know?

    PubMed Central

    Neumann, Gabriele

    2015-01-01

    Highly pathogenic influenza viruses of the H5N1 subtype have infected more than 600 people since 1997, resulting in the deaths of approximately 60% of those infected. Multiple studies have established the viral hemagglutinin (HA) surface glycoprotein as the major determinant of H5N1 virulence. HA mediates host-specific virus binding to cells, and mutations that allow efficient binding to viral receptors on mammalian cells are critical (although not sufficient) for H5N1 transmissibility among mammals. The viral polymerase PB2 protein is also a critical virulence determinant, and adaptive mutations in this protein are crucial for efficient H5N1 virus replication in mammals. Additionally, viral proteins (such as NS1 and PB1-F2) with roles in innate immune responses also affect the virulence of highly pathogenic H5N1 viruses. PMID:26617665

  6. Pathogenesis of the 1918 pandemic and H5N1 influenza virus infection in a guinea pig model: The antiviral potential of exogenous alpha-interferon to reduce virus shedding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the geographic expansion, and continued outbreaks in humans and avian species underscore the need for more effective influenza vaccines and antivirals. Additional small anim...

  7. H5N1 Outbreaks and Enzootic Influenza

    PubMed Central

    Peiris, Malik; Chen, Honglin; Guan, Yi

    2006-01-01

    Ongoing outbreaks of H5N1 avian influenza in migratory waterfowl, domestic poultry, and humans in Asia during the summer of 2005 present a continuing, protean pandemic threat. We review the zoonotic source of highly pathogenic H5N1 viruses and their genesis from their natural reservoirs. The acquisition of novel traits, including lethality to waterfowl, ferrets, felids, and humans, indicates an expanding host range. The natural selection of nonpathogenic viruses from heterogeneous subpopulations cocirculating in ducks contributes to the spread of H5N1 in Asia. Transmission of highly pathogenic H5N1 from domestic poultry back to migratory waterfowl in western China has increased the geographic spread. The spread of H5N1 and its likely reintroduction to domestic poultry increase the need for good agricultural vaccines. In fact, the root cause of the continuing H5N1 pandemic threat may be the way the pathogenicity of H5N1 viruses is masked by cocirculating influenza viruses or bad agricultural vaccines. PMID:16494709

  8. Phylogenetic and biological characterization of highly pathogenic H5N1 avian influenza viruses (Vietnam 2005) in chickens and ducks virus research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of Asian H5N1 avian influenza (AI) virus hemagglutinin (HA) genes shows a common origin, but the virus has evolved into at least three major clades (clades 0, 1, and 2) over the last 11 years. Previous reports of Vietnam viruses have documented predominantly clade 1 viruses. Unexpectedly,...

  9. Innate immune responses to infection with H5N1 highly pathogenic avian influenza virus in different duck species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Differences in pathogenicity and response to vaccination have been observed between different duck species. The innate immune system is responsible for controlling viruses during t...

  10. Age at infection affects the pathogenicity of Asian highly pathogenic avian influenza H5N1 viruses in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian H5N1 avian influenza (AI) viruses have changed from producing no disease or mild respiratory infections in ducks to some strains causing systemic disease and death. Differences in pathogenicity between four of these viruses as well as the effect of host age on the outcome of infection were...

  11. [Immunological evaluation of vector-expressed M2 and HA genes of H5N1 influenza virus in mice].

    PubMed

    Guo, Jianqiang; Yao, Lihong; Chen, Aijun; Xu, Yi; Liu, Xiaoyu; Shu, Yuelong; Zhang, Zhiqing

    2010-05-01

    We developed vectors expressing two antigen of H5N1 influenza virus. Based on the human H5N1 avian influenza virus strain A/Anhui/1/2005 isolated in China, we amplified the matrix protein 2 (M2) and Hemagglutinin (HA) genes by PCR and subcloned them into pStar vector to construct two genes co-expressing recombinant DNA vaccine pStar-M2/HA. After transfection of 293 cells with the plasmid, we confirmed with indirect immunofluorescence assay (IFA) that M2 and HA genes cloned on plasmid pStar co-expressed successfully. Using Ad-Easy adenovirus vector system, by homologous recombination in bacteria and packaging in 293 cells, we constructed two recombinant adenoviruses, namely Ad-M2 and Ad-HA. After infection of 293 cells with the recombinant adenoviruses, we confirmed with IFA that M2 and HA genes cloned into adenoviruses expressed successfully. We then combined the recombinant DNA vaccine and adenoviral vector vaccines in immunization of BALB/c mice with a prime-boost regime. On day 0 and day 28, we immunized the mice with DNA vaccine and on day 14 and day 42, with recombinant adenovirus vaccines. We took blood samples before each injection and 14 days after the final injection. On day 56, we collected splenocytes from the mice. ELISA and hemagglutination inhibition (HI) assay showed that the vaccines successfully induced specific IgG antibodies against HA protein in serum of the immunized mice. ELISPOT confirmed that the vaccines successfully induced the special cellular immune response to M2 and HA protein of H5N1 influenza virus. The study on combined immunization with M2 and HA genes provided basis for development of novel influenza vaccine. PMID:20684310

  12. Different routes of inoculation impact infectivity and pathogenesis of H5N1 high pathogenicity avian influenza virus infection in chickens and domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 type A influenza viruses classified as Qinghai-like virus (clade 2.2) are a unique lineage of type A influenza viruses with the capacity to produce significant disease and mortality in gallinaceous birds and water fowl including ducks. The objective of this study was to determine the suscep...

  13. Surveillance plan for the early detection of H5N1 highly pathogenic avian influenza virus in migratory birds in the United States: surveillance year 2009

    USGS Publications Warehouse

    Brand, Christopher J.

    2009-01-01

    Executive Summary: This Surveillance Plan (Plan) describes plans for conducting surveillance of wild birds in the United States and its Territories and Freely-Associated States to provide for early detection of the introduction of the H5N1 Highly Pathogenic Avian Influenza (HPAI) subtype of the influenza A virus by migratory birds during the 2009 surveillance year, spanning the period of April 1, 2009 - March 31, 2010. The Plan represents a continuation of surveillance efforts begun in 2006 under the Interagency Strategic Plan for the Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (U.S. Department of Agriculture and U.S. Department of the Interior, 2006). The Plan sets forth sampling plans by: region, target species or species groups to be sampled, locations of sampling, sample sizes, and sampling approaches and methods. This Plan will be reviewed annually and modified as appropriate for subsequent surveillance years based on evaluation of information from previous years of surveillance, changing patterns and threats of H5N1 HPAI, and changes in funding availability for avian influenza surveillance. Specific sampling strategies will be developed accordingly within each of six regions, defined here as Alaska, Hawaiian/Pacific Islands, Lower Pacific Flyway (Washington, Oregon, California, Idaho, Nevada, Arizona), Central Flyway, Mississippi Flyway, and Atlantic Flyway.

  14. Mucosal administration of raccoonpox virus expressing highly pathogenic avian H5N1 influenza neuraminidase is highly protective against H5N1 and seasonal influenza virus challenge.

    PubMed

    Kingstad-Bakke, Brock; Kamlangdee, Attapon; Osorio, Jorge E

    2015-09-22

    We previously generated recombinant poxviruses expressing influenza antigens and studied their efficacy as potential highly pathogenic avian influenza (HPAI) vaccines in mice. While both modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) expressing hemagglutinin (HA) provided strong protection when administered by parenteral routes, only RCN-neuraminidase (NA) showed promise as a mucosal vaccine. In the present study we evaluated the efficacy of RCN-NA constructs by both intradermal (ID) and intranasal (IN) routes. Surprisingly, while RCN-NA completely protected mice when administered by the IN route, it failed to protect mice when administered by the ID route. After challenge, significantly less virus induced pathology was observed in the lungs of mice vaccinated with RCN-NA by the IN route as compared to the ID route. Furthermore, IN administration of RCN-NA elicited neutralizing antibodies detected in bronchoalveolar lavage (BAL) samples. We also determined the role of cellular immune responses in protection elicited by RCN-NA by depleting CD4 and CD8 T cells prior to challenge. Finally, we demonstrated for the first time that antibodies against NA can block viral entry in addition to viral spread in vitro. These studies demonstrate the importance of mucosal administration of RCN viral vectors for eliciting protective immune responses against the NA antigen. PMID:26271828

  15. Post-exposure treatment with whole inactivated H5N1 avian influenza virus protects against lethal homologous virus infection in mice

    PubMed Central

    Hagan, Mable; Ranadheera, Charlene; Audet, Jonathan; Morin, Jocelyn; Leung, Anders; Kobasa, Darwyn

    2016-01-01

    Concerns with H5N1 influenza viruses include their prevalence in wild and domestic poultry, high mortality rate (~60%) in humans with some strains, lack of pre-existing immunity in humans, and the possibility that these viruses acquire mutations that enable efficient transmission between humans. H5 subtype viruses of Eurasian origin have recently appeared in wild and domestic bird populations in North America, and have led to the generation of new virus strains that are highly pathogenic in poultry. These new H5 HA containing viruses with their ability to evolve rapidly represent an unknown threat to humans in contact with infected poultry, and vaccination with an off-the-shelf vaccine may be impractical to provide protection to at-risk individuals. Instead, we have evaluated the efficacy of a formalin-inactivated vaccine, which could be derived directly from a circulating virus, to provide post-exposure protection. This strategy was evaluated using a prototypic highly pathogenic avian H5N1 strain, A/Vietnam/1203/2004, and demonstrated rapid induction of adaptive immune responses providing protection in a mammalian model of lethal infection. Additionally, this post-exposure vaccine was highly efficacious when administered 24 hours after exposure. This study offers a platform for developing effective post-exposure vaccines for treatment of highly virulent influenza infections. PMID:27405487

  16. Post-exposure treatment with whole inactivated H5N1 avian influenza virus protects against lethal homologous virus infection in mice.

    PubMed

    Hagan, Mable; Ranadheera, Charlene; Audet, Jonathan; Morin, Jocelyn; Leung, Anders; Kobasa, Darwyn

    2016-01-01

    Concerns with H5N1 influenza viruses include their prevalence in wild and domestic poultry, high mortality rate (~60%) in humans with some strains, lack of pre-existing immunity in humans, and the possibility that these viruses acquire mutations that enable efficient transmission between humans. H5 subtype viruses of Eurasian origin have recently appeared in wild and domestic bird populations in North America, and have led to the generation of new virus strains that are highly pathogenic in poultry. These new H5 HA containing viruses with their ability to evolve rapidly represent an unknown threat to humans in contact with infected poultry, and vaccination with an off-the-shelf vaccine may be impractical to provide protection to at-risk individuals. Instead, we have evaluated the efficacy of a formalin-inactivated vaccine, which could be derived directly from a circulating virus, to provide post-exposure protection. This strategy was evaluated using a prototypic highly pathogenic avian H5N1 strain, A/Vietnam/1203/2004, and demonstrated rapid induction of adaptive immune responses providing protection in a mammalian model of lethal infection. Additionally, this post-exposure vaccine was highly efficacious when administered 24 hours after exposure. This study offers a platform for developing effective post-exposure vaccines for treatment of highly virulent influenza infections. PMID:27405487

  17. Anatidae Migration in the Western Palearctic and Spread of Highly Pathogenic Avian Influenza H5N1 Virus

    PubMed Central

    Xiao, Xiangming; Domenech, Joseph; Lubroth, Juan; Martin, Vincent; Slingenbergh, Jan

    2006-01-01

    During the second half of 2005, highly pathogenic avian influenza (HPAI) H5N1 virus spread rapidly from central Asia to eastern Europe. The relative roles of wild migratory birds and the poultry trade are still unclear, given that little is yet known about the range of virus hosts, precise movements of migratory birds, or routes of illegal poultry trade. We document and discuss the spread of the HPAI H5N1 virus in relation to species-specific flyways of Anatidae species (ducks, geese, and swans) and climate. We conclude that the spread of HPAI H5N1 virus from Russia and Kazakhstan to the Black Sea basin is consistent in space and time with the hypothesis that birds in the Anatidae family have seeded the virus along their autumn migration routes. PMID:17283613

  18. Systems-Level Comparison of Host-Responses Elicited by Avian H5N1 and Seasonal H1N1 Influenza Viruses in Primary Human Macrophages

    PubMed Central

    Lee, Suki M. Y.; Gardy, Jennifer L.; Cheung, C. Y.; Cheung, Timothy K. W.; Hui, Kenrie P. Y.; Ip, Nancy Y.; Guan, Y.; Hancock, Robert E. W.; Peiris, J. S. Malik

    2009-01-01

    Human disease caused by highly pathogenic avian influenza (HPAI) H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome. There is increasing evidence from clinical, animal models and in vitro data, which suggests a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. The key target cells for the virus in the lung are the alveolar epithelium and alveolar macrophages, and we have shown that, compared to seasonal human influenza viruses, equivalent infecting doses of H5N1 viruses markedly up-regulate pro-inflammatory cytokines in both primary cell types in vitro. Whether this H5N1-induced dysregulation of host responses is driven by qualitative (i.e activation of unique host pathways in response to H5N1) or quantitative differences between seasonal influenza viruses is unclear. Here we used microarrays to analyze and compare the gene expression profiles in primary human macrophages at 1, 3, and 6 h after infection with H5N1 virus or low-pathogenic seasonal influenza A (H1N1) virus. We found that host responses to both viruses are qualitatively similar with the activation of nearly identical biological processes and pathways. However, in comparison to seasonal H1N1 virus, H5N1 infection elicits a quantitatively stronger host inflammatory response including type I interferon (IFN) and tumor necrosis factor (TNF)-α genes. A network-based analysis suggests that the synergy between IFN-β and TNF-α results in an enhanced and sustained IFN and pro-inflammatory cytokine response at the early stage of viral infection that may contribute to the viral pathogenesis and this is of relevance to the design of novel therapeutic strategies for H5N1 induced respiratory disease. PMID:20011590

  19. Surveillance, epidemiological, and virological detection of highly pathogenic H5N1 avian influenza viruses in duck and poultry from Bangladesh.

    PubMed

    Ansari, Wahedul Karim; Parvej, Md Shafiullah; El Zowalaty, Mohamed E; Jackson, Sally; Bustin, Stephen A; Ibrahim, Adel K; El Zowalaty, Ahmed E; Rahman, Md Tanvir; Zhang, Han; Khan, Mohammad Ferdousur Rahman; Ahamed, Md Mostakin; Rahman, Md Fasiur; Rahman, Marzia; Nazir, K H M Nazmul Hussain; Ahmed, Sultan; Hossen, Md Liakot; Kafi, Md Abdul; Yamage, Mat; Debnath, Nitish C; Ahmed, Graba; Ashour, Hossam M; Masudur Rahman, Md; Noreddin, Ayman; Rahman, Md Bahanur

    2016-09-25

    Avian influenza viruses (AIVs) continue to pose a global threat. Waterfowl are the main reservoir and are responsible for the spillover of AIVs to other hosts. This study was conducted as part of routine surveillance activities in Bangladesh and it reports on the serological and molecular detection of H5N1 AIV subtype. A total of 2169 cloacal and 2191 oropharyngeal swabs as well as 1725 sera samples were collected from live birds including duck and chicken in different locations in Bangladesh between the years of 2013 and 2014. Samples were tested using virus isolation, serological tests and molecular methods of RT-PCR. Influenza A viruses were detected using reverse transcription PCR targeting the virus matrix (M) gene in 41/4360 (0.94%) samples including both cloacal and oropharyngeal swab samples, 31 of which were subtyped as H5N1 using subtype-specific primers. Twenty-one live H5N1 virus isolates were recovered from those 31 samples. Screening of 1,868 blood samples collected from the same birds using H5-specific ELISA identified 545/1603 (34%) positive samples. Disconcertingly, an analysis of 221 serum samples collected from vaccinated layer chicken in four districts revealed that only 18 samples (8.1%) were seropositive for anti H5 antibodies, compared to unvaccinated birds (n=105), where 8 samples (7.6%) were seropositive. Our result indicates that the vaccination program as currently implemented should be reviewed and updated. In addition, surveillance programs are crucial for monitoring the efficacy of the current poultry vaccinations programs, and to monitor the circulating AIV strains and emergence of AIV subtypes in Bangladesh. PMID:27599930

  20. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild ducks are reservoirs of avian influenza viruses in nature, and usually don’t show signs of disease. However, some Asian lineage H5N1 highly pathogenic avian influenza (HPAI) viruses can cause disease and death in both wild and domestic ducks. The objective of this study was to compare the cli...

  1. Highly pathogenic influenza H5N1 virus of clade 2.3.2.1c in Western Siberia.

    PubMed

    Marchenko, V Y; Susloparov, I M; Kolosova, N P; Goncharova, N I; Shipovalov, A V; Ilyicheva, T N; Durymanov, A G; Chernyshova, O A; Kozlovskiy, L I; Chernyshova, T V; Pryadkina, E N; Karimova, T V; Mikheev, V N; Ryzhikov, A B

    2016-06-01

    In the spring of 2015, avian influenza virus surveillance in Western Siberia resulted in isolation of several influenza H5N1 virus strains. The strains were isolated from several wild bird species. Investigation of biological features of those strains demonstrated their high pathogenicity for mammals. Phylogenetic analysis of the HA gene showed that the strains belong to clade 2.3.2.1c. PMID:26935914

  2. [Two recombinant adenovirus vaccine candidates containing neuraminidase Gene of H5N1 influenza virus (A/Anhui/1/2005) elicited effective cell-mediated immunity in mice].

    PubMed

    Ma, Jing; Zhang, Xiao-Guang; Chen, Hong; Li, Kui-Biao; Zhang, Xiao-Mei; Zhang, Ke; Yang, Liang; Xu, Hong; Shu, Yue-Long; Tan, Wen-Jie; Zeng, Yi

    2009-09-01

    The aim of this study is to develop the recombinant adenovirus vaccine (rAdV) candidates containing neuraminidase (NA) gene of H5N1 influenza virus and test in BALB/c mice the effect of cell-mediated immunity. In this study, two kind of NA gene (WtNA gene, the wild type; Mod. NA gene, the codon-modified type) derived from H5N1 influenza virus (A/Anhui/1/2005) were cloned and inserted respectively into plasmid of adenovirus vector, then the rAdV vaccines candidates (rAdV-WtNA and rAdV-Mod. NA) were developed and purified, followed by immunization intramuscularly (10(9) TCID50 per dose, double injection at 0 and 4th week) in BALB/c mice, the effect of cell-mediated immunity were analysed at 5th week. Results indicated that: (i) NA protein expression was detected in two rAdV vaccines candidates by Western blotting; (ii) the rAdV-Mod. NA vaccine could elicit more robust NA specific cell-mediated immunity in mice than that of rAdV-WtNA vaccine (P = 0. 016) by IFN-gamma ELIspot assay. These findings suggested rAdV-Mod. NA vaccine was a potential vaccine candidate against H5N1 influenza and worthy of further investigation. PMID:19954107

  3. What are the possible transmission methods for H5N1 high pathogenicity avian influenza viruses to people

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus has caused an unprecedented epizootic affecting poultry in Asia, Africa and parts of Europe, but has crossed multiple species barriers to infect captive and wild birds, carnivorous mammals and humans. Human infections (391 infections with 247...

  4. Mechanisms of transmission and spread of H5N1 high pathogenicity avian influenza virus in birds and mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian-African H5N1 high pathogenicity avian influenza (HPAI) virus has crossed multiple species barriers to infect poultry, captive and wild birds, carnivorous mammals and humans. The specific transmission mechanisms are unclear in most cases, but experimental studies and field data sug...

  5. Protective Efficacy of an H5N1 Inactivated Vaccine Against Challenge with Lethal H5N1, H5N2, H5N6, and H5N8 Influenza Viruses in Chickens.

    PubMed

    Zeng, Xianying; Chen, Pucheng; Liu, Liling; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Kong, Huihui; Feng, Huapeng; Bai, Jie; Li, Xin; Shi, Wenjun; Tian, Guobin; Chen, Hualan

    2016-05-01

    The Goose/Guangdong-lineage H5 viruses have evolved into diverse clades and subclades based on their hemagglutinin (HA) gene during their circulation in wild birds and poultry. Since late 2013, the clade 2.3.4.4 viruses have become widespread in poultry and wild bird populations around the world. Different subtypes of the clade 2.3.4.4 H5 viruses, including H5N1, H5N2, H5N6, and H5N8, have caused vast disease outbreaks in poultry in Asia, Europe, and North America. In this study, we developed a new H5N1 inactivated vaccine by using a seed virus (designated as Re-8) that contains the HA and NA genes from a clade 2.3.4.4 virus, A/chicken/Guizhou/4/13(H5N1) (CK/GZ/4/13), and its six internal genes from the high-growth A/Puerto Rico/8/1934 (H1N1) virus. We evaluated the protective efficacy of this vaccine in chickens challenged with one H5N1 clade 2.3.2.1b virus and six different subtypes of clade 2.3.4.4 viruses, including H5N1, H5N2, H5N6, and H5N8 strains. In the clade 2.3.2.1b virus DK/GX/S1017/13-challenged groups, half of the vaccinated chickens shed virus through the oropharynx and two birds (20%) died during the observation period. All of the control chickens shed viruses and died within 6 days of infection with challenge virus. All of the vaccinated chickens remained healthy following challenge with the six clade 2.3.4.4 viruses, and virus shedding was not detected from any of these birds; however, all of the control birds shed viruses and died within 4 days of challenge with the clade 2.3.4.4 viruses. Our results indicate that the Re-8 vaccine provides protection against different subtypes of clade 2.3.4.4 H5 viruses. PMID:27309064

  6. Newcastle Disease Virus-Based Live Attenuated Vaccine Completely Protects Chickens and Mice from Lethal Challenge of Homologous and Heterologous H5N1 Avian Influenza Viruses▿

    PubMed Central

    Ge, Jinying; Deng, Guohua; Wen, Zhiyuan; Tian, Guobing; Wang, Yong; Shi, Jianzhong; Wang, Xijun; Li, Yanbing; Hu, Sen; Jiang, Yongping; Yang, Chinglai; Yu, Kangzhen; Bu, Zhigao; Chen, Hualan

    2007-01-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) has continued to spread and poses a significant threat to both animal and human health. Current influenza vaccine strategies have limitations that prevent their effective use for widespread inoculation of animals in the field. Vaccine strains of Newcastle disease virus (NDV), however, have been used successfully to easily vaccinate large numbers of animals. In this study, we used reverse genetics to construct a NDV that expressed an H5 subtype avian influenza virus (AIV) hemagglutinin (HA). Both a wild-type and a mutated HA open reading frame (ORF) from the HPAIV wild bird isolate, A/Bar-headed goose/Qinghai/3/2005 (H5N1), were inserted into the intergenic region between the P and M genes of the LaSota NDV vaccine strain. The recombinant viruses stably expressing the wild-type and mutant HA genes were found to be innocuous after intracerebral inoculation of 1-day-old chickens. A single dose of the recombinant viruses in chickens induced both NDV- and AIV H5-specific antibodies and completely protected chickens from challenge with a lethal dose of both velogenic NDV and homologous and heterologous H5N1 HPAIV. In addition, BALB/c mice immunized with the recombinant NDV-based vaccine produced H5 AIV-specific antibodies and were completely protected from homologous and heterologous lethal virus challenge. Our results indicate that recombinant NDV is suitable as a bivalent live attenuated vaccine against both NDV and AIV infection in poultry. The recombinant NDV vaccine may also have potential use in high-risk human individuals to control the pandemic spread of lethal avian influenza. PMID:17050610

  7. Synergistic Effect of S224P and N383D Substitutions in the PA of H5N1 Avian Influenza Virus Contributes to Mammalian Adaptation

    PubMed Central

    Song, Jiasheng; Xu, Jing; Shi, Jianzhong; Li, Yanbing; Chen, Hualan

    2015-01-01

    The adaptation of H5N1 avian influenza viruses to human poses a great threat to public health. Previous studies indicate the adaptive mutations in viral polymerase of avian influenza viruses are major contributors in overcoming the host species barrier, with the majority of mammalian adaptive mutations occurring in the PB2 protein. However, the adaptive mutations in the PA protein of the H5N1 avian influenza virus are less defined and poorly understood. In this study, we identified the synergistic effect of the PA/224P + 383D of H5N1 avian influenza viruses and its ability to enhance the pathogenicity and viral replication in a mammalian mouse model. Interestingly, the signature of PA/224P + 383D mainly exists in mammalian isolates of the H5N1 influenza virus and pdmH1N1 influenza virus, providing a potential pathway for the natural adaptation to mammals which imply the effects of natural adaptation to mammals. Notably, the mutation of PA/383D, which is highly conserved in avian influenza viruses, increases the polymerase activity in both avian and human cells, and may have roles in maintaining the avian influenza virus in their avian reservoirs, and jumping species to infect humans. PMID:26000865

  8. Microarray analysis following infection with highly pathogenic avian influenza H5N1 virus in naive and vaccinated SPF chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a viral disease of poultry that remains a constant threat to commercial poultry throughout the world. Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) H5N1 have originated in Southeast Asia and spread to several European, Middle Eastern, and A...

  9. Susceptibility of pigeons to clade 1 and 2.2 high pathogenicity avian influenza H5N1 virus.

    PubMed

    Smietanka, Krzysztof; Minta, Zenon; Wyrostek, Krzysztof; Jóźwiak, Michal; Olszewska, Monika; Domańska-Blicharz, A Katarzyna; Reichert, A Michał; Pikuła, Anna; Habyarimana, Adelite; van den Berg, Thierry

    2011-03-01

    To assess the susceptibility of pigeons (Columba livia) to infection with H5N1 high pathogenicity avian influenza virus (HPAIV), four groups of 1-yr-old and 4-wk-old racing pigeons (10 birds in each group) were inoculated oculonasally with 106 50% egg infectious dose (EID50) of A/crested eagle/Belgium/01/2004 (clade 1) or A/swan/Poland/305-135V08/2006 (clade 2.2). Contact specific-pathogen-free (SPF) chickens were kept in the same isolators as young pigeons (two chickens per group). At 3, 5, 7, 10, and 14 days postinfection (PI) two pigeons from each infected group were selected randomly, and oropharyngeal and cloacal swabs (pigeons and contact chickens) as well as a number of internal organs (pigeons) were collected for viral RNA detection in real-time reverse transcription PCR (RRT-PCR) and histopathology. At the end of the experiment (14 days PI) blood samples from two pigeons in each group and from contact SPF chickens were also collected, and sera were tested using hemagglutination inhibition (HI) test and blocking enzyme-linked immunosorbent assay (bELISA). During the observation period all pigeons remained clinically healthy, and no gross lesions were observed in any of the infected groups. SPF contact chickens were also healthy and negative in RRT-PCR and HI tests. However, the clade 1 H5N1 virus produced more sustained infection manifested by the presence of histopathologic changes (consisting mainly of mild to moderate hemorrhagic and inflammatory lesions), prolonged persistence of viral RNA (detectable between 3 and 10 days PI) in a variety of tissues of both adult and juvenile birds (with highest RNA load in lungs and brain) as well as slight viral shedding from the trachea and cloaca, but without transmission to SPF contact chickens. Additionally, two clade 1-infected adult pigeons sacrificed at the end of experiment showed seroconversion in bELISA and HI test (using homologous virus as antigen). The viral RNA was found only at day 3 PI in one adult

  10. EFFICACY OF A FOWLPOX-VECTORED AVIAN INFLUENZA H5 VACCINE AGAINST ASIAN H5N1 HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUS CHALLENGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recombinant fowlpox-avian influenza (AI) H5 vaccine (rFP-AIV-H5) expressing the hemagglutinin of the A/turkey/Ireland/1378/83 H5N8 AI isolate has been used in Central America since 1998 to control H5N2 low pathogenicity (LP) AI. Previously, this vaccine was shown to induce full protection against...

  11. Vaccine protection of turkeys against H5N1 highly pathogenic avian influenza virus with a recombinant HVT expressing the hemagglutinin gene of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies...

  12. Experimental infection of bar-headed geese (Anser indicus) and ruddy shelducks (Tadorna ferruginea) with a clade 2.3.2 H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2005, clade 2.2 H5N1 highly pathogenic avian influenza (HPAI) viruses have caused infections and disease involving numerous species of wild waterfowl in Eurasia and Africa. However, outbreaks associated with clade 2.3.2 viruses have increased since 2009, and viruses within this clade have beco...

  13. Early Indicators of Disease in Ferrets Infected with a High Dose of Avian Influenza H5N1

    PubMed Central

    Long, James P.; Vela, Eric M.; Stark, Gregory V.; Jones, Kelly J.; Miller, Stephen T.; Bigger, John E.

    2012-01-01

    Avian influenza viruses are widespread in birds, contagious in humans, and are categorized as low pathogenicity avian influenza or highly pathogenic avian influenza. Ferrets are susceptible to infection with avian and human influenza A and B viruses and have been widely used as a model to study pathogenicity and vaccine efficacy. In this report, the natural history of the H5N1 influenza virus A/Vietnam/1203/04 influenza infection in ferrets was examined to determine clinical and laboratory parameters that may indicate (1) the onset of disease and (2) survival. In all, twenty of 24 animals infected with 7 × 105 TCID50 of A/Vietnam/1203/04 succumbed. A statistical analysis identified a combination of parameters including weight loss, nasal wash TCID50, eosinophils, and liver enzymes such as alanine amino transferase that might possibly serve as indicators of both disease onset and challenge survival. PMID:23240077

  14. Domestic ducks and H5N1 influenza epidemic, Thailand.

    PubMed

    Songserm, Thaweesak; Jam-on, Rungroj; Sae-Heng, Numdee; Meemak, Noppadol; Hulse-Post, Diane J; Sturm-Ramirez, Katharine M; Webster, Robert G

    2006-04-01

    In addition to causing 12 human deaths and 17 cases of human infection, the 2004 outbreak of H5N1 influenza virus in Thailand resulted in the death or slaughter of 60 million domestic fowl and the disruption of poultry production and trade. After domestic ducks were recognized as silent carriers of H5N1 influenza virus, government teams went into every village to cull flocks in which virus was detected; these team efforts markedly reduced H5N1 infection. Here we examine the pathobiology and epidemiology of H5N1 influenza virus in the 4 systems of duck raising used in Thailand in 2004. No influenza viruses were detected in ducks raised in "closed" houses with high biosecurity. However, H5N1 influenza virus was prevalent among ducks raised in "open" houses, free-ranging (grazing) ducks, and backyard ducks. PMID:16704804

  15. Heterologous prime-boost immunization regimens using adenovirus vector and virus-like particles induce broadly neutralizing antibodies against H5N1 avian influenza viruses.

    PubMed

    Lin, Shih-Chang; Liu, Wen-Chun; Lin, Yu-Fen; Huang, Yu-Hsuan; Liu, Jin-Hwang; Wu, Suh-Chin

    2013-11-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to trigger severe diseases in poultry and humans, prompting efforts to develop an effective vaccine. Toward that goal, we constructed a recombinant adenovirus vector encoding influenza hemagglutin (rAd-HA) and a flagellin-containing virus-like particle (FliC-VLP). Using a murine model, we investigated a heterologous prime-boost vaccination regimen combining these two vectors. Our results indicate that priming with the rAd-HA vector followed by a FliC-VLP booster induced the highest HA-specific total IgG, IgG1and IgG2a. Maximum neutralizing antibody titers against homologous and heterologous clades of H5N1 virus strains and hemagglutination inhibition resulted from the heterologous vaccination strategy. Our results are likely to contribute to the development of more effective H5N1 vaccines. PMID:23813782

  16. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus.

    PubMed

    Kilany, Walid H; Safwat, Marwa; Mohammed, Samy M; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G; Shalaby, Azhar G; Dauphin, Gwenaelle; Hassan, Mohammed K; Lubroth, Juan; Jobre, Yilma M

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge. PMID:27304069

  17. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus

    PubMed Central

    Kilany, Walid H.; Safwat, Marwa; Mohammed, Samy M.; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G.; Shalaby, Azhar G.; Dauphin, Gwenaelle; Hassan, Mohammed K.; Lubroth, Juan; Jobre, Yilma M.

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge. PMID:27304069

  18. Phage Displayed Peptides to Avian H5N1 Virus Distinguished the Virus from Other Viruses

    PubMed Central

    Qin, Chengfeng; Ren, Xiaofeng

    2011-01-01

    The purpose of the current study was to identify potential ligands and develop a novel diagnostic test to highly pathogenic avian influenza A virus (HPAI), subtype H5N1 viruses using phage display technology. The H5N1 viruses were used as an immobilized target in a biopanning process using a 12-mer phage display random peptide library. After five rounds of panning, three phages expressing peptides HAWDPIPARDPF, AAWHLIVALAPN or ATSHLHVRLPSK had a specific binding activity to H5N1 viruses were isolated. Putative binding motifs to H5N1 viruses were identified by DNA sequencing. In terms of the minimum quantity of viruses, the phage-based ELISA was better than antiserum-based ELISA and a manual, semi-quantitative endpoint RT-PCR for detecting H5N1 viruses. More importantly, the selected phages bearing the specific peptides to H5N1 viruses were capable of differentiating this virus from other avian viruses in enzyme-linked immunosorbent assays. PMID:21887228

  19. A Triclade DNA Vaccine Designed on the Basis of a Comprehensive Serologic Study Elicits Neutralizing Antibody Responses against All Clades and Subclades of Highly Pathogenic Avian Influenza H5N1 Viruses

    PubMed Central

    Zhou, Fan; Wang, Guiqin; Buchy, Philippe; Cai, Zhipeng; Chen, Honglin; Chen, Zhiwei; Cheng, Genhong; Wan, Xiu-Feng; Deubel, Vincent

    2012-01-01

    Because of their rapid evolution, genetic diversity, broad host range, ongoing circulation in birds, and potential human-to-human transmission, H5N1 influenza viruses remain a major global health concern. Their high degree of genetic diversity also poses enormous burdens and uncertainties in developing effective vaccines. To overcome this, we took a new approach, i.e., the development of immunogens based on a comprehensive serologic study. We constructed DNA plasmids encoding codon-optimized hemagglutinin (HA) from 17 representative strains covering all reported clades and subclades of highly pathogenic avian influenza H5N1 viruses. Using DNA plasmids, we generated the corresponding H5N1 pseudotypes and immune sera. We performed an across-the-board pseudotype-based neutralization assay and determined antigenic clusters by cartography. We then designed a triclade DNA vaccine and evaluated its immunogenicity and protection in mice. We report here that (sub)clades 0, 1, 3, 4, 5, 6, 7.1, and 9 were grouped into antigenic cluster 1, (sub)clades 2.1.3.2, 2.3.4, 2.4, 2.5, and 8 were grouped into another antigenic cluster, with subclade 2.2.1 loosely connected to it, and each of subclades 2.3.2.1 and 7.2 was by itself. Importantly, the triclade DNA vaccine encoding HAs of (sub)clades 0, 2.3.2.1, and 7.2 elicited broadly neutralizing antibody responses against all H5 clades and subclades and protected mice against high-lethal-dose heterologous H5N1 challenge. Thus, we conclude that broadly neutralizing antibodies against all H5 clades and subclades can indeed be elicited with immunogens on the basis of a comprehensive serologic study. Further evaluation and optimization of such an approach in ferrets and in humans is warranted. PMID:22496212

  20. A triclade DNA vaccine designed on the basis of a comprehensive serologic study elicits neutralizing antibody responses against all clades and subclades of highly pathogenic avian influenza H5N1 viruses.

    PubMed

    Zhou, Fan; Wang, Guiqin; Buchy, Philippe; Cai, Zhipeng; Chen, Honglin; Chen, Zhiwei; Cheng, Genhong; Wan, Xiu-Feng; Deubel, Vincent; Zhou, Paul

    2012-06-01

    Because of their rapid evolution, genetic diversity, broad host range, ongoing circulation in birds, and potential human-to-human transmission, H5N1 influenza viruses remain a major global health concern. Their high degree of genetic diversity also poses enormous burdens and uncertainties in developing effective vaccines. To overcome this, we took a new approach, i.e., the development of immunogens based on a comprehensive serologic study. We constructed DNA plasmids encoding codon-optimized hemagglutinin (HA) from 17 representative strains covering all reported clades and subclades of highly pathogenic avian influenza H5N1 viruses. Using DNA plasmids, we generated the corresponding H5N1 pseudotypes and immune sera. We performed an across-the-board pseudotype-based neutralization assay and determined antigenic clusters by cartography. We then designed a triclade DNA vaccine and evaluated its immunogenicity and protection in mice. We report here that (sub)clades 0, 1, 3, 4, 5, 6, 7.1, and 9 were grouped into antigenic cluster 1, (sub)clades 2.1.3.2, 2.3.4, 2.4, 2.5, and 8 were grouped into another antigenic cluster, with subclade 2.2.1 loosely connected to it, and each of subclades 2.3.2.1 and 7.2 was by itself. Importantly, the triclade DNA vaccine encoding HAs of (sub)clades 0, 2.3.2.1, and 7.2 elicited broadly neutralizing antibody responses against all H5 clades and subclades and protected mice against high-lethal-dose heterologous H5N1 challenge. Thus, we conclude that broadly neutralizing antibodies against all H5 clades and subclades can indeed be elicited with immunogens on the basis of a comprehensive serologic study. Further evaluation and optimization of such an approach in ferrets and in humans is warranted. PMID:22496212

  1. Cross‐neutralisation of antibodies elicited by an inactivated split‐virion influenza A/Vietnam/1194/2004 (H5N1) vaccine in healthy adults against H5N1 clade 2 strains

    PubMed Central

    Höschler, Katja; Gopal, Robin; Andrews, Nick; Saville, Melanie; Pepin, Stephanie; Wood, John; Zambon, Maria C.

    2008-01-01

    Background  Highly pathogenic avian influenza A H5N1 viruses are widespread in different parts of the world and have evolved into clade 1 and 2 lineages. Their continuing circulation represents serious pandemic threat, spurring human vaccine development efforts. Initial clinical trials tested vaccines prepared from clade 1 strains circulating in 2004. Methods  Post‐vaccination sera from a phase I trial of an inactivated split‐virion vaccine based on A/Vietnam/1194/2004/NIBRG14 (H5N1) were analysed in vitro for cross‐reactivity against highly pathogenic, wild‐type clade 2 H5N1 strains isolated from human cases, and their corresponding reverse genetics derived vaccine candidate strains. Results  Neutralisation of clade 1 and 2 wild‐type and reverse‐genetics viruses was seen, with highest titres observed for viruses most closely related to the vaccine strain. There was no consistent relationship between vaccine dose given, or presence of aluminium adjuvant and cross‐neutralising antibody titre, possibly because of small sample size. Use of wild‐type highly pathogenic strains compared with antigenically equivalent reverse‐genetics viruses suggests presence of a higher level of cross‐neutralising antibody. Conclusion  Vaccination with a clade 1 H5N1 virus elicited antibodies capable of neutralising diverse clade 2 H5N1 strains. This data underlines that while a close match between vaccine virus and circulating virus is important to achieve maximum protection, population priming with a ‘pre‐pandemic’ vaccine may be beneficial for the protection of a naïve population. The data suggests that use of reverse‐genetic viruses in neutralisation assays may underestimate the extent of cross‐protective antibody present following H5N1 vaccination. PMID:19453427

  2. Determination of efficacious vaccine seed strains for use against Egyptian H5N1 highly pathogenic avian influenza viruses through antigenic cartography and in vivo challenge studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2006, there have been reported outbreaks of H5N1 highly pathogenic avian influenza (HPAI) in vaccinated chickens in Africa and Asia. This study provides experimental data for selection of efficacious H5N1 vaccine seed strains against recently circulating strains of H5N1 HPAI viruses in Egypt....

  3. Metapopulation Dynamics Enable Persistence of Influenza A, Including A/H5N1, in Poultry

    PubMed Central

    Hosseini, Parviez Rana; Fuller, Trevon; Harrigan, Ryan; Zhao, Delong; Arriola, Carmen Sofia; Gonzalez, Armandoe; Miller, Matthew Joshua; Xiao, Xiangming; Smith, Tom B.; Jones, Jamie Holland; Daszak, Peter

    2013-01-01

    Highly pathogenic influenza A/H5N1 has persistently but sporadically caused human illness and death since 1997. Yet it is still unclear how this pathogen is able to persist globally. While wild birds seem to be a genetic reservoir for influenza A, they do not seem to be the main source of human illness. Here, we highlight the role that domestic poultry may play in maintaining A/H5N1 globally, using theoretical models of spatial population structure in poultry populations. We find that a metapopulation of moderately sized poultry flocks can sustain the pathogen in a finite poultry population for over two years. Our results suggest that it is possible that moderately intensive backyard farms could sustain the pathogen indefinitely in real systems. This fits a pattern that has been observed from many empirical systems. Rather than just employing standard culling procedures to control the disease, our model suggests ways that poultry production systems may be modified. PMID:24312455

  4. Metapopulation dynamics enable persistence of influenza A, including A/H5N1, in poultry.

    PubMed

    Hosseini, Parviez Rana; Fuller, Trevon; Harrigan, Ryan; Zhao, Delong; Arriola, Carmen Sofia; Gonzalez, Armandoe; Miller, Matthew Joshua; Xiao, Xiangming; Smith, Tom B; Jones, Jamie Holland; Daszak, Peter

    2013-01-01

    Highly pathogenic influenza A/H5N1 has persistently but sporadically caused human illness and death since 1997. Yet it is still unclear how this pathogen is able to persist globally. While wild birds seem to be a genetic reservoir for influenza A, they do not seem to be the main source of human illness. Here, we highlight the role that domestic poultry may play in maintaining A/H5N1 globally, using theoretical models of spatial population structure in poultry populations. We find that a metapopulation of moderately sized poultry flocks can sustain the pathogen in a finite poultry population for over two years. Our results suggest that it is possible that moderately intensive backyard farms could sustain the pathogen indefinitely in real systems. This fits a pattern that has been observed from many empirical systems. Rather than just employing standard culling procedures to control the disease, our model suggests ways that poultry production systems may be modified. PMID:24312455

  5. International Laboratory Comparison of Influenza Microneutralization Assays for A(H1N1)pdm09, A(H3N2), and A(H5N1) Influenza Viruses by CONSISE.

    PubMed

    Laurie, Karen L; Engelhardt, Othmar G; Wood, John; Heath, Alan; Katz, Jacqueline M; Peiris, Malik; Hoschler, Katja; Hungnes, Olav; Zhang, Wenqing; Van Kerkhove, Maria D

    2015-08-01

    The microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HA MN assay protocols to enable better correlation of these assays in the future. PMID:26108286

  6. International Laboratory Comparison of Influenza Microneutralization Assays for A(H1N1)pdm09, A(H3N2), and A(H5N1) Influenza Viruses by CONSISE

    PubMed Central

    Engelhardt, Othmar G.; Wood, John; Heath, Alan; Katz, Jacqueline M.; Peiris, Malik; Hoschler, Katja; Hungnes, Olav; Zhang, Wenqing; Van Kerkhove, Maria D.

    2015-01-01

    The microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HA MN assay protocols to enable better correlation of these assays in the future. PMID:26108286

  7. A review of Ireland's waterbirds, with emphasis on wintering migrants and reference to H5N1 avian influenza

    PubMed Central

    2009-01-01

    Ireland is characterised by its diversity and large abundance of wetlands, making it attractive to a wide variety of waterbirds throughout the year. This paper presents an overview of Ireland's waterbirds, including ecological factors relevant to the potential introduction, maintenance, transmission and spread of infectious agents, including the H5N1 avian influenza virus, in Ireland. Particular emphasis is placed on five groups of wintering migrants (dabbling and sieving wildfowl, grazing wildfowl, diving wildfowl, waders and gulls), noting that the H5N1 avian influenza virus has mainly been isolated from this subset of waterbirds. Ireland's wetlands are visited during the spring and summer months by hundreds of thousands of waterbirds which come to breed, predominantly from southern latitudes, and during the autumn and winter by waterbirds which come from a variety of origins (predominantly northern latitudes), and which are widely distributed and often congregate in mixed-species flocks. The distribution, feeding habits and social interactions of the five groups of wintering migrants are considered in detail. Throughout Ireland, there is interaction between different waterbird populations (breeding migrants, the wintering migrants and resident waterbird populations). There is also a regular and complex pattern of movement between feeding and roosting areas, and between wetlands and farmland. These interactions are likely to facilitate the rapid transmission and spread of the H5N1 avian influenza virus, if it were present in Ireland. PMID:21851727

  8. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization.

    PubMed

    Gao, Wentao; Soloff, Adam C; Lu, Xiuhua; Montecalvo, Angela; Nguyen, Doan C; Matsuoka, Yumi; Robbins, Paul D; Swayne, David E; Donis, Ruben O; Katz, Jacqueline M; Barratt-Boyes, Simon M; Gambotto, Andrea

    2006-02-01

    The recent emergence of highly pathogenic avian influenza virus (HPAI) strains in poultry and their subsequent transmission to humans in Southeast Asia have raised concerns about the potential pandemic spread of lethal disease. In this paper we describe the development and testing of an adenovirus-based influenza A virus vaccine directed against the hemagglutinin (HA) protein of the A/Vietnam/1203/2004 (H5N1) (VN/1203/04) strain isolated during the lethal human outbreak in Vietnam from 2003 to 2005. We expressed different portions of HA from a recombinant replication-incompetent adenoviral vector, achieving vaccine production within 36 days of acquiring the virus sequence. BALB/c mice were immunized with a prime-boost vaccine and exposed to a lethal intranasal dose of VN/1203/04 H5N1 virus 70 days later. Vaccination induced both HA-specific antibodies and cellular immunity likely to provide heterotypic immunity. Mice vaccinated with full-length HA were fully protected from challenge with VN/1203/04. We next evaluated the efficacy of adenovirus-based vaccination in domestic chickens, given the critical role of fowl species in the spread of HPAI worldwide. A single subcutaneous immunization completely protected chickens from an intranasal challenge 21 days later with VN/1203/04, which proved lethal to all control-vaccinated chickens within 2 days. These data indicate that the rapid production and subsequent administration of recombinant adenovirus-based vaccines to both birds and high-risk individuals in the face of an outbreak may serve to control the pandemic spread of lethal avian influenza. PMID:16439551

  9. Efficacy of a recombinant turkey herpesvirus H5 vaccine against challenge with H5N1 clades 1.1.2 and 2.3.2.1 highly pathogenic avian influenza viruses in domestic ducks (Anas platyrhynchos domesticus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Goose/Guangdong (Gs/GD)-lineage H5N1 highly pathogenic avian influenza (HPAI) viruses continue to circulate and cause great economic losses in poultry in Asia, the Middle East, and Africa. Recently, the Gs/GD-lineage H5N8 HPAI virus belonging to clade 2.3.4.4 and its reassortants have caused out...

  10. Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification.

    PubMed

    Karash, Sardar; Wang, Ronghui; Kelso, Lisa; Lu, Huaguang; Huang, Tony Jun; Li, Yanbin

    2016-10-01

    Highly pathogenic avian influenza virus H5N1 is a continuous threat to public health and poultry industry. The recurrence of the H5N1 led us to develop a robust, specific, and rapid detection method for the virus. In this study, an impedance aptasensor was developed for the virus detection using specific H5N1 aptamer and a gold interdigitated microelectrode. Streptavidin was immobilized on the microelectrode surface and biotin labeled H5N1 aptamer was bound to the immobilized streptavidin. The microelectrode was blocked with the polyethylene glycol and the bound aptamer captured the virus. The impedance change caused by the captured virus was measured using an impedance analyzer. To enhance impedance signal, a nanoparticle-based amplifier was designed and implemented by forming a network-like gold nanoparticles/H5N1-aptamer/thiocyanuric acid. The detection limit of the impedance aptasensor was 0.25 HAU for the pure virus and 1 HAU for the tracheal chicken swab samples spiked with the H5N1 virus. The detection time of aptasensor without employing the amplifier was less than an hour. The amplifier increased impedance by a 57-fold for the 1 HAU samples. Only negligible impedance change was observed for non-target viruses such as H5N2, H5N3, H7N2, H1N1, and H2N2. This aptasensor provides a foundation for the development of a portable aptasensor instrument. PMID:27452670

  11. In Silico Prediction and Experimental Confirmation of HA Residues Conferring Enhanced Human Receptor Specificity of H5N1 Influenza A Viruses.

    PubMed

    Schmier, Sonja; Mostafa, Ahmed; Haarmann, Thomas; Bannert, Norbert; Ziebuhr, John; Veljkovic, Veljko; Dietrich, Ursula; Pleschka, Stephan

    2015-01-01

    Newly emerging influenza A viruses (IAV) pose a major threat to human health by causing seasonal epidemics and/or pandemics, the latter often facilitated by the lack of pre-existing immunity in the general population. Early recognition of candidate pandemic influenza viruses (CPIV) is of crucial importance for restricting virus transmission and developing appropriate therapeutic and prophylactic strategies including effective vaccines. Often, the pandemic potential of newly emerging IAV is only fully recognized once the virus starts to spread efficiently causing serious disease in humans. Here, we used a novel phylogenetic algorithm based on the informational spectrum method (ISM) to identify potential CPIV by predicting mutations in the viral hemagglutinin (HA) gene that are likely to (differentially) affect critical interactions between the HA protein and target cells from bird and human origin, respectively. Predictions were subsequently validated by generating pseudotyped retrovirus particles and genetically engineered IAV containing these mutations and characterizing potential effects on virus entry and replication in cells expressing human and avian IAV receptors, respectively. Our data suggest that the ISM-based algorithm is suitable to identify CPIV among IAV strains that are circulating in animal hosts and thus may be a new tool for assessing pandemic risks associated with specific strains. PMID:26091504

  12. In Silico Prediction and Experimental Confirmation of HA Residues Conferring Enhanced Human Receptor Specificity of H5N1 Influenza A Viruses

    NASA Astrophysics Data System (ADS)

    Schmier, Sonja; Mostafa, Ahmed; Haarmann, Thomas; Bannert, Norbert; Ziebuhr, John; Veljkovic, Veljko; Dietrich, Ursula; Pleschka, Stephan

    2015-06-01

    Newly emerging influenza A viruses (IAV) pose a major threat to human health by causing seasonal epidemics and/or pandemics, the latter often facilitated by the lack of pre-existing immunity in the general population. Early recognition of candidate pandemic influenza viruses (CPIV) is of crucial importance for restricting virus transmission and developing appropriate therapeutic and prophylactic strategies including effective vaccines. Often, the pandemic potential of newly emerging IAV is only fully recognized once the virus starts to spread efficiently causing serious disease in humans. Here, we used a novel phylogenetic algorithm based on the informational spectrum method (ISM) to identify potential CPIV by predicting mutations in the viral hemagglutinin (HA) gene that are likely to (differentially) affect critical interactions between the HA protein and target cells from bird and human origin, respectively. Predictions were subsequently validated by generating pseudotyped retrovirus particles and genetically engineered IAV containing these mutations and characterizing potential effects on virus entry and replication in cells expressing human and avian IAV receptors, respectively. Our data suggest that the ISM-based algorithm is suitable to identify CPIV among IAV strains that are circulating in animal hosts and thus may be a new tool for assessing pandemic risks associated with specific strains.

  13. Mouse lung-adapted mutation of E190G in hemagglutinin from H5N1 influenza virus contributes to attenuation in mice.

    PubMed

    Han, Pengfei; Hu, Yi; Sun, Wei; Zhang, Sen; Li, Yuchang; Wu, Xiaoyan; Yang, Yinhui; Zhu, Qingyu; Jiang, Tao; Li, Jing; Qin, Chengfeng

    2015-11-01

    The highly pathogenic H5N1 avian influenza virus is one of the greatest influenza pandemic threats since 2003. The association of the receptor binding domain (RBD) with the virulence of influenza virus is rarely addressed, particularly of H5N1 influenza viruses. In this study, BALB/c mice were intranasally infected with A/Vietnam/1194/2004 (VN1194, H5N1). The mouse lung-adapted variants were isolated and the mutation of E190G (H3 numbering) in the RBD was recognized. The recombinant virus, rVN-E190G carrying E190G in hemagglutinin (HA) was designed and rescued using reverse genetics techniques. The receptor binding activity, growth curve and pathogenicity in mice of the rVN-E190G were investigated. Results demonstrated that rVN-E190G virus increased the binding avidity to α2,6 SA (sialic acid) and reduced the affinity to α2,3 SA, meanwhile weakened the viral replication in vitro. Moreover, the virulence assessment demonstrated that rVN-E190G was attenuated in mice. These results indicated that the mutation E190G in HA decreases H5N1 viral replication in vitro and significantly attenuates virulence in vivo. These findings identify one of the determinants in RBD which can be associated with H5N1 virulence in mice. PMID:26089289

  14. Genetic characterization of HPAI (H5N1) viruses from poultry and wild vultures, Burkina Faso.

    PubMed

    Ducatez, Mariette F; Tarnagda, Zekiba; Tahita, Marc C; Sow, Adama; de Landtsheer, Sebastien; Londt, Brandon Z; Brown, Ian H; Osterhaus, D M E; Fouchier, Ron A M; Ouedraogo, Jean-Bosco B; Muller, Claude P

    2007-04-01

    Genetic analysis of highly pathogenic avian influenza (H5N1) viruses from poultry and hooded vultures in Burkina Faso shows that these viruses belong to 1 of 3 sublineages initially found in Nigeria and later in other African countries. Hooded vultures could potentially be vectors or sentinels of influenza subtype H5N1, as are cats and swans elsewhere. PMID:17553279

  15. Antiviral activity of crude extracts of Eugenia jambolana Lam. against highly pathogenic avian influenza (H5N1) virus.

    PubMed

    Sood, Richa; Swarup, D; Bhatia, S; Kulkarni, D D; Dey, S; Saini, M; Dubey, S C

    2012-03-01

    Crude extracts of leaves and bark of E. jambolana were tested for antiviral activity against highly pathogenic avian influenza virus (H5N1) by CPE reduction assay in three different layouts to elucidate virucidal, post-exposure and preexposure antiviral activity of the extracts. The cold and hot aqueous extracts of bark and hot aqueous extract of leaves of E. jambolana showed significant virucidal activity (100% inhibition) which was further confirmed in virus yield reduction assay (-98 to 99% reduction) and by egg based in ovo assay. The selective index (CC50/EC50) of hot aqueous extract (248) and cold aqueous extract (43.5) of bark of E. jambolana showed their antiviral potential against H5N1 virus. The significant virucidal activity of leaves and bark of E. jambolana merits further investigation as it may provide alternative antiviral agent for managing avian influenza infections in poultry farms and potential avian-human transmission. PMID:22439432

  16. Short-Term Heat Shock Affects Host–Virus Interaction in Mice Infected with Highly Pathogenic Avian Influenza Virus H5N1

    PubMed Central

    Xue, Jia; Fan, Xiaoxu; Yu, Jing; Zhang, Shouping; Xiao, Jin; Hu, Yanxin; Wang, Ming

    2016-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 is a highly contagious virus that can cause acute respiratory infections and high human fatality ratio due to excessive inflammatory response. Short-term heat shock, as a stressful condition, could induce the expression of heat shock proteins that function as molecular chaperones to protect cells against multiple stresses. However, the protective effect of short-term heat shock in influenza infection is far from being understood. In this study, mice were treated at 39°C for 4 h before being infected with HPAIV H5N1. Interestingly, short-term heat shock significantly increased the levels of HSP70 and pro-inflammatory cytokines IL-6, TNF-α, IFN-β, and IFN-γ in the lung tissues of mice. Following HPAIV H5N1 infection, short-term heat shock alleviated immunopathology and viral replication in lung tissue and repressed the weight loss and increased the survival rate of H5N1-infected mice. Our data reported that short-term heat shock provided beneficial anti-HPAIV H5N1 properties in mice model, which offers an alternative strategy for non-drug prevention for influenza infection. PMID:27379054

  17. Bayesian Inference Reveals Host-Specific Contributions to the Epidemic Expansion of Influenza A H5N1.

    PubMed

    Trovão, Nídia Sequeira; Suchard, Marc A; Baele, Guy; Gilbert, Marius; Lemey, Philippe

    2015-12-01

    Since its first isolation in 1996 in Guangdong, China, the highly pathogenic avian influenza virus (HPAIV) H5N1 has circulated in avian hosts for almost two decades and spread to more than 60 countries worldwide. The role of different avian hosts and the domestic-wild bird interface has been critical in shaping the complex HPAIV H5N1 disease ecology, but remains difficult to ascertain. To shed light on the large-scale H5N1 transmission patterns and disentangle the contributions of different avian hosts on the tempo and mode of HPAIV H5N1 dispersal, we apply Bayesian evolutionary inference techniques to comprehensive sets of hemagglutinin and neuraminidase gene sequences sampled between 1996 and 2011 throughout Asia and Russia. Our analyses demonstrate that the large-scale H5N1 transmission dynamics are structured according to different avian flyways, and that the incursion of the Central Asian flyway specifically was driven by Anatidae hosts coinciding with rapid rate of spread and an epidemic wavefront acceleration. This also resulted in long-distance dispersal that is likely to be explained by wild bird migration. We identify a significant degree of asymmetry in the large-scale transmission dynamics between Anatidae and Phasianidae, with the latter largely representing poultry as an evolutionary sink. A joint analysis of host dynamics and continuous spatial diffusion demonstrates that the rate of viral dispersal and host diffusivity is significantly higher for Anatidae compared with Phasianidae. These findings complement risk modeling studies and satellite tracking of wild birds in demonstrating a continental-scale structuring into areas of H5N1 persistence that are connected through migratory waterfowl. PMID:26341298

  18. Analysis of the crow lung transcriptome in response to infection with highly pathogenic H5N1 avian influenza virus.

    PubMed

    Vijayakumar, Periyasamy; Mishra, Anamika; Ranaware, Pradip B; Kolte, Atul P; Kulkarni, Diwakar D; Burt, David W; Raut, Ashwin Ashok

    2015-03-15

    The highly pathogenic avian influenza (HPAI) H5N1 virus, currently circulating in Asia, causes severe disease in domestic poultry as well as wild birds like crow. However, the molecular pathogenesis of HPAIV infection in crows and other wild birds is not well known. Thus, as a step to explore it, a comprehensive global gene expression analysis was performed on crow lungs, infected with HPAI H5N1 crow isolate (A/Crow/India/11TI11/2011) using high throughput next generation sequencing (NGS) (GS FLX Titanium XLR70). The reference genome of crow is not available, so RNA seq analysis was performed on the basis of a de novo assembled transcriptome. The RNA seq result shows, 4052 genes were expressed uniquely in noninfected, 6277 genes were expressed uniquely in HPAIV infected sample and of the 6814 genes expressed in both samples, 2279 genes were significantly differentially expressed. Our transcriptome profile data allows for the ability to understand the molecular mechanism behind the recent lethal HPAIV outbreak in crows which was, until recently, thought to cause lethal infections only in gallinaceous birds such as chickens, but not in wild birds. The pattern of differentially expressed genes suggest that this isolate of H5N1 virus evades the host innate immune response by attenuating interferon (IFN)-inducible signalling possibly by down regulating the signalling from type I IFN (IFNAR1 and IFNAR2) and type II IFN receptors, upregulation of the signalling inhibitors suppressor of cytokine signalling 1 (SOCS1) and SOCS3 and altering the expression of toll-like receptors (TLRs). This may be the reason for disease and mortality in crows. PMID:25592823

  19. Possible sources and spreading routes of highly pathogenic avian influenza virus subtype H5N1 infections in poultry and wild birds in Central Europe in 2007 inferred through likelihood analyses.

    PubMed

    Haase, Martin; Starick, Elke; Fereidouni, Sasan; Strebelow, Günter; Grund, Christian; Seeland, Anett; Scheuner, Carmen; Cieslik, Dietmar; Smietanka, Krzystof; Minta, Zenon; Zorman-Rojs, Olga; Mojzis, Miroslav; Goletic, Teufik; Jestin, Veronique; Schulenburg, Bodo; Pybus, Oliver; Mettenleiter, Thomas; Beer, Martin; Harder, Timm

    2010-10-01

    Recurrent outbreaks of H5N1 HPAIV occurred in several Central European countries in 2007. In-depth phylogenetic analyses which included full-length genomic sequences of the viruses involved were performed to elucidate possible origins of incursions and transmission pathways. Tree reconstructions as well as host-shift and ancestral area inferences were conducted in a maximum likelihood framework. All viruses belonged to a separate subgroup (termed "EMA-3") within clade 2.2, and, thus, were distinct from two lineages of HPAIV H5N1 viruses (termed "EMA-1" and "EMA-2") present in the same geographic area in 2006. Analysis of concatenated coding regions of all eight genome segments significantly improved resolution and robustness of the reconstructed phylogenies as compared to single gene analyses. At the same time, the methodological limits to establish retrospectively transmission networks in a comparatively small geographic region and spanning a short period of time became evident when only few corroborating field-epidemiological data are available. Ambiguities remained concerning the origin of the EMA-3 viruses from a region covering Southeast Germany and the Czech Republic as well as routes of spread to other European countries. AIV monitoring programmes in place for wild birds and poultry in these countries did not reveal presence of these viruses in either population. Host switches between domestic poultry and wild bird populations occurred several times. Analysis of outbreaks in Northeast Germany and nearby Northern Poland in December 2007 demonstrated that geographic and even temporal vicinity of outbreaks does not necessarily indicate a common source of incursion. PMID:20624487

  20. Preparation, characterization, and immunogenicity in mice of a recombinant influenza H5 hemagglutinin vaccine against the avian H5N1 A/Vietnam/1203/2004 influenza virus.

    PubMed

    Biesova, Zuzana; Miller, Mark A; Schneerson, Rachel; Shiloach, Joseph; Green, Kim Y; Robbins, John B; Keith, Jerry M

    2009-10-19

    Production of influenza vaccines requires a minimum of 6 months after the circulating strain is isolated and the use of infectious viruses. The hemagglutinin (protective antigen) of circulating influenza viruses mutates rapidly requiring reformulation of the vaccines. Our goal is to eliminate the risk of working with infectious virus and reduce significantly the production time. A cDNA fragment encoding the influenza virus A/Vietnam/1203/2004 (H5N1) HA gene was prepared using RT-PCR with viral RNA as a template. Recombinant HA (rHA) protein was produced in Escherichia coli and purified from isolated inclusion bodies by urea solubilization and Ni(+)-ion column chromatography. Vaccine candidates were prepared by treating the rHA with formalin, adsorption onto alum or with both. Mice were injected subcutaneously with candidate vaccines two or three times 2 weeks apart. Sera were collected 1 week after the last injection and antibody measured by ELISA and hemagglutination inhibition (HI). The highest antibody response (GM 449EU) was elicited by three injections of 15microg alum-adsorbed rHA. Dosages of 5microg of rHA formulated with formalin and alum, and 5microg alum-adsorbed rHA elicited IgG anti-HA of GM 212 and 177EU, respectively. HI titers, >or=40 were obtained in >or=80% of mice with three doses of all formulations. We developed a method to produce rHA in a time-frame suitable for annual and pandemic influenza vaccination. Using this method, rHA vaccine can be produced in 3-4 weeks and when formulated with alum, induces HA antibody levels in young outbred mice consistent with the FDA guidelines for vaccines against epidemic and pandemic influenza. PMID:19686692

  1. Assessment of the removal and inactivation of influenza viruses H5N1 and H1N1 by drinking water treatment.

    PubMed

    Lénès, Dorothée; Deboosere, Nathalie; Ménard-Szczebara, Florence; Jossent, Jérôme; Alexandre, Virginie; Machinal, Claire; Vialette, Michèle

    2010-04-01

    Since 2003, there has been significant concern about the possibility of an outbreak of avian influenza virus subtype H5N1. Moreover, in the last few months, a pandemic of a novel swine-origin influenza A virus, namely A(H1N1), has already caused hundreds of thousands of human cases of illness and thousands of deaths. As those viruses could possibly contaminate water resources through wild birds excreta or through sewage, the aim of our work was to find out whether the treatment processes in use in the drinking water industry are suitable for eradicating them. The effectiveness of physical treatments (coagulation-flocculation-settling, membrane ultrafiltration and ultraviolet) was assessed on H5N1, and that of disinfectants (monochloramine, chlorine dioxide, chlorine, and ozone) was established for both the H5N1 and H1N1 viruses. Natural water samples were spiked with human H5N1/H1N1 viruses. For the coagulation-settling experiments, raw surface water was treated in jar-test pilots with 3 different coagulating agents (aluminum sulfate, ferric chloride, aluminum polychorosulfate). Membrane performance was quantified using a hollow-fiber ultrafiltration system. Ultraviolet irradiation experiments were conducted with a collimated beam that made it possible to assess the effectiveness of various UV doses (25-60 mJ/cm2). In the case of ozone, 0.5 mg/L and 1 mg/L residual concentrations were tested with a contact time of 10 min. Finally, for chlorine, chlorine dioxide and monochloramine treatments, several residual oxidant target levels were tested (from 0.3 to 3 mg/L) with contact times of 5-120 min. The infectivity of the H5N1 and H1N1 viruses in water samples was quantified in cell culture using a microtiter endpoint titration. The impact of coagulation-settling on the H5N1 subtype was quite low and variable. In contrast, ultrafiltration achieved more than a 3-log reduction (and more than a 4-log removal in most cases), and UV treatment was readily effective on its

  2. H5N1 highly pathogenic avian influenza virus experimental infection trials in wild birds: what have we learned and what questions remain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to 2002, there were very few reports of highly pathogenic avian influenza (HPAI) virus infections in wild birds. Since 2002; however, a variety of wild avian species have died from infection with Asian lineage H5N1 HPAI viruses and a growing body of evidence suggests migratory waterfowl may h...

  3. A Single Electroporation Delivery of a DNA Vaccine Containing the Hemagglutinin Gene of Asian H5N1 Avian Influenza Virus Generated a Protective Antibody Response in Chickens against a North American Virus Strain

    PubMed Central

    Pasick, John; Kobinger, Gary P.; Hannaman, Drew; Berhane, Yohannes; Clavijo, Alfonso; van Drunen Littel-van den Hurk, Sylvia

    2013-01-01

    Protection against the avian influenza (AI) H5N1 virus is suspected to be mainly conferred by the presence of antibodies directed against the hemagglutinin (HA) protein of the virus. A single electroporation delivery of 100 or 250 μg of a DNA vaccine construct, pCAG-HA, carrying the HA gene of strain A/Hanoi/30408/2005 (H5N1), in chickens led to the development of anti-HA antibody response in 16 of 17 immunized birds, as measured by a hemagglutination inhibition (HI) test, competitive enzyme-linked immunosorbent assay (cELISA), and an indirect ELISA. Birds vaccinated by electroporation (n = 11) were protected from experimental AI challenge with strain A/chicken/Pennsylvania/1370/1/1983 (H5N2) as judged by low viral load, absence of clinical symptoms, and absence of mortality (n = 11). In contrast, only two out of 10 birds vaccinated with the same vaccine dose (100 or 250 μg) but without electroporation developed antibodies. These birds showed high viral loads and significant morbidity and mortality after the challenge. Seroconversion was reduced in birds electroporated with a low vaccine dose (10 μg), but the antibody-positive birds were protected against virus challenge. Nonelectroporation delivery of a low-dose vaccine did not result in seroconversion, and the birds were as susceptible as those in the control groups that received the control pCAG vector. Electroporation delivery of the DNA vaccine led to enhanced antibody responses and to protection against the AI virus challenge. The HI test, cELISA, or indirect ELISA for anti-H5 antibodies might serve as a good predictor of the potency and efficacy of a DNA immunization strategy against AI in chickens. PMID:23365205

  4. Multi-antigen vaccines based on complex adenovirus vectors induce protective immune responses against H5N1 avian influenza viruses.

    PubMed

    Holman, David H; Wang, Danher; Raja, Nicholas U; Luo, Min; Moore, Kevin M; Woraratanadharm, Jan; Mytle, Nutan; Dong, John Y

    2008-05-19

    There are legitimate concerns that the highly pathogenic H5N1 avian influenza virus could adapt for human-to-human transmission and cause a pandemic similar to the 1918 "Spanish flu" that killed 50 million people worldwide. We have developed pandemic influenza vaccines by incorporating multiple antigens from both avian and Spanish influenza viruses into complex recombinant adenovirus vectors. In vaccinated mice, these vaccines induced strong humoral and cellular immune responses against pandemic influenza virus antigens, and protected vaccinated mice against lethal H5N1 virus challenge. These results indicate that this multi-antigen, broadly protective vaccine may serve as a safer and more effective approach than traditional methods for development of a pandemic influenza vaccine. PMID:18395306

  5. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt

    PubMed Central

    Hagag, Ibrahim Thabet; Mansour, Shimaa M. G.; Zhang, Zerui; Ali, Ahmed A. H.; Ismaiel, El-Bakry M.; Salama, Ali A.; Cardona, Carol J.; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  6. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection.

    PubMed

    Zou, Zhong; Hu, Yong; Liu, Zhigang; Zhong, Wei; Cao, Hangzhou; Chen, Huanchun; Jin, Meilin

    2015-01-01

    Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined. In this study, the DEV was examined as a candidate vaccine vector to deliver the hemagglutinin (HA) gene of H5N1, and its potential as a polyvalent vaccine was evaluated. A modified mini-F vector was inserted into the gB and UL26 gene junction of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The HA gene of A/duck/Hubei/xn/2007 (H5N1) was inserted into the C-KCE genome via the mating-assisted genetically integrated cloning (MAGIC) to generate the recombinant vector pBAC-C-KCE-HA. A bivalent vaccine C-KCE-HA was developed by eliminating the BAC backbone. Ducks immunized with C-KCE-HA induced both the cross-reactive antibodies and T cell response against H5. Moreover, C-KCE-HA-immunized ducks provided rapid and long-lasting protection against homologous and heterologous HPAIV H5N1 and DEV clinical signs, death, and primary viral replication. In conclusion, our BAC-C-KCE is a promising platform for developing a polyvalent live attenuated vaccine. PMID:25889564

  7. Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge With H5N1 Clades 1.1.2 and 2.3.2.1 Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (Anas platyrhynchos domesticus).

    PubMed

    Pantin-Jackwood, Mary J; Kapczynski, Darrell R; DeJesus, Eric; Costa-Hurtado, Mar; Dauphin, Gwenaelle; Tripodi, Astrid; Dunn, John R; Swayne, David E

    2016-03-01

    Domestic ducks are the second most abundant poultry species in many Asian countries and have played a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI).In this study, the protective efficacy of a live recombinant vector vaccine based on a turkey herpesvirus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAI strain (A/Swan/Hungary/4999/ 2006) (rHVT-H5/2.2), given at 3 days of age, was examined in Pekin ducks (Anas platyrhynchos domesticus). The vaccine was given alone or in combination with an inactivated H5N1 clade 2.3.2.1 reverse genetic (rgGD/2.3.2.1) vaccine given at 16 days of age, either as a single vaccination or in a prime-boost regime. At 30 days of age, ducks were challenged with one of two H5N1 HPAI viruses: A/duck/Vietnam/NCVD-2721/2013 (clade 1.1.2) or A/duck/Vietnam/NCVD-1584/2012 (clade 2.3.2.1.C). These viruses produced 100% mortality in less than 5 days in nonvaccinated control ducks. Ducks vaccinated with the rgGD/2.3.2.1 vaccine, with or without the rHVT-H5/2.2 vaccine, were 90%-100% protected against mortality after challenge with either of the two H5N1 HPAI viruses. The rHVT-H5/2.2 vaccine alone, however, conferred only 30% protection against mortality after challenge with either H5N1 HPAI virus; the surviving ducks from these groups shed higher amount of virus and for longer than the single-vaccinated rgGD/2.3.2.1 group. Despite low protection, ducks vaccinated with the rHVT-H5/2.2 vaccine and challenged with the clade 1.1.2 Vietnam virus had a longer mean death time than nonvaccinated controls (P = 0.02). A booster effect was found on reduction of virus shedding when using both vaccines, with lower oropharyngeal viral titers at 4 days after challenge with either HPAI virus (P < 0.05). Neither rHVT-H5/2.2 nor standard HVT vaccine could be detected in samples collected from multiple tissues at different time points, indicting minimal levels of viral replication. In conclusion, although a minor effect on

  8. Glycine at Position 622 in PB1 Contributes to the Virulence of H5N1 Avian Influenza Virus in Mice

    PubMed Central

    Feng, Xiaoxiao; Wang, Zeng; Shi, Jianzhong; Deng, Guohua; Kong, Huihui; Tao, Shiyu; Li, Changyao; Liu, Liling; Guan, Yuntao

    2015-01-01

    ABSTRACT We isolated two H5N1 viruses, A/duck/Hunan/S4020/2008 (DK/08) and A/chicken/Guangxi/S2039/2009 (CK/09), from live-bird markets during routine surveillance and found that these two viruses are genetically similar but differ in their replication and virulence in mice. The CK/09 virus is lethal for mice with a 50% mouse lethal dose (MLD50) of 1.6 log10 50% egg infectious doses (EID50), whereas the DK/08 virus is nonpathogenic for mice with an MLD50 value of 6.2 log10 EID50. We explored the genetic basis of the virulence difference of these two viruses by generating a series of reassortant viruses and mutants in the lethal virus CK/09 background and evaluating their virulence in mice. We found that the PB1 gene of the DK/08 virus dramatically attenuated the virulence of the CK/09 virus and that the amino acid at position 622 in PB1 made an important contribution. We further demonstrated that the mutation of glycine (G) to aspartic acid (D) at position 622 in PB1 partially impaired the binding of PB1 to viral RNA, thereby dramatically decreasing the polymerase activity and attenuating H5N1 virus virulence in mice. Our results identify a novel virulence-related marker of H5N1 influenza viruses and provide a new target for live attenuated vaccine development. IMPORTANCE H5N1 avian influenza viruses have caused the deaths of nearly 60% of the humans that they have infected since 1997 and clearly represent a threat to public health. A thorough understanding of the genetic basis of virulence determinants will provide important insights for antiviral drug and live attenuated vaccine development. Several virulence-related markers in the PB2, PA, M1, and NS1 proteins of H5N1 viruses have been identified. In this study, we isolated two H5N1 avian influenza viruses that are genetically similar but differ in their virulence in mice, and we identified a new virulence-related marker in the PB1 gene. We found that the mutation of glycine (G) to aspartic acid (D) at position

  9. Protective Efficacy of a Single Dose of Baculovirus Hemagglutinin-Based Vaccine in Chickens and Ducks Against Homologous and Heterologous H5N1 Virus Infections

    PubMed Central

    Park, Eun Hye; Song, Byung Min; Yum, Jung; Kim, Ji An; Oh, Seung Kyoo; Kim, Hyun Soo; Cho, Gil Jae

    2014-01-01

    Abstract Outbreaks of the highly pathogenic H5N1 virus in poultry and humans are ongoing. Vaccination is an efficient method for prevention of H5N1 infection. Using chickens and ducks, we assessed the efficacy of a vaccine comprising H5N1 hemagglutinin (HA) protein produced in a baculovirus expression system. The immunized chickens and ducks were protected against lethal infection by H5N1 in an antigen dose-dependent manner. Complete protection against homologous challenge and partial protection against heterologous challenge were achieved in chickens immunized with 5 μg HA protein and in ducks immunized with 10 μg HA protein. The IgG antibody subtype was mainly detected in the sera and tissues, including the lungs. The neuraminidase (NA) inhibition assay was negative in immunized chickens and ducks. Our results indicated that the expressed HA protein by baculovirus was immunogenic to both chickens and ducks, and the immunized chickens and ducks were protected from the lethal infections of highly pathogenic H5N1 influenza virus, though ducks required more HA protein than chickens to be protected. Also, baculovirus HA-vaccinated poultry can be differentiated from infected poultry by NA inhibition assay. PMID:25211640

  10. Surveillance on A/H5N1 virus in domestic poultry and wild birds in Egypt

    PubMed Central

    2013-01-01

    Background The endemic H5N1 high pathogenicity avian influenza virus (A/H5N1) in poultry in Egypt continues to cause heavy losses in poultry and poses a significant threat to human health. Methods Here we describe results of A/H5N1 surveillance in domestic poultry in 2009 and wild birds in 2009–2010. Tracheal and cloacal swabs were collected from domestic poultry from 22024 commercial farms, 1435 backyards and 944 live bird markets (LBMs) as well as from 1297 wild birds representing 28 different types of migratory birds. Viral RNA was extracted from a mix of tracheal and cloacal swabs media. Matrix gene of avian influenza type A virus was detected using specific real-time reverse-transcription polymerase chain reaction (RT-qPCR) and positive samples were tested by RT-qPCR for simultaneous detection of the H5 and N1 genes. Results In this surveillance, A/H5N1 was detected from 0.1% (n = 23/) of examined commercial poultry farms, 10.5% (n = 151) of backyard birds and 11.4% (n = 108) of LBMs but no wild bird tested positive for A/H5N1. The virus was detected from domestic poultry year-round with higher incidence in the warmer months of summer and spring particularly in backyard birds. Outbreaks were recorded mostly in Lower Egypt where 95.7% (n = 22), 68.9% (n = 104) and 52.8% (n = 57) of positive commercial farms, backyards and LBMs were detected, respectively. Higher prevalence (56%, n = 85) was reported in backyards that had mixed chickens and waterfowl together in the same vicinity and LBMs that had waterfowl (76%, n = 82). Conclusion Our findings indicated broad circulation of the endemic A/H5N1 among poultry in 2009 in Egypt. In addition, the epidemiology of A/H5N1 has changed over time with outbreaks occurring in the warmer months of the year. Backyard waterfowl may play a role as a reservoir and/or source of A/H5N1 particularly in LBMs. The virus has been established in poultry in the Nile Delta where major metropolitan areas

  11. Transmission of H5N1 high pathogenicity avian influenza virus to Herring gulls (Larus argentatus) through intranasal inoculation of virus and ingestion of virus-infected chicken meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate the susceptibility of herring gulls (Larus argentatus) to H5N1 highly pathogenic avian influenza (HPAI) virus under natural routes of infection, we exposed gulls to two Asian lineage H5N1 HPAI viruses (A/whooper swan/Mongolia/244/05 and A/duck meat/Anyang/AVL-1/01) via intranasa...

  12. Safety and Immunogenicity of a Single Low Dose or High Dose of Clade 2 Influenza A(H5N1) Inactivated Vaccine in Adults Previously Primed With Clade 1 Influenza A(H5N1) Vaccine.

    PubMed

    Winokur, Patricia L; Patel, Shital M; Brady, Rebecca; Chen, Wilbur H; El-Kamary, Samer S; Edwards, Kathryn; Creech, C Buddy; Frey, Sharon; Keitel, Wendy A; Belshe, Robert; Walter, Emmanuel; Bellamy, Abbie; Hill, Heather

    2015-08-15

    Influenza A(H5N1) vaccination strategies that improve the speed of the immunological response and cross-clade protection are desired. We compared the immunogenicity of a single 15-μg or 90-μg dose of A/H5N1/Indonesia/05/05 (clade 2) vaccine in adults who were previously primed with A/H5N1/Vietnam/1203/2004 (clade 1) vaccine. High-dose vaccine resulted in significantly higher titers to both clade 1 and 2 antigens. Clade 2 titers were unaffected by the previous dose of clade 1 vaccine. Low-dose priming with a mismatched pandemic influenza A(H5N1) vaccine would improve the rapidity, magnitude, and cross-reactivity of the immunological response following a single high-dose, unadjuvanted, pandemic vaccine. PMID:25712967

  13. An impedance immunosensor based on low-cost microelectrodes and specific monoclonal antibodies for rapid detection of avian influenza virus H5N1 in chicken swabs.

    PubMed

    Lin, Jianhan; Wang, Ronghui; Jiao, Peirong; Li, Yuntao; Li, Yanbin; Liao, Min; Yu, Yude; Wang, Maohua

    2015-05-15

    Early screening of suspected cases is the key to control the spread of avian influenza (AI) H5N1. In our previous studies, an impedance biosensor with an interdigitated array microelectrode based biochip was developed and validated with pure AI H5 virus, but had limitations in cost and reliability of the biochip, specificity of the antibody against Asian in-field H5N1 virus and detection of H5N1 virus in real samples. The purpose of this study is to develop a low-cost impedance immunosensor for rapid detection of Asian in-field AI H5N1 virus in chicken swabs within 1h and validate it with the H5N1 virus. Specific monoclonal antibodies against AI H5N1 virus were developed by fusion of mouse myeloma cells with spleen cells isolated from an H5N1-virus-immunized mouse. Dot-ELISA analysis demonstrated that the developed antibodies had good affinity and specificity with the H5N1 virus. The microelectrodes were redesigned with compact size, fabricated using an improved wet-etching micro-fabrication process with a higher qualified production rate of 70-80%, and modified with the antibodies by the Protein A method. Equivalent circuit analysis indicated that electron transfer resistor was effective with the increase in impedance after capturing of the H5N1 viruses. Linear relationship between impedance change and logarithmic value of H5N1 virus at the concentrations from 2(-1) to 2(4) HAU/50 μl was found and the lower limit of detection was 2(-1) HAU/50 μl. No obvious interferences from non-target viruses such as H6N2, H9N2, Newcastle disease virus, and infectious bronchitis virus were found. Chicken swab tests showed that the impedance immunosensor had a comparable accuracy with real-time RT-PCR compared to viral isolation. PMID:25263315

  14. An overview of the epidemic of highly pathogenic H5N1 avian influenza virus in Egypt: epidemiology and control challenges.

    PubMed

    Abdelwhab, E M; Hafez, H M

    2011-05-01

    Emergence of the highly pathogenic avian influenza (HPAI) H5N1 virus in Egypt in mid-February 2006 caused significant losses for the poultry industry and constituted a potential threat to public health. Since late 2007, there has been increasing evidence that stable lineages of H5N1 viruses are being established in chickens and humans in Egypt. The virus has been detected in wild, feral and zoo birds and recently was found in donkeys and pigs. Most of the outbreaks in poultry and humans occurred in the highly populated Nile delta. The temporal pattern of the virus has changed since 2009 with outbreaks now occurring in the warmer months of the year. Challenges to control of endemic disease in Egypt are discussed. For the foreseeable future, unless a global collaboration exists, HPAI H5N1 virus in Egypt will continue to compromise the poultry industry, endanger public health and pose a serious pandemic threat. PMID:21281550

  15. Efficacy of commercial vaccines in protecting chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  16. Intranasal immunization with live recombinant Lactococcus lactis combined with heat-labile toxin B subunit protects chickens from highly pathogenic avian influenza H5N1 virus.

    PubMed

    Lei, Han; Peng, Xiaojue; Shu, Handing; Zhao, Daxian

    2015-01-01

    Development of safe and effective vaccines to prevent highly pathogenic avian influenza H5N1 virus infection is a challenging goal. Lactococcus lactis (L. lactis) is an ideal delivery vector for vaccine development, and it has been shown previously that oral immunization of encapsulated secretory L. lactis-hemagglutinin (HA) could provide complete protection against homologous H5N1 virus challenge in the mice model. While intranasal immunization is an appealing approach, it is now reported that secretory L. lactis-HA combined with mucosal adjuvant heat-labile toxin B subunit (LTB) could provide protective immunity in the chicken model. As compared to intranasal immunization with L. lactis-HA alone, L. lactis-HA combined with LTB (L. lactis-HA + LTB) could elicit robust neutralizing antibody responses and mucosal IgA responses, as well as strong cellular immune responses in the vaccinated chickens. Importantly, intranasal immunization with L. lactis-HA + LTB could provide 100% protection against H5N1 virus challenge. Taken together, these results suggest that intranasal immunization with L. lactis-HA + LTB can be considered as an effective approach for preventing and controlling infection of H5N1 virus in poultry during an avian influenza A/H5N1 pandemic. PMID:24861477

  17. Generation and Characterization of Monoclonal Antibodies Specific to Avian Influenza H5N1 Hemagglutinin Protein.

    PubMed

    Malik, Ankita; Mallajosyula, V Vamsee Aditya; Mishra, Nripendra Nath; Varadarajan, Raghavan; Gupta, Satish Kumar

    2015-12-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has in the past breached the species barrier from infected domestic poultry to humans in close contact. Although human-to-human transmission has previously not been reported, HPAI H5N1 virus has pandemic potential owing to gain of function mutation(s) and/or genetic reassortment with human influenza A viruses. Monoclonal antibodies (MAbs) have been used for diagnosis as well as specific therapeutic candidates in several disease conditions including viral infections in humans. In this study, we describe the preliminary characterization of four murine MAbs developed against recombinant hemagglutinin (rHA) protein of avian H5N1 A/turkey/Turkey/1/2005 virus that are either highly specific or broadly reactive against HA from other H5N1 subtype viruses, such as A/Hong Kong/213/03, A/Common magpie/Hong Kong/2256/2006, and A/Barheaded goose/Quinghai/14/2008. The antibody binding is specific to H5N1 HAs, as none of the antibodies bound H1N1, H2N2, H3N2, or B/Brisbane/60/2008 HAs. Out of the four MAbs, one of them (MA-7) also reacted weakly with the rHA protein of H7N9 A/Anhui/1/2013. All four MAbs bound H5 HA (A/turkey/Turkey/1/2005) with high affinity with an equilibrium dissociation constant (KD) ranging between 0.05 and 10.30 nM. One of the MAbs (MA-1) also showed hemagglutination inhibition activity (HI titer; 31.25 μg/mL) against the homologous A/turkey/Turkey/1/2005 H5N1 virus. These antibodies may be useful in developing diagnostic tools for detection of influenza H5N1 virus infection. PMID:26683184

  18. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on specific pathogen free (SPF) birds immunized with 0.2 ...

  19. Intensive care management of life-threatening avian influenza A (H5N1).

    PubMed

    Sessler, Curtis N; Gray, Nicole D

    2008-03-01

    A large proportion of patients with avian influenza A (H5N1) develop life-threatening manifestations, often including ARDS, acute renal failure and multiple organ failure that requires aggressive intensive care management. The pace of development of respiratory failure is often rapid and can occur in previously healthy hosts, mandating close observation and timely intervention of infected individuals. Use of standard, contact, droplet and airborne isolation precautions is recommended to protect healthcare workers. Key components of ARDS management encompass appropriate mechanical ventilation including limiting tidal volume to influenza, beneficial effects on outcomes have not been demonstrated for corticosteroids. Prone positioning can improve oxygenation temporarily and might be useful as rescue therapy for severe hypoxemia. Administration of inhaled nitric oxide and high frequency oscillatory ventilation can improve oxygenation but have not been demonstrated to improve survival in ARDS-their role in avian influenza is uncertain and availability limited. Management of multiple organ failure may include vasopressor support for septic shock and renal replacement therapy for acute renal failure. PMID:18366526

  20. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pathogenicity avian influenza virus (HPAIV) infections in chickens decrease egg production and eggs that are laid contain HPAIV. Vaccination once or twice was examined as a way to protect chickens from Vietnamese H5N1 HPAIV. Eighty-three percent of hens without vaccination died within 3 days ...

  1. Comparative pathology of H5N1 highly pathogenic avian influenza virus infection in avian species in the Orders Anseriformes and Charadriiformes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirteen species of ducks, geese, swans and gulls present in the North American wild bird populations were inoculated intranasally with A/Whooper Swan/Mongolia/244/05 (H5N1) avian influenza virus to evaluate the range of viral shedding and pathology within these two avian orders. Based on mortality...

  2. Comparison of pig and ferret models for evaluation of respiratory versus alimentary transmission of H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: H5N1 high pathogenicity avian influenza viruses (HPAIV) have caused over 300 human infections and over 200 deaths since 2003. The majority of the cases have involved close direct or indirect contact with infected poultry but a few cases have incriminated consumption of uncooked poultry p...

  3. Tropism and Induction of Cytokines in Human Embryonic-Stem Cells-Derived Neural Progenitors upon Inoculation with Highly- Pathogenic Avian H5N1 Influenza Virus

    PubMed Central

    Pringproa, Kidsadagon; Rungsiwiwut, Ruttachuk; Tantilertcharoen, Rachod; Praphet, Reunkeaw; Pruksananonda, Kamthorn; Baumgärtner, Wolfgang; Thanawongnuwech, Roongroje

    2015-01-01

    Central nervous system (CNS) dysfunction caused by neurovirulent influenza viruses is a dreaded complication of infection, and may play a role in some neurodegenerative conditions, such as Parkinson-like diseases and encephalitis lethargica. Although CNS infection by highly pathogenic H5N1 virus has been demonstrated, it is unknown whether H5N1 infects neural progenitor cells, nor whether such infection plays a role in the neuroinflammation and neurodegeneration. To pursue this question, we infected human neural progenitor cells (hNPCs) differentiated from human embryonic stem cells in vitro with H5N1 virus, and studied the resulting cytopathology, cytokine expression, and genes involved in the differentiation. Human embryonic stem cells (BG01) were maintained and differentiated into the neural progenitors, and then infected by H5N1 virus (A/Chicken/Thailand/CUK2/04) at a multiplicity of infection of 1. At 6, 24, 48, and 72 hours post-infection (hpi), cytopathic effects were observed. Then cells were characterized by immunofluorescence and electron microscopy, supernatants quantified for virus titers, and sampled cells studied for candidate genes.The hNPCs were susceptible to H5N1 virus infection as determined by morphological observation and immunofluorescence. The infection was characterized by a significant up-regulation of TNF-α gene expression, while expressions of IFN-α2, IFN-β1, IFN-γ and IL-6 remained unchanged compared to mock-infected controls. Moreover, H5N1 infection did not appear to alter expression of neuronal and astrocytic markers of hNPCs, such as β-III tubulin and GFAP, respectively. The results indicate that hNPCs support H5N1 virus infection and may play a role in the neuroinflammation during acute viral encephalitis. PMID:26274828

  4. Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice

    PubMed Central

    Cornelissen, Lisette A. H. M.; de Leeuw, Olav S.; Tacken, Mirriam G.; Klos, Heleen C.; de Vries, Robert P.; de Boer-Luijtze, Els A.; van Zoelen-Bos, Diana J.; Rigter, Alan; Rottier, Peter J. M.; Moormann, Rob J. M.; de Haan, Cornelis A. M.

    2012-01-01

    Background Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV) that express influenza hemagglutinin (HA) have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. Methodology/Principal Findings In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5) or a soluble trimeric form thereof (NDV-sH53). A single intramuscular immunization with NDV-sH53 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH53 was less protective than NDV-H5 (50% vs 80% protection) when administered via the respiratory tract. The NDV-sH53 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. Conclusions/Significance Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant vector vaccines

  5. Comparative susceptibility of waterfowl and gulls to highly pathogenic avian influenza H5N1 virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild avian species in the Orders Anseriformes (ducks, geese, swans) and Charadriiformes (gulls, terns, shorebirds) have traditionally been considered the natural reservoirs for avian influenza viruses (AIV) and morbidity or mortality is rarely associated with AIV infection in these hosts. However, ...

  6. Growth and Pathogenic Potential of Naturally Selected Reassortants after Coinfection with Pandemic H1N1 and Highly Pathogenic Avian Influenza H5N1 Viruses

    PubMed Central

    Song, Min-Suk; Baek, Yun Hee; Pascua, Philippe Noriel Q.; Kwon, Hyeok-il; Kim, Eun-Ha; Park, Su-Jin; Kim, Se Mi; Kim, Young-Il; Choi, Won-Suk; Kim, Eung-Gook; Kim, Chul-Joong

    2015-01-01

    Coinfection of ferrets with H5N1 and pH1N1 viruses resulted in two predominate genotypes in the lungs containing surface genes of highly pathogenic avian influenza H5N1 virus in the backbone of pandemic H1N1 2009 (pH1N1). Compared to parental strains, these reassortants exhibited increased growth and virulence in vitro and in mice but failed to be transmitted indirectly to naive contact ferrets. Thus, this demonstrates a possible natural reassortment following coinfection as well as the pathogenicity of the potential reassortants. PMID:26491154

  7. Growth and Pathogenic Potential of Naturally Selected Reassortants after Coinfection with Pandemic H1N1 and Highly Pathogenic Avian Influenza H5N1 Viruses.

    PubMed

    Song, Min-Suk; Baek, Yun Hee; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Kim, Eun-Ha; Park, Su-Jin; Kim, Se Mi; Kim, Young-Il; Choi, Won-Suk; Kim, Eung-Gook; Kim, Chul-Joong; Choi, Young Ki

    2016-01-01

    Coinfection of ferrets with H5N1 and pH1N1 viruses resulted in two predominate genotypes in the lungs containing surface genes of highly pathogenic avian influenza H5N1 virus in the backbone of pandemic H1N1 2009 (pH1N1). Compared to parental strains, these reassortants exhibited increased growth and virulence in vitro and in mice but failed to be transmitted indirectly to naive contact ferrets. Thus, this demonstrates a possible natural reassortment following coinfection as well as the pathogenicity of the potential reassortants. PMID:26491154

  8. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species

    USGS Publications Warehouse

    Hall, J.S.; Franson, J.C.; Gill, R.E.; Meteyer, C.U.; Teslaa, J.L.; Nashold, S.; Dusek, R.J.; Ip, H.S.

    2011-01-01

    Background Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds. Methods Wild dunlin were inoculated intranasally and intrachoanally various doses of HPAIV H5N1. The birds were monitored daily for virus excretion, disease signs, morbidity, and mortality. Results The infectious dose of HPAIV H5N1 in dunlin was determined to be 101.7 EID50/100 ??l and that the lethal dose was 101.83 EID50/100 ??l. Clinical signs were consistent with neurotropic disease, and histochemical analyses revealed that infection was systemic with viral antigen and RNA most consistently found in brain tissues. Infected birds excreted relatively large amounts of virus orally (104 EID50) and smaller amounts cloacally. Conclusions Dunlin are highly susceptible to infection with HPAIV H5N1. They become infected after exposure to relatively small doses of the virus and if they become infected, they are most likely to suffer mortality within 3-5days. These results have important implications regarding the risks of transport and transmission of HPAIV H5N1 to North America by this species and raises questions for further investigation. Published 2011. This article is a US Government work and is in the public domain in the USA.

  9. Outbreaks of highly pathogenic avian influenza H5N1 clade 2.3.2.1c in hunting falcons and kept wild birds in Dubai implicate intercontinental virus spread.

    PubMed

    Naguib, Mahmoud M; Kinne, Jörg; Chen, Honglin; Chan, Kwok-Hung; Joseph, Sunitha; Wong, Po-Chun; Woo, Patrick C Y; Wernery, Renate; Beer, Martin; Wernery, Ulrich; Harder, Timm C

    2015-11-01

    Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 have continued to perpetuate with divergent genetic variants in poultry within Asia since 2003. Further dissemination of Asian-derived H5 HPAIVs to Europe, Africa and, most recently, to the North American continent has occurred. We report an outbreak of HPAIV H5N1 among falcons kept for hunting and other wild bird species bred as falcon prey in Dubai, United Arab Emirates, during the autumn of 2014. The causative agent was identified as avian influenza virus subtype H5N1, clade 2.3.2.1c, by genetic and phylogenetic analyses. High mortality in infected birds was in accordance with systemic pathomorphological and histological alterations in affected falcons. Genetic analysis showed the HPAIV H5N1 of clade 2.3.2.1c is a reassortant in which the PB2 segment was derived from an Asian-origin H9N2 virus lineage. The Dubai H5N1 viruses were closely related to contemporary H5N1 HPAIVs from Nigeria, Burkina-Faso, Romania and Bulgaria. Median-joining network analysis of 2.3.2.1c viruses revealed that the Dubai outbreak was an episode of a westward spread of these viruses on a larger scale from unidentified Asian sources. The incursion into Dubai, possibly via infected captive hunting falcons returning from hunting trips to central Asian countries, preceded outbreaks in Nigeria and other West African countries. The alarmingly enhanced geographical mobility of clade 2.3.2.1.c and clade 2.3.4.4 viruses may represent another wave of transcontinental dissemination of Asian-origin HPAIV H5 viruses, such as the outbreak at Qinghai Lake caused by clade 2.2 (‘Qinghai’ lineage) in 2005. PMID:26350163

  10. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and other regions of the world. Vaccination is used as part of H5N1 HPAI control programs in many countries; however, eradication of the disease has not been possible due to the emergence and spread of new viruses...

  11. Effect of age on pathogenesis and innate immune responses in Pekin ducks infected with different H5N1 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks varies between different viruses and is affected by the age of the ducks, with younger ducks presenting more severe disease. In order to better understand the pathobiology of H5N1 HPAI in ducks, including t...

  12. Use of genomic interspecies microarray hybridization to detect differentially expressed genes associated with H5N1 avian influenza virus infections in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian H5N1 highly pathogenic avian influenza (HPAI) viruses have changed from producing mild respiratory infections in ducks, to some strains producing severe disease and mortality. The objective of this study was to examine the differences in host response to infection with H5N1 HPAI viruses w...

  13. Distinct Pathogenesis of Hong Kong-Origin H5N1 Viruses in Mice Compared to That of Other Highly Pathogenic H5 Avian Influenza Viruses

    PubMed Central

    Dybing, Jody K.; Schultz-Cherry, Stacey; Swayne, David E.; Suarez, David L.; Perdue, Michael L.

    2000-01-01

    In 1997, an outbreak of virulent H5N1 avian influenza virus occurred in poultry in Hong Kong (HK) and was linked to a direct transmission to humans. The factors associated with transmission of avian influenza virus to mammals are not fully understood, and the potential risk of other highly virulent avian influenza A viruses infecting and causing disease in mammals is not known. In this study, two avian and one human HK-origin H5N1 virus along with four additional highly pathogenic H5 avian influenza viruses were analyzed for their pathogenicity in 6- to 8-week-old BALB/c mice. Both the avian and human HK H5 influenza virus isolates caused severe disease in mice, characterized by induced hypothermia, clinical signs, rapid weight loss, and 75 to 100% mortality by 6 to 8 days postinfection. Three of the non-HK-origin isolates caused no detectable clinical signs. One isolate, A/tk/England/91 (H5N1), induced measurable disease, and all but one of the animals recovered. Infections resulted in mild to severe lesions in both the upper and lower respiratory tracts. Most consistently, the viruses caused necrosis in respiratory epithelium of the nasal cavity, trachea, bronchi, and bronchioles with accompanying inflammation. The most severe and widespread lesions were observed in the lungs of HK avian influenza virus-infected mice, while no lesions or only mild lesions were evident with A/ck/Scotland/59 (H5N1) and A/ck/Queretaro/95 (H5N2). The A/ck/Italy/97 (H5N2) and the A/tk/England/91 (H5N1) viruses exhibited intermediate pathogenicity, producing mild to moderate respiratory tract lesions. In addition, infection by the different isolates could be further distinguished by the mouse immune response. The non-HK-origin isolates all induced production of increased levels of active transforming growth factor β following infection, while the HK-origin isolates did not. PMID:10627555

  14. DC-SIGN mediates avian H5N1 influenza virus infection in cis and in trans

    SciTech Connect

    Wang, S.-F.; Huang, Jason C.; Lee, Y.-M.; Liu, S.-J.; Chan, Yu-Jiun; Chau, Y.-P.; Chong, P.; Chen, Y.-M.A.

    2008-09-05

    DC-SIGN, a C-type lectin receptor expressed in dendritic cells (DCs), has been identified as a receptor for human immunodeficiency virus type 1, hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, and the SARS coronavirus. We used H5N1 pseudotyped and reverse-genetics (RG) virus particles to study their ability to bind with DC-SIGN. Electronic microscopy and functional assay results indicate that pseudotyped viruses containing both HA and NA proteins express hemagglutination and are capable of infecting cells expressing {alpha}-2,3-linked sialic acid receptors. Results from a capture assay show that DC-SIGN-expressing cells (including B-THP-1/DC-SIGN and T-THP-1/DC-SIGN) and peripheral blood dendritic cells are capable of transferring H5N1 pseudotyped and RG virus particles to target cells; this action can be blocked by anti-DC-SIGN monoclonal antibodies. In summary, (a) DC-SIGN acts as a capture or attachment molecule for avian H5N1 virus, and (b) DC-SIGN mediates infections in cis and in trans.

  15. Living with avian FLU--Persistence of the H5N1 highly pathogenic avian influenza virus in Egypt.

    PubMed

    Njabo, Kevin Yana; Zanontian, Linda; Sheta, Basma N; Samy, Ahmed; Galal, Shereen; Schoenberg, Frederic Paik; Smith, Thomas B

    2016-05-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) continues to cause mortality in poultry and threaten human health at a panzootic scale in Egypt since it was reported in 2006. While the early focus has been in Asia, recent evidence suggests that Egypt is an emerging epicenter for the disease. Despite control measures, epizootic transmission of the disease continues. Here, we investigate the persistence of HPAIV across wild passerine birds and domestic poultry between 2009 and 2012 and the potential risk for continuous viral transmission in Egypt. We use a new weighted cross J-function to investigate the degree and spatial temporal nature of the clustering between sightings of infected birds of different types, and the risk of infection associated with direct contact with infected birds. While we found no infection in wild birds, outbreaks occurred year round between 2009 and 2012, with a positive interaction between chickens and ducks. The disease was more present in the years 2010 and 2011 coinciding with the political unrest in the country. Egypt thus continues to experience endemic outbreaks of avian influenza HPAIV in poultry and an increased potential risk of infection to other species including humans. With the current trends, the elimination of the HPAIV infection is highly unlikely without a complete revamp of current policies. The application of spatial statistics techniques to these types of data may help us to understand the characteristics of the disease and may subsequently allow practitioners to explore possible preventive solutions. PMID:27066713

  16. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species

    PubMed Central

    Hall, Jeffrey S.; Franson, J. Christian; Gill, Robert E.; Meteyer, Carol U.; TeSlaa, Joshua L.; Nashold, Sean; Dusek, Robert J.; Ip, Hon S.

    2011-01-01

    Please cite this paper as: Hall et al. (2011). Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species. Influenza and Other Respiratory Viruses 5(5), 365–372. Background  Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds. Methods  Wild dunlin were inoculated intranasally and intrachoanally various doses of HPAIV H5N1. The birds were monitored daily for virus excretion, disease signs, morbidity, and mortality. Results  The infectious dose of HPAIV H5N1 in dunlin was determined to be 101.7 EID50/100 μl and that the lethal dose was 101.83 EID50/100 μl. Clinical signs were consistent with neurotropic disease, and histochemical analyses revealed that infection was systemic with viral antigen and RNA most consistently found in brain tissues. Infected birds excreted relatively large amounts of virus orally (104 EID50) and smaller amounts cloacally. Conclusions  Dunlin are highly susceptible to infection with HPAIV H5N1. They become infected after exposure to relatively small doses of the virus and if they become infected, they are most likely to suffer mortality within 3–5 days. These results have important implications regarding the risks of transport and transmission of HPAIV H5N1 to North

  17. Hemagglutinin amino acids related to receptor specificity could affect the protection efficacy of H5N1 and H7N9 avian influenza virus vaccines in mice.

    PubMed

    Xu, Lili; Bao, Linlin; Lau, Siu-Ying; Wu, Wai-Lan; Yuan, Jing; Gu, Songzhi; Li, Fengdi; Lv, Qi; Xu, Yanfeng; Pushko, Peter; Chen, Honglin; Qin, Chuan

    2016-05-17

    The continuous and sporadic human transmission of highly pathogenic avian H5N1 and H7N9 influenza viruses illustrates the urgent need for efficacious vaccines. However, all tested vaccines for the H5N1 and H7N9 viruses appear to be poorly immunogenic in mammals. In this study, a series of vaccines was produced using reverse genetic techniques that possess HA and NA genes from the H5N1 virus in the genetic background of the high-yield strain A/PR/8/34 (H1N1). Meanwhile, a group of H7N9 VLP vaccines that contain HA from H7N9 and NA and M1 from A/PR/8/34 (H1N1) was also produced. The HA amino acids of both the H5N1 and H7N9 vaccines differed at residues 226 and 228, both of which are critical for receptor specificity for an avian or mammalian host. Mice received two doses (3μg of HA each) of each vaccine and were challenged with lethal doses of wild type H5N1 or H7N9 viruses. The results showed that a recombinant H5N1 vaccine in which the HA amino acid G228 (avian specificity) was converted to S228 (mammalian specificity) resulted in higher HI titers, a lower viral titer in the lungs, and 100% protection in mice. However, a H7N9 VLP vaccine that contains L226 (mammalian specificity) and G228 (avian specificity) in HA showed better immunogenicity and protection efficacy in mice than VLP containing HA with either L226+S228 or Q226+S228. This observation indicated that specific HA residues could enhance a vaccine's protection efficacy and HA glycoproteins with both avian-type and human-type receptor specificities may produce better pandemic influenza vaccines for humans. PMID:27083426

  18. Differences in innate immune responses to H5N1 highly pathogenic avian influenza virus infection between Pekin, Muscovy and Mallard ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. However, differences in pathogenicity and response to vaccination have been observed between different duck species. In this study we examined the pathogenicity of H5N1 HPAI viru...

  19. Satellite Tracking on the Flyways of Brown-Headed Gulls and Their Potential Role in the Spread of Highly Pathogenic Avian Influenza H5N1 Virus

    PubMed Central

    Ratanakorn, Parntep; Wiratsudakul, Anuwat; Wiriyarat, Witthawat; Eiamampai, Krairat; Farmer, Adrian H.; Webster, Robert G.; Chaichoune, Kridsada; Suwanpakdee, Sarin; Pothieng, Duangrat; Puthavathana, Pilaipan

    2012-01-01

    Brown-headed gulls (Larus brunnicephalus), winter visitors of Thailand, were tracked by satellite telemetry during 2008–2011 for investigating their roles in the highly pathogenic avian influenza (HPAI) H5N1 virus spread. Eight gulls negative for influenza virus infection were marked with solar-powered satellite platform transmitters at Bang Poo study site in Samut Prakarn province, Thailand; their movements were monitored by the Argos satellite tracking system, and locations were mapped. Five gulls completed their migratory cycles, which spanned 7 countries (China, Bangladesh, India, Myanmar, Thailand, Cambodia, and Vietnam) affected by the HPAI H5N1 virus. Gulls migrated from their breeding grounds in China to stay overwinter in Thailand and Cambodia; while Bangladesh, India, Myanmar, and Vietnam were the places of stopovers during migration. Gulls traveled an average distance of about 2400 km between Thailand and China and spent 1–2 weeks on migration. Although AI surveillance among gulls was conducted at the study site, no AI virus was isolated and no H5N1 viral genome or specific antibody was detected in the 75 gulls tested, but 6.6% of blood samples were positive for pan-influenza A antibody. No AI outbreaks were reported in areas along flyways of gulls in Thailand during the study period. Distance and duration of migration, tolerability of the captive gulls to survive the HPAI H5N1 virus challenge and days at viral shedding after the virus challenging suggested that the Brown-headed gull could be a potential species for AI spread, especially among Southeast Asian countries, the epicenter of H5N1 AI outbreak. PMID:23209623

  20. Pathogenesis of H5N1 influenza virus infections in mice and ferret models differ between respiratory and digestive system exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Epidemiological, clinical and laboratory data suggests H5N1 influenza viruses are transmitted through and predominantly affect the respiratory system of mammals. Some data suggests digestive system involvement. However, direct evidence of alimentary transmission and infection in mammal...

  1. Increased Acid Stability of the Hemagglutinin Protein Enhances H5N1 Influenza Virus Growth in the Upper Respiratory Tract but Is Insufficient for Transmission in Ferrets

    PubMed Central

    Zaraket, Hassan; Bridges, Olga A.; Duan, Susu; Baranovich, Tatiana; Yoon, Sun-Woo; Reed, Mark L.; Salomon, Rachelle; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Influenza virus entry is mediated by the acidic-pH-induced activation of hemagglutinin (HA) protein. Here, we investigated how a decrease in the HA activation pH (an increase in acid stability) influences the properties of highly pathogenic H5N1 influenza virus in mammalian hosts. We generated isogenic A/Vietnam/1203/2004 (H5N1) (VN1203) viruses containing either wild-type HA protein (activation pH 6.0) or an HA2-K58I point mutation (K to I at position 58) (activation pH 5.5). The VN1203-HA2-K58I virus had replication kinetics similar to those of wild-type VN1203 in MDCK and normal human bronchial epithelial cells and yet had reduced growth in human alveolar A549 cells, which were found to have a higher endosomal pH than MDCK cells. Wild-type and HA2-K58I viruses promoted similar levels of morbidity and mortality in C57BL/6J mice and ferrets, and neither virus transmitted efficiently to naive contact cage-mate ferrets. The acid-stabilizing HA2-K58I mutation, which diminishes H5N1 replication and transmission in ducks, increased the virus load in the ferret nasal cavity early during infection while simultaneously reducing the virus load in the lungs. Overall, a single, acid-stabilizing mutation was found to enhance the growth of an H5N1 influenza virus in the mammalian upper respiratory tract, and yet it was insufficient to enable contact transmission in ferrets in the absence of additional mutations that confer α(2,6) receptor binding specificity and remove a critical N-linked glycosylation site. The information provided here on the contribution of HA acid stability to H5N1 influenza virus fitness and transmissibility in mammals in the background of a non-laboratory-adapted virus provides essential information for the surveillance and assessment of the pandemic potential of currently circulating H5N1 viruses. PMID:23824818

  2. Avian influenza vaccines against H5N1 'bird flu'.

    PubMed

    Li, Chengjun; Bu, Zhigao; Chen, Hualan

    2014-03-01

    H5N1 avian influenza viruses (AIVs) have spread widely to more than 60 countries spanning three continents. To control the disease, vaccination of poultry is implemented in many of the affected countries, especially in those where H5N1 viruses have become enzootic in poultry and wild birds. Recently, considerable progress has been made toward the development of novel avian influenza (AI) vaccines, especially recombinant virus vector vaccines and DNA vaccines. Here, we will discuss the recent advances in vaccine development and use against H5N1 AIV in poultry. Understanding the properties of the available, novel vaccines will allow for the establishment of rational vaccination protocols, which in turn will help the effective control and prevention of H5N1 AI. PMID:24491922

  3. Properties and Dissemination of H5N1 Viruses Isolated during an Influenza Outbreak in Migratory Waterfowl in Western China †

    PubMed Central

    Chen, Hualan; Li, Yanbing; Li, Zejun; Shi, Jianzhong; Shinya, Kyoko; Deng, Guohua; Qi, Qiaoling; Tian, Guobin; Fan, Shufang; Zhao, Haidan; Sun, Yingxiang; Kawaoka, Yoshihiro

    2006-01-01

    H5N1 influenza A viruses are widely distributed among poultry in Asia, but until recently, only a limited number of wild birds were affected. During late April through June 2005, an outbreak of H5N1 virus infection occurred among wild birds at Qinghai Lake in China. Here, we describe the features of this outbreak. First identified in bar-headed geese, the disease soon spread to other avian species populating the lake. Sequence analysis of 15 viruses representing six avian species and collected at different times during the outbreak revealed four different H5N1 genotypes. Most of the isolates possessed lysine at position 627 in the PB2 protein, a residue known to be associated with virulence in mice and adaptation to humans. However, neither of the two index viruses possessed this residue. All of the viruses tested were pathogenic in mice, with the exception of one index virus. We also tested the replication of two viruses isolated during the Qinghai Lake outbreak and one unrelated duck H5N1 virus in rhesus macaques. The Qinghai Lake viruses did not replicate efficiently in these animals, producing no evidence of disease other than transient fever, while the duck virus replicated in multiple organs and caused symptoms of respiratory illness. Importantly, H5N1 viruses isolated in Mongolia, Russia, Inner Mongolia, and the Liaoning Province of China after August 2005 were genetically closely related to one of the genotypes isolated during the Qinghai outbreak, suggesting the dominant nature of this genotype and underscoring the need for worldwide intensive surveillance to minimize its devastating consequences. PMID:16731936

  4. Susceptibility of North American Ducks and Gulls to H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Stallknecht, David E.; Beck, Joan R.; Suarez, David L.; Swayne, David E.

    2006-01-01

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have been associated with deaths in numerous wild avian species throughout Eurasia. We assessed the clinical response and extent and duration of viral shedding in 5 species of North American ducks and laughing gulls (Larus atricilla) after intranasal challenge with 2 Asian H5N1 HPAI viruses. Birds were challenged at ≈10 to 16 weeks of age, consistent with temporal peaks in virus prevalence and fall migration. All species were infected, but only wood ducks (Aix sponsa) and laughing gulls exhibited illness or died. Viral titers were higher in oropharyngeal swabs than in cloacal swabs. Duration of viral shedding (1–10 days) increased with severity of clinical disease. Both the hemagglutination-inhibition (HI) and agar gel precipitin (AGP) tests were able to detect postinoculation antibodies in surviving wood ducks and laughing gulls; the HI test was more sensitive than the AGP in the remaining 4 species PMID:17283615

  5. Binding mechanism of H5N1 influenza virus neuraminidase with ligands and its implication for drug design.

    PubMed

    Gong, Ke; Li, Lin; Wang, Jing-Fang; Cheng, Feng; Wei, Dong-Qing; Chou, Kuo-Chen

    2009-05-01

    To simulate new strategies for designing effective drugs against bird flu, we have carried out extensive studies by using various computer-aided drug design tools. Molecule AG7088 was first docked to the active site of H5N1 avian influenza neuraminidase (PBD code: 2HTY). The results thus obtained were compared with those by docking zanamivir (Relenza) and oseltamivir (Tamiflu) to the same receptor, respectively. It has been found that the compound AG7088 has better binding energy than zanamivir and oseltamivir. Thus, it was adopted as a template to perform the similarity search of 392,698 druggable compounds in order to find the leading candidates for the next step of modeling studies. Nine analogs of AG7088 were singled out through a series of docking studies. Finally, the molecular dynamics simulation technique was utilized to investigate into the binding interactions between the H5N1 receptor and the nine analogs, with a focus on the binding pocket, intermolecular surfaces and hydrogen bonds. This study may be used as a guide for mutagenesis studies for designing new inhibitors against H5N1. PMID:19442214

  6. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    PubMed Central

    Abdelwhab, E. M.; Hafez, Hafez M.

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry. PMID:23202521

  7. Influenza Type A Viruses and Subtypes

    MedlinePlus

    ... virus infection of humans, such as with Asian-origin highly pathogenic avian influenza A (H5N1) viruses currently circulating among poultry in Asia and the Middle East have been reported in 16 countries, often resulting in severe pneumonia with approximately 60% ...

  8. Effect of statin treatments on highly pathogenic avian influenza H5N1, seasonal and H1N1pdm09 virus infections in BALB/c mice

    PubMed Central

    Kumaki, Yohichi; Morrey, John D; Barnard, Dale L

    2013-01-01

    Statins are used to control elevated cholesterol or hypercholesterolemia, but have previously been reported to have antiviral properties. Aims To show efficacy of statins in various influenza virus mouse models. Materials & methods BALB/c mice were treated intraperitoneally or orally with several types of statins (simvastatin, lovastatin, mevastatin, pitavastatin, atorvastatin or rosuvastatin) at various concentrations before or after infection with either influenza A/Duck/ MN/1525/81 H5N1 virus, influenza A/Vietnam/1203/2004 H5N1 virus, influenza A/ Victoria/3/75 H3N2 virus, influenza A/NWS/33 H1N1 virus or influenza A/CA/04/09 H1N1pdm09 virus. Results The statins administered intraperitoneally or orally at any dose did not significantly enhance the total survivors relative to untreated controls. In addition, infected mice receiving any concentration of statin were not protected against weight loss due to the infection. None of the statins significantly increased the mean day of death relative to mice in the placebo treatment group. Furthermore, the statins had relatively few ameliorative effects on lung pathology or lung weights at day 3 and 6 after virus exposure, although mice treated with simvastatin did have improved lung function as measured by arterial saturated oxygen levels in one experiment. Conclusion Statins showed relatively little efficacy in any mouse model used by any parameter tested. PMID:23420457

  9. Serological Evidence for Non-Lethal Exposures of Mongolian Wild Birds to Highly Pathogenic Avian Influenza H5N1 Virus

    PubMed Central

    Gilbert, Martin; Koel, Björn F.; Bestebroer, Theo M.; Lewis, Nicola S.; Smith, Derek J.; Fouchier, Ron A. M.

    2014-01-01

    Surveillance for highly pathogenic avian influenza viruses (HPAIV) in wild birds is logistically demanding due to the very low rates of virus detection. Serological approaches may be more cost effective as they require smaller sample sizes to identify exposed populations. We hypothesized that antigenic differences between classical Eurasian H5 subtype viruses (which have low pathogenicity in chickens) and H5N1 viruses of the Goose/Guangdong/96 H5 lineage (which are HPAIV) may be used to differentiate populations where HPAIVs have been circulating, from those where they have not. To test this we performed hemagglutination inhibition assays to compare the reactivity of serum samples from wild birds in Mongolia (where HPAIV has been circulating, n = 1,832) and Europe (where HPAIV has been rare or absent, n = 497) to a panel of reference viruses including classical Eurasian H5 (of low pathogenicity), and five HPAIV H5N1 antigens of the Asian lineage A/Goose/Guangdong/1/96. Antibody titres were detected against at least one of the test antigens for 182 Mongolian serum samples (total seroprevalence of 0.10, n = 1,832, 95% adjusted Wald confidence limits of 0.09–0.11) and 25 of the European sera tested (total seroprevalence of 0.05, n = 497, 95% adjusted Wald confidence limits of 0.03–0.07). A bias in antibody titres to HPAIV antigens was found in the Mongolian sample set (22/182) that was absent in the European sera (0/25). Although the interpretation of serological data from wild birds is complicated by the possibility of exposure to multiple strains, and variability in the timing of exposure, these findings suggest that a proportion of the Mongolian population had survived exposure to HPAIV, and that serological assays may enhance the targeting of traditional HPAIV surveillance toward populations where isolation of HPAIV is more likely. PMID:25502318

  10. Sequence and phylogenetic analysis of highly pathogenic avian influenza H5N1 viruses isolated during 2006–2008 outbreaks in Pakistan reveals genetic diversity

    PubMed Central

    2012-01-01

    Background Since the first outbreak recorded in northern areas of Pakistan in early 2006, highly pathogenic avian influenza H5N1 viruses were isolated from commercial poultry and wild/domestic birds from different areas of Pakistan up to July 2008. Different isolates of H5N1 were sequenced to explore the genetic diversity of these viruses. Results Phylogenetic analysis revealed close clustering and highest sequence identity in all 8 genes to HPAI H5N1 isolates belonging to unified H5 clade 2.2, sub-lineage EMA-3 recovered from Afghanistan during the same time period. Two subgroups within Pakistani H5N1 viruses, from domestic and wild birds, were observed on the basis of their sequence homology and mutations. HPAI motif, preferred receptor specificity for α-(2, 3) linkages, potential N-linked glycosylation sites and an additional glycosylation site at the globular head of HA protein of four Pakistani H5N1 isolates. While, the amino acids associated with sensitivities to various antiviral drugs (Oseltamivir, Zanamivir, Amantadine) were found conserved for the Pakistani H5N1 isolates. Conspicuously, some important mutations observed at critical positions of antigenic sites (S141P, D155S, R162I & P181S) and at receptor binding pocket (A185T, R189K & S217P) of HA-1. A high sequence similarity between Pakistani HP H5N1 and LP H9N2 viruses was also observed. Avian like host specific markers with the exception of E627K in PB2, K356R in PA, V33I in NP, I28V in M2 and L107F in NS2 proteins were also observed. Conclusions Various point mutations in different genes of H5 viruses from Pakistan were observed during its circulation in the field. The outbreaks started in Khyber Pakhtoon Khawa (North West) province in 2006 and spread to the Southern regions over a period of time. Though migratory birds may have a role for this continued endemicity of clade 2.2 H5N1 viruses during 2006–2008 in Pakistan, the possibility of their transmission through legal or illegal poultry trade

  11. Recombinant baculovirus vaccine containing multiple M2e and adjuvant LTB induces T cell dependent, cross-clade protection against H5N1 influenza virus in mice.

    PubMed

    Zhang, Jie; Fan, Hui-Ying; Zhang, Zhen; Zhang, Juan; Zhang, Jiao; Huang, Jian-Ni; Ye, Yu; Liao, Ming

    2016-01-27

    H5N1, highly pathogenic avian influenza poses, a threat to animal and human health. Rapid changes in H5N1 viruses require periodic reformulation of the conventional strain-matched vaccines, thus emphasizing the need for a broadly protective influenza vaccine. Here, we constructed BV-Dual-3M2e-LTB, a recombinant baculovirus based on baculovirus display and BacMam technology. BV-Dual-3M2e-LTB harbors a gene cassette expressing three tandem copies of the highly conserved extracellular domain of influenza M2 protein (M2e) and the mucosal adjuvant, LTB. We showed that BV-Dual-3M2e-LTB displayed the target protein (M2e/LTB) on the baculoviral surface and expressed it in transduced mammalian cells. BV-Dual-3M2e-LTB, when delivered nasally in mice, was highly immunogenic and induced superior levels of anti-M2e IgA than the non-adjuvanted baculovirus (BV-Dual-3M2e). Importantly, after challenge with different H5N1 clades (clade 0, 2.3.2.1, 2.3.4 and 4), mice inoculated with BV-Dual-3M2e-LTB displayed improved survival and decreased lung virus shedding compared with mice inoculated with BV-Dual-3M2e. The enhanced protection from BV-Dual-3M2e-LTB is mediated by T cell immunity and is primarily based on CD8(+) T cells, while mucosal antibodies alone were insufficient for protection from lethal H5N1 challenge. These results suggest that BV-Dual-3M2e-LTB has potential to protect against a broad range of H5N1 strains thereby providing a novel direction for developing broadly protective vaccines based on cellular immunity. PMID:26724200

  12. Molecular analysis of hemagglutinin-1 fragment of avian influenza H5N1 viruses isolated from chicken farms in Indonesia from 2008 to 2010.

    PubMed

    Mahardika, Gusti N; Jonas, Melina; Murwijati, Theresia; Fitria, Nur; Suartha, I Nyoman; Suartini, I Gusti A A; Wibawan, I Wayan Teguh

    2016-04-15

    Highly pathogenic avian influenza virus of subtype H5N1 (AIV-H5N1) has been circulating in Indonesia since 2003. To understand the genetic diversity of these viruses, and to predict vaccine efficacy, the hemaglutinin-1 (HA-1) fragment of viruses isolated from chicken farms in Indonesia from 2008 to 2010 was sequenced and analyzed. The effects of these molecular changes were investigated in challenge experiments and HI assays of homologous and heterologous strains. Molecular analysis showed that these AIV-H5N1 isolates had evolved into three distinct sub-lineages from an ancestor circulating since 2003. Although no significant positive selection of residues was detected, 12 negatively selected sites were identified (p<0.05). Moreover, four sites showed evidence of significant episodic diversifying selection. The findings indicated complete protectivity and high HI titers with homologous strains, compared with protectivity ranging from 40 to 100% and lower HI titers with heterologous strains resulting from polymorphisms at antigenic sites. Our findings provide valuable insight into the molecular evolution of AIV and have important implications for vaccine efficacy and future vaccination strategies. PMID:27016757

  13. Outbreaks of avian influenza A (H5N1) in Asia and interim recommendations for evaluation and reporting of suspected cases--United States, 2004.

    PubMed

    2004-02-13

    During December 2003-February 2004, outbreaks of highly pathogenic avian influenza A (H5N1) among poultry were reported in Cambodia, China, Indonesia, Japan, Laos, South Korea, Thailand, and Vietnam. As of February 9, 2004, a total of 23 cases of laboratory-confirmed influenza A (H5N1) virus infections in humans, resulting in 18 deaths, had been reported in Thailand and Vietnam. In addition, approximately 100 suspected cases in humans are under investigation by national health authorities in Thailand and Vietnam. CDC, the World Health Organization (WHO), and national health authorities in Asian countries are working to assess and monitor the situation, provide epidemiologic and laboratory support, and assist with control efforts. This report summarizes information about the human infections and avian outbreaks in Asia and provides recommendations to guide influenza A (H5N1) surveillance, diagnosis, and testing in the United States. PMID:14961001

  14. Establishing a laboratory network of influenza diagnosis in Indonesia: an experience from the avian flu (H5N1) outbreak.

    PubMed

    Setiawaty, Vivi; Pangesti, Krisna Na; Sampurno, Ondri D

    2012-01-01

    Indonesia has been part of the global influenza surveillance since the establishment of a National Influenza Center (NIC) at the National Institute of Health Research and Development (NIHRD) by the Indonesian Ministry of Health in 1975. When the outbreak of avian influenza A (H5N1) occurred, the NIC and US Naval Medical Research Unit 2 were the only diagnostic laboratories equipped for etiology confirmation. The large geographical area of the Republic of Indonesia poses a real challenge to provide prompt and accurate diagnosis nationally. This was the main reason to establish a laboratory network for H5N1 diagnosis in Indonesia. Currently, 44 laboratories have been included in the network capable of performing polymerase chain reaction testing for influenza A. Diagnostic equipment and standard procedures of biosafety and biosecurity of handling specimens have been adopted largely from World Health Organization recommendations. PMID:22936856

  15. Establishing a laboratory network of influenza diagnosis in Indonesia: an experience from the avian flu (H5N1) outbreak

    PubMed Central

    Setiawaty, Vivi; Pangesti, Krisna NA; Sampurno, Ondri D

    2012-01-01

    Indonesia has been part of the global influenza surveillance since the establishment of a National Influenza Center (NIC) at the National Institute of Health Research and Development (NIHRD) by the Indonesian Ministry of Health in 1975. When the outbreak of avian influenza A (H5N1) occurred, the NIC and US Naval Medical Research Unit 2 were the only diagnostic laboratories equipped for etiology confirmation. The large geographical area of the Republic of Indonesia poses a real challenge to provide prompt and accurate diagnosis nationally. This was the main reason to establish a laboratory network for H5N1 diagnosis in Indonesia. Currently, 44 laboratories have been included in the network capable of performing polymerase chain reaction testing for influenza A. Diagnostic equipment and standard procedures of biosafety and biosecurity of handling specimens have been adopted largely from World Health Organization recommendations. PMID:22936856

  16. Permissible variation in the 3' non-coding region of the haemagglutinin genome segment of the H5N1 candidate influenza vaccine virus NIBRG-14 [corrected].

    PubMed

    Johnson, Rachel E; Hamill, Michelle; Harvey, Ruth; Nicolson, Carolyn; Robertson, James S; Engelhardt, Othmar G

    2012-01-01

    The candidate H5N1 vaccine virus NIBRG-14 was created in response to a call from the World Health Organisation in 2004 to prepare candidate vaccine viruses (CVVs) to combat the threat of an H5N1 pandemic. NIBRG-14 was created by reverse genetics and is composed of the neuraminidase (NA) and modified haemagglutinin (HA) genes from A/Vietnam/1194/2004 and the internal genes of PR8, a high growing laboratory adapted influenza A(H1N1) strain. Due to time constraints, the non-coding regions (NCRs) of A/Vietnam/1194/2004 HA were not determined prior to creating NIBRG-14. Consequently, the sequence of the primers used to clone the modified A/Vietnam/1194/2004 HA was based upon previous experience of cloning H5N1 viruses. We report here that the HA 3' NCR sequence of NIBRG-14 is different to that of the parental wild type virus A/Vietnam/1194/2004; however this does not appear to impact on its growth or antigen yield. We introduced additional small changes into the 3'NCR of NIBRG-14; these had only minor effects on viral growth and antigen content. These findings may serve to assure the influenza vaccine community that generation of CVVs using best-guess NCR sequences, based on sequence alignments, are likely to produce robust viruses. PMID:22606247

  17. The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses

    PubMed Central

    Gao, Huijie; Sun, Yipeng; Hu, Jiao; Qi, Lu; Wang, Jinliang; Xiong, Xin; Wang, Yu; He, Qiming; Lin, Yang; Kong, Weili; Seng, Lai-Giea; Sun, Honglei; Pu, Juan; Chang, Kin-Chow; Liu, Xiufan; Liu, Jinhua

    2015-01-01

    PA-X is a novel protein encoded by PA mRNA and is found to decrease the pathogenicity of pandemic 1918 H1N1 virus in mice. However, the importance of PA-X proteins in current epidemiologically important influenza A virus strains is not known. In this study, we report on the pathogenicity and pathological effects of PA-X deficient 2009 pandemic H1N1 (pH1N1) and highly pathogenic avian influenza H5N1 viruses. We found that loss of PA-X expression in pH1N1 and H5N1 viruses increased viral replication and apoptosis in A549 cells and increased virulence and host inflammatory response in mice. In addition, PA-X deficient pH1N1 and H5N1 viruses up-regulated PA mRNA and protein synthesis and increased viral polymerase activity. Loss of PA-X was also accompanied by accelerated nuclear accumulation of PA protein and reduced suppression of PA on non-viral protein expression. Our study highlights the effects of PA-X on the moderation of viral pathogenesis and pathogenicity. PMID:25652161

  18. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern asia

    USGS Publications Warehouse

    Newman, S.H.; Iverson, S.A.; Takekawa, J.Y.; Gilbert, M.; Prosser, D.J.; Batbayar, N.; Natsagdorj, T.; Douglas, D.C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  19. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in Eastern Asia

    USGS Publications Warehouse

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  20. Human influenza A H5N1 in Indonesia: health care service-associated delays in treatment initiation

    PubMed Central

    2013-01-01

    Background Indonesia has had more recorded human cases of influenza A H5N1 than any other country, with one of the world’s highest case fatality rates. Understanding barriers to treatment may help ensure life-saving influenza-specific treatment is provided early enough to meaningfully improve clinical outcomes. Methods Data for this observational study of humans infected with influenza A H5N1 were obtained primarily from Ministry of Health, Provincial and District Health Office clinical records. Data included time from symptom onset to presentation for medical care, source of medical care provided, influenza virology, time to initiation of influenza-specific treatment with antiviral drugs, and survival. Results Data on 124 human cases of virologically confirmed avian influenza were collected between September 2005 and December 2010, representing 73% of all reported Indonesia cases. The median time from health service presentation to antiviral drug initiation was 7.0 days. Time to viral testing was highly correlated with starting antiviral treatment (p < 0.0001). We found substantial variability in the time to viral testing (p = 0.04) by type of medical care provider. Antivirals were started promptly after diagnosis (median 0 days). Conclusions Delays in the delivery of appropriate care to human cases of avian influenza H5N1 in Indonesia appear related to delays in diagnosis rather than presentation to health care settings. Either cases are not suspected of being H5N1 cases until nearly one week after presenting for medical care, or viral testing and/or antiviral treatment is not available where patients are presenting for care. Health system delays have increased since 2007. PMID:23786882

  1. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    PubMed

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-01-01

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels. PMID:25879698

  2. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia

    PubMed Central

    Paul, Mathilde C.; Goutard, Flavie L.; Roulleau, Floriane; Holl, Davun; Thanapongtharm, Weerapong; Roger, François L.; Tran, Annelise

    2016-01-01

    The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers’ livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border. PMID:27489997

  3. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia.

    PubMed

    Paul, Mathilde C; Goutard, Flavie L; Roulleau, Floriane; Holl, Davun; Thanapongtharm, Weerapong; Roger, François L; Tran, Annelise

    2016-01-01

    The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers' livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border. PMID:27489997

  4. The mucosal and systemic immune responses elicited by a chitosan‐adjuvanted intranasal influenza H5N1 vaccine

    PubMed Central

    Svindland, Signe C.; Jul‐Larsen, Åsne; Pathirana, Rishi; Andersen, Solveig; Madhun, Abdullah; Montomoli, Emanuele; Jabbal‐Gill, Inderjit; Cox, Rebecca J.

    2011-01-01

    Please cite this paper as: Svindland et al. The mucosal and systemic immune responses elicited by a chitosan‐adjuvanted intranasal influenza H5N1 vaccine. Influenza and Other Respiratory Viruses DOI:10.1111/j.1750‐2659.2011.00271.x. Background  Development of influenza vaccines that induce mucosal immunity has been highlighted by the World Health Organisation as a priority (Vaccine 2005;23:1529). Dose‐sparing strategies and an efficient mass‐vaccination regime will be paramount to reduce the morbidity and mortality of a future H5N1 pandemic. Objectives  This study has investigated the immune response and the dose‐sparing potential of a chitosan‐adjuvanted intranasal H5N1 (RG‐14) subunit (SU) vaccine in a mouse model. Methods  Groups of mice were intranasally immunised once or twice with a chitosan (5 mg/ml)‐adjuvanted SU vaccine [7·5, 15 or 30 μg haemagglutinin (HA)] or with a non‐adjuvanted SU vaccine (30 μg HA). For comparison, another group of mice were intranasally immunised with a whole H5N1 (RG‐14) virus (WV) vaccine (15 μg HA), and the control group consisted of unimmunised mice. Results  The chitosan‐adjuvanted SU vaccine induced an immune response superior to that of the non‐adjuvanted SU vaccine. Compared with the non‐adjuvanted SU group, the chitosan‐adjuvanted SU vaccine elicited higher numbers of influenza‐specific antibody‐secreting cells (ASCs), higher concentrations of local and systemic antibodies and correspondingly an improved haemagglutination inhibition (HI) and single radial haemolysis (SRH) response against both the homologous vaccine strain and drifted H5 strains. We measured a mixed T‐helper 1/T‐helper 2 cytokine response in the chitosan‐adjuvanted SU groups, and these groups had an increased percentage of virus‐specific CD4+ T cells producing two Thelper 1 (Th1) cytokines simultaneously compared with the non‐adjuvanted SU group. Overall, the WV vaccine induced higher antibody

  5. Continued Evolution of H5N1 Influenza Viruses in Wild Birds, Domestic Poultry, and Humans in China from 2004 to 2009▿ †

    PubMed Central

    Li, Yanbing; Shi, Jianzhong; Zhong, Gongxun; Deng, Guohua; Tian, Guobin; Ge, Jinying; Zeng, Xianying; Song, Jiasheng; Zhao, Dongming; Liu, Liling; Jiang, Yongping; Guan, Yuntao; Bu, Zhigao; Chen, Hualan

    2010-01-01

    Despite substantial efforts to control H5N1 avian influenza viruses (AIVs), the viruses have continued to evolve and cause disease outbreaks in poultry and infections in humans. In this report, we analyzed 51 representative H5N1 AIVs isolated from domestic poultry, wild birds, and humans in China during 2004 to 2009, and 21 genotypes were detected based on whole-genome sequences. Twelve genotypes of AIVs in southern China bear similar H5 hemagglutinin (HA) genes (clade 2.3). These AIVs did not display antigenic drift and could be completely protected against by the A/goose/Guangdong/1/96 (GS/GD/1/96)-based oil-adjuvanted killed vaccine and recombinant Newcastle disease virus vaccine, which have been used in China. In addition, antigenically drifted H5N1 viruses, represented by A/chicken/Shanxi/2/06 (CK/SX/2/06), were detected in chickens from several provinces in northern China. The CK/SX/2/06-like viruses are reassortants with newly emerged HA, NA, and PB1 genes that could not be protected against by the GS/GD/1/96-based vaccines. These viruses also reacted poorly with antisera generated from clade 2.2 and 2.3 viruses. The majority of the viruses isolated from southern China were lethal in mice and ducks, while the CK/SX/2/06-like viruses caused mild disease in mice and could not replicate in ducks. Our results demonstrate that the H5N1 AIVs circulating in nature have complex biological characteristics and pose a continued challenge for disease control and pandemic preparedness. PMID:20538856

  6. The PA Protein Directly Contributes to the Virulence of H5N1 Avian Influenza Viruses in Domestic Ducks▿ † ‖

    PubMed Central

    Song, Jiasheng; Feng, Huapeng; Xu, Jing; Zhao, Dongming; Shi, Jianzhong; Li, Yanbing; Deng, Guohua; Jiang, Yongping; Li, Xuyong; Zhu, Pengyang; Guan, Yuntao; Bu, Zhigao; Kawaoka, Yoshihiro; Chen, Hualan

    2011-01-01

    During their circulation in nature, H5N1 avian influenza viruses (AIVs) have acquired the ability to kill their natural hosts, wild birds and ducks. The genetic determinants for this increased virulence are largely unknown. In this study, we compared two genetically similar H5N1 AIVs, A/duck/Hubei/49/05 (DK/49) and A/goose/Hubei/65/05 (GS/65), that are lethal for chickens but differ in their virulence levels in ducks. To explore the genetic basis for this difference in virulence, we generated a series of reassortants and mutants of these two viruses. The virulence of the reassortant bearing the PA gene from DK/49 in the GS/65 background increased 105-fold relative to that of the GS/65 virus. Substitution of two amino acids, S224P and N383D, in PA contributed to the highly virulent phenotype. The amino acid 224P in PA increased the replication of the virus in duck embryo fibroblasts, and the amino acid 383D in PA increased the polymerase activity in duck embryo fibroblasts and delayed the accumulation of the PA and PB1 polymerase subunits in the nucleus of virus-infected cells. Our results provide strong evidence that the polymerase PA subunit is a virulence factor for H5N1 AIVs in ducks. PMID:21177821

  7. Immuno-PCR for one step detection of H5N1 avian influenza virus and Newcastle disease virus using magnetic gold particles as carriers.

    PubMed

    Deng, MingJun; Long, Ling; Xiao, XiZhi; Wu, ZhenXing; Zhang, FengJuan; Zhang, YanMing; Zheng, XiaoLong; Xin, XueQian; Wang, Qun; Wu, DongLai

    2011-06-15

    Detecting avian influenza virus (AIV) and Newcastle disease virus (NDV) at low concentrations from tracheal and cloacal swabs of avian influenza- and Newcastle disease-infected poultry was carried out using a highly sensitive immunological-polymerase chain reaction (immuno-PCR) method. Magnetic gold particles were pre-coated with a capture antibody, either a monoclonal anti-AIV/H5 or monoclonal anti-NDV/F and viruses serially diluted ten-fold from 10(2) to 10(-5)EID(50)/ml. A biotinylated detection antibody bound to the viral antigen was then linked via a streptavidin bridge to biotinylated reporter DNA. After extensive washing, reporter DNA was released by denaturation, transferred to PCR tubes, amplified, electrophoresed and visualized. An optimized immuno-PCR method was able to detect as little as 10(-4)EID(50)/ml AIV and NDV. To further evaluate the specificity and the clinical application of this IPCR assay for AIV H5N1 and NDV, the tracheal swab specimens, taken from chickens which were infected with H5N1/AIV, H9N2/AIV, H7N2/AIV, NDV, IBDV, IBV/H(120), were detected by IPCR. Our data demonstrated that this monoclonal antibody-based immuno-PCR method provides a platform capable of rapid screening of clinical samples for trace levels of AIV H5 and NDV in one step. PMID:21511345

  8. Susceptibility to and transmission of H5N1 and H7N1 highly pathogenic avian influenza viruses in bank voles (Myodes glareolus).

    PubMed

    Romero Tejeda, Aurora; Aiello, Roberta; Salomoni, Angela; Berton, Valeria; Vascellari, Marta; Cattoli, Giovanni

    2015-01-01

    The study of influenza type A (IA) infections in wild mammals populations is a critical gap in our knowledge of how IA viruses evolve in novel hosts that could be in close contact with avian reservoir species and other wild animals. The aim of this study was to evaluate the susceptibility to infection, the nasal shedding and the transmissibility of the H7N1 and H5N1 highly pathogenic avian influenza (HPAI) viruses in the bank vole (Myodes glareolus), a wild rodent common throughout Europe and Asia. Two out of 24 H5N1-infected voles displayed evident respiratory distress, while H7N1-infected voles remained asymptomatic. Viable virus was isolated from nasal washes collected from animals infected with both HPAI viruses, and extra-pulmonary infection was confirmed in both experimental groups. Histopathological lesions were evident in the respiratory tract of infected animals, although immunohistochemistry positivity was only detected in lungs and trachea of two H7N1-infected voles. Both HPAI viruses were transmitted by direct contact, and seroconversion was confirmed in 50% and 12.5% of the asymptomatic sentinels in the H7N1 and H5N1 groups, respectively. Interestingly, viable virus was isolated from lungs and nasal washes collected from contact sentinels of both groups. The present study demonstrated that two non-rodent adapted HPAI viruses caused asymptomatic infection in bank voles, which shed high amounts of the viruses and were able to infect contact voles. Further investigations are needed to determine whether bank voles could be involved as silent hosts in the transmission of HPAI viruses to other mammals and domestic poultry. PMID:25963535

  9. Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on.

    PubMed

    Abdelwhab, E M; Hassan, M K; Abdel-Moneim, A S; Naguib, M M; Mostafa, A; Hussein, I T M; Arafa, A; Erfan, A M; Kilany, W H; Agour, M G; El-Kanawati, Z; Hussein, H A; Selim, A A; Kholousy, S; El-Naggar, H; El-Zoghby, E F; Samy, A; Iqbal, M; Eid, A; Ibraheem, E M; Pleschka, S; Veits, J; Nasef, S A; Beer, M; Mettenleiter, T C; Grund, C; Ali, M M; Harder, T C; Hafez, H M

    2016-06-01

    It is almost a decade since the highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 was introduced to Egypt in 2005, most likely, via wild birds; marking the longest endemic status of influenza viruses in poultry outside Asia. The endemic A/H5N1 in Egypt still compromises the poultry industry, poses serious hazards to public health and threatens to become potentially pandemic. The control strategies adopted for A/H5N1 in Egyptian poultry using diverse vaccines in commercialized poultry neither eliminated the virus nor did they decrease its evolutionary rate. Several virus clades have evolved, a few of them disappeared and others prevailed. Disparate evolutionary traits in both birds and humans were manifested by accumulation of clade-specific mutations across viral genomes driven by a variety of selection pressures. Viruses in vaccinated poultry populations displayed higher mutation rates at the immunogenic epitopes, promoting viral escape and reducing vaccine efficiency. On the other hand, viruses isolated from humans displayed changes in the receptor binding domain, which increased the viral affinity to bind to human-type glycan receptors. Moreover, viral pathogenicity exhibited several patterns in different hosts. This review aims to provide an overview of the viral evolution, pathogenicity and vaccine efficacy of A/H5N1 in Egypt during the last ten years. PMID:26917362

  10. A Non-VH1-69 Heterosubtypic Neutralizing Human Monoclonal Antibody Protects Mice against H1N1 and H5N1 Viruses

    PubMed Central

    Solforosi, Laura; Moreno, Guisella J.; Sun, Xiangjie; Tumpey, Terrence M.; Gubareva, Larisa V.; Mishin, Vasiliy; Clementi, Massimo; Burioni, Roberto

    2012-01-01

    Influenza viruses are among the most important human pathogens and are responsible for annual epidemics and sporadic, potentially devastating pandemics. The humoral immune response plays an important role in the defense against these viruses, providing protection mainly by producing antibodies directed against the hemagglutinin (HA) glycoprotein. However, their high genetic variability allows the virus to evade the host immune response and the potential protection offered by seasonal vaccines. The emergence of resistance to antiviral drugs in recent years further limits the options available for the control of influenza. The development of alternative strategies for influenza prophylaxis and therapy is therefore urgently needed. In this study, we describe a human monoclonal antibody (PN-SIA49) that recognizes a highly conserved epitope located on the stem region of the HA and able to neutralize a broad spectrum of influenza viruses belonging to different subtypes (H1, H2 and H5). Furthermore, we describe its protective activity in mice after lethal challenge with H1N1 and H5N1 viruses suggesting a potential application in the treatment of influenza virus infections. PMID:22496802

  11. A non-VH1-69 heterosubtypic neutralizing human monoclonal antibody protects mice against H1N1 and H5N1 viruses.

    PubMed

    De Marco, Donata; Clementi, Nicola; Mancini, Nicasio; Solforosi, Laura; Moreno, Guisella J; Sun, Xiangjie; Tumpey, Terrence M; Gubareva, Larisa V; Mishin, Vasiliy; Clementi, Massimo; Burioni, Roberto

    2012-01-01

    Influenza viruses are among the most important human pathogens and are responsible for annual epidemics and sporadic, potentially devastating pandemics. The humoral immune response plays an important role in the defense against these viruses, providing protection mainly by producing antibodies directed against the hemagglutinin (HA) glycoprotein. However, their high genetic variability allows the virus to evade the host immune response and the potential protection offered by seasonal vaccines. The emergence of resistance to antiviral drugs in recent years further limits the options available for the control of influenza. The development of alternative strategies for influenza prophylaxis and therapy is therefore urgently needed. In this study, we describe a human monoclonal antibody (PN-SIA49) that recognizes a highly conserved epitope located on the stem region of the HA and able to neutralize a broad spectrum of influenza viruses belonging to different subtypes (H1, H2 and H5). Furthermore, we describe its protective activity in mice after lethal challenge with H1N1 and H5N1 viruses suggesting a potential application in the treatment of influenza virus infections. PMID:22496802

  12. Pekin and Muscovy ducks respond differently to vaccination with a H5N1 highly pathogenic avian influenza (HPAI) commercial inactivated vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ducks are key intermediates in the transmission of H5N1 highly pathogenic avian influenza (HPAI) viruses, and therefore are included in vaccination programs to control H5N1 HPAI. Although vaccination has proven effective in protecting ducks against disease, different species of domestic duc...

  13. Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    PubMed

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and

  14. Safety, Humoral and Cell Mediated Immune Responses to Two Formulations of an Inactivated, Split-Virion Influenza A/H5N1 Vaccine in Children

    PubMed Central

    Chotpitayasunondh, Tawee; Thisyakorn, Usa; Pancharoen, Chitsanu; Pepin, Stephanie; Nougarede, Nolwenn

    2008-01-01

    Background Highly pathogenic influenza A/H5N1 has caused outbreaks in wild birds and poultry in Asia, Africa and Europe. It has also infected people, especially children, causing severe illness and death. Although the virus shows limited ability to transmit between humans, A/H5N1 represents a potential source of the next influenza pandemic. This study assesses the safety and immunogenicity of aluminium hydroxide adjuvanted (Al) and non adjuvanted influenza A/Vietnam/1194/2004 NIBRG-14 (H5N1) vaccine in children. Methods and Findings In a Phase II, open, randomised, multicentre trial 180 children aged 6 months to 17 years received two injections, 21 days apart, of vaccine containing either: 30 µg haemagglutinin (HA) with adjuvant (30 µg+Al) or 7.5 µg HA without adjuvant. An additional 60 children aged 6–35 months received two “half dose” injections (ie 15 µg+Al or 3.8 µg). Safety was followed for 21 days after vaccination. Antibody responses were assessed 21 days after each injection and cellular immune responses were explored. Vaccination appeared well tolerated in all age groups. The 30 µg+Al formulation was more immunogenic than 7.5 µg in all age groups: in these two groups 79% and 46% had haemagglutinination inhibition antibody titres ≥32 (1/dil). Among 6–35 month-olds, the full doses were more immunogenic than their half dose equivalents. Vaccination induced a predominantly Th2 response against H5 HA. Conclusions This influenza A(H5N1) vaccine was well tolerated and immunogenic in children and infants, with Al adjuvant providing a clear immunogenic advantage. These results demonstrate that an H5N1 Al-adjuvanted vaccine, previously shown to be immunogenic and safe in adults, can also be used in children, the group most at risk for pandemic influenza. Trial Registration ClinicalTrials.gov NCT00491985 PMID:19112513

  15. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    PubMed

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  16. Identification, Characterization, and Natural Selection of Mutations Driving Airborne Transmission of A/H5N1 virus

    PubMed Central

    Linster, Martin; van Boheemen, Sander; de Graaf, Miranda; Schrauwen, Eefje J. A.; Lexmond, Pascal; Mänz, Benjamin; Bestebroer, Theo M.; Baumann, Jan; van Riel, Debby; Rimmelzwaan, Guus F.; Osterhaus, Albert D.M.E.; Matrosovich, Mikhail; Fouchier, Ron A. M.; Herfst, Sander

    2014-01-01

    SUMMARY Recently, A/H5N1 influenza viruses were shown to acquire airborne transmissibility between ferrets upon targeted mutagenesis and virus passage. The critical genetic changes in airborne A/Indonesia/5/05 were not yet identified. Here, five substitutions proved to be sufficient to determine this airborne transmission phenotype. Substitutions in PB1 and PB2 collectively caused enhanced transcription and virus replication. One substitution increased HA thermostability and lowered the pH of membrane fusion. Two substitutions independently changed HA binding preference from α2,3 linked to α2,6 linked sialic acid receptors. The loss of a glycosylation site in HA enhanced overall binding to receptors. The acquired substitutions emerged early during ferret passage as minor variants and became dominant rapidly. Identification of substitutions that are essential for airborne transmission of avian influenza viruses between ferrets and their associated phenotypes advances our fundamental understanding of virus transmission and will increase the value of future surveillance programs and public health risk assessments. PMID:24725402

  17. Risk factor modelling of the spatio-temporal patterns of highly pathogenic avian influenza (HPAIV) H5N1: a review

    PubMed Central

    Gilbert, Marius; Pfeiffer, Dirk U.

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 continues to impact on smallholder livelihoods, to constrain development of the poultry production sector, and to cause occasional human fatalities. HPAI H5N1 outbreaks have occurred in a variety of ecological systems with economic, agricultural and environmental differences. This review aimed to identify common risk factors amongst spatial modelling studies conducted in these different agro-ecological systems, and to identify gaps in our understanding of the disease’s spatial epidemiology. Three types of variables with similar statistical association with HPAI H5N1 presence across studies and regions were identified: domestic waterfowl, several anthropogenic variables (human population density, distance to roads) and indicators of water presence. Variables on socio-economic conditions, poultry trade, wild bird distribution and movements were comparatively rarely considered. Few studies have analysed the HPAI H5N1 distribution in countries such as Egypt and Indonesia, where HPAIV H5N1 continues to circulate extensively. PMID:22749203

  18. Infectious and lethal doses of H5N1 highly pathogenic avian influenza virus for house sparrows (Passer domesticus) and rock pigeons (Columbia livia)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terrestrial wild birds commonly associated with poultry farms have the potential