Science.gov

Sample records for influenza virus subtypes

  1. Influenza Type A Viruses and Subtypes

    MedlinePlus

    ... virus infection of humans, such as with Asian-origin highly pathogenic avian influenza A (H5N1) viruses currently circulating among poultry in Asia and the Middle East have been reported in 16 countries, often resulting in severe pneumonia with approximately 60% ...

  2. Oligonucleotide microchip for subtyping of influenza A virus

    PubMed Central

    Fesenko, Eugeny E.; Kireyev, Dmitry E.; Gryadunov, Dmitry A.; Mikhailovich, Vladimir M.; Grebennikova, Tatyana V.; L’vov, Dmitry K.; Zasedatelev, Alexander S.

    2007-01-01

    Background  Influenza A viruses are classified into subtypes depending on the antigenic properties of their two outer glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Sixteen subtypes of HA and nine of NA are known. Lately, the circulation of some subtypes (H7N7, H5N1) has been closely watched because of the epidemiological threat they present. Objectives  This study assesses the potential of using gel‐based microchip technology for fast and sensitive molecular subtyping of the influenza A virus. Methods  The method employs a microchip of 3D gel‐based elements containing immobilized probes. Segments of the HA and NA genes are amplified using multiplex RT‐PCR and then hybridized with the microchip. Results  The developed microchip was validated using a panel of 21 known reference strains of influenza virus. Selected strains represented different HA and NA subtypes derived from avian, swine and human hosts. The whole procedure takes 10 hours and enables one to identify 15 subtypes of HA and two subtypes of NA. Forty‐one clinical samples isolated during the poultry fall in Novosibirsk (Russia, 2005) were successfully identified using the proposed technique. The sensitivity and specificity of the method were 76% and 100%, respectively, compared with the ‘gold standard’ techniques (virus isolation with following characterization by immunoassay). Conclusions  We conclude that the method of subtyping using gel‐based microchips is a promising approach for fast detection and identification of influenza A, which may greatly improve its monitoring. PMID:19453417

  3. Oligonucleotide microarray for subtyping of influenza A viruses

    NASA Astrophysics Data System (ADS)

    Klotchenko, S. A.; Vasin, A. V.; Sandybaev, N. T.; Plotnikova, M. A.; Chervyakova, O. V.; Smirnova, E. A.; Kushnareva, E. V.; Strochkov, V. M.; Taylakova, E. T.; Egorov, V. V.; Koshemetov, J. K.; Kiselev, O. I.; Sansyzbay, A. R.

    2012-02-01

    Influenza is one of the most widespread respiratory viral diseases, infecting humans, horses, pigs, poultry and some other animal populations. Influenza A viruses (IAV) are classified into subtypes on the basis of the surface hemagglutinin (H1 to H16) and neuraminidase (N1 to N9) glycoproteins. The correct determination of IAV subtype is necessary for clinical and epidemiological studies. In this article we propose an oligonucleotide microarray for subtyping of IAV using universal one-step multisegment RT-PCR fluorescent labeling of viral gene segments. It showed to be an advanced approach for fast detection and identification of IAV.

  4. Hemagglutination-inhibition assay for influenza virus subtype identification and the detection and quantitation of serum antibodies to influenza virus.

    PubMed

    Pedersen, Janice C

    2014-01-01

    Hemagglutination-inhibition (HI) assay is a classical laboratory procedure for the classification or subtyping of hemagglutinating viruses. For influenza virus, HI assay is used to identify the hemagglutinin (HA) subtype of an unknown isolate or the HA subtype specificity of antibodies to influenza virus. Since the HI assay is quantitative it is frequently applied to evaluate the antigenic relationships between different influenza virus isolates of the same subtype. The basis of the HI test is inhibition of hemagglutination with subtype-specific antibodies. The HI assay is a relatively inexpensive procedure utilizing standard laboratory equipment, is less technical than molecular tests, and is easily completed within several hours. However when working with uncharacterized viruses or antibody subtypes the library of reference reagents required for identifying antigenically distinct influenza viruses and or antibody specificities from multiple lineages of a single hemagglutinin subtype requires extensive laboratory support for the production and optimization of reagents. PMID:24899416

  5. A Complete Molecular Diagnostic Procedure for Applications in Surveillance and Subtyping of Avian Influenza Virus

    PubMed Central

    Tseng, Chun-Hsien; Tsai, Hsiang-Jung; Chang, Chung-Ming

    2014-01-01

    Introduction. The following complete molecular diagnostic procedure we developed, based on real-time quantitative PCR and traditional PCR, is effective for avian influenza surveillance, virus subtyping, and viral genome sequencing. Method. This study provides a specific and sensitive step-by-step procedure for efficient avian influenza identification of 16 hemagglutinin and 9 neuraminidase avian influenza subtypes. Result and Conclusion. This diagnostic procedure may prove exceedingly useful for virological and ecological advancements in global avian influenza research. PMID:25057497

  6. Type- and subtype-specific detection of influenza viruses in clinical specimens by rapid culture assay.

    PubMed

    Ziegler, T; Hall, H; Sánchez-Fauquier, A; Gamble, W C; Cox, N J

    1995-02-01

    A rapid culture assay which allows for the simultaneous typing and subtyping of currently circulating influenza A(H1N1), A(H3N2), and B viruses in clinical specimens was developed. Pools of monoclonal antibodies (MAbs) against influenza A and B viruses and MAbs HA1-71 and HA2-76, obtained by immunizing mice with the denatured hemagglutinin subfragments HA1 and HA2 of influenza virus A/Victoria/3/75, were used for immunoperoxidase staining of antigens in infected MDCK cells. MAb HA1-71 reacted exclusively with influenza A viruses of the H3 subtype, while MAb HA2-76 reacted with subtypes H1, H3, H4, H6, H8, H9, H10, H11, and H12, as determined with 78 human, 4 swine, and 10 avian influenza virus reference strains subtyped by the hemagglutination inhibition test. To determine if the technique can be used as a rapid diagnostic test, 263 known influenza virus-positive frozen nasal or throat swabs were inoculated into MDCK cells. After an overnight incubation, the cells were fixed and viral antigens were detected by immunoperoxidase staining. Influenza A viruses of the H1 and H3 subtypes were detected in 31 and 113 specimens, respectively. The subtypes of 10 influenza A virus-positive specimens could not be determined because they contained too little virus. Influenza B viruses were detected in 84 specimens, and 25 specimens were negative. We conclude that this assay is a rapid, convenient, non-labor-intensive, and relatively inexpensive test for detecting, typing, and subtyping influenza viruses in clinical specimens. PMID:7714186

  7. Integrating Decision Tree and Hidden Markov Model (HMM) for Subtype Prediction of Human Influenza A Virus

    NASA Astrophysics Data System (ADS)

    Attaluri, Pavan K.; Chen, Zhengxin; Weerakoon, Aruna M.; Lu, Guoqing

    Multiple criteria decision making (MCDM) has significant impact in bioinformatics. In the research reported here, we explore the integration of decision tree (DT) and Hidden Markov Model (HMM) for subtype prediction of human influenza A virus. Infection with influenza viruses continues to be an important public health problem. Viral strains of subtype H3N2 and H1N1 circulates in humans at least twice annually. The subtype detection depends mainly on the antigenic assay, which is time-consuming and not fully accurate. We have developed a Web system for accurate subtype detection of human influenza virus sequences. The preliminary experiment showed that this system is easy-to-use and powerful in identifying human influenza subtypes. Our next step is to examine the informative positions at the protein level and extend its current functionality to detect more subtypes. The web functions can be accessed at http://glee.ist.unomaha.edu/.

  8. Comparative susceptibility of avian species to low pathogenic avian influenza viruses of the H13 subtype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  9. Antigenic Characterization of Recombinant Hemagglutinin Proteins Derived from Different Avian Influenza Virus Subtypes

    PubMed Central

    Mueller, Matthias; Renzullo, Sandra; Brooks, Roxann; Ruggli, Nicolas; Hofmann, Martin A.

    2010-01-01

    Since the advent of highly pathogenic variants of avian influenza virus (HPAIV), the main focus of avian influenza research has been the characterization and detection of HPAIV hemagglutinin (HA) from H5 and H7 subtypes. However, due to the high mutation and reassortation rate of influenza viruses, in theory any influenza strain may acquire increased pathogenicity irrespective of its subtype. A comprehensive antigenic characterization of influenza viruses encompassing all 16 HA and 9 neuraminidase subtypes will provide information useful for the design of differential diagnostic tools, and possibly, vaccines. We have expressed recombinant HA proteins from 3 different influenza virus HA subtypes in the baculovirus system. These proteins were used to generate polyclonal rabbit antisera, which were subsequently employed in epitope scanning analysis using peptide libraries spanning the entire HA. Here, we report the identification and characterization of linear, HA subtype-specific as well as inter subtype-conserved epitopes along the HA proteins. Selected subtype-specific epitopes were shown to be suitable for the differentiation of anti-HA antibodies in an ELISA. PMID:20140098

  10. The pathogenicity of H7 subtype avian influenza viruses in chickens, turkeys and ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses infect numerous avian species, and low pathogenicity (LP) AI viruses of the H7 subtype are typically reported to produce mild or subclinical infections in both wild aquatic birds and domestic poultry. However relatively little work has been done to compare LPAI viruses ...

  11. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    SciTech Connect

    Hashem, Anwar M.; Van Domselaar, Gary; Li, Changgui; Wang, Junzhi; She, Yi-Min; Cyr, Terry D.; Sui, Jianhua; He, Runtao; Marasco, Wayne A.; Li, Xuguang

    2010-12-10

    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  12. Seroepidemiological Evidence of Subtype H3N8 Influenza Virus Infection among Pet Dogs in China

    PubMed Central

    Zhou, Pei; Huang, San; Zeng, Weijie; Zhang, Xin; Wang, Lifang; Fu, Xinliang; Li, Shoujun

    2016-01-01

    The H3N8 virus and the H3N2 virus are the main subtypes of canine influenza virus (CIV). H3N8 CIV mainly circulates in America, and H3N2 CIV mainly circulates in Asia. However, there was an outbreak of the Asian H3N2 virus in the United States (US) in 2015. Thus, it is important to evaluate the presence of subtype H3N8 virus in dogs in China. From May 2015 to November 2015, 600 sera from pet dogs were collected from Guangzhou, Shanghai, Beijing and Shenzhen for hemagglutination inhibition (HI) assays and microneutralization (MN) assays. Fifty-two (8.66%) of the 600 sera were positive for the subtype H3N2 virus, which matched the previous reports. Five (0.83%) of 600 sera were positive for the subtype H3N8 virus (H3N8 EIV or H3N8 AIV or H3N8 CIV), which is the first report of subtype H3N8 virus infection among dogs in China and remind us to play more attention to this subtype virus. Therefore, further serological and virological surveillance of influenza virus infection among dogs in China is imperative. PMID:27414031

  13. [Simultaneous detection of respiratory viruses and influenza A virus subtypes using multiplex PCR].

    PubMed

    Ciçek, Candan; Bayram, Nuri; Anıl, Murat; Gülen, Figen; Pullukçu, Hüsnü; Saz, Eylem Ulaş; Telli, Canan; Cok, Gürsel

    2014-10-01

    This study was conducted to investigate the respiratory viruses and subtyping of influenza A virus when positive by multiplex PCR in patients with flu-like symptoms, after the pandemic caused by influenza A (H1N1)pdm09. Nasopharyngeal swab samples collected from 700 patients (313 female, 387 male; age range: 24 days-94 yrs, median age: 1 yr) between December 2010 - January 2013 with flu-like symptoms including fever, headache, sore throat, rhinitis, cough, myalgia as defined by the World Health Organization were included in the study. Nucleic acid extractions (Viral DNA/RNA Extraction Kit, iNtRON, South Korea) and cDNA synthesis (RevertAid First Strand cDNA Synthesis Kits, Fermentas, USA) were performed according to the manufacturer's protocol. Multiplex amplification of nucleic acids was performed using DPO (dual priming oligonucleotide) primers and RV5 ACE Screening Kit (Seegene, South Korea) in terms of the presence of influenza A (INF-A) virus, influenza B (INF-B) virus, respiratory syncytial virus (RSV), and the other respiratory viruses. PCR products were detected by automated polyacrylamide gel electrophoresis using Screen Tape multiple detection system. Specimens which were positive for viral nucleic acids have been further studied by using specific DPO primers, FluA ACE Subtyping and RV15 Screening (Seegene, South Korea) kits. Four INF-A virus subtypes [human H1 (hH1), human H3 (hH3), swine H1 (sH1), avian H5 (aH5)] and 11 other respiratory viruses [Adenovirus, parainfluenza virus (PIV) types 1-4, human bocavirus (HBoV), human metapneumovirus (HMPV), rhinovirus types A and B, human coronaviruses (HCoV) OC43, 229E/NL63] were investigated with those tests. In the study, 53.6% (375/700) of the patients were found to be infected with at least one virus and multiple respiratory virus infections were detected in 15.7% (59/375) of the positive cases, which were mostly (49/59, 83%) in pediatric patients. RSV and rhinovirus coinfections were the most prevalent (18

  14. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh.

    PubMed

    Gerloff, Nancy A; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S; Luby, Stephen P; Wentworth, David E; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  15. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh

    PubMed Central

    Gerloff, Nancy A.; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S.; Luby, Stephen P.; Wentworth, David E.; Donis, Ruben O.; Sturm-Ramirez, Katharine; Davis, C. Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  16. Prevalence and subtypes of influenza A viruses in wild waterfowl in Norway 2006-2007.

    PubMed

    Germundsson, Anna; Madslien, Knut I; Hjortaas, Monika Jankowska; Handeland, Kjell; Jonassen, Christine Monceyron

    2010-01-01

    The prevalence of influenza A virus infection, and the distribution of different subtypes of the virus, were studied in 1529 ducks and 1213 gulls shot during ordinary hunting from August to December in two consecutive years, 2006 and 2007, in Norway. The study was based on molecular screening of cloacal and tracheal swabs, using a pan-influenza A RT-PCR. Samples found to be positive for influenza A virus were screened for the H5 subtype, using a H5 specific RT-PCR, and, if negative, further subtyped by a RT-PCR for the 3'-part of the hemagglutinin (HA) gene, encompassing almost the entire HA2, and the full-length of the neuraminidase (NA) gene, followed by sequencing and characterization. The highest prevalence (12.8%) of infection was found in dabbling ducks (Eurasian Wigeon, Common Teal and Mallard). Diving ducks (Common Goldeneye, Common Merganser, Red-breasted Merganser, Common Scoter, Common Eider and Tufted Duck) showed a lower prevalence (4.1%). In gulls (Common Gull, Herring Gull, Black-headed Gull, Lesser Black-headed Gull, Great Black-backed Gull and Kittiwake) the prevalence of influenza A virus was 6.1%. The infection prevalence peaked during October for ducks, and October/November for gulls. From the 16 hemagglutinin subtypes known to infect wild birds, 13 were detected in this study. Low pathogenic H5 was found in 17 dabbling ducks and one gull. PMID:20426812

  17. Rapid semiautomated subtyping of influenza virus species during the 2009 swine origin influenza A H1N1 virus epidemic in Milwaukee, Wisconsin.

    PubMed

    Bose, Michael E; Beck, Eric T; Ledeboer, Nate; Kehl, Sue C; Jurgens, Lisa A; Patitucci, Teresa; Witt, Lorraine; LaGue, Elizabeth; Darga, Patrick; He, Jie; Fan, Jiang; Kumar, Swati; Henrickson, Kelly J

    2009-09-01

    In the spring of 2009, a novel influenza A (H1N1) virus (swine origin influenza virus [S-OIV]) emerged and began causing a large outbreak of illness in Milwaukee, WI. Our group at the Midwest Respiratory Virus Program laboratory developed a semiautomated real-time multiplex reverse transcription-PCR assay (Seasonal), employing the NucliSENS easyMAG system (bioMérieux, Durham, NC) and a Raider thermocycler (HandyLab Inc., Ann Arbor, MI), that typed influenza A virus, influenza B virus, and respiratory syncytial virus (RSV) and subtyped influenza A virus into the currently circulating H1 and H3 subtypes, as well as a similar assay that identified H1 of S-OIV. The Seasonal and H1 S-OIV assays demonstrated analytical limits of detection of <50 50% tissue culture infective doses/ml and 3 to 30 input copies, respectively. Testing of the analytical specificities revealed no cross-reactivity with 41 and 26 different common organisms and demonstrated outstanding reproducibility of results. Clinical testing showed 95% sensitivity for influenza A virus and influenza B virus and 95 and 97% specificity compared to tissue culture. Comparisons of results from other molecular tests showed levels of positive agreement with the Seasonal and H1 S-OIV assay results of 99 and 100% and levels of negative agreement of 98 and 100%. This study has demonstrated the use of a semiautomated system for sensitive, specific, and rapid detection of influenza A virus, influenza B virus, and RSV and subtyping of influenza A virus into human H1 and H3 and S-OIV strains. This assay/system performed well in clinical testing of regular seasonal influenza virus subtypes and was outstanding during the 2009 Milwaukee S-OIV infection outbreak. This recent outbreak of infection with a novel influenza A (H1N1) virus also demonstrates the importance of quickly distributing information on new agents and of having rapid influenza virus subtyping assays widely available for clinical and public health decisions

  18. Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species

    PubMed Central

    Gambaryan, Alexandra S.; Matrosovich, Tatyana Y.; Philipp, Jennifer; Munster, Vincent J.; Fouchier, Ron A. M.; Cattoli, Giovanni; Capua, Ilaria; Krauss, Scott L.; Webster, Robert G.; Banks, Jill; Bovin, Nicolai V.; Klenk, Hans-Dieter

    2012-01-01

    Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO3)GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO3)GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry. PMID:22345462

  19. Protection Against H7 Subtype Influenza Virus Infection in Mice by Passive Transfer of Neutralizing Monoclonal Antibody.

    PubMed

    Zhang, Zhuo; Liu, Ming; Zheng, Shimin

    2015-10-01

    H7 subtype influenza viruses pose serious threats to both the poultry industry and public health. Recent human infections of avian H7N9 influenza viruses with substantial morbidity and mortality have raised concerns about this virus becoming a potential pandemic pathogen. Neutralizing antibodies have been proven to be highly effective in blocking influenza virus infections. In this study, in order to develop an antibody-based immunoprophylaxis against H7 subtype influenza virus, we first generated a neutralizing monoclonal antibody (MAb) by using a pseudotyped lentiviral vector carrying the hemagglutinin protein of H7 subtype influenza virus. In vitro studies demonstrated that this neutralizing MAb completely inhibited the infection of an H7 subtype influenza virus to cells. The protective efficacy of this MAb was then further tested in a mouse model. It was shown that passive immunization of this MAb protected mice from local virus challenge. Results of the current study lay a foundation for the development of neutralizing MAb-mediated prophylactic strategies to combat human H7 influenza virus infections. PMID:26492625

  20. Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1.

    PubMed

    Tompkins, Stephen Mark; Zhao, Zi-Shan; Lo, Chia-Yun; Misplon, Julia A; Liu, Teresa; Ye, Zhiping; Hogan, Robert J; Wu, Zhengqi; Benton, Kimberly A; Tumpey, Terrence M; Epstein, Suzanne L

    2007-03-01

    Changes in influenza viruses require regular reformulation of strain-specific influenza vaccines. Vaccines based on conserved antigens provide broader protection. Influenza matrix protein 2 (M2) is highly conserved across influenza A subtypes. To evaluate its efficacy as a vaccine candidate, we vaccinated mice with M2 peptide of a widely shared consensus sequence. This vaccination induced antibodies that cross-reacted with divergent M2 peptide from an H5N1 subtype. A DNA vaccine expressing full-length consensus-sequence M2 (M2-DNA) induced M2-specific antibody responses and protected against challenge with lethal influenza. Mice primed with M2-DNA and then boosted with recombinant adenovirus expressing M2 (M2-Ad) had enhanced antibody responses that crossreacted with human and avian M2 sequences and produced T-cell responses. This M2 prime-boost vaccination conferred broad protection against challenge with lethal influenza A, including an H5N1 strain. Vaccination with M2, with key sequences represented, may provide broad protection against influenza A. PMID:17552096

  1. Prevalence of multiple subtypes of influenza A virus in Japanese wild raccoons.

    PubMed

    Yamaguchi, Emi; Sashika, Mariko; Fujii, Kei; Kobayashi, Kohei; Bui, Vuong Nghia; Ogawa, Haruko; Imai, Kunitoshi

    2014-08-30

    Raccoons (Procyon lotor), which are not native to Japan, have been suspected to transmit various pathogens by frequent intrusion into agricultural and residential areas. To determine influenza A virus seropositivity in raccoons in Japan, we examined a total of 634 raccoons captured in 19 towns (A-S) from 2009 to 2012. Agar gel precipitation tests showed that the antibody prevalence was 1.89% (12/634). All positive raccoons were captured in three towns (A-C) located within a radius of approximately 30km, and 75% had antibodies to multiple subtypes (H1, H3-5, N1, N6, and N8). H3 and N8 antibodies were most frequently detected (75%). Among all the raccoons captured, 67% (8/12) were found in town A in 2009 and 2010, and all five raccoons captured in 2010 had H3 and N8 antibodies, suggesting that transmission of the subtype might occur. H5 and N1 antibodies were also detected in two raccoons captured in town A. Virus neutralization tests examining the highly pathogenic avian influenza virus (HPAIV) H5N1 subtype (four isolates of which have been detected in Japan to date) and the low PAIV (LPAIV) H5N3 subtype showed that raccoon sera highly cross-reacted with three H5N1 strains (clade 2.5: Ck/Yamaguchi/7/04; clade 2.3.2.1: Whooper swan/Hokkaido/1/08 and Whooper swan/Hamanaka/11), while they displayed a low cross-reactivity with the antisera to the clade 2.2 virus (Ck/Miyazaki/K11/07) and H5N3 LPAIV (Whistling swan/Shimane/499/83). Thus, the origin of the H5N1 virus was not clearly defined. The viral M gene was detected in four antibody-negative raccoons captured in three towns by real-time reverse transcription-polymerase chain reaction (rRT-PCR) with high Ct values, although no virus was isolated. This study is the first report showing that raccoons of Japan were infected with multiple subtypes of influenza A virus, including H5N1. It remains to be elucidated how raccoons play a role in persistence of influenza A virus in nature and if they could pose risks to animal

  2. Newly Emergent Highly Pathogenic H5N9 Subtype Avian Influenza A Virus

    PubMed Central

    Yu, Yang; Wang, Xingbo; Jin, Tao; Wang, Hailong; Si, Weiying; Yang, Hui; Wu, Jiusheng; Yan, Yan; Liu, Guang; Sang, Xiaoyu; Wu, Xiaopeng; Gao, Yuwei; Xia, Xianzhu; Yu, Xinfen; Pan, Jingcao; Gao, George F.

    2015-01-01

    ABSTRACT The novel H7N9 avian influenza virus (AIV) was demonstrated to cause severe human respiratory infections in China. Here, we examined poultry specimens from live bird markets linked to human H7N9 infection in Hangzhou, China. Metagenomic sequencing revealed mixed subtypes (H5, H7, H9, N1, N2, and N9). Subsequently, AIV subtypes H5N9, H7N9, and H9N2 were isolated. Evolutionary analysis showed that the hemagglutinin gene of the novel H5N9 virus originated from A/Muscovy duck/Vietnam/LBM227/2012 (H5N1), which belongs to clade 2.3.2.1. The neuraminidase gene of the novel H5N9 virus originated from human-infective A/Hangzhou/1/2013 (H7N9). The six internal genes were similar to those of other H5N1, H7N9, and H9N2 virus strains. The virus harbored the PQRERRRKR/GL motif characteristic of highly pathogenic AIVs at the HA cleavage site. Receptor-binding experiments demonstrated that the virus binds α-2,3 sialic acid but not α-2,6 sialic acid. Identically, pathogenicity experiments also showed that the virus caused low mortality rates in mice. This newly isolated H5N9 virus is a highly pathogenic reassortant virus originating from H5N1, H7N9, and H9N2 subtypes. Live bird markets represent a potential transmission risk to public health and the poultry industry. IMPORTANCE This investigation confirms that the novel H5N9 subtype avian influenza A virus is a reassortant strain originating from H5N1, H7N9, and H9N2 subtypes and is totally different from the H5N9 viruses reported before. The novel H5N9 virus acquired a highly pathogenic H5 gene and an N9 gene from human-infecting subtype H7N9 but caused low mortality rates in mice. Whether this novel H5N9 virus will cause human infections from its avian host and become a pandemic subtype is not known yet. It is therefore imperative to assess the risk of emergence of this novel reassortant virus with potential transmissibility to public health. PMID:26085150

  3. Genetic and antigenic relatedness of H3 subtype influenza A viruses isolated from avian and mammalian species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turkeys are susceptible to some swine influenza viruses based on natural and experimental transmissions of H1 and H3 subtype viruses from swine to turkeys. In 2004, we isolated triple reassortant H3N2 viruses from turkey breeder hens in Ohio and Illinois. These H3N2 viruses are currently the domin...

  4. Neutrality, Cross-Immunity and Subtype Dominance in Avian Influenza Viruses

    PubMed Central

    Brown, Vicki L.; Drake, John M.; Barton, Heather D.; Stallknecht, David E.; Brown, Justin D.; Rohani, Pejman

    2014-01-01

    Avian influenza viruses (AIVs) are considered a threat for their potential to seed human influenza pandemics. Despite their acknowledged importance, there are significant unknowns regarding AIV transmission dynamics in their natural hosts, wild birds. Of particular interest is the difference in subtype dynamics between human and bird populations–in human populations, typically only two or three subtypes cocirculate, while avian populations are capable of simultaneously hosting a multitude of subtypes. One species in particular–ruddy turnstones (Arenaria interpres)–has been found to harbour a very wide range of AIV subtypes, which could make them a key player in the spread of new subtypes in wild bird populations. Very little is known about the mechanisms that drive subtype dynamics in this species, and here we address this gap in our knowledge. Taking advantage of two independent sources of data collected from ruddy turnstones in Delaware Bay, USA, we examine patterns of subtype diversity and dominance at this site. We compare these patterns to those produced by a stochastic, multi-strain transmission model to investigate possible mechanisms that are parsimonious with the observed subtype dynamics. We find, in agreement with earlier experimental work, that subtype differences are unnecessary to replicate the observed dynamics, and that neutrality alone is sufficient. We also evaluate the role of subtype cross-immunity and find that it is not necessary to generate patterns consistent with observations. This work offers new insights into the mechanisms behind subtype diversity and dominance in a species that has the potential to be a key player in AIV dynamics in wild bird populations. PMID:24586401

  5. Evidence for genetic variation of Eurasian avian influenza viruses, subtype H15: The first report of an H15N7 virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An avian influenza virus (AIV) subtype H15N7 was isolated in 2010 during wild bird surveillance conducted in Ukraine (A/mallard/Novomychalivka/2-23-12/10). This particular subtype combination has not been previously reported. Until now, only seven subtype H15 viruses have been isolated worldwide, ...

  6. Assessment of transmission, pathogenesis and adaptation of H2 subtype influenza viruses in ferrets.

    PubMed

    Pappas, Claudia; Yang, Hua; Carney, Paul J; Pearce, Melissa B; Katz, Jacqueline M; Stevens, James; Tumpey, Terrence M

    2015-03-01

    After their disappearance from the human population in 1968, influenza H2 viruses have continued to circulate in the natural avian reservoir. The isolation of this virus subtype from multiple bird species as well as swine highlights the need to better understand the potential of these viruses to spread and cause disease in humans. Here we analyzed the virulence, transmissibility and receptor-binding preference of two avian influenza H2 viruses (H2N2 and H2N3) and compared them to a swine H2N3 (A/swine/Missouri/2124514/2006 [swMO]), and a human H2N2 (A/England/10/1967 [Eng/67]) virus using the ferret model as a mammalian host. Both avian H2 viruses possessed the capacity to spread efficiently between cohoused ferrets, and the swine (swMO) and human (Eng/67) viruses transmitted to naïve ferrets by respiratory droplets. Further characterization of the swMO hemagglutinin (HA) by x-ray crystallography and glycan microarray array identified receptor-specific adaptive mutations. As influenza virus quasispecies dynamics during transmission have not been well characterized, we sequenced nasal washes collected during transmission studies to better understand experimental adaptation of H2 HA. The avian H2 viruses isolated from ferret nasal washes contained mutations in the HA1, including a Gln226Leu substitution, which is a mutation associated with α2,6 sialic acid (human-like) binding preference. These results suggest that the molecular structure of HA in viruses of the H2 subtype continue to have the potential to adapt to a mammalian host and become transmissible, after acquiring additional genetic markers. PMID:25659818

  7. Evidence for seasonal patterns in the relative abundance of avian influenza virus subtypes in blue-winged teal (Anas discors)

    USGS Publications Warehouse

    Ramey, Andrew M.; Poulson, Rebecca L.; González-Reiche, Ana S.; Wilcox, Benjamin R.; Walther, Patrick; Link, Paul; Carter, Deborah L.; Newsome, George M.; Müller, Maria L.; Berghaus, Roy D.; Perez, Daniel R.; Hall, Jeffrey S.; Stallknecht, David E.

    2014-01-01

    Seasonal dynamics of influenza A viruses (IAVs) are driven by host density and population immunity. Through an analysis of subtypic data for IAVs isolated from Blue-winged Teal (Anas discors), we present evidence for seasonal patterns in the relative abundance of viral subtypes in spring and summer/autumn.

  8. PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor.

    PubMed

    Sediri, Hanna; Thiele, Swantje; Schwalm, Folker; Gabriel, Gülsah; Klenk, Hans-Dieter

    2016-01-01

    Avian influenza viruses of subtype H9N2 that are found worldwide are occasionally transmitted to humans and pigs. Furthermore, by co-circulating with other influenza subtypes, they can generate new viruses with the potential to also cause zoonotic infections, as observed in 1997 with H5N1 or more recently with H7N9 and H10N8 viruses. Comparative analysis of the adaptive mutations in polymerases of different viruses indicates that their impact on the phylogenetically related H9N2 and H7N9 polymerases is higher than on the non-related H7N7 and H1N1pdm09 polymerases. Analysis of polymerase reassortants composed of subunits of different viruses demonstrated that the efficient enhancement of polymerase activity by H9N2-PB2 does not depend on PA and PB1. These observations suggest that the PB2 subunit of the H9N2 polymerase has a high adaptive potential and may therefore be an important pandemic risk factor. PMID:26560088

  9. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses

    PubMed Central

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-01-01

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses. PMID:26907865

  10. Surveillance for influenza virus subtypes H1, H2 and H3 among wild birds in Ukraine in 2006-2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Influenza is one of the most important and unpredictable diseases of humans, other mammals and birds. Influenza virus of H1, H2, and H3 subtypes circulate in humans and cause seasonal influenza. Similar subtypes are also circulating in the natural reservoir, wild aquatic birds, and und...

  11. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail

    PubMed Central

    Obadan, Adebimpe O.; Kimble, Brian J.; Rajao, Daniela; Lager, Kelly; Santos, Jefferson J. S.; Vincent, Amy

    2015-01-01

    Influenza A virus is a major pathogen of birds, swine and humans. Strains can jump between species in a process often requiring mutations and reassortment, resulting in outbreaks and, potentially, pandemics. H9N2 avian influenza is predominant in poultry across Asia and occasionally infects humans and swine. Pandemic H1N1 (H1N1pdm) is endemic in humans and swine and has a history of reassortment in pigs. Previous studies have shown the compatibility of H9N2 and H1N1pdm for reassortment in ferrets, a model for human infection and transmission. Here, the effects of ferret adaptation of H9 surface gene segments on the infectivity and transmission in at-risk natural hosts, specifically swine and quail, were analysed. Reassortant H9N1 and H9N2 viruses, carrying seven or six gene segments from H1N1pdm, showed infectivity and transmissibility in swine, unlike the wholly avian H9N2 virus with ferret-adapted surface genes. In quail, only the reassortant H9N2 with the six internal gene segments from the H1N1pdm strain was able to infect and transmit, although less efficiently than the wholly avian H9N2 virus with ferret-adapted surface genes. These results highlight that ferret-adapted mutations on the haemagglutinin of H9 subtype virus do not restrict the ability of the virus to infect swine and quail, and that the ability to transmit in these species depends on the context of the whole virus. As such, this study emphasizes the threat that H9N2 reassortant viruses pose to humans and agricultural species and the importance of the genetic constellation of the virus to its ability to replicate and transmit in natural hosts of influenza. PMID:25986634

  12. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail.

    PubMed

    Obadan, Adebimpe O; Kimble, Brian J; Rajao, Daniela; Lager, Kelly; Santos, Jefferson J S; Vincent, Amy; Perez, Daniel R

    2015-09-01

    Influenza A virus is a major pathogen of birds, swine and humans. Strains can jump between species in a process often requiring mutations and reassortment, resulting in outbreaks and, potentially, pandemics. H9N2 avian influenza is predominant in poultry across Asia and occasionally infects humans and swine. Pandemic H1N1 (H1N1pdm) is endemic in humans and swine and has a history of reassortment in pigs. Previous studies have shown the compatibility of H9N2 and H1N1pdm for reassortment in ferrets, a model for human infection and transmission. Here, the effects of ferret adaptation of H9 surface gene segments on the infectivity and transmission in at-risk natural hosts, specifically swine and quail, were analysed. Reassortant H9N1 and H9N2 viruses, carrying seven or six gene segments from H1N1pdm, showed infectivity and transmissibility in swine, unlike the wholly avian H9N2 virus with ferret-adapted surface genes. In quail, only the reassortant H9N2 with the six internal gene segments from the H1N1pdm strain was able to infect and transmit, although less efficiently than the wholly avian H9N2 virus with ferret-adapted surface genes. These results highlight that ferret-adapted mutations on the haemagglutinin of H9 subtype virus do not restrict the ability of the virus to infect swine and quail, and that the ability to transmit in these species depends on the context of the whole virus. As such, this study emphasizes the threat that H9N2 reassortant viruses pose to humans and agricultural species and the importance of the genetic constellation of the virus to its ability to replicate and transmit in natural hosts of influenza. PMID:25986634

  13. Rapid molecular subtyping by reverse transcription polymerase chain reaction of the neuraminidase gene of avian influenza A viruses.

    PubMed

    Fereidouni, S R; Starick, E; Grund, C; Globig, A; Mettenleiter, T C; Beer, M; Harder, T

    2009-03-30

    Accurate identification of hemagglutinin (HA) and neuraminidase (NA) subtypes of influenza A viruses is an integral part of monitoring programs targeting avian influenza viruses (AIV). Use of highly sensitive molecular screening methods such as pan influenza-specific real-time RT-PCR (rRT-PCR) yields an increasing number of samples which are positive for AIV RNA but negative by virus isolation and, therefore, require molecular, instead of serological, subtyping. We developed specific RT-PCR assays for all known nine AIV NA subtypes. Validation using 43 reference isolates from different animal species revealed good performance characteristics regarding sensitivity and specificity. On basis of serial tenfold dilution series of reference isolates a benchmark value of C(t) 32 in an M gene-specific rRT-PCR became evident below which all nine NA subtypes were readily detectable by the subtype-specific RT-PCRs. For subtypes N1, N2, N4 and N6 detection was extended to dilutions with C(t) values of up to 35. Diagnostic applicability of the whole set of conventional NA-specific RT-PCRs was evaluated by analysis of 119 different diagnostic samples from wild birds which proved to be positive for AIV by M gene-specific rRT-PCR. Diagnostic sensitivity and specificity was confirmed by sequencing NA amplicons from 41 field isolates generated from this set and by NA inhibition assays. A universal molecular HA/NA subtyping algorithm for rRT-PCR positive avian influenza virus monitoring samples is proposed which may complement classical serological subtyping of influenza A virus isolates. PMID:19028027

  14. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    PubMed

    Metzgar, David; Myers, Christopher A; Russell, Kevin L; Faix, Dennis; Blair, Patrick J; Brown, Jason; Vo, Scott; Swayne, David E; Thomas, Colleen; Stenger, David A; Lin, Baochuan; Malanoski, Anthony P; Wang, Zheng; Blaney, Kate M; Long, Nina C; Schnur, Joel M; Saad, Magdi D; Borsuk, Lisa A; Lichanska, Agnieszka M; Lorence, Matthew C; Weslowski, Brian; Schafer, Klaus O; Tibbetts, Clark

    2010-01-01

    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence

  15. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses.

    PubMed

    Hoffmann, Bernd; Hoffmann, Donata; Henritzi, Dinah; Beer, Martin; Harder, Timm C

    2016-01-01

    Rapid and sensitive diagnostic approaches are of the utmost importance for the detection of humans and animals infected by specific influenza virus subtype(s). Cascade-like diagnostics starting with the use of pan-influenza assays and subsequent subtyping devices are normally used. Here, we demonstrated a novel low density array combining 32 TaqMan(®) real-time RT-PCR systems in parallel for the specific detection of the haemagglutinin (HA) and neuraminidase (NA) subtypes of avian and porcine hosts. The sensitivity of the newly developed system was compared with that of the pan-influenza assay, and the specificity of all RT-qPCRs was examined using a broad panel of 404 different influenza A virus isolates representing 45 different subtypes. Furthermore, we analysed the performance of the RT-qPCR assays with diagnostic samples obtained from wild birds and swine. Due to the open format of the array, adaptations to detect newly emerging influenza A virus strains can easily be integrated. The RITA array represents a competitive, fast and sensitive subtyping tool that requires neither new machinery nor additional training of staff in a lab where RT-qPCR is already established. PMID:27256976

  16. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses

    PubMed Central

    Hoffmann, Bernd; Hoffmann, Donata; Henritzi, Dinah; Beer, Martin; Harder, Timm C.

    2016-01-01

    Rapid and sensitive diagnostic approaches are of the utmost importance for the detection of humans and animals infected by specific influenza virus subtype(s). Cascade-like diagnostics starting with the use of pan-influenza assays and subsequent subtyping devices are normally used. Here, we demonstrated a novel low density array combining 32 TaqMan® real-time RT-PCR systems in parallel for the specific detection of the haemagglutinin (HA) and neuraminidase (NA) subtypes of avian and porcine hosts. The sensitivity of the newly developed system was compared with that of the pan-influenza assay, and the specificity of all RT-qPCRs was examined using a broad panel of 404 different influenza A virus isolates representing 45 different subtypes. Furthermore, we analysed the performance of the RT-qPCR assays with diagnostic samples obtained from wild birds and swine. Due to the open format of the array, adaptations to detect newly emerging influenza A virus strains can easily be integrated. The RITA array represents a competitive, fast and sensitive subtyping tool that requires neither new machinery nor additional training of staff in a lab where RT-qPCR is already established. PMID:27256976

  17. Phylogenetic analysis and pathogenicity of H3 subtype avian influenza viruses isolated from live poultry markets in China

    PubMed Central

    Cui, Hongrui; Shi, Ying; Ruan, Tao; Li, Xuesong; Teng, Qiaoyang; Chen, Hongjun; Yang, Jianmei; Liu, Qinfang; Li, Zejun

    2016-01-01

    H3 subtype influenza A virus is one of the main subtypes that threats both public and animal health. However, the evolution and pathogenicity of H3 avian influenza virus (AIV) circulating in domestic birds in China remain largely unclear. In this study, seven H3 AIVs (four H3N2 and three H3N8) were isolated from poultry in live poultry market (LPM) in China. Phylogenetic analyses of full genomes showed that all viruses were clustered into Eurasian lineage, except N8 genes of two H3N8 isolates fell into North American lineage. Intriguingly, the N8 gene of one H3N8 and PB2, PB1, NP and NS of two H3N2 isolates have close relationship with those of the highly pathogenic H5N8 viruses circulating in Korea and United States, suggesting that the H3-like AIV may contribute internal genes to the highly pathogenic H5N8 viruses. Phylogenetic tree of HA gene and antigenic cross-reactivity results indicated that two antigenically different H3 viruses are circulating in LPM in China. Most of the H3 viruses replicated in mice lung and nasal turbinate without prior adaptation, and the representative H3 viruses infected chickens without causing clinical signs. The reassortment of H3 subtype influenza viruses warrants continuous surveillance in LPM in China. PMID:27270298

  18. Phylogenetic analysis and pathogenicity of H3 subtype avian influenza viruses isolated from live poultry markets in China.

    PubMed

    Cui, Hongrui; Shi, Ying; Ruan, Tao; Li, Xuesong; Teng, Qiaoyang; Chen, Hongjun; Yang, Jianmei; Liu, Qinfang; Li, Zejun

    2016-01-01

    H3 subtype influenza A virus is one of the main subtypes that threats both public and animal health. However, the evolution and pathogenicity of H3 avian influenza virus (AIV) circulating in domestic birds in China remain largely unclear. In this study, seven H3 AIVs (four H3N2 and three H3N8) were isolated from poultry in live poultry market (LPM) in China. Phylogenetic analyses of full genomes showed that all viruses were clustered into Eurasian lineage, except N8 genes of two H3N8 isolates fell into North American lineage. Intriguingly, the N8 gene of one H3N8 and PB2, PB1, NP and NS of two H3N2 isolates have close relationship with those of the highly pathogenic H5N8 viruses circulating in Korea and United States, suggesting that the H3-like AIV may contribute internal genes to the highly pathogenic H5N8 viruses. Phylogenetic tree of HA gene and antigenic cross-reactivity results indicated that two antigenically different H3 viruses are circulating in LPM in China. Most of the H3 viruses replicated in mice lung and nasal turbinate without prior adaptation, and the representative H3 viruses infected chickens without causing clinical signs. The reassortment of H3 subtype influenza viruses warrants continuous surveillance in LPM in China. PMID:27270298

  19. Visual detection of H3 subtype avian influenza viruses by reverse transcription loop-mediated isothermal amplification assay

    PubMed Central

    2011-01-01

    Background Recent epidemiological investigation of different HA subtypes of avian influenza viruses (AIVs) shows that the H3 subtype is the most predominant among low pathogenic AIVs (LPAIVs), and the seasonal variations in isolation of H3 subtype AIVs are consistent with that of human H3 subtype influenza viruses. Consequently, the development of a rapid, simple, sensitive detection method for H3 subtype AIVs is required. The loop-mediated isothermal amplification (LAMP) assay is a simple, rapid, sensitive and cost-effective nucleic acid amplification method that does not require any specialized equipment. Results A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to detect the H3 subtype AIVs visually. Specific primer sets target the sequences of the hemagglutinin (HA) gene of H3 subtype AIVs were designed, and assay reaction conditions were optimized. The established assay was performed in a water bath for 50 minutes, and the amplification result was visualized directly as well as under ultraviolet (UV) light reflections. The detection limit of the RT-LAMP assay was 0.1pg total RNA of virus, which was one hundred-fold higher than that of RT-PCR. The results on specificity indicated that the assay had no cross-reactions with other subtype AIVs or avian respiratory pathogens. Furthermore, a total of 176 clinical samples collected from birds at the various live-bird markets (LBMs) were subjected to the H3-subtype-specific RT-LAMP (H3-RT-LAMP). Thirty-eight H3 subtype AIVs were identified from the 176 clinical samples that were consistent with that of virus isolation. Conclusions The newly developed H3-RT-LAMP assay is simple, sensitive, rapid and can identify H3 subtype AIVs visually. Consequently, it will be a very useful screening assay for the surveillance of H3 subtype AIVs in underequipped laboratories as well as in field conditions. PMID:21729297

  20. Evaluation of a commercial enzyme-linked immunosorbent assay for detection of antibodies against the H5 subtype of Influenza A virus in waterfowl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serologic tools for rapid testing of subtype-specific influenza A (IA) virus antibody in wild birds and poultry are limited. In the current study, the ID Screen Influenza H5 Antibody Competition enzyme-linked immunosorbent assay (ELISA) was tested for the detection of antibodies to the H5 subtype o...

  1. Isolation of mixed subtypes of influenza A virus from a bald eagle (Haliaeetus leucocephalus)

    PubMed Central

    2010-01-01

    From April 2007 to March 2008, cloacal swabs were obtained from 246 casualty raptors recovered by various wildlife rehabilitation centers in the United States. The swabs were placed in a virus transport medium and transported to the laboratory on ice packs. At the laboratory, the samples were pooled with each pool consisting of five samples. All pools (n = 50) were screened for the presence of avian influenza virus (AIV) using a real time reverse transcription-polymerase chain reaction (rRT-PCR); one of the pools was found positive. All five samples in this pool were tested individually by rRT-PCR; one sample from a bald eagle was found positive. This sample was inoculated in embryonated chicken eggs for virus isolation and a hemagglutinating virus was isolated. Complete genome sequencing of the isolate revealed a mixed infection with H1N1 and H2N1 subtypes. Further analysis revealed that the PB1-F2 gene sequence of H1N1 virus had the N66S virulence-associated substitution. Further studies on ecology and epidemiology of AIV in raptors are needed to help understand their role in the maintenance and evolution of AIV. PMID:20667110

  2. Isolation of mixed subtypes of influenza A virus from a bald eagle (Haliaeetus leucocephalus).

    PubMed

    Goyal, Sagar M; Jindal, Naresh; Chander, Yogesh; Ramakrishnan, Muthanan A; Redig, Patrick T; Sreevatsan, Srinand

    2010-01-01

    From April 2007 to March 2008, cloacal swabs were obtained from 246 casualty raptors recovered by various wildlife rehabilitation centers in the United States. The swabs were placed in a virus transport medium and transported to the laboratory on ice packs. At the laboratory, the samples were pooled with each pool consisting of five samples. All pools (n = 50) were screened for the presence of avian influenza virus (AIV) using a real time reverse transcription-polymerase chain reaction (rRT-PCR); one of the pools was found positive. All five samples in this pool were tested individually by rRT-PCR; one sample from a bald eagle was found positive. This sample was inoculated in embryonated chicken eggs for virus isolation and a hemagglutinating virus was isolated. Complete genome sequencing of the isolate revealed a mixed infection with H1N1 and H2N1 subtypes. Further analysis revealed that the PB1-F2 gene sequence of H1N1 virus had the N66S virulence-associated substitution. Further studies on ecology and epidemiology of AIV in raptors are needed to help understand their role in the maintenance and evolution of AIV. PMID:20667110

  3. Continuing Reassortant of H5N6 Subtype Highly Pathogenic Avian Influenza Virus in Guangdong.

    PubMed

    Yuan, Runyu; Wang, Zheng; Kang, Yinfeng; Wu, Jie; Zou, Lirong; Liang, Lijun; Song, Yingchao; Zhang, Xin; Ni, Hanzhong; Lin, Jinyan; Ke, Changwen

    2016-01-01

    First identified in May 2014 in China's Sichuan Province, initial cases of H5N6 avian influenza virus (AIV) infection in humans raised great concerns about the virus's prevalence, origin, and development. To evaluate both AIV contamination in live poultry markets (LPMs) and the risk of AIV infection in humans, we have conducted surveillance of LPMs in Guangdong Province since 2013 as part of environmental sampling programs. With environmental samples associated with these LPMs, we performed genetic and phylogenetic analyses of 10 H5N6 AIVs isolated from different cities of Guangdong Province from different years. Results revealed that the H5N6 viruses were reassortants with hemagglutinin (HA) genes derived from clade 2.3.4.4 of H5-subtype AIV, yet neuraminidase (NA) genes derived from H6N6 AIV. Unlike the other seven H5N6 viruses isolated in first 7 months of 2014, all of which shared remarkable sequence similarity with the H5N1 AIV in all internal genes, the PB2 genes of GZ693, GZ670, and ZS558 more closely related to H6N6 AIV and the PB1 gene of GZ693 to the H3-subtype AIV. Phylogenetic analyses revealed that the environmental H5N6 AIV related closely to human H5N6 AIVs isolated in Guangdong. These results thus suggest that continued reassortment has enabled the emergence of a novel H5N6 virus in Guangdong, as well as highlight the potential risk of highly pathogenic H5N6 AIVs in the province. PMID:27148209

  4. Continuing Reassortant of H5N6 Subtype Highly Pathogenic Avian Influenza Virus in Guangdong

    PubMed Central

    Yuan, Runyu; Wang, Zheng; Kang, Yinfeng; Wu, Jie; Zou, Lirong; Liang, Lijun; Song, Yingchao; Zhang, Xin; Ni, Hanzhong; Lin, Jinyan; Ke, Changwen

    2016-01-01

    First identified in May 2014 in China's Sichuan Province, initial cases of H5N6 avian influenza virus (AIV) infection in humans raised great concerns about the virus's prevalence, origin, and development. To evaluate both AIV contamination in live poultry markets (LPMs) and the risk of AIV infection in humans, we have conducted surveillance of LPMs in Guangdong Province since 2013 as part of environmental sampling programs. With environmental samples associated with these LPMs, we performed genetic and phylogenetic analyses of 10 H5N6 AIVs isolated from different cities of Guangdong Province from different years. Results revealed that the H5N6 viruses were reassortants with hemagglutinin (HA) genes derived from clade 2.3.4.4 of H5-subtype AIV, yet neuraminidase (NA) genes derived from H6N6 AIV. Unlike the other seven H5N6 viruses isolated in first 7 months of 2014, all of which shared remarkable sequence similarity with the H5N1 AIV in all internal genes, the PB2 genes of GZ693, GZ670, and ZS558 more closely related to H6N6 AIV and the PB1 gene of GZ693 to the H3-subtype AIV. Phylogenetic analyses revealed that the environmental H5N6 AIV related closely to human H5N6 AIVs isolated in Guangdong. These results thus suggest that continued reassortment has enabled the emergence of a novel H5N6 virus in Guangdong, as well as highlight the potential risk of highly pathogenic H5N6 AIVs in the province. PMID:27148209

  5. Molecular characterization of H6 subtype influenza viruses in southern China from 2009 to 2011.

    PubMed

    Zou, Shumei; Gao, Rongbao; Zhang, Ye; Li, Xiaodan; Chen, Wenbing; Bai, Tian; Dong, Libo; Wang, Dayan; Shu, Yuelong

    2016-01-01

    H6 avian influenza viruses (AIVs), which are prevalent in domestic and wild birds in Eurasian countries, have been isolated from pigs, a dog and a human. Routine virological surveillance at live poultry markets or poultry farms was conducted in southern China from 2009 to 2011. This study investigated the genetic and antigenic characteristics, analyzed the receptor-binding properties and evaluated the kinetics of infectivity of the AIVs in A549, MDCK and PK15 cells. A total of 14 H6N6 and 2 H6N2 isolates were obtained from four provinces in southern China. Genetic analysis indicated two distinct hemagglutinin lineages of the H6 strains cocirculating in southern China, and these strains facilitated active evolution and reassortment among multiple influenza virus subtypes from different avian species in nature. None of these isolates grouped with the novel Taiwan H6N1 virus responsible for human infection. Receptor-binding specificity assays showed that five H6 AIVs may have acquired the ability to recognize human receptors. Growth kinetics experiments showed that EV/HB-JZ/02/10(H6N2) and EV/JX/15/10(H6N6) initially reproduced faster and achieved higher titers than other viruses, suggesting that enhanced binding to α-2,6-linked sialic acids correlated with increased viral replication in mammalian cells. Overall, the results emphasize the need for continued surveillance of H6 outbreaks and extensive characterization of H6 isolates to better understand genetic changes and their implications. PMID:27436363

  6. Surveillance of Influenza A Virus and Its Subtypes in Migratory Wild Birds of Nepal

    PubMed Central

    Sharma, Ajay; Bhatta, Tarka; Adhikari, Pratikshya; Sherchan, Adarsh Man; Shrestha, Bishwo; Bista, Manisha; Rajbhandari, Rajesh; Oberoi, Mohinder; Bisht, Khadak; Hero, Jean-Marc; Dissanayake, Ravi; Dhakal, Maheshwar; Hughes, Jane; Debnath, Nitish

    2015-01-01

    Nepal boarders India and China and all three countries lie within the Central Asian Flyway for migratory birds. Novel influenza A H7N9 caused human fatalities in China in 2013. Subclinical infections of influenza A H7N9 in birds and the potential for virus dispersal by migratory birds prompted this study to assess avian H7N9 viral intrusion into Nepal. Surveillance of influenza A virus in migratory birds was implemented in early 2014 with assistance from the Food and Agricultural Organization (FAO). Of 1811 environmental fecal samples collected from seven wetland migratory bird roosting areas, influenza A H9N2 was found in one sample from a ruddy shelduck in Koshi Tappu Wildlife Reserve located in southern Nepal. Avian H7N9 and other highly pathogenic avian influenza viruses were not detected. This study provides baseline data on the status of avian influenza virus in migratory bird populations in Nepal. PMID:26176773

  7. Antigenic characterization of H3 subtypes of avian influenza A viruses from North America

    USGS Publications Warehouse

    Bailey, Elizabeth; Long, Li-Pong; Zhao, Nan; Hall, Jeffrey S.; Baroch, John A; Nolting, Jaqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J.; Wan, Xiu-Feng

    2016-01-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  8. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America.

    PubMed

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S; Baroch, John A; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2016-05-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable. PMID:27309078

  9. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America

    PubMed Central

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S.; Baroch, John A.; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L.; Pharr, G. Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J.; Wan, Xiu-Feng

    2016-01-01

    SUMMARY Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts including avian, swine, equine, canine, and sea mammals. These H3 viruses are both antigenically and genetically diverse. Here we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other, and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about 4 units, and each unit corresponds to a 2log2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable. PMID:27309078

  10. Highly Pathogenic Avian Influenza Virus Subtype H5N1 Escaping Neutralization: More than HA Variation

    PubMed Central

    Höper, Dirk; Kalthoff, Donata; Hoffmann, Bernd

    2012-01-01

    Influenza A viruses are one of the major threats in modern health care. Novel viruses arise due to antigenic drift and antigenic shift, leading to escape from the immune system and resulting in a serious problem for disease control. In order to investigate the escape process and to enable predictions of escape, we serially passaged influenza A H5N1 virus in vitro 100 times under immune pressure. The generated escape viruses were characterized phenotypically and in detail by full-genome deep sequencing. Mutations already found in natural isolates were detected, evidencing the in vivo relevance of the in vitro-induced amino acid substitutions. Additionally, several novel alterations were triggered. Altogether, the results imply that our in vitro system is suitable to study influenza A virus evolution and that it might even be possible to predict antigenic changes of influenza A viruses circulating in vaccinated populations. PMID:22090121

  11. Cleavage Activation of Human-adapted Influenza Virus Subtypes by Kallikrein-related Peptidases 5 and 12*

    PubMed Central

    Hamilton, Brian S.; Whittaker, Gary R.

    2013-01-01

    A critical step in the influenza virus replication cycle is the cleavage activation of the HA precursor. Cleavage activation of influenza HA enables fusion with the host endosome, allowing for release of the viral genome into the host cell. To date, studies have determined that HA activation is driven by trypsin-like host cell proteases, as well as yet to be identified bacterial proteases. Although the number of host proteases that can activate HA is growing, there is still uncertainty regarding which secreted proteases are able to support multicycle replication of influenza. In this study, we have determined that the kallikrein-related peptidases 5 and 12 are secreted from the human respiratory tract and have the ability to cleave and activate HA from the H1, H2, and H3 subtypes. Each peptidase appears to have a preference for particular influenza subtypes, with kallikrein 5 cleaving the H1 and H3 subtypes most efficiently and kallikrein 12 cleaving the H1 and H2 subtypes most efficiently. Cleavage analysis using HA cleavage site peptide mimics revealed that the amino acids neighboring the arginine cleavage site affect cleavage efficiency. Additionally, the thrombolytic zymogens plasminogen, urokinase, and plasma kallikrein have all been shown to cleave and activate influenza but are found circulating mainly as inactive precursors. Kallikrein 5 and kallikrein 12 were examined for their ability to activate the thrombolytic zymogens, and both resulted in activation of each zymogen, with kallikrein 12 being a more potent activator. Activation of the thrombolytic zymogens may therefore allow for both direct and indirect activation of the HA of human-adapted influenza viruses by kallikrein 5 and kallikrein 12. PMID:23612974

  12. Development of an immunochromatographic strip for rapid detection of H9 subtype avian influenza viruses.

    PubMed

    Peng, Fuhu; Wang, Zheng; Zhang, Shuhui; Wu, Renwei; Hu, Sishun; Li, Zili; Wang, Xiliang; Bi, Dingren

    2008-03-01

    An immunochromatographic strip was developed for the detection of the H9 subtype of avian influenza viruses (H9AIVs) in poultry, using two monoclonal antibodies (MAb), 4C4 for H9AIV hemagglutinin (HA) and 4D4 for nucleoprotein. The 4C4 MAb was labeled with colloidal gold as the detection reagent, and the 4D4 MAb was blotted on the test line while a goat anti-mouse antibody was used on the control line of the nitrocellulose membrane. In comparison with the HA and HA inhibition (HI) tests, the strip was specific for the detection of H9AIV, with a sensitivity at 0.25 HA units within 10 min. Storage of the strips at room temperature for 6 months or at 4 degrees C for 12 months did not change their sensitivity and specificity. Evaluation of the strip with experimental tracheal and cloacal swab samples collected from H9N2-infected chickens revealed that the strip detected the H9N2 viruses on day 3 postinoculation, earlier than the appearance of clinical symptoms. Application of the strip for the analysis of 157 tracheal or cloacal samples from potentially infected chickens on five poultry farms showed that four farms had chickens that were infected with H9AIV. Further characterization of 10 positive and 30 negative randomly selected samples showed that no single sample was false positive or negative, as determined by the standard virus isolation and HI assays. Therefore, the immunochromatographic strip for the detection of H9AIVs has high specificity, sensitivity, and stability. This finding, together with the advantages of rapid detection and easy operation and without the requirement for special skills and equipment, makes the strip suitable for onsite detection and the differentiation of H9AIVs from other viruses in poultry. PMID:18199737

  13. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    PubMed

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08. PMID:20521659

  14. Detection of Influenza Virus with Specific Subtype by Using Localized Surface Plasmons Excited on a Flat Metal Surface

    NASA Astrophysics Data System (ADS)

    Ning, Jun; Nagata, Kotaro; Ainai, Akira; Hasegawa, Hideki; Kano, Hiroshi

    2013-08-01

    We report on a method to determine subtype of influenza viruses by using surface plasmons localized in microscopic region on a flat metal surface. In this method, refractive index variation arisen from interactions between viruses and their monoclonal antibodies is measured. The developed sensor shows stability of refractive index in the order of 10-4 against sample exchange. In our experiment, A/H1N1 viruses are distinguished from A/H3N2 viruses by using monoclonal antibodies immobilized on the metal surface. Since the measurement probe has the volume of ˜6 al, the method has potential to handle multiple subtypes in the measurement of a sample with ultra small volume.

  15. Long-term variation in influenza A virus prevalence and subtype diversity in migratory mallards in northern Europe

    PubMed Central

    Latorre-Margalef, Neus; Tolf, Conny; Grosbois, Vladimir; Avril, Alexis; Bengtsson, Daniel; Wille, Michelle; Osterhaus, Albert D. M. E.; Fouchier, Ron A. M.; Olsen, Björn; Waldenström, Jonas

    2014-01-01

    Data on long-term circulation of pathogens in wildlife populations are seldom collected, and hence understanding of spatial–temporal variation in prevalence and genotypes is limited. Here, we analysed a long-term surveillance series on influenza A virus (IAV) in mallards collected at an important migratory stopover site from 2002 to 2010, and characterized seasonal dynamics in virus prevalence and subtype diversity. Prevalence dynamics were influenced by year, but retained a common pattern for all years whereby prevalence was low in spring and summer, but increased in early autumn with a first peak in August, and a second more pronounced peak during October–November. A total of 74 haemagglutinin (HA)/neuraminidase (NA) combinations were isolated, including all NA and most HA (H1–H12) subtypes. The most common subtype combinations were H4N6, H1N1, H2N3, H5N2, H6N2 and H11N9, and showed a clear linkage between specific HA and NA subtypes. Furthermore, there was a temporal structuring of subtypes within seasons based on HA phylogenetic relatedness. Dissimilar HA subtypes tended to have different temporal occurrence within seasons, where the subtypes that dominated in early autumn were rare in late autumn, and vice versa. This suggests that build-up of herd immunity affected IAV dynamics in this system. PMID:24573857

  16. Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes.

    PubMed

    Fan, X; Hashem, A M; Chen, Z; Li, C; Doyle, T; Zhang, Y; Yi, Y; Farnsworth, A; Xu, K; Li, Z; He, R; Li, X; Wang, J

    2015-01-01

    The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine. PMID:25052763

  17. Transmission of an H5N8-Subtype Highly Pathogenic Avian Influenza Virus from Infected Hens to Laid Eggs.

    PubMed

    Uchida, Yuko; Takemae, Nobuhiro; Tanikawa, Taichiro; Kanehira, Katsushi; Saito, Takehiko

    2016-06-01

    We showed here that an H5N8-subtype highly pathogenic avian influenza virus (HPAIV) was transmitted to both the internal contents and shells of eggs laid by white leghorn hens experimentally infected with the virus. Seven of eight HPAIV-infected hens laid eggs until 4 days postinoculation (dpi). The mean number of eggs laid per head daily decreased significantly from 0.58 before inoculation to 0.18 after viral inoculation. The virus was detected in the eggs laid by three of the seven hens. Viral transmission was detectable beginning on 3 dpi, and virus titers in tracheal and cloacal swabs from the hens that laid the contaminated eggs exceeded 2.9 log10 EID50. The level of viral replication and its timing when virus replicates enough to be detected in oviduct after virus inoculation appear to be key factors in the transmission of H5N8 HPAIV from infected hens to laid eggs. PMID:27309286

  18. Analytical validation of a real-time RT-PCR test for Pan-American lineage H7 subtype avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid detection of avian influenza virus and identification of the H5 and H7 hemagglutinin subtypes some of which are associated with high pathogenicity in poultry is critical for clinical diagnosis and wild bird monitoring programs. A real-time RT-PCR test for identification of the H7 subtype in N...

  19. Genome Sequence of a Novel H14N7 Subtype Influenza A Virus Isolated from a Blue-Winged Teal (Anas discors) Harvested in Texas, USA

    PubMed Central

    Reeves, Andrew B.; Poulson, Rebecca L.; Carter, Deborah L.; Davis-Fields, Nicholas; Stallknecht, David E.

    2016-01-01

    We report here the complete genome sequence of a novel H14N7 subtype influenza A virus (IAV) isolated from a blue-winged teal (Anas discors) harvested in Texas, USA. The genomic characteristics of this IAV strain with a previously undetected subtype combination suggest recent viral evolution within the New World wild-bird IAV reservoir. PMID:27284136

  20. Genome Sequence of a Novel H14N7 Subtype Influenza A Virus Isolated from a Blue-Winged Teal (Anas discors) Harvested in Texas, USA.

    PubMed

    Ramey, Andrew M; Reeves, Andrew B; Poulson, Rebecca L; Carter, Deborah L; Davis-Fields, Nicholas; Stallknecht, David E

    2016-01-01

    We report here the complete genome sequence of a novel H14N7 subtype influenza A virus (IAV) isolated from a blue-winged teal (Anas discors) harvested in Texas, USA. The genomic characteristics of this IAV strain with a previously undetected subtype combination suggest recent viral evolution within the New World wild-bird IAV reservoir. PMID:27284136

  1. Molecular Characterization of Subtype H11N9 Avian Influenza Virus Isolated from Shorebirds in Brazil

    PubMed Central

    Hurtado, Renata; Fabrizio, Thomas; Vanstreels, Ralph Eric Thijl; Krauss, Scott; Webby, Richard J.; Webster, Robert G.; Durigon, Edison Luiz

    2015-01-01

    Migratory aquatic birds play an important role in the maintenance and spread of avian influenza viruses (AIV). Many species of aquatic migratory birds tend to use similar migration routes, also known as flyways, which serve as important circuits for the dissemination of AIV. In recent years there has been extensive surveillance of the virus in aquatic birds in the Northern Hemisphere; however in contrast only a few studies have been attempted to detect AIV in wild birds in South America. There are major flyways connecting South America to Central and North America, whereas avian migration routes between South America and the remaining continents are uncommon. As a result, it has been hypothesized that South American AIV strains would be most closely related to the strains from North America than to those from other regions in the world. We characterized the full genome of three AIV subtype H11N9 isolates obtained from ruddy turnstones (Arenaria interpres) on the Amazon coast of Brazil. For all gene segments, all three strains consistently clustered together within evolutionary lineages of AIV that had been previously described from aquatic birds in North America. In particular, the H11N9 isolates were remarkably closely related to AIV strains from shorebirds sampled at the Delaware Bay region, on the Northeastern coast of the USA, more than 5000 km away from where the isolates were retrieved. Additionally, there was also evidence of genetic similarity to AIV strains from ducks and teals from interior USA and Canada. These findings corroborate that migratory flyways of aquatic birds play an important role in determining the genetic structure of AIV in the Western hemisphere, with a strong epidemiological connectivity between North and South America. PMID:26689791

  2. Molecular Characterization of Subtype H11N9 Avian Influenza Virus Isolated from Shorebirds in Brazil.

    PubMed

    Hurtado, Renata; Fabrizio, Thomas; Vanstreels, Ralph Eric Thijl; Krauss, Scott; Webby, Richard J; Webster, Robert G; Durigon, Edison Luiz

    2015-01-01

    Migratory aquatic birds play an important role in the maintenance and spread of avian influenza viruses (AIV). Many species of aquatic migratory birds tend to use similar migration routes, also known as flyways, which serve as important circuits for the dissemination of AIV. In recent years there has been extensive surveillance of the virus in aquatic birds in the Northern Hemisphere; however in contrast only a few studies have been attempted to detect AIV in wild birds in South America. There are major flyways connecting South America to Central and North America, whereas avian migration routes between South America and the remaining continents are uncommon. As a result, it has been hypothesized that South American AIV strains would be most closely related to the strains from North America than to those from other regions in the world. We characterized the full genome of three AIV subtype H11N9 isolates obtained from ruddy turnstones (Arenaria interpres) on the Amazon coast of Brazil. For all gene segments, all three strains consistently clustered together within evolutionary lineages of AIV that had been previously described from aquatic birds in North America. In particular, the H11N9 isolates were remarkably closely related to AIV strains from shorebirds sampled at the Delaware Bay region, on the Northeastern coast of the USA, more than 5000 km away from where the isolates were retrieved. Additionally, there was also evidence of genetic similarity to AIV strains from ducks and teals from interior USA and Canada. These findings corroborate that migratory flyways of aquatic birds play an important role in determining the genetic structure of AIV in the Western hemisphere, with a strong epidemiological connectivity between North and South America. PMID:26689791

  3. Evaluation of MChip with Historic Subtype H1N1 Influenza A Viruses, Including the 1918 “Spanish Flu” Strain▿

    PubMed Central

    Moore, Chad L.; Smagala, James A.; Smith, Catherine B.; Dawson, Erica D.; Cox, Nancy J.; Kuchta, Robert D.; Rowlen, Kathy L.

    2007-01-01

    The robustness of a recently developed diagnostic microarray for influenza, the MChip, was evaluated with 16 historic subtype H1N1 influenza A viruses (A/H1N1), including A/Brevig Mission/1/1918. The matrix gene segments from all 16 viruses were successfully detected on the array. An artificial neural network trained with temporally related A/H1N1 viruses identified A/Brevig Mission/1/1918 as influenza virus A/H1N1 with 94% probability. PMID:17855577

  4. [Development of a Real-Time Reverse Transcription PCR Assay System for Detection of Three Subtypes of Influenza A and Influenza B Viruses].

    PubMed

    Yanagita, Mitsutoshi; Kuwamura, Yoshitaka; Kinoshita, Satoru; Nakajima, Takashi; Tomizawa, Syuichi; Ozawa, Tetsuo

    2015-12-01

    We developed the initial real-time reverse transcription PCR assay system for seasonal influenza viruses in 2011. This prototype assay system could detect and identify specific influenza A virus subtypes[H1N1, H3N2 and (H1N1) pdm09] and influenza B virus. In the 2012-2013 season, our prototype PCR assay didn't work well because of point mutations occurred in the neuraminidase (NA) gene of the A (H3N2) strain. We improved the prototype assay by changing the target gene for A (H3N2) strain (2013 improved PCR assay). Moreover, we added the measurement system for the matrix (M) gene that was well conserved and common to all influenza A subtypes. In the 2013-2014 season, point mutations in the hemagglutinin (HA) gene of the A (H1N1) pdm09 strain lowered the sensitivity of the 2013 improved PCR assay, so that we changed the target gene for A (H1N1)pdm09 strain (2014 improved PCR assay). We analyzed swab samples from 1,721 patients in total by at least one of the three PCR assays we developed, and demonstrated that the PCR assays had excellent sensitivity and specificity compared with those of the commercially available rapid immunochromatography kit we used. In this study, the M gene was positive in all patients who were finally diagnosed as influenza A positive by 2013 or 2014 improved PCR assay. Therefore, measurement of the M gene, which is hardly to be affected by antigenic drift of influenza viruses, is thought to be useful in clinical practice. PMID:27089652

  5. Pyrrolidinobenzoic Acid Inhibitors of Influenza Virus Neuraminidase: the Hydrophobic Side Chain Influences Type A Subtype Selectivity

    PubMed Central

    Li, Yanwu; Silamkoti, Arundutt; Kolavi, Gundurao; Mou, Liyuan; Gulati, Shelly; Air, Gillian M.

    2012-01-01

    Neuraminidase (NA) plays a critical role in the life cycle of influenza virus and is a target for new therapeutic agents. A series of influenza neuraminidase inhibitors with the pyrrolidinobenzoic acid scaffold containing lipophilic side chains at the C3 position have been synthesized and evaluated for influenza neuraminidase inhibitory activity. The size and geometry of the C3 side chains have been modified in order to investigate structure-activity relationships. The results indicated that size and geometry of the C3-side chain are important for selectivity of inhibition against N1 vs N2 NA, important type A influenza variants that infect man, including the highly lethal avian influenza. PMID:22677529

  6. Pyrrolidinobenzoic acid inhibitors of influenza virus neuraminidase: the hydrophobic side chain influences type A subtype selectivity.

    PubMed

    Li, Yanwu; Silamkoti, Arundutt; Kolavi, Gundurao; Mou, Liyuan; Gulati, Shelly; Air, Gillian M; Brouillette, Wayne J

    2012-07-15

    Neuraminidase (NA) plays a critical role in the life cycle of influenza virus and is a target for new therapeutic agents. A series of influenza neuraminidase inhibitors with the pyrrolidinobenzoic acid scaffold containing lipophilic side chains at the C3 position have been synthesized and evaluated for influenza neuraminidase inhibitory activity. The size and geometry of the C3 side chains have been modified in order to investigate structure-activity relationships. The results indicated that size and geometry of the C3-side chain are important for selectivity of inhibition against N1 versus N2 NA, important type A influenza variants that infect man, including the highly lethal avian influenza. PMID:22677529

  7. Improved method for the isolation and sub-typing of avian influenza viruses from oropharyngeal samples of ducks.

    PubMed

    El Zowalaty, Mohamed E; Abin, Martha; Chander, Yogesh; Redig, Patrick T; Goyal, Sagar M

    2011-09-01

    Waterfowl are the natural reservoirs of avian influenza viruses (AIVs), from which the virus can spread to other species including humans, poultry, and swine. For the surveillance of AIV in their natural reservoir, most laboratories initially screen the samples using real-time reverse-transcriptase-polymerase chain reaction because of its high speed and sensitivity. Thereafter, virus isolation is used to isolate viruses from positive samples. Although many studies point to the need of testing both cloacal and oropharyngeal (OP) samples in AIV surveillance programs, most laboratories focus only on cloacal samples. This study was undertaken to determine the utility of OP samples as target samples in AIV surveillance programs under a strict cold chain of samples from the field to the laboratory. A total of 16 AIV (15.1%) were isolated from the 106 OP samples examined. Upon subtyping, four hemagglutinin subtypes (H1, H3, H4, and H6) and three neuraminidase subtypes (N1, N2, and N8) were detected in nine different combinations. Mixed infection with two different subtypes was found in four samples. No AIVs were isolated from the corresponding cloacal samples. These results highlight the fact that testing of properly frozen OP samples could add value to the understanding of the epidemiology and ecology of AIV in waterfowl populations. PMID:22017043

  8. Isolation of Single-Stranded DNA Aptamers That Distinguish Influenza Virus Hemagglutinin Subtype H1 from H5

    PubMed Central

    Yim, Sanggyu; Jeong, Yong-Joo

    2015-01-01

    Surface protein hemagglutinin (HA) mediates the binding of influenza virus to host cell receptors containing sialic acid, facilitating the entry of the virus into host cells. Therefore, the HA protein is regarded as a suitable target for the development of influenza virus detection devices. In this study, we isolated single-stranded DNA (ssDNA) aptamers binding to the HA1 subunit of subtype H1 (H1-HA1), but not to the HA1 subunit of subtype H5 (H5-HA1), using a counter-systematic evolution of ligands by exponential enrichment (counter-SELEX) procedure. Enzyme-linked immunosorbent assay and surface plasmon resonance studies showed that the selected aptamers bind tightly to H1-HA1 with dissociation constants in the nanomolar range. Western blot analysis demonstrated that the aptamers were binding to H1-HA1 in a concentration-dependent manner, yet were not binding to H5-HA1. Interestingly, the selected aptamers contained G-rich sequences in the central random nucleotides region. Further biophysical analysis showed that the G-rich sequences formed a G-quadruplex structure, which is a distinctive structure compared to the starting ssDNA library. Using flow cytometry analysis, we found that the aptamers did not bind to the receptor-binding site of H1-HA1. These results indicate that the selected aptamers that distinguish H1-HA1 from H5-HA1 can be developed as unique probes for the detection of the H1 subtype of influenza virus. PMID:25901739

  9. European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013

    PubMed Central

    Simon, Gaëlle; Larsen, Lars E.; Dürrwald, Ralf; Foni, Emanuela; Harder, Timm; Van Reeth, Kristien; Markowska-Daniel, Iwona; Reid, Scott M.; Dan, Adam; Maldonado, Jaime; Huovilainen, Anita; Billinis, Charalambos; Davidson, Irit; Agüero, Montserrat; Vila, Thaïs; Hervé, Séverine; Breum, Solvej Østergaard; Chiapponi, Chiara; Urbaniak, Kinga; Kyriakis, Constantinos S.; Brown, Ian H.; Loeffen, Willie

    2014-01-01

    Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010–2013) aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections. PMID:25542013

  10. Human monoclonal ScFv specific to NS1 protein inhibits replication of influenza viruses across types and subtypes.

    PubMed

    Yodsheewan, Rungrueang; Maneewatch, Santi; Srimanote, Potjanee; Thueng-In, Kanyarat; Songserm, Thaweesak; Dong-Din-On, Fonthip; Bangphoomi, Kunan; Sookrung, Nitat; Choowongkomon, Kiattawee; Chaicumpa, Wanpen

    2013-10-01

    Currently, there is a need of new anti-influenza agents that target influenza virus proteins other than ion channel M2 and neuraminidase. Non-structural protein-1 (NS1) is a highly conserved multifunctional protein which is indispensable for the virus replication cycle. In this study, fully human single chain antibody fragments (HuScFv) that bound specifically to recombinant and native NS1 were produced from three huscfv-phagemid transformed Escherichia coli clones (nos. 3, 10 and 11) selected from a human ScFv phage display library. Western blot analysis, mimotope searching/epitope identification, homology modeling/molecular docking and phage mimotope ELISA inhibition indicated that HuScFv of clone no. 3 reacted with NS1 R domain important for host innate immunity suppression; HuScFv of clone nos. 10 and 11 bound to E domain sites necessary for NS1 binding to the host eIF4GI and CPSF30, respectively. The HuScFv of all clones could enter the influenza virus infected cells and interfered with the NS1 activities leading to replication inhibition of viruses belonging to various heterologous A subtypes and type B by 2-64-fold as semi-quantified by hemagglutination assay. Influenza virus infected cells treated with representative HuScFv (clone 10) had up-expression of IRF3 and IFN-β genes by 14.75 and 4.95-fold, respectively, in comparison with the controls, indicating that the antibodies could restore the host innate immune response. The fully human single chain antibodies have high potential for developing further as a safe (adjunctive) therapeutic agent for mitigating, if not abrogating, severe symptoms of influenza. PMID:23928258

  11. Influenza-A Viruses in Ducks in Northwestern Minnesota: Fine Scale Spatial and Temporal Variation in Prevalence and Subtype Diversity

    PubMed Central

    Wilcox, Benjamin R.; Knutsen, Gregory A.; Berdeen, James; Goekjian, Virginia; Poulson, Rebecca; Goyal, Sagar; Sreevatsan, Srinand; Cardona, Carol; Berghaus, Roy D.; Swayne, David E.; Yabsley, Michael J.; Stallknecht, David E.

    2011-01-01

    Waterfowl from northwestern Minnesota were sampled by cloacal swabbing for Avian Influenza Virus (AIV) from July – October in 2007 and 2008. AIV was detected in 222 (9.1%) of 2,441 ducks in 2007 and in 438 (17.9%) of 2,452 ducks in 2008. Prevalence of AIV peaked in late summer. We detected 27 AIV subtypes during 2007 and 31 during 2008. Ten hemagglutinin (HA) subtypes were detected each year (i.e., H1, 3–8, and 10–12 during 2007; H1-8, 10 and 11 during 2008). All neuraminidase (NA) subtypes were detected during each year of the study. Subtype diversity varied between years and increased with prevalence into September. Predominant subtypes during 2007 (comprising ≥5% of subtype diversity) included H1N1, H3N6, H3N8, H4N6, H7N3, H10N7, and H11N9. Predominant subtypes during 2008 included H3N6, H3N8, H4N6, H4N8, H6N1, and H10N7. Additionally, within each HA subtype, the same predominant HA/NA subtype combinations were detected each year and included H1N1, H3N8, H4N6, H5N2, H6N1, H7N3, H8N4, H10N7, and H11N9. The H2N3 and H12N5 viruses also predominated within the H2 and H12 subtypes, respectively, but only were detected during a single year (H2 and H12 viruses were not detected during 2007 and 2008, respectively). Mallards were the predominant species sampled (63.7% of the total), and 531 AIV were isolated from this species (80.5% of the total isolates). Mallard data collected during both years adequately described the observed temporal and spatial prevalence from the total sample and also adequately represented subtype diversity. Juvenile mallards also were adequate in describing the temporal and spatial prevalence of AIV as well as subtype diversity. PMID:21931636

  12. Antigenic and Genetic Evolution of Low-Pathogenicity Avian Influenza Viruses of Subtype H7N3 following Heterologous Vaccination

    PubMed Central

    Xu, Yifei; Long, Li-Ping; Capua, Ilaria; Wan, Xiu-Feng

    2014-01-01

    Outbreaks of low-pathogenicity avian influenza (LPAI) viruses of the H7N3 subtype were first detected in Italy in October 2002, and the virus continued to circulate between 2002 and 2004 in a densely populated poultry area in the northeast portion of that country. This virus circulated in unvaccinated and vaccinated poultry farms, and the infection was controlled in August 2003 by culling, control of movements, improved biosecurity, and heterologous vaccination. In 2004, H7N3 reoccurred in vaccinated poultry farms in which infection had been successfully controlled by the vaccination program. To shed light on this occurrence and the temporal pattern and genetic basis of antigenic drift for avian influenza viruses (AIVs) in the absence and presence of heterologous vaccination, a collection of H7N3 viruses isolated in 2002 and 2004 were characterized genetically and antigenically. Molecular analysis showed that viruses isolated in the 2004 outbreaks after the implementation of vaccination had acquired specific amino acid signatures, most of which were located at reported antibody binding sites of the hemagglutinin (HA) protein. Antigenic characterization of these 2004 isolates showed that they were antigenically different from those isolated prior to the implementation of vaccination. This is the first report on antigenic and genetic evolution of H7 LPAI viruses following the application of heterologous vaccination in poultry. These findings may have an impact on control strategies to combat AI infections in poultry based on vaccination. PMID:24554694

  13. Protection against multiple subtypes of influenza viruses by virus-like particle vaccines based on a hemagglutinin conserved epitope.

    PubMed

    Chen, Shaoheng; Zheng, Dan; Li, Changgui; Zhang, Wenjie; Xu, Wenting; Liu, Xueying; Fang, Fang; Chen, Ze

    2015-01-01

    We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA) trimmer, the long alpha helix (LAH), as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR) of hepatitis B virus core protein (HBc), and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP). Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB(*)) adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8) (H1N1)). In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB(*) adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections. PMID:25767809

  14. Subtyping Clinical Specimens of Influenza A Virus by Use of a Simple Method To Amplify RNA Targets

    PubMed Central

    Wang, Jingjing; Tai, Warren; Angione, Stephanie L.; John, Amrita R.; Opal, Steven M.; Artenstein, Andrew W.

    2013-01-01

    This work presents the clinical application of a robust and unique approach for RNA amplification, called a simple method for amplifying RNA targets (SMART), for the detection and identification of subtypes of H1N1 pandemic, H1N1 seasonal, and H3N2 seasonal influenza virus. While all the existing amplification techniques rely on the diffusion of two molecules to complex RNA structures, the SMART achieves fast and efficient amplification via single-molecule diffusion. The SMART utilizes amplifiable single-stranded DNA (ssDNA) probes, which serve as reporter molecules for capturing specific viral RNA (vRNA) sequences and are subsequently separated on a microfluidic chip under zero-flow conditions. The probe amplification and detection are performed using an isothermal (41°C) amplification scheme via a modified version of nucleic acid sequence-based amplification (NASBA). In our study, 116 consecutive, deidentified, clinical nasopharyngeal swab samples were analyzed independently in a blinded fashion using the SMART, reverse transcription-PCR (RT-PCR), antigen (Ag) testing, and viral culture. The SMART was shown to have a limit of detection (LOD) of approximately 105 vRNA copies/ml, corresponding with a time-to-positivity (TTP) value of 70 min for real-time detection. The SMART correctly detected influenza virus in 98.3% of the samples with a subtyping accuracy of 95.7%. This work demonstrates that the SMART represents a highly accurate diagnostic platform for the detection and subtyping of influenza virus in clinical specimens and offers significant advantages over the current commercially available diagnostic tools. PMID:23903546

  15. Optimal designs of an HA-based DNA vaccine against H7 subtype influenza viruses

    PubMed Central

    Zhang, Lu; Jia, Na; Li, Jun; Han, Yaping; Cao, Wuchun; Wang, Shixia; Huang, Zuhu; Lu, Shan

    2014-01-01

    The outbreak of a novel H7N9 influenza virus in 2013 has raised serious concerns for the potential of another avian-source pandemic influenza. Effective vaccines against H7N9 virus are important in the prevention and control of any major outbreak. Novel vaccination technologies are useful additions to existing approaches. In the current report, DNA vaccine studies were conducted to identify the optimal design of an H7 HA antigen using the HA gene from a previously reported H7N7 virus that is lethal in humans as the model antigen. New Zealand White rabbits were immunized with DNA vaccines expressing 1 of 3 forms of H7 HA antigen inserts encoding the HA gene from the same H7N7 virus. High-level H7 HA-specific IgG was detected by ELISA, and functional antibodies were confirmed by hemagglutination inhibition assay and pseudotyped virus-based neutralization assay against viruses expressing HA antigens from either the previous H7N7 virus or the novel H7N9 virus. HA antigen design under the tissue plasminogen activator leader (tPA) was the most immunogenic. The data presented in the current report confirm the immunogenicity of the H7 HA antigen and provide useful guidance to prepare for an optimized H7 HA DNA vaccine to help to control the emerging H7N9 virus if and when it is needed. PMID:25424804

  16. Antibodies to H5 subtype avian influenza virus and Japanese encephalitis virus in northern pintails (Anas acuta) sampled in Japan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blood samples from 105 northern pintails (Anas acuta) captured on Hokkaido, Japan were tested for antibodies to avian influenza virus (AIV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) to assess possible involvement of this species in the transmission and spread of economically impor...

  17. Pathobiology of avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus causes serious disease in a wide variety of birds and mammals. Its natural hosts are wild aquatic birds, in which most infections are unapparent. Avian Influenza (AI) viruses are classified into 16 hemagglutinin (H1-16) and nine neuraminidase (N1-9) subtypes. Each virus has on...

  18. Development of a Reverse Transcription Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Subtype H7N9 Avian Influenza Virus

    PubMed Central

    Bao, Hongmei; Zhao, Yuhui; Wang, Yunhe; Xu, Xiaolong; Shi, Jianzhong; Zeng, Xianying; Wang, Xiurong; Chen, Hualan

    2014-01-01

    A novel influenza A (H7N9) virus has emerged in China. To rapidly detect this virus from clinical samples, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7N9 virus. The minimum detection limit of the RT-LAMP assay was 0.01 PFU H7N9 virus, making this method 100-fold more sensitive to the detection of the H7N9 virus than conventional RT-PCR. The H7N9 virus RT-LAMP assays can efficiently detect different sources of H7N9 influenza virus RNA (from chickens, pigeons, the environment, and humans). No cross-reactive amplification with the RNA of other subtype influenza viruses or of other avian respiratory viruses was observed. The assays can effectively detect H7N9 influenza virus RNA in drinking water, soil, cloacal swab, and tracheal swab samples that were collected from live poultry markets, as well as human H7N9 virus, in less than 30 min. These results suggest that the H7N9 virus RT-LAMP assays were efficient, practical, and rapid diagnostic methods for the epidemiological surveillance and diagnosis of influenza A (H7N9) virus from different resource samples. PMID:24689044

  19. A multiplex RT-PCR assay for detection and differentiation of avian H3, H5, and H9 subtype influenza viruses and Newcastle disease viruses.

    PubMed

    Tang, Qingdong; Wang, Jinliang; Bao, Jingnan; Sun, Honglei; Sun, Yipeng; Liu, Jinhua; Pu, Juan

    2012-05-01

    Avian influenza viruses (AIVs) and Newcastle disease viruses (NDVs) co-circulate in the poultry population in China. These viruses cause repeated disease outbreaks that exhibit similar clinical symptoms and epidemiological patterns. H5 and H9 influenza viruses are the major pathogens infecting poultry stocks. Recently, H3 AIV (one of the main subtypes in waterfowl) has become endemic in chickens. A multiplex reverse-transcriptase polymerase chain reaction (mRT-PCR) assay was designed for simultaneous detection and differentiation of avian H3, H5, H9 subtype AIVs and NDVs. Four primer sets were evaluated, three of which specifically targeted the hemagglutinin genes of H3, H5 and H9 AIVs, while the other targeted the NDV fusion gene. The sensitivity and specificity of the mRT-PCR assay was determined. The assay detected the major clades or genotypes of all of the reference AIVs and NDVs currently circulating in China. In addition, the mRT-PCR results obtained from screening 380 clinical swabs and 12 experimental tracheal samples were consistent with those obtained using conventional virus isolation methods. The mRT-PCR assay was established successfully for the detection and differentiation of avian H3, H5, and H9 subtype AIVs and NDVs. The method should, therefore, provide a valuable diagnostic tool for these infections. PMID:22387341

  20. In silico modification of oseltamivir as neuraminidase inhibitor of influenza A virus subtype H1N1

    PubMed Central

    Tambunan, Usman Sumo Friend; Rachmania, Rizky Archintya; Parikesit, Arli Aditya

    2015-01-01

    Abstract This research focused on the modification of the functional groups of oseltamivir as neuraminidase inhibitor against influenza A virus subtype H1N1. Interactions of three of the best ligands were evaluated in the hydrated state using molecular dynamics simulation at two different temperatures. The docking result showed that AD3BF2D ligand (N-[(1S,6R)-5-amino-5-{[(2R,3S,4S)-3,4-dihydroxy-4-(hydroxymethyl) tetrahydrofuran-2-yl]oxy}-4-formylcyclohex-3-en-1-yl]acetamide-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate) had better binding energy values than standard oseltamivir. AD3BF2D had several interactions, including hydrogen bonds, with the residues in the catalytic site of neuraminidase as identified by molecular dynamics simulation. The results showed that AD3BF2D ligand can be used as a good candidate for neuraminidase inhibitor to cope with influenza A virus subtype H1N1. PMID:25859271

  1. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    PubMed Central

    2010-01-01

    Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268

  2. An enzyme-linked immunosorbent assay for detection of avian influenza virus subtypes H5 and H7 antibodies

    PubMed Central

    2013-01-01

    Background Avian influenza virus (AIV) subtypes H5 and H7 attracts particular attention because of the risk of their potential pathogenicity in poultry. The haemagglutination inhibition (HI) test is widely used as subtype specific test for serological diagnostics despite the laborious nature of this method. However, enzyme-linked immunosorbent assays (ELISAs) are being explored as an alternative test method. H5 and H7 specific monoclonal antibodies were experimentally raised and used in the development of inhibition ELISAs for detection of serological response specifically directed against AIV subtypes H5 and H7. The ELISAs were evaluated with polyclonal chicken anti-AIV antibodies against AIV subtypes: H1N2, H5N2, H5N7, H7N1, H7N7, H9N9, H10N4 and H16N3. Results Both the H5 and H7 ELISA proved to have a high sensitivity and specificity and the ELISAs detected H5 and H7 antibodies earlier during experimental infection than the HI test did. The reproducibility of the ELISA’s performed at different times was high with Pearson correlation coefficients of 0.96-0.98. Conclusions The ELISAs are a potential alternative to the HI test for screening of large amounts of avian sera, although only experimental sera were tested in this study. PMID:24256721

  3. Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus

    PubMed Central

    Lee, Peter S.; Ohshima, Nobuko; Stanfield, Robyn L.; Yu, Wenli; Iba, Yoshitaka; Okuno, Yoshinobu; Kurosawa, Yoshikazu; Wilson, Ian A.

    2015-01-01

    Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012-2013. Here, we describe an antibody, F045-092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045-092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045-092 extends its recognition to divergent subtypes, including H1, H2, and H13, using the enhanced avidity of its IgG to overcome lower affinity Fab binding, as observed with other receptor-binding site antibodies. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small molecule therapeutics. PMID:24717798

  4. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus

    SciTech Connect

    Lee, Peter S.; Ohshima, Nobuko; Stanfield, Robyn L.; Yu, Wenli; Iba, Yoshitaka; Okuno, Yoshinobu; Kurosawa, Yoshikazu; Wilson, Ian A.

    2014-04-10

    Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012–2013. Here we describe an antibody, F045–092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045–092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045–092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhanced avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.

  5. Genome sequence of a novel H14N7 subtype influenza A virus isolated from a blue-winged teal (Anas discors) harvested in Texas, USA

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew; Poulson, Rebecca L.; Carter, Deborah L.; Davis-Fields, Nicholas; Stallknecht, David E.

    2016-01-01

    We report here the complete genome sequence of a novel H14N7 subtype influenza A virus (IAV) isolated from a blue-winged teal (Anas discors) harvested in Texas, USA. The genomic characteristics of this IAV strain with a previously undetected subtype combination suggest recent viral evolution within the New World wild-bird IAV reservoir.                   

  6. Protection of chickens to antigenically variant avian influenza virus challenge after immunization with two antigenically unrelated strains of the same subtype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antigenic diversity of avian influenza virus (AIV) within a subtype has been well established and is believed to be driven by the selection of immunologic escape mutants. In regions where vaccination against AIV has been implemented for prolonged periods (e.g. Vietnam and Egypt), vaccines which...

  7. Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies.

    PubMed

    Zhao, Xihong; Tsao, Yu-Chia; Lee, Fu-Jung; Tsai, Woo-Hu; Wang, Ching-Ho; Chuang, Tsung-Liang; Wu, Mu-Shiang; Lin, Chii-Wann

    2016-07-01

    A side-polished fiber optic surface plasmon resonance (SPR) sensor was fabricated to expose the core surface and then deposited with a 40nm thin gold film for the near surface sensing of effective refractive index changes with surface concentration or thickness of captured avian influenza virus subtype H6. The detection surface of the SPR optical fiber sensor was prepared through the plasma modification method for binding a self-assembled monolayer of isopropanol chemically on the gold surface of the optical fiber. Subsequently, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide was activated to enable EB2-B3 monoclonal antibodies to capture A/chicken/Taiwan/2838V/00 (H6N1) through a flow injection system. The detection limit of the fabricated optical fiber sensor for A/chicken/Taiwan/2838V/00 was 5.14×10(5) EID50/0.1mL, and the response time was 10min on average. Moreover, the fiber optic sensor has the advantages of a compact size and low cost, thus rendering it suitable for online and remote sensing. The results indicated that the optical fiber sensor can be used for epidemiological surveillance and diagnosing of avian influenza subtype H6 rapidly. PMID:26996538

  8. Evidence for genetic variation of Eurasian avian influenza viruses of subtype H15: the first report of an H15N7 virus.

    PubMed

    Muzyka, Denys; Pantin-Jackwood, Mary; Starick, Elke; Fereidouni, Sasan

    2016-03-01

    Since the first detection of H15 avian influenza viruses (AIVs) in Australia in 1979, only seven H15 strains have been reported. A new H15 AIV was detected in Ukraine in 2010, carrying the unique HA-NA subtype combination H15N7. This virus replicated efficiently in chicken eggs, and antisera against it reacted strongly with the homologous antigen, but with lower titers when using the reference Australian antigen. The amino acid motifs of the HA cleavage site and receptor-binding site were different from those in the Australian viruses. The new virus, together with an H15 virus from Siberia from 2008, constitutes a new clade of H15 AIV isolates. PMID:26650037

  9. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses

    PubMed Central

    McCormick, Kara; Jiang, Zhiyong; Zhu, Longchao; Lawson, Steven R.; Langenhorst, Robert; Ransburgh, Russell; Brunick, Colin; Tracy, Miranda C.; Hurtig, Heather R.; Mabee, Leah M.; Mingo, Mark; Li, Yanhua; Webby, Richard J.

    2015-01-01

    Background and Objectives Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes. Methods and Results Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates. Conclusion This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines. PMID:26061265

  10. Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1).

    PubMed

    Makkoch, Jarika; Poomipak, Witthaya; Saengchoowong, Suthat; Khongnomnan, Kritsada; Praianantathavorn, Kesmanee; Jinato, Thananya; Poovorawan, Yong; Payungporn, Sunchai

    2016-02-01

    MicroRNAs (miRNAs) play an important role in regulation of gene silencing and are involved in many cellular processes including inhibition of infected viral replication. This study investigated cellular miRNA expression profiles operating in response to influenza virus in early stage of infection which might be useful for understanding and control of viral infection. A549 cells were infected with different subtypes of influenza virus (pH1N1, H3N2 and H5N1). After 24 h post-infection, miRNAs were extracted and then used for DNA library construction. All DNA libraries with different indexes were pooled together with equal concentration, followed by high-throughput sequencing based on MiSeq platform. The miRNAs were identified and counted from sequencing data by using MiSeq reporter software. The miRNAs expressions were classified into up and downregulated miRNAs compared to those found in non-infected cells. Mostly, each subtype of influenza A virus triggered the upregulated responses in miRNA expression profiles. Hsa-miR-101, hsa-miR-193b, hsa-miR-23b, and hsa-miR-30e* were upregulated when infected with all three subtypes of influenza A virus. Target prediction results showed that virus infection can trigger genes in cellular process, metabolic process, developmental process and biological regulation. This study provided some insights into the cellular miRNA profiling in response to various subtypes of influenza A viruses in circulation and which have caused outbreaks in human population. The regulated miRNAs might be involved in virus-host interaction or host defense mechanism, which should be investigated for effective antiviral therapeutic interventions. PMID:26518627

  11. Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolution of receptor specificity of classical swine influenza viruses leading to the 2009 H1N1 pandemic virus was analyzed in glycan microarrays. Classical influenza viruses from the alpha, beta, and gamma antigenic clusters isolated between 1945 and 2009 revealed a binding profile very simila...

  12. Genetic characterization of influenza A virus subtypes H1N3 and H1N9 isolated from free-grazing ducks in Thailand.

    PubMed

    Chaiyawong, Supassama; Boonyapisitsopa, Supanat; Jairak, Waleemas; Nonthabenjawan, Nutthawan; Tangwangvivat, Ratanaporn; Bunpapong, Napawan; Amonsin, Alongkorn

    2016-10-01

    Influenza A virus (IAV) subtype H1 has been reported to infect birds, pigs and humans. In this study, we characterized IAVs subtype H1N3 and H1N9 isolated from free-grazing ducks in Thailand. Phylogenetic analysis showed that Thai IAV-H1 isolates cluster with avian Eurasian-lineage but not pandemic H1N1 viruses. Analysis of the viruses indicated low-pathogenic avian influenza (LPAI) characteristics. This study is the first report of avian H1N3 and H1N9 in Thailand. Although Thai IAV-H1 viruses do not pose a risk of a pandemic, routine surveillance and genetic monitoring of IAVs should be conducted. PMID:27383209

  13. [Isolation and Identification of a Quail-origin H9N2 Subtype of The Influenza Virus and Its Biologic Characterization].

    PubMed

    Yu, Yang; Si, Weiying; Yuan, Zhuangchuan; Yan, Yan; Zhou, Jiyong

    2016-01-01

    A quail-origin subtype of the influenza virus was isolated from a human-infecting H7N9 subtype of the avian influenza virus found in a live poultry market and was given the name A/Quail/Hangzhou/1/ 2013 (H9N2). We analyzed the whole genome of this virus and its biologic characteristics. Sequence analyses suggested that the: HA and NS genes belonged to a CK/BJ/1/94-like lineage; NA, NP, PA and PB1 genes belonged to a SH/F/98-like lineage; M and PB2 genes belonged to a G1-like lineage. Analyses of key amino acids showed that the cleavage site in HA protein was PSRSSR ↓ GL, and that the HA protein had a human receptor-binding site with Leu226. Deletion of amino acids 69 - 73 was detected in the stalk of NA protein, the M2 protein had an Asn31 mutation, and the NS1 protein had two mutations at Ser42, Ala149. The intravenous pathogenicity of this virus was 0.36. A study in chickens suggested that all inoculated birds shed the virus from the trachea and cloaca on the third day post-infection (p. i. ) until 11 days. All chickens that had direct contact shed the virus on the second day p. i. until 8 days. Results of virus reisolation suggested that lung and tracheal tissues could shed the virus in 5 days, whereas the other organs could shed the virus in 3 days. These results suggest that this virus strain is H9N2 subtype LPAIV, whose lineage is prevalent in mainland China. This research provides evidence on how to monitor and prevent the H9N2 subtype of the avian influenza virus. PMID:27295886

  14. Structure and Receptor Binding Preferences of Recombinant Hemagglutinins from Avian and Human H6 and H10 Influenza A Virus Subtypes

    PubMed Central

    Yang, Hua; Carney, Paul J.; Chang, Jessie C.; Villanueva, Julie M.

    2015-01-01

    ABSTRACT During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. IMPORTANCE Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses. PMID:25673707

  15. Naturally occurring Influenza A virus subtype H1N2 infection in a Midwest United States mink (Mustela vison) ranch.

    PubMed

    Yoon, Kyoung-Jin; Schwartz, Kent; Sun, Dong; Zhang, Jianqiang; Hildebrandt, Hugh

    2012-03-01

    Influenza A virus (FLUAV) causes acute respiratory disease in humans and a variety of animal species. The virus tends to remain within the species of origin; nonetheless, naturally occurring cross-species transmission of FLUAV has been periodically documented. Multiple cross-species transmissions of FLUAV have been reported from companion animals and captive wild animals, neither of which is historically considered as natural hosts of FLUAV. In the fall of 2010, mink (Mustela vison) inhabiting a 15,000-head mink farm in the Midwest United States experienced persistent severe respiratory distress and nose and/or mouth bleeding. Mink losses averaged approximately 10 animals per day. Six dead mink at 6 months of age were submitted to the Iowa State University Veterinary Diagnostic Laboratory for diagnostic investigation. Gross and microscopic examinations revealed that all 6 mink had hemorrhagic bronchointerstitial pneumonia. Hemolytic Escherichia coli was isolated from lungs, probably accounting for hemorrhagic pneumonia. All animals tested negative for Canine distemper virus and Aleutian mink disease virus. Interestingly, FLUAV of H1N2 subtype, which contained the matrix gene of swine lineage, was detected in the lungs. Serological follow-up on mink that remained in the ranch until pelting also confirmed that the ranch had been exposed to FLUAV of H1 subtype (δ clade). The case study suggests that FLUAV should be included in the differential diagnosis when mink experience epidemics of respiratory disease. Since the source of FLUAV appeared to be uncooked turkey meat, feeding animals fully cooked ration should be considered as a preventive measure. PMID:22362526

  16. Experimental infection of mallard ducks with different subtype H5 and H7 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of some Asian lineage H5N1 HPAIVs which can cause severe disease in ducks. With ...

  17. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A is a major pathogen of birds, swine, and humans. Strains can jump from one species to another in a process that often requires genetic mutation and genome reassortment and results in outbreaks and, potentially, pandemics. H9N2 avian influenza is one of the most predominant influenza subt...

  18. Antibodies to H5 subtype avian influenza virus and Japanese encephalitis virus in northern pintails (Anas acuta) sampled in Japan

    USGS Publications Warehouse

    Ramey, Andy M.; Spackman, Erica; Yeh, Jung-Yong; Fujita, Go; Konishi, Kan; Reed, John A.; Wilcox, Benjamin R.; Brown, Justin D.; Stallknecht, David E.

    2013-01-01

    Blood samples from 105 northern pintails (Anas acuta) captured on Hokkaido, Japan were tested for antibodies to avian influenza virus (AIV), Japanese encephalitis virus (JEV), and West Nile virus (WNV) to assess possible involvement of this species in the spread of economically important and potentially zoonotic pathogens. Antibodies to AIV were detected in 64 of 105 samples (61%). Of the 64 positives, 95% and 81% inhibited agglutination of two different H5 AIV antigens (H5N1 and H5N9), respectively. Antibodies to JEV and WNV were detected in five (5%) and none of the samples, respectively. Results provide evidence for prior exposure of migrating northern pintails to H5 AIV which couldhave implications for viral shedding and disease occurrence. Results also provide evidence for limited involvement of this species in the transmission and spread of flaviviruses during spring migration.

  19. Design of Multiplexed Detection Assays for Identification of Avian Influenza A Virus Subtypes Pathogenic to Humans by SmartCycler Real-Time Reverse Transcription-PCR ▿

    PubMed Central

    Wang, Wei; Ren, Peijun; Mardi, Sek; Hou, Lili; Tsai, Cheguo; Chan, Kwok Hung; Cheng, Peter; Sheng, Jun; Buchy, Philippe; Sun, Bing; Toyoda, Tetsuya; Lim, Wilina; Peiris, J. S. Malik; Zhou, Paul; Deubel, Vincent

    2009-01-01

    Influenza A virus (IAV) epidemics are the result of human-to-human or poultry-to-human transmission. Tracking seasonal outbreaks of IAV and other avian influenza virus (AIV) subtypes that can infect humans, aquatic and migratory birds, poultry, and pigs is essential for epidemiological surveillance and outbreak alerts. In this study, we performed four real-time reverse transcription-PCR (rRT-PCR) assays for identification of the IAV M and hemagglutinin (HA) genes from six known AIVs infecting pigs, birds, and humans. IAV M1 gene-positive samples tested by single-step rRT-PCR and a fluorogenic Sybr green I detection system were further processed for H5 subtype identification by using two-primer-set multiplex and Sybr green I rRT-PCR assays. H5 subtype-negative samples were then tested with either a TaqMan assay for subtypes H1 and H3 or a TaqMan assay for subtypes H2, H7, and H9 and a beacon multiplex rRT-PCR identification assay. The four-tube strategy was able to detect 10 RNA copies of the HA genes of subtypes H1, H2, H3, H5, and H7 and 100 RNA copies of the HA gene of subtype H9. At least six H5 clades of H5N1 viruses isolated in Southeast Asia and China were detected by that test. Using rRT-PCR assays for the M1 and HA genes in 202 nasopharyngeal swab specimens from children with acute respiratory infections, we identified a total of 39 samples positive for the IAV M1 gene and subtypes H1 and H3. When performed with a portable SmartCycler instrument, the assays offer an efficient, flexible, and reliable platform for investigations of IAV and AIV in remote hospitals and in the field. PMID:18971359

  20. Complete genome sequence of a novel H9N2 subtype influenza virus FJG9 strain in china reveals a natural reassortant event

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Chicken/FJ/G9/09 (FJ/G9) is an H9N2 subtype strain of avian influenza virus (H9N2 AIV) strain causing high morbidity, that was isolated from broilers in Fujian province, China, in 2009. The FJ/G9 has been used as the vaccine strain against H9N2 AIV infection in Fujian Province of China. Here, we r...

  1. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid and accurate detection, identification and genetic characterization are essential for effective surveillance and epidemiological tracking of influenza viruses. This report describes applications of a resequencing pathogen microarray (RPM) assay that is capable of simultaneous sequencing of su...

  2. A sero-survey of subtype H3 influenza A virus infection in dogs and cats in Japan.

    PubMed

    Said, Awlad Wadair Ali; Usui, Tatsufumi; Shinya, Kyoko; Ono, Etsuro; Ito, Toshihiro; Hikasa, Yoshiaki; Matsuu, Aya; Takeuchi, Takashi; Sugiyama, Akihiko; Nishii, Naohito; Yamaguchi, Tsuyoshi

    2011-04-01

    A sero-epidemiological survey of human and equine H3 influenza A virus infections in dogs and cats using the hemagglutination inhibition (HI) and neuraminidase inhibition (NI) tests was conducted. Serum samples were collected from 582 dogs and 237 cats in Japan during the periods 2002-2008 and 1997-2008, respectively. Although no HI antibodies against equine H3 virus were detected, 9 (3.8%) from cats and 12 (2.1%) from dogs were HI-positive against human H3 virus. Only one serum each from dogs and cats was NI-positive against N2 virus. These findings suggest that although equine H3 influenza virus infections have not been prevalent in companion animals, human H3N2 influenza A virus infections have occurred in dogs and cats in recent years in Japan. PMID:21150133

  3. Disease Dynamics and Bird Migration—Linking Mallards Anas platyrhynchos and Subtype Diversity of the Influenza A Virus in Time and Space

    PubMed Central

    Gunnarsson, Gunnar; Latorre-Margalef, Neus; Hobson, Keith A.; Van Wilgenburg, Steven L.; Elmberg, Johan; Olsen, Björn; Fouchier, Ron A. M.; Waldenström, Jonas

    2012-01-01

    The mallard Anas platyrhynchos is a reservoir species for influenza A virus in the northern hemisphere, with particularly high prevalence rates prior to as well as during its prolonged autumn migration. It has been proposed that the virus is brought from the breeding grounds and transmitted to conspecifics during subsequent staging during migration, and so a better understanding of the natal origin of staging ducks is vital to deciphering the dynamics of viral movement pathways. Ottenby is an important stopover site in southeast Sweden almost halfway downstream in the major Northwest European flyway, and is used by millions of waterfowl each year. Here, mallards were captured and sampled for influenza A virus infection, and positive samples were subtyped in order to study possible links to the natal area, which were determined by a novel approach combining banding recovery data and isotopic measurements (δ2H) of feathers grown on breeding grounds. Geographic assignments showed that the core natal areas of studied mallards were in Estonia, southern and central Finland, and northwestern Russia. This study demonstrates a clear temporal succession of latitudes of natal origin during the course of autumn migration. We also demonstrate a corresponding and concomitant shift in virus subtypes. Acknowledging that these two different patterns were based in part upon different data, a likely interpretation worth further testing is that the early arriving birds with more proximate origins have different influenza A subtypes than the more distantly originating late autumn birds. If true, this knowledge would allow novel insight into the origins and transmission of the influenza A virus among migratory hosts previously unavailable through conventional approaches. PMID:22536424

  4. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature. PMID:25231137

  5. Isolation and genetic characterization of novel reassortant H6N6 subtype avian influenza viruses isolated from chickens in eastern China.

    PubMed

    Wu, Haibo; Lu, Rufeng; Peng, Xiuming; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Lu, Xiangyun; Xie, Tiansheng; Yao, Hangping; Wu, Nanping

    2016-07-01

    H6 subtype avian influenza viruses (AIVs) possess the ability to cross the species barrier to infect mammals and pose a threat to human health. From June 2014 to July 2015, 12 H6N6 AIVs were isolated from chickens in live-poultry markets in Zhejiang Province, Eastern China. Phylogenetic analysis showed that these isolates received their genes from H6 and H9N2 subtype AIVs of poultry in China. These novel reassortant viruses showed moderate pathogenicity in mice and were able to replicate in mice without prior adaptation. Considering that novel reassorted H6N6 viruses were isolated from chickens in this study, it is possible that these chickens play an important role in the generation of novel reassorted H6N6 AIVs, and these results emphasize the need for continued surveillance of the H6N6 AIVs circulating in poultry. PMID:27101069

  6. Transmission of Avian Influenza A Viruses Between Animals and People

    MedlinePlus

    ... many different animals, including ducks, chickens, pigs, whales, horses, and seals. However, certain subtypes of influenza A ... pigs, and H7N7 and H3N8 virus infections of horses. Influenza A viruses that typically infect and transmit ...

  7. Live vaccination with an H5-hemagglutinin-expressing infectious laryngotracheitis virus recombinant protects chickens against different highly pathogenic avian influenza viruses of the H5 subtype.

    PubMed

    Pavlova, Sophia P; Veits, Jutta; Mettenleiter, Thomas C; Fuchs, Walter

    2009-08-13

    Recently, we described an infectious laryngotracheitis virus (ILTV, gallid herpesvirus 1) recombinant, which had been attenuated by deletion of the viral dUTPase gene UL50, and abundantly expressed the hemagglutinin (HA) gene of a H5N1 type highly pathogenic avian influenza virus (HPAIV) of Vietnamese origin. In the present study, efficacy of this vectored vaccine (ILTV-DeltaUL50IH5V) against different H5 HPAIV was evaluated in 6-week-old chickens. After a single ocular immunization all animals developed HA-specific antibodies, and were protected against lethal infection not only with the homologous HPAIV isolate A/duck/Vietnam/TG24-01/2005 (H5N1, clade 1, hemagglutinin amino acid sequence identity 100%), but also with heterologous HPAIV A/swan/Germany/R65/2006 (H5N1, clade 2.2, identity 96.1%) or HPAIV A/chicken/Italy/8/98 (H5N2, identity 93.8%). No symptoms of disease were observed after challenge with the H5N1 viruses, and only 20% of H5N2 challenged animals developed minimal clinical signs. Real-time RT-PCR analyses of oropharyngeal swabs revealed limited challenge virus replication, but the almost complete absence of HPAIV RNA from cloacal swabs indicated that no generalized infections occurred. Thus, unlike several previous vectors, ILTV-DeltaUL50IH5V was able to protect chickens against different HPAIV isolates of the H5 subtype. Vaccination with HA-expressing ILTV also allowed differentiation of immunized from AIV-infected animals by serological tests for antibodies against influenza virus nucleoprotein. PMID:19573638

  8. [Construction and experimental immunity of recombinant replication-competent canine adenovirus type 2 expressing hemagglutinin gene of H5N1 subtype tiger influenza virus].

    PubMed

    Gao, Yu-Wei; Xia, Xian-Zhu; Wang, Li-Gang; Liu, Dan; Huang, Geng

    2006-04-01

    H5N1 highly pathogenic avian influenza virus was highly pathogenic and sometimes even fatal for tigers and cats. To develop a new type of vaccine for Felidae influenza prevention, recombinant replication-competent canine adenovirus Type 2 expressing hemagglutinin gene of H5N1 subtype tiger influenza virus was constructed. A/tiger/Harbin/01/2003 (HSN1) HA gene was cloned into PVAX1. The HA expression cassette which included CMV and HA and PolyA was ligated into the E3 deletion region of pVAXdeltaE. The recombinant plasmid was named pdeltaEHA. The pdelta EHA and the pPoly2-CAV2 were digested with Nru I /Sal I, respectively. The purified Nru I/Sal I DNA fragment containing the HA expression cassette was cloned into pPoly2-CAV2 to generate the recombinant plasmid pCAV-2/HA. The recombinant genome was released from pCAV-2/HA, and was transfected into MDCK cells by Lipofectamine. The recombinant virus named CAV2/HA was gained. Anti-H5N1 influenza virus HI antibody (1:8 - 1:16) was detected in the cat immunized with CAV-2/HA. PMID:16736595

  9. [Influenza virus].

    PubMed

    Juozapaitis, Mindaugas; Antoniukas, Linas

    2007-01-01

    Every year, especially during the cold season, many people catch an acute respiratory disease, namely flu. It is easy to catch this disease; therefore, it spreads very rapidly and often becomes an epidemic or a global pandemic. Airway inflammation and other body ailments, which form in a very short period, torment the patient several weeks. After that, the symptoms of the disease usually disappear as quickly as they emerged. The great epidemics of flu have rather unique characteristics; therefore, it is possible to identify descriptions of such epidemics in historic sources. Already in the 4th century bc, Hippocrates himself wrote about one of them. It is known now that flu epidemics emerge rather frequently, but there are no regular intervals between those events. The epidemics can differ in their consequences, but usually they cause an increased mortality of elderly people. The great flu epidemics of the last century took millions of human lives. In 1918-19, during "The Spanish" pandemic of flu, there were around 40-50 millions of deaths all over the world; "Pandemic of Asia" in 1957 took up to one million lives, etc. Influenza virus can cause various disorders of the respiratory system: from mild inflammations of upper airways to acute pneumonia that finally results in the patient's death. Scientist Richard E. Shope, who investigated swine flu in 1920, had a suspicion that the cause of this disease might be a virus. Already in 1933, scientists from the National Institute for Medical Research in London - Wilson Smith, Sir Christopher Andrewes, and Sir Patrick Laidlaw - for the first time isolated the virus, which caused human flu. Then scientific community started the exhaustive research of influenza virus, and the great interest in this virus and its unique features is still active even today. PMID:18182834

  10. Understanding of Drug-Target Interactions: A case Study in Influenza Virus A Subtype H5N1

    NASA Astrophysics Data System (ADS)

    Rungrotmongkol, Thanyada; Malaisree, Maturos; Decha, Panita; Laohpongspaisan, Chittima; Aruksakunwong, Ornjira; Intharathep, Pathumwadee; Pianwanit, Somsak; Sompornpisut, Pornthep; Parasuk, Vudhichai; Megnassan, Eugene; Frecer, Vladimir; Miertus, Stanislav; Hannongbua, Supot

    2007-12-01

    This study aims at gaining insight into molecular mechanisms of action of three drug targets of the life cycle of influenza virus A subtype H5N1, namely Hemagglutinin (H5), Neuraminidase (N1) and M2 ion channel (M2), using molecular mechanics and molecular dynamics techniques. In hemagglutinin, interest is focused on the high pathogenicity of the H5 due to the -RRRKK- insertion. MD simulations carried out for H5 in both high and low pathogenic forms (HPH5 and LPH5), aimed at understanding why HPH5 was experimentally observed to be 5-fold better cleaved by furin relative to the non-inserted sequence of LPH5. As the results, the cleavage loop of HPH5 was found to fit well and bind strongly into the catalytic site of human furin, serving as a conformation suitable for the proteolytic reaction. The second target, neuraminidase was studied by two different approaches. Firstly with MD simulations, rotation of the -NHAc and—OCHEt2 side chains of oseltamivir (OTV), leading directly to rearrangement of the catalytic cavity, was found to be a primary source of the lower susceptibility of OTV to neuraminidase subtype N1 than to N2 and N9. In addition, three inhibitiors, OTV, zanamivir (ZNV) and peramivir (PRV), complexed with neuraminidase subtype N1 were studied to understand the drug-target interactions. The structural properties, position and conformation of PRV and its side chains are uniformly preferential, i.e., its conformation fits very well with the N1 active site. At the N1 target, another approach, combinatorial chemistry, was used to design a library of new potent inhibitors, which well fit to the active site and the 150-loop residues of N1. Investigation was also extended to the M2 proton channel. Five different protonation states of the selectivity filter residue (His) where 0H, 1H, 2aH, 2dH and 4H represent the systems with none, mono-protonated, di-protonated at adjacent and opposite positions, and tetra-protonated, respectively, were taken into account both

  11. Influenza A virus recycling revisited.

    PubMed Central

    Dowdle, W. R.

    1999-01-01

    Current textbooks link influenza pandemics to influenza A virus subtypes H2 (1889-91), H3 (1990), H1 (1918-20), H2 (1957-58) and H3 (1968), a pattern suggesting subtype recycling in humans. Since H1 reappeared in 1977, whatever its origin, some workers feel that H2 is the next pandemic candidate. This report reviews the publications on which the concept of influenza A virus subtype recycling is based and concludes that the data are inconsistent with the purported sequence of events. The three influenza pandemics prior to 1957-58 were linked with subtypes through retrospective studies of sera from the elderly, or through seroarchaeology. The pandemic seroarchaeological model for subtype H1 has been validated by the recent recovery of swine virus RNA fragments from persons who died from influenza in 1918. Application of the model to pre-existing H3 antibody among the elderly links the H3 subtype to the pandemic of 1889-91, not that of 1900 as popularly quoted. Application of the model to pre-existing H2 antibody among the elderly fails to confirm that this subtype caused a pandemic in the late 1800's, a finding which is consistent with age-related excess mortality patterns during the pandemics of 1957 (H2) and 1968 (H3). H2 variants should be included in pandemic planning for a number of reasons, but not because of evidence of recycling. It is not known when the next pandemic will occur or which of the 15 (or more) haemagglutinin subtypes will be involved. Effective global surveillance remains the key to influenza preparedness. PMID:10593030

  12. Characterization of Low Pathogenic Avian Influenza Virus Subtype H9N2 Isolated from Free-Living Mynah Birds (Acridotheres tristis) in the Sultanate of Oman.

    PubMed

    Body, Mohammad H; Alrarawahi, Abdulmajeed H; Alhubsy, Saif S; Saravanan, Nirmala; Rajmony, Sunil; Mansoor, Muhammad Khalid

    2015-06-01

    A low pathogenic avian influenza virus was identified from free-living birds (mynah, Acridotheres tristis) of the starling family. Virus was isolated by inoculation of homogenized suspension from lung, tracheal, spleen, and cloacal swabs into the allantoic cavity of embryonated chicken eggs. Subtype of the isolate was characterized as H9N2 by hemagglutination inhibition test using monospecific chicken antisera to a wide range of influenza reference strain. Pathogenicity of the isolate was determined by intravenous pathogenicity index. The virus was reisolated from experimentally infected chicken. Additionally, the isolate was subjected to reverse transcriptase PCR using partial hemagglutinin (HA) gene-specific primers and yielded an amplicon of 487 bp. HA gene sequence analysis revealed 99% sequence homology among mynah and chicken isolates from Oman. On phylogenetic analysis, isolates from mynah (A/mynnah/Oman/AIVS6/2005) and chicken (A/chicken/Oman/AIVS3/2006; A/chicken/Oman/AIVS7/2006) clustered together tightly, indicating these free-flying birds may be a source of introduction of H9N2 subtype in poultry bird in Oman. Moreover, the HA gene of H9N2 isolates from Oman resembled those of viruses of the G1-like lineage and were very similar to those from United Arab Emirates. PMID:26473686

  13. Identification and genetic analysis of H3N8 subtype influenza viruses isolated from domestic pigeons in Central China.

    PubMed

    Zou, Zhong; Chen, Sunrui; Liu, Ziduo; Jin, Meilin

    2016-02-01

    A novel strain of H3N8 influenza virus was isolated from domestic pigeons during the avian influenza virus (AIV) surveillance in wet markets in Anhui, China, during 2013. The virus was characterized by whole-genome sequencing with subsequent genetic comparison and phylogenetic analysis. Phylogenetic analysis revealed that the NA gene of AIV mapped to the North American lineage, and the remaining seven genes belong to a Eurasian lineage. These findings indicated that this H3N8 virus is a novel nature reassortant virus. Comparison of the hemagglutinin amino acid sequences indicated 9 substitutions. One substitution caused the loss of a potential glycosylation site, and six substitutions were not previously observed in avian H3 isolates. Q226 and T228 at the receptor binding sites suggested that Anhui-08 preferentially binds to a-2,3-linked sialic acid receptors, and the cleavage site sequence showed a low pathogenic feature. Animal experiments further confirmed that A/pigeon/Anhui/08/2013 (H3N8) is low or in pigeons. The results improve our understanding of these viruses as they evolve and also provide important information to aid ongoing risk assessment analyses because these zoonotic influenza viruses continue to circulate and adapt to new hosts. PMID:26611442

  14. Neutralizing inhibitors in the airways of naïve ferrets do not play a major role in modulating the virulence of H3 subtype influenza A viruses.

    PubMed

    Job, Emma R; Pizzolla, Angela; Nebl, Thomas; Short, Kirsty R; Deng, Yi-Mo; Carolan, Louise; Laurie, Karen L; Brooks, Andrew G; Reading, Patrick C

    2016-07-01

    Many insights regarding the pathogenesis of human influenza A virus (IAV) infections have come from studies in mice and ferrets. Surfactant protein (SP)-D is the major neutralizing inhibitor of IAV in mouse airway fluids and SP-D-resistant IAV mutants show enhanced virus replication and virulence in mice. Herein, we demonstrate that sialylated glycoproteins, rather than SP-D, represent the major neutralizing inhibitors against H3 subtype viruses in airway fluids from naïve ferrets. Moreover, while resistance to neutralizing inhibitors is a critical factor in modulating virus replication and disease in the mouse model, it does not appear to be so in the ferret model, as H3 mutants resistant to either SP-D or sialylated glycoproteins in ferret airway fluids did not show enhanced virulence in ferrets. These data have important implications for our understanding of pathogenesis and immunity to human IAV infections in these two widely used animal models of infection. PMID:27110707

  15. A brief introduction to avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is caused by a type A influenza virus isolated from and adapted to an avian host. This chapter covers the basic physicochemical aspects of AIV including; virus family and properties, subtype classification; basic molecular biology and genetics. The avian host range and ecology...

  16. Influenza-A viruses in ducks in northwestern Minnesota: fine scale spatial and temporal variation in prevalence and subtype diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterfowl from northwestern Minnesota were sampled by cloacal swabbing for Avian Influenza Virus (AIV) from July – October in 2007 and 2008. AIV was detected in 222 (9.1%) of 2,441 ducks in 2007 and in 438 (17.9%) of 2,452 ducks in 2008. Prevalence of AIV peaked in late summer. We detected 27 A...

  17. Isolation and molecular characterization of reassortant H11N3 subtype avian influenza viruses isolated from domestic ducks in Zhejiang Province in China.

    PubMed

    Wu, Haibo; Peng, Xiuming; Peng, Xiaorong; Wu, Nanping

    2016-10-01

    In July 2013, six H11N3 subtype avian influenza viruses (AIVs) were isolated from domestic ducks in Zhejiang Province in Eastern China. These strains were characterized by whole genome sequencing with subsequent phylogenetic analysis and genetic comparison. Phylogenetic analysis of all eight viral genes showed that these strains clustered in the AIV Eurasian lineage, and these strains received their genes from H11, H7, and H1 AIVs in Eastern China. These strains were found to be minimally pathogenic in mice, and were able to replicate in mice without prior adaptation. Continued surveillance is needed considering the important role of domestic ducks in AIV reassortment. PMID:27142079

  18. SYBR green-based real-time reverse transcription-PCR for typing and subtyping of all hemagglutinin and neuraminidase genes of avian influenza viruses and comparison to standard serological subtyping tests

    USGS Publications Warehouse

    Tsukamoto, K.; Javier, P.C.; Shishido, M.; Noguchi, D.; Pearce, J.; Kang, H.-M.; Jeong, O.M.; Lee, Y.-J.; Nakanishi, K.; Ashizawa, T.

    2012-01-01

    Continuing outbreaks of H5N1 highly pathogenic (HP) avian influenza virus (AIV) infections of wild birds and poultry worldwide emphasize the need for global surveillance of wild birds. To support the future surveillance activities, we developed a SYBR green-based, real-time reverse transcriptase PCR (rRT-PCR) for detecting nucleoprotein (NP) genes and subtyping 16 hemagglutinin (HA) and 9 neuraminidase (NA) genes simultaneously. Primers were improved by focusing on Eurasian or North American lineage genes; the number of mixed-base positions per primer was set to five or fewer, and the concentration of each primer set was optimized empirically. Also, 30 cycles of amplification of 1:10 dilutions of cDNAs from cultured viruses effectively reduced minor cross- or nonspecific reactions. Under these conditions, 346 HA and 345 NA genes of 349 AIVs were detected, with average sensitivities of NP, HA, and NA genes of 10 1.5, 10 2.3, and 10 3.1 50% egg infective doses, respectively. Utility of rRT-PCR for subtyping AIVs was compared with that of current standard serological tests by using 104 recent migratory duck virus isolates. As a result, all HA genes and 99% of the NA genes were genetically subtyped, while only 45% of HA genes and 74% of NA genes were serologically subtyped. Additionally, direct subtyping of AIVs in fecal samples was possible by 40 cycles of amplification: approximately 70% of HA and NA genes of NP gene-positive samples were successfully subtyped. This validation study indicates that rRT-PCR with optimized primers and reaction conditions is a powerful tool for subtyping varied AIVs in clinical and cultured samples. Copyright ?? 2012, American Society for Microbiology. All Rights Reserved.

  19. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  20. Study of the duration and distribution of equine influenza virus subtype 2 (H3N8) antigens in experimentally infected ponies in vivo.

    PubMed

    Sutton, G A; Viel, L; Carman, P S; Boag, B L

    1997-04-01

    The purpose of this experiment was to study the duration and distribution of equine influenza virus in actively infected ponies over a 3 wk period. Pony foals (6-8 mo old) were infected experimentally by nebulizing equine influenza subtype-2 virus ultrasonically through a face mask. Successful infection was clinically apparent as each of the foals (n = 6) had a febrile response, a deep hacking cough and mucopurulent nasal discharge for 7 to 10 d. The virus was isolated from nasopharyngeal swabs of all the ponies 3 and 5 d after infection and all the ponies seroconverted to the virus. Samples were taken from the nasopharynx, mid-trachea and the mainstem bronchus with cytology brushes through an endoscope as well as from bronchoalveolar lavage fluid. On days 3 to 7 post-infection, ciliacytophtorea (the presence of cilia and ciliated plates separated from columnar epithelial cells) was recognized on routine cytological stain. Indirect immunoperoxidase staining utilizing polyclonal antibodies demonstrated viral antigen in intact and fragmented ciliated epithelial cells and in fragments of ciliated plates. The infected cells and cell fragments were particularly evident on days 3 and 5 post-infection in the nasopharynx, mid-trachea and mainstem bronchus and on days 3 to 7 post-infection in the bronchoalveolar lavage samples. On days 7 and 21 post-infection, viral antigen was identified in vacuoles of alveolar macrophage-like cells collected by bronchoalveolar lavage. It can be concluded from this study that equine influenza virus can infect not only the upper airways but also the bronchial epithelium and that viral antigen can persist up to 21 d post-infection. PMID:9114962

  1. The Detection of a Low Pathogenicity Avian Influenza Virus Subtype H9 Infection in a Turkey Breeder Flock in the United Kingdom.

    PubMed

    Reid, Scott M; Banks, Jill; Ceeraz, Vanessa; Seekings, Amanda; Howard, Wendy A; Puranik, Anita; Collins, Susan; Manvell, Ruth; Irvine, Richard M; Brown, Ian H

    2016-05-01

    In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey breeder farm in Eastern England comprising 4966 birds. Point-of-lay turkey breeding birds had been moved from a rearing site and within 5 days had shown rapid onset of clinical signs of dullness, coughing, and anorexia. Three houses were involved, two contained a total of 4727 turkey hens, and the third housed 239 male turkeys. Around 50% of the hens were affected, whereas the male turkeys demonstrated milder clinical signs. Bird morbidity rose from 10% to 90%, with an increase in mortality in both houses of turkey hens to 17 dead birds in one house and 27 birds in the second house by day 6. The birds were treated with an antibiotic but were not responsive. Postmortem investigation revealed air sacculitis but no infraorbital sinus swellings or sinusitis. Standard samples were collected, and influenza A was detected. H9 virus infection was confirmed in all three houses by detection and subtyping of hemagglutinating agents in embryonated specific-pathogen-free fowls' eggs, which were shown to be viruses of H9N2 subtype using neuraminidase inhibition tests and a suite of real-time reverse transcription PCR assays. LPAI virus pathotype was suggested by cleavage site sequencing, and an intravenous pathogenicity index of 0.00 confirmed that the virus was of low pathogenicity. Therefore, no official disease control measures were required, and despite the high morbidity, birds recovered and were kept in production. Neuraminidase sequence analysis revealed a deletion of 78 nucleotides in the stalk region, suggesting an adaptation of the virus to poultry. Hemagglutinin gene sequences of two of the isolates clustered with a group of H9 viruses containing other contemporary European H9 strains in the Y439/Korean-like group. The closest matches to the two isolates were A/turkey/Netherlands/11015452/11 (H9N2; 97.9-98% nucleotide identity) and A/mallard/Finland/Li13384/10 (H9N2; 97

  2. Evolution and ecology of influenza A viruses.

    PubMed Central

    Webster, R G; Bean, W J; Gorman, O T; Chambers, T M; Kawaoka, Y

    1992-01-01

    In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii

  3. Replication and transmission of influenza viruses in Japanese quail

    PubMed Central

    Makarova, Natalia V.; Ozaki, Hiroishi; Kida, Hiroshi; Webster, Robert G.; Perez, Daniel R.

    2015-01-01

    Quail have emerged as a potential intermediate host in the spread of avian influenza A viruses in poultry in Hong Kong. To better understand this possible role, we tested the replication and transmission in quail of influenza A viruses of all 15 HA subtypes. Quail supported the replication of at least 14 subtypes. Influenza A viruses replicated predominantly in the respiratory tract. Transmission experiments suggested that perpetuation of avian influenza viruses in quail requires adaptation. Swine influenza viruses were isolated from the respiratory tract of quail at low levels. There was no evidence of human influenza A or B virus replication. Interestingly, a human–avian recombinant containing the surface glycoprotein genes of a quail virus and the internal genes of a human virus replicated and transmitted readily in quail; therefore, quail could function as amplifiers of influenza virus reassortants that have the potential to infect humans and/or other mammalian species. PMID:12788625

  4. First reported detection of a low pathogenicity avian influenza virus subtype H9 infection in domestic fowl in England.

    PubMed

    Parker, C D; Reid, S M; Ball, A; Cox, W J; Essen, S C; Hanna, A; Mahmood, S; Slomka, M J; Irvine, R M; Brown, I H

    2012-10-13

    In December 2010, infection with a H9N1 low pathogenicity avian influenza (LPAI) virus was detected in a broiler breeder flock in East Anglia. Disease suspicion was based on acute drops in egg production in two of four sheds on the premises, poor egg shell quality and evidence of diarrhoea. H9N1 LPAI virus infection was confirmed by real-time reverse transcription PCR. Sequencing revealed high nucleotide identity of 93.6 per cent and 97.9 per cent with contemporary North American H9 and Eurasian N1 genes, respectively. Attempted virus isolation in embryonated specific pathogen free (SPF) fowls' eggs was unsuccessful. Epidemiological investigations were conducted to identify the source of infection and any onward spread. These concluded that infection was restricted to the affected premises, and no contacts or movements of poultry, people or fomites could be attributed as the source of infection. However, the infection followed a period of extremely cold weather and snow which impacted on the biosecurity protocols on site, and also led to increased wild bird activity locally, including waterfowl and game birds around the farm buildings. Analysis of the N1 gene sequence suggested direct introduction from wild birds. Although H9 infection in poultry is not notifiable, H9N2 LPAI viruses have been associated with production and mortality episodes in poultry in many parts of Asia and the Middle East. In the present H9N1 outbreak, clinical signs were relatively mild in the poultry with no mortality, transient impact on egg production and no indication of zoonotic spread. However, this first reported detection of H9 LPAI virus in chickens in England was also the first H9 UK poultry case for 40 years, and vindicates the need for continued vigilance and surveillance of avian influenza viruses in poultry populations. PMID:22949546

  5. Analytical validation of a real-time reverse transcription polymerase chain reaction test for Pan-American lineage H7 subtype Avian influenza viruses

    USGS Publications Warehouse

    Spackman, Erica; Ip, H.S.; Suarez, D.L.; Slemons, R.D.; Stallknecht, D.E.

    2008-01-01

    A real-time reverse transcription polymerase chain reaction test for the identification of the H7 subtype in North American Avian influenza viruses (AIVs) was first reported in 2002; however, recent AIV surveillance efforts in wild birds and H7 outbreaks in poultry demonstrated that the 2002 test did not detect all H7 AIVs present in North and South America. Therefore, a new test, the 2008 Pan-American H7 test, was developed by using recently available H7 nucleotide sequences. The analytical specificity of the new assay was characterized with an RNA panel composed of 19 H7 viruses from around the world and RNA from all hemagglutinin subtypes except H16. Specificity for North and South American lineage H7 viruses was observed. Assay limits of detection were determined to be between 103 and 104 gene copies per reaction with in vitro transcribed RNA, and 100.0 and 10 0.8 50% egg infectious doses per reaction. The 2008 Pan-American H7 test also was shown to perform similarly to the 2002 test with specimens from chickens experimentally exposed to A/Chicken/BritishColumbia/314514-2/04 H7N3 highly pathogenic AIV. Furthermore, the 2008 test was able to detect 100% (n = 27) of the H7 AIV isolates recovered from North American wild birds in a 2006-2007 sample set (none of which were detected by the 2002 H7 test).

  6. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2

    PubMed Central

    Asl Najjari, Amir Hossein; Rajabi, Zolfaghar; Vasfi Marandi, Mehdi; Dehghan, Gholamreza

    2015-01-01

    Influenza is a contagious viral disease that is seen in avian, human and other mammals, so its control is important. Vaccination against influenza virus subtype H9N2 is one of the ways in controlling program, for this reason several vaccines has been produced. Recently, application of inactivated oil-emulsion vaccines in poultry for controlling low pathogenic avian influenza is increasing. At present, oils that are used as adjuvant in commercial vaccines are mineral oils, which not only lack immunizing effect, but also produce some detriments. The aim of this study is the evaluation the immunogenicity of vegetable oils, which are more metabolizable and safer than mineral oils. In this study the efficacy of hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and also nano-selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2 was evaluated in broiler chickens. The results indicated that the prepared emulsions could elicit a little degree of immunity, but they could not inhibit the anamnestic response and infection. With regard to the results, it seems that the intact mixture of fig and olive fruit hexanic extracts could not be administered as an immunoadjuvant in the vaccine, and about nano-selenium. In spite of positive effect on the immunogenicity of avian influenza virus subtype H9N2, it still needs more work. PMID:26893813

  7. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2.

    PubMed

    Asl Najjari, Amir Hossein; Rajabi, Zolfaghar; Vasfi Marandi, Mehdi; Dehghan, Gholamreza

    2015-01-01

    Influenza is a contagious viral disease that is seen in avian, human and other mammals, so its control is important. Vaccination against influenza virus subtype H9N2 is one of the ways in controlling program, for this reason several vaccines has been produced. Recently, application of inactivated oil-emulsion vaccines in poultry for controlling low pathogenic avian influenza is increasing. At present, oils that are used as adjuvant in commercial vaccines are mineral oils, which not only lack immunizing effect, but also produce some detriments. The aim of this study is the evaluation the immunogenicity of vegetable oils, which are more metabolizable and safer than mineral oils. In this study the efficacy of hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and also nano-selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2 was evaluated in broiler chickens. The results indicated that the prepared emulsions could elicit a little degree of immunity, but they could not inhibit the anamnestic response and infection. With regard to the results, it seems that the intact mixture of fig and olive fruit hexanic extracts could not be administered as an immunoadjuvant in the vaccine, and about nano-selenium. In spite of positive effect on the immunogenicity of avian influenza virus subtype H9N2, it still needs more work. PMID:26893813

  8. Avian influenza virus in pregnancy.

    PubMed

    Liu, Shelan; Sha, Jianping; Yu, Zhao; Hu, Yan; Chan, Ta-Chien; Wang, Xiaoxiao; Pan, Hao; Cheng, Wei; Mao, Shenghua; Zhang, Run Ju; Chen, Enfu

    2016-07-01

    The unprecedented epizootic of avian influenza viruses, such as H5N1, H5N6, H7N1 and H10N8, has continued to cause disease in humans in recent years. In 2013, another novel influenza A (H7N9) virus emerged in China, and 30% of those patients died. Pregnant women are particularly susceptible to avian influenza and are more likely to develop severe complications and to die, especially when infection occurs in the middle and late trimesters. Viremia is believed to occur infrequently, and thus vertical transmission induced by avian influenza appears to be rare. However, avian influenza increases the risk of adverse pregnancy outcomes, including spontaneous abortion, preterm birth and fatal distress. This review summarises 39 cases of pregnant women and their fetuses from different countries dating back to 1997, including 11, 15 and 13 infections with H7N9, H5N1 and the 2009 pandemic influenza (H1N1), respectively. We analysed the epidemic features, following the geographical, population and pregnancy trimester distributions; underlying diseases; exposure history; medical timelines; human-to-human transmission; pathogenicity and vertical transmission; antivirus treatments; maternal severity and mortality and pregnancy outcome. The common experiences reported in different countries and areas suggest that early identification and treatment are imperative. In the future, vigilant virologic and epidemiologic surveillance systems should be developed to monitor avian influenza viruses during pregnancy. Furthermore, extensive study on the immune mechanisms should be conducted, as this will guide safe, rational immunomodulatory treatment among this high-risk population. Most importantly, we should develop a universal avian influenza virus vaccine to prevent outbreaks of the different subtypes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27187752

  9. Development and evaluation of an influenza subtype H7N2 vaccine candidate for pandemic preparedness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza virus of the H7N2 subtype is enzootic among some wild aquatic birds of North America. This virus has been introduced into non-commercial poultry in the United States. Virus circulation in poultry probably resulted in incidents of transmission of H7N2 virus to humans documented in 2002 an...

  10. Influenza A virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A viruses are important veterinary and human health pathogens around the world. Avian influenza (AI) virus in poultry is unusual in that it can cause a range of disease symptoms from a subclinical infection to being highly virulent with 100% mortality. The difference between low pathogen...

  11. INFLUENZA VIRUS IN POULTRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is normally found in wild birds, particularly in ducks and shorebirds, where it does not cause any perceptible clinical disease. However, poultry, including chickens and turkeys, are not normal hosts for avian influenza, but if the virus is introduced it can result in mi...

  12. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus

    PubMed Central

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the “harmful” internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs. PMID:26973600

  13. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus.

    PubMed

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the "harmful" internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs. PMID:26973600

  14. Chimaeric VP2 proteins from infectious bursal disease virus containing the N-terminal M2e of H9 subtype avian influenza virus induce neutralizing antibody responses to both viruses.

    PubMed

    Tang, Yinghua; Gong, Yuzhen; Wang, Yongwei; Wu, Peipei; Liu, Yamei; Lu, Jihu; Gao, Feng; Chen, Tao; Hou, Fengxiang; Hou, Jibo

    2013-01-01

    Subunit vaccines capable of inducing antibody against both infectious bursal disease virus (IBDV) and H9 subtype avian influenza virus (AIV) were developed. The VP2 protein of IBDV was used as a cargo protein to display a 12-amino-acid immunodominant epitope derived from the N-terminal M2 extracellular domain (nM2e) of the H9 subtype AIV. Two chimaeric proteins were constructed by insertion of one copy of the nM2e into the PBC region (VP2BCnM2e(H9)) or by fusing four copies of nM2e to the carboxyl terminal (VP2-4nM2e(H9)) of VP2. Genes that encoded the VP2 chimaeras were subsequently cloned into a baculovirus vector and expressed in Spodoptera frugiperda cells. The recombinant proteins were used to vaccinate chickens at day 0 and again after 4 weeks. Blood was collected at 2-week intervals after primary and secondary vaccination to detect the antibody titre against VP2 or the nM2e via indirect enzyme-linked immunosorbent assay. Virus neutralization tests were also performed to measure anti-IBDV or anti-H9 AIV neutralizing antibodies in chick embryo fibroblasts. Oropharyngeal and cloacal swabs were collected 3, 5 and 7 days post H9 subtype AIV infection for virus isolation. Vaccination with VP2-4nM2e(H9) induced higher levels of antibody responses against IBDV or H9 subtype AIV, and provided better protection against an IBDV virulent challenge compared with vaccination with VP2BCnM2e(H9) vaccine, the wild-type VP2 subunit vaccine or the IBDV subunit commercial vaccines. Both chimaeric VP2 vaccines showed poor efficacy in inhibiting H9 virus replication post challenge. In summary, chimaeric proteins that contain the nM2e epitope were able to induce both IBDV and H9 subtype AIV-neutralizing antibody responses. PMID:23607544

  15. Innate immune response to a H3N2 subtype swine influenza virus in newborn porcine trachea cells, alveolar macrophages, and precision-cut lung slices

    PubMed Central

    2014-01-01

    Viral respiratory diseases remain of major importance in swine breeding units. Swine influenza virus (SIV) is one of the main known contributors to infectious respiratory diseases. The innate immune response to swine influenza viruses has been assessed in many previous studies. However most of these studies were carried out in a single-cell population or directly in the live animal, in all its complexity. In the current study we report the use of a trachea epithelial cell line (newborn pig trachea cells – NPTr) in comparison with alveolar macrophages and lung slices for the characterization of innate immune response to an infection by a European SIV of the H3N2 subtype. The expression pattern of transcripts involved in the recognition of the virus, interferon type I and III responses, and the host-response regulation were assessed by quantitative PCR in response to infection. Some significant differences were observed between the three systems, notably in the expression of type III interferon mRNA. Then, results show a clear induction of JAK/STAT and MAPK signaling pathways in infected NPTr cells. Conversely, PI3K/Akt signaling pathways was not activated. The inhibition of the JAK/STAT pathway clearly reduced interferon type I and III responses and the induction of SOCS1 at the transcript level in infected NPTr cells. Similarly, the inhibition of MAPK pathway reduced viral replication and interferon response. All together, these results contribute to an increased understanding of the innate immune response to H3N2 SIV and may help identify strategies to effectively control SIV infection. PMID:24712747

  16. Epidemiological survey and genetic evolution of H9 subtype influenza viruses in Shanghai, China, from 2006 to 2010.

    PubMed

    Zhou, Jin-Ping; Ge, Fei-Fei; Liu, Jian; Ju, Hou-Bing; Yang, De-Quan; Wang, Jian; Zhang, Wei-Yi; Liu, Pei-Hong

    2012-06-01

    The H9N2 influenza virus is endemic in poultry. We report its occurrence in live-poultry markets, fair-trade markets and poultry farms in the Shanghai region between September 2006 and December 2010. An analysis of partial sequences of the HA, NA, PB1, PB2 and NP genes of eleven distinct H9N2 isolates revealed that all carried an RSSR motif at the cleavage site of HA, diagnostic of low pathogenicity in chickens. A phylogenetic analysis indicated that these isolates are derived from the lineage represented by Duck/HK/Y280/97, but they have evolved a range of reassortments. Their PB1 and NP sequences resembled those of H5N1 strains, indicating a hybrid origin involving both H9 and H5 strains. The HA and NA sequences present in all eleven isolates resembled those of the Duck/HK/Y280/97-like lineage. Infection by H9N2 is commonplace in Shanghai live-poultry markets, allowing the viruses to have evolved rapidly. PMID:22407404

  17. New vaccines against influenza virus

    PubMed Central

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs. PMID:24427759

  18. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection. PMID:27486731

  19. Genetic characterization of avian influenza subtype H4N6 and H4N9 from live bird market, Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A one year active surveillance program for influenza A viruses among avian species in a live-bird market (LBM) in Bangkok, Thailand was conducted in 2009. Out of 970 samples collected, influenza A virus subtypes H4N6 (n=2) and H4N9 (n=1), were isolated from healthy Muscovy ducks. All three viruses w...

  20. The evolution of human influenza viruses.

    PubMed Central

    Hay, A J; Gregory, V; Douglas, A R; Lin, Y P

    2001-01-01

    The evolution of influenza viruses results in (i) recurrent annual epidemics of disease that are caused by progressive antigenic drift of influenza A and B viruses due to the mutability of the RNA genome and (ii) infrequent but severe pandemics caused by the emergence of novel influenza A subtypes to which the population has little immunity. The latter characteristic is a consequence of the wide antigenic diversity and peculiar host range of influenza A viruses and the ability of their segmented RNA genomes to undergo frequent genetic reassortment (recombination) during mixed infections. Contrasting features of the evolution of recently circulating influenza AH1N1, AH3N2 and B viruses include the rapid drift of AH3N2 viruses as a single lineage, the slow replacement of successive antigenic variants of AH1N1 viruses and the co-circulation over some 25 years of antigenically and genetically distinct lineages of influenza B viruses. Constant monitoring of changes in the circulating viruses is important for maintaining the efficacy of influenza vaccines in combating disease. PMID:11779385

  1. Continuing Threat of Influenza (H5N1) Virus Circulation in Egypt

    PubMed Central

    El-Shesheny, Rabeh; Kutkat, Mohamed A.; Kandeil, Ahmed M.; Mostafa, Ahmed; Ducatez, Mariette F.; McKenzie, Pamela P.; Govorkova, Elena A.; Nasraa, Mohamed H.; Webster, Robert G.; Webby, Richard J.; Ali, Mohamed A.

    2011-01-01

    Reservoirs for the continuing influenza (H5N1) outbreaks in Egypt are ill-defined. Through active surveillance, we detected highly pathogenic influenza subtype H5 viruses in all poultry sectors; incidence was 5%. No other subtypes were found. Continued circulation of influenza (H5N1) viruses in various regions and poultry sectors perpetuates human exposure in Egypt. PMID:22172626

  2. Prepandemic influenza vaccine H5N1 (split virion, inactivated, adjuvanted) [Prepandrix]: a review of its use as an active immunization against influenza A subtype H5N1 virus.

    PubMed

    Carter, Natalie J; Plosker, Greg L

    2008-01-01

    Although rare, influenza pandemics are a recurrent event, and influenza A/H5N1 is generally considered to be the most likely causative agent of the next pandemic. Vaccines are widely considered to be the first line of defense for protecting populations in advance of an influenza pandemic. Because it is not known beforehand which strain of influenza A/H5N1 virus could give rise to a pandemic, prepandemic vaccines that impart broad cross-reactive immunogenicity are required. In addition, low doses of H5 hemagglutinin are preferable in order to make antigen supplies go further towards meeting global demands for prepandemic vaccines.Prepandemic influenza vaccine H5N1 [Prepandrix(trade mark); AS03-H5N1 vaccine] is a split virion, inactivated vaccine containing H5 hemagglutinin antigen adjuvanted with a novel 10% oil-in-water emulsion-based adjuvant system (AS03). It is approved in the EU for use as an active immunization against H5N1 subtype influenza A virus (influenza A/H5N1 virus) in adults aged 18-60 years. The recommended dosage in this population is two doses of 0.5 mL containing 3.75 microg of H5 hemagglutinin, administered > or =21 days apart. Adjuvantation of H5N1 vaccine with AS03 allows for a reduction in the H5 hemagglutinin dose required to elicit an adequate immune response, and administration of two doses of the adjuvanted vaccine met all criteria for the licensure of influenza vaccines set out in European Committee for Proprietary Medicinal Products (CPMP) and US FDA documents. In two clinical trials, two doses of AS03-H5N1 vaccine containing 3.75 microg of H5 hemagglutinin induced an immune response in healthy volunteers aged 18-60 years against the homologous, clade 1 vaccine strain, A/Vietnam/1194/2004, and the heterologous, drifted, clade 2 nonvaccine strains, A/Anhui/1/2005, A/Indonesia/5/2005, and A/turkey/Turkey/1/2005. This cross-clade response persisted for > or =6 months following administration of the first vaccine dose in the majority of

  3. Recent zoonoses caused by influenza A viruses.

    PubMed

    Alexander, D J; Brown, I H

    2000-04-01

    Influenza is a highly contagious, acute illness which has afflicted humans and animals since ancient times. Influenza viruses are part of the Orthomyxoviridae family and are grouped into types A, B and C according to antigenic characteristics of the core proteins. Influenza A viruses infect a large variety of animal species, including humans, pigs, horses, sea mammals and birds, occasionally producing devastating pandemics in humans, such as in 1918, when over twenty million deaths occurred world-wide. The two surface glycoproteins of the virus, haemagglutinin (HA) and neuraminidase (NA), are the most important antigens for inducing protective immunity in the host and therefore show the greatest variation. For influenza A viruses, fifteen antigenically distinct HA subtypes and nine NA subtypes are recognised at present; a virus possesses one HA and one NA subtype, apparently in any combination. Although viruses of relatively few subtype combinations have been isolated from mammalian species, all subtypes, in most combinations, have been isolated from birds. In the 20th Century, the sudden emergence of antigenically different strains in humans, termed antigenic shift, has occurred on four occasions, as follows, in 1918 (H1N1), 1957 (H2N2), 1968 (H3N2) and 1977 (H1N1), each resulting in a pandemic. Frequent epidemics have occurred between the pandemics as a result of gradual antigenic change in the prevalent virus, termed antigenic drift. Currently, epidemics occur throughout the world in the human population due to infection with influenza A viruses of subtypes H1N1 and H3N2 or with influenza B virus. The impact of these epidemics is most effectively measured by monitoring excess mortality due to pneumonia and influenza. Phylogenetic studies suggest that aquatic birds could be the source of all influenza A viruses in other species. Human pandemic strains are thought to have emerged through one of the following three mechanisms: genetic reassortment (occurring as a

  4. Swine Influenza/Variant Influenza Viruses

    MedlinePlus

    ... Humans Key Facts about Human Infections with Variant Viruses Interim Guidance for Clinicians on Human Infections Background, Risk Assessment & Reporting Reported Infections with Variant Influenza Viruses in the United States since 2005 Prevention Treatment ...

  5. Viral Reassortment and Transmission after Coinfection of Pigs with two Swine Influenza Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A viruses of subtypes H3N2, H1N1 and H1N2 are circulating in U.S. swine. Because influenza A virus contains 8 RNA segments, genetic reassortment can take place when 2 or more influenza viruses infect the same cell. We studied the reassortment potential and transmissibility of swine influen...

  6. Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health.

    PubMed

    Kong, Weili; Wang, Feibing; Dong, Bin; Ou, Changbo; Meng, Demei; Liu, Jinhua; Fan, Zhen-Chuan

    2015-12-01

    Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens. PMID:26344393

  7. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    PubMed

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses. PMID:26671828

  8. A heterologous neuraminidase subtype strategy for the differentiation of infected and vaccinated animals (DIVA) for avian influenza virus using an alternative neuraminidase inhibition test

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The option of vaccinating poultry against avian influenza (AI) as a control tool is gaining greater acceptance by governments and the poultry industry world wide. One reservation about vaccination with killed whole virus vaccines is the loss of the ability to use commonly used serologic surveillanc...

  9. Monitoring of avian influenza viruses subtypes H5 and H7 in wild birds in the Azov-Black Sea region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. To date, influenza remains an unpredictable infection for animals, birds and people. The constant emergence of new strains and variants with new properties and pathogenicity for new hosts requires constant monitoring and careful research of new viruses. Since the main and primary reser...

  10. A heterologous neuraminidase subtype strategy for the differentiation of vaccinated and infected animals (DIVA) strategy for avian influenza virus using a more flexible neuraminidase inhibition test in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The option of vaccinating poultry against avian influenza (AI) as a control tool is gaining greater acceptance by the government and poultry industry world-wide. One reservation about vaccination with killed whole virus vaccines is the loss of the ability to use serologic surveillance to identify i...

  11. Issues encountered in development of enzyme-linked immunosorbent assay for use in detecting influenza A virus subtype H5N1 exposure in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential mechanism by which highly pathogenic avian influenza H5N1 viruses could become established in humans is through the infection of and adaptation in pigs. To detect the occurrence of such adaptation, monitoring of the pig populations in endemic H5N1 areas through serological screening woul...

  12. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  13. Evaluation of Alere i Influenza A&B for rapid detection of influenza viruses A and B.

    PubMed

    Nie, Shuping; Roth, Richard B; Stiles, Jeffrey; Mikhlina, Albina; Lu, Xuedong; Tang, Yi-Wei; Babady, N Esther

    2014-09-01

    Rapid and accurate diagnosis of influenza is important for infection control, as well as for patient management. Alere i Influenza A&B is an isothermal nucleic acid amplification-based integrated system for detection and differentiation of influenza virus A and influenza virus B. The performance of the Alere i Influenza A&B was screened using frozen nasopharyngeal-swab specimens collected in viral transport medium (VTM) that were originally tested fresh with the FilmArray Respiratory Panel (RP) assay during the 2012-2013 influenza outbreak. In total, 360 VTM specimens were selected for Alere i Influenza A&B testing: 40 influenza virus A H1N1-2009 (influenza virus A-1), 40 influenza virus A H3N2 (influenza virus A-3), 37 influenza virus A "equivocal" or "no subtype detected" (influenza virus A-u), 41 influenza virus B, and 202 influenza virus-negative specimens, as initially determined by the FilmArray RP assay. The Alere assay showed sensitivities of 87.2%, 92.5%, 25.0%, and 97.4% for influenza virus A-1, influenza virus A-3, influenza virus A-u, and influenza virus B, respectively, after discordant resolution by Prodesse ProFLU+ PCR. The specificities were 100% for both influenza virus A and influenza virus B. In general, the Alere i Influenza A&B provided good sensitivity, although the assay did show poorer sensitivity with samples determined to have low influenza virus A titers by Prodesse ProFlu+ PCR (a mean real-time PCR threshold cycle [CT] value of 31.9 ± 2.0), which included the majority of the samples called influenza virus A "equivocal" or "no subtype detected" by a single BioFire FilmArray RP test. The integrated, rapid, and simple characteristics of the Alere i Influenza A&B assay make it a potential candidate for point-of-care testing, with a test turnaround time of less than 15 min. PMID:24989611

  14. Experimental co-infection of SPF chickens with low pathogenicity avian influenza virus (LPAIV) subtypes H9N2, H5N2 and H7N9, and infectious bronchitis virus (IBV)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and infectious bronchitis virus (IBV) are two of the most important respiratory viruses affecting poultry worldwide, but little is known about the effect of co-infection of these two viruses in poultry. Low pathogenicity (LP) AIV can produce from mild to moderate upper r...

  15. Pandemic Threat Posed by Avian Influenza A Viruses

    PubMed Central

    Horimoto, Taisuke; Kawaoka, Yoshihiro

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans. PMID:11148006

  16. Predicting Hotspots for Influenza Virus Reassortment

    PubMed Central

    Gilbert, Marius; Martin, Vincent; Cappelle, Julien; Hosseini, Parviez; Njabo, Kevin Y.; Abdel Aziz, Soad; Xiao, Xiangming; Daszak, Peter; Smith, Thomas B.

    2013-01-01

    The 1957 and 1968 influenza pandemics, each of which killed ≈1 million persons, arose through reassortment events. Influenza virus in humans and domestic animals could reassort and cause another pandemic. To identify geographic areas where agricultural production systems are conducive to reassortment, we fitted multivariate regression models to surveillance data on influenza A virus subtype H5N1 among poultry in China and Egypt and subtype H3N2 among humans. We then applied the models across Asia and Egypt to predict where subtype H3N2 from humans and subtype H5N1 from birds overlap; this overlap serves as a proxy for co-infection and in vivo reassortment. For Asia, we refined the prioritization by identifying areas that also have high swine density. Potential geographic foci of reassortment include the northern plains of India, coastal and central provinces of China, the western Korean Peninsula and southwestern Japan in Asia, and the Nile Delta in Egypt. PMID:23628436

  17. Synthesis of 1,2,3-triazolyl nucleoside analogs as potential anti-influenza A (H3N2 subtype) virus agents.

    PubMed

    Elayadi, Hanane; Smietana, Michael; Vasseur, Jean J; Balzarini, Jan; Lazrek, Hassan B

    2014-02-01

    Montmorillonite K10 impregnated with copper dichloride and potassium iodide (CuCl2 /KI/K10) was used as catalyst in the cycloaddition of azides and propargylnucleobases, to provide the corresponding 1,4-disubstituted 1,2,3-triazoles in good yield. All compounds 16-23 were evaluated for their antiviral activity in vitro. Compound 18 showed moderate inhibition against influenza virus A (H3N2). PMID:24272912

  18. Immunogenicity and efficacy of a recombinant adenovirus expressing hemagglutinin from the H5N1 subtype of swine influenza virus in mice.

    PubMed

    Wu, Yunpu; Qiao, Chuanling; Yang, Huanliang; Chen, Yan; Xin, Xiaoguang; Chen, Hualan

    2014-04-01

    The H5N1 influenza viruses infect a range of avian species and have recently been isolated from humans and pigs. In this study we generated a replication-defective recombinant adenovirus (rAd-H5HA-EGFP) expressing the hemagglutinin (HA) gene of H5N1 A/Swine/Fujian/1/2001 (SW/FJ/1/01) and evaluated its immunogenicity and protective efficacy in BALB/c mice. The recombinant virus induced high levels of hemagglutination inhibition (HI) antibody at a median tissue culture infective dose of 10(8) or 10(7). Compared with mice in the control groups, the mice vaccinated with rAd-H5HA-EGFP did not show apparent weight loss after challenge with either the homologous SW/FJ/1/01 or the heterologous H5N1 A/Chicken/Hunan/77/2005 (CK/HuN/77/05). Replication of the challenge virus was partially or completely inhibited, and viruses were detected at significantly lower numbers in the organs of the vaccinated mice, all of which survived the challenge with CK/HuN/77/05, whereas most of the control mice did not. These results indicate that rAd-H5HA-EGFP can provide effective immune protection from highly pathogenic H5N1 viruses in mice and is therefore a promising new candidate vaccine against H5N1 influenza in animals. PMID:24688173

  19. Highly Pathogenic Avian Influenza Virus Subtype H5N1 in Africa: A Comprehensive Phylogenetic Analysis and Molecular Characterization of Isolates

    PubMed Central

    Cattoli, Giovanni; Monne, Isabella; Fusaro, Alice; Joannis, Tony M.; Lombin, Lami H.; Aly, Mona M.; Arafa, Abdel S.; Sturm-Ramirez, Katharine M.; Couacy-Hymann, Emmanuel; Awuni, Joseph A.; Batawui, Komla B.; Awoume, Kodzo A.; Aplogan, Gilbert L.; Sow, Adama; Ngangnou, Andrè C.; El Nasri Hamza, Iman M.; Gamatié, Djibo; Dauphin, Gwenaelle; Domenech, Joseph M.; Capua, Ilaria

    2009-01-01

    Highly pathogenic avian influenza virus A/H5N1 was first officially reported in Africa in early 2006. Since the first outbreak in Nigeria, this virus spread rapidly to other African countries. From its emergence to early 2008, 11 African countries experienced A/H5N1 outbreaks in poultry and human cases were also reported in three of these countries. At present, little is known of the epidemiology and molecular evolution of A/H5N1 viruses in Africa. We have generated 494 full gene sequences from 67 African isolates and applied molecular analysis tools to a total of 1,152 A/H5N1 sequences obtained from viruses isolated in Africa, Europe and the Middle East between 2006 and early 2008. Detailed phylogenetic analyses of the 8 gene viral segments confirmed that 3 distinct sublineages were introduced, which have persisted and spread across the continent over this 2-year period. Additionally, our molecular epidemiological studies highlighted the association between genetic clustering and area of origin in a majority of cases. Molecular signatures unique to strains isolated in selected areas also gave us a clearer picture of the spread of A/H5N1 viruses across the continent. Mutations described as typical of human influenza viruses in the genes coding for internal proteins or associated with host adaptation and increased resistance to antiviral drugs have also been detected in the genes coding for transmembrane proteins. These findings raise concern for the possible human health risk presented by viruses with these genetic properties and highlight the need for increased efforts to monitor the evolution of A/H5N1 viruses across the African continent. They further stress how imperative it is to implement sustainable control strategies to improve animal and public health at a global level. PMID:19290041

  20. Development of Framework for Assessing Influenza Virus Pandemic Risk

    PubMed Central

    Burke, Stephen A.; Cox, Nancy J.

    2015-01-01

    Although predicting which influenza virus subtype will cause the next pandemic is not yet possible, public health authorities must continually assess the pandemic risk associated with animal influenza viruses, particularly those that have caused infections in humans, and determine what resources should be dedicated to mitigating that risk. To accomplish this goal, a risk assessment framework was created in collaboration with an international group of influenza experts. Compared with the previously used approach, this framework, named the Influenza Risk Assessment Tool, provides a systematic and transparent approach for assessing and comparing threats posed primarily by avian and swine influenza viruses. This tool will be useful to the international influenza community and will remain flexible and responsive to changing information. PMID:26196098

  1. The appearance of H3 influenza viruses in seals.

    PubMed

    Callan, R J; Early, G; Kida, H; Hinshaw, V S

    1995-01-01

    Surveillance for influenza A virus infection of seals has continued following the association of influenza A virus with epizootics of pneumonia in seals off the New England coast in 1979-1980 and 1982-1983. In January 1991 and January to February 1992, influenza A viruses were isolated from seals that died of pneumonia along the Cape Cod peninsula of Massachusetts. Antigenic characterization identified two H4N6 and three H3N3 viruses. This was the first isolation of H3 influenza viruses from seals, although this subtype is frequently detected in birds, pigs, horses and humans. Haemagglutination inhibition assays of the H3 isolates showed two distinct antigenic reactivity patterns: one more similar to an avian reference virus (A/Duck/Ukraine/1/63) and one more similar to a human virus (A/Aichi/2/68). The haemagglutinin (HA) genes from two of the H3 seal viruses showing different antigenic reactivity (A/Seal/MA/3911/92 and A/Seal/MA/3984/92) were 99.7% identical, with four nucleotide differences accounting for four amino acid differences. Phylogenetic analysis demonstrated that both of these sequences were closely related to the sequence from the avian H3 virus, A/Mallard/New York/6874/78. This indicates that influenza A viruses of apparent avian origin, including the H3 subtype viruses, continue to infect seals. PMID:7844533

  2. Isolation of an influenza A virus of unusual subtype (H1N7) from pigs in England, and the subsequent experimental transmission from pig to pig.

    PubMed

    Brown, I H; Alexander, D J; Chakraverty, P; Harris, P A; Manvell, R J

    1994-03-01

    A novel H1N7 influenza virus (A/swine/Eng/191973/92) was isolated from nasal swabs collected from two pigs on a farm where there had been recent clinical disease due to infection with an H1N1 virus (A/swine/Eng/195852/92). Antigenically, the haemagglutinin (HA) of the H1N7 virus was related most closely to the HA of A/USSR/90/77, whilst the neuraminidase (NA) appeared to be related most closely to the NA of A/equine/Prague/1/56 (H7N7). Pigs infected experimentally with A/swine/Eng/191973/92 developed mild clinical signs, excreted virus into the nasal passages for up to nine days after infection, appeared normal at necropsy, transmitted the virus to sentinel pigs, but seven out of eight pigs failed to seroconvert. These findings suggest that the H1N7 virus has a low pathogenicity for pigs, resulting in limited virus multiplication which is insufficient to stimulate a detectable primary humoral immune response. PMID:8203118

  3. Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3.2.1c with PB2 gene of H9N2 subtype into Indian poultry.

    PubMed

    Tosh, Chakradhar; Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Venkatesh, Govindarajulu; Shukla, Shweta; Mishra, Amit; Mishra, Pranav; Agarwal, Sonam; Singh, Bharati; Dubey, Prashant; Tripathi, Sushil; Kulkarni, Diwakar D

    2016-09-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are a threat to poultry in Asia, Europe, Africa and North America. Here, we report isolation and characterization of H5N1 viruses isolated from ducks and turkeys in Kerala, Chandigarh and Uttar Pradesh, India between November 2014 and March 2015. Genetic and phylogenetic analyses of haemagglutinin gene identified that the virus belonged to a new clade 2.3.2.1c which has not been detected earlier in Indian poultry. The virus possessed molecular signature for high pathogenicity to chickens, which was corroborated by intravenous pathogenicity index of 2.96. The virus was a reassortant which derives its PB2 gene from H9N2 virus isolated in China during 2007-2013. However, the neuraminidase and internal genes are of H5N1 subtype. Phylogenetic and network analysis revealed that after detection in China in 2013/2014, the virus moved to Europe, West Africa and other Asian countries including India. The analyses further indicated multiple introductions of H5N1 virus in Indian poultry and internal spread in Kerala. One of the outbreaks in ducks in Kerala is linked to the H5N1 virus isolated from wild birds in Dubai suggesting movement of virus probably through migration of wild birds. However, the outbreaks in ducks in Chandigarh and Uttar Pradesh were from an unknown source in Asia which also contributed gene pools to the outbreaks in Europe and West Africa. The widespread incidence of the novel H5N1 HPAI is similar to the spread of clade 2.2 ("Qinghai-like") virus in 2005, and should be monitored to avoid threat to animal and public health. PMID:27174088

  4. Influenza Virus Aerosols in the Air and Their Infectiousness

    PubMed Central

    2014-01-01

    Influenza is one of the most contagious and rapidly spreading infectious diseases and an important global cause of hospital admissions and mortality. There are some amounts of the virus in the air constantly. These amounts is generally not enough to cause disease in people, due to infection prevention by healthy immune systems. However, at a higher concentration of the airborne virus, the risk of human infection increases dramatically. Early detection of the threshold virus concentration is essential for prevention of the spread of influenza infection. This review discusses different approaches for measuring the amount of influenza A virus particles in the air and assessing their infectiousness. Here we also discuss the data describing the relationship between the influenza virus subtypes and virus air transmission, and distribution of viral particles in aerosol drops of different sizes. PMID:25197278

  5. Antiviral Protein of Momordica charantia L. Inhibits Different Subtypes of Influenza A

    PubMed Central

    Pongthanapisith, Viroj; Ikuta, Kazuyoshi; Puthavathana, Pilaipan; Leelamanit, Wichet

    2013-01-01

    The new antiviral activity of the protein extracted from Momordica charantia was determined with different subtypes of influenza A. The protein was purified from the seed of M. charantia using an anion exchanger and a Fast Protein Liquid Chromatography (FPLC) system. At the concentration of 1.401 mg/mL, the protein did not exhibit cytotoxicity in Madin-Darby canine kidney cells (MDCK) but inhibited 1 × 105 FFU influenza A/PR/8/34 H1N1 virus at 56.50%, 65.72%, and 100% inhibition by the protein treated before the virus (pretreated), the protein treated alongside with the virus (simultaneously treated), and the protein treated after the virus (posttreated) during incubation, respectively. Using 5, 25, and 100 TCID50 of influenza A/New Caledonia/20/99 H1N1, A/Fujian/411/01 H3N2 and A/Thailand/1(KAN-1)/2004 H5N1, the IC50 was calculated to be 100, 150, and 200; 75, 175, and 300; and 40, 75, and 200 μg/mL, respectively. Our present finding indicated that the plant protein inhibited not only H1N1 and H3N2 but also H5N1 subtype. As a result of the broad spectrum of its antiviral activity, this edible plant can be developed as an effective therapeutic agent against various and even new emerging subtypes of influenza A. PMID:23935676

  6. New World Bats Harbor Diverse Influenza A Viruses

    PubMed Central

    Tong, Suxiang; Zhu, Xueyong; Li, Yan; Shi, Mang; Zhang, Jing; Bourgeois, Melissa; Yang, Hua; Chen, Xianfeng; Recuenco, Sergio; Gomez, Jorge; Chen, Li-Mei; Johnson, Adam; Tao, Ying; Dreyfus, Cyrille; Yu, Wenli; McBride, Ryan; Carney, Paul J.; Gilbert, Amy T.; Chang, Jessie; Guo, Zhu; Davis, Charles T.; Paulson, James C.; Stevens, James; Rupprecht, Charles E.; Holmes, Edward C.; Wilson, Ian A.; Donis, Ruben O.

    2013-01-01

    Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris) from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses. PMID:24130481

  7. TMPRSS2 Independency for Haemagglutinin Cleavage In Vivo Differentiates Influenza B Virus from Influenza A Virus.

    PubMed

    Sakai, Kouji; Ami, Yasushi; Nakajima, Noriko; Nakajima, Katsuhiro; Kitazawa, Minori; Anraku, Masaki; Takayama, Ikuyo; Sangsriratanakul, Natthanan; Komura, Miyuki; Sato, Yuko; Asanuma, Hideki; Takashita, Emi; Komase, Katsuhiro; Takehara, Kazuaki; Tashiro, Masato; Hasegawa, Hideki; Odagiri, Takato; Takeda, Makoto

    2016-01-01

    Influenza A and B viruses show clear differences in their host specificity and pandemic potential. Recent studies have revealed that the host protease TMPRSS2 plays an essential role for proteolytic activation of H1, H3, and H7 subtype strains of influenza A virus (IAV) in vivo. IAV possessing a monobasic cleavage site in the haemagglutinin (HA) protein replicates poorly in TMPRSS2 knockout mice owing to insufficient HA cleavage. In the present study, human isolates of influenza B virus (IBV) strains and a mouse-adapted IBV strain were analysed. The data showed that IBV successfully underwent HA cleavage in TMPRSS2 knockout mice, and that the mouse-adapted strain was fully pathogenic to these mice. The present data demonstrate a clear difference between IAV and IBV in their molecular mechanisms for spreading in vivo. PMID:27389476

  8. TMPRSS2 Independency for Haemagglutinin Cleavage In Vivo Differentiates Influenza B Virus from Influenza A Virus

    PubMed Central

    Sakai, Kouji; Ami, Yasushi; Nakajima, Noriko; Nakajima, Katsuhiro; Kitazawa, Minori; Anraku, Masaki; Takayama, Ikuyo; Sangsriratanakul, Natthanan; Komura, Miyuki; Sato, Yuko; Asanuma, Hideki; Takashita, Emi; Komase, Katsuhiro; Takehara, Kazuaki; Tashiro, Masato; Hasegawa, Hideki; Odagiri, Takato; Takeda, Makoto

    2016-01-01

    Influenza A and B viruses show clear differences in their host specificity and pandemic potential. Recent studies have revealed that the host protease TMPRSS2 plays an essential role for proteolytic activation of H1, H3, and H7 subtype strains of influenza A virus (IAV) in vivo. IAV possessing a monobasic cleavage site in the haemagglutinin (HA) protein replicates poorly in TMPRSS2 knockout mice owing to insufficient HA cleavage. In the present study, human isolates of influenza B virus (IBV) strains and a mouse-adapted IBV strain were analysed. The data showed that IBV successfully underwent HA cleavage in TMPRSS2 knockout mice, and that the mouse-adapted strain was fully pathogenic to these mice. The present data demonstrate a clear difference between IAV and IBV in their molecular mechanisms for spreading in vivo. PMID:27389476

  9. Novel vaccines against influenza viruses

    PubMed Central

    Kang, Sang-Moo; Song, Jae-Min; Compans, Richard W.

    2011-01-01

    Killed and live attenuated influenza virus vaccines are effective in preventing and curbing the spread of influenza epidemics when the strains present in the vaccines are closely matched with the predicted epidemic strains. These vaccines are primarily targeted to induce immunity to the variable major target antigen, hemagglutinin (HA) of influenza virus. However, current vaccines are not effective in preventing the emergence of new pandemic or highly virulent viruses. New approaches are being investigated to develop universal influenza virus vaccines as well as to apply more effective vaccine delivery methods. Conserved vaccine targets including the influenza M2 ion channel protein and HA stalk domains are being developed using recombinant technologies to improve the level of cross protection. In addition, recent studies provide evidence that vaccine supplements can provide avenues to further improve current vaccination. PMID:21968298

  10. Efficacy of intranasal administration of a truncated NS1 modified live influenza virus vaccine in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the U.S., despite available swine influenza virus (SIV) vaccines, multiple influenza subtypes as well as antigenic and genetic variants within subtypes continue to circulate in the swine population. One of the challenges to control and eliminate SIV is that the currently used inactivated influenz...

  11. Emergence of influenza A viruses.

    PubMed Central

    Webby, R J; Webster, R G

    2001-01-01

    Pandemic influenza in humans is a zoonotic disease caused by the transfer of influenza A viruses or virus gene segments from animal reservoirs. Influenza A viruses have been isolated from avian and mammalian hosts, although the primary reservoirs are the aquatic bird populations of the world. In the aquatic birds, influenza is asymptomatic, and the viruses are in evolutionary stasis. The aquatic bird viruses do not replicate well in humans, and these viruses need to reassort or adapt in an intermediate host before they emerge in human populations. Pigs can serve as a host for avian and human viruses and are logical candidates for the role of intermediate host. The transmission of avian H5N1 and H9N2 viruses directly to humans during the late 1990s showed that land-based poultry also can serve between aquatic birds and humans as intermediate hosts of influenza viruses. That these transmission events took place in Hong Kong and China adds further support to the hypothesis that Asia is an epicentre for influenza and stresses the importance of surveillance of pigs and live-bird markets in this area. PMID:11779380

  12. Variant (Swine Origin) Influenza Viruses in Humans

    MedlinePlus

    ... What's this? Submit Button Past Newsletters Variant Influenza Viruses: Background and CDC Risk Assessment and Reporting Language: ... Background CDC Assessment Reporting Background On Variant Influenza Viruses Swine flu viruses do not normally infect humans. ...

  13. A VLP Vaccine Induces Broad-Spectrum Cross-Protective Antibody Immunity against H5N1 and H1N1 Subtypes of Influenza A Virus

    PubMed Central

    Wu, Chia-Ying; Yeh, Yi-Chun; Chan, Jia-Tsrong; Yang, Yu-Chih; Yang, Ji-Rong; Liu, Ming-Tsan; Wu, Ho-Sheng; Hsiao, Pei-Wen

    2012-01-01

    The recent threats of influenza epidemics and pandemics have prioritized the development of a universal vaccine that offers protection against a wider variety of influenza infections. Here, we demonstrate a genetically modified virus-like particle (VLP) vaccine, referred to as H5M2eN1-VLP, that increased the antigenic content of NA and induced rapid recall of antibody against HA2 after viral infection. As a result, H5M2eN1-VLP vaccination elicited a broad humoral immune response against multiple viral proteins and caused significant protection against homologous RG-14 (H5N1) and heterologous A/California/07/2009 H1N1 (CA/07) and A/PR/8/34 H1N1 (PR8) viral lethal challenges. Moreover, the N1-VLP (lacking HA) induced production of a strong NA antibody that also conferred significant cross protection against H5N1 and heterologous CA/07 but not PR8, suggesting the protection against N1-serotyped viruses can be extended from avian-origin to CA/07 strain isolated in humans, but not to evolutionally distant strains of human-derived. By comparative vaccine study of an HA-based VLP (H5N1-VLP) and NA-based VLPs, we found that H5N1-VLP vaccination induced specific and strong protective antibodies against the HA1 subunit of H5, thus restricting the breadth of cross-protection. In summary, we present a feasible example of direction of VLP vaccine immunity toward NA and HA2, which resulted in cross protection against both seasonal and pandemic influenza strains, that could form the basis for future design of a better universal vaccine. PMID:22879951

  14. New aspects of influenza viruses.

    PubMed Central

    Shaw, M W; Arden, N H; Maassab, H F

    1992-01-01

    Influenza virus infections continue to cause substantial morbidity and mortality with a worldwide social and economic impact. The past five years have seen dramatic advances in our understanding of viral replication, evolution, and antigenic variation. Genetic analyses have clarified relationships between human and animal influenza virus strains, demonstrating the potential for the appearance of new pandemic reassortants as hemagglutinin and neuraminidase genes are exchanged in an intermediate host. Clinical trials of candidate live attenuated influenza virus vaccines have shown the cold-adapted reassortants to be a promising alternative to the currently available inactivated virus preparations. Modern molecular techniques have allowed serious consideration of new approaches to the development of antiviral agents and vaccines as the functions of the viral genes and proteins are further elucidated. The development of techniques whereby the genes of influenza viruses can be specifically altered to investigate those functions will undoubtedly accelerate the pace at which our knowledge expands. PMID:1310439

  15. Avian influenza virus RNA extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  16. Modified live virus vaccine induces a distinct immune response profile compared to inactivated influenza A virus vaccines in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and antigenic diversity within H1 influenza A virus (IAV) subtypes circulating in swine is increasing. The need for cross-protective influenza vaccines in swine is necessary as the virus becomes more diverse. This study compared the humoral and cell-mediated immune response of modified live ...

  17. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral.

    PubMed

    Smith, Claire M; Scott, Paul D; O'Callaghan, Christopher; Easton, Andrew J; Dimmock, Nigel J

    2016-01-01

    Defective interfering (DI) viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8) was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1); it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral. PMID:27556481

  18. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    PubMed Central

    Smith, Claire M.; Scott, Paul D.; O’Callaghan, Christopher; Easton, Andrew J.; Dimmock, Nigel J.

    2016-01-01

    Defective interfering (DI) viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8) was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1); it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral. PMID:27556481

  19. Transmission of Influenza A Viruses

    PubMed Central

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  20. Transmission of influenza A viruses.

    PubMed

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-05-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  1. Ecology of avian influenza virus in birds.

    PubMed

    Causey, Douglas; Edwards, Scott V

    2008-02-15

    Avian influenza A virus (an orthomyxovirus) is a zoonotic pathogen with a natural reservoir entirely in birds. The influenza virus genome is an 8-segment single-stranded RNA with high potential for in situ recombination. Two segments code for the hemagglutinin (H) and neuraminidase (N) antigens used for host-cell entry. At present, 16 H and 9 N subtypes are known, for a total of 144 possible different influenza subtypes, each with potentially different host susceptibility. With >10,000 species of birds found in nearly every terrestrial and aquatic habitat, there are few places on earth where birds cannot be found. The avian immune system differs from that of humans in several important features, including asynchronous B and T lymphocyte systems and a polymorphic multigene immune complex, but little is known about the immunogenetics of pathogenic response. Postbreeding dispersal and migration and a naturally high degree of environmental vagility mean that wild birds have the potential to be vectors that transmit highly pathogenic variants great distances from the original sources of infection. PMID:18269325

  2. Influenza virus hemagglutinin stalk-based antibodies and vaccines

    PubMed Central

    Krammer, Florian; Palese, Peter

    2013-01-01

    Antibodies against the conserved stalk domain of the hemagglutinin are currently being discussed as promising therapeutic tools against influenza virus infections. Due to the conservation of the stalk domain these antibodies are able to broadly neutralize a wide spectrum of influenza virus strains and subtypes. Broadly protective vaccine candidates based on the epitopes of these antibodies, e.g. chimeric and headless hemagglutinin structures, are currently under development and show promising results in animals models. These candidates could be developed into universal influenza virus vaccines that protect from infection with drifted seasonal as well as novel pandemic influenza virus strains therefore obviating the need for annual vaccination, and enhancing our pandemic preparedness. PMID:23978327

  3. Analysis of H7 avian influenza viruses by antigenic cartography and correlation to protection by vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H7 hemagglutinin subtype one of the most common subtypes of avian influenza virus (AIV) in poultry world wide and since it has the potential to become highly pathogenic it is among the priority subtypes for vaccination. Selection of the optimal vaccine seed strains may now be aided by antigenic...

  4. Household Transmission of Influenza Virus.

    PubMed

    Tsang, Tim K; Lau, Lincoln L H; Cauchemez, Simon; Cowling, Benjamin J

    2016-02-01

    Human influenza viruses cause regular epidemics and occasional pandemics with a substantial public health burden. Household transmission studies have provided valuable information on the dynamics of influenza transmission. We reviewed published studies and found that once one household member is infected with influenza, the risk of infection in a household contact can be up to 38%, and the delay between onset in index and secondary cases is around 3 days. Younger age was associated with higher susceptibility. In the future, household transmission studies will provide information on transmission dynamics, including the correlation of virus shedding and symptoms with transmission, and the correlation of new measures of immunity with protection against infection. PMID:26612500

  5. Susceptibility of avian species to north american H13 low pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  6. Mucosal correlates of cross-protection for live-attenuated influenza virus vaccines in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlling swine influenza A virus (IAV) has become increasingly difficult with the emergence of novel reassorted strains and introduction of human seasonal IAV into pigs. In North American swine there are 6 antigenically distinct H1 subtypes currently circulating. Live-attenuated influenza virus (...

  7. Enhanced Pneumonia With Pandemic 2009 A/H1N1 Swine Influenza Virus in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. Swine influenza A viruses (SIV) in the major swine producing regions of North America consist of multiple subtypes of endemic H1N1, H1N2, and H3N2 derived from swine, avian and human influenza viruses with a triple reassortant internal gene (TRIG) constellation (1). Genetic drift and r...

  8. Cloned Defective Interfering Influenza RNA and a Possible Pan-Specific Treatment of Respiratory Virus Diseases

    PubMed Central

    Dimmock, Nigel J.; Easton, Andrew J.

    2015-01-01

    Defective interfering (DI) genomes are characterised by their ability to interfere with the replication of the virus from which they were derived, and other genetically compatible viruses. DI genomes are synthesized by nearly all known viruses and represent a vast natural reservoir of antivirals that can potentially be exploited for use in the clinic. This review describes the application of DI virus to protect from virus-associated diseases in vivo using as an example a highly active cloned influenza A DI genome and virus that protects broadly in preclinical trials against different subtypes of influenza A and against non-influenza A respiratory viruses. This influenza A-derived DI genome protects by two totally different mechanisms: molecular interference with influenza A replication and by stimulating innate immunity that acts against non-influenza A viruses. The review considers what is needed to develop DI genomes to the point of entry into clinical trials. PMID:26184282

  9. Influenza virus antigenicity and broadly neutralizing epitopes

    PubMed Central

    Air, Gillian M.

    2015-01-01

    A vaccine formulation that would be effective against all strains of influenza virus has long been a goal of vaccine developers, but antibodies after infection or vaccination were seen to be strain specific and there was little evidence of cross-reactive antibodies that neutralized across subtypes. Recently a number of broadly neutralizing monoclonal antibodies have been characterized. This review describes the different classes of broadly neutralizing antibodies and discusses the potential of their therapeutic use or for design of immunogens that induce a high proportion of broadly neutralizing antibodies. PMID:25846699

  10. Influenza A virus and secondary bacterial infection in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A virus (IAV) infection alone causes significant disease characterized by respiratory distress and poor growth in pigs. Endemic strains of IAV in North America pigs consist of the subtypes H1N1, H1N2, and H3N2. These circulating strains contain the triple reassortant internal gene (TRIG) c...

  11. Highly pathogenic avian influenza virus among wild birds in Mongolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  12. Influenza A virus in pigs – protection, provocation and predisposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endemic strains of influenza A virus (IAV) in North America pigs consist of the subtypes H1N1, H1N2, and H3N2. These circulating strains contain the triple reassortant internal gene (TRIG) cassette resulting from incorporation of genes from swine, avian, and human IAV's. Genetic drift and reassortme...

  13. Sampling strategies and biodiversity of influenza A subtypes in wild birds

    USGS Publications Warehouse

    Olson, Sarah H.; Parmley, Jane; Soos, Catherine; Gilbert, Martin; Latore-Margalef, Neus; Hall, Jeffrey S.; Hansbro, Phillip M.; Leighton, Frank; Munster, Vincent; Joly, Damien

    2014-01-01

    Wild aquatic birds are recognized as the natural reservoir of avian influenza A viruses (AIV), but across high and low pathogenic AIV strains, scientists have yet to rigorously identify most competent hosts for the various subtypes. We examined 11,870 GenBank records to provide a baseline inventory and insight into patterns of global AIV subtype diversity and richness. Further, we conducted an extensive literature review and communicated directly with scientists to accumulate data from 50 non-overlapping studies and over 250,000 birds to assess the status of historic sampling effort. We then built virus subtype sample-based accumulation curves to better estimate sample size targets that capture a specific percentage of virus subtype richness at seven sampling locations. Our study identifies a sampling methodology that will detect an estimated 75% of circulating virus subtypes from a targeted bird population and outlines future surveillance and research priorities that are needed to explore the influence of host and virus biodiversity on emergence and transmission.

  14. Sampling strategies and biodiversity of influenza A subtypes in wild birds.

    PubMed

    Olson, Sarah H; Parmley, Jane; Soos, Catherine; Gilbert, Martin; Latorre-Margalef, Neus; Hall, Jeffrey S; Hansbro, Phillip M; Leighton, Frederick; Munster, Vincent; Joly, Damien

    2014-01-01

    Wild aquatic birds are recognized as the natural reservoir of avian influenza A viruses (AIV), but across high and low pathogenic AIV strains, scientists have yet to rigorously identify most competent hosts for the various subtypes. We examined 11,870 GenBank records to provide a baseline inventory and insight into patterns of global AIV subtype diversity and richness. Further, we conducted an extensive literature review and communicated directly with scientists to accumulate data from 50 non-overlapping studies and over 250,000 birds to assess the status of historic sampling effort. We then built virus subtype sample-based accumulation curves to better estimate sample size targets that capture a specific percentage of virus subtype richness at seven sampling locations. Our study identifies a sampling methodology that will detect an estimated 75% of circulating virus subtypes from a targeted bird population and outlines future surveillance and research priorities that are needed to explore the influence of host and virus biodiversity on emergence and transmission. PMID:24599502

  15. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Submit What's this? Submit Button Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Españ ...

  16. Influenza A virus among the hospitalized young children with acute respiratory infection. Is influenza A co infected with respiratory syncytial virus?

    PubMed Central

    Alavi, Seyed Mohammad; Makvandi, Manoochehr; Najafi-Fard, Saied; Alavi, Leila

    2012-01-01

    Background: Both influenza A virus (IAV) and respiratory syncytial virus (RSV) cause acute respiratory infection (ARI) in infants and young children. This study was conducted to determine Influenza A virus and its co infection with RSV among the hospitalized children with ARI. Methods: A total of 153 throat samples of the hospitalized young children aged between below one year and 5 years with the clinical signs of ARI were collected from the different hospitals in Khuzestan from June 2009 to April 2010. The samples were tested for Influenza A viruses by real time PCR. Positive IAV samples were tested for influenza A sub type H1N1 and for RSV by the nested PCR. Results: In this study, from the total 153 samples, 35 samples (22.9%) including 15 (42.8%) females and 20 (57.2%) males were positive for influenza A viruses. From the 35 positive samples for IAV, 14 were positive for swine H1N1 subtype. All the positive samples for influenza showed negative for RSV infection which revealed no coinfection with RSV. The prevalence of influenza A among age/sex groups was not significant. Conclusion: Influenza A is a prevalent viral agent isolated from young children with ARI. Influenza A subtype H1N1 was accounted for the 40 percent all laboratory-proven diagnoses of influenza in 2009. No evidence of coinfection of influenza A and RSV has been observed in the present study. PMID:24009929

  17. Nanomicroarray and Multiplex Next-Generation Sequencing for Simultaneous Identification and Characterization of Influenza Viruses

    PubMed Central

    Ragupathy, Viswanath; Liu, Jikun; Wang, Xue; Vemula, Sai Vikram; El Mubarak, Haja Sittana; Ye, Zhiping; Landry, Marie L.

    2015-01-01

    Conventional methods for detection and discrimination of influenza viruses are time consuming and labor intensive. We developed a diagnostic platform for simultaneous identification and characterization of influenza viruses that uses a combination of nanomicroarray for screening and multiplex next-generation sequencing (NGS) assays for laboratory confirmation. The nanomicroarray was developed to target hemagglutinin, neuraminidase, and matrix genes to identify influenza A and B viruses. PCR amplicons synthesized by using an adapted universal primer for all 8 gene segments of 9 influenza A subtypes were detected in the nanomicroarray and confirmed by the NGS assays. This platform can simultaneously detect and differentiate multiple influenza A subtypes in a single sample. Use of these methods as part of a new diagnostic algorithm for detection and confirmation of influenza infections may provide ongoing public health benefits by assisting with future epidemiologic studies and improving preparedness for potential influenza pandemics. PMID:25694248

  18. Influenza in Migratory Birds and Evidence of Limited Intercontinental Virus Exchange

    PubMed Central

    Krauss, Scott; Obert, Caroline A; Franks, John; Walker, David; Jones, Kelly; Seiler, Patrick; Niles, Larry; Pryor, S. Paul; Obenauer, John C; Naeve, Clayton W; Widjaja, Linda; Webby, Richard J; Webster, Robert G

    2007-01-01

    Migratory waterfowl of the world are the natural reservoirs of influenza viruses of all known subtypes. However, it is unknown whether these waterfowl perpetuate highly pathogenic (HP) H5 and H7 avian influenza viruses. Here we report influenza virus surveillance from 2001 to 2006 in wild ducks in Alberta, Canada, and in shorebirds and gulls at Delaware Bay (New Jersey), United States, and examine the frequency of exchange of influenza viruses between the Eurasian and American virus clades, or superfamilies. Influenza viruses belonging to each of the subtypes H1 through H13 and N1 through N9 were detected in these waterfowl, but H14 and H15 were not found. Viruses of the HP Asian H5N1 subtypes were not detected, and serologic studies in adult mallard ducks provided no evidence of their circulation. The recently described H16 subtype of influenza viruses was detected in American shorebirds and gulls but not in ducks. We also found an unusual cluster of H7N3 influenza viruses in shorebirds and gulls that was able to replicate well in chickens and kill chicken embryos. Genetic analysis of 6,767 avian influenza gene segments and 248 complete avian influenza viruses supported the notion that the exchange of entire influenza viruses between the Eurasian and American clades does not occur frequently. Overall, the available evidence does not support the perpetuation of HP H5N1 influenza in migratory birds and suggests that the introduction of HP Asian H5N1 to the Americas by migratory birds is likely to be a rare event. PMID:17997603

  19. Swine Influenza Virus: Emerging Understandings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: In March-April 2009, a novel pandemic H1N1 emerged in the human population in North America [1]. The gene constellation of the emerging virus was demonstrated to be a combination of genes from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before...

  20. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans.

    PubMed

    Kalthoff, Donata; Breithaupt, Angele; Teifke, Jens P; Globig, Anja; Harder, Timm; Mettenleiter, Thomas C; Beer, Martin

    2008-08-01

    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity. PMID:18680652

  1. Adaptation of pandemic H2N2 influenza A viruses in humans.

    PubMed

    Joseph, Udayan; Linster, Martin; Suzuki, Yuka; Krauss, Scott; Halpin, Rebecca A; Vijaykrishna, Dhanasekaran; Fabrizio, Thomas P; Bestebroer, Theo M; Maurer-Stroh, Sebastian; Webby, Richard J; Wentworth, David E; Fouchier, Ron A M; Bahl, Justin; Smith, Gavin J D

    2015-02-01

    The 1957 A/H2N2 influenza virus caused an estimated 2 million fatalities during the pandemic. Since viruses of the H2 subtype continue to infect avian species and pigs, the threat of reintroduction into humans remains. To determine factors involved in the zoonotic origin of the 1957 pandemic, we performed analyses on genetic sequences of 175 newly sequenced human and avian H2N2 virus isolates and all publicly available influenza virus genomes. PMID:25505070

  2. Influenza A strain-dependent pathogenesis in fatal H1N1 and H5N1 subtype infections of mice.

    PubMed

    Garigliany, Mutien Marie; Habyarimana, Adélite; Lambrecht, Bénédicte; Van de Paar, Els; Cornet, Anne; van den Berg, Thierry; Desmecht, Daniel

    2010-04-01

    To determine if fatal infections caused by different highly virulent influenza A viruses share the same pathogenesis, we compared 2 different influenza A virus subtypes, H1N1 and H5N1. The subtypes, which had shown no pathogenicity in laboratory mice, were forced to evolve by serial passaging. Although both adapted viruses evoked diffuse alveolar damage and showed a similar 50% mouse lethal dose and the same peak lung concentration, each had a distinct pathologic signature and caused a different course of acute respiratory distress syndrome. In the absence of any virus labeling, a histologist could readily distinguish infections caused by these 2 viruses. The different histologic features described in this study here refute the hypothesis of a single, universal cytokine storm underlying all fatal influenza diseases. Research is thus crucially needed to identify sets of virulence markers and to examine whether treatment should be tailored to the influenza virus pathotype. PMID:20350372

  3. Influenza A Strain-Dependent Pathogenesis in Fatal H1N1 and H5N1 Subtype Infections of Mice

    PubMed Central

    Garigliany, Mutien-Marie; Habyarimana, Adélite; Lambrecht, Bénédicte; Van de Paar, Els; Cornet, Anne; van den Berg, Thierry

    2010-01-01

    To determine if fatal infections caused by different highly virulent influenza A viruses share the same pathogenesis, we compared 2 different influenza A virus subtypes, H1N1 and H5N1. The subtypes, which had shown no pathogenicity in laboratory mice, were forced to evolve by serial passaging. Although both adapted viruses evoked diffuse alveolar damage and showed a similar 50% mouse lethal dose and the same peak lung concentration, each had a distinct pathologic signature and caused a different course of acute respiratory distress syndrome. In the absence of any virus labeling, a histologist could readily distinguish infections caused by these 2 viruses. The different histologic features described in this study here refute the hypothesis of a single, universal cytokine storm underlying all fatal influenza diseases. Research is thus crucially needed to identify sets of virulence markers and to examine whether treatment should be tailored to the influenza virus pathotype. PMID:20350372

  4. Serologic evidence of influenza A(H1N1)pdm09 virus in northern sea otters

    USGS Publications Warehouse

    Li, Zhu-Nan; Ip, Hon S.; Frost, Jessica F.; White, C. LeAnn; Murray, Michael J.; Carney, Paul J.; Sun, Xiang-Jie; Stevens, James; Levine, Min Z.; Katz, Jacqueline M.

    2014-01-01

    Sporadic epizootics of pneumonia among marine mammals have been associated with multiple animal-origin influenza A virus subtypes (1–6); seals are the only known nonhuman host for influenza B viruses (7). Recently, we reported serologic evidence of influenza A virus infection in free-ranging northern sea otters (Enhydra lutris kenyoni) captured off the coast of Washington, USA, in August 2011 (8). To investigate further which influenza A virus subtype infected these otters, we tested serum samples from these otters by ELISA for antibody-binding activity against 12 recombinant hemagglutinins (rHAs) from 7 influenza A hemagglutinin (HA) subtypes and 2 lineages of influenza B virus (Technical Appendix Table 1). Estimated ages for the otters were 2–19 years (Technical Appendix Table 2); we also tested archived serum samples from sea otters of similar ages collected from a study conducted during 2001–2002 along the Washington coast (9).

  5. Influenza A virus (H3N8) in dogs with respiratory disease, Florida.

    PubMed

    Payungporn, Sunchai; Crawford, P Cynda; Kouo, Theodore S; Chen, Li-mei; Pompey, Justine; Castleman, William L; Dubovi, Edward J; Katz, Jacqueline M; Donis, Ruben O

    2008-06-01

    In 2004, canine influenza virus subtype H3N8 emerged in greyhounds in the United States. Subsequent serologic evidence indicated virus circulation in dog breeds other than greyhounds, but the virus had not been isolated from affected animals. In 2005, we conducted virologic investigation of 7 nongreyhound dogs that died from respiratory disease in Florida and isolated influenza subtype H3N8 virus. Antigenic and genetic analysis of A/canine/Jacksonville/2005 (H3N8) and A/canine/Miami/2005 (H3N8) found similarity to earlier isolates from greyhounds, which indicates that canine influenza viruses are not restricted to greyhounds. The hemagglutinin contained 5 conserved amino acid differences that distinguish canine from equine lineages. The antigenic homogeneity of the canine viruses suggests that measurable antigenic drift has not yet occurred. Continued surveillance and antigenic analyses should monitor possible emergence of antigenic variants of canine influenza virus. PMID:18507900

  6. Development and bench validation of real time RT-PCR protocols for rapid detection of the subtypes H6, H9 and H11 of avian influenza viruses in experimental samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Real time RT-PCR (RRT-PCR) is commonly used for the rapid detection of avian influenza viruses (AIV) from clinical samples. Samples are typically screened for type A influenza by targeting the matrix gene, and then positive samples are further tested for hemagglutinin (HA) and neuraminidase (NA) su...

  7. The pig as a mixing vessel for influenza viruses: Human and veterinary implications

    PubMed Central

    Ma, Wenjun; Kahn, Robert E; Richt, Juergen A

    2009-01-01

    Influenza A viruses are highly infectious respiratory pathogens that can infect many species. Birds are the reservoir for all known influenza A subtypes; and novel influenza viruses can emerge from birds and infect mammalian species including humans. Because swine are susceptible to infection with both avian and human influenza viruses, novel reassortant influenza viruses can be generated in this mammalian species by reassortment of influenza viral segments leading to the “mixing vessel” theory. There is no direct evidence that the reassortment events culminating in the 1918, 1957 or 1968 pandemic influenza viruses originated from pigs. Genetic reassortment among avian, human and/or swine influenza virus gene segments has occurred in pigs and some novel reassortant swine viruses have been transmitted to humans. Notably, novel reassortant H2N3 influenza viruses isolated from the US pigs, most likely infected with avian influenza viruses through surface water collected in ponds for cleaning barns and watering animals, had a similar genetic make-up to early isolates (1957) of the H2N2 human pandemic. These novel H2N3 swine viruses were able to cause disease in swine and mice and were infectious and highly transmissible in swine and ferrets without prior adaptation. The preceding example shows that pigs could transmit novel viruses from an avian reservoir to other mammalian species. Importantly, H2 viruses pose a substantial risk to humans because they have been absent from mammalian species since 1968 and people born after 1968 have little preexisting immunity to the H2 subtype. It is difficult to predict which virus will cause the next human pandemic and when that pandemic might begin. Importantly, the establishment and spread of a reassorted mammalian-adapted virus from pigs to humans could happen anywhere in the world. Therefore, both human and veterinary research needs to give more attention to potential cross-species transmission capacity of influenza A

  8. Experimental Evaluation of a Swine Influenza Virus Isolated from a County Fair Outbreak in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1998, 3 predominant swine influenza virus (SIV) subtypes have circulated in US swine, H1N1, H1N2, and H3N2. Distinct antigenic and genetic clusters have been demonstrated within the H1 and H3 SIV subtypes (1, 2). In August 2007, pigs and people became clinically affected by an influenza-like i...

  9. A live attenuated cold adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscore their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of ...

  10. Novel hemagglutinin-based influenza virus inhibitors

    PubMed Central

    Shen, Xintian; Zhang, Xuanxuan

    2013-01-01

    Influenza virus has caused seasonal epidemics and worldwide pandemics, which caused tremendous loss of human lives and socioeconomics. Nowadays, only two classes of anti-influenza drugs, M2 ion channel inhibitors and neuraminidase inhibitors respectively, are used for prophylaxis and treatment of influenza virus infection. Unfortunately, influenza virus strains resistant to one or all of those drugs emerge frequently. Hemagglutinin (HA), the glycoprotein in influenza virus envelope, plays a critical role in viral binding, fusion and entry processes. Therefore, HA is a promising target for developing anti-influenza drugs, which block the initial entry step of viral life cycle. Here we reviewed recent understanding of conformational changes of HA in protein folding and fusion processes, and the discovery of HA-based influenza entry inhibitors, which may provide more choices for preventing and controlling potential pandemics caused by multi-resistant influenza viruses. PMID:23977436

  11. A practical approach to genetic screening for influenza virus variants.

    PubMed Central

    Zou, S

    1997-01-01

    This report describes a quick genetic approach to the screening of influenza virus variants. Multiplex reverse transcription (MRT) and multiplex PCR (MPCR) were used to amplify and differentiate the hemagglutinin (HA) genes of different types and subtypes of influenza viruses. Heteroduplex mobility assay (HMA) was then used to differentiate strains within the same type and subtype. Three primers complementary to the consensus 3' termini of viral genomic RNA segments of human influenza virus types A, B, and C were used in a single MRT reaction to prime the synthesis of cDNA of all the viral genome segments. The cDNA was then amplified in an MPCR containing primers for the HA genes of the H1 and H3 subtypes of type A, the HA gene of type B, and the counterpart of type C virus. Amplicons of the different types and subtypes differ in size, thus allowing typing and subtyping. The regions amplified cover most of the HA1 portion of the HA genes and therefore amplicons of variants identified by the described HMA can be sequenced directly. In the HMA, the amplicon of an individual strain was mixed with that of a reference strain and heteroduplexes derived from mismatches migrated more slowly than homoduplexes of the same size in electrophoresis, with the mobility shift pattern indicating the divergence of amplicons. The whole process from viral RNA extraction to HMA can be completed within 2 days and thus provides a quick screening before further analysis by hemagglutination inhibition testing and sequencing. In addition, all segments of the viral genome can be amplified from a single MRT reaction, which can yield valuable sources of products for future genetic analyses. This method should facilitate genetic screening and characterization of influenza virus variants. PMID:9316919

  12. Protection against H1N1 influenza challenge by a DNA vaccine expressing H3/H1 subtype hemagglutinin combined with MHC class II-restricted epitopes

    PubMed Central

    2010-01-01

    Background Multiple subtypes of avian influenza viruses have crossed the species barrier to infect humans and have the potential to cause a pandemic. Therefore, new influenza vaccines to prevent the co-existence of multiple subtypes within a host and cross-species transmission of influenza are urgently needed. Methods Here we report a multi-epitope DNA vaccine targeted towards multiple subtypes of the influenza virus. The protective hemagglutinin (HA) antigens from H5/H7/H9 subtypes were screened for MHC II class-restricted epitopes overlapping with predicted B cell epitopes. We then constructed a DNA plasmid vaccine, pV-H3-EHA-H1, based on HA antigens from human influenza H3/H1 subtypes combined with the H5/H7/H9 subtype Th/B epitope box. Results Epitope-specific IFN-γ ELISpot responses were significantly higher in the multi-epitope DNA group than in other vaccine and control groups (P < 0.05). The multi-epitope group significantly enhanced Th2 cell responses as determined by cytokine assays. The survival rate of mice given the multi-epitope vaccine was the highest among the vaccine groups, but it was not significantly different compared to those given single antigen expressing pV-H1HA1 vaccine and dual antigen expressing pV-H3-H1 vaccine (P > 0.05). No measurable virus titers were detected in the lungs of the multi-epitope immunized group. The unique multi-epitope DNA vaccine enhanced virus-specific antibody and cellular immunity as well as conferred complete protection against lethal challenge with A/New Caledonia/20/99 (H1N1) influenza strain in mice. Conclusions This approach may be a promising strategy for developing a universal influenza vaccine to prevent multiple subtypes of influenza virus and to induce long-term protective immune against cross-species transmission. PMID:21134292

  13. Initiation and regulation of immune responses to immunization with whole inactivated vaccines prepared from two genetically and antigenically distinct lineages of Egyptian influenza A virus subtype H5N1.

    PubMed

    Samy, Ahmed; El-Enbaawy, Mona I; El-Sanousi, Ahmed A; Nasef, Soad A; Hikono, Hirokazu; Saito, Takehiko

    2016-10-01

    Following the introduction of highly pathogenic avian influenza (HPAI) virus subtype H5N1, the Egyptian government implemented a massive poultry vaccination campaign as the cornerstone of its policies to control the virus. The efficacy of vaccination has been evaluated primarily by measuring titers of antibodies inhibiting the hemagglutinating activity of the viral hemagglutinin (HA). However, other aspects of the host response remain poorly understood. In the present study, in addition to hemagglutination inhibition (HI) titers, cytokine profiles were examined and IFNγ concentrations were measured in vivo after immunization with a whole inactivated virus (WIV) prepared from a classical strain of clade 2.2.1.2 (C121) and an antigenic drift variant of clade 2.2.1.1 (V1063). The results revealed an earlier response and higher HI titers and IFNγ levels in sera from chickens immunized with C121, accompanied by significantly higher expression of IL8, IL10, and IL18 in the spleen and IL6 and IL10 in the bursa, compared to those immunized with V1063. Furthermore, stimulation of the HD11 cell line with C121 induced gradual upregulation of pro-inflammatory cytokines, which was observed at 24 hours post-inoculation (hpi), and became more pronounced at 48 and 72 hpi, accompanied by upregulation of IFNα. Conversely, V1063 induced very early transient higher expression of pro-inflammatory cytokines at 3 and 6 hpi accompanied by upregulation of IL10, which then decreased at 24, 48 and 72 hpi. In summary, our results provide evidence of a correlation between adaptive immune responses induced by WIVs and higher expression of IL10 and IL18 in addition to early induction of IFNα. These findings could be used to improve immune responses induced by WIVs. PMID:27449156

  14. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein.

    PubMed

    Epstein, Suzanne L; Kong, Wing-pui; Misplon, Julia A; Lo, Chia-Yun; Tumpey, Terrence M; Xu, Ling; Nabel, Gary J

    2005-11-16

    Influenza epidemic and pandemic strains cannot be predicted with certainty. Current vaccines elicit antibodies effective against specific strains, but new strategies are urgently needed for protection against unexpected strains. DNA vaccines encoding conserved antigens protect animals against diverse subtypes, but their potency needs improvement. We tested DNA prime-recombinant adenoviral boost immunization to nucleoprotein (NP). Strong antibody and T cell responses were induced. Protection against challenge was T cell-dependent and substantially more potent than DNA vaccination alone. Importantly, vaccination protected against lethal challenge with highly pathogenic H5N1 virus. Thus, gene-based vaccination with NP may contribute to protective immunity against diverse influenza viruses through its ability to stimulate cellular immunity. PMID:16011865

  15. Selecting Viruses for the Seasonal Influenza Vaccine

    MedlinePlus

    ... which viruses are selected for use in vaccine production? The influenza viruses in the seasonal flu vaccine ... to get a good vaccine virus for vaccine production? There are a number of factors that can ...

  16. Mucosal correlates of cross-protection for live-attenuated influenza virus vaccines in pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlling influenza A virus (IAV) in swine has become increasingly difficult with the emergence of novel reassorted strains and introduction of human seasonal IAV into pigs. In North America there are six antigenically distinct H1 subtypes currently circulating in pigs. Live-attenuated influenza v...

  17. The pathogenesis of H3N8 canine influenza virus in chickens and turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canine influenza virus (CIV) of the H3N8 subtype has emerged in dog populations throughout the U.S. where it has become endemic in kennels and animal shelters in some regions of the U.S. CIV is believed to be an equine influenza that was transmitted to and adapted to dogs. It has not previously bee...

  18. Quantifying homologous and heterologous antibody titre rises after influenza virus infection.

    PubMed

    Freeman, G; Perera, R A P M; Ngan, E; Fang, V J; Cauchemez, S; Ip, D K M; Peiris, J S M; Cowling, B J

    2016-08-01

    Most influenza virus infections are associated with mild disease. One approach to estimate the occurrence of influenza virus infections in individuals is via repeated measurement of humoral antibody titres. We used baseline and convalescent antibody titres measured by haemagglutination inhibition (HI) and viral neutralization (VN) assays against influenza A(H1N1), A(H3N2) and B viruses to investigate the characteristics of antibody rises following virologically confirmed influenza virus infections in participants in a community-based study. Multivariate models were fitted in a Bayesian framework to characterize the distribution of changes in antibody titres following influenza A virus infections. In 122 participants with PCR-confirmed influenza A virus infection, homologous antibody titres rose by geometric means of 1·2- to 10·2-fold after infection with A(H1N1), A(H3N2) and A(H1N1)pdm09. Significant cross-reactions were observed between A(H1N1)pdm09 and seasonal A(H1N1). Antibody titre rises for some subtypes and assays varied by age, receipt of oseltamivir treatment, and recent receipt of influenza vaccination. In conclusion, we provided a quantitative description of the mean and variation in rises in influenza virus antibody titres following influenza virus infection. The multivariate patterns in boosting of antibody titres following influenza virus infection could be taken into account to improve estimates of cumulative incidence of infection in seroepidemiological studies. PMID:27018720

  19. Detection of influenza C virus but not influenza D virus in Scottish respiratory samples

    PubMed Central

    Smith, Donald B.; Gaunt, Eleanor R.; Digard, Paul; Templeton, Kate; Simmonds, Peter

    2016-01-01

    Background A newly proposed genus of influenza virus (influenza D) is associated with respiratory disease in pigs and cattle. The novel virus is most closely related to human influenza C virus and can infect ferrets but infection has not been reported in humans. Objectives To ascertain if influenza D virus can be detected retrospectively in patient respiratory samples. Study design 3300 human respiratory samples from Edinburgh, Scotland, covering the period 2006–2008, were screened in pools of 10 by RT-PCR using primers capable of detecting both influenza C and D viruses. Results Influenza D was not detected in any sample. Influenza C was present in 6 samples (0.2%), compared with frequencies of 3.3% and 0.9% for influenza A and B viruses from RT-PCR testing of respiratory samples over the same period. Influenza C virus was detected in samples from individuals <2 years or >45 years old, with cases occurring throughout the year. Phylogenetic analysis of nearly complete sequences of all seven segments revealed the presence of multiple, reassortant lineages. Conclusion We were unable to detect viruses related to influenza D virus in human respiratory samples. Influenza C virus was less prevalent than influenza A and B viruses, was associated with mild disease in the young (<2 years) and old (>45 years) and comprised multiple, reassortant lineages. Inclusion of influenza C virus as part of a diagnostic testing panel for respiratory infections would be of limited additional value. PMID:26655269

  20. Antibody Recognition of a Highly Conserved Influenza Virus Epitope

    SciTech Connect

    Ekiert, Damian C.; Bhabha, Gira; Elsliger, Marc-André; Friesen, Robert H.E.; Jongeneelen, Mandy; Throsby, Mark; Goudsmit, Jaap; Wilson, Ian A.; Scripps; Crucell

    2009-05-21

    Influenza virus presents an important and persistent threat to public health worldwide, and current vaccines provide immunity to viral isolates similar to the vaccine strain. High-affinity antibodies against a conserved epitope could provide immunity to the diverse influenza subtypes and protection against future pandemic viruses. Cocrystal structures were determined at 2.2 and 2.7 angstrom resolutions for broadly neutralizing human antibody CR6261 Fab in complexes with the major surface antigen (hemagglutinin, HA) from viruses responsible for the 1918 H1N1 influenza pandemic and a recent lethal case of H5N1 avian influenza. In contrast to other structurally characterized influenza antibodies, CR6261 recognizes a highly conserved helical region in the membrane-proximal stem of HA1 and HA2. The antibody neutralizes the virus by blocking conformational rearrangements associated with membrane fusion. The CR6261 epitope identified here should accelerate the design and implementation of improved vaccines that can elicit CR6261-like antibodies, as well as antibody-based therapies for the treatment of influenza.

  1. Evolutionary Dynamics and Global Diversity of Influenza A Virus

    PubMed Central

    Rejmanek, Daniel; Hosseini, Parviez R.; Mazet, Jonna A. K.; Daszak, Peter

    2015-01-01

    ABSTRACT The increasing number of zoonotic infections caused by influenza A virus (IAV) subtypes of avian origin (e.g., H5N1 and H7N9) in recent years underscores the need to better understand the factors driving IAV evolution and diversity. To evaluate the current feasibility of global analyses to contribute to this aim, we evaluated information in the public domain to explore IAV evolutionary dynamics, including nucleotide substitution rates and selection pressures, using 14 IAV subtypes in 32 different countries over a 12-year period (2000 to 2011). Using geospatial information from 39,785 IAV strains, we examined associations between subtype diversity and socioeconomic, biodiversity, and agricultural indices. Our analyses showed that nucleotide substitution rates for 11 of the 14 evaluated subtypes tended to be higher in Asian countries, particularly in East Asia, than in Canada and the United States. Similarly, at a regional level, subtypes H5N1, H5N2, and H6N2 exhibited significantly higher substitution rates in East Asia than in North America. In contrast, the selection pressures (measured as ratios of nonsynonymous to synonymous evolutionary changes [dN/dS ratios]) acting on individual subtypes showed little geographic variation. We found that the strongest predictors for the detected subtype diversity at the country level were reporting effort (i.e., total number of strains reported) and health care spending (an indicator of economic development). Our analyses also identified major global gaps in IAV reporting (including a lack of sequences submitted from large portions of Africa and South America and a lack of geolocation information) and in broad subtype testing which, until addressed, will continue to hinder efforts to track the evolution and diversity of IAV around the world. IMPORTANCE In recent years, an increasing number of influenza A virus (IAV) subtypes, including H5N1, H7N9, and H10N8, have been detected in humans. High fatality rates have led

  2. Immunosuppression During Influenza Virus Infection

    PubMed Central

    Kantzler, G. B.; Lauteria, S. F.; Cusumano, C. L.; Lee, J. D.; Ganguly, R.; Waldman, R. H.

    1974-01-01

    The effects of a live attenuated influenza vaccine and subsequent challenge with virulent influenza virus on the delayed hypersensitivity skin test, and the in vitro response of lymphocytes were evaluated. Volunteers were skin tested before and after administration of vaccine or placebo and challenge with PPD (a purified protein derivative of Mycobacterium tuberculosis), candida, mumps, and trichophytin, and their lymphocytes were tested for [3H]thymidine uptake in response to phytohemagglutin. Of eight volunteers who showed evidence of viral replication after administration of the attenuated vaccine, four had a significant diminution in their skin test response, whereas 8 of 13 volunteers infected with virulent influenza virus showed a diminution. Of the 21 volunteers who were infected with either attenuated or virulent influenza virus, 12 showed suppression of their phytohemagglutin response. None of the volunteers who were given placebo vaccine, or who showed no evidence for viral replication after immunization or challenge, had a suppression of their skin test or phytohemagglutin responses. Although most of the infected volunteers demonstrated suppression of their T-cell function, there was no evidence of a similar suppression of B-cell function. PMID:16558116

  3. Performance of rapid SOFIA Influenza A+B test compared to Luminex x-TAG respiratory viral panel assay in the diagnosis of influenza A, B, and subtype H3.

    PubMed

    Selove, W; Rao, L V

    2016-04-01

    Influenza is an acute respiratory illness caused by influenza A or B viruses that occur in outbreaks, mainly during the winter season. Rapid laboratory diagnosis of influenza can help guide the clinical management of suspected patients effectively. Clinical sensitivities and specificities of the rapid influenza diagnostic tests have varied considerably in the literature. Most of these studies are evaluated using previously frozen or stored specimens that had previously tested positive. This study compares the performance of the rapid SOFIA Influenza A+B test to nucleic acid multiplex test x-TAG respiratory viral panel (RVP) assay in freshly collected nasal aspirates and measured simultaneously by both assays. Retrospective data from 1649 nasal aspirates (September 2014 to May 2015) collected from adults as well as from children tested simultaneously by both rapid SOFIA Influenza A+B FIA immunofluorescence (Quidel, San Diego, CA) and qualitative nucleic acid multiplex RVP assay X-TAG Luminex technology (Luminex, Austin, Texas, USA) were analyzed. Concordance, and analytical sensitivity and specificity were evaluated for influenza A, subtypes H1 and H3, and influenza B. Prevalence for influenza A by RVP was 15%, for subtype H3 it was 11.2%, and for influenza B, 2.9%. None of the aspirates were positive for influenza A subtype H1. SOFIA Influenza rapid test demonstrated good specificity and low sensitivity compared with a nucleic acid test for influenza A, subtype H3, and for influenza B. SOFIA Influenza A + B test performed well in providing a rapid diagnosis, however, confirmatory molecular testing is recommended for negative test results. Re-evaluation of test performance should be periodically carried out during outbreaks with the emergence and circulation of new influenza strains. PMID:26911275

  4. Performance of rapid SOFIA Influenza A+B test compared to Luminex x-TAG respiratory viral panel assay in the diagnosis of influenza A, B, and subtype H3

    PubMed Central

    Selove, W; Rao, L V

    2016-01-01

    Influenza is an acute respiratory illness caused by influenza A or B viruses that occur in outbreaks, mainly during the winter season. Rapid laboratory diagnosis of influenza can help guide the clinical management of suspected patients effectively. Clinical sensitivities and specificities of the rapid influenza diagnostic tests have varied considerably in the literature. Most of these studies are evaluated using previously frozen or stored specimens that had previously tested positive. This study compares the performance of the rapid SOFIA Influenza A+B test to nucleic acid multiplex test x-TAG respiratory viral panel (RVP) assay in freshly collected nasal aspirates and measured simultaneously by both assays. Retrospective data from 1649 nasal aspirates (September 2014 to May 2015) collected from adults as well as from children tested simultaneously by both rapid SOFIA Influenza A+B FIA immunofluorescence (Quidel, San Diego, CA) and qualitative nucleic acid multiplex RVP assay X-TAG Luminex technology (Luminex, Austin, Texas, USA) were analyzed. Concordance, and analytical sensitivity and specificity were evaluated for influenza A, subtypes H1 and H3, and influenza B. Prevalence for influenza A by RVP was 15%, for subtype H3 it was 11.2%, and for influenza B, 2.9%. None of the aspirates were positive for influenza A subtype H1. SOFIA Influenza rapid test demonstrated good specificity and low sensitivity compared with a nucleic acid test for influenza A, subtype H3, and for influenza B. SOFIA Influenza A + B test performed well in providing a rapid diagnosis, however, confirmatory molecular testing is recommended for negative test results. Re-evaluation of test performance should be periodically carried out during outbreaks with the emergence and circulation of new influenza strains. PMID:26911275

  5. A PCR based method for the identification of equine influenza virus from clinical samples.

    PubMed

    Oxburgh, L; Hagström, A

    1999-06-30

    In this paper we describe the development of a nested RT-PCR assay for the rapid diagnosis and characterisation of influenza virus directly from clinical specimens. Viral RNA is extracted from nasal swabs by the guanidine thiocyanate extraction method, and subsequently reverse transcribed. The complementary DNA is then used as template in a nested PCR reaction. Primers designed for use in this assay are specific for three templates; (1) the nucleoprotein (NP) gene, (2) the haemagglutinin gene of the H7N7 equine influenza virus (A1), and (3) the haemagglutinin gene of the H3N8 equine influenza virus (A2). We show that the assays are specific for the target genes chosen, and display sensitivity similar to virus isolation. The NP assay detects a variety of different influenza subtypes, whereas A1 and A2 assays are specific for influenza subtypes H7N7 and H3N8, respectively. Sequencing of amplicons obtained in the A2 assay yields information on antigenic regions of the haemagglutinin molecule, and use of this procedure in the routine surveillance of equine influenza will enable tentative characterisation of circulating viruses despite difficulties in isolating field strains of the H3N8 subtype. The A1 assay will be useful in ascertaining whether viruses of the H7N7 subtype still circulate amongst horses, or whether these are extinct. PMID:10418871

  6. Influenza A Viruses of Human Origin in Swine, Brazil.

    PubMed

    Nelson, Martha I; Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-08-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil's swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009-2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance. PMID:26196759

  7. Influenza A Viruses of Human Origin in Swine, Brazil

    PubMed Central

    Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-01-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil’s swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009–2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance. PMID:26196759

  8. Influenza virus neuraminidase: structure, antibodies, and inhibitors.

    PubMed Central

    Colman, P. M.

    1994-01-01

    The determination of the 3-dimensional structure of the influenza virus neuraminidase in 1983 has served as a platform for understanding interactions between antibodies and protein antigens, for investigating antigenic variation in influenza viruses, and for devising new inhibitors of the enzyme. That work is reviewed here, together with more recent developments that have resulted in one of the inhibitors entering clinical trials as an anti-influenza virus drug. PMID:7849585

  9. Pathogenicity of recombinant H5N1 avian influenza viruses with truncated NS1 gene in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NS1 protein of influenza A virus plays an important role in blocking the induction of type I interferon and other regulatory functions in infected cells. However, differences in length of the NS1 protein has been observed in highly pathogenic H5N1, H5N2, and H7N1 subtype avian influenza viruses...

  10. Highly Pathogenic Avian Influenza Virus (H5N1) Outbreak in Captive Wild Birds and Cats, Cambodia

    PubMed Central

    Marx, Nick; Ong, Sivuth; Gaidet, Nicolas; Hunt, Matt; Manuguerra, Jean-Claude; Sorn, San; Peiris, Malik; Van der Werf, Sylvie; Reynes, Jean-Marc

    2009-01-01

    From December 2003 through January 2004, the Phnom Tamao Wildlife Rescue Centre, Cambodia, was affected by the highly pathogenic influenza virus (H5N1). Birds from 26 species died. Influenza virus subtype H5N1 was detected in 6 of 7 species tested. Cats from 5 of 7 species were probably infected; none died. PMID:19239769

  11. VIRUS VACCINE RESEARCH AT THE NATIONAL ANIMAL DISEASE CENTER: LESSONS FROM SWINE INFLUENZA VIRUS AND BOVINE VIRAL DIARRHEA VIRUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The continuing emergence of novel subtypes and genetic variants of swine influenza viruses (SIV) causing swine flu challenges our ability to effectively manage this high morbidity disease among swine. New strategic approaches for vaccine development must be considered to keep up with the ever-evolv...

  12. Heterogeneous and Dynamic Prevalence of Asymptomatic Influenza Virus Infections.

    PubMed

    Furuya-Kanamori, Luis; Cox, Mitchell; Milinovich, Gabriel J; Magalhaes, Ricardo J Soares; Mackay, Ian M; Yakob, Laith

    2016-06-01

    Influenza infection manifests in a wide spectrum of severity, including symptomless pathogen carriers. We conducted a systematic review and meta-analysis of 55 studies to elucidate the proportional representation of these asymptomatic infected persons. We observed extensive heterogeneity among these studies. The prevalence of asymptomatic carriage (total absence of symptoms) ranged from 5.2% to 35.5% and subclinical cases (illness that did not meet the criteria for acute respiratory or influenza-like illness) from 25.4% to 61.8%. Statistical analysis showed that the heterogeneity could not be explained by the type of influenza, the laboratory tests used to detect the virus, the year of the study, or the location of the study. Projections of infection spread and strategies for disease control require that we identify the proportional representation of these insidious spreaders early on in the emergence of new influenza subtypes or strains and track how this rate evolves over time and space. PMID:27191967

  13. Heterogeneous and Dynamic Prevalence of Asymptomatic Influenza Virus Infections

    PubMed Central

    Furuya-Kanamori, Luis; Cox, Mitchell; Milinovich, Gabriel J.; Magalhaes, Ricardo J. Soares; Mackay, Ian M.

    2016-01-01

    Influenza infection manifests in a wide spectrum of severity, including symptomless pathogen carriers. We conducted a systematic review and meta-analysis of 55 studies to elucidate the proportional representation of these asymptomatic infected persons. We observed extensive heterogeneity among these studies. The prevalence of asymptomatic carriage (total absence of symptoms) ranged from 5.2% to 35.5% and subclinical cases (illness that did not meet the criteria for acute respiratory or influenza-like illness) from 25.4% to 61.8%. Statistical analysis showed that the heterogeneity could not be explained by the type of influenza, the laboratory tests used to detect the virus, the year of the study, or the location of the study. Projections of infection spread and strategies for disease control require that we identify the proportional representation of these insidious spreaders early on in the emergence of new influenza subtypes or strains and track how this rate evolves over time and space. PMID:27191967

  14. Virological Surveillance of Influenza Viruses during the 2008–09, 2009–10 and 2010–11 Seasons in Tunisia

    PubMed Central

    El Moussi, Awatef; Pozo, Francisco; Ben Hadj Kacem, Mohamed Ali; Ledesma, Juan; Cuevas, Maria Teresa; Casas, Inmaculada; Slim, Amine

    2013-01-01

    Background The data contribute to a better understanding of the circulation of influenza viruses especially in North-Africa. Objective The objective of this surveillance was to detect severe influenza cases, identify their epidemiological and virological characteristics and assess their impact on the healthcare system. Method We describe in this report the findings of laboratory-based surveillance of human cases of influenza virus and other respiratory viruses' infection during three seasons in Tunisia. Results The 2008–09 winter influenza season is underway in Tunisia, with co-circulation of influenza A/H3N2 (56.25%), influenza A(H1N1) (32.5%), and a few sporadic influenza B viruses (11.25%). In 2010–11 season the circulating strains are predominantly the 2009 pandemic influenza A(H1N1)pdm09 (70%) and influenza B viruses (22%). And sporadic viruses were sub-typed as A/H3N2 and unsubtyped influenza A, 5% and 3%, respectively. Unlike other countries, highest prevalence of influenza B virus Yamagata-like lineage has been reported in Tunisia (76%) localised into the clade B/Bangladesh/3333/2007. In the pandemic year, influenza A(H1N1)pdm09 predominated over other influenza viruses (95%). Amino acid changes D222G and D222E were detected in the HA gene of A(H1N1)pdm09 virus in two severe cases, one fatal case and one mild case out of 50 influenza A(H1N1)pdm09 viruses studied. The most frequently reported respiratory virus other than influenza in three seasons was RSV (45.29%). Conclusion This article summarises the surveillance and epidemiology of influenza viruses and other respiratory viruses, showing how rapid improvements in influenza surveillance were feasible by connecting the existing structure in the health care system for patient records to electronic surveillance system for reporting ILI cases. PMID:24069267

  15. DIVA vaccination strategies for avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination for both low pathogenic and highly pathogenic avian influenza is commonly used for countries that have been endemic for avian influenza influenza virus, but stamping out policies are common for countries that are normally free of the disease. Stamping out policies of euthanizing infecte...

  16. Rapid Detection of Subtype H10N8 Influenza Virus by One-Step Reverse Transcription–Loop-Mediated Isothermal Amplification Methods

    PubMed Central

    Bao, Hongmei; Feng, Xiaoxiao; Ma, Yong; Shi, Jianzhong; Zhao, Yuhui; Gu, Linlin

    2015-01-01

    We developed hemagglutinin- and neuraminidase-specific one-step reverse transcription–loop-mediated isothermal amplification assays for detecting the H10N8 virus. The detection limit of the assays was 10 copies of H10N8 virus, and the assays did not amplify nonspecific RNA. The assays can detect H10N8 virus from chicken samples with high sensitivity and specificity, and they can serve as an effective tool for detecting and monitoring H10N8 virus in live poultry markets. PMID:26378283

  17. An Anti-Influenza Virus Antibody Inhibits Viral Infection by Reducing Nucleus Entry of Influenza Nucleoprotein

    PubMed Central

    Yoon, Aerin; Yi, Kye Sook; Chang, So Young; Kim, Sung Hwan; Song, Manki; Choi, Jung Ah; Bourgeois, Melissa; Hossain, M. Jaber; Chen, Li-Mei; Donis, Ruben O.; Kim, Hyori; Lee, Yujean; Hwang, Do Been; Min, Ji-Young; Chang, Shin Jae; Chung, Junho

    2015-01-01

    To date, four main mechanisms mediating inhibition of influenza infection by anti-hemagglutinin antibodies have been reported. Anti-globular-head-domain antibodies block either influenza virus receptor binding to the host cell or progeny virion release from the host cell. Anti-stem region antibodies hinder the membrane fusion process or induce antibody-dependent cytotoxicity to infected cells. In this study we identified a human monoclonal IgG1 antibody (CT302), which does not inhibit both the receptor binding and the membrane fusion process but efficiently reduced the nucleus entry of viral nucleoprotein suggesting a novel inhibition mechanism of viral infection by antibody. This antibody binds to the subtype-H3 hemagglutinin globular head domain of group-2 influenza viruses circulating throughout the population between 1997 and 2007. PMID:26512723

  18. An Anti-Influenza Virus Antibody Inhibits Viral Infection by Reducing Nucleus Entry of Influenza Nucleoprotein.

    PubMed

    Yoon, Aerin; Yi, Kye Sook; Chang, So Young; Kim, Sung Hwan; Song, Manki; Choi, Jung Ah; Bourgeois, Melissa; Hossain, M Jaber; Chen, Li-Mei; Donis, Ruben O; Kim, Hyori; Lee, Yujean; Hwang, Do Been; Min, Ji-Young; Chang, Shin Jae; Chung, Junho

    2015-01-01

    To date, four main mechanisms mediating inhibition of influenza infection by anti-hemagglutinin antibodies have been reported. Anti-globular-head-domain antibodies block either influenza virus receptor binding to the host cell or progeny virion release from the host cell. Anti-stem region antibodies hinder the membrane fusion process or induce antibody-dependent cytotoxicity to infected cells. In this study we identified a human monoclonal IgG1 antibody (CT302), which does not inhibit both the receptor binding and the membrane fusion process but efficiently reduced the nucleus entry of viral nucleoprotein suggesting a novel inhibition mechanism of viral infection by antibody. This antibody binds to the subtype-H3 hemagglutinin globular head domain of group-2 influenza viruses circulating throughout the population between 1997 and 2007. PMID:26512723

  19. Hemagglutinin Sequence Conservation Guided Stem Immunogen Design from Influenza A H3 Subtype

    PubMed Central

    Mallajosyula, V. Vamsee Aditya; Citron, Michael; Ferrara, Francesca; Temperton, Nigel J.; Liang, Xiaoping; Flynn, Jessica A.; Varadarajan, Raghavan

    2015-01-01

    Seasonal epidemics caused by influenza A (H1 and H3 subtypes) and B viruses are a major global health threat. The traditional, trivalent influenza vaccines have limited efficacy because of rapid antigenic evolution of the circulating viruses. This antigenic variability mediates viral escape from the host immune responses, necessitating annual vaccine updates. Influenza vaccines elicit a protective antibody response, primarily targeting the viral surface glycoprotein hemagglutinin (HA). However, the predominant humoral response is against the hypervariable head domain of HA, thereby restricting the breadth of protection. In contrast, the conserved, subdominant stem domain of HA is a potential “universal” vaccine candidate. We designed an HA stem-fragment immunogen from the 1968 pandemic H3N2 strain (A/Hong Kong/1/68) guided by a comprehensive H3 HA sequence conservation analysis. The biophysical properties of the designed immunogen were further improved by C-terminal fusion of a trimerization motif, “isoleucine-zipper”, or “foldon”. These immunogens elicited cross-reactive, antiviral antibodies and conferred partial protection against a lethal, homologous HK68 virus challenge in vivo. Furthermore, bacterial expression of these immunogens is economical and facilitates rapid scale-up. PMID:26167164

  20. Analysis of antigenic variation in equine 2 influenza A viruses.

    PubMed

    Hinshaw, V S; Naeve, C W; Webster, R G; Douglas, A; Skehel, J J; Bryans, J

    1983-01-01

    Influenza outbreaks involving viruses of the H3N8 subtype (equine 2) often occur in vaccinated horses. For this reason, a series of influenza viruses of the H3N8 subtype were examined to determine if antigenic variation could be detected in isolates during the period 1963-81. Antigenic analyses with post-infection ferret sera and monoclonal antibodies showed that the haemagglutinins of recent isolates were antigenically distinguishable from the prototype A/eq/Miami/1/63 and that antigenically distinguishable groups of equine 2 viruses co-circulate in the horse population. Based on these studies, it is recommended that a recent equine strain, A/equine/Fontainebleu/1/79 or A/equine/Kentucky/1/81, serve as an additional prototype strain for this subtype.Antigenic variation in equine 2 viruses may be of epidemiological significance, yet the overall conservation of these strains makes it unlikely that vaccine failures can be attributed solely to antigenic changes in these viruses. A sufficiently potent vaccine, containing a current representative of the most prevalent equine 2 strain, may improve the protection afforded by equine vaccines. PMID:6601538

  1. Influenza virus activation of the interferon system

    PubMed Central

    Killip, Marian J.; Fodor, Ervin; Randall, Richard E.

    2015-01-01

    The host interferon (IFN) response represents one of the first barriers that influenza viruses must surmount in order to establish an infection. Many advances have been made in recent years in understanding the interactions between influenza viruses and the interferon system. In this review, we summarise recent work regarding activation of the type I IFN response by influenza viruses, including attempts to identify the viral RNA responsible for IFN induction, the stage of the virus life cycle at which it is generated and the role of defective viruses in this process. PMID:25678267

  2. H9N2 avian influenza virus-derived natural reassortant H5N2 virus in swan containing the hemagglutinin segment from Eurasian H5 avian influenza virus with an in-frame deletion of four basic residues in the polybasic hemagglutinin cleavage site.

    PubMed

    Wang, Youling; Yuan, Xiaoyuan; Qi, Lihong; Zhang, Yuxia; Xu, Huaiying; Yang, Jinxing; Ai, Wu; Qi, Wenbao; Liao, Ming; Wang, Dan; Song, Minxun; Li, Feng

    2016-06-01

    We isolated a novel H5N2 avian influenza virus from swans in China. The virus was derived from a widespread H9N2 avian influenza virus but acquired the hemagglutinin gene from Eurasian H5 subtype with a naturally occurring in-frame deletion of four basic residues in the polybasic hemagglutinin cleavage site. PMID:26910357

  3. Biological and Protective Properties of Immune Sera Directed to the Influenza Virus Neuraminidase

    PubMed Central

    Halbherr, Stefan J.; Ludersdorfer, Thomas H.; Ricklin, Meret; Locher, Samira; Berger Rentsch, Marianne; Summerfield, Artur

    2014-01-01

    ABSTRACT The envelope of influenza A viruses contains two large antigens, hemagglutinin (HA) and neuraminidase (NA). Conventional influenza virus vaccines induce neutralizing antibodies that are predominantly directed to the HA globular head, a domain that is subject to extensive antigenic drift. Antibodies directed to NA are induced at much lower levels, probably as a consequence of the immunodominance of the HA antigen. Although antibodies to NA may affect virus release by inhibiting the sialidase function of the glycoprotein, the antigen has been largely neglected in past vaccine design. In this study, we characterized the protective properties of monospecific immune sera that were generated by vaccination with recombinant RNA replicon particles encoding NA. These immune sera inhibited hemagglutination in an NA subtype-specific and HA subtype-independent manner and interfered with infection of MDCK cells. In addition, they inhibited the sialidase activities of various influenza viruses of the same and even different NA subtypes. With this, the anti-NA immune sera inhibited the spread of H5N1 highly pathogenic avian influenza virus and HA/NA-pseudotyped viruses in MDCK cells in a concentration-dependent manner. When chickens were immunized with NA recombinant replicon particles and subsequently infected with low-pathogenic avian influenza virus, inflammatory serum markers were significantly reduced and virus shedding was limited or eliminated. These findings suggest that NA antibodies can inhibit virus dissemination by interfering with both virus attachment and egress. Our results underline the potential of high-quality NA antibodies for controlling influenza virus replication and place emphasis on NA as a vaccine antigen. IMPORTANCE The neuraminidase of influenza A viruses is a sialidase that acts as a receptor-destroying enzyme facilitating the release of progeny virus from infected cells. Here, we demonstrate that monospecific anti-NA immune sera inhibited not

  4. Virulence determinants of pandemic influenza viruses

    PubMed Central

    Tscherne, Donna M.; García-Sastre, Adolfo

    2011-01-01

    Influenza A viruses cause recurrent, seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. The ability of influenza A viruses to adapt to various hosts and undergo reassortment events ensures constant generation of new strains with unpredictable degrees of pathogenicity, transmissibility, and pandemic potential. Currently, the combination of factors that drives the emergence of pandemic influenza is unclear, making it impossible to foresee the details of a future outbreak. Identification and characterization of influenza A virus virulence determinants may provide insight into genotypic signatures of pathogenicity as well as a more thorough understanding of the factors that give rise to pandemics. PMID:21206092

  5. Swine influenza virus: epidemiology and vaccine concerns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. Swine influenza virus (SIV) is a primary cause of respiratory disease in swine and a component of the porcine respiratory disease complex (PRDC). Influenza viruses are an important health and economic concern for swine producers throughout the world. Swine operations may be affected by...

  6. The receptor preference of influenza viruses

    PubMed Central

    Meng, Bo; Marriott, Anthony C.; Dimmock, Nigel J.

    2010-01-01

    Please cite this paper as: Meng et al. (2010) The receptor preference of influenza viruses. Influenza and Other Respiratory Viruses 4(3), 147–153. Objectives  The cell surface receptor used by an influenza virus to infect that cell is an N‐acetyl neuraminic acid (NANA) residue terminally linked by an alpha2,3 or alpha2,6 bond to a carbohydrate moiety of a glycoprotein or glycolipid. Our aim was to determine a quick and technically simple method to determine cell receptor usage by whole influenza A virus particles. Methods  We employed surface plasmon resonance to detect the binding of viruses to fetuin, a naturally occurring glycoprotein that has both alpha2,3‐ and alpha2,6‐linked NANA, and free 3′‐sialyllactose or 6′‐sialyllactose to compete virus binding. All virus stocks were produced in embryonated chicken’s eggs. Results  The influenza viruses tested bound preferentially to NANAalpha2,3Gal or to NANAalpha2,6Gal, or showed no preference. Two PR8 viruses had different binding preferences. Binding preferences of viruses correlated well with their known biological properties. Conclusions  Our data suggest that it is not easy to predict receptor usage by influenza viruses. However, direct experimental determination as described here can inform experiments concerned with viral pathogenesis, biology and structure. In principle, the methodology can be used for any virus that binds to a terminal NANA residue. PMID:20409211

  7. High doses of highly pathogenic avian influenza virus in chicken meat are required to infect ferrets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N1 high pathogenicity avian influenza viruses (HPAIV) have caused natural and experimental infections in various animals through consumption of infected bird carcasses and meat. However, little is known about the quantity of virus required and if all HPAIV subtypes can cause infections following c...

  8. The pathogenesis of H3N8 canine influenza virus in chickens, turkeys and ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canine influenza virus (CIV) of the H3N8 subtype has emerged in dog populations throughout the U.S. where is has become endemic in kennels and animal shelters in some regions. It has not previously been determined whether the canine adapted virus can be transmitted to domestic poultry, which are su...

  9. Rapid preparation of mutated influenza hemagglutinins for influenza virus pandemic prevention.

    PubMed

    Nishioka, Ryosuke; Satomura, Atsushi; Yamada, Junki; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-03-01

    Influenza viruses have periodically caused pandemic due to frequent mutation of viral proteins. Influenza viruses have two major membrane glycoproteins: hemagglutinin (HA) and neuraminidase (NA). Hemagglutinin plays a crucial role in viral entry, while NA is involved in the process of a viral escape. In terms of developing antiviral drugs, HA is a more important target than NA in the prevention of pandemic, since HA is likely to change the host specificity of a virus by acquiring mutations, thereby to increase the risk of pandemic. To characterize mutated HA functions, current approaches require immobilization of purified HA on plastic wells and carriers. These troublesome methods make it difficult to respond to emerging mutations. In order to address this problem, a yeast cell surface engineering approach was investigated. Using this technology, human HAs derived from various H1N1 subtypes were successfully and rapidly displayed on the yeast cell surface. The yeast-displayed HAs exhibited similar abilities to native influenza virus HAs. Using this system, human HAs with 190E and 225G mutations were shown to exhibit altered recognition specificities from human to avian erythrocytes. This system furthermore allowed direct measurement of HA binding abilities without protein purification and immobilization. Coupled with the ease of genetic manipulation, this system allows the simple and comprehensive construction of mutant protein libraries on yeast cell surface, thereby contributing to influenza virus pandemic prevention. PMID:26797882

  10. Live, attenuated influenza virus (LAIV) vehicles are strong inducers of immunity toward influenza B virus

    PubMed Central

    Huber, Victor C.; Kleimeyer, Loren H.; McCullers, Jonathan A.

    2008-01-01

    Historically, vaccines developed toward influenza viruses of the B type using methodologies developed for influenza A viruses as a blueprint have not been equally efficacious or effective. Because most influenza research and public attention concerns influenza A viruses, these shortcomings have not been adequately addressed. In this manuscript, we utilized different influenza vaccine vehicles to compare immunogenicity and protection in mice and ferrets after vaccination against an influenza B virus. We report that plasmid DNA vaccines demonstrate low immunogenicity profiles and poor protection compared to either whole, inactivated influenza virus (IIV) or, live, attenuated influenza virus (LAIV) vaccines. When mixed prime:boost regimens using LAIV and IIV were studied, we observed a boosting effect in mice after priming with LAIV that was not seen when IIV was used as the prime. In ferrets LAIV induced high antibody titers after a single dose and provided a boost in IIV-primed animals. Regimens including LAIV as a prime demonstrated enhanced protection, and adjuvantation was required for efficacy using the IIV preparation. Our results differ from generally accepted influenza A virus vaccine models, and argue that strategies for control of influenza B virus should be considered separately from those for influenza A virus. PMID:18708106