Science.gov

Sample records for informatics milovy czech

  1. Developing and Implementing a Combined Chemistry and Informatics Curriculum for Undergraduate and Graduate Students in the Czech Republic

    ERIC Educational Resources Information Center

    Jirat, Jiri; Cech, Petr; Znamenacek, Jiri; Simek, Miroslav; Skuta, Ctibor; Vanek, Tomas; Dibuszova, Eva; Nic, Miloslav; Svozil, Daniel

    2013-01-01

    Experience developing multidisciplinary bachelor's and master's curricula involving intertwined chemistry, informatics, and librarianship-editorship skills is described. The bachelor's curriculum was created in close cooperation of academic staff, library staff, and the publishing house staff (Institute of Chemical Technology…

  2. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  3. Informatic nephrology.

    PubMed

    Musso, Carlos; Aguilera, Jerónimo; Otero, Carlos; Vilas, Manuel; Luna, Daniel; de Quirós, Fernán González Bernaldo

    2013-08-01

    Biomedical informatics in Health (BIH) is the discipline in charge of capturing, handling and using information in health and biomedicine in order to improve the processes involved with assistance and management. Informatic nephrology has appeared as a product of the combination between conventional nephrology with BIH and its development has been considerable in the assistance as well as in the academic field. Regarding the former, there is increasing evidence that informatics technology can make nephrological assistance be better in quality (effective, accessible, safe and satisfying), improve patient's adherence, optimize patient's and practitioner's time, improve physical space and achieve health cost reduction. Among its main elements, we find electronic medical and personal health records, clinical decision support system, tele-nephrology, and recording and monitoring devices. Additionally, regarding the academic field, informatics and Internet contribute to education and research in the nephrological field. In conclusion, informatics nephrology represents a new field which will influence the future of nephrology. PMID:23065430

  4. Museum Informatics.

    ERIC Educational Resources Information Center

    Marty, Paul F.; Rayward, W. Boyd; Twidale, Michael B.

    2003-01-01

    Discusses museum informatics that studies how information science and technology affect the museum environment. Examines digital technology; information organization and access; digitization, personal computers, and the Internet; data sharing; standards; social impacts of new technologies; collaboration; consortia; multimedia exhibits; virtual…

  5. Health Informatics.

    ERIC Educational Resources Information Center

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  6. Health Informatics.

    ERIC Educational Resources Information Center

    MacDougall, Jennifer; Brittain, J. Michael

    1994-01-01

    Examines recent developments in health informatics from a historical and global perspective relating to information management through the interdisciplinary application of information science and technology for the benefits of patients, staff, scientists, managers, and caregivers. Highlights include competition; the World Health Organization;…

  7. Climate Informatics

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; Tedesco, Marco

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  8. Health Informatics

    PubMed Central

    Stead, William W.; Lorenzi, Nancy M.

    1999-01-01

    Informatics and information technology do not appear to be valued by the health industry to the degree that they are in other industries. The agenda for health informatics should be presented so that value to the health system is linked directly to required investment. The agenda should acknowledge the foundation provided by the current health system and the role of financial issues, system impediments, policy, and knowledge in effecting change. The desired outcomes should be compelling, such as improved public health, improved quality as perceived by consumers, and lower costs. Strategies to achieve these outcomes should derive from the differentia of health, opportunities to leverage other efforts, and lessons from successes inside and outside the health industry. Examples might include using logistics to improve quality, mass customization to adapt to individual values, and system thinking to change the game to one that can be won. The justification for the informatics infrastructure of a virtual health care data bank, a national health care knowledge base, and a personal clinical health record flows naturally from these strategies. PMID:10495093

  9. Polymer Informatics

    NASA Astrophysics Data System (ADS)

    Adams, Nico

    Polymers are arguably the most important set of materials in common use. The increasing adoption of both combinatorial as well as high-throughput approaches, coupled with an increasing amount of interdisciplinarity, has wrought tremendous change in the field of polymer science. Yet the informatics tools required to support and further enhance these changes are almost completely absent. In the first part of the chapter, a critical analysis of the challenges facing modern polymer informatics is provided. It is argued, that most of the problems facing the field today are rooted in the current scholarly communication process and the way in which chemists and polymer scientists handle and publish data. Furthermore, the chapter reviews existing modes of representing and communicating polymer information and discusses the impact, which the emergence of semantic technologies will have on the way in which scientific and polymer data is published and transmitted. In the second part, a review of the use of informatics tools for the prediction of polymer properties and in silico design of polymers is offered.

  10. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  11. Informatics Workup.

    PubMed Central

    Naeymi-Rad, F.; Trace, D.; Shoults, K.; Suico, J.; O'Brien, M.; Evens, M.; Carmony, L.; Roberts, R.; Zelanski, R.

    1992-01-01

    We introduce the concept of a Medical Informatics Workup performed by fourth year medical students working in a busy inner-city Emergency Room. These students use portable computers (Macintosh PowerBook 170s connected to a removable cartridge hard drive and CD-ROM drive) to do the patient workups. The PowerBook 170 contains the automated medical record entry software (IMR-E), five expert system software packages, and a program that allows the PowerBook to emulate a PC-compatible computer. With this configuration the student has a portable system that allows for the creation of a computerized medical record at the patient's bedside, along with the ability to analyze the data and generate a list of differential diagnoses. PMID:1482933

  12. Czech Grammar.

    ERIC Educational Resources Information Center

    Cernik, Jiri

    The grammar is designed to be used as a reference for addressing structural problems in Czech. The guide is organized into 11 chapters. The first describes the pronunciation of written Czech and explains spelling conventions. Aspects of the language covered here include the alphabet, arrangement of words in the dictionary, vowels, diphthongs,…

  13. Global health informatics education.

    PubMed

    Hovenga, E J

    2000-01-01

    Health informatics education has evolved since the 1960s with a strong research foundation primarily in medical schools across the USA and Europe. By 1989 health informatics education was provided in some form by at least 20 countries representing five continents. This continues to progress, in Europe with the help of a number of special projects, via the integration of informatics into pre registration health professional courses, undergraduate and post graduate course work and research degree programs. Each program is unique in terms or content and structure reflecting the many foundation disciplines which contribute or are incorporated in the health informatics discipline. Nursing informatics education is not as widespread. Indeed the evidence suggests a poor uptake of informatics by this profession. Advances in computer based educational technologies are making innovative modes of educational delivery possible and are facilitating a shift towards learner centred, flexible and life long learning. Greater cooperation between Universities is recommended. PMID:10947666

  14. What Is Nursing Informatics?

    ERIC Educational Resources Information Center

    McGonigle, D.; And Others

    Information technology has developed to the point of providing a means to manage nursing and related health-care data effectively for nursing administrators, educators, practitioners, and researchers. Therefore, the newly recognized area of nursing informatics is important to the nursing profession as a whole. Nursing informatics is defined as the…

  15. Health Informatics: An Overview.

    ERIC Educational Resources Information Center

    MacDougall, Jennifer; And Others

    1996-01-01

    Reviews literature related to health informatics and health information management. Provides examples covering types of information, library and information services outcomes, training of informatics professionals, areas of application, the impact of evidence based medicine, professional issues, integrated information systems, and the needs of the…

  16. Origins of Medical Informatics

    PubMed Central

    Collen, Morris F.

    1986-01-01

    Medical informatics is a new knowledge domain of computer and information science, engineering and technology in all fields of health and medicine, including research, education and practice. Medical informatics has evolved over the past 30 years as medicine learned to exploit the extraordinary capabilities of the electronic digital computer to better meet its complex information needs. The first articles on this subject appeared in the 1950s, the number of publications rapidly increased in the 1960s and medical informatics was identified as a new specialty in the 1970s. PMID:3544507

  17. Informatics in Turkey

    NASA Technical Reports Server (NTRS)

    Cakir, Serhat

    1994-01-01

    In the last twenty years the rapid change in the informatics sector has had economic and social impact on private and government activities. The Supreme Council for Science and Technology of Turkey assigned highest priority to the informatics in its meeting in February 1993. With this advice TUBITAK (The Scientific and Technical Research Council of Turkey) intends to give a strong impulse to development of a research policy in this field.

  18. What is biomedical informatics?

    PubMed Central

    Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.

    2009-01-01

    Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067

  19. Clinical Microbiology Informatics

    PubMed Central

    Sintchenko, Vitali; Rauch, Carol A.; Pantanowitz, Liron

    2014-01-01

    SUMMARY The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. PMID:25278581

  20. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  1. Multi-Sensory Informatics Education

    ERIC Educational Resources Information Center

    Katai, Zoltan; Toth, Laszlo; Adorjani, Alpar Karoly

    2014-01-01

    A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1) computational thinking is an important ability that all people should possess; (2) informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school…

  2. Molecular Pathology Informatics.

    PubMed

    Roy, Somak

    2015-06-01

    Molecular informatics (MI) is an evolving discipline that will support the dynamic landscape of molecular pathology and personalized medicine. MI provides a fertile ground for development of clinical solutions to bridge the gap between clinical informatics and bioinformatics. Rapid adoption of next generation sequencing (NGS) in the clinical arena has triggered major endeavors in MI that are expected to bring a paradigm shift in the practice of pathology. This brief review presents a broad overview of various aspects of MI, particularly in the context of NGS based testing. PMID:26065793

  3. Informatics in Infection Control.

    PubMed

    Lin, Michael Y; Trick, William E

    2016-09-01

    Informatics tools are becoming integral to routine infection control activities. Informatics has the potential to improve infection control outcomes in surveillance, prevention, and connections with public health. Surveillance activities include fully or semiautomated surveillance of infections, surveillance of device use, and hospital/ward outbreak investigation. Prevention activities include awareness of multidrug-resistant organism carriage on admission, enhanced interfacility communication, identifying inappropriate infection precautions, reducing device use, and antimicrobial stewardship. Public health activities include electronic communicable disease reporting, syndromic surveillance, and regional outbreak detection. The challenge for infection control personnel is in translating the knowledge gained from electronic surveillance systems into action. PMID:27515146

  4. Biomedical informatics and translational medicine

    PubMed Central

    2010-01-01

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams. PMID:20187952

  5. Informatics: A Brief Survey.

    ERIC Educational Resources Information Center

    He, Shaoyi

    2003-01-01

    Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…

  6. The future of health informatics.

    PubMed

    Cesnik, B

    1999-07-01

    Whatever a future vision for health informatics entails, it must take into account the evolving nature of the field, a growing trend towards primary and preventive care and the explosive growth in global networking as exemplified by the Internet. While, historically, storage and retrieval of data has been the main target for information systems development, the need to capture knowledge itself is becoming the focus for development. In parallel, education in health informatics for tomorrow's healthcare professionals is now essential. The Asia Pacific Association for Medical Informatics (APAMI) is a regional group of the International Medical Informatics Association (IMIA). While the newest of the IMIA regional organizations, its growth and activities in the Asia Pacific region aim to advance health informatics. Its triennial conferences act as a means of promoting and monitoring the growth of our field in this region, APAMI itself is a part of the future of health informatics. PMID:10471244

  7. Tools for medical informatics.

    PubMed

    Hindel, R

    1992-05-01

    Informatics uses words, terms and expressions of various scientific disciplines. The proposed tools, hermeneutics and phenomenology, generate a basis for quality control by establishing the authenticity and validity of such expressions. Without such tools there is the danger that poorly defined expressions obscure true meaning and prevent progress. The method is demonstrated on "objects" as used in "object oriented programming" and on "open systems" as used in the International Standards Organization model for "open system interconnection." PMID:1623046

  8. Training Residents in Medical Informatics.

    ERIC Educational Resources Information Center

    Jerant, Anthony F.

    1999-01-01

    Describes an eight-step process for developing or refining a family-medicine informatics curriculum: needs assessment, review of expert recommendations, enlisting faculty and local institutional support, espousal of a human-centered approach, integrating informatics into the larger curriculum, easy access to computers, practical training, and…

  9. The 2005 Australian Informatics Competition

    ERIC Educational Resources Information Center

    Clark, David

    2006-01-01

    This article describes the Australian Informatics Competition (AIC), a non-programming competition aimed at identifying students with potential in programming and algorithmic design. It is the first step in identifying students to represent Australia at the International Olympiad in Informatics. The main aim of the AIC is to increase awareness of…

  10. Latvian Education Informatization System LIIS

    ERIC Educational Resources Information Center

    Bicevskis, Janis; Andzans, Agnis; Ikaunieks, Evalds; Medvedis, Inga; Straujums, Uldis; Vezis, Viesturs

    2004-01-01

    The Latvian Education Informatization System LIIS project covers the whole information grid: education content, management, information services, infrastructure and user training at several levels--schools, school boards and Ministry of Education and Science. Informatization is the maintained process of creating the technical, economical and…

  11. Informatics applied to cytology

    PubMed Central

    Hornish, Maryanne; Goulart, Robert A.

    2008-01-01

    Automation and emerging information technologies are being adopted by cytology laboratories to augment Pap test screening and improve diagnostic accuracy. As a result, informatics, the application of computers and information systems to information management, has become essential for the successful operation of the cytopathology laboratory. This review describes how laboratory information management systems can be used to achieve an automated and seamless workflow process. The utilization of software, electronic databases and spreadsheets to perform necessary quality control measures are discussed, as well as a Lean production system and Six Sigma approach, to reduce errors in the cytopathology laboratory. PMID:19495402

  12. Nursing informatics competencies: bibliometric analysis.

    PubMed

    Kokol, Peter; Blažun, Helena; Vošner, Janez; Saranto, Kaija

    2014-01-01

    Information and communication technology is developing rapidly and it is incorporated in many health care processes, but in spite of that fact we can still notice that nursing informatics competencies had received limited attention in basic nursing education curricula in Europe and especially in Eastern European countries. The purpose of the present paper is to present the results of a bibliometric analysis of the nursing informatics competencies scientific literature production. We applied the bibliometrics analysis to the corpus of 332 papers found in SCOPUS, related to nursing informatics competencies. The results showed that there is a positive trend in the number of published papers per year, indicating the increased research interest in nursing informatics competencies. Despite the fact that the first paper was published in Denmark, the most prolific country regarding the research in nursing informatics competencies is United States as are their institutions and authors. PMID:24943565

  13. Creating advanced health informatics certification.

    PubMed

    Gadd, Cynthia S; Williamson, Jeffrey J; Steen, Elaine B; Fridsma, Douglas B

    2016-07-01

    In 2005, AMIA leaders and members concluded that certification of advanced health informatics professionals would offer value to individual practitioners, organizations that hire them, and society at large. AMIA's work to create advanced informatics certification began by leading a successful effort to create the clinical informatics subspecialty for American Board of Medical Specialties board-certified physicians. Since 2012, AMIA has been working to establish advanced health informatics certification (AHIC) for all health informatics practitioners regardless of their primary discipline. In November 2015, AMIA completed the first of 3 key tasks required to establish AHIC, with the AMIA Board of Directors' endorsement of proposed eligibility requirements. This AMIA Board white paper describes efforts to establish AHIC, reports on the current status of AHIC components, and provides a context for the proposed AHIC eligibility requirements. PMID:27358327

  14. Bioimage Informatics for Big Data.

    PubMed

    Peng, Hanchuan; Zhou, Jie; Zhou, Zhi; Bria, Alessandro; Li, Yujie; Kleissas, Dean Mark; Drenkow, Nathan G; Long, Brian; Liu, Xiaoxiao; Chen, Hanbo

    2016-01-01

    Bioimage informatics is a field wherein high-throughput image informatics methods are used to solve challenging scientific problems related to biology and medicine. When the image datasets become larger and more complicated, many conventional image analysis approaches are no longer applicable. Here, we discuss two critical challenges of large-scale bioimage informatics applications, namely, data accessibility and adaptive data analysis. We highlight case studies to show that these challenges can be tackled based on distributed image computing as well as machine learning of image examples in a multidimensional environment. PMID:27207370

  15. The origins of informatics.

    PubMed Central

    Collen, M F

    1994-01-01

    This article summarizes the origins of informatics, which is based on the science, engineering, and technology of computer hardware, software, and communications. In just four decades, from the 1950s to the 1990s, computer technology has progressed from slow, first-generation vacuum tubes, through the invention of the transistor and its incorporation into microprocessor chips, and ultimately, to fast, fourth-generation very-large-scale-integrated silicon chips. Programming has undergone a parallel transformation, from cumbersome, first-generation, machine languages to efficient, fourth-generation application-oriented languages. Communication has evolved from simple copper wires to complex fiberoptic cables in computer-linked networks. The digital computer has profound implications for the development and practice of clinical medicine. PMID:7719803

  16. Building Informatics Environment

    Energy Science and Technology Software Center (ESTSC)

    2008-06-02

    The Building Informatics Environment is a modeling environment based on the Modelica language. The environment allows users to create a computer model of a building and its energy systems with various time scales and physical resolutions. The environment can be used for rapid development of, e.g., demand controls algorithms, new HVAC system solutions and new operational strategies (controls, fault detection and diagnostics). Models for building energy and control systems are made available in the environment.more » The models can be used as provided, or they can be changed and/or linked with each other in order to model the effects that a particular user is interested in.« less

  17. Spreading Informatics in Educational Technology.

    ERIC Educational Resources Information Center

    Hauser, Zoltan; Kis-Toth, Lajos

    1995-01-01

    Examines developments in information dissemination and educational technology. Highlights include telecommunications, audiovisual media and programmed education, pedagogical technology, advantages of computer-based learning, instructional materials, applied informatics, teacher training, and future perspectives. (AEF)

  18. Informatics — EDRN Public Portal

    Cancer.gov

    The EDRN provides a comprehensive informatics activity which includes a number of tools and an integrated knowledge environment for capturing, managing, integrating, and sharing results from across EDRN's cancer biomarker research network.

  19. Clinical research informatics: a conceptual perspective

    PubMed Central

    Weng, Chunhua

    2012-01-01

    Clinical research informatics is the rapidly evolving sub-discipline within biomedical informatics that focuses on developing new informatics theories, tools, and solutions to accelerate the full translational continuum: basic research to clinical trials (T1), clinical trials to academic health center practice (T2), diffusion and implementation to community practice (T3), and ‘real world’ outcomes (T4). We present a conceptual model based on an informatics-enabled clinical research workflow, integration across heterogeneous data sources, and core informatics tools and platforms. We use this conceptual model to highlight 18 new articles in the JAMIA special issue on clinical research informatics. PMID:22523344

  20. Emerging Vaccine Informatics

    PubMed Central

    He, Yongqun; Rappuoli, Rino; De Groot, Anne S.; Chen, Robert T.

    2010-01-01

    Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning. PMID:21772787

  1. Bioimage informatics for experimental biology

    PubMed Central

    Swedlow, Jason R.; Goldberg, Ilya G.; Eliceiri, Kevin W.

    2012-01-01

    Over the last twenty years there have been great advances in light microscopy with the result that multi-dimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition are reportedly frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remains largely unsolved. Like the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges and discuss our own vision for future development of bioimage informatics solution. PMID:19416072

  2. Policy Implications of Education Informatics

    ERIC Educational Resources Information Center

    Carr, Jo Ann; O'Brien, Nancy P.

    2010-01-01

    Background/Context: This concluding article identifies the policy implications of education informatics and explores impacts of current copyright laws, legislative structures, publishing practices, and education organizations. Synthesizing the discussions in the preceding articles, this article highlights the importance of designing information…

  3. Clinical health informatics education for a 21st Century World.

    PubMed

    Liaw, Siaw Teng; Gray, Kathleen

    2010-01-01

    This chapter gives an educational overview of: * health informatics competencies in medical, nursing and allied clinical health professions * health informatics learning cultures and just-in-time health informatics training in clinical work settings * major considerations in selecting or developing health informatics education and training programs for local implementation * using elearning effectively to meet the objectives of health informatics education. PMID:20407180

  4. The Biodiversity Informatics Potential Index

    PubMed Central

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  5. Nursing Informatics: Decades of Contribution to Health Informatics

    PubMed Central

    Mæland Knudsen, Lina Merete

    2013-01-01

    Objectives In this paper we present a contemporary understanding of "nursing informatics" and relate it to applications in three specific contexts, hospitals, community health, and home dwelling, to illustrate achievements that contribute to the overall schema of health informatics. Methods We identified literature through database searches in MEDLINE, EMBASE, CINAHL, and the Cochrane Library. Database searching was complemented by one author search and hand searches in six relevant journals. The literature review helped in conceptual clarification and elaborate on use that are supported by applications in different settings. Results Conceptual clarification of nursing data, information and knowledge has been expanded to include wisdom. Information systems and support for nursing practice benefits from conceptual clarification of nursing data, information, knowledge, and wisdom. We introduce three examples of information systems and point out core issues for information integration and practice development. Conclusions Exploring interplays of data, information, knowledge, and wisdom, nursing informatics takes a practice turn, accommodating to processes of application design and deployment for purposeful use by nurses in different settings. Collaborative efforts will be key to further achievements that support task shifting, mobility, and ubiquitous health care. PMID:23882413

  6. Translational informatics: an industry perspective

    PubMed Central

    2012-01-01

    Translational informatics (TI) is extremely important for the pharmaceutical industry, especially as the bar for regulatory approval of new medications is set higher and higher. This paper will explore three specific areas in the drug development lifecycle, from tools developed by precompetitive consortia to standardized clinical data collection to the effective delivery of medications using clinical decision support, in which TI has a major role to play. Advancing TI will require investment in new tools and algorithms, as well as ensuring that translational issues are addressed early in the design process of informatics projects, and also given higher weight in funding or publication decisions. Ultimately, the source of translational tools and differences between academia and industry are secondary, as long as they move towards the shared goal of improving health. PMID:22237867

  7. The Scope and Direction of Health Informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2001-01-01

    Health Informatics (HI) is a dynamic discipline based upon the medical sciences, information sciences, and cognitive sciences. Its domain is can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art" , and indicate the likely growth areas for health informatics. The sources of information utilized in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  8. Health informatics: managing information to deliver value.

    PubMed

    Ball, M J; Douglas, J V; Lillis, J

    2001-01-01

    Can informatics improve health? This paper answers yes, exploring its components, benefits, and effect on a wide variety of health-related activities. We first examine how information technology enables health informatics, supporting information management and knowledge creation through its four cornerstones. Success factors in using informatics are covered next, including human factors, the role of trained health informaticians, and the importance of matching informatics initiatives with business goals and establishing and measuring value. We demonstrate the potential effect of the Internet on health services through such e-health applications as enterprise-wide patient records, state-of-the-art call centers, and data repositories. For current evidence that informatics is already improving health, we turn to such topics as disease management, telehealth, patient safety, and decision support. As more organizations move informatics from theory into practice and realize its value, they will transform inefficient processes and improve care for all. PMID:11604752

  9. Eligibility requirements for advanced health informatics certification.

    PubMed

    Gadd, Cynthia S; Williamson, Jeffrey J; Steen, Elaine B; Andriole, Katherine P; Delaney, Connie; Gumpper, Karl; LaVenture, Martin; Rosendale, Doug; Sittig, Dean F; Thyvalikakath, Thankam; Turner, Peggy; Fridsma, Douglas B

    2016-07-01

    AMIA is leading the effort to strengthen the health informatics profession by creating an advanced health informatics certification (AHIC) for individuals whose informatics work directly impacts the practice of health care, public health, or personal health. The AMIA Board of Directors has endorsed a set of proposed AHIC eligibility requirements that will be presented to the future AHIC certifying entity for adoption. These requirements specifically establish who will be eligible to sit for the AHIC examination and more generally signal the depth and breadth of knowledge and experience expected from certified individuals. They also inform the development of the accreditation process and provide guidance to graduate health informatics programs as well as individuals interested in pursuing AHIC. AHIC eligibility will be determined by practice focus, education in primary field and health informatics, and significant health informatics experience. PMID:27358328

  10. The scope and direction of health informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2002-01-01

    Health Informatics (HI) is a dynamic discipline based on the medical sciences, information sciences, and cognitive sciences. Its domain can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art," and indicate the likely growth areas for health informatics. The sources of information used in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA-Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  11. Cognitive hacking and intelligence and security informatics

    NASA Astrophysics Data System (ADS)

    Thompson, Paul

    2004-08-01

    This paper describes research on cognitive and semantic attacks on computer systems and their users. Several countermeasures against such attacks are described, including a description of a prototype News Verifier system. It is argued that because misinformation and deception play a much more significant role in intelligence and security informatics than in other informatics disciplines such as science, medicine, and the law, a new science of intelligence and security informatics must concern itself with semantic attacks and countermeasures.

  12. Engaging clinicians in health informatics projects.

    PubMed

    Caballero Muñoz, Erika; Hullin Lucay Cossio, Carola M

    2010-01-01

    This chapter gives an educational overview of: * The importance of the engagement of clinicians within a health informatics project * Strategies required for an effective involvement of clinicians throughout a change management process within a clinical context for the implementation of a health informatics project * The critical aspects for a successful implementation of a health informatics project that involves clinicians as end users * Key factors during the administration of changes during the implementation of an informatics project for an information system in clinical practice. PMID:20407162

  13. Perspectives from Nurse Managers on Informatics Competencies

    PubMed Central

    Cui, Dan; Zhu, Xuemei; Zhao, Qiuli; Xiao, Ningning; Shen, Xiaoying

    2014-01-01

    Background and Purpose. Nurse managers are in an excellent position for providing leadership and support within the institutions they serve and are often responsible for accessing information that is vital to the improvement of health facility processes and patients' outcomes. Therefore, competency in informatics is essential. The purposes of this study are to examine current informatics competency levels of nurse managers and to identify the variables that influence these competencies. Methods. A questionnaire designed to assess demographic information and nursing informatics competency was completed by 68 nurse managers. Multiple linear regression analysis was conducted to analyze the factors influencing informatics competency. Results. Descriptive analysis of the data revealed that informatics competency of these nurse managers was in the moderate range (77.65 ± 8.14). Multiple linear regression analysis indicated that level of education, nursing administration experience, and informatics education/training were significant factors affecting competency levels. Conclusion. The factors identified in this study can serve as a reference for nurse managers who were wishing to improve their informatics competency, hospital administrators seeking to provide appropriate training, and nursing educators who were making decisions about nursing informatics curricula. These findings suggest that efforts to enhance the informatics competency of nurse managers have marked potential benefits. PMID:24790565

  14. The Chief Clinical Informatics Officer (CCIO)

    PubMed Central

    Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    Summary Introduction The emerging operational role of the “Chief Clinical Informatics Officer” (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). Background The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. Discussion An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. Conclusion A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science. PMID:27081413

  15. Czech Basic Course.

    ERIC Educational Resources Information Center

    Foreign Service (Dept. of State), Washington, DC. Foreign Service Inst.

    This introductory Czech text is based on principles emphasizing development of basic communication skills. Speech samples reflect practical language spoken in everyday situations. The text is designed to be used by American foreign service professionals in foreign countries and to be accompanied by videotapes (unavailable to the public). The text…

  16. Czech Basic Course: Folklore.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This booklet is designed for use in the advanced phase of the Defense Language Institute's "Basic Course" in Czech. It is used in the advanced phase as a part of cultural background information. Reading selections, with vocabulary lists, include: (1) ethnography; (2) incantations and spells; (3) proverbs, sayings, and weather lore; (4) fairy tales…

  17. Czech Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    These eight volumes of the Defense Language Institute's audiolingual course in basic Czech are comprised of an introductory volume presenting the phonology with pronunciation dialogs, followed by seven volumes of Lesson Units 1-150. The Course is designed to train native English language speakers to Level 3 proficiency in understanding, speaking,…

  18. Measuring nursing informatics competencies of practicing nurses in Korea: Nursing Informatics Competencies Questionnaire.

    PubMed

    Chung, Seon Yoon; Staggers, Nancy

    2014-12-01

    Informatics competencies are a necessity for contemporary nurses. However, few researchers have investigated informatics competencies for practicing nurses. A full set of Informatics competencies, an instrument to measure these competencies, and potential influencing factors have yet to be identified for practicing nurses. The Nursing Informatics Competencies Questionnaire was designed, tested for psychometrics, and used to measure beginning and experienced levels of practice. A pilot study using 54 nurses ensured item comprehension and clarity. Internal consistency and face and content validity were established. A cross-sectional survey was then conducted on 230 nurses in Seoul, Korea, to determine construct validity, describe a complete set of informatics competencies, and explore possible influencing factors on existing informatics competencies. Principal components analysis, descriptive statistics, and multiple regression were used for data analysis. Principal components analysis gives support for the Nursing Informatics Competencies Questionnaire construct validity. Survey results indicate that involvement in a managerial position and self-directed informatics-related education may be more influential for improving informatics competencies, whereas general clinical experience and workplace settings are not. This study provides a foundation for understanding how informatics competencies might be integrated throughout nurses' work lives and how to develop appropriate strategies to support nurses in their informatics practice in clinical settings. PMID:25393832

  19. The Impact of Medical Informatics on Librarianship.

    ERIC Educational Resources Information Center

    Dalrymple, Prudence W.

    The thesis of this paper is that the growth of the field of medical informatics, while seemingly a potential threat to medical librarianship, is in fact an opportunity for librarianship to both extend its reach and also to further define its unique characteristics in contrast to those of medical informatics. Furthermore, because medical…

  20. Medical Informatics in Academic Health Science Centers.

    ERIC Educational Resources Information Center

    Frisse, Mark E.

    1992-01-01

    An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…

  1. Medical Informatics: Market for IS/IT.

    ERIC Educational Resources Information Center

    Morris, Theodore Allan

    2002-01-01

    Uses co-occurrence analysis of INSPEC classification codes and thesaurus terms assigned to medical informatics (biomedical information) journal articles and proceedings papers to reveal a more complete perspective of how information science and information technology (IS/IT) authors view medical informatics. Discusses results of cluster analysis…

  2. The Teaching of Informatics for Business Students

    ERIC Educational Resources Information Center

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  3. Informatics Education in Italian Secondary Schools

    ERIC Educational Resources Information Center

    Bellettini, Carlo; Lonati, Violetta; Malchiodi, Dario; Monga, Mattia; Morpurgo, Anna; Torelli, Mauro; Zecca, Luisa

    2014-01-01

    This article describes the state of informatics education in the Italian secondary schools, highlighting how the learning objectives set up by the Ministry of Education are difficult to meet, due to the fact that the subject is often taught by teachers not holding an informatics degree, the lack of suitable teaching material and the expectations…

  4. Teaching Some Informatics Concepts Using Formal System

    ERIC Educational Resources Information Center

    Yang, Sojung; Park, Seongbin

    2014-01-01

    There are many important issues in informatics and many agree that algorithms and programming are most important issues that need to be included in informatics education (Dagiene and Jevsikova, 2012). In this paper, we propose how some of these issues can be easily taught using the notion of a formal system which consists of axioms and inference…

  5. Nursing informatics: the future now.

    PubMed

    Mamta

    2014-01-01

    Technological advancements in the health care field have always impacted the health care practices. Nursing practice has also been greatly influenced by the technology. In the recent years, use of information technology including computers, handheld digital devices, internet has advanced the nursing by bridging the gap from nursing as an art to nursing as science. In every sphere of nursing practice, nursing research, nursing education and nursing informatics play a very important role. If used properly it is a way to save time, helping to provide quality nursing care and increases the proficiency of nursing personnel. PMID:25924417

  6. Informatics and the clinical laboratory.

    PubMed

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-08-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, 'Informatics' - the art and science of turning data into useful information - is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology - whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients - which requires critical assessment of the ever-increasing volume of information available - can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that there is a

  7. Five Periods in Development of Medical Informatics

    PubMed Central

    Masic, Izet

    2014-01-01

    Medical informatics, as scientific discipline, has to do with all aspects of understanding and promoting the effective organization, analysis, management, and use of information in health care. While the field of Medical informatics shares the general scope of these interests with some other health care specialities and disciplines, Medical (Health) informatics has developed its own areas of emphasis and approaches that have set it apart from other disciplines and specialities. For the last fifties of 20th century and some more years of 21st century, Medical informatics had the five time periods of characteristic development. In this paper author shortly described main scientific innovations and inventors who created development of Medical informatics. PMID:24648619

  8. What informatics is and isn't.

    PubMed

    Friedman, Charles P

    2013-01-01

    The term informatics is currently enveloped in chaos. One way to clarify the meaning of informatics is to identify the competencies associated with training in the field, but this approach can conceal the whole that the competencies atomistically describe. This work takes a different approach by offering three higher-level visions of what characterizes the field, viewing informatics as: (1) cross-training between basic informational sciences and an application domain, (2) the relentless pursuit of making people better at what they do, and (3) a field encompassing four related types of activities. Applying these perspectives to describe what informatics is, one can also conclude that informatics is not: tinkering with computers, analysis of large datasets per se, employment in circumscribed health IT workforce roles, the practice of health information management, or anything done using a computer. PMID:23059730

  9. Five periods in development of medical informatics.

    PubMed

    Masic, Izet

    2014-02-01

    Medical informatics, as scientific discipline, has to do with all aspects of understanding and promoting the effective organization, analysis, management, and use of information in health care. While the field of Medical informatics shares the general scope of these interests with some other health care specialities and disciplines, Medical (Health) informatics has developed its own areas of emphasis and approaches that have set it apart from other disciplines and specialities. For the last fifties of 20th century and some more years of 21st century, Medical informatics had the five time periods of characteristic development. In this paper author shortly described main scientific innovations and inventors who created development of Medical informatics. PMID:24648619

  10. Bringing nursing informatics into the undergraduate classroom.

    PubMed

    Vanderbeek, J; Ulrich, D; Jaworski, R; Werner, L; Hergert, D; Beery, T; Baas, L

    1994-01-01

    Nursing informatics is not formally addressed in most undergraduate nursing education programs. Nurses usually rely on their employer and/or device vendors to provide this education. Few nurses are able to capitalize on the potential of computer technology because they have not been sufficiently exposed to nursing informatics during their nursing education. Biomedical computer technology/informatics needs to be brought into the classroom, away from the pressures of the work environment. Informatics training needs to be incorporated into undergraduate nursing education through an integrated systems approach, combining elements of nursing, systems analysis, and engineering. In this article, a university-based state-of-the-art classroom and education plan using an integrated approach to educate nurses in nursing informatics is described. PMID:7954066

  11. Publication trends in the medical informatics literature: 20 years of "Medical Informatics" in MeSH

    PubMed Central

    2009-01-01

    Background The purpose of this study is to identify publication output, and research areas, as well as descriptively and quantitatively characterize the field of medical informatics through publication trend analysis over a twenty year period (1987–2006). Methods A bibliometric analysis of medical informatics citations indexed in Medline was performed using publication trends, journal frequency, impact factors, MeSH term frequencies and characteristics of citations. Results There were 77,023 medical informatics articles published during this 20 year period in 4,644 unique journals. The average annual article publication growth rate was 12%. The 50 identified medical informatics MeSH terms are rarely assigned together to the same document and are almost exclusively paired with a non-medical informatics MeSH term, suggesting a strong interdisciplinary trend. Trends in citations, journals, and MeSH categories of medical informatics output for the 20-year period are summarized. Average impact factor scores and weighted average impact factor scores increased over the 20-year period with two notable growth periods. Conclusion There is a steadily growing presence and increasing visibility of medical informatics literature over the years. Patterns in research output that seem to characterize the historic trends and current components of the field of medical informatics suggest it may be a maturing discipline, and highlight specific journals in which the medical informatics literature appears most frequently, including general medical journals as well as informatics-specific journals. PMID:19159472

  12. Informatics and the Clinical Laboratory

    PubMed Central

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-01-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, ‘Informatics’ – the art and science of turning data into useful information – is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology – whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients – which requires critical assessment of the ever-increasing volume of information available – can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that

  13. Case-based medical informatics

    PubMed Central

    Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R

    2004-01-01

    Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and

  14. Early experiences of accredited clinical informatics fellowships.

    PubMed

    Longhurst, Christopher A; Pageler, Natalie M; Palma, Jonathan P; Finnell, John T; Levy, Bruce P; Yackel, Thomas R; Mohan, Vishnu; Hersh, William R

    2016-07-01

    Since the launch of the clinical informatics subspecialty for physicians in 2013, over 1100 physicians have used the practice and education pathways to become board-certified in clinical informatics. Starting in 2018, only physicians who have completed a 2-year clinical informatics fellowship program accredited by the Accreditation Council on Graduate Medical Education will be eligible to take the board exam. The purpose of this viewpoint piece is to describe the collective experience of the first four programs accredited by the Accreditation Council on Graduate Medical Education and to share lessons learned in developing new fellowship programs in this novel medical subspecialty. PMID:27206458

  15. Consumer Informatics in Chronic Illness

    PubMed Central

    Tetzlaff, Linda

    1997-01-01

    Abstract Objective: To explore the informatic requirements in the home care of chronically ill patients. Design: A number of strategies were deployed to help evoke a picture of home care informatics needs: A detailed questionnaire evaluating informational needs and assessing programmable technologies was distributed to a clinic population of parents of children with cancer. Open ended questionnaires were distributed to medical staff and parents soliciting a list of questions asked of medical staff. Parent procedure training was observed to evaluate the training dialog, and parents were observed interacting with a prototype information and education computer offering. Results: Parents' concerns ranged from the details of managing day to day, to conceptual information about disease and treatment, to management of psychosocial problems. They sought information to solve problems and to provide emotional support, which may create conflicts of interest when the material is threatening. Whether they preferred to be informed by a doctor, nurse, or another parent depended on the nature of the information. Live interaction was preferred to video, which was preferred to text for all topics. Respondents used existing technologies in a straightforward way but were enthusiastic about the proposed use of computer technology to support home care. Multimedia solutions appear to complement user needs and preferences. Conclusion: Consumers appear positively disposed toward on-line solutions. On-line systems can offer breadth, depth and timeliness currently unattainable. Patients should be involved in the formation and development process in much the same way that users are involved in usercentered computer interface design. A generic framework for patient content is presented that could be applied across multiple disorders. PMID:9223035

  16. Comparative effectiveness research and medical informatics.

    PubMed

    D'Avolio, Leonard W; Farwell, Wildon R; Fiore, Louis D

    2010-12-01

    As is the case for environmental, ecological, astronomical, and other sciences, medical practice and research finds itself in a tsunami of data. This data deluge, due primarily to the introduction of digitalization in routine medical care and medical research, affords the opportunity for improved patient care and scientific discovery. Medical informatics is the subdiscipline of medicine created to make greater use of information in order to improve healthcare. The 4 areas of medical informatics research (information access, structure, analysis, and interaction) are used as a framework to discuss the overlap in information needs of comparative effectiveness research and potential contributions of medical informatics. Examples of progress from the medical informatics literature and the Veterans Affairs Healthcare System are provided. PMID:21184865

  17. Moving toward a United States strategic plan in primary care informatics: a White Paper of the Primary Care Informatics Working Group, American Medical Informatics Association.

    PubMed

    Little, David R; Zapp, John A; Mullins, Henry C; Zuckerman, Alan E; Teasdale, Sheila; Johnson, Kevin B

    2003-01-01

    The Primary Care Informatics Working Group (PCIWG) of the American Medical Informatics Association (AMIA) has identified the absence of a national strategy for primary care informatics. Under PCIWG leadership, major national and international societies have come together to create the National Alliance for Primary Care Informatics (NAPCI), to promote a connection between the informatics community and the organisations that support primary care. The PCIWG clinical practice subcommittee has recognised the necessity of a global needs assessment, and proposed work in point-of-care technology, clinical vocabularies, and ambulatory electronic medical record development. Educational needs include a consensus statement on informatics competencies, recommendations for curriculum and teaching methods, and methodologies to evaluate their effectiveness. The research subcommittee seeks to define a primary care informatics research agenda, and to support and disseminate informatics research throughout the primary care community. The AMIA board of directors has enthusiastically endorsed the conceptual basis for this White Paper. PMID:14567875

  18. Evolution of Trends in European Medical Informatics

    PubMed Central

    I. Mihalas, George

    2014-01-01

    This presentation attempts to analyze the trends in Medical Informatics along half a century, in the European socio-political and technological development context. Based on the major characteristics which seem dominant in some periods, a staging is proposed, with a description of each period – the context, major ideas, views and events. A summary of major features of each period is also added. This paper has an original presentation of the evolution of major trends in medical informatics. PMID:24648618

  19. Advanced Extravehicular Mobility Unit Informatics Software Design

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  20. Reflections on Czech Science Teaching

    ERIC Educational Resources Information Center

    Svec, Michael

    2007-01-01

    International comparisons help us explore the assumptions made about U.S. schools, students, and pedagogy. That is why the author decided to spend five months in the Czech Republic teaching science education courses at Palacky and Ostrava Universities and learning about the Czech education system. As a result, the new context challenged his…

  1. Cestina pro Pokrocile (Intermediate Czech).

    ERIC Educational Resources Information Center

    Kabat, Grazyna; And Others

    The textbook in intermediate Czech is designed for second-year students of the language and those who already have a basic knowledge of Czech grammar and vocabulary. It is appropriate for use in a traditional college language classroom, the business community, or a government language school. It can be covered in a year-long conventional…

  2. An analysis of published nursing informatics competencies.

    PubMed

    Carter-Templeton, Heather; Patterson, Ramona; Russell, Cynthia

    2009-01-01

    Nursing informatics competency lists can provide a clear picture of required skills, knowledge, and attitudes needed for today's nursing workforce in a high-tech environment. Many stakeholders such as employers and educators have a vested interest in defining nursing informatics competencies for nurses. The primary objective of this paper was to compare and contrast published nursing informatics competencies. A literature search was conducted using the terms "informatics competencies" and "nursing informatics competencies" via PubMeb and CINAHL for relevant articles. The search captured 37 articles; however, only six met the inclusion criteria set prior to the search. These six competency lists were reviewed for audience, sample size, design, categories used to classify competencies and operational examples of competencies. Findings revealed that there is variation among published informatics competencies in regard to content, presentation, and audience. A general list of competencies that can be utilized by nurses at all levels is needed. As a result nurses could operationalize and measure the skills, knowledge, and attitudes necessary to execute safe and effective nursing care in today's health care setting. PMID:19592901

  3. X-Informatics: Practical Semantic Science

    NASA Astrophysics Data System (ADS)

    Borne, K. D.

    2009-12-01

    The discipline of data science is merging with multiple science disciplines to form new X-informatics research disciplines. They are almost too numerous to name, but they include geoinformatics, bioinformatics, cheminformatics, biodiversity informatics, ecoinformatics, materials informatics, and the emerging discipline of astroinformatics. Within any X-informatics discipline, the information granules are unique to that discipline -- e.g., gene sequences in bio, the sky object in astro, and the spatial object in geo (such as points, lines, and polygons in the vector model, and pixels in the raster model). Nevertheless the goals are similar: transparent data re-use across subdisciplines and within education settings, information and data integration and fusion, personalization of user interactions with the data collection, semantic search and retrieval, and knowledge discovery. The implementation of an X-informatics framework enables these semantic e-science research goals. We describe the concepts, challenges, and new developments associated with the new discipline of astroinformatics, and how geoinformatics provides valuable lessons learned and a model for practical semantic science within a traditional science discipline through the accretion of data science methodologies (such as formal metadata creation, data models, data mining, information retrieval, knowledge engineering, provenance, taxonomies, and ontologies). The emerging concept of data-as-a-service (DaaS) builds upon the concept of smart data (or data DNA) for intelligent data management, automated workflows, and intelligent processing. Smart data, defined through X-informatics, enables several practical semantic science use cases, including self-discovery, data intelligence, automatic recommendations, relevance analysis, dimension reduction, feature selection, constraint-based mining, interdisciplinary data re-use, knowledge-sharing, data use in education, and more. We describe these concepts within the

  4. [Informatics in the Croatian health care system].

    PubMed

    Kern, Josipa; Strnad, Marija

    2005-01-01

    Informatization process of the Croatian health care system started relatively early. Computer processing of data of persons not covered by health insurance started in 1968 in Zagreb. Remetinec Health Center served as a model of computer data processing (CDP) in primary health care and Sveti Duh General Hospital in inpatient CDP, whereas hospital administration and health service were first introduced to Zagreb University Hospital Center and Sestre Milosrdnice University Hospital. At Varazdin Medical Center CDP for health care services started in 1970. Several registries of chronic diseases have been established: cancer, psychosis, alcoholism, and hospital registries as well as pilot registries of lung tuberculosis patients and diabetics. Health statistics reports on healthcare services, work accidents and sick-leaves as well as on hospital mortality started to be produced by CDP in 1977. Besides alphanumeric data, the modern information technology (IT) can give digital images and signals. Communication in health care system demands a standardized format of all information, especially for telemedicine. In 2000, Technical Committee for Standardization in Medical Informatics was founded in Croatia, in order to monitor the activities of the International Standardization Organization (ISO) and Comite Européen de Normalisation (CEN), and to implement their international standards in the Croatian standardization procedure. The HL7 Croatia has also been founded to monitor developments in the communication standard HL7. So far, the Republic of Croatia has a number of acts regulating informatization in general and consequently the informatization of the health care system (Act on Personal Data Confidentiality, Act on Digital Signature, Act of Standardization) enacted. The ethical aspect of data security and data protection has been covered by the Code of Ethics for medical informaticians. It has been established by the International Medical Informatics Association (IMIA

  5. Chapter 17: bioimage informatics for systems pharmacology.

    PubMed

    Li, Fuhai; Yin, Zheng; Jin, Guangxu; Zhao, Hong; Wong, Stephen T C

    2013-04-01

    Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi). Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies. PMID:23633943

  6. Re-imagining the medical informatics curriculum.

    PubMed

    Frisse, M E

    1997-01-01

    Most physicians in academics, administration, and private practice are insufficiently trained to cope with the current challenges facing medicine. Although information technology, and medical informatics in particular, has been considered to be part of the solution to this problem, the philosophical underpinnings of informatics remain a source of much discussion. Too often, new technology is seen as a new way to do the same things, rather than as an opportunity for a radical reenvisioning of the processes and practices themselves. As a consequence, practitioners and educators fail to make the best uses of new technologies, and fail to offer medical students the comprehensive training in medical informatics that they will need as they move into the real worlds of practice and academics. In this paper, the author describes an imaginary informatics curriculum made up of six core courses: Introduction to Complexity, Decisions and Outcomes, Scarcity and Conflict, Teamwork and Organizations, Representing Knowledge and Action, and Groupware and Collaboration. He does not recommend that these hypothetical courses actually be implemented, but presents them in the hope that they may serve as a starting point for discussions of how informatics can be incorporated into the curriculum in a more substantive way. PMID:9008566

  7. Medical Informatics Education & Research in Greece

    PubMed Central

    Chouvarda, I.

    2015-01-01

    Summary Objectives This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. Methods With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Results Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Conclusions Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated. PMID:26123910

  8. The experience of informatics nurses in Taiwan.

    PubMed

    Liu, Chia-Hui; Lee, Ting-Ting; Mills, Mary Etta

    2015-01-01

    Despite recent progress in information technology, health care institutions are constantly confronted with the need to adapt to the resulting new processes of information management and use. Facilitating an effective technology implementation requires dedication from informatics nurses (INs) to bridge the gap between clinical care and technology. The purpose of this study was to explore the working experiences of INs, and alternatives to assist the growth and development of the specialty. This qualitative study recruited 8 participants, and data were collected in 2009 by use of interview guides related to work roles, responsibilities, competencies, and challenges. The emerged themes included (a) diversified roles and functions, (b) vague job description, (c) no decision-making authority, (d) indispensable management support, and (e) searching resources for work fulfillment. Findings indicate that for organizations where nursing informatics development is ongoing, the IN role should be clearly defined as a specialist with identified support resources and decision-making authority. Nursing informatics interest groups should further develop training and certification programs to validate the professional image of the role. Concepts of nursing informatics should be included seamlessly throughout the educational curricula and informatics competency-based courses designed to strengthen student's technology use and data management capabilities. PMID:25839956

  9. Recommendations of the International Medical Informatics Association (IMIA) on education in health and medical informatics.

    PubMed

    2000-08-01

    The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for healthcare professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in healthcare (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for healthcare professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, healthcare management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http:www.imia.org/wg1). PMID:10992757

  10. Clinical Informatics Board Certification: History, Current Status, and Predicted Impact on the Clinical Informatics Workforce

    PubMed Central

    Detmer, Don E.; Munger, Benson S.; Lehmann, Christoph U.

    2010-01-01

    Within health and health care, medical informatics and its subspecialties of biomedical, clinical, and public health informatics have emerged as a new discipline with increasing demands for its own work force. Knowledge and skills in medical informatics are widely acknowledged as crucial to future success in patient care, research relating to biomedicine, clinical care, and public health, as well as health policy design. The maturity of the domain and the demand on expertise necessitate standardized training and certification of professionals. The American Medical Informatics Association (AMIA) embarked on a major effort to create professional level education and certification for physicians of various professions and specialties in informatics. This article focuses on the AMIA effort in the professional structure of medical specialization, e.g., the American Board of Medical Specialties (ABMS) and the related Accreditation Council for Graduate Medical Education (ACGME). This report summarizes the current progress to create a recognized sub-certificate of competence in Clinical Informatics and discusses likely near term (three to five year) implications on training, certification, and work force with an emphasis on clinical applied informatics. PMID:23616825

  11. Health Informatics for Pediatric Disaster Preparedness Planning

    PubMed Central

    Burke, R.V.; Ryutov, T.; Neches, R.; Upperman, J.S.

    2010-01-01

    Objective 1. To conduct a review of the role of informatics in pediatric disaster preparedness using all medical databases. 2. To provide recommendations to improve pediatric disaster preparedness by the application of informatics. Methods A literature search was conducted using MEDLINE, CINHL and the Cochrane Library using the key words “children” AND “disaster preparedness and disaster” AND “informatics”. Results A total of 314 papers were initially produced by the search and eight that met the selection criteria were included in the review. Four themes emerged: tools for disaster preparedness, education, reunification and planning and response. Conclusion The literature pertaining to informatics and pediatric disaster preparedness is sparse and many gaps still persist. Current disaster preparedness tools focus on the general population and do not specifically address children. The most progress has been achieved in family reunification; however, the recommendations delineated are yet to be completed. PMID:23616840

  12. Earth Science Informatics Comes of Age

    NASA Technical Reports Server (NTRS)

    Jodha, Siri; Khalsa, S.; Ramachandran, Rahul

    2014-01-01

    The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.

  13. NASA Biomedical Informatics Capabilities and Needs

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.

    2009-01-01

    To improve on-orbit clinical capabilities by developing and providing operational support for intelligent, robust, reliable, and secure, enterprise-wide and comprehensive health care and biomedical informatics systems with increasing levels of autonomy, for use on Earth, low Earth orbit & exploration class missions. Biomedical Informatics is an emerging discipline that has been defined as the study, invention, and implementation of structures and algorithms to improve communication, understanding and management of medical information. The end objective of biomedical informatics is the coalescing of data, knowledge, and the tools necessary to apply that data and knowledge in the decision-making process, at the time and place that a decision needs to be made.

  14. Software engineering education in medical informatics.

    PubMed

    Leven, F J

    1989-11-01

    Requirements and approaches of Software Engineering education in the field of Medical Informatics are described with respect to the impact of (1) experiences characterizing the "software misery", (2) status and tendencies in software methodology, and (3) educational status and needs in computer science education influenced by the controversy "theoretical versus practical education". Special attention is directed toward the growing importance of analysis, design methods, and techniques in the professional spectrum of Medical Informatics, the relevance of general principles of systems engineering in health care, the potential of non-procedural programming paradigms, and the intersection of Artificial Intelligence and education. Realizations of and experiences with programs in the field of Software Engineering are reported with respect to special requirements in Medical Informatics. PMID:2695780

  15. Impact of medical informatics on medical education.

    PubMed

    Hou, S M

    1999-11-01

    In recent years, medical informatics has become a well-recognized branch of medicine. It is a multidisciplinary science that combines information technology and various specialties of medicine. The impact of medical informatics on medical education is advancing along with the rapid developments in computer science. Departments of medical informatics or similar divisions have appeared in schools of medicine in Taiwan in the past 5 years. At National Taiwan University College of Medicine, we offer curricula in basic computer concepts, network concepts, operating systems, word processing, database and data processing, computer media resources, multimedia computer statistics, intelligent health information systems, medical diagnostic support systems, and electronic medical record systems. Distance learning has also been favorably accepted on this campus. Recently, we proposed the concept of a virtual medical campus, which will break the physical barriers of time and space. We expect this revolution to influence every aspect of medicine, especially medical education. PMID:10705693

  16. Core Content for the Subspecialty of Clinical Informatics

    PubMed Central

    Gardner, Reed M.; Overhage, J. Marc; Steen, Elaine B.; Munger, Benson S.; Holmes, John H.; Williamson, Jeffrey J.; Detmer, Don E.

    2009-01-01

    The Core Content for Clinical Informatics defines the boundaries of the discipline and informs the Program Requirements for Fellowship Education in Clinical Informatics. The Core Content includes four major categories: fundamentals, clinical decision making and care process improvement, health information systems, and leadership and management of change. The AMIA Board of Directors approved the Core Content for Clinical Informatics in November 2008. PMID:19074296

  17. MRSQ informatics education columns: passing the baton.

    PubMed

    Hasman, Linda; Hoberecht, Toni; Pullen, Kimberly

    2012-01-01

    This is the last Informatics Education column under the current editors. The outgoing co-editor identifies several key themes that describe the column during her tenure. The main theme discovered while reviewing the columns published over the last five years is technology. Technological changes and advances have affected the way in which librarians conduct instruction, such as incorporating e-learning with traditional workshops and in-class sessions. Technology plays a key role in all of the themes that emerged. The incoming editors imagine what the future themes will be for the Informatics Education column. PMID:23092421

  18. The Informatics Opportunities at the Intersection of Patient Safety and Clinical Informatics

    PubMed Central

    Kilbridge, Peter M.; Classen, David C.

    2008-01-01

    Health care providers have a basic responsibility to protect patients from accidental harm. At the institutional level, creating safe health care organizations necessitates a systematic approach. Effective use of informatics to enhance safety requires the establishment and use of standards for concept definitions and for data exchange, development of acceptable models for knowledge representation, incentives for adoption of electronic health records, support for adverse event detection and reporting, and greater investment in research at the intersection of informatics and patient safety. Leading organizations have demonstrated that health care informatics approaches can improve safety. Nevertheless, significant obstacles today limit optimal application of health informatics to safety within most provider environments. The authors offer a series of recommendations for addressing these challenges. PMID:18436896

  19. An overview of the medical informatics curriculum in medical schools.

    PubMed Central

    Espino, J. U.; Levine, M. G.

    1998-01-01

    As medical schools incorporate medical informatics into their curriculum the problems of implementation arise. Because there are no standards regarding a medical informatics curriculum, medical schools are implementing the subjects in various ways. A survey was undertaken to amass an overview of the medical informatics curriculum nationally. Of the responding schools, most have aspects of medical informatics incorporated into current courses and utilize existing faculty. Literature searching, clinical decision-making, and Internet are the basic topics in the current curricula. The trend is for medical informatics to be incorporated throughout all four years of medical school. Barriers are the difficulties in faculty training, and slow implementation. PMID:9929263

  20. Medical informatics on the Internet: creating the sci.med. informatics newsgroup.

    PubMed

    Zakaria, A M; Sittig, D F

    1995-01-01

    A Usenet newsgroup, sci.med.informatics, has been created to serve as an international electronic forum for discussion of issues related to medical informatics. The creation process follows a set of administrative rules set out by the Usenet administration on the Internet and consists of five steps: 1) informal discussion, 2) request for formal discussion, 3) formal discussion, 4) voting, and 5) posting of results. The newsgroup can be accessed using any news reader via the Internet. PMID:7583645

  1. Developing curriculum in nursing informatics in Europe.

    PubMed

    Mantas, J

    1998-06-01

    The NIGHTINGALE Project (NIGHTINGALE Project: HC1109 DGXIII Contract and Technical Annex, European Commission, December 1995) which started on the 1st of January, 1996, after the approval of the European Commission, has a 36 month duration. It is essential in planning and implementing a strategy in training the nursing profession in using and applying healthcare information systems. NIGHTINGALE contributes towards the appropriate use of the developed telematics infrastructure across Europe by educating and training nurses in a harmonious way across Europe in the upcoming field of nursing informatics. NIGHTINGALE develops courseware material based on the curriculum development process using multimedia technologies. Computer based training software packages in nursing informatics will be the basis of the training material and the corresponding courses. CD-ROM based training and reference material will also be provided in the courses whereas the traditional booklets, teaching material and textbooks can also play an adequate role in training. NIGHTINGALE will disseminate all information and courseware material freely to all interested parties through the publications of the proceedings of the conferences, through the establishment of the world wide web (WWW) server in nursing informatics for Europe (http://www.dn.uoa.gr/nightingale), which will become a depository of nursing information knowledge across Europe as well as a dissemination node of nursing informatics throughout the European members states for the benefit and welfare of the European citizen. PMID:9726502

  2. Medical informatics and telemedicine: A vision

    NASA Technical Reports Server (NTRS)

    Clemmer, Terry P.

    1991-01-01

    The goal of medical informatics is to improve care. This requires the commitment and harmonious collaboration between the computer scientists and clinicians and an integrated database. The vision described is how medical information systems are going to impact the way medical care is delivered in the future.

  3. Optimizing Clinical Research Participant Selection with Informatics

    PubMed Central

    Weng, Chunhua

    2015-01-01

    Clinical research participants are often not reflective of the real-world patients due to overly restrictive eligibility criteria. Meanwhile, unselected participants introduce confounding factors and reduce research efficiency. Biomedical Informatics, especially Big Data increasingly made available from electronic health records, offers promising aids to optimize research participant selection through data-driven transparency. PMID:26549161

  4. Geo-Engineering through Internet Informatics (GEMINI)

    SciTech Connect

    Doveton, John H.; Watney, W. Lynn

    2003-03-06

    The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.

  5. Imaging Informatics: 25 Years of Progress.

    PubMed

    Agrawal, J P; Erickson, B J; Kahn, C E

    2016-01-01

    The science and applications of informatics in medical imaging have advanced dramatically in the past 25 years. This article provides a selective overview of key developments in medical imaging informatics. Advances in standards and technologies for compression and transmission of digital images have enabled Picture Archiving and Communications Systems (PACS) and teleradiology. Research in speech recognition, structured reporting, ontologies, and natural language processing has improved the ability to generate and analyze the reports of imaging procedures. Informatics has provided tools to address workflow and ergonomic issues engendered by the growing volume of medical image information. Research in computeraided detection and diagnosis of abnormalities in medical images has opened new avenues to improve patient care. The growing number of medical-imaging examinations and their large volumes of information create a natural platform for "big data" analytics, particularly when joined with high-dimensional genomic data. Radiogenomics investigates relationships between a disease's genetic and gene-expression characteristics and its imaging phenotype; this emerging field promises to help us better understand disease biology, prognosis, and treatment options. The next 25 years offer remarkable opportunities for informatics and medical imaging together to lead to further advances in both disciplines and to improve health. PMID:27362590

  6. Current Status of Nursing Informatics Education in Korea

    PubMed Central

    Jeon, Eunjoo; Kim, Jeongeun; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-01-01

    Objectives This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. Methods A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. Results A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Conclusions Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses. PMID:27200224

  7. IMIA Accreditation of Health Informatics Programs

    PubMed Central

    Mantas, John

    2013-01-01

    Objectives Health informatics programs usually are evaluated by national accreditation committees. Not always are the members of these committees well informed about the international level of (education in) health informatics. Therefore, when a program is accredited by a national accreditation committee, this does not always mean that the program is of an international level. The International Medical Informatics Association (IMIA) has expertise in the field of education. The IMIA Recommendations on Education in Biomedical and Health Informatics guide curricula development. The goal of this article is to show that IMIA can also play the role of accreditation agency and to present the IMIA accreditation protocol and experiences obtained with it. Methods The accreditation procedure used in the Netherlands and Belgium was taken as a template for the design of the IMIA accreditation protocol. In a trial period of one and a half year the protocol is tested out on six health informatics programs. Results An accreditation protocol was designed. For judging the curriculum of a program the IMIA Recommendations are used. The institution has to write a self-assessment report and a site visit committee visits the program and judges its quality, supported by the self-assessment report and discussions with all stakeholders of the program. Conclusions After having visited three programs it appears that the IMIA accreditation procedure works well. Only a few changes had to be introduced. Writing the self-assessment report already appears to be beneficial for the management of the program to obtain a better insight in the quality of their program. PMID:24175114

  8. Pathology Informatics Essentials for Residents: A flexible informatics curriculum linked to Accreditation Council for Graduate Medical Education milestones

    PubMed Central

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:27563486

  9. Recommendations of the International Medical Informatics Association (IMIA) on education in health and medical informatics.

    PubMed

    2004-01-01

    The International Medical Informatics Association (IMIA) agreed on international recommendations in health informatics / medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in health and medical informatics (HMI), particularly international activities in educating HMI specialists and the sharing of courseware. The IMIA recommendations centre on educational needs for health care professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in health care (physicians, nurses, HMI professionals, ...), 2) type of specialisation in health and medical informatics (IT users, HMI specialists) and 3) stage of career progression (bachelor, master, ...). Learning outcomes are defined in terms of knowledge and practical skills for health care professionals in their role (a) as IT user and (b) as HMI specialist. Recommendations are given for courses/course tracks in HMI as part of educational programs in medicine, nursing, health care management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in HMI (with bachelor, master or doctor degree). To support education in HMI, IMIA offers to award a certificate for high quality HMI education and supports information exchange on programs and courses in HMI through a WWW server of its Working Group on Health and Medical Informatics Education (http://www.imia.org/wg1). PMID:15718686

  10. The imaging 3.0 informatics scorecard.

    PubMed

    Kohli, Marc; Dreyer, Keith J; Geis, J Raymond

    2015-04-01

    Imaging 3.0 is a radiology community initiative to empower radiologists to create and demonstrate value for their patients, referring physicians, and health systems. In image-guided health care, radiologists contribute to the entire health care process, well before and after the actual examination, and out to the point at which they guide clinical decisions and affect patient outcome. Because imaging is so pervasive, radiologists who adopt Imaging 3.0 concepts in their practice can help their health care systems provide consistently high-quality care at reduced cost. By doing this, radiologists become more valuable in the new health care setting. The authors describe how informatics is critical to embracing Imaging 3.0 and present a scorecard that can be used to gauge a radiology group's informatics resources and capabilities. PMID:25842018

  11. Czech Student Attitudes towards Geography

    ERIC Educational Resources Information Center

    Kubiatko, Milan; Janko, Tomas; Mrazkova, Katerina

    2012-01-01

    This study investigates 540 Czech lower secondary students' attitudes towards geography. It examined the general influence of gender and grade level on attitudes towards geography with an emphasis on four specific areas in particular: geography as a school subject; geography and the environment; the importance of geography; and the relevance of…

  12. Czech Children's Drawing of Nature

    ERIC Educational Resources Information Center

    Yilmaz, Zuhal; Kubiatko, Milan; Topal, Hatice

    2012-01-01

    Do world children draw nature pictures in a certain way? Range of mountains in the background, a sun, couple clouds, a river rising from mountains. Is this type of drawing universal in the way these nature items are organized on a drawing paper? The sample size from Czech Republic included 33 participants from two kindergartens. They were 5 and 6…

  13. Reading Authentic Czech, Volume I.

    ERIC Educational Resources Information Center

    Privorotsky, Grazyna

    This book of instructional materials for reading in Czech are intended for college-level students, and are designed to bring native English-speakers from an 0+ (Novice High) to a 1+ (Intermediate High) language proficiency level on the American Council on the Teaching of Foreign Languages/Interagency Language Roundtable proficiency scale. The…

  14. Czech Basic Course: Verb List.

    ERIC Educational Resources Information Center

    Stoner, William; Vit, Karel V.

    This compilation of verbs, intended for students of the Defense Language Institute (DLI) Basic Course, provides brief definitions for each entry. No sentence examples are included. The text is intended to serve as a compact reference and study aid. Examples are selected from the Basic Course and the DLI Czech-English Dictionary. Entries are listed…

  15. Medical informatics and health care organizations.

    PubMed

    Holden, F M

    1991-01-01

    A dialogue between upper management and operational elements over an organization's informatics policies and procedures could take place in an environment in which both parties could succeed. Excellent patient care practices can exist in organizational settings where upper management is not concerned with the specifics of the medical care process. But as the medical care process itself becomes costly, complex, and part of the purview of upper management, solutions to ambiguous informatics policies and practices need to be found. As the discussion of cost determination suggests, a comprehensive "top-down" solution may not be feasible. Allowing patient care expertise to drive the design and implementation of clinical computing modules without unduly restrictive specifications from above is probably the best way to proceed. But if the organization needs to know the specifics of a treatment episode, then the informatics definitions specific to treatment episodes need to be unambiguous and consistently applied. As the discussion of Social Security numbers suggests, communication of information across various parts of the organization not only requires unambiguous data structure definitions, but also suggests that the communication process not be dependent on the content of the messages. Both ideas--consistent data structure definitions for essential data and open system communication architectures--are current in the medical informatician's vocabulary. The same ideas are relevant to the management and operation of large and diffuse health care enterprises. The lessons we are learning about informatics policy and practice controls in clinical computing need to be applied to the enterprise as a whole. PMID:1921663

  16. The Renewed Promise of Medical Informatics.

    PubMed

    van Bemmel, J H; McCray, A T

    2016-01-01

    The promise of the field of Medical Informatics has been great and its impact has been significant. In 1999, the Yearbook editors of the International Medical Informatics Association (IMIA) - also the authors of the present paper - sought to assess this impact by selecting a number of seminal papers in the field, and asking experts to comment on these articles. In particular, it was requested whether and how the expectations, represented by these papers, had been fulfilled since their publication several decades earlier. Each expert was also invited to comment on what might be expected in the future. In the present paper, these areas are briefly reviewed again. Where did these early papers have an impact and where were they not as successful as originally expected? It should be noted that the extraordinary developments in computer technology observed in the last two decades could not have been foreseen by these early researchers. In closing, some of the possibilities and limitations of research in medical informatics are outlined in the context of a framework that considers six levels of computer applications in medicine and health care. For each level, some predictions are made for the future, concluded with thoughts on fruitful areas for ongoing research in the field. PMID:27199195

  17. Crossing the Chasm: Information Technology to Biomedical Informatics

    PubMed Central

    Fahy, Brenda G.; Balke, C. William; Umberger, Gloria H.; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L.; Conigliaro, Joseph

    2011-01-01

    Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) “Roadmap for Medical Research.” The Clinical and Translational Research Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH’s translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology (IT) platforms of the enterprise clinical operations within academic health centers. This report details one academic health center’s transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This paper describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts. PMID:21383632

  18. Knowledge, Skills, and Resources for Pharmacy Informatics Education

    PubMed Central

    Fox, Brent I.; Flynn, Allen J.; Fortier, Christopher R.; Clauson, Kevin A.

    2011-01-01

    Pharmacy has an established history of technology use to support business processes. Pharmacy informatics education within doctor of pharmacy programs, however, is inconsistent, despite its inclusion as a requirement in the 2007 Accreditation Council for Pharmacy Education Standards and Guidelines. This manuscript describes pharmacy informatics knowledge and skills that all graduating pharmacy students should possess, conceptualized within the framework of the medication use process. Additionally, we suggest core source materials and specific learning activities to support pharmacy informatics education. We conclude with a brief discussion of emerging changes in the practice model. These changes are facilitated by pharmacy informatics and will inevitably become commonplace in our graduates’ practice environment. PMID:21829267

  19. (Bio)Medical Informatics in the Next Decade

    PubMed Central

    Rindfleisch, Thomas C.

    1998-01-01

    Even though medical informatics is most often viewed from the perspective of its host disciplines in clinical and biologic medicine, it has an identity and agenda of its own. This paper is an attempt to promote discussion about the long-term role and agenda for medical informatics as a discipline into the next decade. The discussion has two main lines of argument, one about the “engineering” goals of informatics and the other about the “basic research” goals. These are, of course, influenced by ongoing developments in computing, communications, and software infrastructures, but informatics is now mature enough that many of its goals transcend these changes. PMID:9760389

  20. Continuous quality improvement and medical informatics: the convergent synergy.

    PubMed

    Werth, G R; Connelly, D P

    1992-01-01

    Continuous quality improvement (CQI) and medical informatics specialists need to converge their efforts to create synergy for improving health care. Health care CQI needs medical informatics' expertise and technology to build the information systems needed to manage health care organizations according to quality improvement principles. Medical informatics needs CQI's philosophy and methods to build health care information systems that can evolve to meet the changing needs of clinicians and other stakeholders. This paper explores the philosophical basis for convergence of CQI and medical informatics efforts, and then examines a clinical computer workstation development project that is applying a combined approach. PMID:1482948

  1. Assessment and treatment of aphasia in czech.

    PubMed

    Lehečková, Helena

    2012-01-01

    Intervention approaches to aphasia differ in different countries. The aim of this paper is to give an overview of the situation in the Czech Republic. The following topics are summarized: (1) Czech logopedics in aphasiology; (2) the assessment of aphasia; (3) the treatment of aphasia; (4) Czech aphasiologic material; (5) the qualification of clinical logopedists, and (6) regulations of aphasiologic care. Czech is a very intricate language, both phonetically and grammatically. The prevalence of consonants appearing in long sequences (a whole sentence can be constructed purely of consonants) makes it difficult to pronounce. The strong inflecting character with hundreds of grammatical forms for each inflected word makes it difficult to use correct morphology and syntax. These facts make Czech a real challenge both for aphasics and logopedists. An overview of aphasia tests and treatment methods used in the Czech Republic, as well as conditions of logopedic care are given. The paper will allow comparison with the situation in other countries. PMID:23108445

  2. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    PubMed

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  3. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    PubMed Central

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  4. Czech Republic: health system review.

    PubMed

    Alexa, Jan; Recka, Lukas; Votapkova, Jana; van Ginneken, Ewout; Spranger, Anne; Wittenbecher, Friedrich

    2015-01-01

    This analysis of the Czech health system reviews recent developments in organization and governance, health financing, health-care provision, health reforms and health system performance. The Czech health-care system is based on compulsory statutory health insurance providing virtually universal coverage and a broad range of benefits, and doing so at 7.7 % of GDP in 2012 - well below the EU average - of which a comparatively high 85 % was publicly funded. Some important health indicators are better than the EU averages (such as mortality due to respiratory disease) or even among the best in the world (in terms of infant mortality, for example). On the other hand, mortality rates for diseases of the circulatory system and malignant neoplasms are well above the EU average, as are a range of health-care utilization rates, such as outpatient contacts and average length of stay in acute care hospitals. In short, there is substantial potential in the Czech Republic for efficiency gains and to improve health outcomes. Furthermore, the need for reform in order to financially sustain the system became evident again after the global financial crisis, but there is as yet no consensus about how to achieve this. PMID:26106825

  5. Characteristics of Information Systems and Business Informatics Study Programs

    ERIC Educational Resources Information Center

    Helfert, Markus

    2011-01-01

    Over the last decade there is an intensive discussion within the Information Systems (IS) and Informatics community about the characteristics and identity of the discipline. Simultaneously with the discussion, there is an ongoing debate on essential skills and capabilities of IS and Business Informatics graduates as well as the profile of IS…

  6. Massive Open Online Course for Health Informatics Education

    PubMed Central

    2014-01-01

    Objectives This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). Methods The Health Informatics Forum is one of examples of MOOCs through a social networking site for educating health informatics students and professionals. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. Results The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Conclusions Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost. PMID:24872906

  7. Perspectives on Information Science and Health Informatics Education.

    ERIC Educational Resources Information Center

    Lunin, Lois F., Ed.; Ball, Marion J., Ed.

    1989-01-01

    This theoretical discussion of what information science can contribute to the health professions addresses questions of definition and describes application and knowledge models for the emerging profession of informatics. A review of existing programs includes curriculum models and provides details on informatics programs emphasizing information…

  8. Consumer Health Informatics: Health Information Technology for Consumers.

    ERIC Educational Resources Information Center

    Jimison, Holly Brugge; Sher, Paul Phillip

    1995-01-01

    Explains consumer health informatics and describes the technology advances, the computer programs that are currently available, and the basic research that addresses both the effectiveness of computer health informatics and its impact on the future direction of health care. Highlights include commercial computer products for consumers and…

  9. A hypergraphic model of medical informatics: curriculum development guide.

    PubMed Central

    Chi, X.; Pavilcek, K.

    1999-01-01

    Medical informatics, as a descriptive, scientific study, must be mathematically or theoretically described. Is it important to define a model for medical informatics? The answer is worth pursuing. The medical informatics profession stands to benefit three-fold: first, by clarifying the vagueness of the definition of medical informatics, secondly, by identifying the scope and content for educational programs, and, thirdly, by defining career opportunities for its graduates. Existing medical informatics curricula are not comparable. Consequently, the knowledge and skills of graduates from these programs are difficult to assess. The challenge is to promote academics that develops graduates for prospective employers to fulfill the criteria of the health care industry and, simultaneously, compete with computer science programs that produce information technology graduates. In order to meet this challenge, medical informatics programs must have unique curricula that distinguishes its graduates. The solution is to educate students in a comparable manner across the domain of medical informatics. This paper discusses a theoretical model for medical informatics. Images Figure PMID:10566316

  10. Office of Biological Informatics and Outreach geospatial technology activities

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.

  11. The Recurrence Relations in Teaching Students of Informatics

    ERIC Educational Resources Information Center

    Bakoev, Valentin P.

    2010-01-01

    The topic "Recurrence relations" and its place in teaching students of Informatics is discussed in this paper. We represent many arguments about the importance, the necessity and the benefit of studying this subject by Informatics students. They are based on investigation of some fundamental books and textbooks on Discrete Mathematics,…

  12. Pathology informatics fellowship training: Focus on molecular pathology

    PubMed Central

    Mandelker, Diana; Lee, Roy E.; Platt, Mia Y.; Riedlinger, Gregory; Quinn, Andrew; Rao, Luigi K. F.; Klepeis, Veronica E.; Mahowald, Michael; Lane, William J.; Beckwith, Bruce A.; Baron, Jason M.; McClintock, David S.; Kuo, Frank C.; Lebo, Matthew S.; Gilbertson, John R.

    2014-01-01

    Background: Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Methods and Results: Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program's core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. Conclusions: The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists. PMID:24843823

  13. Clinical Informatics Board Specialty Certification for Physicians: A Global View.

    PubMed

    Gundlapalli, Adi V; Gundlapalli, Aditya V; Greaves, William W; Kesler, Denece; Murray, Peter; Safran, Charles; Lehmann, Christoph U

    2015-01-01

    Clinical informatics workforce development is a high priority for medicine. Professional board certification for physicians is an important tool to demonstrating excellence. The recent recognition of clinical informatics as a subspecialty board in the U.S. has generated interest and excitement among the U.S. informatics community. To determine the extent of similar programs in countries around the world, we performed literature searches with relevant keywords and internet searches of websites of informatics societies around the world for mentions or descriptions of certifications and reviewed publicly available sources. The U.S. certification was prominent in the recent published literature. Germany and Belgium have long-standing certifications with South Korea and Sri Lanka considering similar programs. This is the first global view of clinical informatics board certification for physicians. Training and certification for non-physician informatics professionals in allied areas are widespread. Official recognition and certification for physicians and all informatics professionals represents a key component of capacity building and a means of addressing the shortage of a skilled informatics workforce. Wider adoption of certification programs may further attracting talent and accelerate growth of the field. PMID:26262101

  14. The Impact of Imaging Informatics Fellowships.

    PubMed

    Liao, Geraldine J; Nagy, Paul G; Cook, Tessa S

    2016-08-01

    Imaging informatics (II) is an area within clinical informatics that is particularly important in the field of radiology. Provider groups have begun employing dedicated radiologist-informaticists to bridge medical, information technology and administrative functions, and academic institutions are meeting this demand through formal II fellowships. However, little is known about how these programs influence graduates' careers and perceptions about professional development. We electronically surveyed 26 graduates from US II fellowships and consensus leaders in the II community-many of whom were subspecialty diagnostic radiologists (68%) employed within academic institutions (48%)-about the perceived impact of II fellowships on career development and advancement. All graduates felt that II fellowship made them more valuable to employers, with the majority of reporting ongoing II roles (78%) and continued used of competencies (61%) and skills (56%) gained during fellowship in their current jobs. Other key benefits included access to mentors, protected time for academic work, networking opportunities, and positive impacts of annual compensation. Of respondents without II fellowship training, all would recommend fellowships to current trainees given the ability to gain a "still rare" but "essential skill set" that is "critical for future leaders in radiology" and "better job opportunities." While some respondents felt that II fellowships needed further formalization and standardization, most (85%) disagreed with requiring a 2-year II fellowship in order to qualify for board certification in clinical informatics. Instead, most believed that fellowships should be integrated with clinical residency or fellowship training while preserving formal didactics and unstructured project time. More work is needed to understand existing variations in II fellowship training structure and identify the optimal format for programs targeted at radiologists. PMID:26831474

  15. Using informatics to capture older adults’ wellness

    PubMed Central

    Demiris, George; Thompson, Hilaire J.; Reeder, Blaine; Wilamowska, Katarzyna; Zaslavsky, Oleg

    2014-01-01

    Purpose The aim of this paper is to demonstrate how informatics applications can support the assessment and visualization of older adults’ wellness. A theoretical framework is presented that informs the design of a technology enhanced screening platform for wellness. We highlight an ongoing pilot demonstration in an assisted living facility where a community room has been converted into a living laboratory for the use of diverse technologies (including a telehealth component to capture vital signs and customized questionnaires, a gait analysis component and cognitive assessment software) to assess the multiple aspects of wellness of older adults. Methods A demonstration project was introduced in an independent retirement community to validate our theoretical framework of informatics and wellness assessment for older adults. Subjects are being recruited to attend a community room and engage in the use of diverse technologies to assess cognitive performance, physiological and gait variables as well as psychometrics pertaining to social and spiritual components of wellness for a period of eight weeks. Data are integrated from various sources into one study database and different visualization approaches are pursued to efficiently display potential correlations between different parameters and capture overall trends of wellness. Results Preliminary findings indicate that older adults are willing to participate in technology-enhanced interventions and embrace different information technology applications given appropriate and customized training and hardware and software features that address potential functional limitations and inexperience with computers. Conclusion Informatics can advance health care for older adults and support a holistic assessment of older adults’ wellness. The described framework can support decision making, link formal and informal caregiving networks and identify early trends and patterns that if addressed could reduce adverse health events

  16. Building a collaborative global health informatics website.

    PubMed

    Chan, Connie; Khan, Sharib; Nwankwo, Victor; Senathirajah, Yalini; Kukafka, Rita

    2008-01-01

    Information technology is playing an increasing role in managing the challenges of global public health issues. The emergence of Web 2.0 technologies provides a tremendous avenue to foster connections among diverse health professionals engaged in the development and implementation of informatics-based solutions for global health. Our website, www.globalhealthinformatics.org, leverages an open source platform that employs Web 2.0 functionalities to create such a global community with the objective of fostering collaboration and knowledge sharing. PMID:18999008

  17. Next generation neonatal health informatics with Artemis.

    PubMed

    McGregor, Carolyn; Catley, Christina; James, Andrew; Padbury, James

    2011-01-01

    This paper describes the deployment of a platform to enable processing of currently uncharted high frequency, high fidelity, synchronous data from medical devices. Such a platform would support the next generation of informatics solutions for neonatal intensive care. We present Artemis, a platform for real-time enactment of clinical knowledge as it relates to multidimensional data analysis and clinical research. Through specific deployment examples at two different neonatal intensive care units, we demonstrate that Artemis supports: 1) instantiation of clinical rules; 2) multidimensional analysis; 3) distribution of services for critical care via cloud computing; and 4) accomplishing 1 through 3 using current technology without a negative impact on patient care. PMID:21893725

  18. Development of a medical informatics data warehouse.

    PubMed

    Wu, Cai

    2006-01-01

    This project built a medical informatics data warehouse (MedInfo DDW) in an Oracle database to analyze medical information which has been collected through Baylor Family Medicine Clinic (FCM) Logician application. The MedInfo DDW used Star Schema with dimensional model, FCM database as operational data store (ODS); the data from on-line transaction processing (OLTP) were extracted and transferred to a knowledge based data warehouse through SQLLoad, and the patient information was analyzed by using on-line analytic processing (OLAP) in Crystal Report. PMID:17238767

  19. Developing a common reference model for the health informatics discipline.

    PubMed

    Hovenga, Evelyn; Grain, Heather

    2013-01-01

    This study reports on an examination of the IT industry's Skills Framework for the Information Age (SFIA) to determine if such a process and/or the use of this tool is suitable to be applied to the health informatics discipline. During this process, four sets of known and agreed-upon Health Informatics skill and knowledge domain statements and competencies were mapped to SFIA. The results showed that all high level SFIA skills apply to the health informatics discipline but that these need to be contextualized to suit the health industry and additional health industry specific skills and knowledge domains need to be included to truly reflect the necessary health informatics skill set from which competency statements can be developed. Adoption of an accord similar to the Seoul Accord process could be very beneficial in promoting a global understanding of the health informatics discipline. PMID:23920528

  20. Informatics for multi-disciplinary ocean sciences

    NASA Astrophysics Data System (ADS)

    Pearlman, Jay; Delory, Eric; Pissierssens, Peter; Raymond, Lisa; Simpson, Pauline; Waldmann, Christoph; Williams 3rd, Albert; Yoder, Jim

    2014-05-01

    Ocean researchers must work across disciplines to provide clear and understandable assessments of the state of the ocean. With advances in technology, not only in observation, but also communication and computer science, we are in a new era where we can answer questions at the time and space scales that are relevant to our state of the art research needs. This presentation will address three areas of the informatics of the end-to-end process: sensors and information extraction in the sensing environment; using diverse data for understanding selected ocean processes; and supporting open data initiatives. A National Science Foundation funded Ocean Observations Research Coordination Network (RCN) is addressing these areas from the perspective of improving interdisciplinary research. The work includes an assessment of Open Data Access with a paper in preparation. Interoperability and sensors is a new activity that couples with European projects, COOPEUS and NeXOS, in looking at sensors and related information systems for a new generation of measurement capability. A working group on synergies of in-situ and satellite remote sensing is analyzing approaches for more effective use of these measurements. This presentation will examine the steps forward for data exchange and for addressing gaps in communication and informatics.

  1. Food Safety Informatics: A Public Health Imperative

    PubMed Central

    Tucker, Cynthia A.; Larkin, Stephanie N.; Akers, Timothy A.

    2011-01-01

    To date, little has been written about the implementation of utilizing food safety informatics as a technological tool to protect consumers, in real-time, against foodborne illnesses. Food safety outbreaks have become a major public health problem, causing an estimated 48 million illnesses, 128,000 hospitalizations, and 3,000 deaths in the U.S. each year. Yet, government inspectors/regulators that monitor foodservice operations struggle with how to collect, organize, and analyze data; implement, monitor, and enforce safe food systems. Currently, standardized technologies have not been implemented to efficiently establish “near-in-time” or “just-in-time” electronic awareness to enhance early detection of public health threats regarding food safety. To address the potential impact of collection, organization and analyses of data in a foodservice operation, a wireless food safety informatics (FSI) tool was pilot tested at a university student foodservice center. The technological platform in this test collected data every six minutes over a 24 hour period, across two primary domains: time and temperatures within freezers, walk-in refrigerators and dry storage areas. The results of this pilot study briefly illustrated how technology can assist in food safety surveillance and monitoring by efficiently detecting food safety abnormalities related to time and temperatures so that efficient and proper response in “real time” can be addressed to prevent potential foodborne illnesses. PMID:23569605

  2. Translational Research from an Informatics Perspective

    NASA Technical Reports Server (NTRS)

    Bernstam, Elmer; Meric-Bernstam, Funda; Johnson-Throop, Kathy A.; Turley, James P.; Smith, Jack W.

    2007-01-01

    Clinical and translational research (CTR) is an essential part of a sustainable global health system. Informatics is now recognized as an important en-abler of CTR and informaticians are increasingly called upon to help CTR efforts. The US National Institutes of Health mandated biomedical informatics activity as part of its new national CTR grant initiative, the Clinical and Translational Science Award (CTSA). Traditionally, translational re-search was defined as the translation of laboratory discoveries to patient care (bench to bedside). We argue, however, that there are many other kinds of translational research. Indeed, translational re-search requires the translation of knowledge dis-covered in one domain to another domain and is therefore an information-based activity. In this panel, we will expand upon this view of translational research and present three different examples of translation to illustrate the point: 1) bench to bedside, 2) Earth to space and 3) academia to community. We will conclude with a discussion of our local translational research efforts that draw on each of the three examples.

  3. Food safety informatics: a public health imperative.

    PubMed

    Tucker, Cynthia A; Larkin, Stephanie N; Akers, Timothy A

    2011-01-01

    To date, little has been written about the implementation of utilizing food safety informatics as a technological tool to protect consumers, in real-time, against foodborne illnesses. Food safety outbreaks have become a major public health problem, causing an estimated 48 million illnesses, 128,000 hospitalizations, and 3,000 deaths in the U.S. each year. Yet, government inspectors/regulators that monitor foodservice operations struggle with how to collect, organize, and analyze data; implement, monitor, and enforce safe food systems. Currently, standardized technologies have not been implemented to efficiently establish "near-in-time" or "just-in-time" electronic awareness to enhance early detection of public health threats regarding food safety. To address the potential impact of collection, organization and analyses of data in a foodservice operation, a wireless food safety informatics (FSI) tool was pilot tested at a university student foodservice center. The technological platform in this test collected data every six minutes over a 24 hour period, across two primary domains: time and temperatures within freezers, walk-in refrigerators and dry storage areas. The results of this pilot study briefly illustrated how technology can assist in food safety surveillance and monitoring by efficiently detecting food safety abnormalities related to time and temperatures so that efficient and proper response in "real time" can be addressed to prevent potential foodborne illnesses. PMID:23569605

  4. The new informatics of national healthcare reform.

    PubMed

    Manderscheid, R W; Henderson, M J

    1994-01-01

    The President's Health Security Act has succeeded in attracting America's attention. Several of its initiatives have been well-publicized and hotly debated in Congress. The act also includes a number of implications for healthcare informatics, and devotes an entire chapter to this subject, although this area has not received as much publicity. Every behavioral healthcare provider's information system would be significantly affected by enactment of the Health Security Act. Selected forms and data elements for the management and delivery of behavioral healthcare services would need to be standardized. Organizations of behavioral healthcare providers, managed care companies and purchasers would increasingly share selected patient and subscriber information in aggregated form, for a variety of purposes. As a result, tougher laws to protect patient data privacy will likely be forthcoming. The following article gives an overview of the informatics needs of the soon-to-be reformed American healthcare system, into which behavioral healthcare will be integrated. As part of the larger system, behavioral healthcare services and information systems will need to comply with the same guidelines and requirements, outlined below, as other healthcare providers. Preparation to meet the information demands of the evolving healthcare system will require adaptation of existing computerized information systems, utilization of new technology, consultation with the system's major shareholders and attention to continuous quality improvement processes. PMID:10142491

  5. Empowered Consumers and the Health Care Team: A Dynamic Model of Health Informatics.

    PubMed

    Mancuso, Peggy J; Myneni, Sahiti

    2016-01-01

    This article presents a dynamic new model of health informatics. Within the model, the focus of health informatics changes from the provider to the consumer and incorporates the dynamic relationship of technological change to health care. Bioinformatics is the scientific discipline that is translated into care through the practice of health informatics. The loci of health informatics practices are the consumer (consumer informatics), the patient (clinical informatics), and the community (public health informatics). The continuum from individual to community interacts with and contributes to health care technology, which is represented as a constantly changing progressive wave. PMID:26836991

  6. Czech Basic Course: Air Force Dialogues.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This is one of a series of supplementary materials used in the final phase of the "Czech Basic Course" developed and implemented at the Defense Language Institute. The purpose of this text is to acquaint students with specialized airport terminology pertaining to takeoff and landing precedures conducted in Czech. The dialogues, presented in…

  7. A Bibliography of Czech Teaching Materials.

    ERIC Educational Resources Information Center

    Henzl, Vera M.

    This bibliography, compiled to meet the needs of linguists and teachers who intend to teach courses in Czech to foreigners and are in need of materials to develop a practical and linguistically sound curriculum, is organized under the following headings: (1) dictionary and encyclopedic materials, including monolingual Czech dictionaries and…

  8. Czech Comparative Education in the Bipolar World

    ERIC Educational Resources Information Center

    Walterova, Eliska

    2006-01-01

    This article considers the influence of official government policy on Czech comparative education, by tracing changes in its ideological and geopolitical orientation, as well as attempts by the Czech education community to sustain a balance in international orientation toward notions of democracy and human progress. The period of the cold war…

  9. The history of pathology informatics: A global perspective.

    PubMed

    Park, Seung; Parwani, Anil V; Aller, Raymond D; Banach, Lech; Becich, Michael J; Borkenfeld, Stephan; Carter, Alexis B; Friedman, Bruce A; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  10. The history of pathology informatics: A global perspective

    PubMed Central

    Park, Seung; Parwani, Anil V.; Aller, Raymond D.; Banach, Lech; Becich, Michael J.; Borkenfeld, Stephan; Carter, Alexis B.; Friedman, Bruce A.; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  11. Clinical fellowship training in pathology informatics: A program description

    PubMed Central

    Gilbertson, John R.; McClintock, David S.; Lee, Roy E.; Onozato, Maristela; Kuo, Frank C.; Beckwith, Bruce A.; Yagi, Yukako; Dighe, Anand S.; Gudewicz, Tom M.; Le, Long P.; Wilbur, David C.; Kim, Ji Yeon; Brodsky, Victor B.; Black-Schaffer, Stephen

    2012-01-01

    Background: In 2007, our healthcare system established a clinical fellowship program in pathology informatics. In 2011, the program benchmarked its structure and operations against a 2009 white paper “Program requirements for fellowship education in the subspecialty of clinical informatics”, endorsed by the Board of the American Medical Informatics Association (AMIA) that described a proposal for a general clinical informatics fellowship program. Methods: A group of program faculty members and fellows compared each of the proposed requirements in the white paper with the fellowship program's written charter and operations. The majority of white paper proposals aligned closely with the rules and activities in our program and comparison was straightforward. In some proposals, however, differences in terminology, approach, and philosophy made comparison less direct, and in those cases, the thinking of the group was recorded. After the initial evaluation, the remainder of the faculty reviewed the results and any disagreements were resolved. Results: The most important finding of the study was how closely the white paper proposals for a general clinical informatics fellowship program aligned with the reality of our existing pathology informatics fellowship. The program charter and operations of the program were judged to be concordant with the great majority of specific white paper proposals. However, there were some areas of discrepancy and the reasons for the discrepancies are discussed in the manuscript. Conclusions: After the comparison, we conclude that the existing pathology informatics fellowship could easily meet all substantive proposals put forth in the 2009 clinical informatics program requirements white paper. There was also agreement on a number of philosophical issues, such as the advantages of multiple fellows, the need for core knowledge and skill sets, and the need to maintain clinical skills during informatics training. However, there were other

  12. Consumer health informatics: a consensus description and commentary from American Medical Informatics Association members.

    PubMed Central

    Houston, T. K.; Chang, B. L.; Brown, S.; Kukafka, R.

    2001-01-01

    BACKGROUND: Although interest in Consumer Health Informatics (CHI) has increased, a consensus definition of CHI does not yet exist. PURPOSE: To conduct a hypothesis-generating survey of AMIA members regarding definition and research agenda for CHI. METHODS: We solicited participation among AMIA members in an Internet-based survey focusing on issues related to a definition of CHI. RESULTS: One hundred thirty-five AMIA members responded. Participants indicated a broad spectrum of topics important to CHI including "self-help for disease management" and "patient access to their own medical records." CHI research was felt to rely heavily on public health methods such as epidemiology and outcomes research, a paradigm shift from traditional medical informatics. Responses indicated a perceived lack of funding and need for further research in CHI. CONCLUSIONS: A working definition should emphasize the multidisciplinary nature of CHI, include consumer input into CHI design, and focus on public health approaches to evaluation. PMID:11825193

  13. Gap Analysis of Biomedical Informatics Graduate Education Competencies

    PubMed Central

    Ritko, Anna L.; Odlum, Michelle

    2013-01-01

    Graduate training in biomedical informatics (BMI) is evolving rapidly. BMI graduate programs differ in informatics domain, delivery method, degrees granted, as well as breadth and depth of curricular competencies. Using the current American Medical Informatics Association (AMIA) definition of BMI core competencies as a framework, we identified and labeled course offerings within graduate programs. From our qualitative analysis, gaps between defined competencies and curricula emerged. Topics missing from existing graduate curricula include community health, translational and clinical research, knowledge representation, data mining, communication and evidence-based practice. PMID:24551403

  14. The Role of Informatics in Health Care Reform

    PubMed Central

    Liu, Yueyi I.

    2012-01-01

    Improving healthcare quality while simultaneously reducing cost has become a high priority of healthcare reform. Informatics is crucial in tackling this challenge. The American Recovery and Reinvestment Act of 2009 mandates adaptation and “meaningful use (MU)” of health information technology. In this review, we will highlight several areas in which informatics can make significant contributions, with a focus on radiology. We also discuss informatics related to the increasing imperatives of state and local regulations (such as radiation dose tracking) and quality initiatives. PMID:22771052

  15. About the beginnings of medical informatics in europe.

    PubMed

    Roger France, Francis

    2014-02-01

    The term "Informatics" was created in 1962 from two words, information and automatic, and covers all techniques, information concepts and applications of computers. Among them, medicine is the field where we will describe some factors of development in Europe since the late sixties. It took some time for obtaining the acceptance of this new terminology worldwide, but today medical informatics is a well defined discipline which had a tremendous development last decades. This paper tries to recall the context and events from the beginning of medical informatics in Europe. PMID:24648614

  16. Nursing informatics competences still challenging nurse educators.

    PubMed

    Rajalahti, Elina; Saranto, Kaija

    2012-01-01

    In recent years nursing documentation has been one of the most important development areas of nursing informatics (NI) in Finland. The purpose of this study is to describe the development of the nurse educators' competences in nursing documentation during a project called eNNI. The eNNI project (2008-2010) was a cooperative project by nurse educators and working life experts. The goal of the project was to implement the national documentation model and thereby improve operational processes at workplaces. The study includes pre- and post-test questioning of NI applications with a web-based questionnaire (n=136). The data were analyzed with distribution, cross-tabulations and average tests and descriptive statistic multivariate method. According to the results, the ICT skills of the nurse educators were good at the end of the project, and they had good information literacy competence. On the other hand, their advanced NI skills left room for improvement. PMID:22874332

  17. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  18. Biological information specialists for biological informatics

    PubMed Central

    Heidorn, P Bryan; Palmer, Carole L; Wright, Dan

    2007-01-01

    Data management and integration are complicated and ongoing problems that will require commitment of resources and expertise from the various biological science communities. Primary components of successful cross-scale integration are smooth information management and migration from one context to another. We call for a broadening of the definition of bioinformatics and bioinformatics training to span biological disciplines and biological scales. Training programs are needed that educate a new kind of informatics professional, Biological Information Specialists, to work in collaboration with various discipline-specific research personnel. Biological Information Specialists are an extension of the informationist movement that began within library and information science (LIS) over 30 years ago as a professional position to fill a gap in clinical medicine. These professionals will help advance science by improving access to scientific information and by freeing scientists who are not interested in data management to concentrate on their science. PMID:17295920

  19. [Looking for evidence-based medical informatics].

    PubMed

    Coiera, Enrico

    2016-03-01

    e-Health is experiencing a difficult time. On the one side, the forecast is for a bright digital health future created by precision medicine and smart devices. On the other hand, most large scale e-health projects struggle to make a difference and are often controversial. Both futures fail because they are not evidence-based. Medical informatics should follow the example of evidence-based medicine, i.e. conduct rigorous research that gives us evidence to solve real world problems, synthesise that evidence and then apply it strictly. We already have the tools for creating a different universe. What we need is evidence, will, a culture of learning, and hard work. PMID:27030221

  20. An Informatics-based Chronic Disease Practice

    PubMed Central

    Nordyke, Robert A.; Kulikowski, Casimir A.

    1998-01-01

    The authors present the case study of a 35-year informatics-based single subspecialty practice for the management of patients with chronic thyroid disease. This extensive experience provides a paradigm for the organization of longitudinal medical information by integrating individual patient care with clinical research and education. The kernel of the process is a set of worksheets easily completed by the physician during the patient encounter. It is a structured medical record that has been computerized since 1972, enabling analysis of different groups of patients to answer questions about chronic conditions and the effects of therapeutic interventions. The recording process and resulting studies severe as an important vehicle for medical education about the nuances of clinical practice. The authors suggest ways in which computerized medical records can become an integral part of medical practice, rather than a luxury or novelty. PMID:9452988

  1. Farm animal genomics and informatics: an update

    PubMed Central

    Fadiel, Ahmed; Anidi, Ifeanyi; Eichenbaum, Kenneth D.

    2005-01-01

    Farm animal genomics is of interest to a wide audience of researchers because of the utility derived from understanding how genomics and proteomics function in various organisms. Applications such as xenotransplantation, increased livestock productivity, bioengineering new materials, products and even fabrics are several reasons for thriving farm animal genome activity. Currently mined in rapidly growing data warehouses, completed genomes of chicken, fish and cows are available but are largely stored in decentralized data repositories. In this paper, we provide an informatics primer on farm animal bioinformatics and genome project resources which drive attention to the most recent advances in the field. We hope to provide individuals in biotechnology and in the farming industry with information on resources and updates concerning farm animal genome projects. PMID:16275782

  2. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Tringe, Susannah

    2011-10-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  3. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Tringe, Susannah [DOE JGI

    2013-01-22

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  4. The cancer translational research informatics platform

    PubMed Central

    McConnell, Patrick; Dash, Rajesh C; Chilukuri, Ram; Pietrobon, Ricardo; Johnson, Kimberly; Annechiarico, Robert; Cuticchia, A Jamie

    2008-01-01

    Background Despite the pressing need for the creation of applications that facilitate the aggregation of clinical and molecular data, most current applications are proprietary and lack the necessary compliance with standards that would allow for cross-institutional data exchange. In line with its mission of accelerating research discoveries and improving patient outcomes by linking networks of researchers, physicians, and patients focused on cancer research, caBIG (cancer Biomedical Informatics Grid™) has sponsored the creation of the caTRIP (Cancer Translational Research Informatics Platform) tool, with the purpose of aggregating clinical and molecular data in a repository that is user-friendly, easily accessible, as well as compliant with regulatory requirements of privacy and security. Results caTRIP has been developed as an N-tier architecture, with three primary tiers: domain services, the distributed query engine, and the graphical user interface, primarily making use of the caGrid infrastructure to ensure compatibility with other tools currently developed by caBIG. The application interface was designed so that users can construct queries using either the Simple Interface via drop-down menus or the Advanced Interface for more sophisticated searching strategies to using drag-and-drop. Furthermore, the application addresses the security concerns of authentication, authorization, and delegation, as well as an automated honest broker service for deidentifying data. Conclusion Currently being deployed at Duke University and a few other centers, we expect that caTRIP will make a significant contribution to further the development of translational research through the facilitation of its data exchange and storage processes. PMID:19108734

  5. Eco-informatics and natural resource management

    USGS Publications Warehouse

    Cushing, J.B.; Wilson, T.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Schnase, J.; Sonntag, W.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schweik, C.; Brandt, L.; Gregg, V.; Spengler, S.

    2006-01-01

    This project highlight reports on the 2004 workshop [1], as well as follow-up activities in 2005 and 2006, regarding how informatics tools can help manage natural resources and decide policy. The workshop was sponsored jointly by sponsored by the NSF, NBII, NASA, and EPA, and attended by practitioners from government and non-government agencies, and university researchers from the computer, social, and ecological sciences. The workshop presented the significant information technology (IT) problems that resource managers face when integrating ecological or environmental information to make decisions. These IT problems fall into five categories: data presentation, data gaps, tools, indicators, and policy making and implementation. To alleviate such problems, we recommend informatics research in four IT areas, as defined in this abstract and our final report: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, we recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. Follow-on activities to the workshop subsequent to dg.o 2005 included: an invited talk presenting workshop results at DILS 2005, publication of the workshop final report by the NBII [1], and a poster at the NBII All Hands Meeting (Oct. 2005). We also expect a special issue of the JIIS to appear in 2006 that addresses some of these questions. As we go to press, no solicitation by funding agencies has as yet been published, but various NASA and NBII, and NSF cyber-infrastructure and DG research efforts now underway address the above issues.

  6. Developing a Capstone Course within a Health Informatics Program

    PubMed Central

    Hackbarth, Gary; Cata, Teuta; Cole, Laura

    2012-01-01

    This article discusses the ongoing development of a health informatics capstone program in a Midwest university from the hiring of a program coordinator to the development of a capstone course, through initial student results. University health informatics programs require a strong academic program to be successful but also require a spirited program coordinator to manage resources and organize an effective capstone course. This is particularly true of health informatics master's programs that support health industry career fields, whereby employers can locate and work with a pool of qualified applicants. The analysis of students’ logs confirms that students’ areas of focus and concern are consistent with course objectives and company work requirements during the work-study portion of the student capstone project. The article further discusses lessons learned and future improvements to be made in the health informatics capstone course. PMID:22783150

  7. An Interdisciplinary Online Course in Health Care Informatics

    PubMed Central

    Smith, Scott R.

    2007-01-01

    Objectives To design an interdisciplinary course in health care informatics that enables students to: (1) understand how to incorporate technology into the provision of safe, effective and evidence-based health care; (2) make decisions about the value and ethical application of specific technologies; and (3) appreciate the perspectives and roles of patients and providers when using technology in care. Design An online, interdisciplinary elective course using a distributive learning model was created. Standard courseware was used to manage teaching and to facilitate student/instructor interactions. Interactive, multimedia lectures were developed using Internet communication software. Assessment Upon completion of the course, students demonstrated competency in identifying, analyzing, and applying informatics appropriately in diverse health settings. Conclusion Online education using multimedia software technology is effective in teaching students about health informatics and providing an innovative opportunity for interdisciplinary learning. In light of the growing need for efficient health care informatics training, additional study of this methodology is warranted. PMID:17619643

  8. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott

    2014-01-01

    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  9. Excellence in Computational Biology and Informatics — EDRN Public Portal

    Cancer.gov

    9th Early Detection Research Network (EDRN) Scientific Workshop. Excellence in Computational Biology and Informatics: Sponsored by the EDRN Data Sharing Subcommittee Moderator: Daniel Crichton, M.S., NASA Jet Propulsion Laboratory

  10. A Short History of Medical Informatics in Bosnia and Herzegovina

    PubMed Central

    Masic, Izet

    2014-01-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal “Acta Informatica Medica (Acta Inform Med”, indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina, ten years on from the introduction of the method of “Distance learning” in medical curriculum. The author of this article is eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period. PMID:24648621

  11. Developing a capstone course within a health informatics program.

    PubMed

    Hackbarth, Gary; Cata, Teuta; Cole, Laura

    2012-01-01

    This article discusses the ongoing development of a health informatics capstone program in a Midwest university from the hiring of a program coordinator to the development of a capstone course, through initial student results. University health informatics programs require a strong academic program to be successful but also require a spirited program coordinator to manage resources and organize an effective capstone course. This is particularly true of health informatics master's programs that support health industry career fields, whereby employers can locate and work with a pool of qualified applicants. The analysis of students' logs confirms that students' areas of focus and concern are consistent with course objectives and company work requirements during the work-study portion of the student capstone project. The article further discusses lessons learned and future improvements to be made in the health informatics capstone course. PMID:22783150

  12. New study program: Interdisciplinary Postgraduate Specialist Study in Medical Informatics.

    PubMed

    Hercigonja-Szekeres, Mira; Simić, Diana; Božikov, Jadranka; Vondra, Petra

    2014-01-01

    Paper presents an overview of the EU funded Project of Curriculum Development for Interdisciplinary Postgraduate Specialist Study in Medical Informatics named MEDINFO to be introduced in Croatia. The target group for the program is formed by professionals in any of the areas of medicine, IT professionals working on applications of IT for health and researchers and teachers in medical informatics. In addition to Croatian students, the program will also provide opportunity for enrolling students from a wider region of Southeast Europe. Project partners are two faculties of the University of Zagreb - Faculty of Organization and Informatics from Varaždin and School of Medicine, Andrija Štampar School of Public Health from Zagreb with the Croatian Society for Medical Informatics, Croatian Chamber of Economy, and Ericsson Nikola Tesla Company as associates. PMID:24743088

  13. Current and future trends in imaging informatics for oncology

    PubMed Central

    Levy, Mia A.; Rubin, Daniel L.

    2014-01-01

    Clinical imaging plays an essential role in cancer care and research for diagnosis, prognosis and treatment response assessment. Major advances have been made over the last several decades in imaging informatics to support medical imaging. More recent informatics advances focus on the special needs of oncologic imaging, yet gaps still remain. We review the current state, limitations, and future trends in imaging informatics for oncology care including clinical and clinical research systems. We review information systems to support cancer clinical workflows including oncologist ordering of radiology studies, radiologist review and reporting of image findings, and oncologist review and integration of imaging information for clinical decision making. We discuss informatics approaches to oncologic imaging including but not limited to controlled terminologies, image annotation, and image processing algorithms. With the ongoing development of novel imaging modalities and imaging biomarkers, we expect these systems will continue to evolve and mature. PMID:21799326

  14. SWOT Analysis on Medical Informatics and Development Strategies

    ERIC Educational Resources Information Center

    Ma, Xiaoyan; Han, Zhongdong; Ma, Hua

    2015-01-01

    This article aims at clarifying the strategic significance of developing medical informatics, conducting SWOT analysis on this discipline and hence establishing the strategic objectives and focal points for its development.

  15. Representation of medical informatics in the wikipedia and its perspectives.

    PubMed

    Altmann, Udo

    2005-01-01

    A wiki is a technique for collaborative development of documents on the web. The Wikipedia is a comprehensive free online encyclopaedia based on this technique which has gained increasing popularity and quality. This paper's work explored the representation of Medical Informatics in the Wikipedia by a search of specific and less specific terms used in Medical Informatics and shows the potential uses of wikis and the Wikipedia for the specialty. Test entries into the Wikipedia showed that the practical use of the so-called WikiMedia software is convenient. Yet Medical Informatics is not represented sufficiently since a number of important topics is missing. The Medical Informatics communities should consider a more systematic use of these techniques for disseminating knowledge about the specialty for the public as well as for internal and educational purposes. PMID:16160349

  16. [Basic data in informatics illustrated by their application in surgery].

    PubMed

    Lambotte, L

    1986-01-01

    As an introduction to a study day devoted to informatic in surgery, some basis knowledges are summarized: architecture and function of computers, programmation language, data bases. They are illustrated by various applications made in the "Cliniques St Luc" te Brussel namely patient monitoring, artificial pancreas, office system and operating room management system. The future use of local area network is proposed in order to achieve medical department independence and the needed cooperation between all users of medical and hospital informatic. PMID:3788377

  17. Materials informatics: a journey towards material design and synthesis.

    PubMed

    Takahashi, Keisuke; Tanaka, Yuzuru

    2016-06-28

    Materials informatics has been gaining popularity with the rapid development of computational materials science. However, collaborations between information science and materials science have not yet reached the success. There are several issues which need to be overcome in order to establish the field of materials informatics. Construction of material big data, implementation of machine learning, and platform design for materials discovery are discussed with potential solutions. PMID:27292550

  18. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    SciTech Connect

    Phillips, M; Kalet, I; McNutt, T; Smith, W

    2014-06-15

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussion in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be

  19. Czech Republic 20 years after Chernobyl accident.

    PubMed

    Rosina, Jozef; Kvasnák, Eugen; Suta, Daniel; Kostrhun, Tomás; Drábová, Dana

    2008-01-01

    The territory of the Czech Republic was contaminated as a result of the breakdown in the Chernobyl nuclear power plant in 1986. The Czech population received low doses of ionising radiation which, though it could not cause a deterministic impact, could have had stochastic effects expressed in the years following the accident. Twenty years after the accident is a long enough time to assess its stochastic effects, primarily tumours and genetic impairment. The moderate amount of radioactive fallout received by the Czech population in 1986 increased thyroid cancer in the following years; on the other hand, no obvious genetic impact was found. PMID:18375464

  20. Health informatics and the delivery of care to older people.

    PubMed

    Koch, Sabine; Hägglund, Maria

    2009-07-20

    In the light of an aging society, effective delivery of healthcare will be more dependent on different technological solutions supporting the decentralization of healthcare, higher patient involvement and increased societal demands. The aim of this article is therefore, to describe the role of health informatics in the care of elderly people and to give an overview of the state of the art in this field. Based on a review of the existing scientific literature, 29 review articles from the last 15 years and 119 original articles from the last 5 years were selected and further analysed. Results show that review articles cover the fields of information technology in the home environment, integrated health information systems, public health systems, consumer health informatics and non-technology oriented topics such as nutrition, physical behaviour, medication and the aging process in general. Articles presenting original data can be divided into 5 major clusters: information systems and decision support, consumer health informatics, emerging technologies, home telehealth, and informatics methods. Results show that health informatics in elderly care is an expanding field of interest but we still do lack knowledge about the elderly person's needs of technology and how it should best be designed. Surprisingly, few studies cover gender differences related to technology use. Further cross-disciplinary research is needed that relates informatics and technology to different stages of the aging process and that evaluates the effects of technical solutions. PMID:19487092

  1. Professional development of health informatics in Northern Ireland.

    PubMed

    McCullagh, Paul; McAllister, Gerry; Hanna, Paul; Finlay, Dewar; Comac, Paul

    2011-01-01

    This paper addresses the assessment and verification of health informatics professional competencies. Postgraduate provision in Health Informatics was targeted at informatics professionals working full-time in the National Health Service, in Northern Ireland, United Kingdom. Many informatics health service positions do not require a formal informatics background, and as we strive for professionalism, a recognized qualification provides important underpinning. The course, delivered from a computing perspective, builds upon work-based achievement and provides insight into emerging technologies associated with the 'connected health' paradigm. The curriculum was designed with collaboration from the Northern Ireland Health and Social Care ICT Training Group. Material was delivered by blended learning using a virtual learning environment and face-to-face sessions. Professional accreditation was of high importance. The aim was to provide concurrent qualifications: a postgraduate certificate, awarded by the University of Ulster and a professional certificate validated and accredited by a professional body comprising experienced health informatics professionals. Providing both qualifications puts significant demands upon part-time students, and a balance must be achieved for successful completion. PMID:21893745

  2. Next generation informatics for big data in precision medicine era.

    PubMed

    Zhang, Yuji; Zhu, Qian; Liu, Hongfang

    2015-01-01

    The rise of data-intensive biology, advances in informatics technology, and changes in the way health care is delivered has created an compelling opportunity to allow us investigate biomedical questions in the context of "big data" and develop knowledge systems to support precision medicine. To promote such data mining and informatics technology development in precision medicine, we hosted two international informatics workshops in 2014: 1) the first workshop on Data Mining in Biomedical informatics and Healthcare, in conjunction with the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2014), and 2) the first workshop on Translational biomedical and clinical informatics, in conjunction with the 8th International Conference on Systems Biology and the 4th Translational Bioinformatics Conference (ISB/TBC 2014). This thematic issue of BioData Mining presents a series of selected papers from these two international workshops, aiming to address the data mining needs in the informatics field due to the deluge of "big data" generated by next generation biotechnologies such as next generation sequencing, metabolomics, and proteomics, as well as the structured and unstructured biomedical and healthcare data from electronic health records. We are grateful for the BioData Mining's willingness to produce this forward-looking thematic issue. PMID:26539249

  3. Czech Republic to Become Member of ESO

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Today, an agreement was signed in Prague between ESO and the Czech Republic, aiming to make the latter become a full member of ESO as of 1 January 2007. "The future membership of the Czech Republic in ESO opens for the Czech astronomers completely new opportunities and possibilities. It will foster this discipline on the highest quality level and open new opportunities for Czech industry to actively cooperate in research and development of high-tech instruments for astronomical research," said Miroslava Kopicová, Minister of Education, Youth and Sports of the Czech Republic. ESO PR Photo 52/06 ESO PR Photo 52/06 Signing Ceremony "We warmly welcome the Czech Republic as the thirteenth member of ESO," said Catherine Cesarsky, ESO's Director General. "The timing couldn't be better chosen: with the Very Large Telescope, Europe is now at the forefront of ground-based astronomy, and with the construction of ALMA and the final studies for the European Extremely Large Telescope, we will ensure that this will remain so for several decades. We look forward to working together with our Czech colleagues towards these successes." The signing event took place at the Czech Ministry of Education, Youth and Sports in Prague. Following ratification by the Czech Parliament, the Czech Republic with thus join the twelve present member states of ESO, the European Organisation for Astronomical Research in the Southern Hemisphere: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. The Czech Republic is the first country from Central and Eastern Europe to join ESO. Astronomy in the Czech Republic has a very long tradition that dates from as far back as 3500 BC. Four centuries ago, Tycho Brahe and Johannes Kepler established themselves in Prague at the invitation of the emperor Rudolph II, laying the ground for the first golden age in astronomy. Later, eminent scientists such as Christian Doppler, Ernst Mach and

  4. Czech Basic Course: Songs of Czechoslovakia.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This songbook contains some 77 songs, with words and music, reflecting the daily life and culture of the people of Czechoslovakia. The text is designed for use, as supplementary material, in the Defense Language Institute's "Czech: Basic Course." (RL)

  5. From Bed to Bench: Bridging from Informatics Practice to Theory

    PubMed Central

    Lehmann, C.U.

    2014-01-01

    Summary Background In 2009, Applied Clinical Informatics (ACI) – focused on applications in clinical informatics – was launched as a companion journal to Methods of Information in Medicine (MIM). Both journals are official journals of the International Medical Informatics Association. Objectives To explore which congruencies and interdependencies exist in publications from theory to practice and from practice to theory and to determine existing gaps. Major topics discussed in ACI and MIM were analyzed. We explored if the intention of publishing companion journals to provide an information bridge from informatics theory to informatics practice and vice versa could be supported by this model. In this manuscript we will report on congruencies and interdependences from practice to theory and on major topics in MIM. Methods Retrospective, prolective observational study on recent publications of ACI and MIM. All publications of the years 2012 and 2013 were indexed and analyzed. Results Hundred and ninety-six publications were analyzed (ACI 87, MIM 109). In MIM publications, modelling aspects as well as methodological and evaluation approaches for the analysis of data, information, and knowledge in biomedicine and health care were frequently raised – and often discussed from an interdisciplinary point of view. Important themes were ambient-assisted living, anatomic spatial relations, biomedical informatics as scientific discipline, boosting, coding, computerized physician order entry, data analysis, grid and cloud computing, health care systems and services, health-enabling technologies, health information search, health information systems, imaging, knowledge-based decision support, patient records, signal analysis, and web science. Congruencies between journals could be found in themes, but with a different focus on content. Interdependencies from practice to theory, found in these publications, were only limited. Conclusions Bridging from informatics theory to

  6. Informatics critical to public health surveillance

    NASA Astrophysics Data System (ADS)

    Mirhaji, Parsa; Zhang, Jiajie; Smith, Jack W.; Madjid, Mohammad; Casscells, Samuel W.; Lillibridge, Scott R.

    2003-09-01

    Public health surveillance is the ongoing, systematic collection, analysis, interpretation, and dissemination of data regarding a health-related event for use in public health action to reduce morbidity and mortality and to improve health by effective response management and coordination. As new pressures for early detection of disease outbreaks have arisen, particularly for outbreaks of possible bioterrorism (BT) origin, and as electronic health data have become increasingly available, so has the demand for public health situation awareness systems. Although these systems are valuable for early warning of public health emergencies, there remains the cost of developing and managing such large and complex systems and of investigating inevitable false alarms. Whether these systems are dependable and cost effective enough and can demonstrate a significant and indispensable role in detection or prevention of mass casualty events of BT origin remains to be proven. This article will focus on the complexities of design, analysis, implementation and evaluation of public health surveillance and situation awareness systems and, in some cases, will discuss the key technologies being studied in Center for Biosecurity Informatics Research at University of Texas, Health Science Center at Houston.

  7. Recommendations of the International Medical Informatics Association (IMIA) on Education in Biomedical and Health Informatics. First Revision.

    PubMed

    Mantas, John; Ammenwerth, Elske; Demiris, George; Hasman, Arie; Haux, Reinhold; Hersh, William; Hovenga, Evelyn; Lun, K C; Marin, Heimar; Martin-Sanchez, Fernando; Wright, Graham

    2010-01-01

    Objective: The International Medical Informatics Association (IMIA) agreed on revising the existing international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop existing educational activities in the various nations and to support international initiatives concerning education in biomedical and health informatics (BMHI), particularly international activities in educating BMHI specialists and the sharing of courseware. Method: An IMIA task force, nominated in 2006, worked on updating the recommendations' first version. These updates have been broadly discussed and refined by members of IMIA's National Member Societies, IMIA's Academic Institutional Members and by members of IMIA's Working Group on Health and Medical Informatics Education. Results and Conclusions: The IMIA recommendations center on educational needs for health care professionals to acquire knowledge and skills in information processing and information and communication technology. The educational needs are described as a three-dimensional framework. The dimensions are: 1) professionals in health care (e.g. physicians, nurses, BMHI professionals), 2) type of specialization in BMHI (IT users, BMHI specialists), and 3) stage of career progression (bachelor, master, doctorate). Learning outcomes are defined in terms of knowledge and practical skills for health care professionals in their role a) as IT user and b) as BMHI specialist. Recommendations are given for courses/course tracks in BMHI as part of educational programs in medicine, nursing, health care management, dentistry, pharmacy, public health, health record administration, and informatics/computer science as well as for dedicated programs in BMHI (with bachelor, master or doctor degree). To support education in BMHI, IMIA offers to award a certificate for high-quality BMHI education. It supports information

  8. Innovation in transformative nursing leadership: nursing informatics competencies and roles.

    PubMed

    Remus, Sally; Kennedy, Margaret Ann

    2012-12-01

    In a recent brief to the Canadian Nurses Association's National Expert Commission on the Health of Our Nation, the Academy of Canadian Executive Nurses (ACEN) discussed leadership needs in the Canadian healthcare system, and promoted the pivotal role of nursing executives in transforming Canada's healthcare system into an integrated patient-centric system. Included among several recommendations was the need to develop innovative leadership competencies that enable nurse leaders to lead and advance transformative health system change. This paper focuses on an emerging "avant-garde executive leadership competency" recommended for today's health leaders to guide health system transformation. Specifically, this competency is articulated as "state of the art communication and technology savvy," and it implies linkages between nursing informatics competencies and transformational leadership roles for nurse executive. The authors of this paper propose that distinct nursing informatics competencies are required to augment traditional executive skills to support transformational outcomes of safe, integrated, high-quality care delivery through knowledge-driven care. International trends involving nursing informatics competencies and the evolution of new corporate informatics roles, such as chief nursing informatics officers (CNIOs), are demonstrating value and advanced transformational leadership as nursing executive roles that are informed by clinical data. PMID:23803423

  9. Clinical informatics: a workforce priority for 21st century healthcare.

    PubMed

    Smith, Susan E; Drake, Lesley E; Harris, Julie-Gai B; Watson, Kay; Pohlner, Peter G

    2011-05-01

    This paper identifies the contribution of health and clinical informatics in the support of healthcare in the 21st century. Although little is known about the health and clinical informatics workforce, there is widespread recognition that the health informatics workforce will require significant expansion to support national eHealth work agendas. Workforce issues including discipline definition and self-identification, formal professionalisation, weaknesses in training and education, multidisciplinarity and interprofessional tensions, career structure, managerial support, and financial allocation play a critical role in facilitating or hindering the development of a workforce that is capable of realising the benefits to be gained from eHealth in general and clinical informatics in particular. As well as the national coordination of higher level policies, local support of training and allocation of sufficient position hours in appropriately defined roles by executive and clinical managers is essential to develop the health and clinical informatics workforce and achieve the anticipated results from evolving eHealth initiatives. PMID:21612722

  10. Informatics in the care of patients: ten notable challenges.

    PubMed Central

    Altman, R B

    1997-01-01

    What is medical informatics, and why should practicing physicians care about it? Medical informatics is the study of the concepts and conceptual relationships within biomedical information and how they can be harnessed for practical applications. In the past decade, the field has exploded as health professionals recognize the importance of strategic information management and the inadequacies of traditional tools for information storage, retrieval, and analysis. At the same time that medical informatics has established a presence within many academic and industrial research facilities, its goals and methods have become less clear to practicing physicians. In this article, I outline 10 challenges in medical informatics that provide a framework for understanding developments in the field. These challenges have been divided into those relating to infrastructure, specific performance, and evaluation. The primary goals of medical informatics, as for any other branch of biomedical research, are to improve the overall health of patients by combining basic scientific and engineering insights with the useful application of these insights to important problems. PMID:9109328

  11. Mapping the Materials Genome through Combinatorial Informatics

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2012-02-01

    The recently announced White House Materials Genome Initiative provides an exciting challenge to the materials science community. To meet that challenge one needs to address a critical question, namely what is the materials genome? Some guide on how to the answer this question can be gained by recognizing that a ``gene'' is a carrier of information. In the biological sciences, discovering how to manipulate these genes has generated exciting discoveries in fundamental molecular biology as well as significant advances in biotechnology. Scaling that up to molecular, cellular length scales and beyond, has spawned from genomics, fields such as proteomics, metabolomics and essentially systems biology. The ``omics'' approach requires that one needs to discover and track these ``carriers of information'' and then correlate that information to predict behavior. A similar challenge lies in materials science, where there is a diverse array of modalities of materials ``discovery'' ranging from new materials chemistries and molecular arrangements with novel properties, to the development and design of new micro- and mesoscale structures. Hence to meaningfully adapt the spirit of ``genomics'' style research in materials science, we need to first identify and map the ``genes'' across different materials science applications On the experimental side, combinatorial experiments have opened a new approach to generate data in a high throughput manner, but without a clear way to link that to models, the full value of that data is not realized. Hence along with experimental and computational materials science, we need to add a ``third leg'' to our toolkit to make the ``Materials Genome'' a reality, the science of Materials Informatics. In this presentation we provide an overview of how information science coupled to materials science can in fact achieve the goal of mapping the ``Materials Genome''.

  12. Graphical neuroimaging informatics: application to Alzheimer's disease.

    PubMed

    Van Horn, John Darrell; Bowman, Ian; Joshi, Shantanu H; Greer, Vaughan

    2014-06-01

    The Informatics Visualization for Neuroimaging (INVIZIAN) framework allows one to graphically display image and meta-data information from sizeable collections of neuroimaging data as a whole using a dynamic and compelling user interface. Users can fluidly interact with an entire collection of cortical surfaces using only their mouse. In addition, users can cluster and group brains according in multiple ways for subsequent comparison using graphical data mining tools. In this article, we illustrate the utility of INVIZIAN for simultaneous exploration and mining a large collection of extracted cortical surface data arising in clinical neuroimaging studies of patients with Alzheimer's Disease, mild cognitive impairment, as well as healthy control subjects. Alzheimer's Disease is particularly interesting due to the wide-spread effects on cortical architecture and alterations of volume in specific brain areas associated with memory. We demonstrate INVIZIAN's ability to render multiple brain surfaces from multiple diagnostic groups of subjects, showcase the interactivity of the system, and showcase how INVIZIAN can be employed to generate hypotheses about the collection of data which would be suitable for direct access to the underlying raw data and subsequent formal statistical analysis. Specifically, we use INVIZIAN show how cortical thickness and hippocampal volume differences between group are evident even in the absence of more formal hypothesis testing. In the context of neurological diseases linked to brain aging such as AD, INVIZIAN provides a unique means for considering the entirety of whole brain datasets, look for interesting relationships among them, and thereby derive new ideas for further research and study. PMID:24203652

  13. From classification to epilepsy ontology and informatics.

    PubMed

    Zhang, Guo-Qiang; Sahoo, Satya S; Lhatoo, Samden D

    2012-07-01

    The 2010 International League Against Epilepsy (ILAE) classification and terminology commission report proposed a much needed departure from previous classifications to incorporate advances in molecular biology, neuroimaging, and genetics. It proposed an interim classification and defined two key requirements that need to be satisfied. The first is the ability to classify epilepsy in dimensions according to a variety of purposes including clinical research, patient care, and drug discovery. The second is the ability of the classification system to evolve with new discoveries. Multidimensionality and flexibility are crucial to the success of any future classification. In addition, a successful classification system must play a central role in the rapidly growing field of epilepsy informatics. An epilepsy ontology, based on classification, will allow information systems to facilitate data-intensive studies and provide a proven route to meeting the two foregoing key requirements. Epilepsy ontology will be a structured terminology system that accommodates proposed and evolving ILAE classifications, the National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) Common Data Elements, the International Classification of Diseases (ICD) systems and explicitly specifies all known relationships between epilepsy concepts in a proper framework. This will aid evidence-based epilepsy diagnosis, investigation, treatment and research for a diverse community of clinicians and researchers. Benefits range from systematization of electronic patient records to multimodal data repositories for research and training manuals for those involved in epilepsy care. Given the complexity, heterogeneity, and pace of research advances in the epilepsy domain, such an ontology must be collaboratively developed by key stakeholders in the epilepsy community and experts in knowledge engineering and computer science. PMID:22765502

  14. From Classification to Epilepsy Ontology and Informatics

    PubMed Central

    Zhang, Guo-Qiang; Sahoo, Satya S; Lhatoo, Samden D

    2012-01-01

    Summary The 2010 International League Against Epilepsy (ILAE) classification and terminology commission report proposed a much needed departure from previous classifications to incorporate advances in molecular biology, neuroimaging, and genetics. It proposed an interim classification and defined two key requirements that need to be satisfied. The first is the ability to classify epilepsy in dimensions according to a variety of purposes including clinical research, patient care, and drug discovery. The second is the ability of the classification system to evolve with new discoveries. Multi-dimensionality and flexibility are crucial to the success of any future classification. In addition, a successful classification system must play a central role in the rapidly growing field of epilepsy informatics. An epilepsy ontology, based on classification, will allow information systems to facilitate data-intensive studies and provide a proven route to meeting the two foregoing key requirements. Epilepsy ontology will be a structured terminology system that accommodates proposed and evolving ILAE classifications, the NIH/NINDS Common Data Elements, the ICD systems and explicitly specifies all known relationships between epilepsy concepts in a proper framework. This will aid evidence based epilepsy diagnosis, investigation, treatment and research for a diverse community of clinicians and researchers. Benefits range from systematization of electronic patient records to multi-modal data repositories for research and training manuals for those involved in epilepsy care. Given the complexity, heterogeneity and pace of research advances in the epilepsy domain, such an ontology must be collaboratively developed by key stakeholders in the epilepsy community and experts in knowledge engineering and computer science. PMID:22765502

  15. Dental Informatics in India: Time to Embrace the Change.

    PubMed

    Chhabra, Kumar Gaurav; Mulla, Salma H; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-03-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area. PMID:27135022

  16. Dental Informatics in India: Time to Embrace the Change

    PubMed Central

    Mulla, Salma H.; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-01-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area. PMID:27135022

  17. An author co-citation analysis of medical informatics*

    PubMed Central

    Andrews, James E.

    2003-01-01

    Objective: This study presents the results of an author co-citation analysis of the interdisciplinary field of medical informatics. Methods: An author co-citation analysis was conducted for the years 1994 to 1998, using the fifty most-cited American College of Medical Informatics fellows as an author population. Co-citation data were calculated for every author pair, and multivariate analyses were performed to ultimately show the relationships among all authors. A multidimensional map was created, wherein each author is represented as a point, and the proximity of these points reflects the relationships of authors as perceived by multiple citers. Results and Conclusion: The results from this analysis provide one perspective of the field of medical informatics and are used to suggest future research directions to address issues related to better understanding of communication and social networks in the field to inform better provision of information services. PMID:12568157

  18. Programmatic Role of Education Libraries in Informatics to Support Preservice Teacher Preparation Programs

    ERIC Educational Resources Information Center

    Farmer, Lesley S. J.

    2010-01-01

    Background/Context: The management, processing, and transformation of information constitute central tasks in education. Education informatics intersects the theories and practices of both informatics and education. In particular, informatics aids in the systematic incorporation of technology as educational stakeholders represent, process, and…

  19. Enhancing "Mathematics for Informatics" and its Correlation with Student Pass Rates

    ERIC Educational Resources Information Center

    Divjak, B.; Erjavec, Z.

    2008-01-01

    In this article, changes in "Mathematics for Informatics" at the Faculty of Organisation and Informatics in the University of Zagreb are described, and correlated with students pass rates. Students at the Faculty work in an interdisciplinary field, studying Informatics within a business context. The main reason for introducing the changes in the…

  20. The Epilepsy Phenome/Genome Project (EPGP) informatics platform

    PubMed Central

    Nesbitt, Gerry; McKenna, Kevin; Mays, Vickie; Carpenter, Alan; Miller, Kevin; Williams, Michael

    2013-01-01

    Background The Epilepsy Phenome/Genome Project (EPGP) is a large-scale, multi-institutional, collaborative network of 27 epilepsy centers throughout the U.S., Australia, and Argentina, with the objective of collecting detailed phenotypic and genetic data on a large number of epilepsy participants. The goals of EPGP are (1) to perform detailed phenotyping on 3750 participants with specific forms of non-acquired epilepsy and 1500 parents without epilepsy, (2) to obtain DNA samples on these individuals, and (3) to ultimately genotype the samples in order to discover novel genes that cause epilepsy. To carry out the project, a reliable and robust informatics platform was needed for standardized electronic data collection and storage, data quality review, and phenotypic analysis involving cases from multiple sites. Methods EPGP developed its own suite of web-based informatics applications for participant tracking, electronic data collection (using electronic case report forms/surveys), data management, phenotypic data review and validation, specimen tracking, electroencephalograph and neuroimaging storage, and issue tracking. We implemented procedures to train and support end-users at each clinical site. Results Thus far, 3780 study participants have been enrolled and 20,957 web-based study activities have been completed using this informatics platform. Over 95% of respondents to an end-user satisfaction survey felt that the informatics platform was successful almost always or most of the time. Conclusions The EPGP informatics platform has successfully and effectively allowed study management and efficient and reliable collection of phenotypic data. Our novel informatics platform met the requirements of a large, multicenter research project. The platform has had a high level of end-user acceptance by principal investigators and study coordinators, and can serve as a model for new tools to support future large scale, collaborative research projects collecting extensive

  1. Consumer Health Informatics--integrating patients, providers, and professionals online.

    PubMed

    Klein-Fedyshin, Michele S

    2002-01-01

    Consumer Health Informatics (CHI) means different things to patients, health professionals, and health care systems. A broader perspective on this new and rapidly developing field will enable us to understand and better apply its advances. This article provides an overview of CHI discussing its evolution and driving forces, along with advanced applications such as Personal Health Records, Internet transmission of personal health data, clinical e-mail, online pharmacies, and shared decision-making tools. Consumer Health Informatics will become integrated with medical care, electronic medical records, and patient education to impact the whole process and business of health care. PMID:12238015

  2. A Primer on Aspects of Cognition for Medical Informatics

    PubMed Central

    Patel, Vimla L.; Arocha, José F.; Kaufman, David R.

    2001-01-01

    As a multidisciplinary field, medical informatics draws on a range of disciplines, such as computer science, information science, and the social and cognitive sciences. The cognitive sciences can provide important insights into the nature of the processes involved in human– computer interaction and help improve the design of medical information systems by providing insight into the roles that knowledge, memory, and strategies play in a variety of cognitive activities. In this paper, the authors survey literature on aspects of medical cognition and provide a set of claims that they consider to be important in medical informatics. PMID:11418539

  3. Role of Informatics in Patient Safety and Quality Assurance.

    PubMed

    Nakhleh, Raouf E

    2015-06-01

    Quality assurance encompasses monitoring daily processes for accurate, timely, and complete reports in surgical pathology. Quality assurance also includes implementation of policies and procedures that prevent or detect errors in a timely manner. This article presents uses of informatics in quality assurance. Three main foci are critical to the general improvement of diagnostic surgical pathology. First is the application of informatics to specimen identification with lean methods for real-time statistical control of specimen receipt and processing. Second is the development of case reviews before sign-out. Third is the development of information technology in communication of results to assure treatment in a timely manner. PMID:26065802

  4. A core curriculum for clinical fellowship training in pathology informatics

    PubMed Central

    McClintock, David S.; Levy, Bruce P.; Lane, William J.; Lee, Roy E.; Baron, Jason M.; Klepeis, Veronica E.; Onozato, Maristela L.; Kim, JiYeon; Dighe, Anand S.; Beckwith, Bruce A.; Kuo, Frank; Black-Schaffer, Stephen; Gilbertson, John R.

    2012-01-01

    Background: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. Materials and Methods: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required) and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Results: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1) Information Fundamentals, (2) Information Systems, (3) Workflow and Process, and (4) Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012). Discussion: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world, including

  5. Healthcare Informatics Schemata: A Paradigm Shift over Time.

    PubMed

    Erdley, W Scott

    2016-01-01

    The schemata "A paradigm shift over time©" (Sackett & Erdley, 2006) a graphic model, visualizes development and progression of informatics in health over time. The model portrays information technology trends, from computers as resource through computational ubiquity, and the shift to social networking and e-Health. The discrepancy between "real" and "proposed" suggests gaps involving issues such as value, interoperability and ontology requiring attention, development and ultimately adoption, hinging on a universal standards framework. The workshop objective is to review previous and current models of healthcare informatics to springboard revisions of the schemata for current and future use. PMID:27332341

  6. Theoretical Foundations for Evidence-Based Health Informatics: Why? How?

    PubMed

    Scott, Philip J; Georgiou, Andrew; Hyppönen, Hannele; Craven, Catherine K; Rigby, Michael; Brender McNair, Jytte

    2016-01-01

    A scientific approach to health informatics requires sound theoretical foundations. Health informatics implementation would be more effective if evidence-based and guided by theories about what is likely to work in what circumstances. We report on a Medinfo 2015 workshop on this topic jointly organized by the EFMI Working Group on Assessment of Health Information Systems and the IMIA Working Group on Technology Assessment and Quality Development. We discuss the findings of the workshop and propose an approach to consolidate empirical knowledge into testable middle-range theories. PMID:27577457

  7. An international health and nursing informatics module for distance education.

    PubMed

    Goossen, W; Timmons, S; Mol, M

    1998-06-01

    This paper describes why a module about health and nursing informatics is a necessary component for nursing education. Several developments in society and health care force health providers to manage the large amount of health data adequately. A module about health and nursing informatics was developed in international cooperation by three schools of nursing from Germany, The Netherlands and the UK. The content and learning activities of the realized example module for distance learning are described. Future plans include making this course material available in different languages on the World Wide Web. PMID:9726501

  8. Geo-spatial Informatics in International Public Health Nursing Education.

    PubMed

    Kerr, Madeleine J; Honey, Michelle L L; Krzyzanowski, Brittany

    2016-01-01

    This poster describes results of an undergraduate nursing informatics experience. Students applied geo-spatial methods to community assessments in two urban regions of New Zealand and the United States. Students used the Omaha System standardized language to code their observations during a brief community assessment activity and entered their data into a mapping program developed in Esri ArcGIS Online, a geographic information system. Results will be displayed in tables and maps to allow comparison among the communities. The next generation of nurses can employ geo-spatial informatics methods to contribute to innovative community assessment, planning and policy development. PMID:27332443

  9. About the Beginnings of Medical Informatics in Europe

    PubMed Central

    Roger France, Francis

    2014-01-01

    The term “Informatics” was created in 1962 from two words, information and automatic, and covers all techniques, information concepts and applications of computers. Among them, medicine is the field where we will describe some factors of development in Europe since the late sixties. It took some time for obtaining the acceptance of this new terminology worldwide, but today medical informatics is a well defined discipline which had a tremendous development last decades. This paper tries to recall the context and events from the beginning of medical informatics in Europe. PMID:24648614

  10. Modern Czech Studies. Brown Slavic Contributions, Volume XI.

    ERIC Educational Resources Information Center

    Levitsky, Alexander, Ed.; Ueda, Masako, Ed.

    1999-01-01

    This volume contains the following papers: "Texas Czech of Texas Czechs: An Ethnolinguistic Perspective on Language Use in a Dying Language Community" (Lida Dutkova); "Language Variation in an Immigrant Community: Language and Community Maintenance" (Eva Eckert); "Some Special Problems of Imperfective Derivation in Czech" (Charles Townsend);…

  11. Counseling in the Czech Republic: History, Status, and Future

    ERIC Educational Resources Information Center

    Simons, Jack D.; Hutchison, Brian; Bastecka, Zuzana

    2012-01-01

    This article reviews the history and current status of counseling in the Czech Republic. Recommendations for advancement of the profession in a postcommunist era are offered, including the incorporation of social justice principals for the benefit of Gypsies and immigrants, collaboration between Czech and non-Czech counselors, and counseling…

  12. Metropolis revisited: the evolving role of librarians in informatics education for the health professions

    PubMed Central

    King, Samuel B.; Lapidus, Mariana

    2015-01-01

    Objective: The authors' goal was to assess changes in the role of librarians in informatics education from 2004 to 2013. This is a follow-up to “Metropolis Redux: The Unique Importance of Library Skills in Informatics,” a 2004 survey of informatics programs. Methods: An electronic survey was conducted in January 2013 and sent to librarians via the MEDLIB-L email discussion list, the library section of the American Association of Colleges of Pharmacy, the Medical Informatics Section of the Medical Library Association, the Information Technology Interest Group of the Association of College and Research Libraries/New England Region, and various library directors across the country. Results: Librarians from fifty-five institutions responded to the survey. Of these respondents, thirty-four included librarians in nonlibrary aspects of informatics training. Fifteen institutions have librarians participating in leadership positions in their informatics programs. Compared to the earlier survey, the role of librarians has evolved. Conclusions: Librarians possess skills that enable them to participate in informatics programs beyond a narrow library focus. Librarians currently perform significant leadership roles in informatics education. There are opportunities for librarian interdisciplinary collaboration in informatics programs. Implications: Informatics is much more than the study of technology. The information skills that librarians bring to the table enrich and broaden the study of informatics in addition to adding value to the library profession itself. PMID:25552939

  13. Informatics competencies essential to decision making in nursing management.

    PubMed

    Jensen, Rodrigo; Guedes, Erika de Souza; Leite, Maria Madalena Januário

    2016-02-01

    OBJECTIVE To identify informatics abilities essential to decision making in nursing management. METHOD Survey study with specialist nurses in health informatics and management. An electronic questionnaire was built based on the competencies Information Literacy (five categories; 40 abilities) and Information Management (nine categories; 69 abilities) of the TIGER - Technology Informatics Guiding Education Reform - initiative, with the guiding question: Which informatics abilities are essential to decision making in management? Answers were sorted in a Likert scale, ranging from 1 to 5. Rasch analysis was conducted with the software WINSTEPS ®. Results were presented in logits, with cutoff value zero. RESULTS Thirty-two specialists participated, coming from all regions of Brazil. In the information literacy competency, 18 abilities were considered essential and in Information Management, 38; these were sorted according to their degree of essentiality. CONCLUSION It is believed that the incorporation of these abilities in teaching can support the education of nurse managers and contribute to evidence-based practice, incorporation of information and communication technologies in health and information management. PMID:27007428

  14. Score Calculation in Informatics Contests Using Multiple Criteria Decision Methods

    ERIC Educational Resources Information Center

    Skupiene, Jurate

    2011-01-01

    The Lithuanian Informatics Olympiad is a problem solving contest for high school students. The work of each contestant is evaluated in terms of several criteria, where each criterion is measured according to its own scale (but the same scale for each contestant). Several jury members are involved in the evaluation. This paper analyses the problem…

  15. Improving the Evaluation Model for the Lithuanian Informatics Olympiads

    ERIC Educational Resources Information Center

    Skupiene, Jurate

    2010-01-01

    The Lithuanian Informatics Olympiads (LitIO) is a problem solving programming contest for students in secondary education. The work of the student to be evaluated is an algorithm designed by the student and implemented as a working program. The current evaluation process involves both automated (for correctness and performance of programs with the…

  16. Pre-School Teachers' Informatics and Information Literacy

    ERIC Educational Resources Information Center

    Tatkovic, Nevenka; Ruzic, Maja; Pecaric, Dilda

    2006-01-01

    The life and activities of every man in the period of transition from the second into the third millennium have been marked by epochal changes which appear as the consequence of scientific and technological revolution dominated by highly developed information and communication technology. Informatics and information education based on information…

  17. Informatics Futures in Dental Education and Research: Quality Assurance.

    ERIC Educational Resources Information Center

    Crall, James J.

    1991-01-01

    The paper addresses the potential of informatics to patient care quality assurance curricula, focusing on (1) terminology and developments related to quality of care evaluations; (2) criticisms of traditional approaches; (3) limitations of existing data sources for quality assurance in dentistry; and (4) quality assurance considerations in…

  18. Informatics and Telematics in Health. Present and Potential Uses.

    ERIC Educational Resources Information Center

    World Health Organization, Geneva (Switzerland).

    This report focuses on technical issues associated with informatics--a term covering all aspects of the development and operations of information systems, the supporting computer methodology and technology, and the supporting telecommunications links. The first of six chapters discusses the purpose of the report together with basic assumptions…

  19. A Review of Medical Education and Medical Informatics.

    ERIC Educational Resources Information Center

    Haynes, R. Brian; And Others

    1989-01-01

    Information technology may help physicians to manage information more effectively through more accessible clinical indexes, databases of diagnostic test characteristics, computerized audits of clinical activities, on-line access to medical literature, etc. Medical informatics, a new discipline dedicated to the solution of information problems in…

  20. A solo hospital librarian's experience in clinical informatics.

    PubMed

    Miles, Alisha

    2015-01-01

    This column reviews some of a solo librarian's experiences that led to involvement with the hospital Clinical Informatics Team. This included work on the electronic health record (EHR), computerized physician order entry (CPOE) system, development of order sets, and participation in the Physician Technology Committee. PMID:25927515

  1. An Abridged History of Medical Informatics Education in Europe

    PubMed Central

    Hasman, Arie; Mantas, John; Zarubina, Tatyana

    2014-01-01

    This contribution presents the development of medical informatics education in Europe. It does not discuss all developments that took place. Rather it discerns several themes that indicate the progress in the field, starting from the initiation phase to the final quality control phase. PMID:24648617

  2. The Integration of Nursing Informatics in Delaware Nursing Education Programs

    ERIC Educational Resources Information Center

    Wheeler, Bernadette

    2016-01-01

    Over the past decade, there has been a conversion to electronic health records (EHRs) in an effort to improve patient care, access, and efficiency. The goal, which has been supported by federal initiatives, is to meaningfully use informatics to improve the safety and quality of patient care as a major force in improving healthcare. How nurses…

  3. An Informatics Approach to Establishing a Sustainable Public Health Community

    ERIC Educational Resources Information Center

    Kriseman, Jeffrey Michael

    2012-01-01

    This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease Surveillance System (NNDSS) was instrumental in…

  4. School Subject Informatics (Computer Science) in Russia: Educational Relevant Areas

    ERIC Educational Resources Information Center

    Khenner, Evgeniy; Semakin, Igor

    2014-01-01

    This article deals with some aspects of studying Informatics in Russian schools. Those aspects are part of the "third dimension" of the Darmstadt model (they are also projected on the other two dimensions of this model) and include evolution of the subject, regulatory norms conforming to the Federal Educational Standards, the learning…

  5. Informatics Teaching from the Students' Point of View

    ERIC Educational Resources Information Center

    Zahorec, Jan; Haskova, Alena

    2013-01-01

    Branches of science and technical/engineering study have for a long time been the less favoured disciplines and students have not been interested in studying them. Informatics/computer education, based on its character, belongs to these disciplines, but on the contrary it belongs rather to the group of popular school subjects. The paper presents…

  6. Designing Biomedical Informatics Infrastructure for Clinical and Translational Science

    ERIC Educational Resources Information Center

    La Paz Lillo, Ariel Isaac

    2009-01-01

    Clinical and Translational Science (CTS) rests largely on information flowing smoothly at multiple levels, in multiple directions, across multiple locations. Biomedical Informatics (BI) is seen as a backbone that helps to manage information flows for the translation of knowledge generated and stored in silos of basic science into bedside…

  7. Informatics--Preparation for the Realities of the Future.

    ERIC Educational Resources Information Center

    Kotze, Paula

    The paper describes the informatics curriculum (the study of computer hardware and software as a tool in problem solving) in a special school for gifted children in South Africa. The program's aims (including development of a structured approach to general problem solving and stimulation of pupil interest in technology) are listed and discussed. A…

  8. BING: biomedical informatics pipeline for Next Generation Sequencing.

    PubMed

    Kriseman, Jeffrey; Busick, Christopher; Szelinger, Szabolcs; Dinu, Valentin

    2010-06-01

    High throughput parallel genomic sequencing (Next Generation Sequencing, NGS) shifts the bottleneck in sequencing processes from experimental data production to computationally intensive informatics-based data analysis. This manuscript introduces a biomedical informatics pipeline (BING) for the analysis of NGS data that offers several novel computational approaches to 1. image alignment, 2. signal correlation, compensation, separation, and pixel-based cluster registration, 3. signal measurement and base calling, 4. quality control and accuracy measurement. These approaches address many of the informatics challenges, including image processing, computational performance, and accuracy. These new algorithms are benchmarked against the Illumina Genome Analysis Pipeline. BING is the one of the first software tools to perform pixel-based analysis of NGS data. When compared to the Illumina informatics tool, BING's pixel-based approach produces a significant increase in the number of sequence reads, while reducing the computational time per experiment and error rate (<2%). This approach has the potential of increasing the density and throughput of NGS technologies. PMID:19925883

  9. Using the Internet to Teach Health Informatics: A Case Study

    PubMed Central

    Holt, Alec; Gillies, John

    2001-01-01

    Background It is becoming increasingly important for health professionals to have an understanding of health informatics. Education in this area must support not only undergraduate students but also the many workers who graduated before informatics education was available in the undergraduate program. To be successful, such a program must allow currently-employed students with significant work and family commitments to enroll. Objectives The aim was to successfully create and teach a distance program in health informatics for the New Zealand environment. Methods Our students are primarily health professionals in full time employment. About 50% are doctors, about 25% nurses, and the rest include dentists, physiotherapists, and medical managers. Course material was delivered via the World Wide Web and CD-ROM. Communication between students and faculty, both synchronous and asynchronous, was carried out via the Internet. Results We have designed and taught a postgraduate Diploma of Health Informatics program using the Internet as a major communication medium. The course has been running since July 1998 and the first 10 students graduated in July 2000. About 45 students are currently enrolled in the course; we have had a dropout rate of 15% and a failure rate of 5%. Comparable dropout figures are hard to obtain, but a recent review has suggested that failure-to-complete rates of 30% to 33% may be expected. Conclusions Internet technology has provided an exciting educational challenge and opportunity. Providing a web-based health informatics course has not been without its frustrations and problems, including software compatibility issues, bandwidth limitations, and the rapid change in software and hardware. Despite these challenges, the use of Internet technology has been interesting for both staff and students, and a worthwhile alternative for delivering educational material and advice to students working from their own homes. PMID:11720968

  10. Whom Rests Today's Czech School Culture On?

    ERIC Educational Resources Information Center

    Pol, Milan; Hlouskova, Lenka; Novotny, Petr; Zounek, Jiri

    2003-01-01

    This contribution is another partial outcome of a three-year-project aimed at the recognition of the culture of Czech schools and its development strategies. The data we herewith interpret have been obtained through a questionnaire survey focusing on key areas of school operation (consent in main principles of school operation; creation and…

  11. Fears in Czech Adolescents: A Longitudinal Study

    ERIC Educational Resources Information Center

    Michalcáková, Radka; Lacinová, Lenka; Kyjonková, Hana; Bouša, Ondrej; Jelínek, Martin

    2013-01-01

    The present study investigates developmental patterns of fear in adolescence. It is based on longitudinal data collected as a part of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) project. A total of 186 Czech adolescents (43% girls) were assessed repeatedly at the age of 11, 13, and 15 years. The free-response method was…

  12. Language Management in the Czech Republic

    ERIC Educational Resources Information Center

    Neustupny, J. V.; Nekvapil, Jiri

    2003-01-01

    This monograph, based on the Language Management model, provides information on both the "simple" (discourse-based) and "organised" modes of attention to language problems in the Czech Republic. This includes but is not limited to the language policy of the State. This approach does not satisfy itself with discussing problems of language varieties…

  13. Changes in Information Systems in Czech Agriculture

    ERIC Educational Resources Information Center

    Slavik, Milan

    2004-01-01

    A study carried out in 1998 (reported in the Journal of Agricultural Education and Extension, 2003) of the information systems used by farmers in the Czech Republic to access information and advice was repeated in 2003. The research aim was to assess whether, and how, the systems had changed during these five years. The perceived importance of 10…

  14. Innovative Teachers at Today's Czech Schools

    ERIC Educational Resources Information Center

    Novotny, Petr

    2003-01-01

    Education in the Czech Republic is at the onset of a very important reform. Its goals are outlined in the National Education Development Programme (so called "White Book," 2001) in quite a detailed manner. The reform should lead to the achievement of certain proportional and quantitative indicators and to the attainment of a target qualitative…

  15. Postcards from the imaging informatics road. Despite policy complexities, diagnostic imaging informatics makes progress on multiple fronts.

    PubMed

    Hagland, Mark

    2011-11-01

    The current strategic landscape for imaging informatics is one filled with great contrasts and paradoxes. On the one hand, because imaging informatics was not explicitly addressed in Stage 1 of the meaningful use requirements under the American Recovery and Reinvestment Act/Health Information Technology for Economic and Clinical Health Act (ARRA-HITECH) legislation, it instantly lost some of the environment of turbo-charged energy characterized by areas that were directly addressed by the HITECH Act, such as quality data reporting, care management, and of course, core electronic health record (EHR) development. On the other hand, an interesting combination of factors--rapidly advancing technology, the expansion of the image archiving concept across different medical specialties, and the inclusion of diagnostic image-sharing as one element in the development of health information exchange (HIE) arrangements nationwide--is nonetheless pushing imaging informatics forward towards new innovations. The five articles below provide readers with different glimpses of the path ahead for imaging informatics. The first presents a look at the current policy and reimbursement landscape. Each of the four subsequent articles delve into different aspects of innovation, from a process developed at a public hospital to improve and speed up the diagnostic process for trauma patients, to a radiology-specific financial analytics solution in the group practice setting, to an advance in cardiology information systems, to a self-developed federated image viewing platform at one of the nation's largest integrated health systems. Each of those initiatives is very different; yet it is clear that a great deal of innovation is taking place across the US. healthcare system when it comes to imaging informatics. With a landscape filled with uncertainties and potential policy, reimbursement, and industry shifts in the offing, CIOs, CMIOs, and other healthcare IT leaders will need to think very

  16. PearlTrees web-based interface for teaching informatics in the radiology residency

    NASA Astrophysics Data System (ADS)

    Licurse, Mindy Y.; Cook, Tessa S.

    2014-03-01

    Radiology and imaging informatics education have rapidly evolved over the past few decades. With the increasing recognition that future growth and maintenance of radiology practices will rely heavily on radiologists with fundamentally sound informatics skills, the onus falls on radiology residency programs to properly implement and execute an informatics curriculum. In addition, the American Board of Radiology may choose to include even more informatics on the new board examinations. However, the resources available for didactic teaching and guidance most especially at the introductory level are widespread and varied. Given the breadth of informatics, a centralized web-based interface designed to serve as an adjunct to standardized informatics curriculums as well as a stand-alone for other interested audiences is desirable. We present the development of a curriculum using PearlTrees, an existing web-interface based on the concept of a visual interest graph that allows users to collect, organize, and share any URL they find online as well as to upload photos and other documents. For our purpose, the group of "pearls" includes informatics concepts linked by appropriate hierarchal relationships. The curriculum was developed using a combination of our institution's current informatics fellowship curriculum, the Practical Imaging Informatics textbook1 and other useful online resources. After development of the initial interface and curriculum has been publicized, we anticipate that involvement by the informatics community will help promote collaborations and foster mentorships at all career levels.

  17. Measuring Computer Science Knowledge Level of Hungarian Students Specialized in Informatics with Romanian Students Attending a Science Course or a Mathematics-Informatics Course

    ERIC Educational Resources Information Center

    Kiss, Gabor

    2012-01-01

    An analysis of Information Technology knowledge of Hungarian and Romanian students was made with the help of a self developed web based Informatics Test. The goal of this research is an analysis of the Computer Science knowledge level of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was…

  18. Advancing Climate Change and Impacts Science Through Climate Informatics

    NASA Astrophysics Data System (ADS)

    Lenhardt, W.; Pouchard, L. C.; King, A. W.; Branstetter, M. L.; Kao, S.; Wang, D.

    2010-12-01

    This poster will outline the work to date on developing a climate informatics capability at Oak Ridge National Laboratory (ORNL). The central proposition of this effort is that the application of informatics and information science to the domain of climate change science is an essential means to bridge the realm of high performance computing (HPC) and domain science. The goal is to facilitate knowledge capture and the creation of new scientific insights. For example, a climate informatics capability will help with the understanding and use of model results in domain sciences that were not originally in the scope. From there, HPC can also benefit from feedback as the new approaches may lead to better parameterization in the models. In this poster we will summarize the challenges associated with climate change science that can benefit from the systematic application of informatics and we will highlight our work to date in creating the climate informatics capability to address these types of challenges. We have identified three areas that are particularly challenging in the context of climate change science: 1) integrating model and observational data across different spatial and temporal scales, 2) model linkages, i.e. climate models linked to other models such as hydrologic models, and 3) model diagnostics. Each of these has a methodological component and an informatics component. Our project under way at ORNL seeks to develop new approaches and tools in the context of linking climate change and water issues. We are basing our work on the following four use cases: 1) Evaluation/test of CCSM4 biases in hydrology (precipitation, soil water, runoff, river discharge) over the Rio Grande Basin. User: climate modeler. 2) Investigation of projected changes in hydrology of Rio Grande Basin using the VIC (Variable Infiltration Capacity Macroscale) Hydrologic Model. User: watershed hydrologist/modeler. 3) Impact of climate change on agricultural productivity of the Rio Grande

  19. Optimizing Digital Health Informatics Interventions Through Unobtrusive Quantitative Process Evaluations.

    PubMed

    Gude, Wouter T; van der Veer, Sabine N; de Keizer, Nicolette F; Coiera, Enrico; Peek, Niels

    2016-01-01

    Health informatics interventions such as clinical decision support (CDS) and audit and feedback (A&F) are variably effective at improving care because the underlying mechanisms through which these interventions bring about change are poorly understood. This limits our possibilities to design better interventions. Process evaluations can be used to improve this understanding by assessing fidelity and quality of implementation, clarifying causal mechanisms, and identifying contextual factors associated with variation in outcomes. Coiera describes the intervention process as a series of stages extending from interactions to outcomes: the "information value chain". However, past process evaluations often did not assess the relationships between those stages. In this paper we argue that the chain can be measured quantitatively and unobtrusively in digital interventions thanks to the availability of electronic data that are a by-product of their use. This provides novel possibilities to study the mechanisms of informatics interventions in detail and inform essential design choices to optimize their efficacy. PMID:27577453

  20. How to Prepare a Nursing Informatics Conference Submission.

    PubMed

    Saranto, Kaija; Borycki, Elizabeth M; Sarkar, Indra Neil

    2016-01-01

    This workshop aims to demystify the process of submitting papers to Nursing Informatics and MEDINFO Congresses for international authors. During the workshop the authors of this proposal will focus on the characteristics of NI and MEDINFO congresses, principles of scientific writing, requirements of submission formats, and criteria used for assessing submissions. The workshop will be of special interest to those who are planning on submitting a paper, poster, or workshop to future Nursing Informatics and MEDINFO conferences. As part of this the workshop, authors and participants will discuss and share their experiences in submitting papers to NI and MEDINFO conferences and the workshop authors will provide suggestions on how to improve the papers. PMID:27332311

  1. Nanoinformatics: new challenges for biomedical informatics at the nano level.

    PubMed

    De La Iglesia, Diana; Chiesa, Stefano; Kern, Josipa; Maojo, Victor; Martin-Sanchez, Fernando; Potamias, George; Moustakis, Vassilis; Mitchell, Joyce A

    2009-01-01

    Over the last decades Nanotechnology has promised to advance science and technology in many areas. Within medicine, Nanomedicine promises to deliver new methods for diagnosis, prognosis and therapy. As the amount of available information is rapidly growing, new Biomedical Informatics approaches have to be developed to satisfy the increasing demand on data and knowledge management. In 2007, a new sub-discipline, already named "Nanoinformatics", was created with support from the US National Science Foundation. In Europe, a project named ACTION-Grid was launched in 2008 with support from the European Commission to analyze the challenges and agenda for developing Nanoinformatics as a discipline related to Nanotechnology, Biomedicine and Informatics. For MIE 2009, members of this consortium proposed a workshop to discuss the scientific and strategic issues associated with this topic. Nanoinformatics aims to create a bridge between Nanomedicine and Information Technology applying computational methods to manage the information created in the nanomedical domain. PMID:19745461

  2. Social care informatics - the missing partner in ehealth.

    PubMed

    Rigby, Michael; Hill, Penny; Koch, Sabine; Kärki, Jarmo

    2009-01-01

    To the individual, social care can be an essential part of maintaining health, as is reflected by the WHO definition of health as being one of wellbeing. However, health informatics currently narrowly restricts itself to health organizations' activities. Digital records in social care are increasing, raising the need to recognize the area of social care informatics. This new domain needs support and nurture, whilst the delivery of social and related care needs to be harmonized with healthcare delivery. In turn, this raises important new issues as to how to best support the citizen, especially when they are dependent, including issues of information sharing, service co-ordination, sharing of meaning and objectives, and of respect for autonomy. PMID:19745313

  3. Nutrition Informatics Applications in Clinical Practice: a Systematic Review

    PubMed Central

    North, Jennifer C.; Jordan, Kristine C.; Metos, Julie; Hurdle, John F.

    2015-01-01

    Nutrition care and metabolic control contribute to clinical patient outcomes. Biomedical informatics applications represent a way to potentially improve quality and efficiency of nutrition management. We performed a systematic literature review to identify clinical decision support and computerized provider order entry systems used to manage nutrition care. Online research databases were searched using a specific set of keywords. Additionally, bibliographies were referenced for supplemental citations. Four independent reviewers selected sixteen studies out of 364 for review. These papers described adult and neonatal nutrition support applications, blood glucose management applications, and other nutrition applications. Overall, results indicated that computerized interventions could contribute to improved patient outcomes and provider performance. Specifically, computer systems in the clinical setting improved nutrient delivery, rates of malnutrition, weight loss, blood glucose values, clinician efficiency, and error rates. In conclusion, further investigation of informatics applications on nutritional and performance outcomes utilizing rigorous study designs is recommended. PMID:26958233

  4. A Collaborative Informatics Infrastructure for Multi-scale Science

    SciTech Connect

    Myers, J D; Allison, T C; Bittner, S; Didier, B; Frenklach, M; Green, Jr., W H; Ho, Y; Hewson, J; Koegler, W; Lansing, C; Leahy, D; Lee, M; McCoy, R; Minkoff, M; Nijsure, S; von Laszewski, G; Montoya, D; Pancerella, C; Pinzon, R; Pitz, W J; Rahn, L A; Ruscis, B; Schuchardt, K; Stephan, E; Wagner, A; Windus, T; Yang, C

    2005-05-11

    The Collaboratory for Multi-scale Chemical Science (CMCS) is developing a powerful informatics-based approach to synthesizing multi-scale information to support a systems-based research approach and is applying it in support of combustion research. An open source multi-scale informatics toolkit is being developed that addresses a number of issues core to the emerging concept of knowledge grids including provenance tracking and lightweight federation of data and application resources into cross-scale information flows. The CMCS portal is currently in use by a number of high-profile pilot groups and is playing a significant role in enabling their efforts to improve and extend community maintained chemical reference information.

  5. Eco-informatics for decision makers advancing a research agenda

    USGS Publications Warehouse

    Cushing, J.B.; Wilson, T.; Brandt, L.; Gregg, V.; Spengler, S.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schnase, J.L.; Schweik, C.; Sonntag, W.

    2005-01-01

    Resource managers often face significant information technology (IT) problems when integrating ecological or environmental information to make decisions. At a workshop sponsored by the NSF and USGS in December 2004, university researchers, natural resource managers, and information managers met to articulate IT problems facing ecology and environmental decision makers. Decision making IT problems were identified in five areas: 1) policy, 2) data presentation, 3) data gaps, 4) tools, and 5) indicators. To alleviate those problems, workshop participants recommended specific informatics research in modeling and simulation, data quality, information integration and ontologies, and social and human aspects. This paper reports the workshop findings, and briefly compares these with research that traditionally falls under the emerging eco-informatics rubric. ?? Springer-Verlag Berlin Heidelberg 2005.

  6. Genetics, biometrics and the informatization of the body.

    PubMed

    van der Ploeg, Irma

    2007-01-01

    "Genetics" is a term covering a wide set of theories, practices, and technologies, only some of which overlap with the practices and technologies of biometrics. In this paper some current technological developments relating to biometric applications of genetics will be highlighted. Next, the author will elaborate the notion of the informatization of the body, by means of a brief philosophical detour on the dualisms of language and reality, words and things. In the subsequent sections she will then draw out some of the questions relevant to the purposes of Biometrics Identification Technology Ethics (BITE), and discuss the ethical problems associated with the informatization of the body. There are, however some problems and limitations to the currently dominant ethical discourse to deal with all things ethical in relation to information technology in general, and biometrics or genetics in particular. The final section will discuss some of these meta-problems. PMID:17536153

  7. Panel: Alternative Careers for Biomedical Informatics PhDs

    PubMed Central

    Tenenbaum, Jessica D.; Sorani, Marco; Maker, Monya; Torrance, Andrew; Horvitz, Eric

    2013-01-01

    The number of doctoral training programs in informatics increases every year, however not every doctoral candidate wishes to pursue a traditional career in academia. In addition, the knowledge and skills acquired through scientific training at the doctoral level can be valuable, even critical, for a number of career paths outside of academic research and teaching. This panel will present a diverse set of alternative career paths for which graduates of Informatics programs would be well suited, including patent law, research in industry, academic administration, and scientific journalism. Panelists will describe their own respective backgrounds and career paths, a day in the life in their current position, and how their training prepared them for their jobs. They will also touch on insights gained and lessons learned in exploring the professional landscape through non-traditional paths. PMID:24303329

  8. Evolving National Strategy Driving Nursing Informatics in New Zealand.

    PubMed

    Honey, Michelle; Westbrooke, Lucy

    2016-01-01

    An update to the New Zealand Health Strategy identifying direction and priorities for health services is underway. Three specific areas have implications for nursing informatics and link to education and practice: best use of technology and information, fostering and spreading innovation and quality improvements, and building leaders and capability for the future. An emphasis on prevention and wellness means nursing needs to focus on health promotion and the role of consumers is changing with access to their on-line information a major focus. As the modes of delivery for services such as telehealth and telenursing changes, nurses are increasingly working independently and utilizing information and communication technologies to collaborate with the health team. New Zealand, and other countries, need strong nursing leadership to sustain the nursing voice in policy and planning and ensure nurses develop the required informatics skills. PMID:27332187

  9. Development and implementation of a multitiered health informatics curriculum in a college of pharmacy.

    PubMed

    Breeden, Elizabeth A; Clauson, Kevin A

    2016-07-01

    Standards requiring education in informatics in pharmacy curricula were introduced in the last 10 years by the Accreditation Council for Pharmacy Education. Mirroring difficulties faced by other health professions educators, implementation of these requirements remains fragmented and somewhat limited across colleges of pharmacy in the US. Clinical practice and workforce metrics underline a pronounced need for clinicians with varying competencies in health informatics. In response to these challenges, a multitiered health informatics curriculum was developed and implemented at a college of pharmacy in the Southeast. The multitiered approach is structured to ensure that graduating pharmacists possess core competencies in health informatics, while providing specialized and advanced training opportunities for pharmacy students, health professions students, and working professionals interested in a career path in informatics. The approach described herein offers institutions, administrators, faculty, residents, and students an adaptable model for selected or comprehensive adoption and integration of a multitiered health informatics curriculum. PMID:27121611

  10. Reducing Health Cost: Health Informatics and Knowledge Management as a Business and Communication Tool

    NASA Astrophysics Data System (ADS)

    Gyampoh-Vidogah, Regina; Moreton, Robert; Sallah, David

    Health informatics has the potential to improve the quality and provision of care while reducing the cost of health care delivery. However, health informatics is often falsely regarded as synonymous with information management (IM). This chapter (i) provides a clear definition and characteristic benefits of health informatics and information management in the context of health care delivery, (ii) identifies and explains the difference between health informatics (HI) and managing knowledge (KM) in relation to informatics business strategy and (iii) elaborates the role of information communication technology (ICT) KM environment. This Chapter further examines how KM can be used to improve health service informatics costs, and identifies the factors that could affect its implementation and explains some of the reasons driving the development of electronic health record systems. This will assist in avoiding higher costs and errors, while promoting the continued industrialisation of KM delivery across health care communities.

  11. It's Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence.

    PubMed

    McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders. PMID:26306252

  12. Advancing Nursing Informatics in the Next Decade: Recommendations from an International Survey.

    PubMed

    Topaz, Maxim; Ronquillo, Charlene; Peltonen, Laura-Maria; Pruinelli, Lisiane; Sarmiento, Raymond Francis; Badger, Martha K; Ali, Samira; Lewis, Adrienne; Georgsson, Mattias; Jeon, Eunjoo; Tayaben, Jude L; Kuo, Chiu-Hsiang; Islam, Tasneem; Sommer, Janine; Jung, Hyunggu; Eler, Gabrielle Jacklin; Alhuwail, Dari

    2016-01-01

    In the summer of 2015, the International Medical Informatics Association Nursing Informatics Special Interest Group (IMIA NISIG) Student Working Group developed and distributed an international survey of current and future trends in nursing informatics. The survey was developed based on current literature on nursing informatics trends and translated into six languages. Respondents were from 31 different countries in Asia, Africa, North and Central America, South America, Europe, and Australia. This paper presents the results of responses to the survey question: "What should be done (at a country or organizational level) to advance nursing informatics in the next 5-10 years?" (n responders = 272). Using thematic qualitative analysis, responses were grouped into five key themes: 1) Education and training; 2) Research; 3) Practice; 4) Visibility; and 5) Collaboration and integration. We also provide actionable recommendations for advancing nursing informatics in the next decade. PMID:27332175

  13. It’s Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence

    PubMed Central

    McIntosh, Leslie D.; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders. PMID:26306252

  14. Medical students' perspectives on biomedical informatics learning objectives

    PubMed Central

    Richardson, Stephanie J.; Sheng, Xiaoming; Mitchell, Joyce A.

    2013-01-01

    Objectives: To explore medical student perspectives regarding the importance of biomedical informatics learning objectives to career development, and the amount of emphasis that should be placed on content associated with these objectives in the curriculum. Methods A Web-based survey was e-mailed to 405 students enrolled at the University of Utah, School of Medicine in spring 2008. Respondents rated the importance of biomedical informatics learning objectives using a five-point Likert-type scale, and indicated whether this content should be given a minimal, moderate or large amount of emphasis. ANOVA and the Kruskal-Wallis test were conducted to determine differences in perceived importance and desired emphasis by academic year. Results A total of 259 medical students submitted a survey for an overall response rate of 63.9%. Learning objectives associated with the physician role of Clinician received the highest overall rating (mean = 3.29 ± 0.47). Objectives for the physician roles of Clinician, Life-long Learner and Manager received higher ratings than the Educator/Communicator and Researcher roles in terms of both perceived importance and amount of emphasis. Student ratings of importance varied significantly by academic year, with third-year students consistently assigning lower ratings to learning objectives for the Educator/Communicator, Researcher and Manager roles compared to students in some other years. Conclusions Study results suggest that biomedical informatics content is desired by medical students at the University of Utah. Study findings are being used to inform efforts to integrate biomedical informatics content into the curriculum and may assist other medical schools seeking to incorporate similar content.

  15. Basic medical science education must include medical informatics.

    PubMed

    Sarbadhikari, Suptendra Nath

    2004-10-01

    Medical Informatics is the science and art of processing medical information. In this age of "Information Explosion" choosing the useful one is rather difficult, and there lies the scope of electronic database management. However, still many outstanding personnel related to the healthcare sector take pride in being "computer illiterate". The onus of the best use lies on the end-user health care providers only. Another term tele-health encompasses all the e-health and telemedicine services. Computer aided or assisted learning (CAL) is a computer based tutorial method that uses the computer to pose questions, provide remedial information and chart a student through a course. Now the emphasis in medical education, is on problem based learning (PBL) and there CAL could be of utmost help if used judiciously. Basic Medical Education and Research lays the foundation for advancing and applying proper healthcare delivery systems. There is no doubt that deep knowledge of anatomy is mandatory for successful surgery. Also, comprehensive knowledge of physiology is essential for grasping the principles of pathology and pharmacology adequately, to avoid incorrect and inadequate practice of medicine. Similarly, medical informatics is not just a subject to be learnt and forgotten after the first professional MBBS examination. The final aim of every student should not only be to become a good user but also an expert for advancing medical knowledge base through medical informatics. In view of the fast changing world of medical informatics, it is of utmost necessity to formulate a flexible syllabus rather than a rigid one. PMID:15907048

  16. Data Analysis and Data Mining: Current Issues in Biomedical Informatics

    PubMed Central

    Bellazzi, Riccardo; Diomidous, Marianna; Sarkar, Indra Neil; Takabayashi, Katsuhiko; Ziegler, Andreas; McCray, Alexa T.

    2011-01-01

    Summary Background Medicine and biomedical sciences have become data-intensive fields, which, at the same time, enable the application of data-driven approaches and require sophisticated data analysis and data mining methods. Biomedical informatics provides a proper interdisciplinary context to integrate data and knowledge when processing available information, with the aim of giving effective decision-making support in clinics and translational research. Objectives To reflect on different perspectives related to the role of data analysis and data mining in biomedical informatics. Methods On the occasion of the 50th year of Methods of Information in Medicine a symposium was organized, that reflected on opportunities, challenges and priorities of organizing, representing and analysing data, information and knowledge in biomedicine and health care. The contributions of experts with a variety of backgrounds in the area of biomedical data analysis have been collected as one outcome of this symposium, in order to provide a broad, though coherent, overview of some of the most interesting aspects of the field. Results The paper presents sections on data accumulation and data-driven approaches in medical informatics, data and knowledge integration, statistical issues for the evaluation of data mining models, translational bioinformatics and bioinformatics aspects of genetic epidemiology. Conclusions Biomedical informatics represents a natural framework to properly and effectively apply data analysis and data mining methods in a decision-making context. In the future, it will be necessary to preserve the inclusive nature of the field and to foster an increasing sharing of data and methods between researchers. PMID:22146916

  17. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV. PMID:15353690

  18. Clinical Research Informatics and Electronic Health Record Data

    PubMed Central

    Horvath, M. M.; Rusincovitch, S. A.

    2014-01-01

    Summary Objectives The goal of this survey is to discuss the impact of the growing availability of electronic health record (EHR) data on the evolving field of Clinical Research Informatics (CRI), which is the union of biomedical research and informatics. Results Major challenges for the use of EHR-derived data for research include the lack of standard methods for ensuring that data quality, completeness, and provenance are sufficient to assess the appropriateness of its use for research. Areas that need continued emphasis include methods for integrating data from heterogeneous sources, guidelines (including explicit phenotype definitions) for using these data in both pragmatic clinical trials and observational investigations, strong data governance to better understand and control quality of enterprise data, and promotion of national standards for representing and using clinical data. Conclusions The use of EHR data has become a priority in CRI. Awareness of underlying clinical data collection processes will be essential in order to leverage these data for clinical research and patient care, and will require multi-disciplinary teams representing clinical research, informatics, and healthcare operations. Considerations for the use of EHR data provide a starting point for practical applications and a CRI research agenda, which will be facilitated by CRI’s key role in the infrastructure of a learning healthcare system. PMID:25123746

  19. Implementation and Evaluation of a Medical Informatics Distance Education Program

    PubMed Central

    Hersh, William R.; Junium, Katherine; Mailhot, Mark; Tidmarsh, Patricia

    2001-01-01

    Objective: Given the need for continuing education in medical informatics for mid-career professionals, the authors aimed to implement and evaluate distance learning courses in this area. Design: The authors performed a needs assessment, content and technology planning, implementation, and student evaluation. Measurements: The needs assessment and student evaluations were assessed using a combination of Likert scale and free-form questions. Results: The needs assessment indicated much interest in a medical informatics distance learning program, with electronic medical records and outcome research the subject areas of most interest. The courses were implemented by means of streaming audio plus slides for lectures and threaded discussion boards for student interaction. Students were assessed by multiple-choice tests, a term paper, and a take-home final examination. In their course evaluations, student expressed strong satisfaction with the teaching modalities, course content, and system performance. Although not assessed experimentally, the performance of distance learning students was superior to that of on-campus students. Conclusion: Medical informatics education can be successfully implemented by means of distance learning technologies, with favorable student satisfaction and demonstrated learning. A graduate certificate program is now being implemented. PMID:11687564

  20. Exploration of the e-patient phenomenon in nursing informatics.

    PubMed

    Gee, Perry M; Greenwood, Deborah A; Kim, Katherine K; Perez, Susan L; Staggers, Nancy; DeVon, Holli A

    2012-01-01

    The availability of health information on the Internet has equalized opportunities for knowledge between patients and their health care providers, creating a new phenomenon called the e-patient. E-patients use technology to actively participate in their health care and assume higher levels of responsibility for their own health and wellness. This phenomenon has implications for nursing informatics research related to e-patients and potential collaboration with practitioners in developing a collective wisdom. Nursing informatics can use the data, information, knowledge, and wisdom (DIKW) framework to understand how e-patients and clinicians may achieve this collective wisdom. Nurse informaticists can use constructivism and Gadamerian hermeneutics to bridge each stage of this framework to illustrate the fundamentals of patient and clinician interactions and commonality of language to achieve a collective wisdom. Examining the e-patient phenomenon will help nurse informaticists evaluate, design, develop, and determine the effectiveness of information systems used by e-patients. The Internet can facilitate a partnership between the patient and clinician and cultivate a collective wisdom, enhanced by collaboration between nurse informatics and e-patients. PMID:22221955

  1. Multimodality monitoring: informatics, integration data display and analysis.

    PubMed

    Schmidt, J Michael; De Georgia, Michael

    2014-12-01

    The goal of multimodality neuromonitoring is to provide continuous, real-time assessment of brain physiology to prevent, detect, and attenuate secondary brain injury. Clinical informatics deals with biomedical data, information, and knowledge including their acquisition, storage, retrieval, and optimal use for clinical decision-making. An electronic literature search was conducted for English language articles describing the use of informatics in the intensive care unit setting from January 1990 to August 2013. A total of 64 studies were included in this review. Clinical informatics infrastructure should be adopted that enables a wide range of linear and nonlinear analytical methods be applied to patient data. Specific time epochs of clinical interest should be reviewable. Analysis strategies of monitor alarms may help address alarm fatigue. Ergonomic data display that present results from analyses with clinical information in a sensible uncomplicated manner improve clinical decision-making. Collecting and archiving the highest resolution physiologic and phenotypic data in a comprehensive open format data warehouse is a crucial first step toward information management and two-way translational research for multimodality monitoring. The infrastructure required is largely the same as that needed for telemedicine intensive care applications, which under the right circumstances improves care quality while reducing cost. PMID:25208675

  2. Supporting the Emergence of Dental Informatics with an Online Community

    PubMed Central

    Spallek, H.; Irwin, J. Y.; Schleyer, T.; Butler, B. S.; Weiss, P. M.

    2008-01-01

    Dental Informatics (DI) is the application of computer and information science to improve dental practice, research, education, and program administration. As an emerging field, dental informatics faces many challenges and barriers to establishing itself as a full-fledged discipline; these include the small number of geographically dispersed DI researchers as well as the lack of DI professional societies and DI-specific journals. E-communities have the potential to overcome these obstacles by bringing researchers together at a resources hub and giving them the ability to share information, discuss topics, and find collaborators. In this paper, we discuss our assessment of the information needs of individuals interested in DI and discuss their expectations for an e-community so that we can design an optimal electronic infrastructure for the Dental Informatics Online Community (DIOC). The 256 survey respondents indicated they prefer electronic resources over traditional print material to satisfy their information needs. The most frequently expected benefits from participation in the DIOC were general information (85% of respondents), peer networking (31.1%), and identification of potential collaborators and/or research opportunities (23.2%). We are currently building the DIOC electronic infrastructure: a searchable publication archive and the learning center have been created, and the people directory is underway. Readers are encouraged to access the DIOC Website at www.dentalinformatics.com and initiate a discussion with the authors of this paper. PMID:18271498

  3. Trends in biomedical informatics: automated topic analysis of JAMIA articles.

    PubMed

    Han, Dong; Wang, Shuang; Jiang, Chao; Jiang, Xiaoqian; Kim, Hyeon-Eui; Sun, Jimeng; Ohno-Machado, Lucila

    2015-11-01

    Biomedical Informatics is a growing interdisciplinary field in which research topics and citation trends have been evolving rapidly in recent years. To analyze these data in a fast, reproducible manner, automation of certain processes is needed. JAMIA is a "generalist" journal for biomedical informatics. Its articles reflect the wide range of topics in informatics. In this study, we retrieved Medical Subject Headings (MeSH) terms and citations of JAMIA articles published between 2009 and 2014. We use tensors (i.e., multidimensional arrays) to represent the interaction among topics, time and citations, and applied tensor decomposition to automate the analysis. The trends represented by tensors were then carefully interpreted and the results were compared with previous findings based on manual topic analysis. A list of most cited JAMIA articles, their topics, and publication trends over recent years is presented. The analyses confirmed previous studies and showed that, from 2012 to 2014, the number of articles related to MeSH terms Methods, Organization & Administration, and Algorithms increased significantly both in number of publications and citations. Citation trends varied widely by topic, with Natural Language Processing having a large number of citations in particular years, and Medical Record Systems, Computerized remaining a very popular topic in all years. PMID:26555018

  4. Trends in biomedical informatics: most cited topics from recent years

    PubMed Central

    Kim, Hyeon-Eui; Jiang, Xiaoqian; Kim, Jihoon

    2011-01-01

    Biomedical informatics is a young, highly interdisciplinary field that is evolving quickly. It is important to know which published topics in generalist biomedical informatics journals elicit the most interest from the scientific community, and whether this interest changes over time, so that journals can better serve their readers. It is also important to understand whether free access to biomedical informatics articles impacts their citation rates in a significant way, so authors can make informed decisions about unlock fees, and journal owners and publishers understand the implications of open access. The topics and JAMIA articles from years 2009 and 2010 that have been most cited according to the Web of Science are described. To better understand the effects of free access in article dissemination, the number of citations per month after publication for articles published in 2009 versus 2010 was compared, since there was a significant change in free access to JAMIA articles between those years. Results suggest that there is a positive association between free access and citation rate for JAMIA articles. PMID:22180873

  5. Big Data: Are Biomedical and Health Informatics Training Programs Ready?

    PubMed Central

    Hersh, W.; Ganesh, A. U. Jai

    2014-01-01

    Summary Objectives The growing volume and diversity of health and biomedical data indicate that the era of Big Data has arrived for healthcare. This has many implications for informatics, not only in terms of implementing and evaluating information systems, but also for the work and training of informatics researchers and professionals. This article addresses the question: What do biomedical and health informaticians working in analytics and Big Data need to know? Methods We hypothesize a set of skills that we hope will be discussed among academic and other informaticians. Results The set of skills includes: Programming - especially with data-oriented tools, such as SQL and statistical programming languages; Statistics - working knowledge to apply tools and techniques; Domain knowledge - depending on one’s area of work, bioscience or health care; and Communication - being able to understand needs of people and organizations, and articulate results back to them. Conclusions Biomedical and health informatics educational programs must introduce concepts of analytics, Big Data, and the underlying skills to use and apply them into their curricula. The development of new coursework should focus on those who will become experts, with training aiming to provide skills in “deep analytical talent” as well as those who need knowledge to support such individuals. PMID:25123740

  6. Informatics-based, highly accurate, noninvasive prenatal paternity testing

    PubMed Central

    Ryan, Allison; Baner, Johan; Demko, Zachary; Hill, Matthew; Sigurjonsson, Styrmir; Baird, Michael L.; Rabinowitz, Matthew

    2013-01-01

    Purpose: The aim of the study was to evaluate the diagnostic accuracy of an informatics-based, noninvasive, prenatal paternity test using array-based single-nucleotide polymorphism measurements of cell-free DNA isolated from maternal plasma. Methods: Blood samples were taken from 21 adult pregnant women (with gestational ages between 6 and 21 weeks), and a genetic sample was taken from the corresponding biological fathers. Paternity was confirmed by genetic testing of the infant, products of conception, control of fertilization, and/or preimplantation genetic diagnosis during in vitro fertilization. Parental DNA samples and maternal plasma cell-free DNA were amplified and analyzed using a HumanCytoSNP-12 array. An informatics-based method measured single-nucleotide polymorphism data, confirming or rejecting paternity. Each plasma sample with a sufficient fetal cell-free DNA fraction was independently tested against the confirmed father and 1,820 random, unrelated males. Results: One of the 21 samples had insufficient fetal cell-free DNA. The test correctly confirmed paternity for the remaining 20 samples (100%) when tested against the biological father, with P values of <10−4. For the 36,400 tests using an unrelated male as the alleged father, 99.95% (36,382) correctly excluded paternity and 0.05% (18) were indeterminate. There were no miscalls. Conclusion: A noninvasive paternity test using informatics-based analysis of single-nucleotide polymorphism array measurements accurately determined paternity early in pregnancy. PMID:23258349

  7. The pathology informatics curriculum wiki: Harnessing the power of user-generated content

    PubMed Central

    Kim, Ji Yeon; Gudewicz, Thomas M.; Dighe, Anand S.; Gilbertson, John R.

    2010-01-01

    Background: The need for informatics training as part of pathology training has never been so critical, but pathology informatics is a wide and complex field and very few programs currently have the resources to provide comprehensive educational pathology informatics experiences to their residents. In this article, we present the “pathology informatics curriculum wiki”, an open, on-line wiki that indexes the pathology informatics content in a larger public wiki, Wikipedia, (and other online content) and organizes it into educational modules based on the 2003 standard curriculum approved by the Association for Pathology Informatics (API). Methods and Results: In addition to implementing the curriculum wiki at http://pathinformatics.wikispaces.com, we have evaluated pathology informatics content in Wikipedia. Of the 199 non-duplicate terms in the API curriculum, 90% have at least one associated Wikipedia article. Furthermore, evaluation of articles on a five-point Likert scale showed high scores for comprehensiveness (4.05), quality (4.08), currency (4.18), and utility for the beginner (3.85) and advanced (3.93) learners. These results are compelling and support the thesis that Wikipedia articles can be used as the foundation for a basic curriculum in pathology informatics. Conclusions: The pathology informatics community now has the infrastructure needed to collaboratively and openly create, maintain and distribute the pathology informatics content worldwide (Wikipedia) and also the environment (the curriculum wiki) to draw upon its own resources to index and organize this content as a sustainable basic pathology informatics educational resource. The remaining challenges are numerous, but largest by far will be to convince the pathologists to take the time and effort required to build pathology informatics content in Wikipedia and to index and organize this content for education in the curriculum wiki. PMID:20805963

  8. Approach for Czech regulatory body to LBB

    SciTech Connect

    Tendera, P.

    1997-04-01

    At present there are two NPPs equipped with PWR units in Czech Republic. The Dukovany NPP is about ten years in operation (four units 440 MW - WWER model 213) and Temelin NPP is under construction (two units 1000 MW-WWER model 320). Both NPPs were built to Soviet design and according to Soviet regulations and standards but most of equipment for primary circuits was supplied by home manufactures. The objective for the Czech LBB programme is to prove the LBB status of the primary piping systems of these NPPs and the LBB concept is a part of strategy to meet western style safety standards. The reason for the Czech LBB project is a lack of some standard safety facilities, too. For both Dukovany and Temolin NPPs a full LBB analysis should be carried out. The application of LBB to the piping system should be also a cost effective means to avoid installations of pipe whip restraints and jet shields. The Czech regulatory body issued non-mandatory requirement {open_quotes}Leak Before Break{close_quotes} which is in compliance with national legal documents and which is based on the US NRC Regulatory Procedures and US standards (ASME, CODE, ANSI). The requirement has been published in the document {open_quotes}Safety of Nuclear Facilities{close_quotes} No. 1/1991 as {open_quotes}Requirements on the Content and Format of Safety Reports and their Supplements{close_quotes} and consists of two parts (1) procedure for obtaining proof of evidence {open_quotes}Leak Before Break{close_quotes} (2) leak detection systems for the pressurized reactor primary circuit. At present some changes concerning both parts of the above document will be introduced. The reasons for this modifications will be presented.

  9. Approach of Czech regulatory body to LBB

    SciTech Connect

    Tendera, P.

    1997-04-01

    At present there are two NPPs equipped with PWR units in Czech Republic. The Dukovany, NPP is about ten years in operation (four units 440 MW - WWBFL model 213) and Tomelin NPP is under construction (two units 1000 MW - WWER model 320). Both NPPs were built to Soviet design and according to Soviet regulations and standards but most of equipment for primary circuits was supplied by home manufacturers. The objective of the Czech LBB program is to prove the LBB status of the primary piping systems of there NPPs and the LBB concept is a part of strategy to meet western style safety standards. The reason for the Czech LBB project is a lack of some standard safety Facilities too. For both Dukovany and Tomelin NPPs a full LBB analysis should be carried out. The application of LBB to the piping system should be also a cost effective means to avoid installations of pipe whip restraints and jet shields. The Czech regulatory body issued non-mandatory requirement, {open_quotes}Leak Before Break{close_quotes} which is in compliance with national legal documents and which is based on the US NRC Regulatory Procedures and US standards (ASMF CODE, ANSI). The requirement has been published in the document {open_quotes}Safety of Nuclear Facilities{close_quotes} No 1/1991 as {open_quotes}Requirements on the Content and Format of Safety Reports and their Supplements{close_quote} and consist of two parts (1) procedure for obtaining proof of evidence {open_quotes}Leak Before Break{close_quotes} (2) leak detection systems for the pressurized reactor primary circuit. At present some changes concerning both parts of the above document will be introduced. The reasons for this modifications will be presented.

  10. [Solid organ transplantation in the Czech Republic].

    PubMed

    Kuman, Milan

    2015-01-01

    Solid organ transplantation (heart, lung, liver, kidney, pancreas, small interesting and their combinations) are standard therapy of terminal organ failure. Czech Republic belongs to the states with developed transplantation program. The results correspond with current knowledge and results of leading centers in the world, as demostrated in this article. Organ donor shortage is major factor limiting development of organ transplantations as elsewhere in the Europe or in the world. PMID:26375707

  11. Climatology of lightning in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Novák, Petr; Kyznarová, Hana

    2011-06-01

    The Czech Hydrometeorological Institute (CHMI) has utilized lightning data from the Central European Lightning Detection Network (CELDN) since 1999. The CELDN primarily focuses on the detection of cloud-to-ground (CG) lightning but intra-cloud (IC) lightning detection is also available. Lightning detection is used by the CHMI forecasters as an additional source to radar and satellite data for nowcasting of severe storms. Lightning data are also quantitatively used in automatic nowcasting applications. The quality of lightning data can be evaluated using their climatological characteristics. Climatological characteristics are also useful for defining decision thresholds that are valuable for human forecasters as well as for automatic nowcasting applications. The seven-year period from 2002 to 2008, which had relatively even-quality lightning data, was used to calculate the spatial and temporal distributions of lightning. The monthly number of CG strokes varies depending on the season. The highest number of CG strokes occurs during summer, with more than 20 days of at least five detected CG strokes on the Czech Republic territory in June and July. The least number of CG stokes occurs in winter, with less than three days per month having at least five detected CG stokes. The mean diurnal distribution of CG strokes peaks between 1500 and 1600 UTC and reaches a minimum between 0500 and 0800 UTC. The average spatial distribution of CG strokes shows sharp local maxima corresponding with the locations of the TV broadcast towers. The average spatial distribution of CG flash density, calculated on a 20 × 20 km grid, shows the maximum (3.23 flashes km - 2 year - 1 ) in the western part of Czech Republic and the minimum (0.92 flashes km - 2 year - 1 ) in the south-southeast of the Czech Republic. In addition, lightning characteristics related to the identified convective cells, such as distribution of the lightning stroke rates or relation to the radar derived by Vertically

  12. Energy policy of the Czech Republic

    SciTech Connect

    Cerny, M.

    1995-12-01

    On February 16, 1992, the Government of the Czech Republic sanctioned, by its Decree No. 112/82, its first Energy Policy. Since that time, a number of conditions have changed: first of all, there was the partition of the former Federal Czechoslovak Republic, then the privatization of most of energy producing corporations, the deregulation of a significant proportion of power and energy commodities, the decision to bring to an end the construction of the Temelin nuclear power station, the creation of conditions for the construction of the Ingoldstadt oil pipeline, etc. These steps, on which the final decisions have been made, have brought about the necessity of updating the existing general Energy Policy. The updated Energy Policy is based on the Programme Statement by the Government of the Czech Republic of July 1992, as well as on other materials associated with energy and power generation, either approved or negotiated by the Government, in particular the State Environmental Policy the Rules of the State Raw Materials Policy, the European Association Agreement, the European Energy Charter, the results of the Uruguayan Round of GATT, the Convention on Climate Changes, the Ecological Action Programme for central and East-European countries, and other international documents that have either been, or are likely to be sanctioned by the Czech Government (especially the European Energy Charter Treaty, and the protocol on Trans-boundary Air Pollution and on Further Reduction of Sulphur Oxide Emissions).

  13. Citation analysis in journal rankings: medical informatics in the library and information science literature.

    PubMed Central

    Vishwanatham, R

    1998-01-01

    Medical informatics is an interdisciplinary field. Medical informatics articles will be found in the literature of various disciplines including library and information science publications. The purpose of this study was to provide an objectively ranked list of journals that publish medical informatics articles relevant to library and information science. Library Literature, Library and Information Science Abstracts, and Social Science Citation Index were used to identify articles published on the topic of medical informatics and to identify a ranked list of journals. This study also used citation analysis to identify the most frequently cited journals relevant to library and information science. PMID:9803294

  14. Towards Implementing a Global Competency-Based Nursing and Clinical Informatics Curriculum: Applying the TIGER Initiative.

    PubMed

    Hübner, Ursula; Ball, Marion; de Fátima Marin, Heimar; Chang, Polun; Wilson, Marisa; Anderson, Christel

    2016-01-01

    This workshop will review the history of the TIGER initiative in order to set the framework for an understanding of international informatics competencies. We will include a description of clinical nursing informatics programs in 37 countries as well as the results of a recent survey of nursing competencies in order to further discussions of internationally agreed-upon competency definitions. These two surveys will provide the basis for developing a consensus regarding the integration of core competencies into informatics curriculum developments. Expected outcomes include building consensus on core competencies and developing plans toward implementing intra- and inter-professional informatics competencies across disciplines globally. PMID:27332333

  15. Quantum Bio-Informatics II From Quantum Information to Bio-Informatics

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori

    2009-02-01

    The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems

  16. Czech Basic Course: Czech-English Dictionary Part II, P-S.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This is the second of three volumes comprising the Defense Language Institute's "Czech-English Dictionary." Volume 3 is to be completed early in 1972. A list of abbreviations and grammatical explanations precede dictionary entries. Brief definitions are given in English but do not include sample sentences to illustrate word usage. (RL)

  17. 77 FR 38294 - Patient Safety Organizations: Delisting for Cause for Medical Informatics

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Delisting for Cause for Medical Informatics AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of Delisting. SUMMARY: AHRQ has delisted Medical Informatics as a Patient Safety Organization...

  18. Building a Culture of Health Informatics Innovation and Entrepreneurship: A New Frontier.

    PubMed

    Househ, Mowafa; Alshammari, Riyad; Almutairi, Mariam; Jamal, Amr; Alshoaib, Saleh

    2015-01-01

    Entrepreneurship and innovation within the health informatics (HI) scientific community are relatively sluggish when compared to other disciplines such as computer science and engineering. Healthcare in general, and specifically, the health informatics scientific community needs to embrace more innovative and entrepreneurial practices. In this paper, we explore the concepts of innovation and entrepreneurship as they apply to the health informatics scientific community. We also outline several strategies to improve the culture of innovation and entrepreneurship within the health informatics scientific community such as: (I) incorporating innovation and entrepreneurship in health informatics education; (II) creating strong linkages with industry and healthcare organizations; (III) supporting national health innovation and entrepreneurship competitions; (IV) creating a culture of innovation and entrepreneurship within healthcare organizations; (V) developing health informatics policies that support innovation and entrepreneurship based on internationally recognized standards; and (VI) develop an health informatics entrepreneurship ecosystem. With these changes, we conclude that embracing health innovation and entrepreneurship may be more readily accepted over the long-term within the health informatics scientific community. PMID:26153003

  19. Self-assessment of nursing informatics competencies for doctor of nursing practice students.

    PubMed

    Choi, Jeungok; Zucker, Donna M

    2013-01-01

    This study examined the informatics competencies of doctor of nursing practice (DNP) students and whether these competencies differed between DNP students in the post-baccalaureate (BS) and post-master's (MS) tracks. Self-reported informatics competencies were collected from 132 DNP students (68 post-BS and 64 post-MS students) in their first year in the program (2007 to 2010). Students were assessed in 18 areas of 3 competency categories: computer skills, informatics knowledge, and informatics skills. Post-BS students were competent in 4 areas (computer skills in communication, systems, documentation, and informatics knowledge about impact of information management), whereas post-MS students were competent in only 1 area (computer skills in communication). Students in both tracks reported computer skills in decision support as their least competent area. Overall, post-BS students reported slightly higher than or similar competency scores as post-MS students, but scores were statistically significant in only 3 of 18 areas. The assessment indicated that knowledge and skills on informatics competencies need to be improved, especially in computer skills for data access and use of decision support systems. Strategies are suggested to integrate competencies into existing informatics course and DNP curricula. Further studies are recommended using an objective measure of informatics competencies. PMID:24267932

  20. Which Way with Informatics in High Schools in the Netherlands? The Dutch Dilemma

    ERIC Educational Resources Information Center

    van Diepen, Nico; Perrenet, Jacob; Zwaneveld, Bert

    2011-01-01

    Informatics is currently being taught in high schools all over the world. In the Dutch curriculum, computer literacy is taught in the lower grades as a compulsory subject, Informatics is taught as an elective in the higher grades of some schools. As a follow-up to the outline of Grgurina and Tolboom (2008), the discussion about the future of…

  1. Management and Evaluation of a Pan-Canadian Graduate Training Program in Health Informatics

    ERIC Educational Resources Information Center

    Hebert, Marilynne; Lau, Francis

    2010-01-01

    Eight Canadian universities partnered to establish a Collaborative Health Informatics PhD/Postdoc Strategic Training Program (CHPSTP). The 6-year goal was to increase research capacity in health informatics in Canada. Three cohorts of 20 trainees participated in the training, which included online Research Learning Experiences, annual face-to-face…

  2. Education for Health Information Professionals: Perspectives from Health Informatics in the U.S.

    ERIC Educational Resources Information Center

    Dalrymple, Prudence W.; Roderer, Nancy K.

    2011-01-01

    While interest and activity in health informatics continues to increase worldwide, concerns about the most appropriate educational preparation for practice also arise. Health informatics is an interdisciplinary field that pursues effective use of data, information and knowledge to support effective decision making; in the health field, those…

  3. Faculty and organizational characteristics associated with informatics/health information technology adoption in DNP programs.

    PubMed

    Fulton, Cathy R; Meek, Julie A; Walker, Patricia Hinton

    2014-01-01

    Nursing informatics/health information technology are key components of graduate nursing education and an accreditation requirement, yet little is known about the extent to which doctor of nursing practice (DNP) curricula include these content domains. The purpose of this descriptive study was to elicit perceptions of DNP program directors relative to (a) whether and how the American Association of Colleges of Nursing's (AACN's) Essential IV standard has been met in their DNP programs; (b) whether the Technology Informatics Guiding Educational Reform Initiative Foundation's Phase II competencies have been integrated in their programs; and (c) the faculty and organizational characteristics associated with the adoption of the AACN's Essential IV. In 2011, an electronic survey was sent to all 138 DNP program directors identified on the AACN Web site with an 81.2% response rate. Findings include variation in whether and how programs have integrated informatics/health information technology content, a lack of informatics-certified and/or master's-prepared faculty, and a perceived lack of faculty awareness of informatics curricular guidelines. DNP program director and dean awareness and support of faculty informatics education, use of informatics competency guidelines, and national policy and stimulus funding support are recommended to promote curricular inclusion and the engagement of nurses in strong informatics practices. PMID:25150414

  4. Mathematique et Informatique, Aspect Didactique (Mathematics and Informatics, the Didactic Aspect).

    ERIC Educational Resources Information Center

    Pochon, Luc-Olivier

    Both mathematics and informatics share common characteristics. Several didacticians propose therefore to define didactic situations permitting learners to "co-construct" knowledge of mathematics and informatics. In this document, the idea is resumed and a certain number of "functional structures" are proposed. These sets of problems take on a…

  5. Vocational Education and Training Reform in the Czech Republic.

    ERIC Educational Resources Information Center

    European Training Foundation, Turin (Italy).

    This report on vocational education and training (VET) in the Czech Republic consists of a condensed description of the present situation in VET and analysis of the main challenges facing VET reform in the country. Chapter 1 offers basic data on the Czech Republic. Chapter 2 describes main features of the VET system, strategic objectives for VET,…

  6. Striving for Inclusive Education in the Czech Republic

    ERIC Educational Resources Information Center

    Strnadova, Iva; Hajkova, Vanda

    2012-01-01

    Inclusive education does not have a strong history in the Czech Republic. Initial efforts to educate students with different types of disabilities within the mainstream education system in the Czech Republic date back to the mid-20th century. These efforts were primarily from parent initiatives, which in some cases resulted in ensuring that the…

  7. Language Planning for Romani in the Czech Republic

    ERIC Educational Resources Information Center

    Eckert, Eva

    2015-01-01

    In the Czech Republic, Romani language planning has long been a controversial subject. The question informing the current research is whether the European Charter's goal of protecting, maintaining and invigorating Romani is attainable in a culture driven by standard language ideology, Czech society's aversion to multiculturalism and an…

  8. The Czech Way of Inclusion through an Experiential Education Framework

    ERIC Educational Resources Information Center

    Kudlacek, Martin; Bocarro, Jason; Jirasek, Ivo; Hanus, Radek

    2009-01-01

    The purpose of this article is to present the development of inclusive experiential education courses in the Czech Republic. The inclusion of people with disabilities (PWD) in recreation, sport, and education has become more prevalent in Czech society. This article describes the conceptual meaning of the term inclusion from both a historical and…

  9. Assessment in the School Systems of the Czech Republic

    ERIC Educational Resources Information Center

    Strakova, Jana; Simonová, Jaroslava

    2013-01-01

    Student assessment in the Czech Republic is still rather traditional, with classroom practice continuing to focus on summative assessment. The country has regularly participated in international surveys, but the findings from these only started to influence educational policy during the past decade, when Czech students' performance fell…

  10. Tertiary Education in the Czech Republic: The Pathway to Change

    ERIC Educational Resources Information Center

    Pesik, Richard; Gounko, Tatiana

    2011-01-01

    This article analyzes recent policy proposals to reform Czech tertiary education. A brief overview of the evolution of Czech tertiary education presents the background against which emerging policy trends in education are examined. We relate the changes in tertiary education to the policy framework and recommendations of the OECD, underpinned by…

  11. Czech Schools and the Opportunities of Grant Support

    ERIC Educational Resources Information Center

    Pol, Milan; Rabusicova, Milada; Sedova, Klara

    2003-01-01

    One of the consequences of recent changes in Czech society and education is that schools are more than ever expected to be able to gain support for their activities, searching for them over and above the regular extra-school grant resources. It seems that today's opportunities of grant and foundation support to Czech schools are quite varied. The…

  12. GHG emission mitigation measures and technologies in the Czech Republic

    SciTech Connect

    Tichy, M.

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  13. The Bologna Process and the Czech System of Education

    ERIC Educational Resources Information Center

    Pol, Milan

    2005-01-01

    The Czech system of education has been through several years of relatively intensive transformation efforts reflecting the international processes of transformation of higher education the Czech Republic joined. The most important external stimulus directing the transformation process is the so-called Bologna process. These complex and…

  14. A decadal view of biodiversity informatics: challenges and priorities

    PubMed Central

    2013-01-01

    Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species. It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible. This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens’ science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike. PMID:23587026

  15. Characterizing Consumer Health Informatics in Low and Middle Income Countries.

    PubMed

    Kutun, Tugba; Föller-Nord, Miriam; Wetter, Thomas

    2015-01-01

    Consumer Health Informatics (ConsHI) involves patients in health care through ICT, with Low and Middle Income Countries recently entering the field. Compelling successes and complete failures call for the identification of success factors. Of 1092 automatically retrieved articles, 85 were classified as ConsHI. Their service characteristics and the economic and societal factors of the countries of origin were classified. Descriptive statistics were applied in the search for clusters of features that together appear as driving factors. Most factors (financial endowment, number of languages spoken etc) showed no or paradoxical effects. Societal maturity and low population density appear as enabling factors. PMID:26262275

  16. Developing an evidence-based public health informatics course*

    PubMed Central

    Yu, Xinyu; Xie, Yue; Pan, Xuequn; Mayfield-Johnson, Susan; Whipple, Jessica; Azadbakht, Elena

    2015-01-01

    Objectives This study assessed the need to develop a public health informatics (PHI) introductory course and determine contents of such a course. Methods Community assessments employing focus group interviews and an online survey were utilized to determine course need and content. Results Results revealed a need to provide PHI training to graduate public health students and suggested broad course content requirements. Results indicated lack of awareness of libraries and librarians as sources of public health information. Conclusions A graduate PHI course was developed and delivered. Additionally, implementation of a subject guide increased the library's profile. PMID:26512219

  17. Inventory of research methods for librarianship and informatics

    PubMed Central

    Eldredge, Jonathan D.

    2004-01-01

    This article defines and describes the rich variety of research designs found in librarianship and informatics practice. Familiarity with the range of methods and the ability to make distinctions between those specific methods can enable authors to label their research reports correctly. The author has compiled an inventory of methods from a variety of disciplines, but with attention to the relevant applications of a methodology to the field of librarianship. Each entry in the inventory includes a definition and description for the particular research method. Some entries include references to resource material and examples. PMID:14762467

  18. The Brazilian health informatics and information policy: building the consensus.

    PubMed

    Leão, Beatriz F; Costa, Cláudio G; Facchini, Luiz Augusto; Bandarra, Ernani B; Gonçalves, Sibele F; Bretas Jr, Nilo; Ferla, Alcindo

    2004-01-01

    This paper describes the construction of the Brazilian Health Information Policy. The Introduction gives an overview of the health informatics scenario in the country and the motivation for the definition of a national policy for the area. The process adopted and the strategies to reach consensus among the different players of the healthcare arena are discussed. The interface with the national health card project and the standards already established are also depicted. The current document and the strategies so far proposed are presented with their respective time table and goals. At the end, a comparison with other national initiatives is drawn. PMID:15361004

  19. Medical Informatics in Croatia – a Historical Survey

    PubMed Central

    Dezelic, Gjuro; Kern, Josipa; Petrovecki, Mladen; Ilakovac, Vesna; Hercigonja-Szekeres, Mira

    2014-01-01

    A historical survey of medical informatics (MI) in Croatia is presented from the beginnings in the late sixties of the 20th century to the present time. Described are MI projects, applications in clinical medicine and public health, start and development of MI research and education, beginnings of international cooperation, establishment of the Croatian Society for MI and its membership to EFMI and IMIA. The current status of computerization of the Croatian healthcare system is sketched as well as the present graduate and postgraduate study MI curricula. The information contained in the paper shows that MI in Croatia developed and still develops along with its advancement elsewhere. PMID:24648620

  20. Information and informatics literacies of first-year medical students

    PubMed Central

    Bouquin, Daina R.; Tmanova, Lyubov L.; Wright, Drew

    2015-01-01

    Purpose The study evaluated medical students' familiarity with information literacy and informatics during the health sciences library orientation. Methods A survey was fielded at the start of the 2013 school year. Results Seventy-two of 77 students (94%) completed the survey. Over one-half (57%) expected to use library research materials and services. About half (43%) expected to use library physical space. Students preferred accessing biomedical research on laptops and learning via online-asynchronous modes. Conclusions The library identified areas for service development and outreach to medical students and academic departments. PMID:26512221

  1. Integrating Electronic Health Record Competencies into Undergraduate Health Informatics Education.

    PubMed

    Borycki, Elizabeth M; Griffith, Janessa; Kushniruk, Andre W

    2016-01-01

    In this paper we report on our findings arising from a qualitative, interview study of students' experiences in an undergraduate health informatics program. Our findings suggest that electronic health record competencies need to be integrated into an undergraduate curriculum. Participants suggested that there is a need to educate students about the use of the EHR, followed by best practices around interface design, workflow, and implementation with this work culminating in students spearheading the design of the technology as part of their educational program of study. PMID:27577461

  2. Information technology challenges of biodiversity and ecosystems informatics

    USGS Publications Warehouse

    Schnase, J.L.; Cushing, J.; Frame, M.; Frondorf, A.; Landis, E.; Maier, D.; Silberschatz, A.

    2003-01-01

    Computer scientists, biologists, and natural resource managers recently met to examine the prospects for advancing computer science and information technology research by focusing on the complex and often-unique challenges found in the biodiversity and ecosystem domain. The workshop and its final report reveal that the biodiversity and ecosystem sciences are fundamentally information sciences and often address problems having distinctive attributes of scale and socio-technical complexity. The paper provides an overview of the emerging field of biodiversity and ecosystem informatics and demonstrates how the demands of biodiversity and ecosystem research can advance our understanding and use of information technologies.

  3. Clinical Research Informatics: Recent Advances and Future Directions

    PubMed Central

    2015-01-01

    Summary Objectives To summarize significant developments in Clinical Research Informatics (CRI) over the past two years and discuss future directions. Methods Survey of advances, open problems and opportunities in this field based on exploration of current literature. Results Recent advances are structured according to three use cases of clinical research: Protocol feasibility, patient identification/recruitment and clinical trial execution. Discussion CRI is an evolving, dynamic field of research. Global collaboration, open metadata, content standards with semantics and computable eligibility criteria are key success factors for future developments in CRI. PMID:26293865

  4. Learning just-in-time in medical informatics.

    PubMed

    Sancho, J J; Sanz, F

    2000-01-01

    Just-in-time learning (JITL) methodology has been applied to many areas of knowledge acquisition and dissemination. The paradigm is a challenge to the traditional classroom course-oriented approach with the aim to shorten the learning time, increasing the efficiency of the learning process, improve availability and save money. The information technology tools and platforms have been heavily involved to develop and deliver JITL. This paper discusses the main characteristics of JITL with regard to its implementation to teaching Medical Informatics. PMID:11010339

  5. The Jubilee of Medical Informatics in Bosnia and Herzegovina - 20 Years Anniversary

    PubMed Central

    Masic, Izet

    2009-01-01

    CONFLICT OF INTEREST: NONE DECLARED Last two years, the health informatics profession celebrated five jubilees in Bosnia and Herzegovina: thirty years from the introduction of the first automatic manipulation of data, twenty years from the establishment of Society for Medical Informatics BiH, fifteen years from the establishment of the Scientific and Professional Journal of the Society for Medical Informatics of Bosnia and Herzegovina „Acta Informatica Medica“, fifteen years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina and five years on from the introduction of the method of “Distance learning” in medical curriculum. The author of this article are eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period. PMID:24133382

  6. Evaluating the AMIA-OHSU 10x10 Program to Train Healthcare Professionals in Medical Informatics

    PubMed Central

    Feldman, Sue S.; Hersh, William

    2008-01-01

    The promise of health information technology (HIT) has led to calls for a larger and better trained work-force in medical informatics. University programs in applied health and biomedical informatics have been evolving in an effort to address the need for health-care professionals to be trained in informatics. One such evolution is the American Medical Informatics Association’s (AMIA) 10x10 program. To assess current delivery and content models, participant satisfaction, and how graduates have benefited from the program in career or education advancement, all students who completed the Oregon Health & Science University (OHSU) offering of the AMIA 10x10 course through the end of 2006 were surveyed. We found that the 10x10 program is approaching AMIA’s goals, and that there are potential areas for content and delivery modifications. Further research in defining the optimal competencies of the medical informatics workforce and its optimal education is needed. PMID:18999199

  7. Perceptions of pathology informatics by non-informaticist pathologists and trainees

    PubMed Central

    Walker, Addie; Garcia, Christopher; Baron, Jason M.; Gudewicz, Thomas M.; Gilbertson, John R.; Henricks, Walter H.; Lee, Roy E.

    2016-01-01

    Background: Although pathology informatics (PI) is essential to modern pathology practice, the field is often poorly understood. Pathologists who have received little to no exposure to informatics, either in training or in practice, may not recognize the roles that informatics serves in pathology. The purpose of this study was to characterize perceptions of PI by noninformatics-oriented pathologists and to do so at two large centers with differing informatics environments. Methods: Pathology trainees and staff at Cleveland Clinic (CC) and Massachusetts General Hospital (MGH) were surveyed. At MGH, pathology department leadership has promoted a pervasive informatics presence through practice, training, and research. At CC, PI efforts focus on production systems that serve a multi-site integrated health system and a reference laboratory, and on the development of applications oriented to department operations. The survey assessed perceived definition of PI, interest in PI, and perceived utility of PI. Results: The survey was completed by 107 noninformatics-oriented pathologists and trainees. A majority viewed informatics positively. Except among MGH trainees, confusion of PI with information technology (IT) and help desk services was prominent, even in those who indicated they understood informatics. Attendings and trainees indicated desire to learn more about PI. While most acknowledged that having some level of PI knowledge would be professionally useful and advantageous, only a minority plan to utilize it. Conclusions: Informatics is viewed positively by the majority of noninformatics pathologists at two large centers with differing informatics orientations. Differences in departmental informatics culture can be attributed to the varying perceptions of PI by different individuals. Incorrect perceptions exist, such as conflating PI with IT and help desk services, even among those who claim to understand PI. Further efforts by the PI community could address such

  8. SWOT analysis of the Czech Radon programme.

    PubMed

    Fojtíková, I

    2014-07-01

    Since the early 1990s, the Czech Republic has been one of the countries that carry out a radon programme on its territory, with the aim of protecting people from unnecessary long-term exposure in their homes. Since that time, many achievements have been registered, and many unexpected difficulties have cropped up. This may be the right moment to take some time out to analyse the state of the programme and to determine the direction for its future development. An extended SWOT analysis can serve as a useful tool for this purpose. Originally, SWOT analyses were used exclusively by for-profit organisations aiming to evaluate their perspectives, develop strategies and make plans in order to achieve their objectives. More recently, it has been used in a wide range of decision-making situations when a desired end-state is to be defined. Here, an extended SWOT analysis is used to formulate possible beneficial strategies for advancing anti-radon policy in the Czech Republic. PMID:24729595

  9. Bioimage Informatics in the context of Drosophila research.

    PubMed

    Jug, Florian; Pietzsch, Tobias; Preibisch, Stephan; Tomancak, Pavel

    2014-06-15

    Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of Drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development. PMID:24732429

  10. An Informatics Approach to Demand Response Optimization in Smart Grids

    SciTech Connect

    Simmhan, Yogesh; Aman, Saima; Cao, Baohua; Giakkoupis, Mike; Kumbhare, Alok; Zhou, Qunzhi; Paul, Donald; Fern, Carol; Sharma, Aditya; Prasanna, Viktor K

    2011-03-03

    Power utilities are increasingly rolling out “smart” grids with the ability to track consumer power usage in near real-time using smart meters that enable bidirectional communication. However, the true value of smart grids is unlocked only when the veritable explosion of data that will become available is ingested, processed, analyzed and translated into meaningful decisions. These include the ability to forecast electricity demand, respond to peak load events, and improve sustainable use of energy by consumers, and are made possible by energy informatics. Information and software system techniques for a smarter power grid include pattern mining and machine learning over complex events and integrated semantic information, distributed stream processing for low latency response,Cloud platforms for scalable operations and privacy policies to mitigate information leakage in an information rich environment. Such an informatics approach is being used in the DoE sponsored Los Angeles Smart Grid Demonstration Project, and the resulting software architecture will lead to an agile and adaptive Los Angeles Smart Grid.

  11. Translational informatics: enabling high-throughput research paradigms

    PubMed Central

    Embi, Peter J.; Sen, Chandan K.

    2009-01-01

    A common thread throughout the clinical and translational research domains is the need to collect, manage, integrate, analyze, and disseminate large-scale, heterogeneous biomedical data sets. However, well-established and broadly adopted theoretical and practical frameworks and models intended to address such needs are conspicuously absent in the published literature or other reputable knowledge sources. Instead, the development and execution of multidisciplinary, clinical, or translational studies are significantly limited by the propagation of “silos” of both data and expertise. Motivated by this fundamental challenge, we report upon the current state and evolution of biomedical informatics as it pertains to the conduct of high-throughput clinical and translational research and will present both a conceptual and practical framework for the design and execution of informatics-enabled studies. The objective of presenting such findings and constructs is to provide the clinical and translational research community with a common frame of reference for discussing and expanding upon such models and methodologies. PMID:19737991

  12. MI-Lab - A Laboratory Environment for Medical Informatics Students.

    PubMed

    Brandt, Karsten; Löbe, Matthias; Schaaf, Michael; Jahn, Franziska; Winter, Alfred; Stäubert, Sebastian

    2016-01-01

    Medical research and health care highly depend on the use of information technology. There is a wide range of application systems (patient administration system, laboratory information system, communication server etc.) and heterogeneous data types (administrative data, clinical data, laboratory data, image data, genomic data etc.). Students and researchers do not often have the possibility to use productive application systems of e.g. hospitals or medical practices to gain practical experiences or examine new components and technologies. Therefore, the aim of this project is to develop a dedicated laboratory environment for patient health care and clinical research. Essential application systems were identified and a suitable architecture was designed for this purpose. It is accompanied by a teaching plan that considers learning modules for bachelor and master degrees in medical informatics. We implemented the laboratory environment called MI-Lab with multiple free and open source software components. All components are installed on virtual machines and/or Docker containers. This modular architecture creates a flexible system which can be deployed in various scenarios. The preliminary evaluation results suggests that laboratory environments like MI-Lab work well in teaching practical aspects of medical informatics and are widely accepted by students. PMID:27577339

  13. Photovoltaics Informatics: Harnessing Energy Science via Data-Driven Approaches

    SciTech Connect

    Suh, C.; Munch, K.; Biagioni, D.; Glynn, S.; Scharf, J.; Contreras, M. A.; Perkins, J. D.; Nelson, B. P.; Jones, W. B.

    2011-01-01

    We discuss our current research focus on photovoltaic (PV) informatics, which is dedicated to functionality enhancement of solar materials through data management and data mining-aided, integrated computational materials engineering (ICME) for rapid screening and identification of multi-scale processing/structure/property/performance relationships. Our current PV informatics research ranges from transparent conducting oxides (TCO) to solar absorber materials. As a test bed, we report on examples of our current data management system for PV research and advanced data mining to improve the performance of solar cells such as CuIn{sub x}Ga{sub 1-x}Se{sub 2} (CIGS) aiming at low-cost and high-rate processes. For the PV data management, we show recent developments of a strategy for data modeling, collection and aggregation methods, and construction of data interfaces, which enable proper archiving and data handling for data mining. For scientific data mining, the value of high-dimensional visualizations and non-linear dimensionality reduction is demonstrated to quantitatively assess how process conditions or properties are interconnected in the context of the development of Al-doped ZnO (AZO) thin films as the TCO layers for CIGS devices. Such relationships between processing and property of TCOs lead to optimal process design toward enhanced performance of CIGS cells/devices.

  14. Unobtrusive sensing and wearable devices for health informatics.

    PubMed

    Zheng, Ya-Li; Ding, Xiao-Rong; Poon, Carmen Chung Yan; Lo, Benny Ping Lai; Zhang, Heye; Zhou, Xiao-Lin; Yang, Guang-Zhong; Zhao, Ni; Zhang, Yuan-Ting

    2014-05-01

    The aging population, prevalence of chronic diseases, and outbreaks of infectious diseases are some of the major challenges of our present-day society. To address these unmet healthcare needs, especially for the early prediction and treatment of major diseases, health informatics, which deals with the acquisition, transmission, processing, storage, retrieval, and use of health information, has emerged as an active area of interdisciplinary research. In particular, acquisition of health-related information by unobtrusive sensing and wearable technologies is considered as a cornerstone in health informatics. Sensors can be weaved or integrated into clothing, accessories, and the living environment, such that health information can be acquired seamlessly and pervasively in daily living. Sensors can even be designed as stick-on electronic tattoos or directly printed onto human skin to enable long-term health monitoring. This paper aims to provide an overview of four emerging unobtrusive and wearable technologies, which are essential to the realization of pervasive health information acquisition, including: (1) unobtrusive sensing methods, (2) smart textile technology, (3) flexible-stretchable-printable electronics, and (4) sensor fusion, and then to identify some future directions of research. PMID:24759283

  15. Science Data Platforms: Informatics Architectures at the Forefront.

    NASA Astrophysics Data System (ADS)

    Fox, P. A.

    2012-12-01

    As Earth and space science research organizations try to adapt to the pace of Web and Internet technology change, they also seek to utilize new means of managing complex data and information streams. Whether the people in these organizations serve their own needs, those of external communities, or both, the inevitable challenge to balance a stable working environment with the evolving ecosystems of highly heterogeneous data and information repositories and networks of people and organizations, remains. In addition, as we become increasingly aware that people and other organizational entities and resources never really should have become decoupled from our data and information environments, architects are turning to an increasing set of common informatics approaches to co-design and co-evolve the needed platforms for science data. In this contribution, we present the current state-of-the-art informatics methods for modeling, implementing and evolving data science and information architectures in the context of a new and ambitious decade-long activity; the Deep Carbon Observatory (funded by the AP Sloan Foundation). We conclude by presenting a discussion of how interworkability (cf. interoperability) may be an essential shift in thinking about the embedded role of people in science data platforms.

  16. Materials Informatics: The Materials ``Gene'' and Big Data

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2015-07-01

    Materials informatics provides the foundations for a new paradigm of materials discovery. It shifts our emphasis from one of solely searching among large volumes of data that may be generated by experiment or computation to one of targeted materials discovery via high-throughput identification of the key factors (i.e., “genes”) and via showing how these factors can be quantitatively integrated by statistical learning methods into design rules (i.e., “gene sequencing”) governing targeted materials functionality. However, a critical challenge in discovering these materials genes is the difficulty in unraveling the complexity of the data associated with numerous factors including noise, uncertainty, and the complex diversity of data that one needs to consider (i.e., Big Data). In this article, we explore one aspect of materials informatics, namely how one can efficiently explore for new knowledge in regimes of structure-property space, especially when no reasonable selection pathways based on theory or clear trends in observations exist among an almost infinite set of possibilities.

  17. The human cadaver in the age of biomedical informatics.

    PubMed

    Aziz, M Ashraf; McKenzie, James C; Wilson, James S; Cowie, Robert J; Ayeni, Sylvanus A; Dunn, Barbara K

    2002-02-15

    Major national and international critiques of the medical curriculum in the 1980s noted the following significant flaws: (1) over-reliance on learning by rote memory, (2) insufficient exercise in analysis and synthesis/conceptualization, and (3) failure to connect the basic and clinical aspects of training. It was argued that the invention of computers and related imaging techniques called to question the traditional instruction based on the faculty-centered didactic lecture. In the ensuing reform, which adopted case-based, small group, problem-based learning, time allotted to anatomical instruction was severely truncated. Many programs replaced dissection with prosections and computer-based learning. We argue that cadaver dissection is still necessary for (1) establishing the primacy of the patient, (2) apprehension of the multidimensional body, (3) touch-mediated perception of the cadaver/patient, (4) anatomical variability, (5) learning the basic language of medicine, (6) competence in diagnostic imaging, (7) cadaver/patient-centered computer-assisted learning, (8) peer group learning, (9) training for the medical specialties. Cadaver-based anatomical education is a prerequisite of optimal training for the use of biomedical informatics. When connected to dissection, medical informatics can expedite and enhance preparation for a patient-based medical profession. Actual dissection is equally necessary for acquisition of scientific skills and for a communicative, moral, ethical, and humanistic approach to patient care. Anat Rec (New Anat) 269:20-32, 2002. PMID:11891622

  18. Nutri-informatics: a new kid on the block?

    PubMed

    Döring, Frank; Rimbach, Gerald

    2014-05-01

    From an epistemological point of view, nutritional physiology has been developed, like other factual sciences such as physics, from a purely descriptive to a mechanismic-explanatory scientific discipline. Nowadays, nutritional physiology has entered the molecular stage. Based on this micro-reductionism, molecular targets (e.g., transcription factors) of energy intake, certain nutrients (e.g., zinc) and selected plant bioactives (e.g., flavonoids) have been identified. Although these results are impressive, molecular approaches in nutritional physiology are limited by nature since the molecular targets of nutrients seem to have no ontic priority to understand the nutritional phenotype of an organism. Here we define, to the best of our knowledge, for the first time Nutri-informatics as a new bioinformatics discipline integrating large-scale data sets from nutritional studies into a stringent nutritional systems biology context. We suggest that Nutri-informatics, as an emerging field, may bridge the gap between nutritional biochemistry, nutritional physiology and metabolism to understand the interactions between an organism and its environment. PMID:24619904

  19. [Management of hemodialysis patients using simple informatics program].

    PubMed

    Devcić, Bosiljka; Jelić, Ita; Racki, Sanjin

    2014-03-01

    Providing health care and good hospital organization are always based on a well-educated and competent nurse. Nurses can significantly affect the result of overall treatment, which has a professional and financial effect. Nursing Informatics is a specialty that integrates nursing, computer and information science applied to nursing management as well as transfer of data, information and knowledge in nursing practice. This facilitates nurses' integration in supporting decision-making and implementation of health care. Informatics emphasizes overall nursing practice and nurses should have basic computer skills. In this article, we show how the use of simple tables, designed by using Microsoft Office programs (Word and Excel), has been employed for over a decade in facilitating the organization of daily work, monitoring of patients and their prescribed therapy. A trained nurse-manager will be able to evaluate patient care and to organize health care administration using all human and technical resources. The vision of the national health care system is still not achievable due to the lack of infrastructure. Nurses and computer documentation of patients with chronic kidney disease can significantly improve the quality of patient care and treatment. PMID:24979896

  20. THE ROLE OF INFORMATICS IN PROMOTING PATIENT-CENTERED CARE

    PubMed Central

    Snyder, Claire F.; Wu, Albert W.; Miller, Robert S.; Jensen, Roxanne E.; Bantug, Elissa T.; Wolff, Antonio C.

    2011-01-01

    Patient-centered care is an important aspect of high-quality care. Health informatics, particularly advances in technology, has the potential to facilitate, or detract from, patient-centered cancer care. Informatics can provide a mechanism for patients to provide their clinician(s) with critical information, and to share information with family, friends, and other patients. This information may enable patients to exert greater control over their own care. Clinicians may use information systems (e.g., electronic medical records) to coordinate care and share information with other clinicians. Patients and clinicians may use communication tools and information resources to interact with one another in new ways. Caution in using new information resources is warranted to avoid reliance on biased or inappropriate data, and clinicians may need to direct patients to appropriate information resources. Perhaps the greatest challenge for both patients and providers is identifying information that is high-quality and which enhances (and does not impede) their interactions. PMID:21799327

  1. Things to come: postmodern digital knowledge management and medical informatics.

    PubMed Central

    Matheson, N W

    1995-01-01

    The overarching informatics grand challenge facing society is the creation of knowledge management systems that can acquire, conserve, organize, retrieve, display, and distribute what is known today in a manner that informs and educates, facilitates the discovery and creation of new knowledge, and contributes to the health and welfare of the planet. At one time the private, national, and university libraries of the world collectively constituted the memory of society's intellectual history. In the future, these new digital knowledge management systems will constitute human memory in its entirety. The current model of multiple local collections of duplicated resources will give way to specialized sole-source servers. In this new environment all scholarly scientific knowledge should be public domain knowledge: managed by scientists, organized for the advancement of knowledge, and readily available to all. Over the next decade, the challenge for the field of medical informatics and for the libraries that serve as the continuous memory for the biomedical sciences will be to come together to form a new organization that will lead to the development of postmodern digital knowledge management systems for medicine. These systems will form a portion of the evolving world brain of the 21st century. PMID:7743318

  2. Previously expressed wishes in the Czech republic--a missed chance of the Czech legislator.

    PubMed

    Peterková, Helena

    2013-12-01

    By ratification of the Convention on Human Rights and Biomedicine, previously expressed wishes as a completely new institute have been, via Article 9, implemented in the Czech legal system. With no history of practical experience with previously expressed wishes, and after more than 6 years of legislative work on the new Act on Healthcare Service, a unique provision was enacted which is actually not meant to serve as an instrument enabling withdrawal of the mechanical support of vital functions. In this paper, the great paradox of the Czech legal provision on previously expressed wishes is to be discussed and critically analyzed in order to explain the seriousness of the consequences of initial misunderstanding of the purposes and context of previously expressed wishes. PMID:24552106

  3. Partnership to promote interprofessional education and practice for population and public health informatics: A case study.

    PubMed

    Rajamani, Sripriya; Westra, Bonnie L; Monsen, Karen A; LaVenture, Martin; Gatewood, Laël Cranmer

    2015-01-01

    Team-based healthcare delivery models, which emphasize care coordination, patient engagement, and utilization of health information technology, are emerging. To achieve these models, expertise in interprofessional education, collaborative practice across professions, and informatics is essential. This case study from informatics programs in the Academic Health Center (AHC) at the University of Minnesota and the Office of Health Information Technology (OHIT) at the Minnesota Department of Health presents an academic-practice partnership, which focuses on both interprofessionalism and informatics. Outcomes include the Minnesota Framework for Interprofessional Biomedical Health Informatics, comprising collaborative curriculum development, teaching and research, practicums to promote competencies, service to advance biomedical health informatics, and collaborative environments to facilitate a learning health system. Details on these Framework categories are presented. Partnership success is due to interprofessional connections created with emphasis on informatics and to committed leadership across partners. A limitation of this collaboration is the need for formal agreements outlining resources and roles, which are vital for sustainability. This partnership addresses a recommendation on the future of interprofessionalism: that both education and practice sectors be attuned to each other's expectations and evolving trends. Success strategies and lessons learned from collaborations, such as that of the AHC-OHIT that promote both interprofessionalism and informatics, need to be shared. PMID:26120895

  4. Overview of healthcare system in the Czech Republic

    PubMed Central

    2012-01-01

    The healthcare system in the Czech Republic underwent and still is undergoing dramatic changes since the Velvet revolution in 1989. History of the Czech healthcare system, main healthcare laws, and the current status of healthcare documented in the main healthcare indicators is described based on the several main sources as well as delivery of health services and the role of the main actors in healthcare system. The material is based mainly on Czech Health Statistics 2009, and HiT Summary, Health Care Systems in Translation, 2005, public information of Ministry of Health CR. PMID:22738178

  5. Different tracks for pathology informatics fellowship training: Experiences of and input from trainees in a large multisite fellowship program

    PubMed Central

    Levy, Bruce P.; McClintock, David S.; Lee, Roy E.; Lane, William J.; Klepeis, Veronica E.; Baron, Jason M.; Onozato, Maristela L.; Kim, JiYeon; Brodsky, Victor; Beckwith, Bruce; Kuo, Frank; Gilbertson, John R.

    2012-01-01

    Background: Pathology Informatics is a new field; a field that is still defining itself even as it begins the formalization, accreditation, and board certification process. At the same time, Pathology itself is changing in a variety of ways that impact informatics, including subspecialization and an increased use of data analysis. In this paper, we examine how these changes impact both the structure of Pathology Informatics fellowship programs and the fellows’ goals within those programs. Materials and Methods: As part of our regular program review process, the fellows evaluated the value and effectiveness of our existing fellowship tracks (Research Informatics, Clinical Two-year Focused Informatics, Clinical One-year Focused Informatics, and Clinical 1 + 1 Subspecialty Pathology and Informatics). They compared their education, informatics background, and anticipated career paths and analyzed them for correlations between those parameters and the fellowship track chosen. All current and past fellows of the program were actively involved with the project. Results: Fellows’ anticipated career paths correlated very well with the specific tracks in the program. A small set of fellows (Clinical – one or two year – Focused Informatics tracks) anticipated clinical careers primarily focused in informatics (Director of Informatics). The majority of the fellows, however, anticipated a career practicing in a Pathology subspecialty, using their informatics training to enhance that practice (Clinical 1 + 1 Subspecialty Pathology and Informatics Track). Significantly, all fellows on this track reported they would not have considered a Clinical Two-year Focused Informatics track if it was the only track offered. The Research and the Clinical One-year Focused Informatics tracks each displayed unique value for different situations. Conclusions: It seems a “one size fits all” fellowship structure does not fit the needs of the majority of potential Pathology Informatics

  6. An Energy Overview of the Czech Republic

    SciTech Connect

    anon.

    2003-10-17

    The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is the Czech Republic. The site is designed to be dynamic. Updates to the overviews will be made as need an d resources permit.

  7. The use and limits of scientific names in biological informatics.

    PubMed

    Remsen, David

    2016-01-01

    Scientific names serve to label biodiversity information: information related to species. Names, and their underlying taxonomic definitions, however, are unstable and ambiguous. This negatively impacts the utility of names as identifiers and as effective indexing tools in biological informatics where names are commonly utilized for searching, retrieving and integrating information about species. Semiotics provides a general model for describing the relationship between taxon names and taxon concepts. It distinguishes syntactics, which governs relationships among names, from semantics, which represents the relations between those labels and the taxa to which they refer. In the semiotic context, changes in semantics (i.e., taxonomic circumscription) do not consistently result in a corresponding and reflective change in syntax. Further, when syntactic changes do occur, they may be in response to semantic changes or in response to syntactic rules. This lack of consistency in the cardinal relationship between names and taxa places limits on how scientific names may be used in biological informatics in initially anchoring, and in the subsequent retrieval and integration, of relevant biodiversity information. Precision and recall are two measures of relevance. In biological taxonomy, recall is negatively impacted by changes or ambiguity in syntax while precision is negatively impacted when there are changes or ambiguity in semantics. Because changes in syntax are not correlated with changes in semantics, scientific names may be used, singly or conflated into synonymous sets, to improve recall in pattern recognition or search and retrieval. Names cannot be used, however, to improve precision. This is because changes in syntax do not uniquely identify changes in circumscription. These observations place limits on the utility of scientific names within biological informatics applications that rely on names as identifiers for taxa. Taxonomic systems and services used to

  8. The use and limits of scientific names in biological informatics

    PubMed Central

    Remsen, David

    2016-01-01

    Abstract Scientific names serve to label biodiversity information: information related to species. Names, and their underlying taxonomic definitions, however, are unstable and ambiguous. This negatively impacts the utility of names as identifiers and as effective indexing tools in biological informatics where names are commonly utilized for searching, retrieving and integrating information about species. Semiotics provides a general model for describing the relationship between taxon names and taxon concepts. It distinguishes syntactics, which governs relationships among names, from semantics, which represents the relations between those labels and the taxa to which they refer. In the semiotic context, changes in semantics (i.e., taxonomic circumscription) do not consistently result in a corresponding and reflective change in syntax. Further, when syntactic changes do occur, they may be in response to semantic changes or in response to syntactic rules. This lack of consistency in the cardinal relationship between names and taxa places limits on how scientific names may be used in biological informatics in initially anchoring, and in the subsequent retrieval and integration, of relevant biodiversity information. Precision and recall are two measures of relevance. In biological taxonomy, recall is negatively impacted by changes or ambiguity in syntax while precision is negatively impacted when there are changes or ambiguity in semantics. Because changes in syntax are not correlated with changes in semantics, scientific names may be used, singly or conflated into synonymous sets, to improve recall in pattern recognition or search and retrieval. Names cannot be used, however, to improve precision. This is because changes in syntax do not uniquely identify changes in circumscription. These observations place limits on the utility of scientific names within biological informatics applications that rely on names as identifiers for taxa. Taxonomic systems and services used

  9. PREFACE: International Workshop on Statistical-Mechanical Informatics 2010

    NASA Astrophysics Data System (ADS)

    Inoue, Jun-ichi; Kabashima, Yoshiyuki; Tanaka, Kazuyuki; Tanaka, Toshiyuki

    2010-04-01

    Everything that exists in the natural world is made up of several types of elementary particles. However, we cannot understand nature simply by identifying the properties of these particles. This is because collections of the particles sometimes exhibit completely unexpected collective phenomena, quite independently of the individual particles' properties. In the physical sciences, the importance of focusing on the properties of objects composed of a large number of constituents is reflected in the phrase, "More is different." The main concept of the research project, the Grant-in-Aid for Scientific Research on Priority Areas `Deepening and Expansion of Statistical Mechanical Informatics (DEX-SMI)' (Head Investigator: Yoshiyuki Kabashima, Tokyo Institute of Technology) (Project Webpage DEX-SMI), launched in 2006, was to introduce this perspective into information science under the common slogan, "More is different in informatics as well." As milestones in the research activity, the International Workshop on Statistical-Mechanical Informatics (IW-SMI) was held annually, featuring studies of information and communication (2007), quantum information (2008), and bioinformatics (2009). The workshop series provided fruitful opportunities for leading researchers of various disciplines to interact with one another, which led to several collaborative studies. The final workshop, IW-SMI2010, was held at Shiran Kaikan, Kyoto University, Kyoto, Japan, on 7-10 March 2010 to wrap up the achievements of the four years of activity in the DEX-SMI research project. This workshop also aimed to bring together leading researchers in the physical and information sciences to discuss possible future directions for further exploring the successes of DEX-SMI. We would like to thank the contributors of the workshop as well as all the participants. We hope that the successes of IW-SMI2010 and DEX-SMI will lead to further development of this highly vigorous interdisciplinary field between

  10. The state of information and communication technology and health informatics in ghana.

    PubMed

    Achampong, Emmanuel Kusi

    2012-01-01

    Information and Communication Technology (ICT) has become a major tool in delivery of health services and has had an innovative impact on quality of life. ICT is affecting the way healthcare is delivered to clients. In this paper, we discuss the state of ICT and health informatics in Ghana. We also discuss the state of various relevant infrastructures for the successful implementation of ehealth projects. We analyse the past and present state of health informatics in Ghana, in comparison to other African countries. We also review the challenges facing successful implementation of health informatics projects in Ghana and suggest possible solutions. PMID:23569633

  11. The Evolution of Data-Information-Knowledge-Wisdom in Nursing Informatics.

    PubMed

    Ronquillo, Charlene; Currie, Leanne M; Rodney, Paddy

    2016-01-01

    The data-information-knowledge-wisdom (DIKW) model has been widely adopted in nursing informatics. In this article, we examine the evolution of DIKW in nursing informatics while incorporating critiques from other disciplines. This includes examination of assumptions of linearity and hierarchy and an exploration of the implicit philosophical grounding of the model. Two guiding questions are considered: (1) Does DIKW serve clinical information systems, nurses, or both? and (2) What level of theory does DIKW occupy? The DIKW model has been valuable in advancing the independent field of nursing informatics. We offer that if the model is to continue to move forward, its role and functions must be explicitly addressed. PMID:26836997

  12. Using change theory to examine the nursing informatics development in Taiwan.

    PubMed

    Cho, Chi-Szu; Chang, Polun

    2009-01-01

    The purpose of this study is to apply Kurt Lewin's change theory to examine the nursing informatics development in Taiwan. The first stage, Unfreezing, is using Excel VBA training program to educate the nurses; the second stage, Change, is establishing the "Taiwan Nursing Informatics Association (TNIA)"; in the final stage, Refreezing, we are still working on new strategies to promote the NI nationwide. The recent challenge of nursing informatics in Taiwan is lack of programs to introduce the NI more systematically and thoroughly. PMID:19593027

  13. The State of Information and Communication Technology and Health Informatics in Ghana

    PubMed Central

    Achampong, Emmanuel Kusi

    2012-01-01

    Information and Communication Technology (ICT) has become a major tool in delivery of health services and has had an innovative impact on quality of life. ICT is affecting the way healthcare is delivered to clients. In this paper, we discuss the state of ICT and health informatics in Ghana. We also discuss the state of various relevant infrastructures for the successful implementation of ehealth projects. We analyse the past and present state of health informatics in Ghana, in comparison to other African countries. We also review the challenges facing successful implementation of health informatics projects in Ghana and suggest possible solutions. PMID:23569633

  14. Evidence-based Patient Choice and Consumer health informatics in the Internet age

    PubMed Central

    2001-01-01

    In this paper we explore current access to and barriers to health information for consumers. We discuss how computers and other developments in information technology are ushering in the era of consumer health informatics , and the potential that lies ahead. It is clear that we witness a period in which the public will have unprecedented ability to access information and to participate actively in evidence-based health care. We propose that consumer health informatics be regarded as a whole new academic discipline, one that should be devoted to the exploration of the new possibilities that informatics is creating for consumers in relation to health and health care issues. PMID:11720961

  15. Designing medical informatics research and library--resource projects to increase what is learned.

    PubMed Central

    Stead, W W; Haynes, R B; Fuller, S; Friedman, C P; Travis, L E; Beck, J R; Fenichel, C H; Chandrasekaran, B; Buchanan, B G; Abola, E E

    1994-01-01

    Careful study of medical informatics research and library-resource projects is necessary to increase the productivity of the research and development enterprise. Medical informatics research projects can present unique problems with respect to evaluation. It is not always possible to adapt directly the evaluation methods that are commonly employed in the natural and social sciences. Problems in evaluating medical informatics projects may be overcome by formulating system development work in terms of a testable hypothesis; subdividing complex projects into modules, each of which can be developed, tested and evaluated rigorously; and utilizing qualitative studies in situations where more definitive quantitative studies are impractical. PMID:7719785

  16. Panel: Eco-informatics and decision making managing our natural resources

    USGS Publications Warehouse

    Gushing, J.B.; Wilson, T.; Martin, F.; Schnase, J.; Spengler, S.; Sugarbaker, L.; Pardo, T.

    2006-01-01

    This panel responds to the December 2004 workshop on Eco-Informatics and Decision Making [1], which addressed how informatics tools can help with better management of natural resources and policy making. The workshop was jointly sponsored by the NSF, NBII, NASA, and EPA. Workshop participants recommended that informatics research in four IT areas be funded: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, they recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. This panel brings issues raised in that workshop to the attention of digital government researchers.

  17. Laboratory informatics tools integration strategies for drug discovery: integration of LIMS, ELN, CDS, and SDMS.

    PubMed

    Machina, Hari K; Wild, David J

    2013-04-01

    There are technologies on the horizon that could dramatically change how informatics organizations design, develop, deliver, and support applications and data infrastructures to deliver maximum value to drug discovery organizations. Effective integration of data and laboratory informatics tools promises the ability of organizations to make better informed decisions about resource allocation during the drug discovery and development process and for more informed decisions to be made with respect to the market opportunity for compounds. We propose in this article a new integration model called ELN-centric laboratory informatics tools integration. PMID:22895535

  18. Health Informatics Competencies, Workforce and the DNP: Why Connect These 'Dots'?

    PubMed

    Brixey, Juliana J

    2016-01-01

    This panel will provide the perspectives of nurse informatics experts on the development of informatics education integrating health information technology (HIT) and immersive simulation. The panel will also address student and provider access to the electronic health record (EHR) for educational purposes. This panel examines the education and preparation of students and practicing nurses to meaningfully use EHRs. The target audience is clinicians, educators, trainers, students and those interested in the meaningful use of EHRs and achievement of the Informatics competencies defined by AACN and TIGER. PMID:27332329

  19. The issue of surrogacy in Czech law.

    PubMed

    Lojková, Jana

    2012-03-01

    Surrogacy is thought to be one of the most controversial methods of assisted reproduction. It involves cases where a commissioning couple asks a surrogate mother to give birth to a child that will be conceived from their egg and sperm because the woman from the commissioning couple is not able to bear the child to full term herself. They conclude an agreement where the surrogate mother binds herself to terminate all her parental rights to the child immediately after the child's birth and to delegate them together with the child to the commissioning couple. Ethical dilemmas concerning the issue of surrogacy together with all the possibilities of today's globalised world that enable infertile couples to find surrogate mothers abroad in case the legal regulations of their country put a ban on it create a space for a legislator to try to find a solution that will avoid all the risks and highlight a number of positives on the other hand. A Czech legislator is currently trying to find this solution and even though there are few children demonstrably born to surrogate mothers in the Czech Republic, the whole process of surrogacy still proceeds in a legal vacuum at the moment. We can only find the legal definition of a mother of a child as a woman that gives him or her birth and a provision of law that makes all the legal acts that evade the law void. Some practical consequences of this situation will be described in the text together with possibilities and the inspiration that comes from foreign legal regulations and cases. PMID:22908742

  20. Variables, variability, and variations research: implications for medical informatics.

    PubMed Central

    Holzemer, W L; Reilly, C A

    1995-01-01

    Variations research is one important strategy in the quality management movement designed to improve the quality of health care and to control costs. Information systems are being utilized in variations research to provide an array of potential variables, to provide measures of the variability inherent in these variables, and to assist with the study of the linkages of patient and provider characteristics with interventions and outcomes. This article presents a systems model of inputs, processes, and outcomes with explication of factors related to client, provider, and setting as a heuristic strategy for variable specification. The implications of variable specification, the design and measurement of variability, and the key issue of control in variations research are linked with a discussion of the implications for medical informatics. PMID:7614119

  1. Biodiversity informatics: managing and applying primary biodiversity data.

    PubMed Central

    Soberón, Jorge; Peterson, A Townsend

    2004-01-01

    Recently, advances in information technology and an increased willingness to share primary biodiversity data are enabling unprecedented access to it. By combining presences of species data with electronic cartography via a number of algorithms, estimating niches of species and their areas of distribution becomes feasible at resolutions one to three orders of magnitude higher than it was possible a few years ago. Some examples of the power of that technique are presented. For the method to work, limitations such as lack of high-quality taxonomic determination, precise georeferencing of the data and availability of high-quality and updated taxonomic treatments of the groups must be overcome. These are discussed, together with comments on the potential of these biodiversity informatics techniques not only for fundamental studies but also as a way for developing countries to apply state of the art bioinformatic methods and large quantities of data, in practical ways, to tackle issues of biodiversity management. PMID:15253354

  2. Informatics: essential infrastructure for quality assessment and improvement in nursing.

    PubMed Central

    Henry, S B

    1995-01-01

    In recent decades there have been major advances in the creation and implementation of information technologies and in the development of measures of health care quality. The premise of this article is that informatics provides essential infrastructure for quality assessment and improvement in nursing. In this context, the term quality assessment and improvement comprises both short-term processes such as continuous quality improvement (CQI) and long-term outcomes management. This premise is supported by 1) presentation of a historical perspective on quality assessment and improvement; 2) delineation of the types of data required for quality assessment and improvement; and 3) description of the current and potential uses of information technology in the acquisition, storage, transformation, and presentation of quality data, information, and knowledge. PMID:7614118

  3. The organization and content of informatics doctoral dissertations.

    PubMed

    Shortliffe, Edward H

    2016-07-01

    This article offers suggested guidelines for graduate students who are embarking on informatics doctoral studies and anticipating the dissertation research and its documentation. Much of the guidance is pertinent for writing dissertations in other disciplines as well. The messages are largely directed at doctoral students, but some elements are also pertinent for master's students. All are relevant for faculty research advisors. The value of the dissertation is often underestimated. Too often it is seen as a hurdle to be overcome rather than an opportunity to gain insight into one's own research and to learn how to communicate effectively about it. Ideas that have been ill-formed often do not gel effectively until one tries to write about them. The main lesson is that the preparation of a carefully crafted, rigorous, logically evidence-based, and influential dissertation can be remarkably rewarding, both personally and professionally. PMID:27274024

  4. Challenges and Solutions for Using Informatics in Research

    PubMed Central

    Ryan, Catherine; Choi, Heeseung; Fritschi, Cynthia; Hershberger, Patricia; Vincent, Catherine; Hacker, Eileen Danaher; Zerwic, Julie; Norr, Kathleen; Park, Hanjong; Tastan, Sevinc; Keenan, Gail M.; Finnegan, Lorna; Zhao, Zhongsheng; Gallo, Agatha M; Wilkie, Diana J.

    2013-01-01

    Computer technology provides innovations for research but not without concomitant challenges. Herein, we present our experiences with technology challenges and solutions across 16 nursing research studies. Issues included intervention integrity, software updates and compatibility, Web accessibility and implementation, hardware and equipment, computer literacy of participants, and programming. Our researchers found solutions related to best practices for computer-screen design and usability testing, especially as they relate to the target populations' computer literacy levels and use patterns; changes in software; availability and limitations of operating systems and Web-browsers; resources for on-site technology help for participants; and creative facilitators to access participants and implement study procedures. Researchers may find this information helpful as they consider successful ways to integrate informatics in the design and implementation of future studies with technology that maximizes research productivity. PMID:23475591

  5. Leverage hadoop framework for large scale clinical informatics applications.

    PubMed

    Dong, Xiao; Bahroos, Neil; Sadhu, Eugene; Jackson, Tommie; Chukhman, Morris; Johnson, Robert; Boyd, Andrew; Hynes, Denise

    2013-01-01

    In this manuscript, we present our experiences using the Apache Hadoop framework for high data volume and computationally intensive applications, and discuss some best practice guidelines in a clinical informatics setting. There are three main aspects in our approach: (a) process and integrate diverse, heterogeneous data sources using standard Hadoop programming tools and customized MapReduce programs; (b) after fine-grained aggregate results are obtained, perform data analysis using the Mahout data mining library; (c) leverage the column oriented features in HBase for patient centric modeling and complex temporal reasoning. This framework provides a scalable solution to meet the rapidly increasing, imperative "Big Data" needs of clinical and translational research. The intrinsic advantage of fault tolerance, high availability and scalability of Hadoop platform makes these applications readily deployable at the enterprise level cluster environment. PMID:24303235

  6. Net-based reasoning informatics for civil infrastructure monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Stuart S.; Lamanna, Michael F.

    1997-06-01

    The informatics of instrumented infrastructure will require multi-level computational abstractions that not only collect and declutter the data but also support higher-level automated reasoning capabilities relevant to decision support needs of both owners responsible for the safe operation of the facilities and users of those facilities. This paper describes the appeal and implemented demonstration of Internet-based paradigms for higher-level automated reasoning about condition of instrumented infrastructure using the Java computing language. This enables interactive program execution from a web page. These notions are presented and demonstrated in the context of illustrative application scenarios involving fatigue monitoring, overweight vehicle detection, and bridge deck surface travel condition monitoring. By means of this demonstration, it is suggested that there is an important role for Java-based expert systems in handling key aspects of the data fusion requirements associated with intelligent, internet-mediated post-processing of data obtained from instrumented civil infrastructure.

  7. Program management and health care informatics: defining relationships.

    PubMed

    Harber, B W; Miller, S A

    1994-01-01

    The program management (PM) structure is a relatively well-known organizational model for hospitals. A variation of the matrix structure, it allows for an interdisciplinary team of health care providers to facilitate patient care delivery. However, providing such focused care results in a complex, highly information-dependent operational environment. To meet the information needs of such an environment, careful planning in selecting and implementing technology is required. Along with supporting patient care, the technology will also help in managing costs, human resources, quality and utilization, as well as in monitoring performance and outcomes measurement. Focusing specifically on the information technology environment, this article addresses health care informatics (the diverse categories of information and systems) needed to support clinical program managers, executives and others in a PM organization. Examples from both a university-affiliated and a community-based program managed hospital illustrate their approach to PM and information technology. PMID:10140165

  8. G7: a framework for international cooperation in medical informatics.

    PubMed Central

    Lindberg, D. A.; Siegel, E. R.

    1998-01-01

    The world's major economic powers, the G7, have initiated a collaborative International research and demonstration program to exploit the benefits of information and communications technology for society. The Global Healthcare Applications Project (GHAP) is investigating a variety of informatics applications in disease specific domains, telemedicine, and multilingual textual and image database systems. This paper summarizes the nine GHAP sub-projects undertaken to date, with emphasis on those in which the U.S. is a participant. The growing use of smart card technology, especially in Europe, is adding new impetus for similar medical and health experiments in the U.S. A pilot project now underway in several Western states is described. PMID:9929177

  9. Elements of informatics for combinatorial solid-state materials science

    NASA Astrophysics Data System (ADS)

    Meguro, S.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.

    2005-01-01

    The main purpose of using combinatorial techniques for materials science studies is to achieve higher experimental throughput than what is possible when samples are synthesized and characterized one at a time. The instrumentation needed for performing high-throughput synthesis and characterization has seen rapid development in recent years. The software tools needed to connect all parts of the materials development process are still largely lacking. In this paper we discuss the requirements of a combinatorial informatics system for materials science experiments. Specifically, we focus on solid-state thin film synthesis. We also describe an implementation of such a system that is based on widely-available open-source software. The system offers features such as remote access via a Web browser, an electronic notebook-style Web interface, automatic upload of new measurement or processing results and rapid preview of experimental data.

  10. Current Trends in Nursing Informatics: Results of an International Survey.

    PubMed

    Peltonen, Laura-Maria; Alhuwail, Dari; Ali, Samira; Badger, Martha K; Eler, Gabrielle Jacklin; Georgsson, Mattias; Islam, Tasneem; Jeon, Eunjoo; Jung, Hyunggu; Kuo, Chiu-Hsiang; Lewis, Adrienne; Pruinelli, Lisiane; Ronquillo, Charlene; Sarmiento, Raymond Francis; Sommer, Janine; Tayaben, Jude L; Topaz, Maxim

    2016-01-01

    Nursing informatics (NI) can help provide effective and safe healthcare. This study aimed to describe current research trends in NI. In the summer 2015, the IMIA-NI Students Working Group created and distributed an online international survey of the current NI trends. A total of 402 responses were submitted from 44 countries. We identified a top five NI research areas: standardized terminologies, mobile health, clinical decision support, patient safety and big data research. NI research funding was considered to be difficult to acquire by the respondents. Overall, current NI research on education, clinical practice, administration and theory is still scarce, with theory being the least common. Further research is needed to explain the impact of these trends and the needs from clinical practice. PMID:27332419

  11. An Informatics Blueprint for Healthcare Quality Information Systems

    PubMed Central

    Niland, Joyce C.; Rouse, Layla; Stahl, Douglas C.

    2006-01-01

    There is a critical gap in our nation's ability to accurately measure and manage the quality of medical care. A robust healthcare quality information system (HQIS) has the potential to address this deficiency through the capture, codification, and analysis of information about patient treatments and related outcomes. Because non-technical issues often present the greatest challenges, this paper provides an overview of these socio-technical issues in building a successful HQIS, including the human, organizational, and knowledge management (KM) perspectives. Through an extensive literature review and direct experience in building a practical HQIS (the National Comprehensive Cancer Network Outcomes Research Database system), we have formulated an “informatics blueprint” to guide the development of such systems. While the blueprint was developed to facilitate healthcare quality information collection, management, analysis, and reporting, the concepts and advice provided may be extensible to the development of other types of clinical research information systems. PMID:16622161

  12. Nursing Informatics Competencies: An Analysis of the Latest Research

    PubMed Central

    Gonçalves, Luciana S.; Wolff, Lillian D. G.; Staggers, Nancy; Peres, Aida M.

    2012-01-01

    To update the published NI competencies with the latest research findings, we conducted a literature search via CINAHL and PubMed databases from 2009 to 2011. A total of 19 articles were retrieved with 7 meeting the inclusion criteria. Five studies gave examples of NI competencies. It′s possible to observe trends in NI competencies research field, including contemporary skills, foundational concepts and intellectual capabilities amongst the competencies. The studies consider progressive levels of nursing practice, and give examples of the NI competencies. Nevertheless, a need of studies that links theoretical concepts and practical real environments still remains all over the world, as well as the need for defining competencies as rapid changes in informatics processes and solutions occur. PMID:24199069

  13. Case study: factors in defining the nurse informatics specialist role.

    PubMed

    Hassett, Margaret

    2006-01-01

    Healthcare organizations, consultant groups, vendor companies, and academic institutions feel the challenge to enhance user experiences with information systems. To meet this challenge, organizations and companies are looking to better understand and utilize a variety of informatics roles to further marketing, business, or healthcare goals. Nursing is one practice area that can support the successful integration of information systems development, implementation, support, and user experience. However, the definition and development of such a role or position has met with mixed success. This article explores some of the issues and influences related to the role's development. The issues, impacts, and influences have been identified based on healthcare business assessment, job description analysis, employment and project evaluations, and professional standards set by the American Nurses Association. PMID:16669586

  14. Informatics, evidence-based care, and research; implications for national policy: a report of an American Medical Informatics Association health policy conference

    PubMed Central

    Detmer, Don E

    2010-01-01

    There is an increased level of activity in the biomedical and health informatics world (e-prescribing, electronic health records, personal health records) that, in the near future, will yield a wealth of available data that we can exploit meaningfully to strengthen knowledge building and evidence creation, and ultimately improve clinical and preventive care. The American Medical Informatics Association (AMIA) 2008 Health Policy Conference was convened to focus and propel discussions about informatics-enabled evidence-based care, clinical research, and knowledge management. Conference participants explored the potential of informatics tools and technologies to improve the evidence base on which providers and patients can draw to diagnose and treat health problems. The paper presents a model of an evidence continuum that is dynamic, collaborative, and powered by health informatics technologies. The conference's findings are described, and recommendations on terminology harmonization, facilitation of the evidence continuum in a “wired” world, development and dissemination of clinical practice guidelines and other knowledge support strategies, and the role of diverse stakeholders in the generation and adoption of evidence are presented. PMID:20190052

  15. Privatization and Business Education Needs in the Czech Republic.

    ERIC Educational Resources Information Center

    Helms, Marilyn M.

    1996-01-01

    As the Czech Republic undergoes massive economic restructuring, education and training in capitalism and management are needed. The Czechoslovakian Management Center uses international advisors in developing its master's of business administration programs for executive development. (SK)

  16. Informatics for patient safety: a nursing research perspective.

    PubMed

    Bakken, Suzanne

    2006-01-01

    In Crossing the Quality Chasm, the Institute of Medicine (IOM) Committee on Quality of Health Care in America identified the critical role of information technology in designing a health system that produces care that is "safe, effective, patient-centered, timely, efficient, and equitable" (Committee on Quality of Health Care in America, 2001, p. 164). A subsequent IOM report contends that improved information systems are essential to a new health care delivery system that "both prevents errors and learns from them when they occur" (Committee on Data Standards for Patient Safety, 2004, p. 1). This review specifically highlights the role of informatics processes and information technology in promoting patient safety and summarizes relevant nursing research. First, the components of an informatics infrastructure for patient safety are described within the context of the national framework for delivering consumer-centric and information-rich health care and using the National Health Information Infrastructure (NHII) (Thompson & Brailer, 2004). Second, relevant nursing research is summarized; this includes research studies that contributed to the development of selected infrastructure components as well as studies specifically focused on patient safety. Third, knowledge gaps and opportunities for nursing research are identified for each main topic. The health information technologies deployed as part of the national framework must support nursing practice in a manner that enables prevention of medical errors and promotion of patient safety and contributes to the development of practice-based nursing knowledge as well as best practices for patient safety. The seminal work that has been completed to date is necessary, but not sufficient, to achieve this objective. PMID:17078416

  17. An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics

    NASA Astrophysics Data System (ADS)

    Wu, Chaochao; Monroe, Matthew E.; Xu, Zhe; Slysz, Gordon W.; Payne, Samuel H.; Rodland, Karin D.; Liu, Tao; Smith, Richard D.

    2015-12-01

    The comprehensive MS analysis of the peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and its utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation and related platforms, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however, an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we began by evaluating the results of several popular MS/MS database search engines, including MS-GF+, SEQUEST, and MS-Align+, for peptidomics data analysis, followed by identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our results demonstrated that MS-GF+ outperformed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing data for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage. Taken together, we propose an optimized informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT tag) approaches for identification and label-free quantification for high-throughput, comprehensive, and quantitative peptidomics analysis.

  18. Big Data and Biomedical Informatics: A Challenging Opportunity

    PubMed Central

    2014-01-01

    Summary Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations. PMID:24853034

  19. Linking Open Research Data for Earth and Space Science Informatics

    NASA Astrophysics Data System (ADS)

    Rozell, E.; Narock, T. W.

    2011-12-01

    Earth and Space Science Informatics (ESSI) is inherently multi-disciplinary, requiring close collaborations between scientists and information technologists. Identifying potential collaborations can be difficult, especially with the rapidly changing landscape of technologies and informatics projects. The ability to discover the technical competencies of other researchers in the community can help in the discovery of research partnerships. In addition to collaboration discovery, this data can be used to analyze trends in the field, which will help project managers identify emerging, irrelevant, and well-established technologies and specifications. This information will help keep projects focused on the technologies and standards that are actually being used, making them more useful to the ESSI community. We present a two-part solution to this problem: a pipeline for generating structured data from ESSI abstracts and an API and Web application for accessing the generated data. We use a Natural Language Processing (NLP) technique, Named Entity Disambiguation, to extract information about researchers, their affiliations, and technologies they have applied in their research. The extracted data is encoded in the Resource Description Framework using Linked Data vocabularies, including the Semantic Web for Research Communities ontology and the Friend-of-a-Friend ontology. The data is exposed in four ways: a SPARQL query-able endpoint, linked data, Java APIs, and a Web application. We also capture the provenance of the data transformations using the Proof Markup Language, including confidence scores from the NLP algorithms used. Our implementation has used only open source solutions, including DBPedia Spotlight and OpenNLP. We plan to set up an open source project for this work so that it can continue to evolve through community contributions.

  20. Big data and biomedical informatics: a challenging opportunity.

    PubMed

    Bellazzi, R

    2014-01-01

    Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations. PMID:24853034

  1. An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics

    SciTech Connect

    Wu, Chaochao; Monroe, Matthew E.; Xu, Zhe; Slysz, Gordon W.; Payne, Samuel H.; Rodland, Karin D.; Liu, Tao; Smith, Richard D.

    2015-12-26

    Comprehensive MS analysis of peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and their utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we set off by evaluating the results of several popular MS/MS database search engines including MS-GF+, SEQUEST and MS-Align+ for peptidomics data analysis, followed by identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our result demonstrated that MS-GF+ outperformed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from the MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing value for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage than AMT. Taken together, we propose an optimal informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT) for identification and label-free quantification for high-throughput, comprehensive and quantitative peptidomics analysis.

  2. [Neuropsychic development in preschool children in conditions of the informatization].

    PubMed

    Tkachuk, E A; Tarmaeva, I Iu

    2014-01-01

    The new millennium was marked by the transition of humanity to a new stage of the development--the Information Society, which is an objective reality and affects on all aspects of living environment, including the health of children. The last decade was characterized by the increase of the use of means of informatization, the level of aggression and aggressiveness of children, the decrease of intellectual indices, deterioration of mental health, an increase of children with behavioral problems, hyperactivity, inattention, decrease of mental capacity. In a study on the example of preschool educational institution in the city of Irkutsk in the conditions of the changing of the informatization level of the society in the time period from 1998 to 2012, there were revealed the changes in indices of intellectual development, mental capacity and anxiety of children. Under observation there were 211 children aged from 5.5 to 6.5 years in the preschool institution of the central district of the city of Irkutsk. There were formed two groups of children: I group--children who attended kindergarten in 1998 and group II--children attending kindergarten in 2012. Age groups of preschool children were consistent with their calendar age: from 5 years 5 months 30 days to 6 years 5 months 30 days. In the study of intellectual development there has been shown the decrease of the number of children with average intelligence level and an increase in children with the below-average intelligence level, the increase of the speed (p < 0.05.) and the decrease of the quality (p < 0.05.) of the information processing in the Anfilov test for the mental performance and the increase the general level of anxiety, aggressive background and unmotivated fears "out" at the present time stage (2012). PMID:25950041

  3. Variable Star and Exoplanet Section of the Czech Astronomical Society

    NASA Astrophysics Data System (ADS)

    Brát, L.; Zejda, M.

    2010-12-01

    We present activities of Czech variable star observers organized in the Variable Star and Exoplanet Section of the Czech Astronomical Society. We work in four observing projects: B.R.N.O. - eclipsing binaries, MEDUZA - intrinsic variable stars, TRESCA - transiting exoplanets and candidates, HERO - objects of high energy astrophysics. Detailed information together with O-C gate (database of eclipsing binaries minima timings) and OEJV (Open European Journal on Variable stars) are available on our internet portal http://var.astro.cz.

  4. Antecedents of the people and organizational aspects of medical informatics: review of the literature.

    PubMed

    Lorenzi, N M; Riley, R T; Blyth, A J; Southon, G; Dixon, B J

    1997-01-01

    People and organizational issues are critical in both implementing medical informatics systems and in dealing with the altered organizations that new systems often create. The people and organizational issues area--like medical informatics itself--is a blend of many disciplines. The academic disciplines of psychology, sociology, social psychology, social anthropology, organizational behavior and organizational development, management, and cognitive sciences are rich with research with significant potential to ease the introduction and on-going use of information technology in today's complex health systems. These academic areas contribute research data and core information for better understanding of such issues as the importance of and processes for creating future direction; managing a complex change process; effective strategies for involving individuals and groups in the informatics effort; and effectively managing the altered organization. This article reviews the behavioral and business referent disciplines that can potentially contribute to improved implementations and on-going management of change in the medical informatics arena. PMID:9067874

  5. Recent trends in biomedical and health informatics education: implications for practice, research, and policy.

    PubMed

    Hersh, William

    2008-01-01

    The discipline of biomedical and health informatics has seen substantial change in practice as well as education in recent years. Most early programs in the field focused on either post-doctoral apprenticeship-like experiences or PhD degrees, usually with a strong research emphasis. More recently, however, a variety of new educational options have emerged, from certificate and professional master's programs to shorter courses, such as the AMIA 10x10 program. Other programs have emerged from the health information management field as well as at the undergraduate level. At the same time, the real growth and need for informatics expertise has emerged more in operational than academic settings. In this talk, an informatics educational leader and innovator will describe these changes, the research data that has explored them, and how they have impacted informatics educational programs, including his own at Oregon Health & Science University. PMID:18998997

  6. Health Informatics Competences for eHealth: What Can We Learn From a Bibliometric Analysis?

    PubMed

    Kokol, Peter; Blažun, Helena; Saranto, Kaija

    2015-01-01

    The appearance of eHealth adds a new dimension to health informatics competencies--they are not necessary just for health providers and health information system users and developers, but also for health consumers. PMID:26262315

  7. Commentaries on “Informatics and Medicine: From Molecules to Populations”

    PubMed Central

    Altman, R. B.; Balling, R.; Brinkley, J. F.; Coiera, E.; Consorti, F.; Dhansay, M. A.; Geissbuhler, A.; Hersh, W.; Kwankam, S. Y.; Lorenzi, N. M.; Martin-Sanchez, F.; Mihalas, G. I.; Shahar, Y.; Takabayashi, K.; Wiederhold, G.

    2009-01-01

    Summary Objective To discuss interdisciplinary research and education in the context of informatics and medicine by commenting on the paper of Kuhn et al. “Informatics and Medicine: From Molecules to Populations”. Method Inviting an international group of experts in biomedical and health informatics and related disciplines to comment on this paper. Results and Conclusions The commentaries include a wide range of reasoned arguments and original position statements which, while strongly endorsing the educational needs identified by Kuhn et al., also point out fundamental challenges that are very specific to the unusual combination of scientific, technological, personal and social problems characterizing biomedical informatics. They point to the ultimate objectives of managing difficult human health problems, which are unlikely to yield to technological solutions alone. The psychological, societal, and environmental components of health and disease are emphasized by several of the commentators, setting the stage for further debate and constructive suggestions. PMID:18690363

  8. The National Student Forum and the emergence of Health Informatics Clubs.

    PubMed

    Fenton, Shirley L; Covvey, H Dominic

    2011-01-01

    Our greatest hope for the future of eHealth and the enabling of our health system is today's students. However, we face a challenge: few students are aware of careers in Health Informatics and other aspects of eHealth. This paper describes an initiative to engage our future workforce in HI. The National Student Forum for Health Informatics was established, in collaboration between the National Institutes of Health Informatics and COACH, to provide much needed opportunities for students to become involved in HI educational programs, research and student-student interaction. A key activity of NSF is the instantiation of Health Informatics Clubs at Canadian colleges and universities. We describe the rationale for NSF, its goals and objectives, its leadership and organization, and the development of the first HI Club at the University of Waterloo. Initiatives such as NSF are essential if we are to resolve the human resources crisis in HI. PMID:21335687

  9. Quantitative and Qualitative Evaluation of The Structural Designing of Medical Informatics Dynamic Encyclopedia

    PubMed Central

    Safdari, Reza; Shahmoradi, Leila; Hosseini-beheshti, Molouk-sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad

    2015-01-01

    Introduction: Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. Materials and Methods: This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. Findings: In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics’ sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Results and Discussion: Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics. PMID:26635440

  10. The next generation Internet and health care: a civics lesson for the informatics community.

    PubMed Central

    Shortliffe, E. H.

    1998-01-01

    The Internet provides one of the most compelling examples of the way in which government research investments can, in time, lead to innovations of broad social and economic impact. This paper reviews the history of the Internet's evolution, emphasizing in particular its relationship to medical informatics and to the nation's health-care system. Current national research programs are summarized and the need for more involvement by the informatics community and by federal health-care agencies is emphasized. PMID:9929176

  11. A Repository of Codes of Ethics and Technical Standards in Health Informatics

    PubMed Central

    Zaïane, Osmar R.

    2014-01-01

    We present a searchable repository of codes of ethics and standards in health informatics. It is built using state-of-the-art search algorithms and technologies. The repository will be potentially beneficial for public health practitioners, researchers, and software developers in finding and comparing ethics topics of interest. Public health clinics, clinicians, and researchers can use the repository platform as a one-stop reference for various ethics codes and standards. In addition, the repository interface is built for easy navigation, fast search, and side-by-side comparative reading of documents. Our selection criteria for codes and standards are two-fold; firstly, to maintain intellectual property rights, we index only codes and standards freely available on the internet. Secondly, major international, regional, and national health informatics bodies across the globe are surveyed with the aim of understanding the landscape in this domain. We also look at prevalent technical standards in health informatics from major bodies such as the International Standards Organization (ISO) and the U. S. Food and Drug Administration (FDA). Our repository contains codes of ethics from the International Medical Informatics Association (IMIA), the iHealth Coalition (iHC), the American Health Information Management Association (AHIMA), the Australasian College of Health Informatics (ACHI), the British Computer Society (BCS), and the UK Council for Health Informatics Professions (UKCHIP), with room for adding more in the future. Our major contribution is enhancing the findability of codes and standards related to health informatics ethics by compilation and unified access through the health informatics ethics repository. PMID:25422725

  12. Don E. Detmer and the American Medical Informatics Association: An Appreciation

    PubMed Central

    Shortliffe, Edward H.; Bates, David W.; Bloomrosen, Meryl; Greenwood, Karen; Safran, Charles; Steen, Elaine B.; Tang, Paul C.; Williamson, Jeffrey J.

    2009-01-01

    Don E. Detmer has served as President and Chief Executive Officer of the American Medical Informatics Association (AMIA) for the past five years, helping to set a course for the organization and demonstrating remarkable leadership as AMIA has evolved into a vibrant and influential professional association. On the occasion of Dr. Detmer's retirement, we fondly reflect on his professional life and his many contributions to biomedical informatics and, more generally, to health care in the U.S. and globally. PMID:19574463

  13. The effects of an undergraduate nursing informatics curriculum on students' knowledge and attitudes.

    PubMed Central

    Travis, L. L.; Youngblut, J.; Brennan, P. F.

    1994-01-01

    This paper describes the fourth stage of a process to design, implement and evaluate the nursing informatics courses incorporated into a baccalaureate nursing program. The challenge is to structure the nursing informatics curriculum so as to provide the nursing professional with the basis with which to impact health care delivery. The basic components of the framework are information, technology, and clinical care process. Students in the fourth course worked closely with agency personnel to design, implement and evaluate clinical application projects. PMID:7949960

  14. Special Tribute on Morris F. Collen: Charismatic Leader of Medical Informatics

    PubMed Central

    Ball, Marion; Lindberg, Donald; Masic, Izet

    2014-01-01

    This editorial is dedicated in honor of Morris F. Collen, MD, a pioneer in the field of medical informatics. During his remarkable career, Dr. Collen’s has made many important contributions not only to the field of medical informatics, but also to the public health and the creation of new models of payment and prevention. His endeavors and ideas found fertile ground and left a mark not only in the national, but also in the international setting. PMID:24648612

  15. Modelling, Simulation and Social Network Data: What’s New for Public Health and Epidemiology Informatics?

    PubMed Central

    2015-01-01

    Summary Objectives Summarize excellent current research in the field of Public Health and Epidemiology Informatics. Method Synopsis of the articles selected for the IMIA Yearbook 2015. Results Four papers from international peer-reviewed journals have been selected as best papers for the section on Public Health and Epidemiology Informatics. Conclusions The selected articles illustrate current research regarding the impact and assessment of health IT and the latest developments in health information exchange. PMID:26293870

  16. A Systematic Approach to Using Case Studies in Health Informatics Education

    PubMed Central

    Kagolovsky, Yuri; Brillinger, Kathryn

    2009-01-01

    The complexity of health informatics (HI) projects necessitates a solid base of skills and knowledge in a variety of different fields. Case studies are an excellent way to introduce this complexity without overwhelming students. This paper makes a contribution to HI education by presenting a systematic approach to introducing HI concepts to future health informatics professionals (HIPs) and to health care professionals and administrators who need a solid grounding to participate in HI projects. PMID:20351869

  17. The Informatics Challenges Facing Biobanks: A Perspective from a United Kingdom Biobanking Network

    PubMed Central

    Groves, Martin; Jordan, Lee B.; Stobart, Hilary; Purdie, Colin A.; Thompson, Alastair M

    2015-01-01

    The challenges facing biobanks are changing from simple collections of materials to quality-assured fit-for-purpose clinically annotated samples. As a result, informatics awareness and capabilities of a biobank are now intrinsically related to quality. A biobank may be considered a data repository, in the form of raw data (the unprocessed samples), data surrounding the samples (processing and storage conditions), supplementary data (such as clinical annotations), and an increasing ethical requirement for biobanks to have a mechanism for researchers to return their data. The informatics capabilities of a biobank are no longer simply knowing sample locations; instead the capabilities will become a distinguishing factor in the ability of a biobank to provide appropriate samples. There is an increasing requirement for biobanking systems (whether in-house or commercially sourced) to ensure the informatics systems stay apace with the changes being experienced by the biobanking community. In turn, there is a requirement for the biobanks to have a clear informatics policy and directive that is embedded into the wider decision making process. As an example, the Breast Cancer Campaign Tissue Bank in the UK was a collaboration between four individual and diverse biobanks in the UK, and an informatics platform has been developed to address the challenges of running a distributed network. From developing such a system there are key observations about what can or cannot be achieved by informatics in isolation. This article will highlight some of the lessons learned during this development process. PMID:26418270

  18. A nursing informatics research agenda for 2008-18: contextual influences and key components.

    PubMed

    Bakken, Suzanne; Stone, Patricia W; Larson, Elaine L

    2008-01-01

    The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on 3 specific aspects of context--genomic health care, shifting research paradigms, and social (Web 2.0) technologies--that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008-18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269

  19. The Future of Public Health Informatics: Alternative Scenarios and Recommended Strategies

    PubMed Central

    Edmunds, Margo; Thorpe, Lorna; Sepulveda, Martin; Bezold, Clem; Ross, David A.

    2014-01-01

    Background: In October 2013, the Public Health Informatics Institute (PHII) and Institute for Alternative Futures (IAF) convened a multidisciplinary group of experts to evaluate forces shaping public health informatics (PHI) in the United States, with the aim of identifying upcoming challenges and opportunities. The PHI workshop was funded by the Robert Wood Johnson Foundation as part of its larger strategic planning process for public health and primary care. Workshop Context: During the two-day workshop, nine experts from the public and private sectors analyzed and discussed the implications of four scenarios regarding the United States economy, health care system, information technology (IT) sector, and their potential impacts on public health in the next 10 years, by 2023. Workshop participants considered the potential role of the public health sector in addressing population health challenges in each scenario, and then identified specific informatics goals and strategies needed for the sector to succeed in this role. Recommendations and Conclusion: Participants developed recommendations for the public health informatics field and for public health overall in the coming decade. These included the need to rely more heavily on intersectoral collaborations across public and private sectors, to improve data infrastructure and workforce capacity at all levels of the public health enterprise, to expand the evidence base regarding effectiveness of informatics-based public health initiatives, and to communicate strategically with elected officials and other key stakeholders regarding the potential for informatics-based solutions to have an impact on population health. PMID:25848630

  20. A Nursing Informatics Research Agenda for 2008–18: Contextual Influences and Key Components

    PubMed Central

    Bakken, Suzanne; Stone, Patricia W.; Larson, Elaine L.

    2008-01-01

    The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on three specific aspects of context - genomic health care, shifting research paradigms, and social (Web 2.0) technologies - that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008–18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269

  1. A strategic vision for telemedicine and medical informatics in space flight

    NASA Technical Reports Server (NTRS)

    Williams, D. R.; Bashshur, R. L.; Pool, S. L.; Doarn, C. R.; Merrell, R. C.; Logan, J. S.

    2000-01-01

    This Workshop was designed to assist in the ongoing development and application of telemedicine and medical informatics to support extended space flight. Participants included specialists in telemedicine and medical/health informatics (terrestrial and space) medicine from NASA, federal agencies, academic centers, and research and development institutions located in the United States and several other countries. The participants in the working groups developed vision statements, requirements, approaches, and recommendations pertaining to developing and implementing a strategy pertaining to telemedicine and medical informatics. Although some of the conclusions and recommendations reflect ongoing work at NASA, others provided new insight and direction that may require a reprioritization of current NASA efforts in telemedicine and medical informatics. This, however, was the goal of the Workshop. NASA is seeking other perspectives and views from leading practitioners in the fields of telemedicine and medical informatics to invigorate an essential and high-priority component of the International Space Station and future extended exploration missions. Subsequent workshops will further define and refine the general findings and recommendations achieved here. NASA's ultimate aim is to build a sound telemedicine and medical informatics operational system to provide the best medical care available for astronauts going to Mars and beyond.

  2. The Informatics Challenges Facing Biobanks: A Perspective from a United Kingdom Biobanking Network.

    PubMed

    Quinlan, Philip R; Groves, Martin; Jordan, Lee B; Stobart, Hilary; Purdie, Colin A; Thompson, Alastair M

    2015-10-01

    The challenges facing biobanks are changing from simple collections of materials to quality-assured fit-for-purpose clinically annotated samples. As a result, informatics awareness and capabilities of a biobank are now intrinsically related to quality. A biobank may be considered a data repository, in the form of raw data (the unprocessed samples), data surrounding the samples (processing and storage conditions), supplementary data (such as clinical annotations), and an increasing ethical requirement for biobanks to have a mechanism for researchers to return their data. The informatics capabilities of a biobank are no longer simply knowing sample locations; instead the capabilities will become a distinguishing factor in the ability of a biobank to provide appropriate samples. There is an increasing requirement for biobanking systems (whether in-house or commercially sourced) to ensure the informatics systems stay apace with the changes being experienced by the biobanking community. In turn, there is a requirement for the biobanks to have a clear informatics policy and directive that is embedded into the wider decision making process. As an example, the Breast Cancer Campaign Tissue Bank in the UK was a collaboration between four individual and diverse biobanks in the UK, and an informatics platform has been developed to address the challenges of running a distributed network. From developing such a system there are key observations about what can or cannot be achieved by informatics in isolation. This article will highlight some of the lessons learned during this development process. PMID:26418270

  3. Twenty Years of Society of Medical Informatics of B&H and the Journal Acta Informatica Medica

    PubMed Central

    Masic, Izet

    2012-01-01

    In 2012, Health/Medical informatics profession celebrates five jubilees in Bosnia and Herzegovina: a) Thirty five years from the introduction of the first automatic manipulation of data; b) Twenty five years from establishing Society for Medical Informatics BiH; c) Twenty years from establishing scientific and professional journal of the Society for Medical Informatics of Bosnia and Herzegovina „Acta Informatica Medica“; d) Twenty years from establishing first Cathdra for Medical Informatics on biomedical faculties in Bosnia and Herzegovina and e) Ten years from the introduction of “Distance learning” in medical curriculum. All of the five mentioned activities in the area of Medical informatics had special importance and gave appropriate contribution in the development of Health/Medical informatics in Bosnia And Herzegovina. PMID:23322947

  4. [Human prion diseases in the Czech Republic].

    PubMed

    Rohan, Z; Rusina, R; Marešová, M; Matěj, R

    2015-09-01

    Human prion diseases are a group of very rare diseases with a unique pathogenesis and, due to an inauspicious prognosis and unavailability of therapy, with fatal consequences. The etiopathogenetic background is the presence of pathologically misfolded prion protein, highly resistant to denaturation, the aggregation and presence of which in the brain tissue causes irreversible neuronal damage. The most frequent prion disease in humans is Creutzfeldt-Jakob disease (CJD) which occurs in sporadic, hereditary/familial, or acquired/infectious/iatrogenic forms. A new form of CJD, variant CJD, is considered to be linked to dietary exposure to beef products from cattle infected with bovine spongiform encephalopathy (BSE) and to infection via blood transfusion. The clinical picture of these diseases is characterized by a rapidly progressing dementia, cerebellar and extrapyramidal symptoms, and rather specific MRI, EEG, and CSF findings. Clinically, the diagnosis is described as possible or probable prion disease and needs to be confirmed by neuropathological or immunological investigation of the brain tissue. Epidemiological data from the Czech Republic spanning the last decade are presented. PMID:26448298

  5. Geophysical research in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Čermák, Vladimir

    General interest in Earth studies has a long tradition in the Czech Republic that dates back to the German physician, Georg Agricola, a pioneer in scientific classifications of minerals collected in North Bohemia's Ore Mountains during the early 16th century. Astronomy flourished during the rule of Hapsburg Emperor Rudolph II (1552-1612). Modern geophysics developed in the middle of the 18th century from systematic meteorological observations and continued in the 19th century with H. Benndorfs seismological experiment in the mining town of Pribram.In 1920, the State Geophysical Institute was created, with Vaclav Laska as its first director. The institute's research activities concentrated on seismology and geomagnetism. In 1945, the Chair of Geophysics was established at the Charles University in Prague, reflecting the increasing interest in geophysical studies. The Czechoslovak Academy of Sciences was founded in 1952, the same year that the first Conference of Czechoslovak Geophysicists passed the resolution that an institute of geophysics should be reestablished within the new academy as the coordinating and leading institution of basic geophysical research.

  6. The ongoing evolution of the core curriculum of a clinical fellowship in pathology informatics

    PubMed Central

    Quinn, Andrew M.; Klepeis, Veronica E.; Mandelker, Diana L.; Platt, Mia Y.; Rao, Luigi K. F.; Riedlinger, Gregory; Baron, Jason M.; Brodsky, Victor; Kim, Ji Yeon; Lane, William; Lee, Roy E.; Levy, Bruce P.; McClintock, David S.; Beckwith, Bruce A.; Kuo, Frank C.; Gilbertson, John R.

    2014-01-01

    The Partners HealthCare system's Clinical Fellowship in Pathology Informatics (Boston, MA, USA) faces ongoing challenges to the delivery of its core curriculum in the forms of: (1) New classes of fellows annually with new and varying educational needs and increasingly fractured, enterprise-wide commitments; (2) taxing electronic health record (EHR) and laboratory information system (LIS) implementations; and (3) increasing interest in the subspecialty at the academic medical centers (AMCs) in what is a large health care network. In response to these challenges, the fellowship has modified its existing didactic sessions and piloted both a network-wide pathology informatics lecture series and regular “learning laboratories”. Didactic sessions, which had previously included more formal discussions of the four divisions of the core curriculum: Information fundamentals, information systems, workflow and process, and governance and management, now focus on group discussions concerning the fellows’ ongoing projects, updates on the enterprise-wide EHR and LIS implementations, and directed questions about weekly readings. Lectures are given by the informatics faculty, guest informatics faculty, current and former fellows, and information systems members in the network, and are open to all professional members of the pathology departments at the AMCs. Learning laboratories consist of small-group exercises geared toward a variety of learning styles, and are driven by both the fellows and a member of the informatics faculty. The learning laboratories have created a forum for discussing real-time and real-world pathology informatics matters, and for incorporating awareness of and timely discussions about the latest pathology informatics literature. These changes have diversified the delivery of the fellowship's core curriculum, increased exposure of faculty, fellows and trainees to one another, and more equitably distributed teaching responsibilities among the entirety of

  7. The ongoing evolution of the core curriculum of a clinical fellowship in pathology informatics.

    PubMed

    Quinn, Andrew M; Klepeis, Veronica E; Mandelker, Diana L; Platt, Mia Y; Rao, Luigi K F; Riedlinger, Gregory; Baron, Jason M; Brodsky, Victor; Kim, Ji Yeon; Lane, William; Lee, Roy E; Levy, Bruce P; McClintock, David S; Beckwith, Bruce A; Kuo, Frank C; Gilbertson, John R

    2014-01-01

    The Partners HealthCare system's Clinical Fellowship in Pathology Informatics (Boston, MA, USA) faces ongoing challenges to the delivery of its core curriculum in the forms of: (1) New classes of fellows annually with new and varying educational needs and increasingly fractured, enterprise-wide commitments; (2) taxing electronic health record (EHR) and laboratory information system (LIS) implementations; and (3) increasing interest in the subspecialty at the academic medical centers (AMCs) in what is a large health care network. In response to these challenges, the fellowship has modified its existing didactic sessions and piloted both a network-wide pathology informatics lecture series and regular "learning laboratories". Didactic sessions, which had previously included more formal discussions of the four divisions of the core curriculum: Information fundamentals, information systems, workflow and process, and governance and management, now focus on group discussions concerning the fellows' ongoing projects, updates on the enterprise-wide EHR and LIS implementations, and directed questions about weekly readings. Lectures are given by the informatics faculty, guest informatics faculty, current and former fellows, and information systems members in the network, and are open to all professional members of the pathology departments at the AMCs. Learning laboratories consist of small-group exercises geared toward a variety of learning styles, and are driven by both the fellows and a member of the informatics faculty. The learning laboratories have created a forum for discussing real-time and real-world pathology informatics matters, and for incorporating awareness of and timely discussions about the latest pathology informatics literature. These changes have diversified the delivery of the fellowship's core curriculum, increased exposure of faculty, fellows and trainees to one another, and more equitably distributed teaching responsibilities among the entirety of the

  8. CzechGeo/EPOS - Building a national data portal

    NASA Astrophysics Data System (ADS)

    Zednik, J.; Hejda, P.

    2012-04-01

    CzechGeo/EPOS is the consortium of seven geoscience institutions in the Czech Republic (Institute of Geophysics AS CR Prague, Institute of Rock Structure and Mechanics AS CR Prague, Institute of Geonics AS CR Ostrava, Institute of Physics of the Earth, Masaryk University Brno, Faculty of Mathematics and Physics, Charles University Prague, Faculty of Science, Charles University Prague, and Research Institute of Geodesy, Cartography and Topography Zdiby). These institutions operate a distributed system of seismic, GPS, magnetic, gravimetric and geodynamic observatories. The operational and personal costs of CzechGeo/EPOS are mostly covered by the Ministry of education, sports and youth within the support of twelve large research infrastructures in the Czech Republic. Web pages of the project www.czechgeo.cz are being built as a data portal which should integrate all the data and services provided by the involved institutions and research infrastructures. Seismic portal offers selected portions of digital data from permanent, local and temporary seismic stations, locations of seismic events in the country and worldwide, daily seismograms from permanent observatories and local seismic network Webnet, seismic bulletins and catalogs, and macroseismic observations on the territory of the Czech Republic. Magnetic portal involves besides real-time magnetograms also recent state of geomagnetic activity and its forecast for the next day. GPS portal will provide preprocessed data from regional GPS stations. Building the national portal is closely related with the development of the Preparatory phase of the EPOS (European Plate Observing System) project.

  9. Droughts in the Czech Lands: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Brázdil, Rudolf; Trnka, Miroslav

    2015-04-01

    The presentation highlights main results of the InterDrought project (2013-2015), which includes several Czech universities and research institutes, and also shows overview of multidisciplinary scientific monograph on drought. The basic data sources consisting of instrumental, documentary, tree-ring and satellite data are presented. Selected drought indices (SPI, SPEI, Z-index and PDSI) calculated from homogenised Czech temperature and precipitation series are used to describe spatial and temporal variability of droughts in the Czech Lands for the 1804-2010 period including selection of drought extreme episodes and their detail description with respect to meteorological and synoptic patterns and impacts as well. Analysis of droughts prior 1804 is based on documentary data and oak tree-ring widths used for compilation of 500-year Czech drought chronology. The occurrence of extreme droughts is further analysed with respect to sea-level pressure patterns in the Atlantic-European area, climate forcings and changes in land-use. Examples of agricultural and hydrological droughts are mentioned. High resolution soil moisture models are used to estimate drought trends in last five decades as well as estimate future development of droughts in the Czech Republic. Overview represented by this paper will be complemented by several individual detail studies of other InterDrought Team members.

  10. Building the Foundations of an Informatics Agenda for Global Health - 2011 Workshop Report

    PubMed Central

    Mirza, Muzna; Kratz, Mary; Medeiros, Donna; Pina, Jamie; Richards, Janise; Zhang, Xiaohui; Fraser, Hamish; Bailey, Christopher; Krishnamurthy, Ramesh

    2012-01-01

    Strengthening the capacity of public health systems to protect and promote the health of the global population continues to be essential in an increasingly connected world. Informatics practices and principles can play an important role for improving global health response capacity. A critical step is to develop an informatics agenda for global health so that efforts can be prioritized and important global health issues addressed. With the aim of building a foundation for this agenda, the authors developed a workshop to examine the evidence in this domain, recognize the gaps, and document evidence-based recommendations. On 21 August 2011, at the 2011 Public Health Informatics Conference in Atlanta, GA, USA, a four-hour interactive workshop was conducted with 85 participants from 15 countries representing governmental organizations, private sector companies, academia, and non-governmental organizations. The workshop discussion followed an agenda of a plenary session - planning and agenda setting - and four tracks: Policy and governance; knowledge management, collaborative networks and global partnerships; capacity building; and globally reusable resources: metrics, tools, processes, templates, and digital assets. Track discussions examined the evidence base and the participants’ experience to gather information about the current status, compelling and potential benefits, challenges, barriers, and gaps for global health informatics as well as document opportunities and recommendations. This report provides a summary of the discussions and key recommendations as a first step towards building an informatics agenda for global health. Attention to the identified topics and issues is expected to lead to measurable improvements in health equity, health outcomes, and impacts on population health. We propose the workshop report be used as a foundation for the development of the full agenda and a detailed roadmap for global health informatics activities based on further

  11. On Determining Factors for Good Research in Biomedical and Health Informatics

    PubMed Central

    2014-01-01

    Summary Objective What are the determining factors for good research in medical informatics or, from a broader perspective, in biomedical and health informatics? Method From the many lessons learned during my professional career, I tried to identify a fair sampling of such factors. On the occasion of giving the IMIA Award of Excellence lecture during MedInfo 2013, they were presented for discussion. Results Sixteen determining factors (df) have been identified: early identification and promotion (df1), appropriate education (df2), stimulating persons and environments (df3), sufficient time and backtracking opportunities (df4), breadth of medical informatics competencies (df5), considering the necessary preconditions for good medical informatics research (df6), easy access to high-quality knowledge (df7), sufficient scientific career opportunities (df8), appropriate conditions for sustainable research (df9), ability to communicate and to solve problems (df10), as well as to convey research results (df11) in a highly inter- and multidisciplinary environment, ability to think for all and, when needed, taking the lead (df12), always staying unbiased (df13), always keeping doubt (df14), but also always trying to provide solutions (df15), and, finally, being aware that life is more (df16). Conclusions Medical Informatics is an inter- and multidisciplinary discipline “avant la lettre”. Compared to monodisciplinary research, inter- and multidisciplinary research does not only provide significant opportunities for solving major problems in science and in society. It also faces considerable additional challenges for medical informatics as a scientific field. The determining factors, presented here, are in my opinion crucial for conducting successful research and for developing a research career. Since medical informatics as a field has today become an important driving force for research progress, especially in biomedicine and health care, but also in fields like

  12. Developing nurse educators' computer skills towards proficiency in nursing informatics.

    PubMed

    Rajalahti, Elina; Heinonen, Jarmo; Saranto, Kaija

    2014-01-01

    The purpose of this paper is to assess nurse educators' competence development in nursing informatics (NI) and to compare their competence to the NI competence of other healthcare professionals. Electronic health records (EHR) have been in use for many years. However, the adoption of the nursing care plan finally made it possible for nurses in Finland to develop a model for structured documentation with nursing terminology. A total of n = 124 (n = 85 pre-test and n = 39 post-test) participants from Universities of Applied Sciences (UAS), hospitals, hospitals' information management and health centres were surveyed with a e-questionnaire designed to assess the development of their NI competences during the nursing documentation development project. The questionnaire included 145 structured questions and 6 open questions. Data analysis focused on classification and comparison of NI competences through data description and statistical parameters using figures and tables. The basic NI competences of the nurse educators were good at the end of project and the nurse educators had better information literacy and information management competences than other participants. The information retrieval skills varied greatly, but they improved evenly towards the end. The nurse educators mastered better evidence-based nursing and use of nursing process models in their work. PMID:24152130

  13. "Patient informatics": creating new partnerships in medical decision making.

    PubMed

    Bader, S A; Braude, R M

    1998-04-01

    The amassing of health information on the Internet and World Wide Web continues unabated. Patients anxious to participate in decisions about their own treatment have turned to the Internet to confirm diagnoses, validate physician-recommended treatment, or seek alternative therapies. While increased information for patients has been linked to improved outcomes, there are inherent dangers associated with the kind of unauthenticated information available on the Web. The authors discuss the nature of these dangers as well as review the advantages for patients of "information therapy" (improved access to health information). They also examine how the Internet has begun to affect the physician-patient relationship, and describe how the Internet and information technology can be effectively used by physicians in patient care. They recommend that the academic health sciences community seize the opportunity to take the lead in ensuring that patients have access to reliable health information, and suggest that "patient informatics" be integrated by academic physicians and educators into the teaching of clinical skills. PMID:9580718

  14. The Function Biomedical Informatics Research Network Data Repository.

    PubMed

    Keator, David B; van Erp, Theo G M; Turner, Jessica A; Glover, Gary H; Mueller, Bryon A; Liu, Thomas T; Voyvodic, James T; Rasmussen, Jerod; Calhoun, Vince D; Lee, Hyo Jong; Toga, Arthur W; McEwen, Sarah; Ford, Judith M; Mathalon, Daniel H; Diaz, Michele; O'Leary, Daniel S; Jeremy Bockholt, H; Gadde, Syam; Preda, Adrian; Wible, Cynthia G; Stern, Hal S; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G

    2016-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. PMID:26364863

  15. An informatics approach to chronicling the history of IMIA.

    PubMed

    Kulikowski, Casimir A; McGrew, Charles

    2013-01-01

    With the 50th Anniversary of IMIA approaching in 2017, the IMIA Board approved the creation of a Taskforce for compiling materials and writing a history of the organization. As part of the work of the Taskforce, the authors have developed informatics tools, and begun collecting IMIA-related historical materials from its members, while soliciting participation and contributions from those involved in the early days of the organization and its predecessor IFIP-TC4. This poster describes the structure and preliminary contents of the media mining and presentation tools designed at Rutgers University for use by the IMIA History Editorial Board, being constituted to produce the 50th Anniversary publication, as well as an online archive of materials chronicling the evolution of IMIA. A major feature of the data repository is its ability to present different modalities of textual, visual and graphical (timelines, trends) summarizations for the IMIA document collection. It will be augmented with audio material, and will serve as an archival repository for historical research, including software tools for text analysis and extraction of the information entering into the 50th Anniversary volume. PMID:23920904

  16. Medical informatics: a model developed for diabetes education via telemedicine.

    PubMed

    Ubeyli, Elif Derya

    2009-04-01

    Fast developments in information and communication technology (ICT) have made it possible to develop new services for people. One of the most interesting areas is health care. Medical informatics is the discipline concerned with the systematic processing of data, information and knowledge in medicine and health care. Information services, medical decision support systems and telemedicine are becoming important tools for medical professionals and also people who are interested in health related information. Medical decision support aims at providing health care professionals with therapy guidelines directly at the point of care. Telemedicine is the use of modern telecommunications and information technologies (IT) for the provision of clinical care to individuals at a distance and transmission of information to provide that care. In the present study, usage of IT in medicine, medical decision support systems, computerized medical measurements, patient education and network connectivity were described. A model for risk evaluation, data collection and education of undiagnosed diabetes using the world wide web (www) was presented. PMID:19397096

  17. Information Integration to Support Model-Based Policy Informatics

    PubMed Central

    Barrett, Christopher L.; Eubank, Stephen; Marathe, Achla; Marathe, Madhav V.; Pan, Zhengzheng; Swarup, Samarth

    2011-01-01

    The complexities of social and technological policy domains, such as the economy, the environment, and public health present challenges that require a new approach to modeling and decision making. The information required for effective policy and decision making in these complex domains is massive in scale, fine-grained in resolution, and distributed over many data sources. Thus, one of the key challenges in building systems to support policy informatics is information integration. We describe our approach to this problem, and how we are building a multi-theory, multi-actor, multi-perspective system that supports continual data uptake, state assessment, decision analysis, and action assignment based on large-scale high-performance computing infrastructures. Our simulation-based approach allows rapid course-of-action analysis to bound variances in outcomes of policy interventions, which in turn allows the short time-scale planning required in response to emergencies such as epidemic outbreaks. We present the rationale and design of our methodology and discuss several areas of actual and potential application. PMID:22337756

  18. High throughput instruments, methods, and informatics for systems biology.

    SciTech Connect

    Sinclair, Michael B.; Cowie, Jim R.; Van Benthem, Mark Hilary; Wylie, Brian Neil; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Aragon, Anthony D.; Keenan, Michael Robert; Boyack, Kevin W.; Thomas, Edward Victor; Werner-Washburne, Margaret C.; Mosquera-Caro, Monica P.; Martinez, M. Juanita; Martin, Shawn Bryan; Willman, Cheryl L.

    2003-12-01

    High throughput instruments and analysis techniques are required in order to make good use of the genomic sequences that have recently become available for many species, including humans. These instruments and methods must work with tens of thousands of genes simultaneously, and must be able to identify the small subsets of those genes that are implicated in the observed phenotypes, or, for instance, in responses to therapies. Microarrays represent one such high throughput method, which continue to find increasingly broad application. This project has improved microarray technology in several important areas. First, we developed the hyperspectral scanner, which has discovered and diagnosed numerous flaws in techniques broadly employed by microarray researchers. Second, we used a series of statistically designed experiments to identify and correct errors in our microarray data to dramatically improve the accuracy, precision, and repeatability of the microarray gene expression data. Third, our research developed new informatics techniques to identify genes with significantly different expression levels. Finally, natural language processing techniques were applied to improve our ability to make use of online literature annotating the important genes. In combination, this research has improved the reliability and precision of laboratory methods and instruments, while also enabling substantially faster analysis and discovery.

  19. Translational Bioinformatics and Healthcare Informatics: Computational and Ethical Challenges

    PubMed Central

    Sethi, Prerna; Theodos, Kimberly

    2009-01-01

    Exponentially growing biological and bioinformatics data sets present a challenge and an opportunity for researchers to contribute to the understanding of the genetic basis of phenotypes. Due to breakthroughs in microarray technology, it is possible to simultaneously monitor the expressions of thousands of genes, and it is imperative that researchers have access to the clinical data to understand the genetics and proteomics of the diseased tissue. This technology could be a landmark in personalized medicine, which will provide storage for clinical and genetic data in electronic health records (EHRs). In this paper, we explore the computational and ethical challenges that emanate from the intersection of bioinformatics and healthcare informatics research. We describe the current situation of the EHR and its capabilities to store clinical and genetic data and then discuss the Genetic Information Nondiscrimination Act. Finally, we posit that the synergy obtained from the collaborative efforts between the genomics, clinical, and healthcare disciplines has potential to enhance and promote faster and more advanced breakthroughs in healthcare. PMID:20169020

  20. Bioimage informatics: a new area of engineering biology

    PubMed Central

    Peng, Hanchuan

    2008-01-01

    In recent years, the deluge of complicated molecular and cellular microscopic images creates compelling challenges for the image computing community. There has been an increasing focus on developing novel image processing, data mining, database and visualization techniques to extract, compare, search and manage the biological knowledge in these data-intensive problems. This emerging new area of bioinformatics can be called ‘bioimage informatics’. This article reviews the advances of this field from several aspects, including applications, key techniques, available tools and resources. Application examples such as high-throughput/high-content phenotyping and atlas building for model organisms demonstrate the importance of bioimage informatics. The essential techniques to the success of these applications, such as bioimage feature identification, segmentation and tracking, registration, annotation, mining, image data management and visualization, are further summarized, along with a brief overview of the available bioimage databases, analysis tools and other resources. Contact: pengh@janelia.hhmi.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18603566

  1. Psycho-informatics: Big Data shaping modern psychometrics.

    PubMed

    Markowetz, Alexander; Błaszkiewicz, Konrad; Montag, Christian; Switala, Christina; Schlaepfer, Thomas E

    2014-04-01

    For the first time in history, it is possible to study human behavior on great scale and in fine detail simultaneously. Online services and ubiquitous computational devices, such as smartphones and modern cars, record our everyday activity. The resulting Big Data offers unprecedented opportunities for tracking and analyzing behavior. This paper hypothesizes the applicability and impact of Big Data technologies in the context of psychometrics both for research and clinical applications. It first outlines the state of the art, including the severe shortcomings with respect to quality and quantity of the resulting data. It then presents a technological vision, comprised of (i) numerous data sources such as mobile devices and sensors, (ii) a central data store, and (iii) an analytical platform, employing techniques from data mining and machine learning. To further illustrate the dramatic benefits of the proposed methodologies, the paper then outlines two current projects, logging and analyzing smartphone usage. One such study attempts to thereby quantify severity of major depression dynamically; the other investigates (mobile) Internet Addiction. Finally, the paper addresses some of the ethical issues inherent to Big Data technologies. In summary, the proposed approach is about to induce the single biggest methodological shift since the beginning of psychology or psychiatry. The resulting range of applications will dramatically shape the daily routines of researches and medical practitioners alike. Indeed, transferring techniques from computer science to psychiatry and psychology is about to establish Psycho-Informatics, an entire research direction of its own. PMID:24529915

  2. Pitfalls in radiology informatics when deploying an enterprise solution

    NASA Astrophysics Data System (ADS)

    Lindsköld, L.; Wintell, M.; Lundberg, N.

    2010-03-01

    In the Region Vastra Gotaland (VGR), Sweden, sharing of data from 4 PACS system has been done through the Radiology Information Infrastructure that where deployed in 2007, and during 2008 and 2009 also including the information obtained from three different RIS systems installed in the region. The RIS information stored in the Radiology Information Infrastructure is Structured Reports (SR) objects that derivatives from the regional information model. In practice, the Enterprise solution now offers new ways of social collaboration through information sharing within a region. Interoperability was developed according to the IHE mission, i.e. applying standards such as digital imaging and communication in medicine (DICOM) and Health Level 7 (HL7) to address specific clinical communication needs and support optimal patient care. Applying standards and information has shown to be suitable for interoperability, but not appropriate for implementing social collaboration i.e. first and second opinion, as there is no user services related to the standards. The need for social interaction leads to a common negotiated interface and in contrary with interoperability the approach will be a common defined semantic model. Radiology informatics is the glue between the technical standards, information models,semantics, social ruleworks and regulations used within radiology and their customers to share information and services.

  3. Columbia University's Informatics for Diabetes Education and Telemedicine (IDEATel) Project

    PubMed Central

    Starren, Justin; Hripcsak, George; Sengupta, Soumitra; Abbruscato, C.R.; Knudson, Paul E.; Weinstock, Ruth S.; Shea, Steven

    2002-01-01

    The Columbia University Informatics for Diabetes Education and Telemedicine IDEATel) project is a four-year demonstration project funded by the Centers for Medicare and Medicaid Services with the overall goal of evaluating the feasibility, acceptability, effectiveness, and cost-effectiveness of telemedicine. The focal point of the intervention is the home telemedicine unit (HTU), which provides four functions: synchronous videoconferencing over standard telephone lines, electronic transmission for fingerstick glucose and blood pressure readings, secure Web-based messaging and clinical data review, and access to Web-based educational materials. The HTU must be usable by elderly patients with no prior computer experience. Providing these functions through the HTU requires tight integration of six components: the HTU itself, case management software, a clinical information system, Web-based educational material, data security, and networking and telecommunications. These six components were integrated through a variety of interfaces, providing a system that works well for patients and providers. With more than 400 HTUs installed, IDEATel has demonstrated the feasibility of large-scale home telemedicine. PMID:11751801

  4. Modeling and informatics in designing anti-diabetic agents.

    PubMed

    Bharatam, P V; Patel, D S; Adane, L; Mittal, A; Sundriyal, S

    2007-01-01

    Diabetes mellitus is a chronic metabolic disorder, characterized by glucose overproduction and glucose underutilization. Current therapy for T2DM includes drugs, like metformin, glitazones, sulphonyl ureas, etc. Extensive research has been carried out world wide on molecular targets for T2DM like PPARgamma, PTP1B, DPP-IV, GSK-3, cannabinoid receptor, fructose-bisphosphatases, beta3 adrenoceptor, etc. in the development of newer anti-diabetic agents. These therapeutic targets are quite important and most of them are suitable for in silico analysis. Hence, many molecular modeling and informatics studies like, molecular docking, pharmacophore mapping, 3D-QSAR, virtual screening, quantum chemical studies, and pharmacoinformatics like bioinformatics and chemoinformatics studies have been performed on the drugs/leads/targets associated with T2DM. Several of these in silico efforts are exemplary studies; the methodologies adopted in these studies can be emulated in many other therapeutic areas. A review of the rational approaches reported in designing anti-diabetic agents is presented in this article. PMID:18220788

  5. Convergent Evolution of Health Information Management and Health Informatics

    PubMed Central

    Gibson, C. J.; Abrams, K.

    2015-01-01

    Summary Clearly defined boundaries are disappearing among the activities, sources, and uses of health care data and information managed by health information management (HIM) and health informatics (HI) professionals. Definitions of the professional domains and scopes of practice for HIM and HI are converging with the proliferation of information and communication technologies in health care settings. Convergence is changing both the roles that HIM and HI professionals serve in their organizations as well as the competencies necessary for training future professionals. Many of these changes suggest a blurring of roles and responsibilities with increasingly overlapping curricula, job descriptions, and research agendas. Blurred lines in a highly competitive market create confusion for students and employers. In this essay, we provide some perspective on the changing landscape and suggest a course for the future. First we review the evolving definitions of HIM and HI. We next compare the current domains and competencies, review the characteristics as well as the education and credentialing of both disciplines, and examine areas of convergence. Given the current state, we suggest a path forward to strengthen the contributions HIM and HI professionals and educators make to the evolving health care environment. PMID:25848421

  6. Geo-Informatics in India: Major Milestones and Present Scenario

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Karnatak, H.; Raju, P. L. N.

    2016-06-01

    Geo-informatics has emerged globally as a useful tool to address spatial problems with significant societal implications that require integrative and innovative approaches for analysis, modelling, managing, and archiving of extensive and diverse data sets. Breakneck technological development and availability of satellite based data and information services in public domain along with real time geo-data n through participatory approaches, in the two last decades have led to a sea-change in our know-how of our natural resources and their effective management at various levels. It has led to a realization that every phenomena and requirement in our day to day life has some spatial, or geographic component that can be predicted and governed more effectively through geoinformatics tool. India also has come a long way in effective utilization of geoinformatics for various applications. This quantum leap owes its foundation in a humble beginning about half century back and almost parallel developments in the country's space programme to a current level where it touches almost all areas of life and living. Though geoinformatics technology (GIT) is believed to reach satisfactory level in the country, Indian geospatial community faces critical challenges with respect to research, education and training along with enhanced the access to the stakeholders and mobilization of the workforce, that are crucial in further penetration of this technology in context to India's development. In this paper we have critically reviewed milestones of GI development and its current utilization status in Indian context.

  7. Cancer communication and informatics research across the cancer continuum.

    PubMed

    Hesse, Bradford W; Beckjord, Ellen; Rutten, Lila J Finney; Fagerlin, Angela; Cameron, Linda D

    2015-01-01

    Over the past decade, dramatic changes brought about by a rapid diffusion of Internet technologies, cellular telephones, mobile devices, personal digital assistants, electronic health records, and data visualization have helped to create a revolution in health communication. To understand the implications of this communication revolution for cancer care, the National Cancer Institute launched an ambitious set of research priorities under its "extraordinary opportunities" program. We present an overview of some of the relevant behavioral research being conducted within the perspective of this extraordinary opportunity in cancer communication research. We begin by tracing the implications of this research for behavioral scientists across the continuum of cancer care from primary prevention (e.g., tobacco control, diet, exercise, sun protection, and immunization against human papilloma virus), to secondary prevention (e.g., screening for polyps, lesions, and early stage neoplasms), to diagnosis and treatment, posttreatment survivorship, and end of life. Along each point of the continuum, we describe a natural evolution of knowledge from studies on the traditional role of media to research on the changing role of new media and informatics, and we carefully highlight the role that psychological research has played in improving communication- and health-related outcomes along the way. We conclude with an appeal to psychologists of many different backgrounds to join with biomedical researchers, engineers, clinical practitioners, and others to accelerate progress against cancer. PMID:25730725

  8. Warning against the dangers of wildfires in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Mozny, M.; Bares, D.; Virag, M.; Stalmacher, J.

    2009-04-01

    Many fire risk models have been developed for various temporal and spatial scales and application purposes. The integrated warning service in the Czech Republic is used for wildfire risk assessment model of FDI (Fire Danger Index). The FDI model is being developed in the Doksany observatory based on evaluation of weather conditions. FDI model describes danger of wildfire for vegetation covered countryside. There are five levels of danger: 1 - very low risk, 2 - low risk, 3 - moderate risk, 4 - high risk, 5 - very high risk. Simply say higher index value, reflects to higher risk of wildfire. As input data, the model uses measured values from the Czech Hydrometeorological Institute stations network as well as ALADIN's model predicted conditions. The modelling process computes upper soil profile moisture, surface moistening and the spreading speed of fire. Early warning system for wildfires prevention in the Czech Republic is used since 2006.

  9. The state of psychiatry in the Czech Republic.

    PubMed

    Höschl, Cyril; Winkler, Petr; Pěč, Ondřej

    2012-08-01

    This overview of Czech psychiatry begins with a brief review of its history; outlines its social, political and economic determinants and then describes the field itself. Both epidemiological and service-related information are discussed, together with the issues for mental health personnel, education and research. The heavy burden of communist history pervades most areas and must be taken into account in the specific characteristics that influence both the current situation and future prospects of Czech psychiatry. This consideration is essential for orientation in the field and to understand Czech particularities. The greatest challenges, however, originate from the fundamental changes that are going on in the world today. These challenges reach beyond national boundaries and include such phenomena as globalization, migration, ageing population, growing burden of mental ill health, the still prevailing stigma towards psychiatry, and the psychological roots and consequences of current financial and societal crises. PMID:22950765

  10. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client

  11. The Seeing and the Seen: Contrasting Perspectives of Post-Communist Czech Schooling

    ERIC Educational Resources Information Center

    Perry, Laura B.

    2005-01-01

    This study analyses both foreign (primarily western European and North American) and Czech perspectives of Czech schooling in the post-communist era. Qualitative content analysis is performed on documentary sources written by scholars about Czech schooling. The analysis examines which topics are highlighted, what are the main patterns and what is…

  12. The White Book Launched: On the Prospects of Education in the Czech Republic

    ERIC Educational Resources Information Center

    Pol, Milan; Rabusicova, Milada

    2003-01-01

    This article wants to present the National Education Development Programme of the Czech Republic, also known as the White Book, to large international audiences. The vision of Czech education is hereunder discussed within the framework of the development of the Czech educational policy in the 1990's, pointing out the Programme's essential ideas.…

  13. From Ethnocultural Pride to Promoting the Texas Czech Vernacular: Current Maintenance Efforts and Unexplored Possibilities

    ERIC Educational Resources Information Center

    Cope, Lida

    2011-01-01

    Texas Czech is a product of over a century and a half of contact between Moravian Czech and English in Texas. While Texans of this descent have largely maintained a sense of distinctive ethnic identity and have creatively re-authenticated their ancestors' traditions into a unique Texas Czech culture, their language is now on the verge of…

  14. [Strengthening global health informatics research within the andean region through international collaboration].

    PubMed

    Curioso, Walter H; García, Patricia J; Castillo, Greta M; Blas, Magaly M; Perez-Brumer, Amaya; Zimic, Mirko

    2010-09-01

    To improve global health and the welfare of a population, skilled human resources are required, not only in medicine and health, but also in the field of informatics. Unfortunately, training and research programs specific to biomedical informatics in developing countries are both scarce and poorly documented. The aim of this paper is to report the results from the first Informatics Expert Meeting for the Andean Region, including, nine Latin American based institutional case studies. This two-day event occurred in March 2010 and brought together twenty-three leaders in biomedical informatics from around the world. The blend of practical and experiential advice from these experts contributed to rich discussions addressing both challenges and applications of informatics within Latin American. In addition, to address the needs emphasized at the meeting, the QUIPU Network was established to expand the research consortium in the Andean Region, Latin America, and internationally. The use of these new technologies in existing public health training and research programs will be key to improving the health of populations in the Andean Region and around the globe. PMID:21152740

  15. Using Informatics to Improve the Care of Patients Susceptible to Malignant Hyperthermia.

    PubMed

    Denholm, Bonnie G

    2016-04-01

    Perioperative nurses and nurse leaders should understand how to apply a nursing informatics framework and informatics concepts to strengthen data interpretation, transitions in care, and engagement with patients susceptible to malignant hyperthermia (MH) and their family members. Patient outcomes can be improved when informatics solutions facilitate identifying risks, clinical decision making in a crisis situation, retrieving priority information during transitions of care, and involving patients in planning care. Incorporating informatics solutions into existing quality improvement processes can help evaluate knowledge and preparedness related to managing care for a patient in an MH crisis. Informatics solutions can also help enhance interoperability by evaluating workflow related to transitions in care. Perioperative nurses and nurse leaders should advocate for diligence in submitting reports of MH-suspected events to databases. Improved data collection and data sharing enhance aggregated standardized data sets, which can advance research and increase the quality of evidence available with which to guide practice. PMID:27004500

  16. Public Health Platforms: An Emerging Informatics Approach to Health Professional Learning and Development

    PubMed Central

    Gray, Kathleen

    2016-01-01

    Health informatics has a major role to play in optimising the management and use of data, information and knowledge in health systems. As health systems undergo digital transformation, it is important to consider informatics approaches not only to curriculum content but also to the design of learning environments and learning activities for health professional learning and development. An example of such an informatics approach is the use of large-scale, integrated public health platforms on the Internet as part of health professional learning and development. This article describes selected examples of such platforms, with a focus on how they may influence the direction of health professional learning and development. Significance for public health The landscape of healthcare systems, public health systems, health research systems and professional education systems is fragmented, with many gaps and silos. More sophistication in the management of health data, information, and knowledge, based on public health informatics expertise, is needed to tackle key issues of prevention, promotion and policy-making. Platform technologies represent an emerging large-scale, highly integrated informatics approach to public health, combining the technologies of Internet, the web, the cloud, social technologies, remote sensing and/or mobile apps into an online infrastructure that can allow more synergies in work within and across these systems. Health professional curricula need updating so that the health workforce has a deep and critical understanding of the way that platform technologies are becoming the foundation of the health sector. PMID:27190977

  17. MIRASS: medical informatics research activity support system using information mashup network.

    PubMed

    Kiah, M L M; Zaidan, B B; Zaidan, A A; Nabi, Mohamed; Ibraheem, Rabiu

    2014-04-01

    The advancement of information technology has facilitated the automation and feasibility of online information sharing. The second generation of the World Wide Web (Web 2.0) enables the collaboration and sharing of online information through Web-serving applications. Data mashup, which is considered a Web 2.0 platform, plays an important role in information and communication technology applications. However, few ideas have been transformed into education and research domains, particularly in medical informatics. The creation of a friendly environment for medical informatics research requires the removal of certain obstacles in terms of search time, resource credibility, and search result accuracy. This paper considers three glitches that researchers encounter in medical informatics research; these glitches include the quality of papers obtained from scientific search engines (particularly, Web of Science and Science Direct), the quality of articles from the indices of these search engines, and the customizability and flexibility of these search engines. A customizable search engine for trusted resources of medical informatics was developed and implemented through data mashup. Results show that the proposed search engine improves the usability of scientific search engines for medical informatics. Pipe search engine was found to be more efficient than other engines. PMID:24700079

  18. Sharing intellectual and social capital: A partnership to advance informatics and foster consumer centric care.

    PubMed

    Skiba, Diane J; Barton, Amy J; Norton, Michele; McCasky, Teresa; Kimmel, Kathleen

    2006-01-01

    The need to educate the nursing workforce about using informatics tools to provide safe, quality consumer centric care is of utmost importance. A unique and strategic partnership was established to address this challenge. The informatics specialty option at the University of Colorado at Denver and Health Sciences Center School of Nursing has joined forces with McKesson Corporation. The overall goal of this partnership is to provide leadership in the field of nursing informatics and the further development of nursing informatics as a discipline. This paper describes the converging forces that serve as a foundation for the partnership. There are also descriptions of the two partners and their shared goals. This partnership was designed to share intellectual and social capital to advance nursing informatics through educational and research opportunities. The partnership also allows for the use of intellectual capital to brainstorm new developments, designs and to test the usability of new products. This paper reports on the various projects underway in the area of education, scholarship, research and development. PMID:17102253

  19. An informatics agenda for public health: summarized recommendations from the 2011 AMIA PHI Conference

    PubMed Central

    Goodman, Kenneth W; Gotham, Ivan J; Holmes, John H; Lang, Lisa; Miner, Kathleen; Potenziani, David D; Richards, Janise; Turner, Anne M; Fu, Paul C

    2012-01-01

    The AMIA Public Health Informatics 2011 Conference brought together members of the public health and health informatics communities to revisit the national agenda developed at the AMIA Spring Congress in 2001, assess the progress that has been made in the past decade, and develop recommendations to further guide the field. Participants met in five discussion tracks: technical framework; research and evaluation; ethics; education, professional training, and workforce development; and sustainability. Participants identified 62 recommendations, which clustered into three key themes related to the need to (1) enhance communication and information sharing within the public health informatics community, (2) improve the consistency of public health informatics through common public health terminologies, rigorous evaluation methodologies, and competency-based training, and (3) promote effective coordination and leadership that will champion and drive the field forward. The agenda and recommendations from the meeting will be disseminated and discussed throughout the public health and informatics communities. Both communities stand to gain much by working together to use these recommendations to further advance the application of information technology to improve health. PMID:22395299

  20. Public Health Platforms: An Emerging Informatics Approach to Health Professional Learning and Development.

    PubMed

    Gray, Kathleen

    2016-04-26

    Health informatics has a major role to play in optimising the management and use of data, information and knowledge in health systems. As health systems undergo digital transformation, it is important to consider informatics approaches not only to curriculum content but also to the design of learning environments and learning activities for health professional learning and development. An example of such an informatics approach is the use of large-scale, integrated public health platforms on the Internet as part of health professional learning and development. This article describes selected examples of such platforms, with a focus on how they may influence the direction of health professional learning and development. Significance for public healthThe landscape of healthcare systems, public health systems, health research systems and professional education systems is fragmented, with many gaps and silos. More sophistication in the management of health data, information, and knowledge, based on public health informatics expertise, is needed to tackle key issues of prevention, promotion and policy-making. Platform technologies represent an emerging large-scale, highly integrated informatics approach to public health, combining the technologies of Internet, the web, the cloud, social technologies, remote sensing and/or mobile apps into an online infrastructure that can allow more synergies in work within and across these systems. Health professional curricula need updating so that the health workforce has a deep and critical understanding of the way that platform technologies are becoming the foundation of the health sector. PMID:27190977

  1. STARE-HI – Statement on Reporting of Evaluation Studies in Health Informatics

    PubMed Central

    Brender, J.; Talmon, J.; de Keizer, N.; Nykänen, P.; Rigby, M.; Ammenwerth, E.

    2013-01-01

    Summary Background Improving the quality of reporting of evaluation studies in health informatics is an important requirement towards the vision of evidence-based health informatics. The STARE-HI – Statement on Reporting of Evaluation Studies in health informatics, published in 2009, provides guidelines on the elements to be contained in an evaluation study report. Objectives To elaborate on and provide a rationale for the principles of STARE-HI and to guide authors and readers of evaluation studies in health informatics by providing explanatory examples of reporting. Methods A group of methodologists, researchers and editors prepared the present elaboration of the STARE-HI statement and selected examples from the literature. Results The 35 STARE-HI items to be addressed in evaluation papers describing health informatics interventions are discussed one by one and each is extended with examples and elaborations. Conclusion The STARE-HI statement and this elaboration document should be helpful resources to improve reporting of both quantitative and qualitative evaluation studies. Evaluation manuscripts adhering to the principles will enable readers of such papers to better place the studies in a proper context and judge their validity and generalizability, and thus in turn optimize the exploitation of the evidence contained therein. Limitations This paper is based on experiences of a group of editors, reviewers, authors of systematic reviews and readers of the scientific literature. The applicability of the details of these principles has to evolve as a function of their use in practice. PMID:24155788

  2. [Proposal for the teaching and application of informatics at medical schools].

    PubMed

    Juri, H; Sipowicz, O; Avila, R; Hernández, D; Palma, A

    1991-01-01

    Informatics is the discipline that process efficiently all the necessary data to obtain information. The data acquisition, processing and interpretation is realized through traditional as well as automated means. Medical Informatics is the union of all methods of informatics in medicine including the preparation of medical data required for the application of these methods. Due to the need to keep up with the increasing amount of data that modern medicine is receiving and efficiently process it to obtain meaningful information, we propose the creation of a department of Medical Informatics in our Medical School to: 1) Teach the basic principles of medical informatics to undergraduate and graduate students, including lectures in: Information technics, medical terminology, medical linguistics, international classification of diseases, Hospital informations Systems, practical application of computing in medicine as Oncocyn, Mycin, etc., as well as external data bases. 2) Help the health sciences personnel to obtain and transfer medical information through the National and International Electronic Networks of Medical Information. PMID:1843360

  3. Health Informatics and E-health Curriculum for Clinical Health Profession Degrees.

    PubMed

    Gray, Kathleen; Choo, Dawn; Butler-Henderson, Kerryn; Whetton, Sue; Maeder, Anthony

    2015-01-01

    The project reported in this paper models a new approach to making health informatics and e-health education widely available to students in a range of Australian clinical health profession degrees. The development of a Masters level subject uses design-based research to apply educational quality assurance practices which are consistent with university qualification frameworks, and with clinical health profession education standards; at the same time it gives recognition to health informatics as a specialised profession in its own right. The paper presents details of (a) design with reference to the Australian Qualifications Framework and CHIA competencies, (b) peer review within a three-university teaching team, (c) external review by experts from the professions, (d) cross-institutional interprofessional online learning, (e) methods for evaluating student learning experiences and outcomes, and (f) mechanisms for making the curriculum openly available to interested parties. The project has sought and found demand among clinical health professionals for formal health informatics and e-health education that is designed for them. It has helped the educators and organisations involved to understand the need for nuanced and complementary health informatics educational offerings in Australian universities. These insights may aid in further efforts to address substantive and systemic challenges that clinical informatics faces in Australia. PMID:26210420

  4. Assessment of informatization for the dispensing of medications at a university hospital

    PubMed Central

    Serafim, Sônia Aparecida Dias; Forster, Aldaisa Cassanho; Simões, Maria Jacira Silva; Penaforte, Thais Rodrigues

    2010-01-01

    INTRODUCTION Informatics and automation are important tools for the reduction of work, errors and costs in a hospital pharmacy. OBJECTIVES To describe the structuring and function of an informatized system for the dispensing of medications and to assess its effect on nursing and pharmacy services during the period from 1997 to 2003. MATERIALS AND METHODS In this descriptive and retrospective study, we performed an analysis of documents addressing the structuring and implementation of the informatized medication dispensing system. In addition, we analyzed the perceptions of nurses, pharmacists and pharmacy assistants who participated in the structuring phase of the system when interviewed about the effect of informatization on administrative aspects (e.g., requisition of medications, presentation of the dispensed medication and system operationalization). RESULTS The major advantages provided by the new system were 1) the elimination of manual transcripts for prescribed medications, 2) increased speed, 3) better identification of the doses prescribed by physicians, 4) medication labels containing all necessary identification and 5) practicality and safety of optical bar code-based verification of the requested and dispensed medications. CONCLUSIONS The great majority of the interviewees considered the informatized medication supply system to be of good quality. Analysis of the data provided information that could contribute to the expansion and refinement of the system, provide support for studies regarding the utilization of medications and offer new perspectives for work and productivity. PMID:20454500

  5. The State of Knowledge Management in Czech Companies

    NASA Astrophysics Data System (ADS)

    Maresova, P.; Hedvicakova, M.

    In the globalised world, Czech economy faces many challenges brought by the processes of integration. The crucial factors for companies that want to succeed in the global competition are knowledge and abilities to use the knowledge in the best possible way. The purpose of the work is a familiarization with the results of a questionnaire survey with the topic of "Research of the state of knowledge management in companies in the Czech Republic" realized in the spring 2009 in the cooperation of the University of Hradec Králové and the consulting company Per Partes Consulting, Ltd under the patronage of the European Union.

  6. [The origins of the Czech Society of Cardiology and of Czech cardiology].

    PubMed

    Widimský, J

    2013-06-01

    The paper presents the origins of the Czech Society of Cardiology on the one hand, and the origins of Czech cardiology on the other. The Czech Society of Cardiology is the third oldest in the world (after the American and German Societies). It was founded in 1929 by Prof. Libenský. As early as in 1933, the Society organised the first international congress of cardiologists in Prague, which was attended by 200 doctors, out of which 50 were from abroad. The most participants came from France and Poland. Other participants came from England, Argentina, Belgium, the Netherlands, Italy, Romania, Spain and Switzerland. The worldwide importance of this congress is apparent from the fact that both the World Society of Cardiology and the European Society of Cardiology (EKS) were founded after World War II in the years 1950 and 1952, i.e. almost 20 years after the first international congress of cardiology in Prague. In 1964, the Fourth Congress of European Society of Cardiology was held in Prague with the participation of 1,500 specialists from 31 countries and chaired by Prof. Pavel Lukl, the later president of EKS (1964- 1968). The paper also presents the work of our specialists in WHO and the history of the international journal Cor et Vasa issued by the Avicenum publishing house in Prague in English and Russian in the years 1958- 1992. An important role in the development of our cardiology was played by certain departments and clinics. In 1951, the Institute for Cardiovascular Research (ÚCHOK) was founded in PrahaKrč, thanks to the initiative of MU Dr. František Kriegl, the Deputy Minister of Health. Its first director was Klement Weber, who published, as early as in 1929, a monograph on arrhythmias -  50 years earlier than arrhythmias started to be at the centre of attention of cardiologists. Klement Weber was one of the doctors of President T. G. Masaryk during his serious disease towards the end of his life. Jan Brod was the deputy of Klement Weber in the

  7. MBAT: A scalable informatics system for unifying digital atlasing workflows

    PubMed Central

    2010-01-01

    Background Digital atlases provide a common semantic and spatial coordinate system that can be leveraged to compare, contrast, and correlate data from disparate sources. As the quality and amount of biological data continues to advance and grow, searching, referencing, and comparing this data with a researcher's own data is essential. However, the integration process is cumbersome and time-consuming due to misaligned data, implicitly defined associations, and incompatible data sources. This work addressing these challenges by providing a unified and adaptable environment to accelerate the workflow to gather, align, and analyze the data. Results The MouseBIRN Atlasing Toolkit (MBAT) project was developed as a cross-platform, free open-source application that unifies and accelerates the digital atlas workflow. A tiered, plug-in architecture was designed for the neuroinformatics and genomics goals of the project to provide a modular and extensible design. MBAT provides the ability to use a single query to search and retrieve data from multiple data sources, align image data using the user's preferred registration method, composite data from multiple sources in a common space, and link relevant informatics information to the current view of the data or atlas. The workspaces leverage tool plug-ins to extend and allow future extensions of the basic workspace functionality. A wide variety of tool plug-ins were developed that integrate pre-existing as well as newly created technology into each workspace. Novel atlasing features were also developed, such as supporting multiple label sets, dynamic selection and grouping of labels, and synchronized, context-driven display of ontological data. Conclusions MBAT empowers researchers to discover correlations among disparate data by providing a unified environment for bringing together distributed reference resources, a user's image data, and biological atlases into the same spatial or semantic context. Through its extensible

  8. GEO-ENGINEERING MODELING THROUGH INTERNET INFORMATICS (GEMINI)

    SciTech Connect

    W. Lynn Watney; John H. Doveton

    2004-05-13

    GEMINI (Geo-Engineering Modeling through Internet Informatics) is a public-domain web application focused on analysis and modeling of petroleum reservoirs and plays (http://www.kgs.ukans.edu/Gemini/index.html). GEMINI creates a virtual project by ''on-the-fly'' assembly and analysis of on-line data either from the Kansas Geological Survey or uploaded from the user. GEMINI's suite of geological and engineering web applications for reservoir analysis include: (1) petrofacies-based core and log modeling using an interactive relational rock catalog and log analysis modules; (2) a well profile module; (3) interactive cross sections to display ''marked'' wireline logs; (4) deterministic gridding and mapping of petrophysical data; (5) calculation and mapping of layer volumetrics; (6) material balance calculations; (7) PVT calculator; (8) DST analyst, (9) automated hydrocarbon association navigator (KHAN) for database mining, and (10) tutorial and help functions. The Kansas Hydrocarbon Association Navigator (KHAN) utilizes petrophysical databases to estimate hydrocarbon pay or other constituent at a play- or field-scale. Databases analyzed and displayed include digital logs, core analysis and photos, DST, and production data. GEMINI accommodates distant collaborations using secure password protection and authorized access. Assembled data, analyses, charts, and maps can readily be moved to other applications. GEMINI's target audience includes small independents and consultants seeking to find, quantitatively characterize, and develop subtle and bypassed pays by leveraging the growing base of digital data resources. Participating companies involved in the testing and evaluation of GEMINI included Anadarko, BP, Conoco-Phillips, Lario, Mull, Murfin, and Pioneer Resources.

  9. Informatics Methods to Enable Sharing of Quantitative Imaging Research Data

    PubMed Central

    Levy, Mia A.; Freymann, John B.; Kirby, Justin S.; Fedorov, Andriy; Fennessy, Fiona M.; Eschrich, Steven A.; Berglund, Anders E.; Fenstermacher, David A.; Tan, Yongqiang; Guo, Xiaotao; Casavant, Thomas L.; Brown, Bartley J.; Braun, Terry A.; Dekker, Andre; Roelofs, Erik; Mountz, James M.; Boada, Fernando; Laymon, Charles; Oborski, Matt; Rubin, Daniel L

    2012-01-01

    Introduction The National Cancer Institute (NCI) Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. Methods We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. Results There area variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. Conclusions As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers. PMID:22770688

  10. Role of Internet Images in the Biomedical Informatics Research Network

    NASA Astrophysics Data System (ADS)

    Santini, Simone; Gupta, Amarnath

    2003-01-01

    The Biomedical Informatics Research Network is wide breadth project sponsored by the American National Institutes of Health (NIH) to promote the use of modern telecommunication for data exchange and collaboration in brain research. The project is attempting to buid a database and network infrastructure in which neuroscientists will post, query, and analyze raw data, processed data, and the results of the analysis. The project is divided into parts, which analyze mouse brain data and human brain data, respectively. In this phase of the project, the data are essentially anatomical, while in a future phase we foresee the introduction of functional data. One important source of raw data, both for the mouse and the human brains are magnetic resonance images (MRI), which provide dense volumetric information of the density of the brain or (in the case of functional MRI), of the brain activity. In the case of the brain mouse, these data are supplemented with images of slices of brains and other histological measure. One important technical problem that we are facing in BIRN is that of managing these volumetric data, processing them (possibly using tools available only remotely), storing the results of the analyses, and making them available to all the institutions participating in the project. This paper describes the problems posed by the BIRN project, the importance of image data in these activities, and the challenges they pose. We will describe the shared environment that we are creating, and the facilities for storing, querying, remotely processing, and sharing the image data that constitute the bulk of the brain data that scientists are producing.

  11. Graphical Neuroimaging Informatics: Application to Alzheimer’s Disease

    PubMed Central

    Bowman, Ian; Joshi, Shantanu H.; Greer, Vaughan

    2013-01-01

    The Informatics Visualization for Neuroimaging (INVIZIAN) framework allows one to graphically display image and meta-data information from sizeable collections of neuroimaging data as a whole using a dynamic and compelling user interface. Users can fluidly interact with an entire collection of cortical surfaces using only their mouse. In addition, users can cluster and group brains according in multiple ways for subsequent comparison using graphical data mining tools. In this article, we illustrate the utility of INVIZIAN for simultaneous exploration and mining a large collection of extracted cortical surface data arising in clinical neuroimaging studies of patients with Alzheimer’s Disease, mild cognitive impairment, as well as healthy control subjects. Alzheimer’s Disease is particularly interesting due to the wide-spread effects on cortical architecture and alterations of volume in specific brain areas associated with memory. We demonstrate INVIZIAN’s ability to render multiple brain surfaces from multiple diagnostic groups of subjects, showcase the interactivity of the system, and showcase how INVIZIAN can be employed to generate hypotheses about the collection of data which would be suitable for direct access to the underlying raw data and subsequent formal statistical analysis. Specifically, we use INVIZIAN show how cortical thickness and hippocampal volume differences between group are evident even in the absence of more formal hypothesis testing. In the context of neurological diseases linked to brain aging such as AD, INVIZIAN provides a unique means for considering the entirety of whole brain datasets, look for interesting relationships among them, and thereby derive new ideas for further research and study. PMID:24203652

  12. 76 FR 24889 - Submission for OMB Review; Comment Request; Cancer Biomedical Informatics Grid® (caBIG®) Support...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... information collection was previously published in the Federal Register on February 11, 2011 (76 FR 7867) and... Biomedical Informatics Grid (caBIG ) Support Service Provider (SSP) Program (NCI) Summary: Under the... control number. Proposed Collection: Title: cancer Biomedical Informatics Grid (caBIG ) Support...

  13. 76 FR 7867 - Proposed Collection; Comment Request; Cancer Biomedical Informatics Grid® (caBIG®) Support...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... Informatics Grid (caBIG ) Support Service Provider (SSP) Program (NCI) SUMMARY: In compliance with the... Informatics Grid (caBIG ) Support Service Provider (SSP) Program (NCI). Type of Information Collection Request...BIG initiative in early 2007 with an emphasis on widespread institutional adoption of the program...

  14. Transformation of health care through innovative use of information technology: challenges for health and medical informatics education.

    PubMed

    Haux, R; Swinkels, W; Ball, M; Knaup, P; Lun, K C

    1998-06-01

    Information storage and processing continues to become increasingly important for health care, and offers enormous potential to be realised in the delivery of health care. Therefore, it is imperative that all health care professionals should learn skills and gain knowledge in the field of health informatics, or medical informatics, respectively. Working Group 1, Health and Medical Informatics Education, of the International Medical Informatics Association (IMIA WG1) seeks to advance the knowledge of how these skills are taught in courses for the various health care professions around the world, and includes physicians, nurses, administrators, and specialists in medical informatics. IMIA WG1 held its 6th International Conference on Health and Medical Education in Newcastle, Australia, in August 1997. The theme of the conference was 'Transformation of Healthcare through Innovative Use of Information Technology'. This special issue of the International Journal of Medical Informatics on Health and Medical Informatics Education contains selected papers presented at the conference. In addition to the central topic, Educating Health Care Professionals in Medical Informatics the topics telematics, distance education and computer based training were also discussed at the conference. PMID:9726487

  15. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    PubMed

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine. PMID:26955500

  16. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    PubMed Central

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M.; King, Andrew J.; Draper, Amie J.; Handen, Adam L.; Fisher, Arielle M.; Becich, Michael J.; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine. PMID:26955500

  17. An Iterative Methodology for Developing National Recommendations for Nursing Informatics Curricula.

    PubMed

    Egbert, Nicole; Thye, Johannes; Schulte, Georg; Liebe, Jan-David; Hackl, Werner O; Ammenwerth, Elske; Hübner, Ursula

    2016-01-01

    The increasing importance of IT in nursing requires educational measures to support its meaningful application. However, many countries do not yet have national recommendations for nursing informatics competencies. We thus developed an iterative triple methodology to yield validated and country specific recommendations for informatics core competencies in nursing. We identified relevant competencies from national sources (step 1), matched and enriched these with input from the international literature (step 2) and fed the resulting 24 core competencies into a survey (120 invited experts from which 87 responded) and two focus group sessions with a total of 48 experts (steps 3a/3b). The subsequent focus group sessions confirmed and expanded the findings. As a result, we were able to define role specific informatics core competencies for three countries. PMID:27577467

  18. Health informatics and community health: support for patients as collaborators in care.

    PubMed

    Brennan, P F

    1999-12-01

    Health informatics has much to offer community health care. Computer networks and telecommunications provide particular support that can enhance the collaboration among clinicians, care providers and patients. Special-purpose computer tools referred to as Consumer Health Informatics (CHI) represent the application of computer and information technologies specifically to support the health information and communication needs of patients and lay persons. Research projects like ComputerLink and CHESS demonstrate that CHI is acceptable to patients and promotes self-care and disease management. Three grand challenges must be faced to insure realization of the promise of health informatics to community health care: development of knowledge management and information discovery tools for patients, insurance of health information literacy for all persons, and re-engineering clinical practice to capitalize on patients as full partners in health care. PMID:10805012

  19. An informatics research agenda to support precision medicine: seven key areas.

    PubMed

    Tenenbaum, Jessica D; Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R

    2016-07-01

    The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM's vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. PMID:27107452

  20. Integrating experiential learning into a double degree masters program in nursing and health informatics.

    PubMed

    Borycki, Elizabeth M; Frisch, Noreen; Kushniruk, Andre W; McIntyre, Marjorie; Hutchinson, David

    2012-01-01

    In Canada there are few nurses who have advanced practice competencies in nursing informatics. This is a significant issue for regional health authorities, governments and electronic health record vendors in Canada who are implementing electronic health records. Few Schools of Nursing provide formalized opportunities for nurses to develop informatics competencies. Many of these opportunities take the form of post-baccalaureate certificate programs or individual undergraduate or graduate level courses in nursing. The purpose of this paper will be to: (1) describe the health and human resource issues in this area in Canada, (2) provide a brief overview of the design and development of a new, innovative double degree program at the intersection of nursing and health informatics that interleaves cooperative learning, (3) describe the integration of cooperative learning into this new program, and (4) outline the lessons learned in integrating cooperative education into such a graduate program. PMID:24199044

  1. Developing new pathways into the biomedical informatics field: the AMIA High School Scholars Program.

    PubMed

    Unertl, Kim M; Finnell, John T; Sarkar, Indra Neil

    2016-07-01

    Increasing access to biomedical informatics experiences is a significant need as the field continues to face workforce challenges. Looking beyond traditional medical school and graduate school pathways into the field is crucial for expanding the number of individuals and increasing diversity in the field. This case report provides an overview of the development and initial implementation of the American Medical Informatics Association (AMIA) High School Scholars Program. Initiated in 2014, the program's primary goal was to provide dissemination opportunities for high school students engaged in biomedical informatics research. We discuss success factors including strong cross-institutional, cross-organizational collaboration and the high quality of high school student submissions to the program. The challenges encountered, especially around working with minors and communicating program expectations clearly, are also discussed. Finally, we present the path forward for the continued evolution of the AMIA High School Scholars Program. PMID:27076620

  2. Health informatics community priming in a small nation: the New Zealand experience.

    PubMed

    Parry, David; Hunter, Inga; Honey, Michelle; Holt, Alec; Day, Karen; Kirk, Ray; Cullen, Rowena

    2013-01-01

    New Zealand (NZ) has a rapidly expanding health information technology (IT) development industry and wide-ranging use of informatics, especially in the primary health sector. The New Zealand government through the National Health IT Board (NHITB) has promised to provide shared care health records of core information for all New Zealanders by 2014. One of the major barriers to improvement in IT use in healthcare is the dearth of trained and interested clinicians, management and technical workforce. Health Informatics New Zealand (HINZ) and the academic community in New Zealand are attempting to remedy this by raising awareness of health informatics at the grass roots level via free "primer" workshops and by developing a sustainable cross-institutional model of educational opportunities. Support from the NHITB has been forthcoming, and the workshops start in early 2013. This poster presents the process, development and preliminary findings of this work. PMID:23920724

  3. Training the biomedical informatics workforce in Latin America: results of a needs assessment

    PubMed Central

    Blas, Magaly M; Curioso, Walter H; Zimic, Mirko; Carcamo, Cesar P; Castagnetto, Jesus M; Lescano, Andres G; Lopez, Diego M

    2011-01-01

    Objective To report the results of a needs assessment of research and training in Medical Informatics (MI) and Bioinformatics (BI) in Latin America. Methods and results This assessment was conducted by QUIPU: The Andean Global Health Informatics Research and Training Center. After sending email invitations to MI–BI related professionals from Latin America, 142 surveys were received from 11 Latin American countries. The following were the top four ranked MI-related courses that a training programme should include: introduction to biomedical informatics; data representation and databases; mobile health; and courses that address issues of security, confidentiality and privacy. Several new courses and topics for research were suggested by survey participants. The information collected is guiding the development of curricula and a research agenda for the MI and BI QUIPU multidisciplinary programme for the Andean Region and Latin America. PMID:22080537

  4. Public health informatics: a CDC course for public health program managers.

    PubMed Central

    O'Carroll, P. W.; Yasnoff, W. A.; Wilhoite, W.

    1998-01-01

    Information science and technology are critical to the modern practice of public health. Yet today's public health professionals generally have no formal training in public health informatics--the application of information science and technology to public health practice and research. Responding to this need, the U.S. Centers for Disease Control and Prevention (CDC) recently developed, tested, and delivered a new training course in public health informatics. The course was designed for experienced public health program managers and included sessions on general informatics principles and concepts; key information systems issues and information technologies; and management issues as they relate to information technology projects. This course has been enthusiastically received both at the state and federal levels. We plan to develop an abbreviated version for health officers, administrators, and other public health executives. PMID:9929264

  5. Health informatics and analytics - building a program to integrate business analytics across clinical and administrative disciplines.

    PubMed

    Tremblay, Monica Chiarini; Deckard, Gloria J; Klein, Richard

    2016-07-01

    Health care organizations must develop integrated health information systems to respond to the numerous government mandates driving the movement toward reimbursement models emphasizing value-based and accountable care. Success in this transition requires integrated data analytics, supported by the combination of health informatics, interoperability, business process design, and advanced decision support tools. This case study presents the development of a master's level cross- and multidisciplinary informatics program offered through a business school. The program provides students from diverse backgrounds with the knowledge, leadership, and practical application skills of health informatics, information systems, and data analytics that bridge the interests of clinical and nonclinical professionals. This case presents the actions taken and challenges encountered in navigating intra-university politics, specifying curriculum, recruiting the requisite interdisciplinary faculty, innovating the educational format, managing students with diverse educational and professional backgrounds, and balancing multiple accreditation agencies. PMID:27274022

  6. Supporting patient centered computing through an undergraduate nursing informatics curriculum stage III.

    PubMed Central

    Travis, L. L.; Youngblut, J.

    1993-01-01

    The patient has been one of the focal points of the process followed to design, implement, and evaluate an integrated informatics curriculum in a baccalaureate nursing program. This paper describes the third stage of a process to design the informatics nursing courses. A challenge is to structure the nursing informatics curriculum so as to enhance the patient care process. A number of strategies were used to focus the curriculum, students, and faculty around the patient. The basic components of the framework are information, technology, and clinical care process. The clinical care process which emphasizes the patient is an inherent part of the conceptual framework in all aspects of the curriculum. Therefore the faculty has ensured a blend of information, technology, and the clinical care process throughout the curriculum. PMID:8130578

  7. Nursing Informatics Research Priorities for the Future: Recommendations from an International Survey.

    PubMed

    Peltonen, Laura-Maria; Topaz, Maxim; Ronquillo, Charlene; Pruinelli, Lisiane; Sarmiento, Raymond Francis; Badger, Martha K; Ali, Samira; Lewis, Adrienne; Georgsson, Mattias; Jeon, Eunjoo; Tayaben, Jude L; Kuo, Chiu-Hsiang; Islam, Tasneem; Sommer, Janine; Jung, Hyunggu; Eler, Gabrielle Jacklin; Alhuwail, Dari

    2016-01-01

    We present one part of the results of an international survey exploring current and future nursing informatics (NI) research trends. The study was conducted by the International Medical Informatics Association Nursing Informatics Special Interest Group (IMIA-NISIG) Student Working Group. Based on findings from this cross-sectional study, we identified future NI research priorities. We used snowball sampling technique to reach respondents from academia and practice. Data were collected between August and September 2015. Altogether, 373 responses from 44 countries were analyzed. The identified top ten NI trends were big data science, standardized terminologies (clinical evaluation/implementation), education and competencies, clinical decision support, mobile health, usability, patient safety, data exchange and interoperability, patient engagement, and clinical quality measures. Acknowledging these research priorities can enhance successful future development of NI to better support clinicians and promote health internationally. PMID:27332195

  8. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge

    PubMed Central

    Fuchs, Julian E; Bender, Andreas; Glen, Robert C

    2015-01-01

    The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions. PMID:26435758

  9. AMIA members’ “vital signs”: what the HIT implementation listserv says about goals for AMIA and for medical informatics

    PubMed Central

    Ravvaz, Kourosh; Kuziemsky, Craig; Koppel, Ross; Kaplan, Bonnie; Adams, Samantha A.; Adams, Martha B.

    2015-01-01

    The health information technology (HIT) implementation listserv was conceived as a way to combine a substantial portion of American Medical Informatics Association (AMIA) members who belonged to four working groups (WGs): CIS, Evaluation, ELSI, and POI. Other AMIA members joined in significant numbers. It immediately became a major forum for discussing medical informatics, informatics policies, and discussion of the purpose of AMIA itself. The listserv membership approximates 25% of AMIA’s members and has generated over 6,000 posts. We report on a survey of the listserv’s members: what members think about the listserv; what participants want for medical informatics; how they think those goals should be achieved, and what AMIA’s role should be in this process. The listserv provides vital signs about AMIA and hopes for informatics. We combine qualitative analysis of members’ comments and responses about the listserv using ATLAS.ti qualitative text analysis tool and a word cloud generator. PMID:26958245

  10. Optimising Health Informatics Outcomes--Getting Good Evidence to Where it Matters.

    PubMed

    Rigby, M

    2015-01-01

    This editorial is part of a For-Discussion-Section of Methods of Information in Medicine about the paper "Evidence-based Health informatics: How do we know what we know?", written by Elske Ammenwerth [1]. Health informatics uses and applications have crept up on health systems over half a century, starting as simple automation of large-scale calculations, but now manifesting in many cases as rule- and algorithm-based creation of composite clinical analyses and 'black box' computation of clinical aspects, as well as enablement of increasingly complex care delivery modes and consumer health access. In this process health informatics has very largely bypassed the rules of precaution, proof of effectiveness, and assessment of safety applicable to all other health sciences and clinical support systems. Evaluation of informatics applications, compilation and recognition of the importance of evidence, and normalisation of Evidence Based Health Informatics, are now long overdue on grounds of efficiency and safety. Ammenwerth has now produced a rigorous analysis of the current position on evidence, and evaluation as its lifeblood, which demands careful study then active promulgation. Decisions based on political aspirations, 'modernisation' hopes, and unsupported commercial claims must cease - poor decisions are wasteful and bad systems can kill. Evidence Based Health Informatics should be promoted, and expected by users, as rigorously as Cochrane promoted Effectiveness and Efficiency, and Sackett promoted Evidence Based Medicine - both of which also were introduced retrospectively to challenge the less robust and partially unsafe traditional 'wisdom' in vogue. Ammenwerth's analysis gives the necessary material to promote that mission. PMID:26179640

  11. Electronic Personal Health Record Use Among Nurses in the Nursing Informatics Community.

    PubMed

    Gartrell, Kyungsook; Trinkoff, Alison M; Storr, Carla L; Wilson, Marisa L

    2015-07-01

    An electronic personal health record is a patient-centric tool that enables patients to securely access, manage, and share their health information with healthcare providers. It is presumed the nursing informatics community would be early adopters of electronic personal health record, yet no studies have been identified that examine the personal adoption of electronic personal health record's for their own healthcare. For this study, we sampled nurse members of the American Medical Informatics Association and the Healthcare Information and Management Systems Society with 183 responding. Multiple logistic regression analysis was used to identify those factors associated with electronic personal health record use. Overall, 72% were electronic personal health record users. Users tended to be older (aged >50 years), be more highly educated (72% master's or doctoral degrees), and hold positions as clinical informatics specialists or chief nursing informatics officers. Those whose healthcare providers used electronic health records were significantly more likely to use electronic personal health records (odds ratio, 5.99; 95% confidence interval, 1.40-25.61). Electronic personal health record users were significantly less concerned about privacy of health information online than nonusers (odds ratio, 0.32; 95% confidence interval, 0.14-0.70) adjusted for ethnicity, race, and practice region. Informatics nurses, with their patient-centered view of technology, are in prime position to influence development of electronic personal health records. Our findings can inform policy efforts to encourage informatics and other professional nursing groups to become leaders and users of electronic personal health record; such use could help them endorse and engage patients to use electronic personal health records. Having champions with expertise in and enthusiasm for the new technology can promote the adoptionof electronic personal health records among healthcare providers as well as

  12. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development

    PubMed Central

    2016-01-01

    Background Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. Objectives The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. Methods A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. Results The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one’s choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Conclusions Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other

  13. Audacious goals for health and biomedical informatics in the new millennium.

    PubMed

    Greenes, R A; Lorenzi, N M

    1998-01-01

    The 1998 Scientific Symposium of the American College of Medical Informatics (ACMI) was devoted to developing visions for the future of health care and biomedicine and a strategic agenda for health and biomedical informatics in support of those visions. This symposium focus was prompted by the many major changes currently underway in health care delivery, education, and research, as well as in our health and biomedical enterprises, and by the constantly increasing role of information technology in both shaping and enabling these changes. The three audacious goals developed for 2008 are a virtual health care databank, a national health care knowledge base, and a personal clinical health record. PMID:9760385

  14. History of Medical Informatics in Europe - a Short Review by Different Approach

    PubMed Central

    Mihalas, George; Zvarova, Jana; Kulikowski, Casimir; Ball, Marion; van Bemmel, Jan; Hasman, Arie; Masic, Izet; Whitehouse, Diane; Barber, Barry

    2014-01-01

    The panel intended to collect data, opinions and views for a systematic and multiaxial approach for a comprehensive presentation of “History of Medical Informatics”, treating both general (global) characteristics, but emphasizing the particular features for Europe. The topic was not only a subject of large interest but also of great importance in preparing a detailed material for celebration of forty years of medical informatics in Europe. The panel comprised a list of topics, trying to cover all major aspects to be discussed. Proposals of staging the major periods of medical informatics history were also discussed. PMID:24648613

  15. The ELF Honest Data Broker: informatics enabling public-private collaboration in a precompetitive arena.

    PubMed

    Paillard, Guillaume; Cochrane, Philip; Jones, Philip S; van Hoorn, Willem P; Caracoti, Andrei; van Vlijmen, Herman; Pannifer, Andrew D

    2016-01-01

    New precompetitive ways of working in the pharmaceutical industry are driving the development of new informatics systems to enable their execution and management. The European Lead Factory (ELF) is a precompetitive, 30-partner collaboration between academic groups, small-medium enterprises and pharmaceutical companies created to discover small molecule hits against novel biological targets. A unique HTS screening and triage workflow has been developed to balance the intellectual property and scientific requirements of all the partners. Here, we describe the ELF Honest Data Broker, a cloud-based informatics system providing the scientific triage tools, fine-grained permissions and management tools required to implement the workflow. PMID:26608890

  16. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankit; Choudhary, Alok

    2016-05-01

    Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materials informatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.

  17. Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey

    PubMed Central

    Belle, Ashwin; Kon, Mark A.; Najarian, Kayvan

    2013-01-01

    The volumes of current patient data as well as their complexity make clinical decision making more challenging than ever for physicians and other care givers. This situation calls for the use of biomedical informatics methods to process data and form recommendations and/or predictions to assist such decision makers. The design, implementation, and use of biomedical informatics systems in the form of computer-aided decision support have become essential and widely used over the last two decades. This paper provides a brief review of such systems, their application protocols and methodologies, and the future challenges and directions they suggest. PMID:23431259

  18. The Academic Voice in English and Czech Higher Education Quality

    ERIC Educational Resources Information Center

    Mertova, Patricie; Webster, Len

    2009-01-01

    Purpose: This paper sets out to report on a research project investigating the academic voice in higher education quality in the UK and the Czech Republic. It aims to describe the origins and reasons for introducing quality monitoring and assurance into higher education, showing the differences and impacts on higher education quality in England…

  19. Czech for Americans. A Beginning Level Competency-Based Course.

    ERIC Educational Resources Information Center

    Campora, Olga Kovarova

    The course in beginning-level Czech is designed for adult students and businesspersons needing to learn use of the language in everyday circumstances. It emphasizes speaking and listening skills and contextualized language, focusing on meaning over form. The materials consist of 44 instructional units on nine topics: first social contact; social…

  20. School Psychology in the Czech Republic: Development, Status and Practice

    ERIC Educational Resources Information Center

    Kavenská, Veronika; Smékalová, Eleonora; Šmahaj, Jan

    2013-01-01

    This intensive exploratory research maps the working conditions of school psychologists in the Czech Republic. An electronic questionnaire consisting of 71 questions (58 quantitative, 13 qualitative) from nine fields was used as a research tool. The respondent sample ("N"?=?63; 53 females, 10 males) indicate that they are largely…

  1. Situation of School Self-Evaluation in the Czech Republic

    ERIC Educational Resources Information Center

    Pol, Milan; Vastatkova, Jana

    2005-01-01

    This paper is focused on school self-evaluation in the Czech Republic. It offers the overview of main changes which took place after 1989 and provided a broad social framework for operation of schools. Also, it links self-evaluation to recent legislation which explicitly determines its state of art and also steps to be taken in the near future.…

  2. Feedback in Educational Communication in Czech Secondary Schools

    ERIC Educational Resources Information Center

    Sedova, Klara; Svaricek, Roman

    2012-01-01

    This paper introduces an empirical study that examines how teachers evaluate pupils' responses. The study draws on research undertaken at four secondary schools in the Czech Republic. It transpires that feedback has a stable position in the structure of communication; however, it is used only to verify pupils' responses and not to elaborate them.…

  3. GLOBE in the Czech Republic: A Program Evaluation

    ERIC Educational Resources Information Center

    Cincera, Jan; Maskova, Veronika

    2011-01-01

    The article presents results of the evaluation of the GLOBE program (Global Learning and Observations to Benefit the Environment) in the Czech Republic. The evaluation explores the implementation of the program in schools and its impact on research skills. Four hundred and sixty six pupils, aged 13, from 28 different schools participated in the…

  4. Innovative Physics Teaching Conferences in the Czech Republic

    ERIC Educational Resources Information Center

    Milbrandt, Rod

    2010-01-01

    Even today, with all of the instant communication technologies available, we are still often unaware of all that happens in other parts of the world. In the middle of Europe, in the Czech Republic, physics teachers have created a couple of innovative conferences--or "workshops" might be a better term. Having attended two of each, I think they're…

  5. Innovation and Education Policy in SMEs: A Czech Perspective.

    ERIC Educational Resources Information Center

    Lloyd-Reason, Lester; Muller, Karel; Wall, Stuart

    2002-01-01

    In the late 1990s, the Czech government implemented policies to enhance the role of small/medium-sized enterprises in innovation, including grants, subsidies, and tax credits. Education and training have focused on information/communications technologies. Future policy developments must be guided by trends in the global knowledge-based economy as…

  6. Extent Matters: Exposure to Sexual Material among Czech Adolescents

    ERIC Educational Resources Information Center

    Ševcíková, Anna; Šerek, Jan; Machácková, Hana; Šmahel, David

    2013-01-01

    Adolescents use media that exposes them to sexual material. This study focused on adolescents in the Czech Republic, a country with relatively high rates of exposure to sexual material (ESM). A sample of adolescents aged 11 to 15 years ("N" = 495) taken from the project EU Kids Online II was examined for predictors of the following:…

  7. Nuclear medicine training and practice in the Czech Republic.

    PubMed

    Kamínek, Milan; Koranda, Pavel

    2014-08-01

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. PMID:24867257

  8. Educational Expansion and Inequality in Taiwan and the Czech Republic

    ERIC Educational Resources Information Center

    Smith, Michael; Tsai, Shu-Ling; Mateju, Petr; Huang, Min-Hsiung

    2016-01-01

    This article presents a comparative analysis of educational inequality by family background and gender in Taiwan and the Czech Republic, which have both experienced substantial educational expansion in the last half-century under different educational systems. We highlight the specific institutional histories of both countries and examine the role…

  9. [Development and current utility of infobases in Czech cancer care].

    PubMed

    2014-01-01

    Evaluation of the quality and effectiveness of health care is an integral part of modern health care. It can only be performed with sufficiently detailed data sources describing each segment of care. In case of significant heterogeneity and lack of standardization of hospital information systems it is necessary to fully exploit existing parametric data sources. The valid systems for Czech cancer care: the National Cancer Registry, clinical registries of Czech Society for Oncology of the Czech Medical Association of J.E. Purkyne, registries of screening programs and administrative data form healthcare payers. From these registries we can obtain a very complex and detailed view on prevention, diagnosis and cancer treatment in the Czech Republic. To achieve this goal, which means more integrated and comprehensive utilization of national registries, surveys and administrative data, it is necessary to fully utilize and apply the current legislative framework, in particular provision of the Act no. 372/2011 Sb.Key words: clinical registry - evaluation of health care - information system - legislation - malignant tumor - population. PMID:25389092

  10. Moldavites from the Cheb Basin, Czech Republic

    NASA Astrophysics Data System (ADS)

    Bouska, V. J.; Mottl, V.; Rost, R.; Sevcik, J.

    1995-09-01

    Thirteen moladvites have been found on the surf side of the gravel beaches on the shore of the Jesenice water reservoir on the Odrava River. This spur lies about 1 250 m NW of the village Okrouhl at Cheb in Western Bohemia, Czech Republic, where only slightly rounded Pliocene gravels of the Vildgtejn Formation outcrop on the surface and form the bottom of the reservoir at this point. These gravels are also uncovered at the Tekaz Cheb gravel pit, 2 350 m to the NW from the find site. The bottom of the gravel pit and the basement of the moldavite-bearing gravel sands consist of the Miocene Cypris claystones. Red-brown andalusite and feldspar grains are typical minerals of the sandy gravels. The moldavites are lat in shape with deep sculpture, formed in a weakly acidic environment. Moldavites did not undergo prolonged transportation from the site of fall. Two samples have sharp grooves. The moldavites from the Cheb Basin are somewhat smoother to the touch and not as sharp as the moldavites from the Ceske Budejovice-Trebon area in Southern Bohemia. In a microscope, very fine secondary sculpture can be seen, probably formed in the water of the reservoir. The glass-matter is pure inside the samples and thus this is apparently repeated emphasizing of the original sculpture. The biggest specimens are No. 1 (5.44 g; 3 x 1.6 x 0.7 cm) and No. 8 (4.855 g; 3.2 x 1.7 x 0.5 cm). Their color ranges from bottle green to light bottle green to olive green or olive brown in two samples. In the shape, color, high content of bubbles and lechatelierite grains, density (rho = 2.34 - 2.38), refractive index (n = 1.4888 - 1.4936), and chemical composition of sample No. 5 (microprobe analysis: SiO2 - 78.70 wt. %, TiO2 - 0.35, Al2O3 - 10.13, FeO - 1.62, MnO - 0.12, MgO - 2.03, CaO - 3.11, Na2O - 0.42, K2O - 2.61) the moldavites of the Cheb Basin correspond to moldavites from the Ceske Budejovice-Trebon area in Southern Bohemia (1,2). The finds of moldavites in the Cheb Basin reflect the

  11. 76 FR 76384 - U.S. Education Mission to Poland and Czech Republic Warsaw, Poland and Prague, Czech Republic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... by their foreign language curriculum. English is the first choice for a second language in this... while technical areas rank as their third choice. English is the standard second language in the Czech... recent government decision that will make English language mandatory for primary school students...

  12. Partnerships Drive Informatics Solutions for Biological Imaging at Ocean Observatories

    NASA Astrophysics Data System (ADS)

    Sosik, H. M.; Futrelle, J.; Maffei, A. R.

    2012-12-01

    In the big-data, era informatics-oriented partnerships are needed to achieve improved scientific results and understanding. Our teams' experience shows that formal methodologies to build interdisciplinary partnerships enable us to efficiently produce needed technological innovation. One-on-one partnerships between individual research scientists and informaticists provide a crucial building block for supporting larger, nested partnerships. We present one such partnership as an example. As ocean observatories mature, they produce data at a pace that threatens to overwhelm the capacity of individual researchers to manage and analyze it. Our multi-disciplinary team has addressed these challenges in the context of a study involving very large numbers (~1 billion) of images collected by Imaging FlowCytobot, an automated submersible flow cytometer that continuously images plankton at up to 10hz. These data provide novel insights into coastal ecosystem dynamics, including characterization of biological responses to environmental change and early warning of harmful algal blooms. In contrast with the traditional focus on technology adoption, we have instead emphasized building partnerships between oceanographers and computer scientists. In these partnerships we identify use cases, design solutions, develop prototypes, and refine them until they meet oceanographers' science needs. In doing so we have found that rapid and significant advances do not always require technological innovations, but rather effective communication, focus on science outcomes, and an iterative design and evaluation process. In this work we have adopted a methodology developed in the Tetherless World Constellation at Rensselaer Polytechnic Institute, a framework that has been used for several data-intensive earth science applications. The prototype system produced for Imaging FlowCytobot data provides simple and ubiquitous access to observational data and products via web services and includes a data

  13. WE-G-9A-01: Radiation Oncology Outcomes Informatics

    SciTech Connect

    Mayo, C; Miller, R; Sloan, J; Wu, Q; Howell, R

    2014-06-15

    The construction of databases and support software to enable routine and systematic aggregation, analysis and reporting of patient outcomes data is emerging as an important area. “How have results for our patients been affected by the improvements we have made in our practice and in the technologies we use?” To answer this type of fundamental question about the overall pattern of efficacy observed, it is necessary to systematically gather and analyze data on all patients treated within a clinic. Clinical trials answer, in great depth and detail, questions about outcomes for the subsets of patients enrolled in a given trial. However, routine aggregation and analysis of key treatment parameter data and outcomes information for all patients is necessary to recognize emergent patterns that would be of interest from a public health or practice perspective and could better inform design of clinical trials or the evolution of best practice principals. To address these questions, Radiation Oncology outcomes databases need to be constructed to enable combination essential data from a broad group of data types including: diagnosis and staging, dose volume histogram metrics, patient reported outcomes, toxicity metrics, performance status, treatment plan parameters, demographics, DICOM data and demographics. Developing viable solutions to automate aggregation and analysis of this data requires multidisciplinary efforts to define nomenclatures, modify clinical processes and develop software and database tools requires detailed understanding of both clinical and technical issues. This session will cover the developing area of Radiation Oncology Outcomes Informatics. Learning Objectives: Audience will be able to speak to the technical requirements (software, database, web services) which must be considered in designing an outcomes database. Audience will be able to understand the content and the role of patient reported outcomes as compared to traditional toxicity measures

  14. Precursory Seismic Migration Patterns Examined by Improved Pattern Informatics Method

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Chen, C.; Rundle, J. B.; Wang, J.

    2010-12-01

    The pattern informatics (PI) method is a statistical method for forecasting earthquakes based on the concept of pattern dynamics. It could detect precursory seismic activation or quiescence. Here we apply the PI method with the frequency- magnitude distribution (FMD) of events, based on the self-organized spinodal (SOS) behavior, on the Chi-Chi and Pingtung earthquakes using the earthquake catalog provided by the Central Weather Bureau. By the FMD test, two important times before a large earthquake when the number of intermediate-sized events has significant increase are found. The PI hotspots which indicate the location with anomalous seismicity are around the epicentral area in stage 2 of the SOS behavior. When it proceeded to stage 3, the hotspots migrate to the epicenter. This migration is not only observed in the PI maps but also quantified and visualized from the calculation of the distances between the epicenter and hotspots. Investigating the evolution of the distance in time yields a slope that indicates the trend suggesting how the hotspots propagate relative to sites. After imaging all slopes on a map, we can get a donut-like pattern that illustrates the migration process. In general, migration occurs intensively in stage 2. The migration process might be introduced by the nucleation of earthquakes, and its duration and range depend on the size of the mainshock. After migration in stage 2, the number of intermediate-sized events increases during stage 3, called the precursory period, in SOS behavior. Such an increase occurs on the epicentral region and might be associated with accelerating seismicity observed in many studies. The improved PI method shows that anomalous precursor signature would be exposed by the seismicity rate not only in a static form but also in a dynamic form. The static form means that the PI hotspots point out a location with high hazard, while the dynamic form shows the preparing process (migration) before a large earthquake. Thus

  15. Informatics for maize research: What is possible, and what is practical?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The informatics tools and technologies developed to address problems in fields outside of biology often drive what becomes available to biologists. Within the biological sciences, research groups have made headway implementing tools to solve problems of interest to maize researchers, but we do not ...

  16. Integrating DICOM structure reporting (SR) into the medical imaging informatics data grid

    NASA Astrophysics Data System (ADS)

    Lee, Jasper; Le, Anh; Liu, Brent

    2008-03-01

    The Medical Imaging Informatics (MI2) Data Grid developed at the USC Image Processing and Informatics Laboratory enables medical images to be shared securely between multiple imaging centers. Current applications include an imaging-based clinical trial setting where multiple field sites perform image acquisition and a centralized radiology core performs image analysis, often using computer-aided diagnosis tools (CAD) that generate a DICOM-SR to report their findings and measurements. As more and more CAD tools are being developed in the radiology field, the generated DICOM Structure Reports (SR) holding key radiological findings and measurements that are not part of the DICOM image need to be integrated into the existing Medical Imaging Informatics Data Grid with the corresponding imaging studies. We will discuss the significance and method involved in adapting DICOM-SR into the Medical Imaging Informatics Data Grid. The result is a MI2 Data Grid repository from which users can send and receive DICOM-SR objects based on the imaging-based clinical trial application. The services required to extract and categorize information from the structured reports will be discussed, and the workflow to store and retrieve a DICOM-SR file into the existing MI2 Data Grid will be shown.

  17. Health Informatics in the Classroom: An Empirical Study to Investigate Higher Education's Response to Healthcare Transformation

    ERIC Educational Resources Information Center

    Ashrafi, Noushin; Kuilboer, Jean-Pierre; Joshi, Chaitanya; Ran, Iris; Pande, Priyanka

    2014-01-01

    The explosive advances in information technology combined with the current climate for health care reform have intensified the need for skilled individuals who can develop, understand, and manage medical information systems in organizations. Health Informatics facilitates quality care at a reasonable cost by allowing access to the right data by…

  18. Assessing Community Informatics: A Review of Methodological Approaches for Evaluating Community Networks and Community Technology Centers.

    ERIC Educational Resources Information Center

    O'Neil, Dara

    2002-01-01

    Analyzes the emerging community informatics evaluation literature to develop an understanding of the indicators used to gauge project impacts in community networks and community technology centers. The study finds that community networks and community technology center assessments fall into five key areas: strong democracy; social capital;…

  19. Establishing health informatics as a recognised and respected profession in the UK National Health Service.

    PubMed

    Millen, Di

    2003-01-01

    The delivery of healthcare is an information dependent process. National government modernisation targets, and drives to improve the effectiveness and efficiency of care delivery systems and processes have the better use of information and IT at their heart. If we are to realise the benefits information and IT developments can bring, we have to ensure we have a suitable cadre of well educated, proactive professional specialists who understand the business of healthcare. The English NHS has an attrition rate of something like 43% amongst its ICT specialists, and there are recruitment and retention problems in a range of other informatics disciplines like medical records, project management and strategic management. A 1999-2000 survey indicated the reasons for recruitment and retention problems. One agreed solution has been to work towards establishing health informatics as a recognised and respected national profession. This is in addition to other national work to establish career pathways, make health informatics as a profession "mainstream", and to provide development opportunities at all levels. This paper sets out the background to the establishment of a profession in UK health services, outlines progress to date, and summarises other national development activity to support health informatics professionals. PMID:14664092

  20. Requirements for Realizing the Full Potential of Informatics in the Field of Health Care.

    ERIC Educational Resources Information Center

    Wittenstrom, John C.

    1991-01-01

    The paper proposes a zero concept, health-oriented approach to applying informatics to two health care problems: first, the lack of easily understood and used terminology linking health problems and interventions to the concept of "health"; and second, the lack of a unifying principle on which to base all aspects of health care. (DB)

  1. Offering Distance Education in Health Informatics: The State of the Web Sites.

    ERIC Educational Resources Information Center

    Lazinger, Susan; Handzel, Ruth

    2003-01-01

    Within the framework of a bi-national project, between the University of North Carolina at Chapel Hill and four Israeli universities, a prototype database of programs and courses in health informatics was implemented. Examined Web sites particularly for courses offered via distance education and discusses results of a content analysis. (Author/LRW)

  2. Metagenome Assembly at the DOE JGI (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Chain, Patrick [DOE JGI at LANL

    2013-01-22

    Patrick Chain of DOE JGI at LANL, Co-Chair of the Metagenome-specific Assembly session, on "Metagenome Assembly at the DOE JGI" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  3. A rationale and training agenda for rehabilitation informatics: roadmap for an emerging discipline.

    PubMed

    Schopp, Laura H; Hales, Joseph W; Brown, Gordon D; Quetsch, Joseph L

    2003-01-01

    Decreased length of inpatient rehabilitation stay, greater long-term injury survival rates, broader access to information technologies, and the growing role of the Internet create potential for new models of rehabilitation that are more community- and person-centered rather than historically hospital- and provider-centered services. In recent years, information-based rehabilitation technologies have grown rapidly, expanding the possibilities for numerous interventions to promote independent living. These programs have centered primarily on providing rehabilitation health services over a distance ("telerehabilitation"). Telerehabilitation can be conceived as part of a broader approach that includes elements of direct rehabilitation services, service coordination, community resources, and information relay between numerous individuals, service providers, and community members ("rehabilitation informatics"). Because of the complexity of these information types and sectors, this broader conceptual approach of rehabilitation informatics borrows heavily from fields such as adaptive computing, robotics, computer networking, and high-level systems programming. As such, innovation in rehabilitation informatics will require new models of training that span these domains. This paper proposes a rationale for the new field of rehabilitation informatics, and offers a multidisciplinary training model for the next generation of rehabilitation informaticians. PMID:12867678

  4. The Alzheimer’s Disease Neuroimaging Initiative Informatics Core: A Decade in Review

    PubMed Central

    Toga, Arthur W.; Crawford, Karen L.

    2015-01-01

    The Informatics Core of the Alzheimer’s Diseases Neuroimaging Initiative (ADNI) has coordinated data integration and dissemination for a continually growing and complex dataset in which both data contributors and recipients span institutions, scientific disciplines and geographic boundaries. This article provides an update on the accomplishments and future plans. PMID:26194316

  5. Nursing informatics knowledge and competencies: a national survey of nursing education programs in the United States.

    PubMed

    McNeil, Barbara J; Elfrink, Victoria L; Pierce, Susan T; Beyea, Suzanne C; Bickford, Carol J; Averill, Carolyn

    2005-12-01

    An online survey of deans/directors of 266 baccalaureate and higher nursing programs in the U.S. was developed by informatics expert nurses. Participants (1) identified nursing informatics (NI) competencies and knowledge of undergraduate and/or graduate students in their nursing programs; (2) determined faculty preparedness to teach NI and to use informatics tools; and (3) provided perceptions of NI requirements of local practicing nurses. Frequency data and qualitative responses were analyzed. Approximately half of undergraduate nursing programs were teaching information literacy skills and required students to enter with word-processing and email skills. Least visible informatics content at all levels included the use of information system data standards, the Nursing Information and Data Set Evaluation Center criteria, the unified medical language system (UMLS), and the nurse's role in the life cycle of an information system. Almost 50% of respondents perceived faculty as "novice" and "advanced beginners" in teaching and using NI applications. Participants reported no future plans to offer NI training in their region. Findings have major implications for nurse faculty, staff developers, and program administrators who are planning continuing education opportunities and designing nursing curricula that prepare nurses for use of the electronic health record and 21st century professional practice. PMID:16046276

  6. Autism Post-Mortem Neuroinformatic Resource: The Autism Tissue Program (ATP) Informatics Portal

    ERIC Educational Resources Information Center

    Brimacombe, Michael B.; Pickett, Richard; Pickett, Jane

    2007-01-01

    The Autism Tissue Program (ATP) was established to oversee and manage brain donations related to neurological research in autism. The ATP Informatics Portal (www.atpportal.org) is an integrated data access system based on Oracle technology, developed to provide access for researchers to information on this rare tissue resource. It also permits…

  7. General Orientation to New Knowledge Utilization Fields of Informatics, Knowledge Management, and Information Technology.

    ERIC Educational Resources Information Center

    Southwest Educational Development Lab., Austin, TX.

    One of a series of booklets on disability research, this paper explores two major developments in the application of information technology: health care informatics and knowledge management. Both of these concepts focus on maximizing the value of, and access to, information resources. Both use technology to create interactive systems through which…

  8. Diversity in Excellence Fostering Programs: The Case of the Informatics Olympiad

    ERIC Educational Resources Information Center

    Sagy, Ornit; Hazzan, Orit

    2007-01-01

    This work examines the Israeli National Informatics-Computer Science (CS) Olympiad from the perspective of diversity. A conspicuous phenomena in this olympiad (as well as in other science olympiads) is that very few females participate in the national competition, and none has ever represented the country in any international competition. When…

  9. Students' Knowledge, Opinions, and Behaviors Concerning Dental Informatics and Computer Applications.

    ERIC Educational Resources Information Center

    Lang, W. Paul; And Others

    1992-01-01

    A survey of 95 first-year and 91 fourth-year dental students concerning informatics and computer applications in dentistry investigated knowledge of terms and concepts related to hardware, software, electronic communication, and dental applications; opinions concerning use of the technology; and extent of experience in 4 areas of use. (MSE)

  10. Introduction: When Museum Informatics Meets the World Wide Web, It Generates Energy.

    ERIC Educational Resources Information Center

    Bearman, David; Trant, Jennifer

    2000-01-01

    Addresses concerns of museum informatics as an application domain and calls for new methods in information science as a whole. Topics include the design of museum spaces; information retrieval methods; multimedia integration; social interaction and the World Wide Web; tools of virtuality; and technology and the Americans with Disabilities Act.…

  11. Comparing the Efficiency of Different Approaches to Teach Informatics at Secondary Schools

    ERIC Educational Resources Information Center

    Steer, Christoph; Hubwieser, Peter

    2010-01-01

    Each of the 16 federal states of Germany has its own school system and also its own policy to integrate informatics, computer science or ICT into this system. Till present there aren't any tests of students' knowledge on a nation-wide level. Therefore nation-wide or international contests currently offer the only opportunities to compare the…

  12. Viewpoints for the Development of Teaching Contents in the Field of Informatics

    ERIC Educational Resources Information Center

    Viktória, Heizlerné Bakonyi; Zoltán, Illés; László, Menyhárt

    2013-01-01

    Informatics education is in a special situation. The greatest and quickest changes in technology and content might be in this field. That is why it is a very important question what and how to teach on different education levels. What are the requirements of the European labour market? What trends can be recognized in the field of public…

  13. A New Pedagogical Design for Geo-Informatics Courses Using an E-Training Support System

    ERIC Educational Resources Information Center

    Eldin, Ahmed Sharaf; ElNahry, Alaa H.; Elsayed, Adel; Ibrahim, Rania Elsayed

    2014-01-01

    The current study seeks to introduce a new pedagogical design for geo-informatics courses using an e-training support system. Laurillard's conversational approach based on conceptual representation for both instructor and learner was used to form the framework. As the current study specifically interested in training as a special form for…

  14. Integrating Information Literacy into Curriculum Assemment Practice: An Informatics Case Study

    ERIC Educational Resources Information Center

    Meldrum, Annette; Tootell, Holly

    2004-01-01

    This article describes how an Informatics subject has integrated information literacy skills into its curriculum assessment practice. The paper provides a background on the role information literacies have in student learning and explains the importance of ensuring the literacies are aligned with subject content and assessment practice. It…

  15. Preparation of Speciality-Integrated Assignments in Informatics Study Courses at the Higher Education Level

    ERIC Educational Resources Information Center

    Vitinš, Maris; Rasnacs, Oskars

    2012-01-01

    Information and communications technologies today are used in virtually any university course when students prepare their papers. ICT is also needed after people are graduated from university and enter the job market. This author is an instructor in the field of informatics related to health care and social sciences at the Riga Stradins…

  16. Personal Informatics and Context: Using Context to Reveal Factors That Affect Behavior

    ERIC Educational Resources Information Center

    Li, Ian Anthony Rosas

    2011-01-01

    Personal informatics systems help people collect and reflect on behavioral information to better understand their own behavior. Because most systems only show one type of behavioral information, finding factors that affect one's behavior is difficult. Supporting exploration of multiple types of contextual and behavioral information in a…

  17. Community Informatics Studio: Designing Experiential Learning to Support Teaching, Research, and Practice

    ERIC Educational Resources Information Center

    Wolske, Martin; Rhinesmith, Colin; Kumar, Beth

    2014-01-01

    This paper introduces a model of experiential learning to support teaching, research, and practice in library and information science (LIS). The concept we call "Community Informatics (CI) Studio" uses studio-based learning (SBL) to support enculturation into the field of CI. The SBL approach, closely related to John Dewey's…

  18. Development, Implementation, and Evaluation of Health Informatics Masters Program at KSAU-HS University, Saudi Arabia

    ERIC Educational Resources Information Center

    Majid, Altuwaijri

    2007-01-01

    The Saudi health sector has witnessed a significant progress in recent decades with some Saudi hospitals receiving international recognition. However, this progress has not been accompanied by the same advancement in the health informatics field whose applications have become a necessity for hospitals in order to achieve important objectives such…

  19. Realisation of Post-Graduate Training for Teachers of Informatics of Rural Secondary Schools via Internet

    ERIC Educational Resources Information Center

    Lavendels, Jurijs; Shitikov, Vjacheslav; Klints, Daile

    2007-01-01

    The Curriculum combining both traditional classrooms and Internet-based activities for regular post-graduate training for the teachers in informatics is developed, approved by the Ministry of Education and Science and implemented in Latvian Republic. The Curriculum is anticipated for teachers from rural schools, excludes embarrassing overnight…

  20. Informatics and Data Mining Tools and Strategies for the Human Connectome Project

    PubMed Central

    Marcus, Daniel S.; Harwell, John; Olsen, Timothy; Hodge, Michael; Glasser, Matthew F.; Prior, Fred; Jenkinson, Mark; Laumann, Timothy; Curtiss, Sandra W.; Van Essen, David C.

    2011-01-01

    The Human Connectome Project (HCP) is a major endeavor that will acquire and analyze connectivity data plus other neuroimaging, behavioral, and genetic data from 1,200 healthy adults. It will serve as a key resource for the neuroscience research community, enabling discoveries of how the brain is wired and how it functions in different individuals. To fulfill its potential, the HCP consortium is developing an informatics platform that will handle: (1) storage of primary and processed data, (2) systematic processing and analysis of the data, (3) open-access data-sharing, and (4) mining and exploration of the data. This informatics platform will include two primary components. ConnectomeDB will provide database services for storing and distributing the data, as well as data analysis pipelines. Connectome Workbench will provide visualization and exploration capabilities. The platform will be based on standard data formats and provide an open set of application programming interfaces (APIs) that will facilitate broad utilization of the data and integration of HCP services into a variety of external applications. Primary and processed data generated by the HCP will be openly shared with the scientific community, and the informatics platform will be available under an open source license. This paper describes the HCP informatics platform as currently envisioned and places it into the context of the overall HCP vision and agenda. PMID:21743807