Science.gov

Sample records for infrared complex faraday

  1. Infrared Faraday Measurements on Cuprate High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Arik, M. Murat; Mukherjee, Alok; Cerne, John; Lubashevsky, Y.; Pan, Lidong; Armitage, N. P.; Kirzhner, T.; Koren, G.

    2014-03-01

    Recent measurements on cuprate high temperature superconductors (CHTS) have observed evidence for symmetry breakings in the pseudogap phase, suggesting that this is a full-fledged phase with an actual broken symmetry. To test the spectral character of this broken symmetry, we have made infrared polarization-sensitive measurements in the absence of magnetic field on a series of CHTS films. We have studied the Faraday effect (change in the polarization of transmitted light) in CHTS films as a function of temperature (10-300K), energy (0.1-3 eV), and sample orientation with respect to the incident light polarization. We observe a strong linear optical anisotropy, well above the superconducting transition temperature. This signal is maximized when the sample lattice axes are oriented near 45o with respect to the incident light polarization, and varies as the sample is rotated. We explore the temperature and energy dependence of this signal. This work supported by NSF-DMR1006078 and Gordon and Betty Moore Foundation through Grant GBMF2628.

  2. Upgrade of far-infrared laser-based Faraday rotation measurement on MST

    SciTech Connect

    Ding, W. X.; Brower, D. L.; Bergerson, W. F.; Lin, L.

    2010-10-15

    Recently, the far-infrared (FIR) laser ({lambda}{sub 0}=432 {mu}m) Faraday rotation measurement system on MST has been upgraded. The dc flowing-gas discharge CO{sub 2} pump laser is replaced by a rf-excited, sealed CO{sub 2} laser at 9.27 {mu}m (GEM select 100, Coherent Inc., Santa Clara, CA), which is subdivided equally into three parts to simultaneously pump three FIR cavities. The total infrared pump power is approximately 80 W on the 9R(20) line required to pump the formic acid molecule. Each FIR cavity produces {approx}12 mW, sufficient for 11 simultaneous chord interferometry-polarimetry operations. Three key issues [(1) conservation of circularly polarized wave, (2) colinearity of two probe waves, and (3) stability of intermediate frequencies between lasers] affecting the Faraday rotation measurement have been resolved experimentally.

  3. Cryogen-free heterodyne-enhanced mid-infrared Faraday rotation spectrometer

    PubMed Central

    Wang, Yin; Nikodem, Michal; Wysocki, Gerard

    2013-01-01

    A new detection method for Faraday rotation spectra of paramagnetic molecular species is presented. Near shot-noise limited performance in the mid-infrared is demonstrated using a heterodyne enhanced Faraday rotation spectroscopy (H-FRS) system without any cryogenic cooling. Theoretical analysis is performed to estimate the ultimate sensitivity to polarization rotation for both heterodyne and conventional FRS. Sensing of nitric oxide (NO) has been performed with an H-FRS system based on thermoelectrically cooled 5.24 μm quantum cascade laser (QCL) and a mercury-cadmium-telluride photodetector. The QCL relative intensity noise that dominates at low frequencies is largely avoided by performing the heterodyne detection in radio frequency range. H-FRS exhibits a total noise level of only 3.7 times the fundamental shot noise. The achieved sensitivity to polarization rotation of 1.8 × 10−8 rad/Hz1/2 is only 5.6 times higher than the ultimate theoretical sensitivity limit estimated for this system. The path- and bandwidth-normalized NO detection limit of 3.1 ppbv-m/Hz1/2 was achieved using the R(17/2) transition of NO at 1906.73 cm−1. PMID:23388967

  4. Suppression of infrared absorption in nanostructured metals by controlling Faraday inductance and electron path length.

    PubMed

    Han, Sang Eon

    2016-02-01

    Nanostructured metals have been intensively studied for optical applications over the past few decades. However, the intrinsic loss of metals has limited the optical performance of the metal nanostructures in diverse applications. In particular, light concentration in metals by surface plasmons or other resonances causes substantial absorption in metals. Here, we avoid plasmonic excitations for low loss and investigate methods to further suppress loss in nanostructured metals. We demonstrate that parasitic absorption in metal nanostructures can be significantly reduced over a broad band by increasing the Faraday inductance and the electron path length. For an example structure, the loss is reduced in comparison to flat films by more than an order of magnitude over most of the very broad spectrum between short and long wavelength infrared. For a photodetector structure, the fraction of absorption in the photoactive material increases by two orders of magnitude and the photoresponsivity increases by 15 times because of the selective suppression of metal absorption. These findings could benefit many metal-based applications that require low loss such as photovoltaics, photoconductive detectors, solar selective surfaces, infrared-transparent defrosting windows, and other metamaterials. PMID:26906830

  5. Full spin polarization of complex ferrimagnetic bismuth iron garnet probed by magneto-optical Faraday spectroscopy

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Popova, Elena; Fouchet, Arnaud; Keller, Niels

    2013-06-01

    We investigate the spin-dependent electronic density of states near and above the Fermi level in bismuth iron garnet (BIG), Bi3Fe5O12, by magnetic circular dichroism and magneto-optical Faraday spectroscopy. BIG is a recently synthesized material, as its preparation requires special nonequilibrium conditions. Its scientific and applicative interest resides in huge specific Faraday rotation of the incident light, useful for magneto-optic applications. We show experimentally the presence of spin gaps in the conduction band as recently predicted theoretically by Oikawa [T. Oikawa, S. Suzuki, and K. Nakao, J. Phys. Soc. Jpn.JUPSAU0031-901510.1143/JPSJ.74.401 74, 401 (2005)]. In the range of photon energies, where full spin polarization is expected, completely asymmetric Faraday hysteresis loops were observed, similar to those observed in half-metals such as (Pr,La)0.7Ca0.3MnO3 and Fe3O4. These results were modeled using even and odd (with respect to magnetization) contributions into hysteresis loops. The odd contribution appears only in the energy ranges where the density of states is fully spin polarized and vanishes at the Curie temperature. These results open a new perspective for the use of bismuth iron garnet in optic spintronics at room temperature and above.

  6. A potassium Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  7. Michael Faraday's Bicentenary.

    ERIC Educational Resources Information Center

    Williams, L. Pearce; And Others

    1991-01-01

    Six articles discuss the work of Michael Faraday, a chemist whose work revolutionized physics and led directly to both classical field and relativity theory. The scientist as a young man, the electromagnetic experiments of Faraday, his search for the gravelectric effect, his work on optical glass, his laboratory notebooks, and his creative use of…

  8. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  9. Michael Faraday, media man.

    PubMed

    Fara, Patricia

    2006-03-01

    Michael Faraday was an enthusiastic portrait collector, and he welcomed the invention of photography not only as a possible means of recording observations accurately, but also as a method for advertising science and its practitioners. This article (which is part of the Science in the Industrial Revolution series) shows that like many eminent scientists, Faraday took advantage of the burgeoning Victorian media industry by posing in various roles. PMID:16332391

  10. Following Michael Faraday's Footprints

    NASA Astrophysics Data System (ADS)

    Galeano, Javier

    2011-01-01

    Last fall I had the good fortune of receiving financial support to shoot a documentary about Michael Faraday. I took the opportunity to learn more about this great experimentalist and to visit the highlights of places in his life. In this paper, I would like to share a list and description of some of the most remarkable places in London suitable for following Michael Faraday's footprints. There are many other places in Europe of special interest for the physics teacher,2,3 and some useful guides to help us visit places as "scientific travelers,"4,5 but this paper focuses on Michael Faraday and London. I have personally visited most of the places described below and found the experience to be really worthwhile.

  11. High-frequency fluctuation measurements by far-infrared laser Faraday-effect polarimetry-interferometry and forward scattering system on MST

    SciTech Connect

    Ding, W. X. Lin, L.; Brower, D. L.; Duff, J. R.

    2014-11-15

    Magnetic fluctuation-induced transport driven by global tearing modes has been measured by Faraday-effect polarimetry and interferometry (phase measurements) in the MST reversed field pinch. However, the role of small-scale broadband magnetic and density turbulence in transport remains unknown. In order to investigate broadband magnetic turbulence, we plan to upgrade the existing detector system by using planar-diode fundamental waveguide mixers optimized for high sensitivity. Initial tests indicate these mixers have ×10 sensitivity improvement compared to currently employed corner-cube Schottky-diode mixers and ×5 lower noise. Compact mixer design will allow us to resolve the wavenumbers up to k ∼ 1–2 cm{sup −1} for beam width w = 1.5 cm and 15 cm{sup −1} for beam width w = 2 mm. The system can also be used to measure the scattered signal (amplitude measurement) induced by both plasma density and magnetic fluctuations.

  12. Faraday rotation system. Topical report

    SciTech Connect

    Bauman, L.E.; Wang, W.

    1994-07-01

    The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.

  13. Faraday rotation echo spectroscopy of phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen; Liu, Renbao

    2013-03-01

    Faraday rotation is widely used to study magnetic dynamics. We designed a scheme of Faraday rotation echo spectroscopy (FRES) that can be used to study spin noise dynamics in transparent materials by measuring the fluctuation of Faraday rotation angle. The FRES suppresses the static part of the noise and reveal the quantum fluctuations at relatively high temperature, which shares the same idea of the spin echo technique in nuclear magnetic resonance (NMR). We tested our theory on a rare-earth compound LiHoF4. The quantum fluctuations obtained by FRES give an enhanced feature at the phase boundary. The FRES can be straightforwardly generalized to more complicated configurations that correspond to more complex dynamical decoupling sequences in NMR and electron spin resonance, which may give us more extensive information on the structural and dynamical properties of magnetic materials. This work was supported by Hong Kong RGC 402410 and CUHK FIS.

  14. Following Michael Faraday's Footprints

    ERIC Educational Resources Information Center

    Galeano, Javier

    2011-01-01

    Last fall I had the good fortune of receiving financial support to shoot a documentary about Michael Faraday. I took the opportunity to learn more about this great experimentalist and to visit the highlights of places in his life. In this paper, I would like to share a list and description of some of the most remarkable places in London suitable…

  15. Estimating extragalactic Faraday rotation

    NASA Astrophysics Data System (ADS)

    Oppermann, N.; Junklewitz, H.; Greiner, M.; Enßlin, T. A.; Akahori, T.; Carretti, E.; Gaensler, B. M.; Goobar, A.; Harvey-Smith, L.; Johnston-Hollitt, M.; Pratley, L.; Schnitzeler, D. H. F. M.; Stil, J. M.; Vacca, V.

    2015-03-01

    Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations for extragalactic sources. The analysis is done for several different scenarios, for which we consider the error bars of different subsets of the data to accurately describe the observational uncertainties. By comparing the results, we argue that a split that singles out only data near the Galactic poles is the most robust approach. We find that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly

  16. Complex structure within Saturn's infrared aurora

    USGS Publications Warehouse

    Stallard, T.; Miller, S.; Lystrup, M.; Achilleos, N.; Bunce, E.J.; Arridge, C.S.; Dougherty, M.K.; Cowley, S.W.H.; Badman, S.V.; Talboys, D.L.; Brown, R.H.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Sotin, C.; Nicholson, P.D.; Drossart, P.

    2008-01-01

    The majority of planetary aurorae are produced by electrical currents flowing between the ionosphere and the magnetosphere which accelerate energetic charged particles that hit the upper atmosphere. At Saturn, these processes collisionally excite hydrogen, causing ultraviolet emission, and ionize the hydrogen, leading to H3+ infrared emission. Although the morphology of these aurorae is affected by changes in the solar wind, the source of the currents which produce them is a matter of debate. Recent models predict only weak emission away from the main auroral oval. Here we report images that show emission both poleward and equatorward of the main oval (separated by a region of low emission). The extensive polar emission is highly variable with time, and disappears when the main oval has a spiral morphology; this suggests that although the polar emission may be associated with minor increases in the dynamic pressure from the solar wind, it is not directly linked to strong magnetospheric compressions. This aurora appears to be unique to Saturn and cannot be explained using our current understanding of Saturn's magnetosphere. The equatorward arc of emission exists only on the nightside of the planet, and arises from internal magnetospheric processes that are currently unknown. ??2008 Macmillan Publishers Limited. All rights reserved.

  17. Complex structure within Saturn's infrared aurora.

    PubMed

    Stallard, Tom; Miller, Steve; Lystrup, Makenzie; Achilleos, Nicholas; Bunce, Emma J; Arridge, Christopher S; Dougherty, Michele K; Cowley, Stan W H; Badman, Sarah V; Talboys, Dean L; Brown, Robert H; Baines, Kevin H; Buratti, Bonnie J; Clark, Roger N; Sotin, Christophe; Nicholson, Phil D; Drossart, Pierre

    2008-11-13

    The majority of planetary aurorae are produced by electrical currents flowing between the ionosphere and the magnetosphere which accelerate energetic charged particles that hit the upper atmosphere. At Saturn, these processes collisionally excite hydrogen, causing ultraviolet emission, and ionize the hydrogen, leading to H(3)(+) infrared emission. Although the morphology of these aurorae is affected by changes in the solar wind, the source of the currents which produce them is a matter of debate. Recent models predict only weak emission away from the main auroral oval. Here we report images that show emission both poleward and equatorward of the main oval (separated by a region of low emission). The extensive polar emission is highly variable with time, and disappears when the main oval has a spiral morphology; this suggests that although the polar emission may be associated with minor increases in the dynamic pressure from the solar wind, it is not directly linked to strong magnetospheric compressions. This aurora appears to be unique to Saturn and cannot be explained using our current understanding of Saturn's magnetosphere. The equatorward arc of emission exists only on the nightside of the planet, and arises from internal magnetospheric processes that are currently unknown. PMID:19005549

  18. Modified Faraday cup

    DOEpatents

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1996-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-din-tensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  19. Modified Faraday cup

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1996-09-10

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees from 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  20. Michael Faraday vs. the Spiritualists

    NASA Astrophysics Data System (ADS)

    Hirshfeld, Alan

    2006-12-01

    In the 1850s, renowned physicist Michael Faraday launched a public campaign against pseudoscience and spiritualism, which were rampant in England at the time. Faraday objected especially to claims that electrical or magnetic forces were responsible for paranormal phenomena, such as table-spinning and communication with the dead. Using scientific methods, Faraday unmasked the deceptions of spiritualists, clairvoyants and mediums and also laid bare the credulity of a public ill-educated in science. Despite his efforts, Victorian society's fascination with the paranormal swelled. Faraday's debacle anticipates current controversies about public science education and the interface between science and religion. This episode is one of many described in the new biography, The Electric Life of Michael Faraday (Walker & Co.), which chronicles Faraday's discoveries and his unlikely rise from poverty to the pinnacle of the English science establishment.

  1. Faraday instability in deformable domains

    NASA Astrophysics Data System (ADS)

    Pucci, Giuseppe; Ben Amar, Martine; Couder, Yves

    2014-11-01

    We investigate the Faraday instability in floating liquid lenses, as an example of hydrodynamic instability that develops in a domain with flexible boundaries. We show that a mutual adaptation of the instability pattern and the domain shape occurs, as a result of the competition between the wave radiation pressure and the capillary response of the lens border. Two archetypes of behaviour are observed. In the first, stable shapes are obtained experimentally and predicted theoretically as the exact solutions of a Riccati equation, and they result from the equilibrium between wave radiation pressure and capillarity. In the second, the radiation pressure exceeds the capillary response of the lens border and leads to non-equilibrium behaviours, with breaking into smaller domains that have a complex dynamics including spontaneous propagation. The authors are grateful to Université Franco-Italienne (UFI) for financial support.

  2. Faraday instability and Faraday patterns in a superfluid Fermi gas

    NASA Astrophysics Data System (ADS)

    Tang, Rong-An; Li, Hao-Cai; Xue, Ju-Kui

    2011-06-01

    With the consideration of the coupling between the transverse width and the longitudinal density, the parametric excitations related to Faraday waves in a cigar-shaped superfluid Fermi gas are studied. A Mathieu equation is obtained, and it is demonstrated firstly that the excited actual 3D Faraday pattern is the combination of the longitudinal Faraday density wave and the corresponding transverse width fluctuation in the longitudinal direction. The Faraday instability growth index and the kinematic equations of the Faraday density wave and the width fluctuation along the Bose-Einstein condensate (BEC)-Bardeen-Cooper-Schrieffer (BCS) crossover are also given for the first time. It is found that the 3D Faraday pattern presents quite different behaviours (such as the excitations and the motions) when the system crosses from the BEC side to the BCS side. The coupling not only plays an important role in the parametric excitation, but also determines the dominant wavelength of the spatial structure. Along the crossover, the coupling effects are more significant in the BCS side. The final numerical investigation verifies these results and gives a detailed study of the parametric excitations (i.e. Faraday instability) and the 3D pattern formation.

  3. Rephrasing Faraday's Law

    NASA Astrophysics Data System (ADS)

    Hill, S. Eric

    2010-09-01

    As physics educators, we must often find the balance between simplicity and accuracy. Particularly in introductory courses, it can be a struggle to give students the level of understanding for which they're ready without misrepresenting reality. Of course, it's in these introductory courses that our students begin to construct the conceptual framework that they'll flesh out over a physics curriculum. So a misrepresentation at this early stage will seed difficulties and stubborn misconceptions that can persist or even strengthen through subsequent courses, especially since many upper-level texts focus more on techniques and would not directly challenge mistaken concepts. In the worst cases, our students retain misunderstandings past graduation, and even pass them on to their own students. One important case is the common representation of Faraday's law as showing that a time-varying magnetic field causes a circulating electric field.

  4. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  5. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  6. MUSIC for Faraday rotation measure synthesis

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    2013-03-01

    Faraday rotation measure (RM) synthesis requires the recovery of the Faraday dispersion function (FDF) from measurements restricted to limited wavelength ranges, which is an ill-conditioned deconvolution problem. Here, we propose a novel deconvolution method based on an extension of the MUltiple SIgnal Classification (MUSIC) algorithm. The complexity and speed of the method is determined by the eigen-decomposition of the covariance matrix of the observed polarizations. We show numerically that for high to moderate signal-to-noise ratio (S/N) cases the RM-MUSIC method is able to recover the Faraday depth values of closely spaced pairs of thin RM components, even in situations where the peak response of the FDF is outside of the RM range between the two input RM components. This result is particularly important because the standard deconvolution approach based on RM-CLEAN fails systematically in such situations, due to its greedy mechanism used to extract the RM components. For low S/N situations, both the RM-MUSIC and RM-CLEAN methods provide similar results.

  7. Communication: Infrared spectroscopy of salt-water complexes

    NASA Astrophysics Data System (ADS)

    Tandy, Jon; Feng, Cheng; Boatwright, Adrian; Sarma, Gautam; Sadoon, Ahmed M.; Shirley, Andrew; Rodrigues, Natercia Das Neves; Cunningham, Ethan M.; Yang, Shengfu; Ellis, Andrew M.

    2016-03-01

    To explore how the ion-pair in a single salt molecule evolves with the addition of water, infrared (IR) spectra of complexes composed of NaCl and multiple water molecules have been recorded for the first time. The NaCl(H2O)n complexes were formed and probed in liquid helium nanodroplets, and IR spectra were recorded for n = 1 → 4. The spectra for n = 1, 2, and 3 are consistent with formation of the lowest energy contact-ion pair structures in which each water molecule forms a single ionic hydrogen bond to an intact Na+Cl- ion-pair. Alternative structures with hydrogen bonding between water molecules become energetically competitive for n = 4, and the IR spectrum indicates likely the coexistence of at least two isomers.

  8. Infrared spectroscopy of nonclassical ions and their complexes

    SciTech Connect

    Boo, D.W.

    1995-01-01

    This thesis describes an infrared spectroscopic study on the structures and dynamics of the nonclassical ions and their complexes, using ion trap vibrational predissociation spectroscopy. Chapter One provides an introduction to the experimental apparatus used in this work. Chapter Two describes the previous theoretical and experimental works on the carbonium ion CH{sub 5}{sup +} and infrared spectroscopic and theoretical works on CH{sub 5}{sup +}. CH{sub 5}{sup +} was predicted to scramble constantly without possessing a stable structure. In Chapter Three, the infrared spectroscopy for the molecular hydrogen solvated carbonium ions CH{sub 5}{sup +}(H{sub 2}){sub n} (n=1-6) in the frequency region of 2700-4200 cm{sup {minus}1} are presented and compared with the results of ab initio molecular dynamics simulation on CH{sub 5}{sup +}(H{sub 2}){sub n} (n=0-3). The results suggested that the scrambling of CH{sub 5}{sup +} slowed down considerably by the stabilization effects of the solvent H{sub 2} molecules, and it was completely frozen out when the first three H{sub 2} molecules were bound to the core CH{sub 5}{sup +}. Chapter Four presents the complete infrared spectra for the solvated carbonium ions, CH{sub 5}{sup +}(A){sub x}(B){sub y} (A,B=H{sub 2}, Ar, N{sub 2}, CH{sub 4};x,y=0-5) in the frequency region of 2500-3200 cm{sup {minus}1}. As the binding affinities of the solvent molecules and the number of the solvent molecules in the clusters increased, the scrambling of CH{sub 5}{sup +} slowed down substantially. The structures of the solvated carbonium ions and the evidence for rapid proton transfer in CH{sub 5}{sup +}(CH{sub 4}) were also presented. Chapter Five presents the vib-rotational spectrum for the H-H stretching mode of the silanium ion SiH{sub 5}{sup +}. The results suggested that SiH{sub 5}{sup +} can be described as a complex of SiH{sub 3}{sup +} and a freely internally rotating H{sub 2}, analogous to, but distinct from CH{sub 5}{sup +}.

  9. Ultrafast infrared studies of complex ligand rearrangements in solution

    SciTech Connect

    Payne, Christine K.

    2003-05-31

    The complete description of a chemical reaction in solution depends upon an understanding of the reactive molecule as well as its interactions with the surrounding solvent molecules. Using ultrafast infrared spectroscopy it is possible to observe both the solute-solvent interactions and the rearrangement steps which determine the overall course of a chemical reaction. The topics addressed in these studies focus on reaction mechanisms which require the rearrangement of complex ligands and the spectroscopic techniques necessary for the determination of these mechanisms. Ligand rearrangement is studied by considering two different reaction mechanisms for which the rearrangement of a complex ligand constitutes the most important step of the reaction. The first system concerns the rearrangement of a cyclopentadienyl ring as the response of an organometallic complex to a loss of electron density. This mechanism, commonly referred to as ''ring slip'', is frequently cited to explain reaction mechanisms. However, the ring slipped intermediate is too short-lived to be observed using conventional methods. Using a combination of ultrafast infrared spectroscopy and electronic structure calculations it has been shown that the intermediate exists, but does not form an eighteen-electron intermediate as suggested by traditional molecular orbital models. The second example examines the initial steps of alkyne polymerization. Group 6 (Cr, Mo, W) pentacarbonyl species are generated photolytically and used to catalyze the polymerization of unsaturated hydrocarbons through a series of coordination and rearrangement steps. Observing this reaction on the femto- to millisecond timescale indicates that the initial coordination of an alkyne solvent molecule to the metal center results in a stable intermediate that does not rearrange to form the polymer precursor. This suggests that polymerization requires the dissociation of additional carbonyl ligands before rearrangement can occur. Overall

  10. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks. PMID:25361349

  11. Infrared Spectroscopy of Charge Transfer Complexes of Purines and Pyrimidines

    SciTech Connect

    Rathod, Pravinsinh I.; Oza, A. T.

    2011-10-20

    The FTIR spectra of charge transfer complexes of purines and pyrimidines with organic acceptors such as TCNQ, TCNE, DDQ, chloranil and iodine are obtained and studied in the present work. Adenine, guanine, thymine, cytosine and uracil are the purines and pyrimidines which are found as constituent of DNA and RNA. Charge transfer induced hydrogen bonding is concluded on the basis of indirect transitions observed in the infrared range in these CTCs. Some CTCs show gaussian bands revealing delocalization of charge carriers. The CTCs show interband transition in three-dimensions rather than two-dimensions unlike CTCs of amino acids. There is no extended hydrogen bonded network spanning the whole crystal. This leads to indirect transition due to locally deformed lattice furnishing a phonon-assisted transition.

  12. Near infrared photodissociation spectra of the aniline +-argon ionic complexes

    NASA Astrophysics Data System (ADS)

    Pino, T.; Douin, S.; Boudin, N.; Bréchignac, Ph.

    2006-02-01

    The near infrared spectra of the ionic complexes aniline(NH 2) +-argon and aniline(ND 2) +-argon have been measured by laser photodissociation spectroscopy. The bands observed from 10 500 to 13 500 cm -1 have been assigned to the D1(A˜2A2)←D0(X˜2B1) electronic transition within the solvated chromophore. They are characterized by a long vibrational progression involving the 6a mode. On the basis of CASSCF calculations, a large change of geometry along this coordinate is found while the amino group remains in the ring plane. Therefore, a change of the conjugation of the ring rather than a charge transfer is inferred. This is thought to be the origin of the extent of the progression.

  13. Faraday's Law and Seawater Motion

    ERIC Educational Resources Information Center

    De Luca, R.

    2010-01-01

    Using Faraday's law, one can illustrate how an electromotive force generator, directly utilizing seawater motion, works. The conceptual device proposed is rather simple in its components and can be built in any high school or college laboratory. The description of the way in which the device generates an electromotive force can be instructive not…

  14. Faraday's first dynamo: A retrospective

    NASA Astrophysics Data System (ADS)

    Smith, Glenn S.

    2013-12-01

    In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.

  15. Various Paths to Faraday's Law

    ERIC Educational Resources Information Center

    Redzic, Dragan V.

    2008-01-01

    In a recent note, the author presented a derivation of Faraday's law of electromagnetic induction for a closed filamentary circuit C(t) which is moving at relativistic velocities and also changing its shape as it moves via the magnetic vector potential. Recently, Kholmetskii et al, while correcting an error in an equation, showed that it can be…

  16. Building a better Faraday cage

    NASA Astrophysics Data System (ADS)

    MartinAlfven; Wright, David; skocpol; Rounce, Graham; Richfield, Jon; W, Nick; wheelsonfire

    2015-11-01

    In reply to the physicsworld.com news article “Are Faraday cages less effective than previously thought?” (15 September, http://ow.ly/SfklO), about a study that indicated, based on mathematical modelling, that conducting wire-mesh cages may not be as good at excluding electromagnetic radiation as is commonly assumed.

  17. A Mobile Phone Faraday Cage

    ERIC Educational Resources Information Center

    French, M. M. J.

    2011-01-01

    A Faraday cage is an interesting physical phenomenon where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can. The background of the physics behind this is…

  18. Faraday dispersion functions of galaxies

    SciTech Connect

    Ideguchi, Shinsuke; Tashiro, Yuichi; Takahashi, Keitaro; Akahori, Takuya; Ryu, Dongsu E-mail: 136d8008@st.kumamoto-u.ac.jp E-mail: akahori@physics.usyd.edu.au

    2014-09-01

    The Faraday dispersion function (FDF), which can be derived from an observed polarization spectrum by Faraday rotation measure synthesis, is a profile of polarized emissions as a function of Faraday depth. We study intrinsic FDFs along sight lines through face-on Milky Way like galaxies by means of a sophisticated galactic model incorporating three-dimensional MHD turbulence, and investigate how much information the FDF intrinsically contains. Since the FDF reflects distributions of thermal and cosmic-ray electrons as well as magnetic fields, it has been expected that the FDF could be a new probe to examine internal structures of galaxies. We, however, find that an intrinsic FDF along a sight line through a galaxy is very complicated, depending significantly on actual configurations of turbulence. We perform 800 realizations of turbulence and find no universal shape of the FDF even if we fix the global parameters of the model. We calculate the probability distribution functions of the standard deviation, skewness, and kurtosis of FDFs and compare them for models with different global parameters. Our models predict that the presence of vertical magnetic fields and the large-scale height of cosmic-ray electrons tend to make the standard deviation relatively large. In contrast, the differences in skewness and kurtosis are relatively less significant.

  19. Deconvolving Current from Faraday Rotation Measurement

    SciTech Connect

    Stephen E. Mitchell

    2008-02-01

    In this paper, a unique software program is reported which automatically decodes the Faraday rotation signal into a time-dependent current representation. System parameters, such as the Faraday fiber’s Verdet constant and number of loops in the sensor, are the only user-interface inputs. The central aspect of the algorithm utilizes a short-time Fourier transform, which reveals much of the Faraday rotation measurement’s implicit information necessary for unfolding the dynamic current measurement.

  20. Near infrared spectroscopy and chemometrics analysis of complex traits in animal physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance (NIR) applications have been expanding from the traditional framework of small molecule chemical purity and composition (as defined by spectral libraries) to complex system analysis and holistic exploratory approaches to questions in biochemistry, biophysics and environment...

  1. WW domain folding complexity revealed by infrared spectroscopy.

    PubMed

    Davis, Caitlin M; Dyer, R Brian

    2014-09-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics. PMID:25121968

  2. Faraday screen sputtering on TPX

    SciTech Connect

    Ehst, D.A.

    1994-12-01

    The TPX design stipulates that the ion-cyclotron resonance frequency (ICRF) antenna must have a Faraday screen (FS). The author considers here possible low Z coatings for the screen, as well as sputtering behavior of the Ni and Ti substrates. The theory of rf-induced sputtering has been developed, and he follows those theoretical approaches. The author`s emphasis will be on both impurity generation as a possible source of increased Z{sub eff}, and also on actual erosion-lifetime of the materials under worst case conditions.

  3. Michael Faraday's work on optical glass

    NASA Astrophysics Data System (ADS)

    James, Frank A. J. L.

    1991-09-01

    This article discusses Faraday's work of the late 1820s to improve optical glass for the joint Royal Society/Board of Longitude Committee set up for this purpose. It points out the importance of this work for some of Faraday's later physical researches.

  4. Active imaging system with Faraday filter

    DOEpatents

    Snyder, J.J.

    1993-04-13

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  5. Active imaging system with Faraday filter

    DOEpatents

    Snyder, James J.

    1993-01-01

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  6. Soliton mode locking by nonlinear Faraday rotation

    NASA Astrophysics Data System (ADS)

    Wabnitz, S.; Westin, E.; Frey, R.; Flytzanis, C.

    1996-11-01

    We propose nonlinear Faraday rotation as a mechanism for achieving stable polarization mode locking of a soliton laser. We analyze by perturbation theory and beam-propagation simulations the interplay between bandwidth-limited gain, gain dichroism, and linear and nonlinear Faraday rotation. .

  7. Faraday diagnostics for ALT-3

    SciTech Connect

    Oro, David M; Tabaka, Leonard J

    2011-01-13

    ALT-3 and R-Damage are experiments to be executed in collaboration between LANL and VNIIEF personnel. They are planned to be fielded in Sarov, Russia at VNIIEF. Both experiments employ Russian explosively driven pulse-power systems to generate a pulse of electrical current that is used to drive the experiment. The current pulse will be measured with Faraday-rotation fiber-optic loops. Using this well known technique, the change in the current enclosed by the loops is determined by measuring the change in the magnetic field integrated along the fiber-optic loop by detecting the Faraday rotation of linearly polarized light traveling through the fiber. The amount of polarization rotation of the light is related to the integrated magnetic field and therefore the enclosed current (Ampere's law) through the Verdet constant which for the optical-fibers used in this experiment has been determined to within 1 %. The presentation describes how the technique will be employed in the ALT-3 experiment.

  8. Resonant Faraday shield ICRH antenna

    NASA Astrophysics Data System (ADS)

    Cattanei, G.; W7-AS Team

    2002-05-01

    ICRH has proved to be an efficient method of heating the plasma in toroidal devices. The high voltages needed at the coupling structure are, however, a severe handicap of this method. The possibility is investigated of having the highest voltages between the bars of the Faraday shield (FS), where they are both necessary and easier to maintain. For this purpose a resonant Faraday shield (RFS) antenna where the first and last bars of the FS are connected by an inductive strip is proposed. In front of this strip there is a second strip, fed, as in a conventional antenna, by an RF generator. It is shown that if the toroidal length of the FS is larger than λ/2 the strip connecting the bars of the FS acts as the secondary coil of a tuned transformer, the strip fed by the generator being the primary. It is therefore possible, by varying the frequency and the distance between the two strips, i.e. the coupling coefficient, to match the impedance of the primary to that of the generator.

  9. 1/f Noise Inside a Faraday Cage

    SciTech Connect

    Handel, Peter H.; George, Thomas F.

    2009-04-23

    We show that quantum 1/f noise does not have a lower frequency limit given by the lowest free electromagnetic field mode in a Faraday cage, even in an ideal cage. Indeed, quantum 1/f noise comes from the infrared-divergent coupling of the field with the charges, in their joint nonlinear system, where the charges cause the field that reacts back on the charges, and so on. This low-frequency limitation is thus not applicable for the nonlinear system of matter and field in interaction. Indeed, this nonlinear system is governed by Newton's laws, Maxwell's equations, in general also by the diffusion equations for particles and heat, or reaction kinetics given by quantum matrix elements. Nevertheless, all the other quantities can be eliminated in principle, resulting in highly nonlinear integro-differential equations for the electromagnetic field only, which no longer yield a fundamental frequency. Alternatively, we may describe this through the presence of an infinite system of subharmonics. We show how this was proven early in the classical and quantum domains, adding new insight.

  10. Isotopic labelling studies on far-infrared spectra of nickel-histamine complexes

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Kordon, Ewa

    2000-11-01

    Nickel-histamine (hm) complexes type [Ni(hm)Cl 2] and [Ni(hm) 3] X2 (Where X=Cl, Br, I, ClO 4) were investigated in the far-infrared region. Metal isotope labelling and deuteration effects were employed for observed band assignments. Metal-ligand vibrations were discussed and correlated with the structures of the complexes.

  11. Faraday wave lattice as an elastic metamaterial

    NASA Astrophysics Data System (ADS)

    Domino, L.; Tarpin, M.; Patinet, S.; Eddi, A.

    2016-05-01

    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.

  12. Faraday wave lattice as an elastic metamaterial.

    PubMed

    Domino, L; Tarpin, M; Patinet, S; Eddi, A

    2016-05-01

    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial. PMID:27300815

  13. Infrared spectrum of the complex of formaldehyde with carbon dioxide in argon and nitrogen matrices

    NASA Technical Reports Server (NTRS)

    Van Der Zwet, G. P.; Allamandola, Louis J.; Baas, F.; Greenberg, J. M.

    1989-01-01

    The complex of formaldehyde with carbon dioxide has been studied by infrared spectroscopy in argon and nitrogen matrices. The shifts relative to the free species show that the complex is weak and similar in argon and nitrogen. The results give evidence for T-shaped complexes, which are isolated in several configurations. Some evidence is also presented which indicates that, in addition to the two well-known sites in argon, carbon dioxide can be trapped in a third site.

  14. Complex infrared emission features in the spectrum of beta Lyrae

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Potter, A. E.; Kondo, Y.

    1974-01-01

    Spectra of beta Lyrae over the spectral region from 5800 to 11,000 per cm (1.76 to 0.9 micron) at two different phases have been obtained. They show a remarkable emission-absorption complex at 9231 per cm, a highly structured emission at P beta, and several additional broad weak emissions.

  15. Michael Faraday's Contributions to Archaeological Chemistry.

    PubMed

    Moshenska, Gabriel

    2015-08-01

    The analysis of ancient artefacts is a long but largely neglected thread within the histories of archaeology and chemistry. This paper examines Michael Faraday's contributions to this nascent field, drawing on his published correspondence and the works of his antiquarian collaborators, and focusing in particular on his analyses of Romano-British and ancient Egyptian artefacts. Faraday examined the materials used in ancient Egyptian mummification, and provided the first proof of the use of lead glazes on Roman ceramics. Beginning with an assessment of Faraday's personal interests and early work on antiquities with Humphry Davy, this paper critically examines the historiography of archaeological chemistry and attempts to place Faraday's work within its institutional, intellectual, and economic contexts. PMID:26307911

  16. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    PubMed

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications. PMID:27348746

  17. Infrared Spectra of (CO2)2-OCS Complex: Infrared Observation of Two Distinct Barrel-Shaped Isomers

    NASA Astrophysics Data System (ADS)

    Norooz Oliaee, J.; Dehghany, M.; Mivehvar, F.; Moazzen-Ahmadi, N.; McKellar, A. R. W.

    2010-06-01

    Spectra of (CO2)2-OCS complex in the region of the OCS ν 1 fundamental (˜ 2062 cm-1) are observed using a tunable diode laser to probe a pulsed supersonic slit jet expansion. A previous microwave study of the complex by Peebles and Kuczkowskia gave a distorted triangular cylinder. The geometerical disposition of the three dimer faces of this trimer are quite similar to the slipped CO2 dimer, the lowest energy form of OCS-CO2 (isomer a), also observed and analyzed in the microwave region, and the higher energy form of OCS-CO2 (isomer b), first observed by our group in the infrared region. Here we report the observation and analysis of two infrared bands, corresponding to two distinct isomers of the (CO2)2-OCS complex. A band around 2058.8 cm-1 was assigned to isomer I, which is the same as that studied previously by microwave spectroscopy. A second band around 2051.7 cm-1 was assigned to a higher energy isomer of the complex, isomer II, has not been observed previously, but expected on the basis of ab initio calculations. Approximate structural parameters for this new isomer were obtained by means of isotopic substitution. In contrast to isomer I, the geometerical disposition of the faces containing OCS and CO2 in isomer II are similar to isomer b of the OCS-CO2 complex. S. A. Peebles and R. L. Kuczkowski, J. Chem. Phys. 109, 5277 (1998). S. E. Novick, R. D. Suenram, and F. J. Lovas, J. Chem. Phys. 88, 687 (1988). M. Dehghany, J. Nooroz Oliaee, M. Afshari, N. Moazzen-Ahmadi, and A. R. W. McKellar, J. Chem. Phys. 130, 224310 (2009). H. Valdés and J. A. Sordo, Int. J. Comput. Chem. 23, 444 (2002).

  18. Wave-particle interaction in the Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2015-10-01

    Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa. PMID:26420468

  19. THE COMPUTED INFRARED SPECTRA OF A VARIETY OF [FePAH]{sup +} COMPLEXES: MID- AND FAR-INFRARED FEATURES

    SciTech Connect

    Simon, A.; Joblin, C.

    2010-03-20

    The effects of the pi-coordination of an Fe atom on the mid- and far-infrared spectra of a mixture of cationic polycyclic aromatic hydrocarbons (PAHs), e.g., pyrene (C{sub 16}H{sub 10}), anthanthrene (C{sub 22}H{sub 12}), coronene (C{sub 24}H{sub 12}), ovalene (C{sub 32}H{sub 14}), circumpyrene (C{sub 42}H{sub 16}), and circumcoronene (C{sub 54}H{sub 18}), are studied by Density Functional Theory based calculations. In the mid-infrared range (3-20 {mu}m), by comparison with the bare PAH{sup +} spectrum, we found (1) an increase of the intensity ratio of the C-H stretching and C-H out-of-plane bending bands with respect to the intense CC stretching band and (2) a shift of the band positions and a characteristic profile with a steep blue rise and an extended red tail for the CC stretching and CH out-of-plane bending bands. None of these features appears inconsistent with the observed aromatic infrared band spectrum. In the far-infrared range (lambda > 20 {mu}m), the presence of a pi-coordinated Fe atom induces many new bands as (1) some vibrational modes of the PAH are activated due to symmetry reduction and (2) new modes involving the motion of the Fe atom occur. In particular, an accumulation point due to the activation of the Fe-PAH stretching mode is observed at around 40 {mu}m. This range is suggested to contain the spectral fingerprint for the presence of [M-PAH]{sup +} (M=Fe, Si, Mg) complexes in the interstellar medium. Additional features in the [60-300] {mu}m range are found for complexes with large PAHs. The obtained results are discussed in the light of past, present, and future astronomical missions, among which are the Herschel Space Observatory and the SPICA telescope for the far-infrared domain.

  20. Innovative technologies for Faraday shield cooling

    SciTech Connect

    Rosenfeld, J.H.; Lindemuth, J.E.; North, M.T.; Goulding, R.H.

    1995-12-31

    Alternative advanced technologies are being evaluated for use in cooling the Faraday shields used for protection of ion cyclotron range of frequencies (ICR) antennae in Tokamaks. Two approaches currently under evaluation include heat pipe cooling and gas cooling. A Monel/water heat pipe cooled Faraday shield has been successfully demonstrated. Heat pipe cooling offers the advantage of reducing the amount of water discharged into the Tokamak in the event of a tube weld failure. The device was recently tested on an antenna at Oak Ridge National Laboratory. The heat pipe design uses inclined water heat pipes with warm water condensers located outside of the plasma chamber. This approach can passively remove absorbed heat fluxes in excess of 200 W/cm{sup 2};. Helium-cooled Faraday shields are also being evaluated. This approach offers the advantage of no liquid discharge into the Tokamak in the event of a tube failure. Innovative internal cooling structures based on porous metal cooling are being used to develop a helium-cooled Faraday shield structure. This approach can dissipate the high heat fluxes typical of Faraday shield applications while minimizing the required helium blower power. Preliminary analysis shows that nominal helium flow and pressure drop can sufficiently cool a Faraday shield in typical applications. Plans are in progress to fabricate and test prototype hardware based on this approach.

  1. Infrared intensities and charge mobility in hydrogen bonded complexes

    NASA Astrophysics Data System (ADS)

    Galimberti, Daria; Milani, Alberto; Castiglioni, Chiara

    2013-08-01

    The analytical model for the study of charge mobility in the molecules presented by Galimberti et al. [J. Chem. Phys. 138, 164115 (2013)] is applied to hydrogen bonded planar dimers. Atomic charges and charge fluxes are obtained from density functional theory computed atomic polar tensors and related first derivatives, thus providing an interpretation of the IR intensity enhancement of the X-H stretching band observed upon aggregation. Our results show that both principal and non-principal charge fluxes have an important role for the rationalization of the spectral behavior; moreover, they demonstrate that the modulation of the charge distribution during vibrational motions of the -XH⋯Y- fragment is not localized exclusively on the atoms directly involved in hydrogen bonding. With these premises we made some correlations between IR intensities, interaction energies, and charge fluxes. The model was tested on small dimers and subsequently to the bigger one cytosine-guanine. Thus, the model can be applied to complex systems.

  2. Near-Infrared Phosphorescent Iridium(III) Benzonorrole Complexes Possessing Pyridine-based Axial Ligands.

    PubMed

    Maurya, Yogesh Kumar; Ishikawa, Takahiro; Kawabe, Yasunori; Ishida, Masatoshi; Toganoh, Motoki; Mori, Shigeki; Yasutake, Yuhsuke; Fukatsu, Susumu; Furuta, Hiroyuki

    2016-06-20

    Novel near-infrared phosphorescent iridium(III) complexes based on benzo-annulated N-linked corrole analogue (termed as benzonorrole) were synthesized. The structures of the complexes revealed octahedral coordination geometries involving an organometallic iridium-carbon bond with two external axial ligands. Interestingly, the iridium(III) complex exhibits near-infrared phosphorescence at room temperature at wavelengths beyond 900 nm. The significant redshift of the emission, as compared to the corrole congener, is originated from the ligand-centered triplet character. The fine-tuning of the photophysical properties of the complexes was achieved by introducing electron-donating and electron-withdrawing substituents on the axial pyridine ligands. PMID:27249778

  3. Near-infrared-induced electron transfer of an uranyl macrocyclic complex without energy transfer to dioxygen.

    PubMed

    Davis, Christina M; Ohkubo, Kei; Ho, I-Ting; Zhang, Zhan; Ishida, Masatoshi; Fang, Yuanyuan; Lynch, Vincent M; Kadish, Karl M; Sessler, Jonathan L; Fukuzumi, Shunichi

    2015-04-21

    Photoexcitation of dichloromethane solutions of an uranyl macrocyclic complex with cyclo[1]furan[1]pyridine[4]-pyrrole () at the near-infrared (NIR) band (1177 nm) in the presence of electron donors and acceptors resulted in NIR-induced electron transfer without producing singlet oxygen via energy transfer. PMID:25791126

  4. Characterization of a 1:1 Methanol-Benzene Complex Using Matrix Isolation Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Amicangelo, Jay C.; Romano, Natalie C.; Demay, Geoffrey R.

    2013-06-01

    Matrix isolation infrared spectroscopy was used to characterize a 1:1 complex of methanol (CH_{3}OH) with benzene (C_{6}H_{6}). Co-deposition experiments with CH_{3}OH and C_{6}H_{6} were performed at 17 - 20 K using nitrogen and argon as the matrix gases. New infrared bands attributable to the CH_{3}OH-C_{6}H_{6} complex were observed near the O-H and C-O stretching vibrations of CH_{3}OH and near the hydrogen out-of-plane bending vibration of C_{6}H_{6}. The initial identification of the new infrared bands observed was established by performing a conentration study (1:200 to 1:2000 S:M ratios), by comparing the co-deposition spectra with the spectra of the individual monomers, by matrix annealing experiments, and by performing experiments using isotopically labeled methanol (CD_{3}OD) and benzene (C_{6}D_{6}). Quantum chemical calculations were also performed for the CH_{3}OH-C_{6}H_{6} complex using density functional theory and ab initio methods. Two stable minima were found for the complex: one in which the CH_{3}OH is above the C_{6}H_{6} ring with the hydroxyl hydrogen interacting with the π cloud of the ring (H-π complex) and the other in which the CH_{3}OH is in the plane of the C_{6}H_{6} ring with the hydroxyl oxygen interacting with one of the C-H bonds of the ring (CH-O complex). Comparing the calculated shifts of the vibrational frequencies for both complexes to the observed experimental frequency shifts, it is found that the H-π complex is in best agreement with the experimental shifts in both magnitude and direction. Therefore, it is concluded that the geometry of the CH_{3}OH-C_{6}H_{6} complex observed in the matrix isolation experiments is the H-π complex.

  5. Analytical estimation of solid angle subtended by complex well-resolved surfaces for infrared detection studies.

    PubMed

    Mahulikar, Shripad P; Potnuru, Santosh K; Kolhe, Pankaj S

    2007-08-01

    The solid angle (Omega) subtended by the hot power-plant surfaces of a typical fighter aircraft, on the detector of an infrared (IR) guided missile, is analytically obtained. The use of the parallel rays projection method simplifies the incorporation of the effect of the optical blocking by engine surfaces, on Omega-subtended. This methodology enables the evaluation of the relative contribution of the IR signature from well-resolved distributed sources, and is important for imaging infrared detection studies. The complex 3D surface of a rear fuselage is projected onto an equivalent planar area normal to the viewing aspect, which would give the same Omega-subtended. PMID:17676106

  6. The gravitational analog of Faraday's induction law

    NASA Astrophysics Data System (ADS)

    Zile, Daniel; Overduin, James

    2015-04-01

    Michael Faraday, the discoverer of electromagnetic induction, was convinced that there must also be a gravitational analog of this law, and he carried out drop-tower experiments in 1849 to look for the electric current induced in a coil by changes in gravitational flux through the coil. This work, now little remembered, was in some ways the first investigation of what we would now call a unified-field theory. We revisit Faraday's experiments in the light of current knowledge and ask what might be learned if they were to be performed today. We then review the gravitational analog for Faraday's law that arises within the vector (or gravito-electromagnetic) approximation to Einstein's theory of general relativity in the weak-field, low-velocity limit. This law relates spinning masses and induced ``mass currents'' rather than spinning charges and electric currents, but is otherwise remarkably similar to its electromagnetic counterpart. The predicted effects are completely unobservable in everyday settings like those envisioned by Faraday, but are thought to be relevant in astrophysical contexts like the accretion disks around collapsed stars, thus bearing out Faraday's remarkable intuition. Undergraduate student.

  7. Faraday rotation measurement method and apparatus

    NASA Technical Reports Server (NTRS)

    Brockman, M. H. (Inventor)

    1981-01-01

    A method and device for measuring Faraday rotation of a received RF signal is described. A simultaneous orthogonal polarization receiver compensates for a 3 db loss due to splitting of a received signal into left circular and right circular polarization channels. The compensation is achieved by RF and modulation arraying utilizing a specific receiver array which also detects and measures Faraday rotation in the presence or absence of spin stabilization effects on a linear polarization vector. Either up-link or down-link measurement of Faraday rotation is possible. Specifically, the Faraday measurement apparatus utilized in conjunction with the specific receiver array provides a means for comparing the phase of a reference signal in the receiver array to the phase of a tracking loop signal related to the incoming signal, and comparing the phase of the reference signal to the phase of the tracking signal shifted in phase by 90 degrees. The averaged and unaveraged signals, are compared, the phase changes between the two signals being related to Faraday rotation.

  8. Michael Faraday and his contribution to anesthesia.

    PubMed

    Bergman, N A

    1992-10-01

    Michael Faraday (1791-1867) was a protégé of Humphry Davy. He became one of Davy's successors as Professor of Chemistry at the Royal Institution of Great Britain. Of Faraday's many brilliant discoveries in chemistry and physics, probably the best remembered today is his work on electromagnetic induction. Faraday's contribution to introduction of anesthesia was his published announcement in 1818 that inhalation of the vapor of ether produced the same effects on mentation and consciousness as the breathing of nitrous oxide. He most likely became familiar with the central nervous system effects of nitrous oxide through his association with Davy, an avid user of the gas. Sulfuric ether was a common, convenient, cheap, and easily available substance, in contrast to nitrous oxide, which required expensive, cumbersome, and probably not widely available apparatus for its production and administration. The capability for inhaling intoxicating vapors eventually became commonly available with the use of ether instead of the gas. The first surgical anesthetics were a consequence of the resulting student "ether frolics." The 1818 announcement on breathing ether vapor was published anonymously; however, notations in Faraday's handwriting in some of his personal books clearly establish Michael Faraday as the author of this brief communication. PMID:1416178

  9. Infrared spectroscopic studies on reaction induced conformational changes in the NADH ubiquinone oxidoreductase (complex I).

    PubMed

    Hellwig, Petra; Kriegel, Sébastien; Friedrich, Thorsten

    2016-07-01

    Redox-dependent conformational changes are currently discussed to be a crucial part of the reaction mechanism of the respiratory complex I. Specialized difference Fourier transform infrared techniques allow the detection of side-chain movements and minute secondary structure changes. For complex I, (1)H/(2)H exchange kinetics of the amide modes revealed a better accessibility of the backbone in the presence of NADH and quinone. Interestingly, the presence of phospholipids, that is crucial for the catalytic activity of the isolated enzyme complex, changes the overall conformation. When comparing complex I samples from different species, very similar electrochemically induced FTIR difference spectra and very similar rearrangements are reported. Finally, the information obtained with variants and from Zn(2+) inhibited samples for the conformational reorganization of complex I upon electron transfer are discussed in this review. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26702948

  10. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    NASA Astrophysics Data System (ADS)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  11. Faraday Waves under Time-Reversed Excitation

    NASA Astrophysics Data System (ADS)

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer , Phys. Rev. E 78, 036218 (2008)PLEEE81539-3755]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  12. Mode-locking via dissipative Faraday instability

    PubMed Central

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-01-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin–Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system—spectrally dependent losses—achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin–Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708

  13. Mode-locking via dissipative Faraday instability.

    PubMed

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-01-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708

  14. Heating profiles on ICRF antenna Faraday shields

    SciTech Connect

    Taylor, D.J.; Baity, F.W.; Hahs, C.L.; Riemer, B.W.; Ryan, P.M.; Williamson, D.E.

    1991-01-01

    A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. A high-heat-flux, uncooled Faraday shield has also been designed for the fast-wave current drive (FWCD) antenna on D3-D. For both components, the improved understanding of the heating profiles made it possible to design for heat fluxes that would otherwise have been too close to mechanically established limits. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the D3-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed. 3 refs., 6 figs., 2 tabs.

  15. Mode-locking via dissipative Faraday instability

    NASA Astrophysics Data System (ADS)

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-08-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system--spectrally dependent losses--achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  16. Faraday polarization fluctuations of satellite beacon signals

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Klobuchar, J. A.

    1988-01-01

    The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.

  17. Faraday waves under time-reversed excitation.

    PubMed

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions. PMID:23496716

  18. Faraday waves in elongated superfluid fermionic clouds

    NASA Astrophysics Data System (ADS)

    Capuzzi, P.; Vignolo, P.

    2008-10-01

    We use hydrodynamic equations to study the formation of Faraday waves in a superfluid Fermi gas at zero temperature confined in a strongly elongated cigar-shaped trap. First, we treat the role of the radial density profile in the limit of an infinite cylindrical geometry and analytically evaluate the wavelength of the Faraday pattern. The effect of the axial confinement is fully taken into account in the numerical solution of hydrodynamic equations, and shows that the infinite cylinder geometry provides a very good description of the phenomena.

  19. Rapid determination of Faraday rotation in optical glasses by means of secondary Faraday modulator.

    PubMed

    Sofronie, M; Elisa, M; Sava, B A; Boroica, L; Valeanu, M; Kuncser, V

    2015-05-01

    A rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions. An example on how the method can be used for a rapid examination of the optical homogeneity of the sample with respect to magneto-optical effects is also provided. PMID:26026534

  20. Benzodipyrrole-based Donor-Acceptor-type Boron Complexes as Tunable Near-infrared-Absorbing Materials.

    PubMed

    Nakamura, Tomoya; Furukawa, Shunsuke; Nakamura, Eiichi

    2016-07-20

    Benzodipyrrole-based donor-acceptor boron complexes were designed and synthesized as near-infrared-absorbing materials. The electron-rich organic framework combined with the Lewis acidic boron co-ordination enabled us to tune the LUMO energy level and the HOMO-LUMO gap (i.e.,the absorption wavelength) by changing the organic acceptor units, the number of boron atoms, and the substituents on the boron atoms. PMID:27311060

  1. Complex morphology small targets detection based on spatial-temporal sparse recovery in infrared surveillance system

    NASA Astrophysics Data System (ADS)

    Li, Miao; Wang, Qi; Li, Jun; Long, Yunli; Zheng, Yu

    2016-01-01

    Complex morphology target, which is size-varying and shape-varying, is a great challenge for infrared surveillance system. In this paper, temporal low-rank and sparse decomposition model and spatial low-rank and sparse decomposition model are designed respectively. Subsequently, a joint spatial-temporal detection method of complex morphology target is presented. Firstly, initial background subspace is obtained based on training sequence which does not contain infrared target. Secondly, temporal target image is recovered by l1 minimization after projecting orthogonal to background subspace. Thirdly, original image is decomposed into background image and spatial target image using inexact augmented Lagrange multipliers approach. Fourthly, by fusing the two target images, the possible small targets can be extracted well. Finally, background subspace is updated based on incremental singular value decomposition algorithm. The experimental results show that our method is effective and robust to detect complex morphology infrared targets. In particular, the proposed method can extract targets accurately, which is important for target recognition.

  2. Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter.

    PubMed

    Sun, Qinqing; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao

    2011-12-01

    We report an excited-state Faraday anomalous-dispersion optical filter operating on the rubidium 5P(3/2)-5D(5/2) transition (775.9 nm in vacuum) without the use of a pump laser. An electrodeless discharge vapor lamp is employed to replace the Rb vapor cell in a traditional Faraday anomalous-dispersion optical filter system. Atoms can be excited by power rather than a complex frequency-locked pump laser. A proof-of-concept experimental demonstration with a maximum transmission of 1.9% and a filter bandwidth of 650 MHz is presented. PMID:22139259

  3. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  4. Fast Faraday Cup With High Bandwidth

    DOEpatents

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  5. Reflections of a Faraday Challenge Day Leader

    ERIC Educational Resources Information Center

    Sewell, Keira

    2014-01-01

    Keira Sewell has just finished her second year as a Challenge Leader for the Faraday Challenge, a STEM-based scheme run by the Institution of Engineering and Technology. Aimed at 12-13 year-old students, its purpose is to engage students in future careers in engineering. Each year, a new challenge is held in over sixty schools and universities…

  6. The Minus Sign in Faraday's Law Revisited

    ERIC Educational Resources Information Center

    O'Sullivan, Colm; Hurley, Donal

    2013-01-01

    By introducing the mathematical concept of orientation, the significance of the minus sign in Faraday's law may be made clear to students with some knowledge of vector calculus. For many students, however, the traditional approach of treating the law as a relationship between positive scalars and of relying on Lenz's law to provide the information…

  7. Fiber optic, Faraday rotation current sensor

    SciTech Connect

    Veeser, L.R.; Day, G.W.

    1986-01-01

    At the Second Megagauss Conference in 1979, there were reports of experiments that used the Faraday magneto-optic effect in a glass rod to measure large electric current pulses or magnetic fields. Since then we have seen the development of single-mode optical fibers that can carry polarized light in a closed loop around a current load. A fiber optic Faraday rotation sensor will integrate the flux, instead of sampling it at a discrete point, to get a measurement independent of the current distribution. Early Faraday rotation experiments using optical fibers to measure currents dealt with problems such as fiber birefringence and difficulties in launching light into the tiny fiber cores. We have built on those experiments, working to reduce the effects of shocks and obtaining higher bandwidths, absolute calibration, and computerized recording and data analysis, to develop the Faraday rotation sensors into a routine current diagnostic. For large current pulses we find reduced sensitivity to electromagnetic interference and other backgrounds than for Rogowski loops; often the fiber optic sensors are useful where conductive probes cannot be used at all. In this paper we describe the fiber optic sensors and some practical matters involved in fielding them.

  8. Infrared spectra, photochemistry, and ab initio calculations of matrix isolated methanethiol/sulfur dioxide complex

    NASA Astrophysics Data System (ADS)

    Li, S.; Kurtz, H.; Korambath, P.; Li, Y.-S.

    2000-09-01

    Intermolecular complexes of methanethiol with sulfur dioxide have been prepared by condensing the reagents diluted in argon and in nitrogen at 12-14 K. The 1:1 CH 3SH/SO 2 complexes were identified from the infrared spectra of the mixtures of methanethiol with sulfur dioxide in argon and nitrogen matrices. Perturbations to the vibrational energy spaces of some vibrational modes were identified and assigned. Ab initio calculations with the 6-311G ∗∗ basis set have been performed to get some information about the structure, binding energy, dipole moment, and potential function governing the internal rotation of SO 2 for the complex. The calculated results have suggested that the dipole/dipole interaction held the constituent species together to form the complex. Photochemical reactions were performed by exposing the matrix mixtures to UV irradiation. The appearance of new bands indicated the presence of more than one photochemical reaction product.

  9. Probing Coronal Mass Ejections with Faraday Rotation

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Fischer, P. D.; Kooi, J. E.; Buffo, J. J.

    2013-07-01

    Coronal Mass Ejections (CMEs) are one of the most important solar phenomena in affecting conditions on Earth. There is not a consensus as to the physical mechanisms responsible for ejecting CME material from the solar atmosphere. Measurements that specify basic physical properties close to the Sun, when the CME is still evolving, should be useful in determining the correct theoretical model. One of the best observational techniques is that of Faraday rotation, a rotation in the plane of polarization of radio waves when propagating through a magnetized medium like the corona. The importance of Faraday rotation in determining the structure and evolutionary history of CMEs was discussed in Liu et al (ApJ 665, 1439, 2007). In this paper, we report Faraday rotation observations of ``constellations'' of background extragalactic radio sources near the Sun on three days in August, 2012, with the intention of observing a source occulted by a CME. Observations were made with the Jansky Very Large Array (VLA) of the National Radio Astronomy Observatory. We made polarization measurements at 6 frequencies between 1.31 and 1.94 GHz. On August 2, 2012, a CME clearly visible on the LASCO C3 coronagraph occulted a radio source from our sample, 0843+1547. Preliminary data analysis shows a Faraday rotation transient for 0843+1547 which appears to be associated with the CME. The Faraday rotation measure changes from nearly 0 before CME passage, to a value of about -12 radians/square-meter before declining after CME passage. We will discuss the interpretation of these data in terms of models for CME structure, as well as the status of our observations of other sources on August 2, and on other days. This work was supported at the University of Iowa by grant ATM09-56901.

  10. Infrared Multiple-Photon Dissociation spectroscopy of group II metal complexes with salicylate

    SciTech Connect

    Ryan P. Dain; Gary Gresham; Gary S. Groenewold; Jeffrey D. Steill; Jos Oomens; Michael J. van Stipdonk

    2011-07-01

    Ion-trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations were used to characterize singly-charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M=Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 – 1650 cm-1, and the best correlation between theoretical and experimental spectra for the structure that features coordination of the metal ion by phenoxide and the carbonyl group of the carboxylic acid group, consistent with calculated energies for the respective species.

  11. Design and modeling of Faraday cages for substrate noise isolation

    NASA Astrophysics Data System (ADS)

    Wu, Joyce H.; del Alamo, Jesús A.

    2013-07-01

    A Faraday cage structure using through-substrate vias is an effective strategy to suppress substrate crosstalk, particularly at high frequencies. Faraday cages can reduce substrate noise by 32 dB at 10 GHz, and 26 dB at 50 GHz. We have developed lumped-element, equivalent circuit models of the Faraday cages and test structures to better understand the performance of the Faraday cages. These models compare well to measured results and show that the vias of the Faraday cage act as an RLC shunt to ground that draws substrate current. Designing a Faraday cage to achieve optimum isolation requires low via impedance and mitigation of via sidewall capacitance. The Faraday cage inductance is correlated to the number of vias and via spacing of the cage and can be optimized for the frequency of operation.

  12. The interrelation between the Faraday effect and the inverse Faraday effect in a magnetic medium and the terahertz inverse Faraday effect in single molecule magnets

    NASA Astrophysics Data System (ADS)

    Tokman, I. D.; Shvetsov, A. V.

    2009-11-01

    The interrelation between the Faraday and the inverse Faraday effects when the magneto-dipole interaction of a sample with an electromagnetic wave is essential has been phenomenologically investigated. This investigation was carried out in the spirit of well-known Pitaevsky’s approach. The terahertz inverse Faraday effect in single molecule magnets has been theoretically studied, the conditions favorable for observing this effect have been formulated.

  13. Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry.

    PubMed

    Ruggiero, Emmanuel; Alonso-de Castro, Silvia; Habtemariam, Abraha; Salassa, Luca

    2016-08-16

    The article highlights the emergent use of upconverting nanoparticles as tools for the near infrared photoactivation of transition metal complexes, identifying opportunities and challenges of this approach in the context of medicinal inorganic chemistry. PMID:27482656

  14. NEAR-INFRARED POLARIMETRY OF A NORMAL SPIRAL GALAXY VIEWED THROUGH THE TAURUS MOLECULAR CLOUD COMPLEX

    SciTech Connect

    Clemens, Dan P.; Cashman, L. R.; Pavel, M. D. E-mail: pavelmi@utexas.edu

    2013-03-15

    Few normal galaxies have been probed using near-infrared polarimetry, even though it reveals magnetic fields in the cool interstellar medium better than either optical or radio polarimetry. Deep H-band (1.6 {mu}m) linear imaging polarimetry toward Taurus serendipitously included the galaxy 2MASX J04412715+2433110 with adequate sensitivity and resolution to map polarization across nearly its full extent. The observations revealed the galaxy to be a steeply inclined ({approx}75 Degree-Sign ) disk type with a diameter, encompassing 90% of the Petrosian flux, of 4.2 kpc at a distance of 53 Mpc. Because the sight line passes through the Taurus Molecular Cloud complex, the foreground polarization needed to be measured and removed. The foreground extinction A{sub V} of 2.00 {+-} 0.10 mag and reddening E(H - K) of 0.125 {+-} 0.009 mag were also assessed and removed, based on analysis of Two Micron All Sky Survey, UKIRT Infrared Deep Sky Survey, Spitzer, and Wide-field Infrared Survey Explorer photometry using the Near-Infrared Color Excess, NICE-Revisited, and Rayleigh-Jeans Color Excess methods. Corrected for the polarized foreground, the galaxy polarization values range from 0% to 3%. The polarizations are dominated by a disk-parallel magnetic field geometry, especially to the northeast, while either a vertical field or single scattering of bulge light produces disk-normal polarizations to the southwest. The multi-kiloparsec coherence of the magnetic field revealed by the infrared polarimetry is in close agreement with short-wavelength radio synchrotron observations of edge-on galaxies, indicating that both cool and warm interstellar media of disk galaxies may be threaded by common magnetic fields.

  15. Exploring the intergalactic magnetic field by means of Faraday tomography

    NASA Astrophysics Data System (ADS)

    Akahori, Takuya; Kumazaki, Kohei; Takahashi, Keitaro; Ryu, Dongsu

    2014-06-01

    Unveiling the intergalactic magnetic field (IGMF) in filaments of galaxies is a very important and challenging subject in modern astronomy. In order to probe the IGMF from rotation measures (RMs) of extragalactic radio sources, we need to separate RMs due to other origins such as the source, intervening galaxies, and our Galaxy. In this paper, we discuss observational strategies for the separation by means of Faraday tomography (Faraday RM synthesis). We consider an observation of a single radio source such as a radio galaxy or a quasar viewed through the Galaxy and the cosmic web. We then compare the observation with another observation of a neighboring source with a small angular separation. Our simulations with simple models of the sources suggest that it would be not easy to detect the RM due to an IGMF of order ˜ 1 rad m-2, an expected value for the IGMF through a single filament. Contrary to this, we find that an RM of at least ˜ 10 rad m-2 could be detected with the Square Kilometre Array or its pathfinders/precursors, if we achieve selection of ideal sources. These results would be improved if we incorporated decomposition techniques such as RMCLEAN and QU-fitting. We discuss the feasibility of the strategies for cases with complex Galactic emissions as well as with effects of observational noise and radio frequency interferences.

  16. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy.

    PubMed

    Spaun, Ben; Changala, P Bryan; Patterson, David; Bjork, Bryce J; Heckl, Oliver H; Doyle, John M; Ye, Jun

    2016-05-26

    For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C-H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity. PMID:27144351

  17. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Spaun, Ben; Changala, P. Bryan; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-05-01

    For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C–H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity.

  18. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  19. Infrared photodissociation spectroscopy of mass-selected silver and gold nitrosyl cation complexes.

    PubMed

    Li, Yuzhen; Wang, Lichen; Qu, Hui; Wang, Guanjun; Zhou, Mingfei

    2015-04-16

    The [M(NO)n](+) cation complexes (M = Au and Ag) are studied for exploring the coordination and bonding between nitric oxide and noble metal cations. These species are produced in a laser vaporization supersonic ion source and probed by infrared photodissociation spectroscopy in the NO stretching frequency region using a collinear tandem time-of-flight mass spectrometer. The geometric and electronic structures of these complexes are determined by comparison of the distinctive experimental spectra with simulated spectra derived from density functional theory calculations. All of these noble metal nitrosyl cation complexes are characterized to have bent NO ligands serving as one-electron donors. The spectrum of [Au(NO)2Ar](+) is consistent with 2-fold coordination with a near linear N-Au-N arrangement for this ion. The [Au(NO)n](+) (n = 3-4) cations are determined to be a mixture of 2-fold coordinated form and 3- or 4-fold coordinated form. In contrast, the spectra of [Ag(NO)n](+) (n = 3-6) provide evidence for the completion of the first coordination shell at n = 5. The high [Au(NO)n](+) and [Ag(NO)n](+) (n ≥ 3 for Au, n ≥ 4 for Ag) complexes each involve one or more (NO)2 dimer ligands, as observed in the copper nitrosyl cation complexes, indicating that ligand-ligand coupling plays an important role in the structure and bonding of noble metal nitrosyl cation complexes. PMID:25811327

  20. On intracluster Faraday rotation. II - Statistical analysis

    NASA Technical Reports Server (NTRS)

    Lawler, J. M.; Dennison, B.

    1982-01-01

    The comparison of a reliable sample of radio source Faraday rotation measurements seen through rich clusters of galaxies, with sources seen through the outer parts of clusters and therefore having little intracluster Faraday rotation, indicates that the distribution of rotation in the former population is broadened, but only at the 80% level of statistical confidence. Employing a physical model for the intracluster medium in which the square root of magnetic field strength/turbulent cell per gas core radius number ratio equals approximately 0.07 microgauss, a Monte Carlo simulation is able to reproduce the observed broadening. An upper-limit analysis figure of less than 0.20 microgauss for the field strength/turbulent cell ratio, combined with lower limits on field strength imposed by limitations on the Compton-scattered flux, shows that intracluster magnetic fields must be tangled on scales greater than about 20 kpc.

  1. Biology's built-in Faraday cages

    NASA Astrophysics Data System (ADS)

    Klee, Maurice M.

    2014-05-01

    Biological fluids are water-based, ionic conductors. As such, they have both high relative dielectric constants and substantial conductivities, meaning they are lossy dielectrics. These fluids contain charged molecules (free charges), whose movements play roles in essentially all cellular processes from metabolism to communication with other cells. Using the problem of a point source in air above a biological fluid of semi-infinite extent, the bound charges in the fluid are shown to perform the function of a fast-acting Faraday cage, which protects the interior of the fluid from external electric fields. Free charges replace bound charges in accordance with the fluid's relaxation time, thereby providing a smooth transition between the initial protection provided by the bound charges and the steady state protection provided by the free charges. The electric fields within the biological fluid are thus small for all times just as they would be inside a classical Faraday cage.

  2. Heterodyne-enhanced Faraday rotation spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Nikodem, Michal; Hoyne, Jake; Wysocki, Gerard

    2012-01-01

    A novel heterodyne-enhanced Faraday rotation spectroscopic (H-FRS) system for trace gas detection of nitric oxide (NO) is demonstrated. The system is based on a quantum cascade laser emitting at ~5.2 μm and a mercury cadmium telluride photodetector (both thermoelectrically cooled). The heterodyne detection is performed at 30MHz, where the laser relative intensity noise is significantly smaller than at low frequencies. With an implementation of active interferometer stabilization technique, the current system shows total noise level that is only 5.4 times above the fundamental shot-noise limit and the Faraday rotation angle sensitivity of 2.6 × 10-8 rad/√Hz. The NO detection limit of 30.7 ppb-v/√Hz was achieved for the R(8.5)e NO transition using 100 Gauss magnetic field and 0.15 m optical path length.

  3. Faraday's first dynamo: An alternate analysis

    NASA Astrophysics Data System (ADS)

    Redinz, José Arnaldo

    2015-02-01

    The steady-state charge densities, electric potential, and current densities are determined analytically in the case of the first dynamo created by Michael Faraday, which consists of a conducting disk rotating between the poles of an off-axis permanent magnet. The results obtained are compared with another work that considered the same problem using a different approach. We also obtain analytical expressions for the total current on the disk and for the dynamo's electromotive force.

  4. Faraday Pilot-Waves: Generation and Propagation

    NASA Astrophysics Data System (ADS)

    Galeano-Rios, Carlos; Milewski, Paul; Nachbin, André; Bush, John

    2015-11-01

    We examine the dynamics of drops bouncing on a fluid bath subjected to vertical vibration. We solve a system of linear PDEs to compute the surface wave generation and propagation. Waves are triggered at each bounce, giving rise to the Faraday pilot-wave field. The model captures several of the behaviors observed in the laboratory, including transitions between a variety of bouncing and walking states, the Doppler effect, and droplet-droplet interactions. Thanks to the NSF.

  5. The infrared spectra of complexes with planar dithiooxamides X. The Cu(LH 2) 2X 1 complexes

    NASA Astrophysics Data System (ADS)

    Slootmaekers, B.; Fabretti, A. C.; Desseyn, H. O.; Vochten, R.; Perlepes, S. P.

    1996-12-01

    In this article, the preparation, X-ray powder results and vibrational properties of a new type of complex with planar dithiooxamides are discussed. In acetonitrile, Cu(I) can form complexes with the formula Cu(LH 2) 2X 1 (X = Cl, Br) where LH 2 is an N, N'-disubstituted dithiooxamide. Complexes with N, N'-dimethyldithiooxamide and N, N'-diethyldithiooxamide have been prepared. A thorough vibrational analysis with infrared and Raman techniques was performed, assisted by H/D and 63Cu/ 65Cu isotope substitution. The vibrational study indicates the presence of an inversion centre in the structure. This leads to the proposal of a very unusual six-coordinate structure for these compounds, with the two dithiooxamide ligands, having S-cis conformation, coordinated to the same copper and with the halogens bridged between two different copper atoms. Confirmation of this result was attempted by X-ray analysis, but although several methods were tried to obtain crystals, only powder X-ray data could be obtained, which could not give a definitive answer. Since such six-coordinate Cu(I) has never been described before, a less rigourous interpretation of the vibrational data was followed, leading to a square-pyramidal five-coordinate structure, with a rather weak bond between Cu(I) and a terminal halogen. The latter structure, with the data available up to now, seems a bit more likely, since five-coordination for Cu(I) has already been described.

  6. Faraday Shield Development on DIII--D

    NASA Astrophysics Data System (ADS)

    Baity, F. W.; Goulding, R. H.; Hoffman, D. J.; Ryan, P. M.; Taylor, D. J.; Callis, R. W.; Pinsker, R. I.; Lindemuth, J. E.; Rosenfeld, J. H.

    1997-11-01

    DIII--D has been the proving ground for a number of innovative Faraday shield developments over the past ten years. The first Faraday shield used had two tiers of copper-plated Inconel rods of circular cross section with 3 mm thick graphite tiles brazed to the plasma-facing side of the front tier. Later antennas used shields with thin coatings of Ti (C,N) and boron carbide. All the coatings proved effective in reducing impurity influx from the antennas during RF operation. There are two shield designs in use currently. One is a single-tier of horizontal Inconel rods with a 6 μm layer of boron carbide applied by physical vapor deposition. The other design has molybdenum rods with a plasma-sprayed boron carbide coating approximately 100 μm thick. Based on comparative performance the thinner coating obtained with physical vapor deposition is preferred for future applicatrions. All Faraday shields have been passively cooled. Future plans call for tests of vanadium elements and of porous-metal helium-cooled elements.

  7. Electrochromism in the near-infrared absorption spectra of bridged ruthenium mixed-valence complexes

    SciTech Connect

    Oh, D.H.; Boxer, S.G. )

    1990-10-24

    Many experimental and theoretical approaches have been developed to characterize the chemical and physical properties of mixed-valence complexes. These molecules may possess metals in differing oxidation states which participate in intervalence charge-transfer transitions. In principle, these transitions should be strongly affected by an external electric field. Such electrochromism can provide a direct and sensitive approach to investigating the electronic properties of molecules. The authors report the first measurements of the effects of an externally applied electric field on the near-infrared absorption spectra of ((NH{sub 3}){sub 5}Ru){sub 2}L{sup 5+} (L = pyrazine or 4,4{prime}-bipyridine). Significant differences are observed between the two complexes, illustrating the range of electronic interactions between the metal centers.

  8. Infrared spectroscopy of copper-resveratrol complexes: A joint experimental and theoretical study

    SciTech Connect

    Chiavarino, B.; Crestoni, M. E.; Fornarini, S.; Taioli, S.; Mancini, I.; Tosi, P.

    2012-07-14

    Infrared multiple-photon dissociation spectroscopy has been used to record vibrational spectra of charged copper-resveratrol complexes in the 3500-3700 cm{sup -1} and 1100-1900 cm{sup -1} regions. Minimum energy structures have been determined by density functional theory calculations using plane waves and pseudopotentials. In particular, the copper(I)-resveratrol complex presents a tetra-coordinated metal bound with two carbon atoms of the alkenyl moiety and two closest carbons of the adjoining resorcinol ring. For these geometries vibrational spectra have been calculated by using linear response theory. The good agreement between experimental and calculated IR spectra for the selected species confirms the overall reliability of the proposed geometries.

  9. Infrared spectroscopy of copper-resveratrol complexes: A joint experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Chiavarino, B.; Crestoni, M. E.; Fornarini, S.; Taioli, S.; Mancini, I.; Tosi, P.

    2012-07-01

    Infrared multiple-photon dissociation spectroscopy has been used to record vibrational spectra of charged copper-resveratrol complexes in the 3500-3700 cm-1 and 1100-1900 cm-1 regions. Minimum energy structures have been determined by density functional theory calculations using plane waves and pseudopotentials. In particular, the copper(I)-resveratrol complex presents a tetra-coordinated metal bound with two carbon atoms of the alkenyl moiety and two closest carbons of the adjoining resorcinol ring. For these geometries vibrational spectra have been calculated by using linear response theory. The good agreement between experimental and calculated IR spectra for the selected species confirms the overall reliability of the proposed geometries.

  10. Tank segmentation of infrared images with complex background for the homing anti-tank missile

    NASA Astrophysics Data System (ADS)

    Zhou, Yulong; Gao, Min; Fang, Dan; Zhang, Baoquan

    2016-07-01

    In an effort to achieve fast and effective tank segmentation of infrared images under complex background for the homing anti-tank missile, the threshold of the maximum between-class variance method (i.e., the Otsu method) is experimentally analyzed, and the working mechanism of the Otsu method is revealed. Subsequently, a fast and effective method for tank segmentation under complex background is proposed based on the Otsu method by constraining the image background pixels and gray levels. Firstly, with the prior information of the tank, derive the equation to calculate the number of pixels of tank according to optical imaging principle, and then use the calculated tank size to constrain the image background pixels. Secondly, employ the golden section to restrict the background gray levels. Finally, use the Otsu method to implement the segmentation of the tank. Experimental results demonstrate that the proposed method can get as an ideal result as the manual segmentation with less running time.

  11. Isotope effects in far-infrared spectra of bis(theophyllinato)copper(II)-complexes

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Kordon, Ewa

    1998-07-01

    Far-infrared spectra have been measured for 63Cu and 65Cu isotope substituted theophylline (Tp)-metal ion complexes: Cu(Tp) 2(NH 3) 2 · 2H 2O, Cu(Tp) 2(NH 3) 2, Cu(Tp) 2 · 2H 2O and Cu(Tp) 2. In addition, spectrum of Cu(Tp) 2(ND 3) 2 · 2D 2O has been recorded. Metal-theophylline, metal-ammine and water librational and translational modes have been assigned based on observed isotope shifts and complex dehydration effects. The copper-ammine vibrations have been found at 453 and 224 cm -1, whereas the bis(theophyllinato)copper(II) modes have been detected at 192 cm -1 for Cu(Tp) 2(NH 3) 2 and presumably at about 170 cm -1 for Cu(Tp) 2.

  12. Infrared spectra of van de Waals complexes of importance in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Fraser, G. T.; Pine, A. S.; Lafferty, W. J.

    1990-01-01

    It has been suggested that (CO2)2 and Ar-CO2 are important constituents of the planetary atmospheres of Venus and Mars. Recent results on the laboratory spectroscopy of CO2 containing van der Waals complexes which may be of use in the modeling of the spectra of planetary atmospheres are presented. Sub-Doppler infrared spectra were obtained for (CO2)2, (CO2)3, and rare-gas-CO2 complexes in the vicinity of the CO2 Fermi diad at 2.7 micrometers using a color-center-laser optothermal spectrometer. From the spectroscopic constants the geometries of the complexes have been determined and van der Waals vibrational frequencies have been estimated. The equilibrium configurations are C2h, C3h, and C2v, for (CO2)2, (CO2)3, and the rare-gas-CO2 complexes, respectively. Most of the homogeneous linewidths for the revibrational transitions range from 0.5 to 22 MHz, indicating that predissociation is as much as four orders of magnitude faster than radiative processes for vibrational relaxation in these complexes.

  13. Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Lei; Hang, Yin; Wang, Xiangyong

    2016-01-01

    Highly transparent Dy3+-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy3+ in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy3+-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS-NIR) at room temperature. The Verdet constants increase at measured wavelengths and high thermal stability was found in Dy3+-doped TGG, as compared to the properties of pure TGG, indicating that Dy3+-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS-NIR wavelengths.

  14. Faraday-effect polarimeter-interferometer system for current density measurement on EAST

    SciTech Connect

    Liu, H. Q.; Jie, Y. X. Zou, Z. Y.; Li, W. M.; Wang, Z. X.; Qian, J. P.; Yang, Y.; Zeng, L.; Wei, X. C.; Hu, L. Q.; Wan, B. N.; Ding, W. X.; Brower, D. L.; Lan, T.; Li, G. S.

    2014-11-15

    A multichannel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique is under development for current density and electron density profile measurements in the EAST tokamak. Novel molybdenum retro-reflectors are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which will provide real-time Faraday rotation angle and density phase shift output, have been developed for use on the POINT system. Initial calibration indicates the electron line-integrated density resolution is less than 5 × 10{sup 16} m{sup −2} (∼2°), and the Faraday rotation angle rms phase noise is <0.1°.

  15. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy

    PubMed Central

    Amenabar, Iban; Poly, Simon; Nuansing, Wiwat; Hubrich, Elmar H.; Govyadinov, Alexander A.; Huth, Florian; Krutokhvostov, Roman; Zhang, Lianbing; Knez, Mato; Heberle, Joachim; Bittner, Alexander M.; Hillenbrand, Rainer

    2013-01-01

    Mid-infrared spectroscopy is a widely used tool for material identification and secondary structure analysis in chemistry, biology and biochemistry. However, the diffraction limit prevents nanoscale protein studies. Here we introduce mapping of protein structure with 30 nm lateral resolution and sensitivity to individual protein complexes by Fourier transform infrared nanospectroscopy (nano-FTIR). We present local broadband spectra of one virus, ferritin complexes, purple membranes and insulin aggregates, which can be interpreted in terms of their α-helical and/or β-sheet structure. Applying nano-FTIR for studying insulin fibrils—a model system widely used in neurodegenerative disease research—we find clear evidence that 3-nm-thin amyloid-like fibrils contain a large amount of α-helical structure. This reveals the surprisingly high level of protein organization in the fibril’s periphery, which might explain why fibrils associate. We envision a wide application potential of nano-FTIR, including cellular receptor in vitro mapping and analysis of proteins within quaternary structures. PMID:24301518

  16. Lithologic analysis from multispectral thermal infrared data of the alkalic rock complex at Iron Hill, Colorado

    USGS Publications Warehouse

    Watson, K.; Rowan, L.C.; Bowers, T.L.; Anton-Pacheco, C.; Gumiel, P.; Miller, S.H.

    1996-01-01

    Airborne thermal-infrared multispectral scanner (TIMS) data of the Iron Hill carbonatite-alkalic igneous rock complex in south-central Colorado are analyzed using a new spectral emissivity ratio algorithm and confirmed by field examination using existing 1:24 000-scale geologic maps and petrographic studies. Color composite images show that the alkalic rocks could be clearly identified and that differences existed among alkalic rocks in several parts of the complex. An unsupervised classification algorithm defines four alkalic rock classes within the complex: biotitic pyroxenite, uncompahgrite, augitic pyroxenite, and fenite + nepheline syenite. Felsic rock classes defined in the surrounding country rock are an extensive class consisting of tuff, granite, and felsite, a less extensive class of granite and felsite, and quartzite. The general composition of the classes can be determined from comparisons of the TIMS spectra with laboratory spectra. Carbonatite rocks are not classified, and we attribute that to the fact that dolomite, the predominant carbonate mineral in the complex, has a spectral feature that falls between TIMS channels 5 and 6. Mineralogical variability in the fenitized granite contributed to the nonuniform pattern of the fenite-nepheline syenite class. The biotitic pyroxenite, which resulted from alteration of the pyroxenite, is spatially associated and appears to be related to narrow carbonatite dikes and sills. Results from a linear unmixing algorithm suggest that the detected spatial extent of the two mixed felsic rock classes was sensitive to the amount of vegetation cover. These results illustrate that spectral thermal infrared data can be processed to yield compositional information that can be a cost-effective tool to target mineral exploration, particularly in igneous terranes.

  17. Herschel far-infrared observations of the Carina Nebula complex. I. Introduction and global cloud structure

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Roccatagliata, V.; Gaczkowski, B.; Ratzka, T.

    2012-05-01

    Context. The Carina Nebula represents one of the most massive star forming regions known in our Galaxy and displays a high level of feedback from the large number of very massive stars. While the stellar content is now well known from recent deep X-ray and near-infrared surveys, the properties of the clouds remained rather poorly studied until today. Aims: By mapping the Carina Nebula complex in the far-infrared, we aim at a comprehensive and detailed characterization of the dust and gas clouds in the complex. Methods: We used SPIRE and PACS onboard of Herschel to map the full spatial extent (≈5.3 square-degrees) of the clouds in the Carina Nebula complex at wavelengths between 70 μm and 500 μm. We used here the 70 μm and 160 μm far-infrared maps to determine color temperatures and column densities, and to investigate the global properties of the gas and dust clouds in the complex. Results: Our Herschel maps show the far-infrared morphology of the clouds at unprecedented high angular resolution. The clouds show a very complex and filamentary structure that is dominated by the radiation and wind feedback from the massive stars. In most locations, the column density of the clouds is NH ≲ 2 × 1022 cm-2 (corresponding to visual extinctions of AV ≲ 10 mag); denser cloud structures are restricted to the massive cloud west of Tr 14 and the innermost parts of large pillars. Our temperature map shows a clear large-scale gradient from ≈35-40 K in the central region to ≲20 K at the periphery and in the densest parts of individual pillars. The total mass of the clouds seen by Herschel in the central (1 degree radius) region is ≈656 000 M⊙. We also derive the global spectral energy distribution in the mid-infrared to mm wavelength range. A simple radiative transfer model suggests that the total mass of all the gas (including a warmer component that is not well traced by Herschel) in the central 1 degree radius region is ≤890 000 M⊙. Conclusions: Despite

  18. Faraday rotation of plasmas in the vicinity of a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe; Bhattacharjee, Chinmoy; Mahajan, Swadesh

    2015-11-01

    The propagation of an electromagnetic wave in a multi-specie plasmas (ion-electron and ion-electron-positron), embedded in the gravitational field of a Schwarzschild black hole, is investigated with particular emphasis on studying the Faraday rotation (rotation of the phase angle of the right and left-handed components of wave). In order to appropriately deal with the strong gravitational field (affecting the plasma in the proximity of the black hole horizon), we employ Rindler coordinates in the 3 +1 decomposition of general relativity. The rather complex dispersion relation for high-frequency electromagnetic waves reveals the dependence of Faraday rotation on the number density of different constituents of the multi-specie plasma, the background magnetic field, and the mass of the black hole. Amongst other things, the expression for the Faraday rotation allows us to determine the black hole mass if the number density and magnetic field strength are estimated, and the rotation of the phase angle is measured. It is also shown how Faraday rotation could be harnessed to infer black hole features in a more complete theory that pertains, for example, to Kerr black holes. Different astrophysical implications are pointed out. Felipe Asenjo thanks CONICyT for funding No. 79130002.

  19. Theory of Kerr and Faraday rotations and linear dichroism in Topological Weyl Semimetals

    PubMed Central

    Kargarian, Mehdi; Randeria, Mohit; Trivedi, Nandini

    2015-01-01

    We consider the electromagnetic response of a topological Weyl semimetal (TWS) with a pair of Weyl nodes in the bulk and corresponding Fermi arcs in the surface Brillouin zone. We compute the frequency-dependent complex conductivities σαβ(ω) and also take into account the modification of Maxwell equations by the topological θ-term to obtain the Kerr and Faraday rotations in a variety of geometries. For TWS films thinner than the wavelength, the Kerr and Faraday rotations, determined by the separation between Weyl nodes, are significantly larger than in topological insulators. In thicker films, the Kerr and Faraday angles can be enhanced by choice of film thickness and substrate refractive index. We show that, for radiation incident on a surface with Fermi arcs, there is no Kerr or Faraday rotation but the electric field develops a longitudinal component inside the TWS, and there is linear dichroism signal. Our results have implications for probing the TWS phase in various experimental systems. PMID:26235120

  20. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators

    NASA Astrophysics Data System (ADS)

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-01

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.

  1. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators.

    PubMed

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-01

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model. PMID:27104711

  2. Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor

    NASA Astrophysics Data System (ADS)

    Middleton, Chris T.; Marek, Peter; Cao, Ping; Chiu, Chi-Cheng; Singh, Sadanand; Woys, Ann Marie; de Pablo, Juan J.; Raleigh, Daniel P.; Zanni, Martin T.

    2012-05-01

    Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid formation in type 2 diabetes) with a known inhibitor (rat amylin). Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 h after mixing, rat amylin blocks the N-terminal β-sheet instead. At 24 h after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet, most probably on the outside of the human fibrils. This is striking, because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.

  3. The infrared spectrum of the He–C{sub 2}D{sub 2} complex

    SciTech Connect

    Moazzen-Ahmadi, N.; McKellar, A. R. W.; Fernández, Berta; Farrelly, David

    2015-02-28

    Spectra of the helium-acetylene complex are elusive because this weakly bound system lies close to the free rotor limit. Previously, limited assignments of He–C{sub 2}D{sub 2} transitions in the R(0) region of the ν{sub 3} fundamental band (≈2440 cm{sup −1}) were published. Here, new He–C{sub 2}D{sub 2} infrared spectra of this band are obtained using a tunable optical parametric oscillator laser source to probe a pulsed supersonic slit jet expansion from a cooled nozzle, and the analysis is extended to the weaker and more difficult P(1) and R(1) regions. A term value approach is used to obtain a consistent set of “experimental” energy levels. These are compared directly with calculations using two recently reported ab initio intermolecular potential energy surfaces, which exhibit small but significant differences. Rovibrational energies for the He–C{sub 2}H{sub 2} complex are also calculated using both surfaces. A Coriolis model, useful for predicting spectral intensities, is used to interpret the energy level patterns, and a comparison with the isoelectronic complex He–CO is made.

  4. The infrared spectrum of the He-C2D2 complex.

    PubMed

    Moazzen-Ahmadi, N; McKellar, A R W; Fernández, Berta; Farrelly, David

    2015-02-28

    Spectra of the helium-acetylene complex are elusive because this weakly bound system lies close to the free rotor limit. Previously, limited assignments of He-C2D2 transitions in the R(0) region of the ν3 fundamental band (≈2440 cm(-1)) were published. Here, new He-C2D2 infrared spectra of this band are obtained using a tunable optical parametric oscillator laser source to probe a pulsed supersonic slit jet expansion from a cooled nozzle, and the analysis is extended to the weaker and more difficult P(1) and R(1) regions. A term value approach is used to obtain a consistent set of "experimental" energy levels. These are compared directly with calculations using two recently reported ab initio intermolecular potential energy surfaces, which exhibit small but significant differences. Rovibrational energies for the He-C2H2 complex are also calculated using both surfaces. A Coriolis model, useful for predicting spectral intensities, is used to interpret the energy level patterns, and a comparison with the isoelectronic complex He-CO is made. PMID:25725736

  5. Chapter 3 Studies of complex I by Fourier transform infrared spectroscopy.

    PubMed

    Marshall, Douglas; Rich, Peter R

    2009-01-01

    Fourier transform vibrational infrared (FTIR) difference spectroscopy provides a novel spectroscopic tool to study atomic details of the structure and mechanism of respiratory NADH: ubiquinone oxidoreductase (complex I). Methods for the acquisition of difference spectra in both transmission and ATR modes in the mid-IR 4000 to 900 cm(-1) region are reviewed. In both modes, redox transitions can be induced by electrochemistry, and ultraviolet (UV)/visible spectra can be recorded simultaneously. Use of the ATR method with complex I layers immobilized on an internal reflection element (IRE) additionally allows transitions to be induced by perfusion/buffer exchange, hence providing a versatile means of analyzing IR changes associated with, for example, ligand/substrate binding or specific catalytic intermediates at high signal-to-noise. Absolute absorbance IR spectra can provide information on secondary structure, lipid/protein ratio, extent of isotope exchange, and sample quality and stability more generally. Such information is useful for quality control of samples during the acquisition of difference spectra in which specific atomic details of changes between two states may be probed. Examples of absolute and difference IR spectra of complex I are presented, and strategies for assignments of the spectral features are discussed. PMID:19348882

  6. OPTICAL AND NEAR-INFRARED SHOCKS IN THE L988 CLOUD COMPLEX

    SciTech Connect

    Walawender, J.; Reipurth, B.; Bally, J.

    2013-09-15

    We have searched the Lynds 988 dark cloud complex for optical (H{alpha} and [S II]) and near-IR (H{sub 2} 2.12 {mu}m) shocks from protostellar outflows. We find 20 new Herbig-Haro objects and 6 new H{sub 2} shocks (MHO objects), 3 of which are cross detections. Using the morphology in the optical and near-IR, we connect several of these shocks into at least five distinct outflow systems and identify their source protostars from catalogs of infrared sources. Two outflows in the cloud, from IRAS 21014+5001 and IRAS 21007+4951, are in excess of 1 pc in length. The IRAS 21007+4951 outflow has carved a large cavity in the cloud through which background stars can be seen. Also, we have found an optical shock which is the counterflow to the previously discovered ''northwest outflow'' from LkH{alpha} 324SE.

  7. The Rise of Near-Infrared Emitters: Organic Dyes, Porphyrinoids, and Transition Metal Complexes.

    PubMed

    Barbieri, Andrea; Bandini, Elisa; Monti, Filippo; Praveen, Vakayil K; Armaroli, Nicola

    2016-08-01

    In recent years, the interest in near-infrared (NIR) emitting molecules and materials has increased significantly, thanks to the expansion of the potential technological applications of NIR luminescence in several areas such as bioimaging, sensors, telecommunications, and night-vision displays. This progress has been facilitated by the development of new synthetic routes for the targeted functionalization and expansion of established molecular frameworks and by the availability of simpler and cheaper NIR detectors. Herein, we present recent developments on three major classes of systems-i.e., organic dyes, porphyrinoids, and transition metal complexes-exhibiting the maximum of the emission band at λ > 700 nm. In particular, we focus on the design strategies that may increase the luminescence efficiency, while pushing the emission band more deeply in the NIR region. This overview suggests that further progress can be achieved in the near future, with enhanced availability of more robust, stronger, and cheaper NIR luminophores. PMID:27573399

  8. An infrared thermography imaging system for convective heat transfer measurements in complex flows

    NASA Astrophysics Data System (ADS)

    Sargent, S. R.; Hedlund, C. R.; Ligrani, P. M.

    1998-12-01

    An infrared thermography imaging system is described for spatially resolved convective heat transfer measurements when used in conjunction with thermocouples, energy balances, digital image processing, zinc-selenide windows, and unique in situ calibration procedures. The usefulness of the system and the techniques developed are demonstrated by measurements made in two different environments with complex, three-dimensional flow features. First, spatial variations of surface Nusselt numbers are measured along the concave surfaces of a swirl chamber whose geometry models an internal passage used to cool the leading edge of a turbine blade. Second, spatially resolved distributions of the adiabatic film-cooling effectiveness are measured downstream of film-cooling holes on a symmetric turbine blade in transonic flow.

  9. Acoustic Faraday rotation in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Donghao; Shi, Junren

    We investigate the phonon problems in Weyl semimetals, from which both the phonon Berry curvature and the phonon Damping could be obtained. We show that even without a magnetic field, the degenerate transverse acoustic modes could also be split due to the adiabatic curvature. In three dimensional case, acoustic Faraday rotation shows up. And furthermore, since the attenuation procedure could distinguish the polarized mode, single circularly polarized acoustic wave could be realized. We study the mechanism in the novel time reversal symmetry broken Weyl semimetal. New effects rise because of the linear dispersion, which give enlightenment in the measurement of this new kind of three-dimensional material.

  10. Recent VLA Observations of Coronal Faraday Rotation

    NASA Astrophysics Data System (ADS)

    Kooi, Jason E.; Fischer, P. D.; Buffo, J. J.; Spangler, S. R.

    2014-01-01

    Proposed mechanisms for coronal heating and acceleration of the fast solar wind, such as Joule heating by coronal currents or dissipation of Alfvén waves, depend on the magnetic field structure and plasma characteristics of the corona within heliocentric distances of 5 solar radii. Faraday rotation observations can provide unique information on the magnetic field in this region of the corona. We report on sensitive full-polarization observations of the radio galaxy 3C228 through the solar corona at heliocentric distances of 4.6 - 5.0 solar radii. The observations were made with the VLA in August of 2011. We performed these observations at 5.0 and 6.1 GHz (each with a bandwidth of 128 MHz), permitting measurements deeper in the corona than previous VLA observations at 1.4 and 1.7 GHz. While the measured Faraday rotation was lower than our a priori expectations, we can understand the magnitude of the observed Faraday rotation in terms of observed properties of the corona on the day of observation. For coronal remote sensing, an advantage of using extended extragalactic radio sources such as 3C228 is that such observations provide multiple lines of sight through the corona. Our data provide two lines of sight (separated by 46″, 33,000 km in the corona), one to a northern hotspot and the other to a southern hotspot with fractional polarizations of 14% and 8% respectively. We detected three periods over the eight-hour observing session during which there appeared to be a difference in the Faraday rotation between these two closely spaced lines of sight. These measurements yield an estimate of 2 - 4 GA for coronal currents. We did not directly detect rotation measure fluctuations. Our data impose upper limits on rotation measure fluctuations caused by coronal waves. The observed upper limits were 3.3 and 6.4 rad/m2 and are comparable to and not inconsistent with some models for Alfvén wave heating. This research was supported at the University of Iowa by grants ATM09

  11. Inverse Faraday effect driven by radiation friction

    NASA Astrophysics Data System (ADS)

    Liseykina, T. V.; Popruzhenko, S. V.; Macchi, A.

    2016-07-01

    A collective, macroscopic signature to detect radiation friction in laser–plasma experiments is proposed. In the interaction of superintense circularly polarized laser pulses with high density targets, the effective dissipation due to radiative losses allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of a quasistatic axial magnetic field. This peculiar ‘inverse Faraday effect’ is investigated by analytical modeling and three-dimensional simulations, showing that multi-gigagauss magnetic fields may be generated at laser intensities \\gt {10}23 {{{W}}{{cm}}}-2.

  12. Faraday effect of bismuth iron garnet thin film prepared by mist CVD method

    NASA Astrophysics Data System (ADS)

    Yao, Situ; Sato, Takafumi; Kaneko, Kentaro; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2015-06-01

    Metastable bismuth iron garnet (BIG, an abbreviation of Bi3Fe5O12), one kind of garnet-type ferrites, is known to manifest very large Faraday rotation as well as low optical absorption in the visible to infrared region. We report on successful synthesis of thin film composed of single-phase BIG epitaxially grown on single-crystalline gadolinium gallium garnet (Gd3Ga5O12, GGG) substrate by using mist chemical vapor deposition (CVD) method, which is an emerging technique for preparation of thin films. The crystal structure, surface morphology, and magnetic, optical and magneto-optical properties of the resultant thin films have been explored. The BIG thin film has a relatively flat surface free from roughness compared to those prepared by other vapor deposition methods. Saturation magnetization is about 1620 G at room temperature, which is close to that expected from the ideal magnetic structure of BIG. The maximum value of Faraday rotation angle reaches 54.3 deg/µm at a wavelength of 424 nm. This value is rather large when compared with those reported for BIG thin films prepared by other techniques. The wavelength dependence of Faraday rotation angle is analyzed well in terms of the crystal electric field (CEF) level schema. Our result suggests that the mist CVD method is a simple and effective technique to synthesize BIG thin film with excellent magneto-optical properties.

  13. Faraday-Effect Polarimeter-Interferometer System for current density measurement on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Haiqing; Jie, Yinxian; Ding, Weixing; Brower, David Lyn; Zou, Zhiyong; Qian, Jinping; Li, Weiming; Zeng, Long; Zhang, Shoubiao; Hu, Liqun; Wan, Baonian

    2015-11-01

    An eleven-channel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for current density and electron density profile measurements in the EAST tokamak. Both polarimetric and interferometric measurement are obtained in a long pulse (~ 52s) discharge. The electron line-integrated density resolution of POINT is less than 5 × 1016 m-2 (~ 2°), and the Faraday rotation angle rms phase noise is <0.1°. With the high temporal (~ 1 μsec) and phase resolution (<0.1°), density perturbations associated with the sawteeth cycle and tearing mode activities have been observed. It is evident that tearing modes are well correlated to dynamics of equilibrium current profile (or q-profile). Faraday rotation angle shows clear variation with low hybrid current drive while line-integrated density remains little changed, implying the current drive in the core. A Digital Phase Detector with 250 kHz bandwidth provides real-time Faraday rotation angle and density phase shift output, which will be integrated into current profile control system in a long pulse discharge in future. This work is supported by the National Magnetic Confinement Fusion Program of China with contract No. 2012GB101002 and partly supported by the US D.O.E. contract DESC0010469.

  14. Enhanced Faraday effect and its application to optical communication.

    PubMed

    Bomke, H A; Harmatz, M

    1977-03-01

    This paper shows that the enhanced Faraday effect of optical resonance lines can be applied to optical communication. A secure optical communication system was designed and successfully tested. It used the integrated enhanced Faraday effect at low fields to produce polarization modulation and the high dispersion of the enhanced effect at high fields to scramble and unscramble the transmitted messages. PMID:20168574

  15. Rethinking Faraday's Law for Teaching Motional Electromotive Force

    ERIC Educational Resources Information Center

    Zuza, Kristina; Guisasola, Jenaro; Michelini, Marisa; Santi, Lorenzo

    2012-01-01

    This study shows physicists' discussions on the meaning of Faraday's law where situations involving extended conductors or moving contact points are particularly troublesome. We raise questions to test students' difficulties in applying Faraday's law in motional electromotive force phenomena. We suggest the benefit of analysing these phenomena…

  16. Patterns beyond Faraday waves: observation of parametric crossover from Faraday instabilities to the formation of vortex lattices in open dual fluid strata

    NASA Astrophysics Data System (ADS)

    Ohlin, Kjell; Berggren, Karl Fredrik

    2016-07-01

    Faraday first characterised the behaviour of a fluid in a container subjected to vertical periodic oscillations. His study pertaining to hydrodynamic instability, the ‘Faraday instability’, has catalysed a myriad of experimental, theoretical, and numerical studies shedding light on the mechanisms responsible for the transition of a system at rest to a new state of well-ordered vibrational patterns at fixed frequencies. Here we study dual strata in a shallow vessel containing distilled water and high-viscosity lubrication oil on top of it. At elevated driving power, beyond the Faraday instability, the top stratum is found to ‘freeze’ into a rigid pattern with maxima and minima. At the same time there is a dynamic crossover into a new state in the form of a lattice of recirculating vortices in the lower layer containing the water. Instrumentation and the physics behind are analysed in a phenomenological way together with a basic heuristic modelling of the wave field. The study, which is based on relatively low-budget equipment, stems from related art projects that have evolved over the years. The study is of value within basic research as well as in education, especially as more advanced collective project work in e.g. engineering physics, where it invites further studies of pattern formation, the emergence of vortex lattices and complexity.

  17. Faraday Rotation Observations of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Spangler, S. R.

    1998-05-01

    Faraday rotation measures the path integral of the product of electron density and line of sight component of the magnetic field from the observer to a source of linearly polarized radio emission. For our observations, the line of sight passes through the solar corona. These observations were made with the NRAO Very Large Array at frequencies of 1465 and 1635 MHz. Observations at two frequencies can confirm the lambda (2) dependence of position angle rotation characteristic of Faraday rotation. We observed the extended radio source 0036+030 (4C+03.01) on March 28, 1997, when the source was 8.6 Rsun from the center of the Sun. Nearly continuous observations were made over an 11 hour period. Our observations measure an average rotation measure (RM) of about +7 radians/m(2) attributable to the corona. The RM showed slow variations during the observing session, with a total change of about 3 radians/m(2) . This variation is attributed to large scale gradients and static plasma structures in the corona, and is the same for two source components separated by 30 arcseconds (22000 km). We have also detected RM variations on time scales of 15 minutes to one hour, which may be coronal Alfven waves. We measure an rms variation of 0.57 radians/m(2) for such fluctuations, which is comparable to previous reports.

  18. Faraday diagnostics for R-damage

    SciTech Connect

    Oro, David M; Tabaka, Leonard J

    2011-01-13

    ALT-3 and R-Damage are experiments to be executed in collaboration between LANL and VNIIEF personnel. They are planned to be fielded in Sarov, Russia at VNIIEF. Both experiments employ Russian explosively driven pulse-power systems to generate a pulse of electrical current that is used to drive the experiment. The current pulse will be measured with Faraday-rotation fiber-optic loops. Using this well known technique, the change in the current enclosed by the loops is determined by measuring the change in the magnetic field integrated along the fiber-optic loop by detecting the Faraday rotation of linearly polarized light traveling through the fiber. The amount of polarization rotation of the light is related to the integrated magnetic field and therefore the enclosed current (Ampere's law) through the Verdet constant which for the optical-fibers used in this experiment has been determined to within 1 %. The presentation describes how the technique will be employed in the R-Damage experiment.

  19. Micro-position sensor using faraday effect

    SciTech Connect

    McElfresh, Michael; Lucas, Matthew; Silveira, Joseph P.; Groves, Scott E.

    2007-02-27

    A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.

  20. Computational simulation of Faraday probe measurements

    NASA Astrophysics Data System (ADS)

    Boerner, Jeremiah J.

    Electric propulsion devices, including ion thrusters and Hall thrusters, are becoming increasingly popular for long duration space missions. Ground-based experimental testing of such devices is performed in vacuum chambers, which develop an unavoidable background gas due to pumping limitations and facility leakage. Besides directly altering the operating environment, the background gas may indirectly affect the performance of immersed plasma probe diagnostics. This work focuses on computational modeling research conducted to evaluate the performance of a current-collecting Faraday probe. Initial findings from one dimensional analytical models of plasma sheaths are used as reference cases for subsequent modeling. A two dimensional, axisymmetric, hybrid electron fluid and Particle In Cell computational code is used for extensive simulation of the plasma flow around a representative Faraday probe geometry. The hybrid fluid PIC code is used to simulate a range of inflowing plasma conditions, from a simple ion beam consistent with one dimensional models to a multiple component plasma representative of a low-power Hall thruster plume. These simulations produce profiles of plasma properties and simulated current measurements at the probe surface. Interpretation of the simulation results leads to recommendations for probe design and experimental techniques. Significant contributions of this work include the development and use of two new non-neutral detailed electron fluid models and the recent incorporation of multi grid capabilities.

  1. Investigation of the ionospheric Faraday rotation for use in orbit corrections

    NASA Technical Reports Server (NTRS)

    Llewellyn, S. K.; Bent, R. B.; Nesterczuk, G.

    1974-01-01

    The possibility of mapping the Faraday factors on a worldwide basis was examined as a simple method of representing the conversion factors for any possible user. However, this does not seem feasible. The complex relationship between the true magnetic coordinates and the geographic latitude, longitude, and azimuth angles eliminates the possibility of setting up some simple tables that would yield worldwide results of sufficient accuracy. Tabular results for specific stations can easily be produced or could be represented in graphic form.

  2. Searching for Faraday rotation in cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Ruiz-Granados, B.; Battaner, E.; Florido, E.

    2016-08-01

    We use the Wilkinson Microwave Anisotropy Probe (WMAP) 9th-year foreground reduced data at 33, 41 and 61 GHz to derive a Faraday rotation at map and at angular power spectrum levels taking into account their observational errors. A processing mask provided by WMAP is used to avoid contamination from the disc of our Galaxy and local spurs. We have found a Faraday rotation component at both, map and power spectrum levels. The lack of correlation of the Faraday rotation with Galactic Faraday rotation, synchrotron and dust polarization from our Galaxy or with cosmic microwave background anisotropies or lensing suggests that it could be originated at reionization (ℓ ≲ 12). Even if the detected Faraday rotation signal is weak, the present study could contribute to establish magnetic fields strengths of B0 ˜ 10-8 G at reionization.

  3. Use of Faraday-rotation data from beacon satellites to determine ionospheric corrections for interplanetary spacecraft navigation

    NASA Technical Reports Server (NTRS)

    Royden, H. N.; Green, D. W.; Walson, G. R.

    1981-01-01

    Faraday-rotation data from the linearly polarized 137-MHz beacons of the ATS-1, SIRIO, and Kiku-2 geosynchronous satellites are used to determine the ionospheric corrections to the range and Doppler data for interplanetary spacecraft navigation. The JPL operates the Deep Space Network of tracking stations for NASA; these stations monitor Faraday rotation with dual orthogonal, linearly polarized antennas, Teledyne polarization tracking receivers, analog-to-digital converter/scanners, and other support equipment. Computer software examines the Faraday data, resolves the pi ambiguities, constructs a continuous Faraday-rotation profile and converts the profile to columnar zenith total electron content at the ionospheric reference point; a second program computes the line-of-sight ionospheric correction for each pass of the spacecraft over each tracking complex. Line-of-sight ionospheric electron content using mapped Faraday-rotation data is compared with that using dispersive Doppler data from the Voyager spacecraft; a difference of about 0.4 meters, or 5 x 10 to the 16th electrons/sq m is obtained. The technique of determining the electron content of interplanetary plasma by subtraction of the ionospheric contribution is demonstrated on the plasma torus surrounding the orbit of Io.

  4. Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures

    NASA Astrophysics Data System (ADS)

    Laskina, Olga; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    2012-09-01

    Simultaneous Fourier transform infrared (FTIR) extinction spectra and aerosol size distributions have been measured for some components of mineral dust aerosol including feldspars (albite, oligoclase) and diatomaceous earth, as well as more complex authentic dust samples that include Iowa loess and Saharan sand. Spectral simulations for single-component samples, derived from Rayleigh-theory models for characteristic particle shapes, better reproduce the experimental spectra including the peak position and band shape compared to Mie theory. The mineralogy of the authentic dust samples was inferred using analysis of FTIR spectra. This approach allows for analysis of the mineralogy of complex multicomponent dust samples. Extinction spectra for the authentic dust samples were simulated from the derived sample mineralogy using published optical constant data for the individual mineral constituents and assuming an external mixture. Nonspherical particle shape effects were also included in the simulations and were shown to have a significant effect on the results. The results show that the position of the peak and the shape of the band of the IR characteristic features in the 800 to 1400 cm-1 spectral range are not well simulated by Mie theory. The resonance peaks are consistently shifted by more than +40 cm-1 relative to the experimental spectrum in the Mie simulation. Rayleigh model solutions for different particle shapes better predict the peak position and band shape of experimental spectra, even though the Rayleigh condition may not be strictly obeyed in these experiments.

  5. Mineralogy of S-complex Asteroids using Reflectance and Thermal Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindsay, S. S.; Emery, J. P.; Marchis, F.; Enriquez, E.; Assafin, M.

    2013-12-01

    The S-type asteroids display an astounding diversity in mineralogy. They range from monomineralic olivine to complex olivine/pyroxene assemblages to basaltic assemblages. These materials are thought to be representative of an entire range of bodies that span essentially unmelted to bodies that experienced complete melting and igneous differentiation. Hence, the diverse silicate mineralogy for the S-type asteroids traces the thermal history of the asteroids a few Myr after formation. As such, determining the composition of S-type asteroids is a powerful investigative tool for understanding the post-accretionary thermal evolution, partial melting, and differentiation of the asteroids in the early Solar System. Moreover, the Sq and S(IV) are thought to be the parent bodies of ordinary chondrites (OCs), and therefore represent essentially unmelted or un-thermally processed materials. The mineralogy of these relatively unprocessed asteroids thus provide a window into investigating primitive Solar System materials, which were the building blocks of the terrestrial planets. The mineralogy of S-complex asteroids is typically determined using the 1- and 2-μm absorption bands related to olivine and pyroxene. Comparing the band centers, depths, and areas of these two features (i.e., band analysis) to calibrated laboratory data yields the general silicate mineralogy. Based on the near-infrared (NIR) band analysis, the S-type asteroids can be divided into seven subtypes, S(I - VII), with S(I)s being monomineralic olivine (mantle matieral), S(IV)s being analogous to OCs (primitive silicate material), and S(VII)s being basaltic material (igneously processed crustal material). The mid-infrared (MIR) thermal emission from asteroid surfaces exhibits a suite of silicate features due to Si-O stretching and O-Si-O bending vibrations near 10 and 18 μm, respectively. Marchis et al. (2012) demonstrated that the S-type asteroids exhibit diversity in their MIR emission. We seek to examine

  6. Development of a complex type of pour point-viscosity depressant and infrared spectrum research

    SciTech Connect

    Zhang Fusheng; Wang Biao

    1995-11-01

    EMS, a complex type of pour point-viscosity depressant for crudes, is composed of EVA, MVA [molecular structure shown for both in the paper] and Surfactant. After adding EMS into the crudes, a very nice result in reducing pour point and viscosity for Daqing, Jianghan and Jidong crudes was obtained. From the research result of infrared spectroscopy of the interactions between EMS or its components and wax or mixture of resin and asphaltene isolated from three crudes, it has been shown that the area ratio of the double absorption peaks of 719 cm{sup {minus}1} and 729 cm{sup {minus}1} or 1,368 cm{sup {minus}1} and 1,378 cm{sup {minus}1} changed remarkably after EMS or its components were added into wax. It can be inferred that the cocrystallization probably happened between the EMS or its components and the wax. The position of the 4,000--3,000 cm{sup {minus}1} infrared absorption peak of the mixture of resin and asphaltene moved to the lower wavenumber, and the ratio of the area of 1,373 cm{sup {minus}1} absorption peak (methyl) to the combination area of 748, 810 and 871 cm{sup {minus}1} absorption peak (aromatics) increased remarkably. It can be inferred that the pour point-viscosity depressant molecules destroyed the original hydrogen bonds and overlapping of the aromatic ring planes among resin and asphaltene molecules to form a new cubic molecular structure and new hydrogen bonds with the results the viscosity of crude oil will be reduced.

  7. Infrared spectra and density functional theory calculations of group 10 transition metal sulfide molecules and complexes.

    PubMed

    Liang, Binyong; Wang, Xuefeng; Andrews, Lester

    2009-04-01

    Laser-ablated Ni, Pd, and Pt atoms were reacted with sulfur molecules emerging from a microwave discharge in argon during condensation at 7 K. Reaction products were identified from matrix infrared spectra, sulfur isotopic shifts, spectra of sulfur isotopic mixtures, and frequencies from density functional calculations. The strongest absorptions are observed at 597.9, 596.1, and 583.6 cm(-1), respectively, for the group 10 metals. These absorptions show large sulfur-34 shifts and 32/34 isotopic frequency ratios (1.0282, 1.0285, 1.0298) that are appropriate for S-S stretching modes. Of most importance, mixed 32/34 isotopic 1/4/4/2/4/1 sextets identify this product with two equivalent S(2) molecules containing equivalent atomic positions as the bisdisulfur pi complexes M(S(2))(2). Our DFT calculations find stable D(2h) structures with B(1u) ground states and intense b(1u) infrared active modes a few wavenumbers higher than the observed values. A minor Ni product at 505.8, 502.7 cm(-1) shows the proper sulfur-34 shift for assignment to (58)NiS, (60)NiS. Another major product with Pt at 512.2 cm(-1) reveals an asymmetric triplet absorption with mixed sulfur 32/34, which is appropriate for assignment to the SPtS disulfide molecule. A weak 491.7 cm(-1) peak exhibits the sulfur-34 shift expected for PtS, and this assignment follows. PMID:19281209

  8. Infrared Multiphoton Dissociation of Duplex DNA/Drug Complexes in a Quadrupole Ion Trap

    PubMed Central

    Wilson, Jeffrey J.; Brodbelt, Jennifer S.

    2008-01-01

    Non-covalent duplex DNA/drug complexes formed between one of three 14-base pair non-self complementary duplexes with variable GC content and one of eight different DNA-interactive drugs are characterized by infrared multiphoton dissociation (IRMPD), and the resulting spectra are compared to conventional collisional activated dissociation (CAD) mass spectra in a quadrupole ion trap mass spectrometer. IRMPD yielded comparable information to previously reported CAD results in which strand separation pathways dominate for complexes containing the more AT-rich sequences and/or minor groove binding drugs, whereas drug ejection pathways are prominent for complexes containing intercalating drugs and/or duplexes with higher GC base content. The large photoabsorptive cross-section of the phosphate backbone at 10.6 μm promotes highly efficient dissociation within short irradiation times (< 2 ms at 50 W) or using lower laser powers and longer irradiation times (< 15 W at 15 ms), activation times on par with or shorter than standard CAD experiments. This large photoabsorptivity leads to a controllable ion activation method which can be used to produce qualitatively similar spectra to CAD while minimizing uninformative base loss dissociation pathways or instead be tuned to yield a high degree of secondary fragmentation. Additionally, the low mass cut-off associated with conventional CAD plays no role in IRMPD, resulting in richer MS/MS information in the low m/z region. IRMPD is also used for multi-adduct dissociation in order to increase MS/MS sensitivity, and a two stage IRMPD/IRMPD method is demonstrated as a means to give specific DNA sequence information that would be useful when screening drug binding by mixtures of duplexes. PMID:17249688

  9. Upconverting Nanoparticles Prompt Remote Near-Infrared Photoactivation of Ru(II)-Arene Complexes.

    PubMed

    Ruggiero, Emmanuel; Garino, Claudio; Mareque-Rivas, Juan C; Habtemariam, Abraha; Salassa, Luca

    2016-02-18

    The synthesis and full characterisation (including X-ray diffraction studies and DFT calculations) of two new piano-stool Ru(II) -arene complexes, namely [(η(6) -p-cym)Ru(bpy)(m-CCH-Py)][(PF)6]2 (1) and [(η(6) -p-cym)Ru(bpm)(m-CCH-Py)][(PF)6]2 (2; p-cym=p-cymene, bpy=2,2'-bipyridine, bpm=2,2'-bipyrimidine, and m-CCH-Py=3-ethynylpyridine), is described and discussed. The reaction of the m-CCH-Py ligand of 1 and 2 with diethyl-3-azidopropyl phosphonate by Cu-catalysed click chemistry affords [(η(6) -p-cym)Ru(bpy)(P-Trz-Py)][(PF)6]2 (3) and [(η(6) -p-cym)Ru(bpm)(P-Trz-Py)][(PF)6]2 (4; P-Trz-Py=[3-(1-pyridin-3-yl-[1,2,3]triazol-4-yl)-propyl]phosphonic acid diethyl ester). Upon light excitation at λ=395 nm, complexes 1-4 photodissociate the monodentate pyridyl ligand and form the aqua adduct ions [(η(6) -p-cym)Ru(bpy)(H2O)](2+) and [(η(6) -p-cym)Ru(bpm)(H2O)](2+). Thulium -doped upconverting nanoparticles (UCNPs) are functionalised with 4, thus exploiting their surface affinity for the phosphonate group in the complex. The so-obtained nanosystem UCNP@4 undergoes near-infrared (NIR) photoactivation at λ=980 nm, thus producing the corresponding reactive aqua species that binds the DNA-model base guanosine 5'-monophosphate. PMID:26785101

  10. Unexpected Efficiency of a Luminescent Samarium(III) Complex for Combined Visible and Near-Infrared Biphotonic Microscopy.

    PubMed

    Bui, Anh Thy; Grichine, Alexei; Brasselet, Sophie; Duperray, Alain; Andraud, Chantal; Maury, Olivier

    2015-12-01

    An original samarium(III) complex based on a triazacyclononane platform functionalized with a charge-transfer antenna chromophore exhibited optimized brightness and was successfully used as an emissive species for two-photon microscopy experiments in both the visible and near-infrared spectral ranges. PMID:26489885

  11. Peripherally hydrogenated neutral polycyclic aromatic hydrocarbons as carriers of the 3 micron interstellar infrared emission complex: results from single-photon infrared emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Wagner, D. R.; Kim, H. S.; Saykally, R. J.

    2000-01-01

    Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.

  12. Effect of imperfect Faraday mirrors on the security of a Faraday-Michelson quantum cryptography system

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Long; Gao, Ming; Ma, Zhi

    2013-11-01

    The one-way Faraday-Michelson system is a very useful practical quantum cryptography system where Faraday mirrors (FMs) play an important role. In this paper we analyze the security of this system against imperfect FMs. We consider the security loophole caused by imperfect FMs in Alice’s and Bob’s security zones. Then we implement a passive FM attack in this system. By changing the values of the imperfection parameters of Alice’s FMs, we calculate the quantum bit error rate between Alice and Bob induced by Eve and the probability that Eve obtains outcomes successfully. It is shown that the imperfection of one of Alice’s two FMs makes the system sensitive to an attack. Finally we give a modified key rate as a function of the FM imperfections. The security analysis indicates that both Alice’s and Bob’s imperfect FMs can compromise the secure key.

  13. Algorithm for Unfolding Current from Faraday Rotation Measurement

    SciTech Connect

    Stephen E. Mitchell

    2008-05-23

    Various methods are described to translate Faraday rotation measurements into a useful representation of the dynamic current under investigation[1]. For some experiments, simply counting the “fringes” up to the turnaround point in the recorded Faraday rotation signal is sufficient in determining the peak current within some allowable fringe uncertainty. For many other experiments, a higher demand for unfolding the entire dynamic current profile is required. In such cases, investigators often rely extensively on user interaction on the Faraday rotation data by visually observing the data and making logical decisions on what appears to be turnaround points and/or inflections in the signal. After determining extrema, inflection points, and locations, a piece-wise, ΔI/Δt, representation of the current may be revealed with the proviso of having a reliable Verdet constant of the Faraday fiber or medium and time location for each occurring fringe. In this paper, a unique software program is reported which automatically decodes the Faraday rotation signal into a time-dependent current representation. System parameters such as the Faraday fiber’s Verdet constant and number of loops in the sensor are the only user-interface inputs. The central aspect of the algorithm utilizes a short-time Fourier transform (STFT) which reveals much of the Faraday rotation’s hidden detail necessary for unfolding the dynamic current measurement.

  14. TSAG-based cryogenic Faraday isolator

    NASA Astrophysics Data System (ADS)

    Starobor, Aleksey; Yasyhara, Ryo; Snetkov, Ilya; Mironov, Evgeniy; Palashov, Oleg

    2015-09-01

    Thermooptical and magnetooptical properties of novel magnetoactive crystal terbium-scandium aluminum garnet were investigated at temperature range 80-300 K. It is shown that Verdet constant increases inversely proportional to temperature, and thermally induced depolarization, and the optical power of the thermal lens is reduced significantly with cooling from 290 K to 80 K. According to estimates, TSAG crystals in [1 1 1] orientation allow to create a cryogenic Faraday isolator provides a degree of isolation of 30 dB with the laser power exceeds ∼6 kW, it is estimated that the transition to the [0 0 1] orientation allows to provide degree of isolation of 30 dB at a laser power higher than 400 kW.

  15. Current measurement by Faraday effect on GEPOPU

    NASA Astrophysics Data System (ADS)

    N, Correa; H, Chuaqui; E, Wyndham; F, Veloso; J, Valenzuela; M, Favre; H, Bhuyan

    2014-05-01

    The design and calibration of an optical current sensor using BK7 glass is presented. The current sensor is based on the polarization rotation by Faraday effect. GEPOPU is a pulsed power generator, double transit time 120ns, 1.5 Ohm impedance, coaxial geometry, where Z pinch experiment are performed. The measurements were performed at the Optics and Plasma Physics Laboratory of Pontificia Universidad Catolica de Chile. The verdet constant for two different optical materials was obtained using He-Ne laser. The values obtained are within the experimental error bars of measurements published in the literature (less than 15% difference). Two different sensor geometries were tried. We present the preliminary results for one of the geometries. The values obtained for the current agree within the measurement error with those obtained by means of a Spice simulation of the generator. Signal traces obtained are completely noise free.

  16. Scaling behavior of coarsening Faraday heaps

    NASA Astrophysics Data System (ADS)

    van Gerner, Henk Jan; van der Weele, Ko; van der Meer, Devaraj; van der Hoef, Martin A.

    2015-10-01

    When a layer of sand is vertically shaken, the surface spontaneously breaks up in a landscape of small conical "Faraday heaps," which merge into larger ones on an ever increasing time scale. We propose a model for the heap dynamics and show analytically that the mean lifetime of the transient state with N heaps scales as N-2. When there is an abundance of sand, such that the vibrating plate always remains completely covered, this means that the average diameter of the heaps grows as t1 /2. Otherwise, when the sand is less plentiful and parts of the plate get depleted during the coarsening process, the average diameter of the heaps grows more slowly, namely as t1 /3. This result compares well with experimental observations.

  17. Media responsible for Faraday rotation: A review

    NASA Astrophysics Data System (ADS)

    Oberoi, D.; Lonsdale, C. J.

    2012-12-01

    Recent technological advances have led to a resurgence of interest in low frequency radio astronomy. Ionospheric distortion of cosmic radiation has, however, been a challenge for high fidelity and high sensitivity measurements at these long wavelengths. Several new and innovative low radio frequency interferometers are currently in varying stages of development, construction and commissioning across the globe. They will pursue a broad range of scientific objectives, and precise ionospheric calibration over the wide field-of-view of these new generation instruments will be a prerequisite for achieving these science goals. The task of calibration is made more difficult by the Faraday rotation (FR) of polarized flux as it passes through the magnetized plasma of the ionosphere, the plasmasphere, the magnetosphere, and the heliosphere. To quantify these effects, we present a survey of the order of magnitude of FR associated with these media and their spatial and temporal variations.

  18. Scaling behavior of coarsening Faraday heaps.

    PubMed

    van Gerner, Henk Jan; van der Weele, Ko; van der Meer, Devaraj; van der Hoef, Martin A

    2015-10-01

    When a layer of sand is vertically shaken, the surface spontaneously breaks up in a landscape of small conical "Faraday heaps," which merge into larger ones on an ever increasing time scale. We propose a model for the heap dynamics and show analytically that the mean lifetime of the transient state with N heaps scales as N(-2). When there is an abundance of sand, such that the vibrating plate always remains completely covered, this means that the average diameter of the heaps grows as t(1/2). Otherwise, when the sand is less plentiful and parts of the plate get depleted during the coarsening process, the average diameter of the heaps grows more slowly, namely as t(1/3). This result compares well with experimental observations. PMID:26565231

  19. Light-Induced Infrared Difference Spectroscopy in the Investigation of Light Harvesting Complexes.

    PubMed

    Mezzetti, Alberto

    2015-01-01

    Light-induced infrared difference spectroscopy (IR-DS) has been used, especially in the last decade, to investigate early photophysics, energy transfer and photoprotection mechanisms in isolated and membrane-bound light harvesting complexes (LHCs). The technique has the definite advantage to give information on how the pigments and the other constituents of the biological system (proteins, membranes, etc.) evolve during a given photoreaction. Different static and time-resolved approaches have been used. Compared to the application of IR-DS to photosynthetic Reaction Centers (RCs), however, IR-DS applied to LHCs is still in an almost pioneering age: very often sophisticated techniques (step-scan FTIR, ultrafast IR) or data analysis strategies (global analysis, target analysis, multivariate curve resolution) are needed. In addition, band assignment is usually more complicated than in RCs. The results obtained on the studied systems (chromatophores and RC-LHC supercomplexes from purple bacteria; Peridinin-Chlorophyll-a-Proteins from dinoflagellates; isolated LHCII from plants; thylakoids; Orange Carotenoid Protein from cyanobacteria) are summarized. A description of the different IR-DS techniques used is also provided, and the most stimulating perspectives are also described. Especially if used synergically with other biophysical techniques, light-induced IR-DS represents an important tool in the investigation of photophysical/photochemical reactions in LHCs and LHC-containing systems. PMID:26151118

  20. Evaluation of Airborne Visible/Infrared Imaging Spectrometer Data of the Mountain Pass, California carbonatite complex

    NASA Technical Reports Server (NTRS)

    Crowley, James; Rowan, Lawrence; Podwysocki, Melvin; Meyer, David

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of the Mountain Pass, California carbonatite complex were examined to evaluate the AVIRIS instrument performance and to explore alternative methods of data calibration. Although signal-to-noise estimates derived from the data indicated that the A, B, and C spectrometers generally met the original instrument design objectives, the S/N performance of the D spectrometer was below expectations. Signal-to-noise values of 20 to 1 or lower were typical of the D spectrometer and several detectors in the D spectrometer array were shown to have poor electronic stability. The AVIRIS data also exhibited periodic noise, and were occasionally subject to abrupt dark current offsets. Despite these limitations, a number of mineral absorption bands, including CO3, Al-OH, and unusual rare earth element bands, were observed for mine areas near the main carbonatite body. To discern these bands, two different calibration procedures were applied to remove atmospheric and solar components from the remote sensing data. The two procedures, referred to as the single spectrum and the flat field calibration methods gave distinctly different results. In principle, the single spectrum method should be more accurate; however, additional fieldwork is needed to rigorously determine the degree of calibration success.

  1. Normative database of judgment of complexity task with functional near infrared spectroscopy--application for TBI.

    PubMed

    Amyot, Franck; Zimmermann, Trelawny; Riley, Jason; Kainerstorfer, Jana M; Chernomordik, Victor; Mooshagian, Eric; Najafizadeh, Laleh; Krueger, Frank; Gandjbakhche, Amir H; Wassermann, Eric M

    2012-04-01

    The ability to assess frontal lobe function in a rapid, objective, and standardized way, without the need for expertise in cognitive test administration might be particularly helpful in mild traumatic brain injury (TBI), where objective measures are needed. Functional near infrared spectroscopy (fNIRS) is a reliable technique to noninvasively measure local hemodynamic changes in brain areas near the head surface. In this paper, we are combining fNIRS and frameless stereotaxy which allowed us to co-register the functional images with previously acquired anatomical MRI volumes. In our experiment, the subjects were asked to perform a task, evaluating the complexity of daily life activities, previously shown with fMRI to activate areas of the anterior frontal cortex. We reconstructed averaged oxyhemoglobin and deoxyhemoglobin data from 20 healthy subjects in a spherical coordinate. The spherical coordinate is a natural representation of surface brain activation projection. Our results show surface activation projected from the medial frontopolar cortex which is consistent with previous fMRI results. With this original technique, we will construct a normative database for a simple cognitive test which can be useful in evaluating cognitive disability such as mild traumatic brain injury. PMID:22306800

  2. Unsupervised background-constrained tank segmentation of infrared images in complex background based on the Otsu method.

    PubMed

    Zhou, Yulong; Gao, Min; Fang, Dan; Zhang, Baoquan

    2016-01-01

    In an effort to implement fast and effective tank segmentation from infrared images in complex background, the threshold of the maximum between-class variance method (i.e., the Otsu method) is analyzed and the working mechanism of the Otsu method is discussed. Subsequently, a fast and effective method for tank segmentation from infrared images in complex background is proposed based on the Otsu method via constraining the complex background of the image. Considering the complexity of background, the original image is firstly divided into three classes of target region, middle background and lower background via maximizing the sum of their between-class variances. Then, the unsupervised background constraint is implemented based on the within-class variance of target region and hence the original image can be simplified. Finally, the Otsu method is applied to simplified image for threshold selection. Experimental results on a variety of tank infrared images (880 × 480 pixels) in complex background demonstrate that the proposed method enjoys better segmentation performance and even could be comparative with the manual segmentation in segmented results. In addition, its average running time is only 9.22 ms, implying the new method with good performance in real time processing. PMID:27625967

  3. Faraday effect in Sn2P2S6 crystals.

    PubMed

    Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav

    2008-11-10

    We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m. PMID:19002228

  4. Experimental investigation of the Faraday instability on a patterned surface

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Jacobi, Ian; Stone, Howard A.

    2016-05-01

    The effect of patterned substrates on the onset and behavior of the Faraday instability is studied experimentally. We show that the onset of Faraday standing waves in a vertically oscillating layer of liquid can be delayed due to the topography of the underlying two-dimensional patterned substrate. The magnitude of this stabilization effect can be predicted by existing linear stability theories, and we provide an additional physical explanation for the behavior. These observations suggest the feasibility of exploiting the Faraday instability in thin liquid layers in practical engineering systems.

  5. Miniature modified Faraday cup for micro electron beams

    DOEpatents

    Teruya, Alan T.; Elmer, John W.; Palmer, Todd A.; Walton, Chris C.

    2008-05-27

    A micro beam Faraday cup assembly includes a refractory metal layer with an odd number of thin, radially positioned traces in this refractory metal layer. Some of the radially positioned traces are located at the edge of the micro modified Faraday cup body and some of the radially positioned traces are located in the central portion of the micro modified Faraday cup body. Each set of traces is connected to a separate data acquisition channel to form multiple independent diagnostic networks. The data obtained from the two diagnostic networks are combined and inputted into a computed tomography algorithm to reconstruct the beam shape, size, and power density distribution.

  6. Conformations of dimethyl carbonate and its complexes with water: A matrix isolation infrared and ab initio study

    NASA Astrophysics Data System (ADS)

    Kar, Bishnu Prasad; Ramanathan, N.; Sundararajan, K.; Viswanathan, K. S.

    2012-09-01

    Conformations of dimethyl carbonate (DMC) were studied using matrix isolation infrared spectroscopy. Infrared spectra of DMC trapped in inert gas matrixes, using an effusive source at 298 and 423 K, showed evidence of both the ground state (cis-cis), and higher energy (cis-trans) conformers. Experiments were also performed using a supersonic jet source to deposit the matrix, to look for conformational cooling in the expansion process. The structures and vibrational frequencies of these conformers were computed at the B3LYP/6-31++G** level of theory. Natural bond orbital analyses were performed to understand the role of the delocalization interactions in conformational preferences. Complexes of DMC with H2O were also studied. A 1:1 DMC-H2O complex was identified in the matrix isolation experiments, where the carbonyl oxygen of DMC served as the proton acceptor for the hydrogen bonded complex. This observation was corroborated by computations performed on the complex at the B3LYP/6-31++G** level. Our computations also indicated another minimum, corresponding to an alkoxy bonded DMC-H2O complex, which was less exothermic; however, this complex was not identified in our experiments. Atoms-in-molecules theory was also performed to understand the nature of the intermolecular interaction in the DMC-H2O complex.

  7. Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation.

    PubMed

    Sun, Lining; Qiu, Yannan; Liu, Tao; Feng, Jing; Deng, Wei; Shi, Liyi

    2015-11-01

    We used the synthesized dinaphthylmethane (Hdnm) ligand whose absorption extends to the visible-light wavelength, to prepare a family of ternary lanthanide complexes, named as [Ln(dnm)3 phen] (Ln = Sm, Nd, Yb, Er, Tm, Pr). The properties of these complexes were investigated by Fourier transform infrared (FT-IR) spectroscopy, diffuse reflectance (DR) spectroscopy, thermogravimetric analyses, and excitation and emission spectroscopy. Generally, excitation with visible light is much more advantageous than UV excitation. Importantly, upon excitation with visible light (401-460 nm), the complexes show characteristic visible (Sm(3+)) as well as near-infrared (Sm(3+), Nd(3+), Yb(3+), Er(3+), Tm(3+), Pr(3+)) luminescence of the corresponding lanthanide ions, attributed to the energy transfer from the ligands to the lanthanide ions, an antenna effect. Now, using these near-infrared luminescent lanthanide complexes, the luminescent spectral region from 800 to 1650 nm, can be covered completely, which is of particular interest for biomedical imaging applications, laser systems, and optical amplification applications. PMID:25691149

  8. Faraday effect based optical fiber current sensor for tokamaks

    SciTech Connect

    Aerssens, M.; Gusarov, A.; Brichard, B.; Massaut, V.; Megret, P.; Wuilpart, M.

    2011-07-01

    Fiber optical current sensor (FOCS) is a technique considered to be compatible with the ITER nuclear environment. FOCS principle is based on the magneto-optic Faraday effect that produces non-reciprocal circular birefringence when a magnetic field is applied in the propagation direction of the light beam. The magnetic field or the electrical current is deduced from the modification of the state of polarization of light. The linear birefringence of the fiber related with non-perfect manufacturing, temperature changes or stress constitute a parasitic effect that reduces the precision and sensitivity of FOCS. A two-pass optical scheme with a Faraday mirror at the end has been proposed to compensate the influence of linear birefringence. In this paper we perform a Stokes analysis of the two-pass optical scheme to highlight the fact that the linear birefringence is not compensated perfectly by the Faraday mirror when non-reciprocal birefringence such as Faraday effect is also present. (authors)

  9. Graphene-based photonic crystal to steer giant Faraday rotation

    NASA Astrophysics Data System (ADS)

    Da, Haixia; Qiu, Cheng-Wei

    2012-06-01

    We present a graphene-based photonic-crystal schematic of enhancing and steering Faraday rotation angle of graphene. This concept is counter-intuitive because the giant Faraday rotation and high transmission can be simultaneously pronounced, which is distinguished from exisitng graphene structures reported before. It is found that chemical potential can be tailored to generate a controllable giant Faraday rotation via graphene with atomic thickness. By engineering the individual component thickness in the photonic crystal, the magneto-optical performance can be significantly improved. This is of fundamental importance in a wide range of magneto-optical applications, simply because the Faraday rotation makes sense only when the transmittivity is decently high.

  10. One-Piece Faraday Generator: A Paradoxical Experiment from 1851

    ERIC Educational Resources Information Center

    Crooks, M. J.; And Others

    1978-01-01

    Describes an experiment based on Faraday's one-piece generator, where the rotating disk is replaced by a cylindrical permanent magnet. Explains the apparent paradox that an observer in an inertial frame could measure his absolute velocity. (GA)

  11. In-frame and inter-frame information based infrared moving small target detection under complex cloud backgrounds

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Cao, Ercong; Hu, Xiaobo; Qian, Weixian; Ren, Kan

    2016-05-01

    Infrared moving small target detection under complex cloud backgrounds is one of the key techniques of infrared search and track (IRST) systems. This paper proposes a novel method based on in-frame inter-frame information to detect infrared moving small targets accurately. For a single frame, in the spatial domain, a directional max-median filter is developed to make a pre-processing and a background suppression filtering template is utilized on the denoised image to highlight target. Then, targets in cloud regions and non-cloud regions are extracted by different thresholds according to a cloud discrimination method so that a spatial domain map (SDM) is acquired. In the frequency domain, we design an α-DoB band-pass filter to conduct coarse saliency detection and make an amplitude transformation with smoothing processing which is the so-called elaborate saliency detection. Furthermore, a frequency domain map (FDM) is acquired by an adaptive binary segmentation method. Lastly, candidate targets in single frame are extracted by a discrimination based on intensity and spatial distance criteria. For consecutive frames, a false alarm suppression is conducted on account of differences of motion features between moving target and false alarms to improve detection accuracy again. Large numbers of experiments demonstrate that the proposed method has satisfying detection effectiveness and robustness for infrared moving small target detection under complex cloud backgrounds.

  12. Testing Ionospheric Faraday Rotation Corrections in CASA

    NASA Astrophysics Data System (ADS)

    Kooi, Jason E.; Moellenbrock, George

    2015-04-01

    The Earth’s ionosphere introduces direction- and time-dependent effects over a range of physical and temporal scales and so is a major source for unmodeled phase offsets for low frequency radioastronomical observations. Ionospheric effects are often the limiting factor to making sensitive radioastronomical measurements to probe the solar corona or coronal mass ejections at low frequencies (< 5 GHz). It has become common practice to use global ionospheric models derived from the Global Positioning System (GPS) to provide a means of externally calibrating low frequency data. We have developed a new calibration algorithm in the Common Astronomy Software Applications (CASA) package. CASA, which was developed to meet the data post-processing needs of next generation telescopes such as the Karl G. Jansky Very Large Array (VLA), did not previously have the capability to mitigate ionospheric effects. This algorithm uses GPS-based global ionosphere maps to mitigate the first and second order ionospheric effects (dispersion delay and Faraday rotation, respectively). We investigated several data centers as potential sources for global ionospheric models and chose the International Global Navigation Satellite System Service data product because data from other sources are generally too sparse to use without additional interpolation schemes. This implementation of ionospheric corrections in CASA has been tested on several sets of VLA observations and all of them showed a significant reduction of the dispersion delay. In order to rigorously test CASA’s ability to mitigate ionospheric Faraday rotation, we made VLA full-polarization observations of the standard VLA phase calibrators J0359+5057 and J0423+4150 in August 2014, using L band (1 - 2 GHz), S band (2 - 4 GHz), and C band (4 - 6 GHz) frequencies in the D array configuration. The observations were 4 hours in duration, beginning near local sunrise. In this paper, we give a general description of how these corrections are

  13. Infrared Spectra of Water Bending Bands of Propylene Oxide-Water Complexes: Sequential Solvation of a Chiral Molecule in Water

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Xu, Yunjie

    2011-06-01

    Sequential solvation of propylene oxide (C3H6O), an prototypical chiral molecule, with water has been investigated using high resolution infrared spectroscopy and ab initio methods. In a number of low resolution studies, the vibrational and vibrational circular dichroism spectral features at the water bending vibration region had been shown to be highly sensitive to the water solvation structures around propylene oxide in aqueous solution. The current study aims to provide quantitative information about solvation of a chiral molecule with water molecules at the molecular level and to provide the experimental benchmarks for calculations of vibrational frequencies in these larger molecular complexes. The high resolution infrared spectra of the propylene oxide-water complexes have been measured using a pulsed jet infrared spectrometer equipped with a room temperature external cavity quantum cascade laser and an astigmatic multi-pass cell. At least 6 bands have been observed from 1650 to 1680 Cm-1. Based on the previous microwave spectroscopic studies, these bands have been assigned to the blue-shifted water bending (ν_2) vibration modes associated with both the syn- and anti- conformers of the binary (C3H6O-H2O) and ternary (C3H6O-(H2O)2) complexes. This report shows the power of high resolution infrared spectroscopy to study multi-conformers of relatively large organic molecule complexes produced in a jet expansion. M. Losada, P. Nguyen, and Y .Xu, J. Phys. Chem. A, 112, 5621, (2008) Z. Su, Q. Wen, and Y. Xu, J. Am. Chem. Soc., 128, 6755, (2006) Z. Su and Y. Xu, Angew. Chem. Int. Ed., 46, 6163, (2007)

  14. Evaluation of the Faraday angle by numerical methods and comparison with the Tore Supra and JET polarimeter electronics.

    PubMed

    Brault, C; Gil, C; Boboc, A; Spuig, P

    2011-04-01

    On the Tore Supra tokamak, a far infrared polarimeter diagnostic has been routinely used for diagnosing the current density by measuring the Faraday rotation angle. A high precision of measurement is needed to correctly reconstruct the current profile. To reach this precision, electronics used to compute the phase and the amplitude of the detected signals must have a good resilience to the noise in the measurement. In this article, the analogue card's response to the noise coming from the detectors and their impact on the Faraday angle measurements are analyzed, and we present numerical methods to calculate the phase and the amplitude. These validations have been done using real signals acquired by Tore Supra and JET experiments. These methods have been developed to be used in real-time in the future numerical cards that will replace the Tore Supra present analogue ones. PMID:21678660

  15. Linear diffusion into a Faraday cage.

    SciTech Connect

    Warne, Larry Kevin; Lin, Yau Tang; Merewether, Kimball O.; Chen, Kenneth C.

    2011-11-01

    Linear lightning diffusion into a Faraday cage is studied. An early-time integral valid for large ratios of enclosure size to enclosure thickness and small relative permeability ({mu}/{mu}{sub 0} {le} 10) is used for this study. Existing solutions for nearby lightning impulse responses of electrically thick-wall enclosures are refined and extended to calculate the nearby lightning magnetic field (H) and time-derivative magnetic field (HDOT) inside enclosures of varying thickness caused by a decaying exponential excitation. For a direct strike scenario, the early-time integral for a worst-case line source outside the enclosure caused by an impulse is simplified and numerically integrated to give the interior H and HDOT at the location closest to the source as well as a function of distance from the source. H and HDOT enclosure response functions for decaying exponentials are considered for an enclosure wall of any thickness. Simple formulas are derived to provide a description of enclosure interior H and HDOT as well. Direct strike voltage and current bounds for a single-turn optimally-coupled loop for all three waveforms are also given.

  16. Laser mode complexity analysis in infrared waveguide free-electron lasers

    NASA Astrophysics Data System (ADS)

    Prazeres, Rui

    2016-06-01

    We analyze an optical phenomenon taking place in waveguide free-electron lasers, which disturbs, or forbids, operation in far infrared range. Waveguides in the optical cavity are used in far-infrared and THz ranges in order to avoid diffraction optical losses, and a hole coupling on output mirror is used for laser extraction. We show that, when the length of the waveguide exceeds a given limit, a phenomenon of "mode disorder" appears in the cavity, which makes the laser difficult, or impossible, to work properly. This phenomenon is even more important when the waveguide covers the whole length of the cavity. A numerical simulation describes this effect, which creates discontinuities of the laser power in the spectral domain. We show an example with an existing infrared Free-Electron Laser, which exhibits such discontinuities of the power, and where no convincing explanation was proposed until now.

  17. Electronic and infrared spectral and thermal studies on the molecular complex of dibenzo-18-crown-6 and iodine

    NASA Astrophysics Data System (ADS)

    Shahada, L. A.

    2005-06-01

    The interaction of the crown ether dibenzo-18-crown-6 (DBC) with iodine has been studied in CHCl 3 at room temperature. The charge-transfer absorptions, far infrared and thermal measurements of the formed charge-transfer complex were recorded and discussed. The results obtained show the formation of the pentaiodide complex with the general formula [(DBC)] + I 5-. The pentaiodide ion, I 5-, is described as I 3-(I 2) confirmed by the observation of the characteristic absorptions for I 3- ion around 365 and 290 nm. In addition, the far infrared spectrum of the solid complex shows the three vibrations of I 3- unit is at 141, 113 and 71 cm -1 assigned to νas(I-I) and νs(I-I) and δ(I 3-), respectively, while the band related to the vibration of I 2 unit is observed at 180 cm -1. Vibration analysis of the obtained data shows that the symmetry of I 3- unit could be non-linear with C 2 v symmetry. The structure of the formed pentaiodide complex was further supported by thermal gravimetric analysis measurements.

  18. Infrared depletion spectroscopy of the doubly hydrogen-bonded aniline-(tetrahydrofuran) 2 complex produced in supersonic jet

    NASA Astrophysics Data System (ADS)

    Chowdhury, Pradyot K.

    2006-01-01

    The vibrational frequencies of the N-H stretching modes of aniline after forming a strong doubly H-bonded complex with tetrahydrofuran (THF) are measured with infrared depletion spectroscopy that uses cluster-size-selective resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry. Two strong infrared absorption features observed at 3355 and 3488 cm -1 are assigned to the symmetric and antisymmetric N-H stretching vibrations of the 1:2 aniline-THF complex, respectively. The red-shifts of the N-H stretching vibrations of aniline agree with the ab initio calculated (MP2/6-31G**) aniline-(THF) 2 structure in which both aniline N-H bonds interact with the oxygen atom of THF through two hydrogen bonds. The calculated binding energy is found to be 29.6 kJ mol -1 after corrections for basis set superposition error (BSSE) and zero-point energy. The calculated structure revealed that the angle between the N-H bonds in the NH 2 group increased to 112.5° in the aniline-(THF) 2 complex from that of 109.8° in the aniline. The electronic 0-0 band origin for the S1 ← S0 transition is observed at 32,900 cm -1 in the aniline-(THF) 2 complex, giving a red-shift of 1129 cm -1 from that of the aniline molecule.

  19. Laplace's equation and Faraday's lines of force

    SciTech Connect

    Narasimhan, T.N.

    2007-06-01

    Boundary-value problems involve two dependent variables: a potential function, and a stream function. They can be approached in two mutually independent ways. The first, introduced by Laplace, involves spatial gradients at a point. Inspired by Faraday, Maxwell introduced the other, visualizing the flow domain as a collection of flow tubes and isopotential surfaces. Boundary-value problems intrinsically entail coupled treatment (or, equivalently, optimization) of potential and stream functions Historically, potential theory avoided the cumbersome optimization task through ingenious techniques such as conformal mapping and Green's functions. Laplace's point-based approach, and Maxwell's global approach, each provides its own unique insights into boundary-value problems. Commonly, Laplace's equation is solved either algebraically, or with approximate numerical methods. Maxwell's geometry-based approach opens up novel possibilities of direct optimization, providing an independent logical basis for numerical models, rather than treating them as approximate solvers of the differential equation. Whereas points, gradients, and Darcy's law are central to posing problems on the basis of Laplace's approach, flow tubes, potential differences, and the mathematical form of Ohm's law are central to posing them in natural coordinates oriented along flow paths. Besides being of philosophical interest, optimization algorithms can provide advantages that complement the power of classical numerical models. In the spirit of Maxwell, who eloquently spoke for a balance between abstract mathematical symbolism and observable attributes of concrete objects, this paper is an examination of the central ideas of the two approaches, and a reflection on how Maxwell's integral visualization may be practically put to use in a world of digital computers.

  20. Distinguishing Population and Coherence Transfer Pathways in a Metal Dicarbonyl Complex Using Pulse-Shaped Two-Dimensional Infrared Spectroscopy.

    PubMed

    Marroux, Hugo J B; Orr-Ewing, Andrew J

    2016-05-01

    Collection of two-dimensional infrared (2DIR) spectra using two ultrafast, broadband infrared pump pulses followed by an ultrafast probe pulse optimizes the experimental time and frequency resolution, but can also introduce quantum beat and coherence transfer pathways. The associated coherent dynamics create intensity oscillations and add extra features to 2DIR spectra. We describe a method to suppress these pathways using pump-pulse shaping, without significantly degrading the time and spectral resolution. We illustrate the method for a rhodium dicarbonyl complex, acetylacetonato dicarbonyl rhodium (RDC), to establish the relative importance of coherence and population transfer between carbonyl symmetric and asymmetric stretching modes. Our technique effectively suppresses the quantum beats. Comparison of peak intensities obtained with shaped and unshaped pump pulses demonstrates that coherence transfer does not play a significant role in the 2DIR spectrum of RDC in this spectral region. PMID:27070852

  1. Faraday instability in a near-critical fluid under weightlessness.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions. PMID:24580335

  2. Characterization of magnetic field profiles at RFX-mod by Faraday rotation measurements

    NASA Astrophysics Data System (ADS)

    Auriemma, Fulvio; Brombin, Matteo; Canton, Alessandra; Giudicotti, Leonardo; Innocente, Paolo; Zilli, Enrico

    2009-11-01

    A multichannel far-infrared (FIR, λ=118.8 μm) polarimeter has been recently upgraded and re-installed on RFX-mod to measure the Faraday rotation angle along five vertical chords. Polarimetric data, associated with electron density profile, allow the reconstruction of the poloidal magnetic field profile. In this work the setup of the diagnostic is presented and the first Faraday rotation measurements are analyzed. The measurements have been performed at plasma current above 1.2 MA and electron density between 2 and 6x10^19 m-3. The actual S/N ratio is slightly lower than the expected one, due to electromagnetic coupling of the detectors with the saddle coils close to the polarimeter position. Due to this limit, only average information in the flat-top phase of the discharge could be so far obtained. The experimental data have been compared with the result of the μ&p equilibrium model [1], showing a good agreement between experiment and model, whereas the main differences are in the external region of the plasma. A different parameterization of the μ=μ0 J.B/B^2 profile has been proposed to enhance the agreement between model and experiment. [0pt] [1] Ortolani and Snack, World Scientific (1993) Singapore

  3. Investigating vibrational relaxation in cyanide-bridged transition metal mixed-valence complexes using two-dimensional infrared and infrared pump-probe spectroscopies

    PubMed Central

    Slenkamp, Karla M.; Lynch, Michael S.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2016-01-01

    Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]− (FeRu) dissolved in D2O or formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4− (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled νCN modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the νCN modes are ∼2 times faster when FeRu is dissolved in D2O versus formamide. They also reveal that the vibrational lifetimes of the νCN modes of FePtFe in D2O are almost four times as long as for FeRu in D2O. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans νCN modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic νCN modes where the spectral diffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent. PMID:27158634

  4. Versatile, high-sensitivity faraday cup array for ion implanters

    DOEpatents

    Musket, Ronald G.; Patterson, Robert G.

    2003-01-01

    An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.

  5. Faraday effect: A field theoretical point of view

    NASA Astrophysics Data System (ADS)

    Ganguly, Avijit K.; Konar, Sushan; Pal, Palash B.

    1999-11-01

    We analyze the structure of the vacuum polarization tensor in the presence of a background electromagnetic field in a medium. We use various discrete symmetries and crossing symmetry to constrain the form factors obtained for the most general case. From these symmetry arguments, we show why the vacuum polarization tensor has to be even in the background field when there is no background medium. Taking then the background field to be purely magnetic, we evaluate the vacuum polarization to linear order in it. The result shows the phenomenon of Faraday rotation, i.e., the rotation of the plane of polarization of a plane polarized light passing through this background. We find that the usual expression for Faraday rotation, which is derived for a non-degenerate plasma in the non-relativistic approximation, undergoes substantial modification if the background is degenerate and/or relativistic. We give explicit expressions for Faraday rotation in completely degenerate and ultra-relativistic media.

  6. Infrared studies on o-, m- and p-cresol-urea (1:1) complexes

    NASA Astrophysics Data System (ADS)

    Dobrowolski, J. Cz.

    1990-03-01

    Complex formation between urea and o-, m- and p-cresol in 1,2-dichloroethane solutions was investigated by i.r. spectroscopy. Analogical 1:1 urea-phenol complex was reevaluated. Those complexes are formed by CO⋯H hydrogen bonding. In solution the NH urea groups do not play any significant role. The i.r. temperature studies allowed us to determine the enthalpy and entropy of formation of 1:1 complex.

  7. Evaluation of ion collection area in Faraday probes

    SciTech Connect

    Brown, Daniel L.; Gallimore, Alec D.

    2010-06-15

    A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.

  8. Evaluation of ion collection area in Faraday probes.

    PubMed

    Brown, Daniel L; Gallimore, Alec D

    2010-06-01

    A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty. PMID:20590238

  9. Complexation of polyacrylates by Ca2+ ions. Time-resolved studies using attenuated total reflectance Fourier transform infrared dialysis spectroscopy.

    PubMed

    Fantinel, Fabiana; Rieger, Jens; Molnar, Ferenc; Hübler, Patrick

    2004-03-30

    The attenuated total reflectance Fourier transform infrared dialysis technique is introduced for the time-resolved investigation of the binding processes of Ca2+ to polyacrylates dissolved in water. We observed transient formation of intermediates in water with various types of coordination of the carboxylate group to Ca2+ throughout the complexation steps. Time-resolved changes in the spectra were analyzed with principal component analysis, from which the spectral species were obtained as well as their formation kinetics. We propose a model for the mechanisms of Ca2+ coordination to polyacrylates. The polymer chain length plays an important role in Ca2+ binding. PMID:15835120

  10. Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities, and complex refractive indices derived from infra-red spectra

    NASA Astrophysics Data System (ADS)

    Khanna, R. K.; Zhao, Guizhi; Ospina, M. J.; Pearl, J. C.

    The infra-red absorption spectra of thin crystalline films of sulfur dioxide at 90 K are reported in the 2700-450 cm -1 region. The observed multiplicity of the bands in the regions of fundamental modes is attributed to crystal field effects, including factor group and LO—TO splittings, and naturally present minor 34S, 36S and 18O substituted isotopic species. Complex refractive indices determined by an iterative Kramers—Kronig analysis of the extinction data, and absolute band strengths derived from them, are also reported in this region.

  11. Generalization of Faraday's Law to include nonconservative spin forces.

    PubMed

    Barnes, S E; Maekawa, S

    2007-06-15

    The usual Faraday's Law E=-dPhi/dt determines an electromotive force E which accounts only for forces resulting from the charge of electrons. In ferromagnetic materials, in general, there exist nonconservative spin forces which also contribute to E. These might be included in Faraday's Law if the magnetic flux Phi is replaced by [Planck's constant/(-e)]gamma, where gamma is a Berry phase suitably averaged over the electron spin direction. These contributions to E represent the requirements of energy conservation in itinerant ferromagnets with time dependent order parameters. PMID:17677979

  12. Fast Faraday fading of long range satellite signals.

    NASA Technical Reports Server (NTRS)

    Heron, M. L.

    1972-01-01

    20 MHz radio signals have been received during the day from satellite Beacon-B when it was below the optical horizon by using a bank of narrow filters to improve the signal to noise ratio. The Faraday fading rate becomes constant, under these conditions, at a level determined by the plasma frequency just below the F-layer peak. Variations in the Faraday fading rate reveal fluctuations in the electron density near the peak, while the rate of attaining the constant level depends on the shape of the electron density profile.

  13. Borogermanate glasses for Faraday isolators at high average power

    NASA Astrophysics Data System (ADS)

    Starobor, A. V.; Zheleznov, D. S.; Palashov, O. V.; Savinkov, V. I.; Sigaev, V. N.

    2016-01-01

    The temperature dependence of Verdet constant and thermo-optical characteristics of a new magneto-optical borogermanate glass has been investigated. The performed analysis confirmed a possibility of developing a Faraday isolator and a cryogenic Faraday isolator based on the studied medium, providing a 25 dB isolation ratio of laser radiation in the "eye-safe" wavelength range (1530-1620 nm) at the power of 0.4 kW and 1.3 kW, respectively, which is a leading-edge result for magneto-optical glasses.

  14. Does a hydrogen bonded complex with dual contacts show synergism? A matrix isolation infrared and ab-initio study of propargyl alcohol-water complex

    NASA Astrophysics Data System (ADS)

    Saini, Jyoti; Viswanathan, K. S.

    2016-08-01

    When hydrogen bonded complexes are formed with more than one contact, the question arises if these multiple contacts operate synergistically. Propargyl alcohol-H2O complex presents a good case study to address this question, which is discussed in this work. Complexes of propargyl alcohol (PA) and H2O were studied experimentally using matrix isolation infrared spectroscopy, which was supported by quantum chemical computations performed at the M06-2X and MP2 level of theories, using 6-311++G (d,p) and aug-cc-pVDZ basis sets. A 1:1 PA-H2O complex was identified in the experiments and corroborated by our computations, where the PA was in the gauche conformation. This complex, which was a global minimum, showed dual interactions, one of which was an n-σ interaction between the O-H group of PA and the O of H2O, while the second was a H···​π contact between the O-H group of H2O and the π system of PA. We explored if the two interactions in the 1:1 complex exhibited synergism. We finally argue that the two interactions showed antagonism rather than synergism. Our computations indicated three other local minima for the 1:1 complexes; though these local minima were not identified in our experiments. Atoms-in-molecules and energy decomposition analysis executed through LMO-EDA were also performed to understand the nature of intermolecular interactions in the PA-H2O complexes. We have also revisited the problem of conformations of PA, with a view to understanding the reasons for gauche conformational preferences in PA.

  15. Research on infrared dim-point target detection and tracking under sea-sky-line complex background

    NASA Astrophysics Data System (ADS)

    Dong, Yu-xing; Li, Yan; Zhang, Hai-bo

    2011-08-01

    Target detection and tracking technology in infrared image is an important part of modern military defense system. Infrared dim-point targets detection and recognition under complex background is a difficulty and important strategic value and challenging research topic. The main objects that carrier-borne infrared vigilance system detected are sea-skimming aircrafts and missiles. Due to the characteristics of wide field of view of vigilance system, the target is usually under the sea clutter. Detection and recognition of the target will be taken great difficulties .There are some traditional point target detection algorithms, such as adaptive background prediction detecting method. When background has dispersion-decreasing structure, the traditional target detection algorithms would be more useful. But when the background has large gray gradient, such as sea-sky-line, sea waves etc .The bigger false-alarm rate will be taken in these local area .It could not obtain satisfactory results. Because dim-point target itself does not have obvious geometry or texture feature ,in our opinion , from the perspective of mathematics, the detection of dim-point targets in image is about singular function analysis .And from the perspective image processing analysis , the judgment of isolated singularity in the image is key problem. The foregoing points for dim-point targets detection, its essence is a separation of target and background of different singularity characteristics .The image from infrared sensor usually accompanied by different kinds of noise. These external noises could be caused by the complicated background or from the sensor itself. The noise might affect target detection and tracking. Therefore, the purpose of the image preprocessing is to reduce the effects from noise, also to raise the SNR of image, and to increase the contrast of target and background. According to the low sea-skimming infrared flying small target characteristics , the median filter is used to

  16. All-Fiber Optical Faraday Mirror Using 56-wt%-Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-22

    An all-fiber optical Faraday mirror that consists of a fiber Faraday rotator and a fiber Bragg grating is demonstrated. The fiber Faraday rotator uses a 21-cm-long section of 56-wt%-terbium-doped silicate fiber. The polarization state of the reflected light is rotated 89 degrees +/- 2 degrees with a 16-dB polarization extinction ratio.

  17. Far-infrared Hall Effect in YBCO films

    NASA Astrophysics Data System (ADS)

    Grayson, M.; Rigal, L.; Cerne, J.; Schmadel, D. C.; Drew, H. D.; Kung, P.-J.

    2001-03-01

    In order to gain insight into the so-called "anomalous Hall effect" in Hi Tc superconductors(T.R. Chien, D.A. Brawner, Z.Z. Wang, and N.P. Ong, PRB 43, 6242(1991).) we explore Hall measurements at far-infrared (FIR) frequencies and study the temperature dependence. We separately measure the real and imaginary parts of the magneto-optical response of YBCO thin films to polarized FIR light (15-250 cm-1). The induced rotation of linearly polarized light tells us the real part of the Faraday angle, Re[θ_F(ω)], and the induced dichroism of circularly polarized light tells us Im[θ_F(ω)]. We can then deduce the complex Hall angle without resorting to Kramers-Kronig (K-K) analysis. Since both the Hall angle and the Faraday angle obey sum rules, we can compare to higher frequencies(Cerne, et al., invited talk) and determine additional information about the spectral response at intermediate frequencies. The consistency of these results is verified with K-K analysis.

  18. Infrared spectroscopic study of copper(II) complexes with N-substituted tetrazoles1

    NASA Astrophysics Data System (ADS)

    Degtyarik, M. M.; Gaponik, P. N.; Naumenko, V. N.; Lesnikovich, A. I.; Nikanovich, M. V.

    The i.r. spectra (4000-200 cm -1) of N-alkyltetrazoles and their complexes with copper(II) salts CuCl 2 and Cu(NCS) 2 have been measured. Spectral criteria in the middle and far regions for the identification of tetrazole isomers and their complexes are proposed. The site of the coordination in a tetrazole molecule and supposed structure of complexes are being discussed.

  19. Zn(2+) and Cd(2+) cationized serine complexes: infrared multiple photon dissociation spectroscopy and density functional theory investigations.

    PubMed

    Coates, Rebecca A; Boles, Georgia C; McNary, Christopher P; Berden, Giel; Oomens, Jos; Armentrout, P B

    2016-08-10

    The gas-phase structures of zinc and cadmium dications bound to serine (Ser) are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy using the free electron laser FELIX, in combination with ab initio calculations. To identify the structures of the experimentally observed species, [Zn(Ser-H)CH3CN](+) and CdCl(+)(Ser), the measured action spectra are compared to linear absorption spectra calculated at the B3LYP/6-311+G(d,p) level for Zn(2+) containing complexes and B3LYP/def2-TZVP levels for Cd(2+) containing complexes. Good agreement between the observed IRMPD spectra and the predicted spectra allows identification of the isomers present. The intact amino acid interacting with cadmium chloride adopts a tridentate chelation involving the amino acid backbone amine and carbonyl groups as well as the hydroxyl group of the side-chain, [N,CO,OH]. The presence of two low-energy conformers is observed for the deprotonated serine-zinc complex, with the same tridentate coordination as for the cadmium complex but proton loss occurs at both the hydroxyl side-chain, [N,CO,O(-)], and the carboxylic acid of the amino acid backbone, [N,CO(-),OH]. These results are profitably compared with the analogous results previously obtained for comparable complexes with cysteine. PMID:27465924

  20. Complexation dynamics of CH3SCN and Li(+) in acetonitrile studied by two-dimensional infrared spectroscopy.

    PubMed

    Kwon, YoungAh; Park, Sungnam

    2015-10-01

    Ion-molecule complexation dynamics were studied with CH3SCN and Li(+) in acetonitrile by vibrationally probing the nitrile stretching vibration of CH3SCN. The nitrile stretching vibration of CH3SCN has a long lifetime (T1 = ∼90 ps) and its frequency is significantly blue-shifted when CH3SCN is bound with Li(+) ions to form a CH3SCNLi(+) complex in acetonitrile. Such spectral properties enable us to distinguish free CH3SCN and the CH3SCNLi(+) complex in solutions and measure their dynamics occurring on hundred picosecond timescales. For the complexation between CH3SCN and Li(+) in acetonitrile, the change in enthalpy (ΔH = -7.17 kJ mol(-1)) and the change in entropy (ΔS = -34.4 J K(-1) mol(-1)) were determined by temperature-dependent FTIR experiments. Polarization-controlled infrared pump-probe (IR PP) spectroscopy was used to measure the population decay and orientational dynamics of free CH3SCN and the CH3SCNLi(+) complex. Especially, the orientational relaxation of the CH3SCNLi(+) complex was found to be almost 3 times slower than those of free CH3SCN because Li(+) ions strongly interact with the neighboring solvents. Most importantly, the complexation dynamics of CH3SCN and Li(+) in acetonitrile were successfully measured in real time by 2DIR spectroscopy for the first time and the dissociation and association time constants were directly determined by using the two-species exchange kinetic model. Our experimental results provide a comprehensive overview of the ion-molecule complexation dynamics in solutions occurring under thermal equilibrium conditions. PMID:26323322

  1. Collision-Induced Infrared Absorption by Collisional Complexes in Dense Hydrogen-Helium Gas Mixtures at Thousands of Kelvin

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2011-06-01

    The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, "Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin", International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, "Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin," J. Phys. Chem. A, published online, DOI: 10.1021/jp109441f L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010

  2. Infrared Spectroscopic Analysis of Linkage Isomerism in Metal-Thiocyanate Complexes

    ERIC Educational Resources Information Center

    Baer, Carl; Pike, Jay

    2010-01-01

    We developed an experiment suitable for an advanced inorganic chemistry laboratory that utilizes a cooperative learning environment, which allows students to develop an empirical method of determining the bonding mode of a series of unknown metal-thiocyanate complexes. Students synthesize the metal-thiocyanate complexes and obtain the FT-IR…

  3. Faraday rotation density measurements of optically thick alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Vliegen, E.; Kadlecek, S.; Anderson, L. W.; Walker, T. G.; Erickson, C. J.; Happer, William

    2001-03-01

    We investigate the measurement of alkali number densities using the Faraday rotation of linearly polarized light. We find that the alkali number density may be reliably extracted even in regimes of very high buffer gas pressure, and very high alkali number density. We have directly verified our results in potassium using absorption spectroscopy on the second resonance (4 2S→5 2P).

  4. Exact Faraday rotation in the cylindrical Einstein-Maxwell waves

    SciTech Connect

    Arafah, M.R.; Fakioglu, S.; Halilsoy, M. )

    1990-07-15

    We obtain the exact behavior of the cross-polarized cylindrical Einstein-Maxwell waves that generalizes the well-known Einstein-Rosen waves. In the presence of the second mode of polarization the outgoing waves interact with the incoming ones to exhibit an analogous effect of the Faraday rotation.

  5. Professor Henry, Mr. Faraday, and the Hunt for Electromagnetic Induction

    NASA Astrophysics Data System (ADS)

    Moyer, Albert E.

    1997-04-01

    On different sides of the Atlantic but about the same time, Michael Faraday and Joseph Henry announced success in a quest that had preoccupied the scientific community for a decade: coaxing electricity from magnetism. "Mutual induction," what Faraday and Henry had identified in the early 1830s, would turn out to be not only a foundational concept in the physics of electricity and magnetism but also the principle behind the technology of electrical transformers and generators--two mainstays of industrialization. Although Faraday's breakthrough in London and Henry's in Albany might appear to be classic examples of "independent discovery," they were not. The two natural philosophers shared a similar orientation toward their research and, moreover, a distinctive laboratory instrument: Henry's new, powerful electromagnet. Thus, the story of Henry's and Faraday's search for induction illuminates not only the workings of Victorian science but also the crucial part that an instrument--the unadorned hardware--can play in scientific inquiry. Albert Moyer takes this story from his biography of Joseph Henry that Smithsonian Institution Press is about to publish in commemoration of the 200th anniversary of Henry's birth. The biography focuses on Henry's early and middle years, 1797-1847, from his emergence as America's foremost physical scientist to his election as the Smithsonian Institution's first director.

  6. Michael Faraday: Prince of lecturers in Victorian England

    NASA Astrophysics Data System (ADS)

    Lan, Boon Leong; Lim, Jeanette B. S.

    2001-01-01

    In this note, we focus on Faraday as a lecturer/teacher. We trace his development as a lecturer/teacher and highlight his approaches in popular-science lecturing and in teaching chemistry to military cadets. We appraise his success and conclude with an account of his poignant last lecture.

  7. Faraday's Investigation of Electromagnetic Induction. Experiment No. 21.

    ERIC Educational Resources Information Center

    Devons, Samuel

    This paper focuses on Michael Faraday's experimental research in electricity in the 1830's. Historical notes related to his work are included as well as experiments, his objectives, and illustrations of equipment for the experiments. Examples from his diary are given so that students can attempt to emulate his honest and systematic manner of…

  8. Faraday, Dickens and Science Education in Victorian Britain

    ERIC Educational Resources Information Center

    Melville, Wayne; Allingham, Philip V.

    2011-01-01

    The achievements of Michael Faraday in the fields of electricity and electrochemistry have led some to describe him as the greatest experimental scientist in history. Charles Dickens was the creative genius behind some of the most memorable characters in literature. In this article, we share an historical account of how the collaboration of these…

  9. Interferometer using a 3 × 3 coupler and Faraday mirrors

    NASA Astrophysics Data System (ADS)

    Breguet, J.; Gisin, N.

    1995-06-01

    A new interferometric setup using a 3 \\times 3 coupler and two Faraday mirrors is presented. It has the advantages of being built only with passive components, of freedom from the polarization fading problem, and of operation with a LED. It is well suited for sensing time-dependent signals and does not depend on reciprocal or nonreciprocal constant perturbations.

  10. Interferometer using a 3 x 3 coupler and Faraday mirrors.

    PubMed

    Breguet, J; Gisin, N

    1995-06-15

    A new interferometric setup using a 3 x 3 coupler and two Faraday mirrors is presented. It has the advantages of being built only with passive components, of freedom from the polarization fading problem, and of operation with a LED. It is well suited for sensing time-dependent signals and does not depend on reciprocal or nonreciprocal constant perturbations. PMID:19862044

  11. Concluding remarks: Faraday Discussion on chemistry in the urban atmosphere.

    PubMed

    Jimenez, Jose L

    2016-07-18

    This article summarises the Concluding remarks from the Faraday Discussion on Chemistry in the Urban Atmosphere. The following themes are addressed: (a) new results that inform our understanding of the evolving sources and composition of the urban atmosphere ("News"); (b) results that identify gaps in our understanding that necessitate further work ("Gaps"); PMID:27363779

  12. Faraday signature of magnetic helicity from reduced depolarization

    SciTech Connect

    Brandenburg, Axel; Stepanov, Rodion

    2014-05-10

    Using one-dimensional models, we show that a helical magnetic field with an appropriate sign of helicity can compensate the Faraday depolarization resulting from the superposition of Faraday-rotated polarization planes from a spatially extended source. For radio emission from a helical magnetic field, the polarization as a function of the square of the wavelength becomes asymmetric with respect to zero. Mathematically speaking, the resulting emission occurs then either at observable or at unobservable (imaginary) wavelengths. We demonstrate that rotation measure (RM) synthesis allows for the reconstruction of the underlying Faraday dispersion function in the former case, but not in the latter. The presence of positive magnetic helicity can thus be detected by observing positive RM in highly polarized regions in the sky and negative RM in weakly polarized regions. Conversely, negative magnetic helicity can be detected by observing negative RM in highly polarized regions and positive RM in weakly polarized regions. The simultaneous presence of two magnetic constituents with opposite signs of helicity is shown to possess signatures that can be quantified through polarization peaks at specific wavelengths and the gradient of the phase of the Faraday dispersion function. Similar polarization peaks can tentatively also be identified for the bi-helical magnetic fields that are generated self-consistently by a dynamo from helically forced turbulence, even though the magnetic energy spectrum is then continuous. Finally, we discuss the possibility of detecting magnetic fields with helical and non-helical properties in external galaxies using the Square Kilometre Array.

  13. Possibility of observing dark matter via the gyromagnetic Faraday effect.

    PubMed

    Gardner, Susan

    2008-02-01

    If dark matter consists of cold, neutral particles with a nonzero magnetic moment, then, in the presence of an external magnetic field, a measurable gyromagnetic Faraday effect becomes possible. This enables direct constraints on the nature and distribution of such dark matter through detailed measurements of the polarization and temperature of the cosmic-microwave background radiation. PMID:18352256

  14. The infrared spectrum of the Ne-C2D2 complex.

    PubMed

    Moazzen-Ahmadi, N; McKellar, A R W; Fernández, Berta; Farrelly, David

    2015-11-28

    Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm(-1)) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes. PMID:26627959

  15. The infrared spectrum of the Ne-C2D2 complex

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, N.; McKellar, A. R. W.; Fernández, Berta; Farrelly, David

    2015-11-01

    Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm-1) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes.

  16. The H2O-CH3F Complex: a Combined Microwave and Infrared Spectroscopic Study Supported by Structure Calculations

    NASA Astrophysics Data System (ADS)

    Gnanasekar, Sharon Priya; Goubet, Manuel; Arunan, Elangannan; Georges, Robert; Soulard, Pascale; Asselin, Pierre; Huet, T. R.; Pirali, Olivier

    2015-06-01

    The H2O-CH3F complex could have two geometries, one with a hydrogen bond and one with the newly proposed carbon bond. While in general carbon bonds are weaker than hydrogen bonds, this complex appears to have comparable energies for the two structures. Infrared (IR) and microwave (MW) spectroscopic measurements using, respectively, the Jet-AILES apparatus and the FTMW spectrometer at the PhLAM laboratory, have been carried out to determine the structure of this complex. The IR spectrum shows the formation of the CH3F- H2O hydrogen bonded complex and small red-shifts in OH frequency most probably due to (CH3F)m-(H2O)n clusters. Noticeably, addition of CH_3F in the mixture promotes the formation of small water clusters. Preliminary MW spectroscopic measurements indicate the formation of the hydrogen bonded complex. So far, we have no experimental evidence for the carbon bonded structure. However, calculations of the Ar-CH3F complex show three energetically equivalent structures: a T-shape, a "fluorine" bond and a carbon bond. The MW spectrum of the (Ar)n-CH3F complexes is currently under analysis. Mani, D; Arunan, E. Phys. Chem. Chem. Phys. 2013, 15, 14377. Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebene, B; Alikhani, M. E; Georges, R; Moudens, A; Goubet, M; Huet, T.R; Pirali, O; Roy, P. J. Phys. Chem. A. 2011, 115, 2523 Kassi, S; Petitprez, D; Wlodarczak, G. J. Mol. Struct. 2000, 517-518, 375

  17. Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Glutamine Complexes with Zn(2+) and Cd(2.).

    PubMed

    Boles, Georgia C; Coates, Rebecca A; Berden, Giel; Oomens, Jos; Armentrout, P B

    2015-09-01

    Complexes of glutamine (Gln) cationized with Zn(2+) and Cd(2+) were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy using light generated from a free-electron laser. Electrospray ionization yielded complexes of deprotonated Gln with Zn(2+), [Zn(Gln-H)](+), and intact Gln with CdCl(+), CdCl(+)(Gln). For each complex, the spectra obtained were compared with those for low-energy conformers found using quantum chemical calculations to identify the structures present experimentally. Calculations were performed at the B3LYP/6-311+G(d,p) level for [Zn(Gln-H)](+) and at the B3LYP/def2-TZVP level with an SDD effective core potential on cadmium for CdCl(+)(Gln). The main binding motif observed for the Cd(2+) complex was a charge-solvated, tridentate [N,CO,COsc] structure in which the metal binds to the backbone amino group and the carbonyl oxygens of the carboxylic acid and side-chain amide groups. The Zn(2+) system similarly preferred a [N,CO(-),COsc] binding motif, where binding was observed at the carboxylate site along with the backbone amino and side-chain carbonyl groups. In both cases, the theoretically determined lowest-energy conformers explain the experimental [Zn(Gln-H)](+) and CdCl(+)(Gln) spectra well. PMID:26280573

  18. Integrating seasonal optical and thermal infrared spectra to characterize urban impervious surfaces with extreme spectral complexity: a Shanghai case study

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yao, Xinfeng; Ji, Minhe

    2016-01-01

    Despite recent rapid advancement in remote sensing technology, accurate mapping of the urban landscape in China still faces a great challenge due to unusually high spectral complexity in many big cities. Much of this complication comes from severe spectral confusion of impervious surfaces with polluted water bodies and bright bare soils. This paper proposes a two-step land cover decomposition method, which combines optical and thermal spectra from different seasons to cope with the issue of urban spectral complexity. First, a linear spectral mixture analysis was employed to generate fraction images for three preliminary endmembers (high albedo, low albedo, and vegetation). Seasonal change analysis on land surface temperature induced from thermal infrared spectra and coarse component fractions obtained from the first step was then used to reduce the confusion between impervious surfaces and nonimpervious materials. This method was tested with two-date Landsat multispectral data in Shanghai, one of China's megacities. The results showed that the method was capable of consistently estimating impervious surfaces in highly complex urban environments with an accuracy of R2 greater than 0.70 and both root mean square error and mean average error less than 0.20 for all test sites. This strategy seemed very promising for landscape mapping of complex urban areas.

  19. The research on infrared small-target detection technology under complex background

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xin; Chen, Jilu; Huang, Zhijian

    2011-06-01

    In this paper, some basic principles and the implementing flow charts of a series of algorithms for target detecting are described. Then, according to actual needs and the comparison results of those algorithms, some of them are optimized in combination with the image pre-processing. On the foundation of above works, a moving target detecting and tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of detecting algorithms are integrated in this software. These three detecting algorithms are Frame Difference method, Background Estimation method and Mixture Gaussian Modeling method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for detecting targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target detecting technology.

  20. Research on infrared small-target tracking technology under complex background

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xin; Chen, Jilu; Pan, Tao

    2012-10-01

    In this paper, some basic principles and the implementing flow charts of a series of algorithms for target tracking are described. On the foundation of above works, a moving target tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of tracking algorithms are integrated in this software. These two tracking algorithms are Kalman Filter tracking method and Camshift tracking method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target tracking technology.

  1. A Study of Broadband Faraday Rotation and Polarization Behavior over 1.3--10 GHz in 36 Discrete Radio Sources

    NASA Astrophysics Data System (ADS)

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.

    2016-07-01

    We present a broadband polarization analysis of 36 discrete polarized radio sources over a very broad, densely sampled frequency band. Our sample was selected on the basis of polarization behavior apparent in narrowband archival data at 1.4 GHz: half the sample shows complicated frequency-dependent polarization behavior (i.e., Faraday complexity) at these frequencies, while half shows comparatively simple behavior (i.e., they appear Faraday simple). We re-observed the sample using the Australia Telescope Compact Array in full polarization, with 6 GHz of densely sampled frequency coverage spanning 1.3–10 GHz. We have devised a general polarization modeling technique that allows us to identify multiple polarized emission components in a source, and to characterize their properties. We detect Faraday complex behavior in almost every source in our sample. Several sources exhibit particularly remarkable polarization behavior. By comparing our new and archival data, we have identified temporal variability in the broadband integrated polarization spectra of some sources. In a number of cases, the characteristics of the polarized emission components, including the range of Faraday depths over which they emit, their temporal variability, spectral index, and the linear extent of the source, allow us to argue that the spectropolarimetric data encode information about the magneto-ionic environment of active galactic nuclei themselves. Furthermore, the data place direct constraints on the geometry and magneto-ionic structure of this material. We discuss the consequences of restricted frequency bands on the detection and interpretation of polarization structures, and the implications for upcoming spectropolarimetric surveys.

  2. Infrared and electron spin resonance spectral studies of some copper purine and pyrimidine complexes.

    PubMed

    Masoud, Mamdouh S; Abd El-Kaway, Marwa Y

    2013-02-01

    Copper guanine and barbital complexes were prepared and characterized by elemental analyses and spectral measurements. The data typified the formation of stoichiometries 1:1 (M:L) with possible Cu-Cu interaction "association". The complexes are with different geometries: square planar, square pyramidal and tetrahedral. The mode of bonding was identified by IR spectra. EPR spectra of the powdered complexes were recorded at X band at the room temperature. Different ESR parameters were calculated and discussed: g(//), g(⊥), A(//), [g], G, F, K, α(2). Molecular modeling techniques and quantum chemical methods have been performed for copper complexes to correlate the chemical structures of the complexes with their physical molecular properties. Bond lengths, bond orders, bond angles, dihedral angles, close contact, dipole moment (μ), sum of the total negative charge (STNC), electronegativity (χ), chemical potential (Pi), global hardness (η), softness (σ), the highest occupied molecular orbital energy (E(HOMO)), the lowest unoccupied molecular orbital energy (E(LUMO)) and the energy gap (ΔE) were calculated using PM3 semi-empirical and Molecular Mechanics (MM+) methods. The study displays a good correlation between the theoretical and experimental data which confirms the reliability of the quantum chemical methods. PMID:23220533

  3. Infrared multiple-photon dissociation spectroscopy of tripositive ions: lanthanum-tryptophan complexes.

    PubMed

    Verkerk, Udo H; Zhao, Junfang; Saminathan, Irine S; Lau, Justin Kai-Chi; Oomens, Jos; Hopkinson, Alan C; Siu, K W Michael

    2012-04-16

    Collision-induced charge disproportionation limits the stability of triply charged metal ion complexes and has thus far prevented successful acquisition of their gas-phase IR spectra. This has curtailed our understanding of the structures of triply charged metal complexes in the gas phase and in biological environments. Herein we report the first gas-phase IR spectra of triply charged La(III) complexes with a derivative of tryptophan (N-acetyl tryptophan methyl ester), and an unusual dissociation product, a lanthanum amidate. These spectra are compared with those predicted using density functional theory. The best structures are those of the lowest energies that differ by details in the π-interaction between La(3+) and the indole rings. Other binding sites on the tryptophan derivative are the carbonyl oxygens. In the lanthanum amidate, La(3+) replaces an H(+) in the amide bond of the tryptophan derivative. PMID:22455512

  4. Fourier transform infrared characterization of the azido complex of methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath).

    PubMed

    Lu, Shen; Sazinsky, Matthew H; Whittaker, James W; Lippard, Stephen J; Moënne-Loccoz, Pierre

    2005-03-30

    The azido complex formed in oxidized methane monooxygenase from Methylococcus capsulatus (Bath) was investigated with resonance Raman and FTIR techniques. These experiments show the presence of a nuas(NNN) at approximately 2077 cm-1 which splits to two components at 2059 and 2073 cm-1 with 15N14N2. The vibrational data are assigned to an azido complex bound terminally to one iron(III) at the diiron center. When the azido complex is illuminated at 15 K, a new nuas(NNN) is observed at 2136 cm-1 which is assigned to a photodissociated HN3 within the substrate pocket. We propose a model where an aqua ligand engages a hydrogen bond interaction with the 1N atom of the azido group and acts as at a proton donor during the photolysis process. PMID:15783178

  5. Mid-Infrared Spectrum of the Atmospherically Significant N2-H2O Complex

    NASA Astrophysics Data System (ADS)

    Springer, Sean D.; McElmurry, Blake A.; Lucchese, Robert R.; Bevan, John W.; Coudert, L. H.

    2014-06-01

    Rovibrational transitions associated with tunneling states in the vibration of the N2-H2O complex have been recorded using a supersonic jet quantum cascade laser spectrometer at 6.2μm. Analysis of the resulting spectra is facilitated by incorporating fits of previously recorded microwave and submillimeter data accounting for Coriolis coupling to obtain the levels of the ground vibrational state. The results are then used to confirm assignment of the νb{3} vibration and explore the nature of tunneling dynamics in associated vibrationally excited states of the complex.

  6. Portrait of the Polana-Eulalia family complex: Surface homogeneity revealed from near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, Noemí; de León, J.; Walsh, K. J.; Campins, H.; Lorenzi, V.; Delbo, M.; DeMeo, F.; Licandro, J.; Landsman, Z.; Lucas, M. P.; Alí-Lagoa, V.; Burt, B.

    2016-08-01

    The inner asteroid belt is an important source of near-Earth asteroids (NEAs). Dynamical studies of the inner asteroid belt have identified several families overlapping in proper orbital elements, including the Polana and Eulalia families that contain a large fraction of the low-albedo asteroids in this region. We present results from two coordinated observational campaigns to characterize this region through near-infrared (NIR) spectroscopy. These campaigns ran from August 2012 to May 2014 and used the NASA Infrared Telescope Facility and the Telescopio Nazionale Galileo. The observations focused on objects within these families or in the background, with low albedo (pv ≤ 0.1) and low inclination (iP ≤ 7°). We observed 63 asteroids (57 never before observed in the NIR): 61 low-albedo objects and two interlopers, both compatible with S- or E- taxonomical types. We found our sample to be spectrally homogeneous in the NIR. The sample shows a continuum of neutral to moderately-red concave-up spectra, very similar within the uncertainties. Only one object in the sample, asteroid (3429) Chuvaev, has a blue spectrum, with a slope (S‧ = - 1.33 ± 0.21%/1000 Å) significantly different from the average spectrum (S‧ = 0.68 ± 0.68%/1000 Å). This spectral homogeneity is independent of membership in families or the background population. Furthermore, we show that the Eulalia and Polana families cannot be distinguished using NIR data. We also searched for rotational variability on the surface of (495) Eulalia which we do not detect. (495) Eulalia shows a red concave-up spectrum with an average slope S‧ = 0.91 ± 0.60%/1000 Å, very similar to the average slope of our sample. The spectra of two targets of sample-return missions, (101955) Bennu, target of NASA's OSIRIS-Rex and (162173) 1999 JU3 target of the Japanese Space Agency's Hayabusa-2, are very similar to our average spectrum, which would be compatible with an origin in this region of the inner belt.

  7. Infrared irradiation in the collision cell of a hybrid tandem quadrupole/time-of-flight mass spectrometer for declustering and cleaning of nanoelectrosprayed protein complex ions.

    PubMed

    El-Faramawy, Ayman; Guo, Yuzhu; Verkerk, Udo H; Thomson, Bruce A; Siu, K W Michael

    2010-12-01

    Herein we report the performance of a hybrid quadrupole time-of-flight tandem mass spectrometer with an improved designed for coaxial infrared laser introduction for the characterization and dissociation of large protein complex ions and their aggregates formed under nanoelectrospray ionization. The major improvement from the original design (Raspopov, S. A.; El-Faramawy, A.; Thomson, B. A.; Siu, K. W. M. Anal. Chem. 2006, 78, 4572-4577) involves the use of a hollow silica waveguide and physical isolation of the infrared laser. Large model protein complex ions and their aggregates examined include alcohol dehydrogenase, avidin, GroEL, and others. Gentle heating of these complexes with the infrared laser facilitated declustering and resulted in better resolved mass spectral peaks and more accurate molecular-weight measurements. PMID:21062028

  8. FAR-INFRARED SPECTROSCOPY OF THE H{sub 2}-O{sub 2} VAN DER WAALS COMPLEX

    SciTech Connect

    Bunn, Hayley; Bennett, Trystan; Karayilan, Aidan; Raston, Paul L.

    2015-01-20

    We report the far infrared spectrum of H{sub 2}-O{sub 2} at 80 K in the vicinity of the pure rotational bands of H{sub 2}. Sharp peaks were observed, which correspond to end-over-end rotational transitions of the H{sub 2}-O{sub 2} molecular complex, that are superimposed over broad collision induced absorptions. We find that the maximum value of the end-over-end rotational quantum number that is bound is seven, which is two more than supported by a recently reported ab initio H{sub 2}-O{sub 2} potential energy surface. The rotational spectrum reported here should therefore greatly help in refining this surface, which is used to calculate scattering processes relevant to the chemistry occurring in interstellar molecular clouds.

  9. Azadipyrromethene cyclometalation in neutral Ru(II) complexes: photosensitizers with extended near-infrared absorption for solar energy conversion applications.

    PubMed

    Bessette, André; Cibian, Mihaela; Ferreira, Janaina G; DiMarco, Brian N; Bélanger, Francis; Désilets, Denis; Meyer, Gerald J; Hanan, Garry S

    2016-06-28

    In the on-going quest to harvest near-infrared (NIR) photons for energy conversion applications, a novel family of neutral ruthenium(ii) sensitizers has been developed by cyclometalation of an azadipyrromethene chromophore. These rare examples of neutral ruthenium complexes based on polypyridine ligands exhibit an impressive panchromaticity achieved by the cyclometalation strategy, with strong light absorption in the 600-800 nm range that tails beyond 1100 nm in the terpyridine-based adducts. Evaluation of the potential for Dye-Sensitized Solar Cells (DSSC) and Organic Photovoltaic (OPV) applications is made through rationalization of the structure-property relationship by spectroscopic, electrochemical, X-ray structural and computational modelization investigations. Spectroscopic evidence for photo-induced charge injection into the conduction band of TiO2 is also provided. PMID:27264670

  10. Growth dynamics and intracluster reactions in Ni{sup +}(CO{sub 2}){sub n} complexes via infrared spectroscopy

    SciTech Connect

    Walker, N.R.; Walters, R.S.; Grieves, G.A.; Duncan, M.A.

    2004-12-01

    Ni{sup +}(CO{sub 2}){sub n}, Ni{sup +}(CO{sub 2}){sub n}Ar, Ni{sup +}(CO{sub 2}){sub n}Ne, and Ni{sup +}(O{sub 2})(CO{sub 2}){sub n} complexes are generated by laser vaporization in a pulsed supersonic expansion. The complexes are mass-selected in a reflectron time-of-flight mass spectrometer and studied by infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy. Photofragmentation proceeds exclusively through the loss of intact CO{sub 2} molecules from Ni{sup +}(CO{sub 2}){sub n} and Ni{sup +}(O{sub 2})(CO{sub 2}){sub n} complexes, and by elimination of the noble gas atom from Ni{sup +}(CO{sub 2}){sub n}Ar and Ni{sup +}(CO{sub 2}){sub n}Ne. Vibrational resonances are identified and assigned in the region of the asymmetric stretch of CO{sub 2}. Small complexes have resonances that are blueshifted from the asymmetric stretch of free CO{sub 2}, consistent with structures having linear Ni{sup +}-O=C=O configurations. Fragmentation of larger Ni{sup +}(CO{sub 2}){sub n} clusters terminates at the size of n=4, and new vibrational bands assigned to external ligands are observed for n{>=}5. These combined observations indicate that the coordination number for CO{sub 2} molecules around Ni{sup +} is exactly four. Trends in the loss channels and spectra of Ni{sup +}(O{sub 2})(CO{sub 2}){sub n} clusters suggest that each oxygen atom occupies a different coordination site around a four-coordinate metal ion in these complexes. The spectra of larger Ni{sup +}(CO{sub 2}){sub n} clusters provide evidence for an intracluster insertion reaction assisted by solvation, producing a metal oxide-carbonyl species as the reaction product.

  11. Infrared spectroscopy of Mg–CO{sub 2} and Al–CO{sub 2} complexes in helium nanodroplets

    SciTech Connect

    Thomas, Brandon J.; Harruff-Miller, Barbara A.; Bunker, Christopher E.; Lewis, William K.

    2015-05-07

    The catalytic reduction of CO{sub 2} to produce hydrocarbon fuels is a topic that has gained significant attention. Development of efficient catalysts is a key enabler to such approaches, and metal-based catalysts have shown promise towards this goal. The development of a fundamental understanding of the interactions between CO{sub 2} molecules and metal atoms is expected to offer insight into the chemistry that occurs at the active site of such catalysts. In the current study, we utilize helium droplet methods to assemble complexes composed of a CO{sub 2} molecule and a Mg or Al atom. High-resolution infrared (IR) spectroscopy and optically selected mass spectrometry are used to probe the structure and binding of the complexes, and the experimental observations are compared with theoretical results determined from ab initio calculations. In both the Mg–CO{sub 2} and Al–CO{sub 2} systems, two IR bands are obtained: one assigned to a linear isomer and the other assigned to a T-shaped isomer. In the case of the Mg–CO{sub 2} complexes, the vibrational frequencies and rotational constants associated with the two isomers are in good agreement with theoretical values. In the case of the Al–CO{sub 2} complexes, the vibrational frequencies agree with theoretical predictions; however, the bands from both structural isomers exhibit significant homogeneous broadening sufficient to completely obscure the rotational structure of the bands. The broadening is consistent with an upper state lifetime of 2.7 ps for the linear isomer and 1.8 ps for the T-shaped isomer. The short lifetime is tentatively attributed to a prompt photo-induced chemical reaction between the CO{sub 2} molecule and the Al atom comprising the complex.

  12. Seaquake waves: Standing wave dynamics with Faraday excitation and radiative loss

    NASA Astrophysics Data System (ADS)

    Dolven, Eric Thomas

    When a body of deep water is subjected to vertical oscillations with frequency w0 , linear theory predicts that a standing wave field with frequency w=w02 forms on the surface. The wave number k*=w2g is determined by the deep water dispersion relation. These waves are called Faraday waves after Michael Faraday [16] who first documented them in 1831. Since then, much work has been done to try and understand them. However, all the existing results are for high frequency capillary waves subjected to viscous damping. What is observed is a variety of standing wave patterns that may be stabilized for various forcing strengths and viscosities. We analyze a system in which the dominant mechanism for energy dispersal is radiation rather than viscosity. We suggest this as a first approximation to the transient motions associated with earthquakes at sea and find that the results give insight into seaquake dynamics and the complex interactions involved with water wave formation. These assumptions introduce a number of challenges along with introducing interesting dynamics. In particular, phase dynamics arise that lead to remarkable quasi-stationary states that evolve on a slow time scale.

  13. Laser Infrared Desorption Spectroscopy to Detect Complex Organic Molecules on Icy Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Sollit, Luke S.; Beegle, Luther W.

    2008-01-01

    Laser Desorption-Infrared Spectroscopy (LD-IR) uses an IR laser pulse to desorb surface materials while a spectrometer measures the emission spectrum of the desorbed materials (Figure 1). In this example, laser desorption operates by having the incident laser energy absorbed by near surface material (10 microns in depth). This desorption produces a plume that exists in an excited state at elevated temperatures. A natural analog for this phenomenon can be observed when comets approach the sun and become active and individual molecular emission spectra can be observed in the IR [1,2,3,4,5]. When this occurs in comets, the same species that initially emit radiation down to the ground state are free to absorb it, reducing the amount of detectable emission features. The nature of our technique results in absorption not occurring, because the laser pulse could easily be moved away form the initial desorption plume, and still have better spatial resolution then reflectance spectroscopy. In reflectance spectroscopy, trace components have a relatively weak signal when compared to the entire active nature of the surface. With LDIR, the emission spectrum is used to identify and analyze surface materials.

  14. A new potential energy surface and microwave and infrared spectra of the He-OCS complex

    SciTech Connect

    Wang, Zhongquan Zhang, Chunzao; Sun, Chunyan; Feng, Eryin

    2014-11-07

    A new high quality potential energy surface for the He-OCS van der Waals complex was calculated using the CCSD(T) method and avqz+33221 basis set. It is found that the global minimum energy is −51.33 cm{sup −1} at R{sub e} = 6.30a{sub 0} and θ{sub e} = 110.0°, the shallower minimum is located at R = 8.50a{sub 0} and θ = 0° with well depth −32.26 cm{sup −1}. Using the fitted potential energy surface, we have calculated bound energy levels of the He-OCS, He-O{sup 13}CS, He-OC{sup 34}S, and {sup 3}He-OCS complexes. The theoretical results are all in better agreement compared to previous theoretical work.

  15. Molecular Design Guidelines for Large Magnetic Circular Dichroism Intensities in Lanthanide Complexes.

    PubMed

    Kitagawa, Yuichi; Wada, Satoshi; Yanagisawa, Kei; Nakanishi, Takayuki; Fushimi, Koji; Hasegawa, Yasuchika

    2016-03-16

    Magneto optical devices based on the Faraday effects of lanthanide ion have attracted much attention. Recently, large Faraday effects were found in nano-sized multinuclear lanthanide complexes. In this study, the Faraday rotation intensities were estimated for lanthanide nitrates [Ln(III) (NO3 )3 ⋅n H2 O: Ln=Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm) and Eu(III) complexes with β-diketone ligands, using magnetic circular dichroism. Eu ions exhibit the largest Faraday rotation intensity for (7) F0 →(5) D1 transitions, and high-symmetry fields around the Eu ions induce larger Faraday effects. The molecular design for the enhancement of Faraday effects in lanthanide complexes is discussed. PMID:26789658

  16. Spectral-domain low-coherence interferometry for phase-sensitive measurement of Faraday rotation at multiple depths

    PubMed Central

    Yeh, Yi-Jou; Black, Adam J.; Akkin, Taner

    2014-01-01

    We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer which utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multi-surface sample. System sensitivity for the Faraday rotation measurement is 0.86 minutes of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm. PMID:24217734

  17. CRADA Final Report, 2011S003, Faraday Technologies

    SciTech Connect

    Faraday Technologies

    2012-12-12

    This Phase I SBIR program addressed the need for an improved manufacturing process for electropolishing niobium RF superconducting cavities for the International Linear Collider (ILC). The ILC is a proposed particle accelerator that will be used to gain a deeper understanding of the forces of energy and matter by colliding beams of electrons and positrons at nearly the speed of light. The energy required for this to happen will be achieved through the use of advanced superconducting technology, specifically ~16,000 RF superconducting cavities operating at near absolute zero. The RF superconductor cavities will be fabricated from highly pure Nb, which has an extremely low surface resistance at 2 Kelvin when compared to other materials. To take full advantage of the superconducting properties of the Nb cavities, the inner surface must be a) polished to a microscale roughness < 0.1 µm with removal of at least 100 µm of material, and b) cleaned to be free of impurities that would degrade performance of the ILC. State-of-the-art polishing uses either chemical polishing or electropolishing, both of which require hydrofluoric acid to achieve breakdown of the strong passive film on the surface. In this Phase I program, Faraday worked with its collaborators at the Thomas Jefferson National Accelerator Facility (JLab) to demonstrate the feasibility of an electropolishing process for pure niobium, utilizing an environmentally benign alternative to chemical or electrochemical polishing electrolytes containing hydrofluoric acid. Faraday utilized a 31 wt% aqueous sulfuric acid solution (devoid of hydrofluoric acid) in conjunction with the FARADAYICSM Process, which uses pulse/pulse reverse fields for electropolishing, to demonstrate the ability to electropolish niobium to the desired surface finish. The anticipated benefits of the FARADAYICSM Electropolishing process will be a simpler, safer, and less expensive method capable of surface finishing high purity niobium cavities

  18. A New Faraday Screen For Tore Supra ICRH Antenna

    NASA Astrophysics Data System (ADS)

    Vulliez, K.; Colas, L.; Argouarch, A.; Mendes, A.; Hamlyn-Harris, C.; Ekedahl, A.; Patterlini, J. C.

    2009-11-01

    In the framework of the Ion Cyclotron (IC) developments held in Cadarache, the design of a new Faraday Screen (FS) was initiated to replace the aging ones mounted on the 3 Tore Supra (TS) antennas. The new conceptual design proposed is steered by conclusive results of electrical simulation stressing the need to suppress the parallel RF currents flowing on the FS frame to reduce the RF sheaths. Two major modifications are implemented on a TS FS to reduce the j// circulation: apertures on the top and bottom closure walls of the antenna radiating box, and cantilevered FS bars (that is, bars not connected to the vertical central septum). This single connection point also eases the FS rod thermal expansion, resulting in less mechanical stresses. In addition, the cantilevered bar design avoids eddy current loops which reduces electromagnetically induced stresses during disruptions. If successful with plasma operation, this RF structure provides a promising new option to simplify the ITER IC Faraday screen design.

  19. The effect of lipid monolayers on Faraday waves

    NASA Astrophysics Data System (ADS)

    Strickland, Stephen; Bookman, Lake; Shearer, Michael; Daniels, Karen

    2011-11-01

    Surface tension is known to affect the critical driving acceleration for Faraday waves and their spatial wavenumber at onset. We perform experiments in the subharmonic regime, on water whose free surface is contaminated with up to one monolayer of fluorescent NBD-PC lipid. A circular container of water is vibrated vertically at single frequencies ranging from 15 Hz to 70 Hz, and we measure the acceleration and wavenumber at the onset of Faraday waves. We observe that the critical acceleration is larger than predicted by recent models, if the effect of the contaminant is assumed to simply lower the surface tension. Critical wavenumbers are largely unaffected. We examine whether a non-uniform lipid distribution is responsible for these effects. This work is funded by NSF Grant # DMS-0968258.

  20. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  1. Todd, Faraday and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward

    2007-10-01

    The origins of our understanding of brain electricity and electrical discharges in epilepsy can be traced to Robert Bentley Todd (1809-60). Todd was influenced by his contemporary in London, Michael Faraday (1791-1867), who in the 1830 s and 1840 s was laying the foundations of our modern understanding of electromagnetism. Todd's concept of nervous polarity, generated in nerve vesicles and transmitted in nerve fibres (neurons in later terminology), was confirmed a century later by the Nobel Prize-winning work of Hodgkin and Huxley, who demonstrated the ionic basis of neuro-transmission, involving the same ions which had had been discovered by Faraday's mentor, Sir Humphry Davy (1778-1829). PMID:17885273

  2. Complex biopolymeric systems at stalk/epicuticular wax plant interfaces: a near infrared spectroscopy study of the sugarcane example.

    PubMed

    Purcell, Deborah E; O'Shea, Michael G; Kokot, Serge

    2009-08-01

    Naturally occurring macromolecules present at the epicuticular wax/stalk tissue interface of sugarcane were investigated using near infrared spectroscopy (NIRS). Investigations of water, cellulose, and wax-cellulose interrelationships were possible using NIRS methods, where in the past many different techniques have been required. The sugarcane complex interface was used as an example of typical phenomena found at plant leaf/stalk interfaces. This detailed study showed that sugarcane cultivars exhibit spectral differences in the CH(n), water OH, and cellulose OH regions, reflecting the presence of epicuticular wax, epidermis, and ground tissue. Spectrally complex water bands (5276 cm(-1) and 7500-6000 cm(-1)) were investigated via freeze-drying experiments which revealed sequentially a complex band substructure (7500-6000 cm(-1)), a developing weak H-bonding system ( approximately 7301 cm(-1)), and strong H-bonding ( approximately 7062 cm(-1)) assigned to water-cellulose interactions. Principal component analysis techniques clarified complex band trends that developed during the desorption experiment. Bands from wax-free stalk were minimized in the 4327-4080 cm(-1) region (C--H(n) vibrational modes associated with long chain fatty compounds), while bands from the stalk tissue (particularly lignin and moisture) became more pronounced. This work is a comprehensive guide to similar studies by scientists involved in a variety of plant and fiber research fields. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 642-651, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com. PMID:19365839

  3. Synthesis, characterization, and near-infrared luminescent properties of the ternary thulium complex covalently bonded to mesoporous MCM-41

    SciTech Connect

    Feng Jing; Song Shuyan; Xing Yan; Zhang Hongjie Li Zhefeng; Sun Lining; Guo Xianmin; Fan Weiqiang

    2009-03-15

    The crystal structure of a ternary Tm(DBM){sub 3}phen complex (DBM=dibenzoylmethane; phen=1, 10-phenanthroline) and the synthesis of hybrid mesoporous material in which the complex covalently bonded to mesoporous MCM-41 are reported. Crystal data: Tm(DBM){sub 3}phen C{sub 59}H{sub 47}N{sub 2}O{sub 7}Tm, monoclinic, P21/c, a=19.3216(12) A, b=10.6691(7) A, c=23.0165(15) A, {alpha}=90 deg., {beta}=91.6330(10) deg., {gamma}=90 deg., V=4742.8(5) A{sup 3}, Z=4. The properties of the Tm(DBM){sub 3}phen complex and the corresponding hybrid mesoporous material [Tm(DBM){sub 3}phen-MCM-41] have been studied. The results reveal that the Tm(DBM){sub 3}phen complex is successfully covalently bonded to MCM-41. Both Tm(DBM){sub 3}phen complex and Tm(DBM){sub 3}phen-MCM-41 display typical near-infrared (NIR) luminescence upon excitation at the maximum absorption of the ligands, which contributes to the efficient energy transfer from the ligands to the Tm{sup 3+} ion, an antenna effect. The full width at half maximum (FWHM) centered at 1474 nm in the emission spectrum of Tm(DBM){sub 3}phen-MCM-41 is 110 nm, which is the potential candidate of broadening amplification band from C band (1530-1560 nm) to S{sup +} band (1450-1480 nm) in optical area. - Graphical abstract: The crystal structure of Tm(DBM){sub 3}phen complex (DBM=dibenzoylmethane; phen=1, 10-phenanthroline). The complex is successfully covalently bonded to MCM-41 (Tm(DBM){sub 3}phen-MCM-41). After ligand-mediated excitation, the emission spectrum of Tm(DBM){sub 3}phen-MCM-41 shows the bands 802 and 1474 nm. The FWHM of the 1474-nm band for Tm(DBM){sub 3}phen-MCM-41 is 110 nm, such a broad spectrum enables a wide gain bandwidth for optical amplification.

  4. Ion-pair complexes with strong near infrared absorbance: syntheses, crystal structures and spectroscopic properties.

    PubMed

    Pei, Wen-Bo; Wu, Jian-Sheng; Liu, Jian-Lan; Ren, Xiao-Ming; Shen, Lin-Jiang

    2010-01-01

    Three ion-pair complexes, [4-NH(2)-Py](2)[M(mnt)(2)] (4-NH(2)-Py(1+)=4-amino-pyridinium; mnt(2-)=maleonitriledithiolate; M=Pt (1), Pd (2) or Ni (3)), have been synthesized and characterized. In the crystal of 1, the strong H-bonding interaction was found from the protonated N-atom of pyridinium to the CN group of [Pt(mnt)(2)](2-) together with a weak Pt...H interaction between the anion and the cation. The crystals of 2 and 3 are isostructural with very similar lattice parameters and packing structures, which are distinct from the crystal of 1. Two kinds of strong H-bonding interactions are observed in the crystals of 2 and 3 between the CN groups of [M(mnt)(2)](2-) anion and the protonated N-atom of 4-NH(2)-Py(1+) cation as well as the CN groups of [M(mnt)(2)](2-) anion and the amino group of 4-NH(2)-Py(1+) cation. Complex 1 shows an intense near-IR absorbance in acetonitrile and solid state, such an absorption band is probably assigned to IPCT transition as well as a trace amount of [Pt(mnt)(2)](1-) species; complex 3 possesses a weak near-IR absorption band which can be attributed to the mixture of d-d transition in [Ni(mnt)(2)](2-) and IPCT transition as well as a trace amount of [Ni(mnt)(2)](1-) species. PMID:19897406

  5. Sodium and potassium vapor Faraday filters revisited: theory and applications

    SciTech Connect

    Harrell, S. D.; She, C.-Y.; Yuan Tao; Krueger, David A.; Chen, H.; Chen, S. S.; Hu, Z. L.

    2009-04-15

    A complete theory describing the transmission of atomic vapor Faraday filters is developed. The dependence of the filter transmission on atomic density and external magnetic field strength, as well as the frequency dependence of transmission, are explained in physical terms. As examples, applications of the computed results to ongoing research to suppress sky background, thus allowing Na lidar operation under sunlit conditions, and to enable measurement of the density of mesospheric oxygen atoms are briefly discussed.

  6. Toward instructional design principles: Inducing Faraday's law with contrasting cases

    NASA Astrophysics Data System (ADS)

    Kuo, Eric; Wieman, Carl E.

    2016-06-01

    Although physics education research (PER) has improved instructional practices, there are not agreed upon principles for designing effective instructional materials. Here, we illustrate how close comparison of instructional materials could support the development of such principles. Specifically, in discussion sections of a large, introductory physics course, a pair of studies compare two instructional strategies for teaching a physics concept: having students (i) explain a set of contrasting cases or (ii) apply and build on previously learned concepts. We compare these strategies for the teaching of Faraday's law, showing that explaining a set of related contrasting cases not only improves student performance on Faraday's law questions over building on a previously learned concept (i.e., Lorentz force), but also prepares students to better learn subsequent topics, such as Lenz's law. These differences persist to the final exam. We argue that early exposure to contrasting cases better focuses student attention on a key feature related to both concepts: change in magnetic flux. Importantly, the benefits of contrasting cases for both learning and enjoyment are enhanced for students who did not first attend a Faraday's law lecture, consistent with previous research suggesting that being told a solution can circumvent the benefits of its discovery. These studies illustrate an experimental approach for understanding how the structure of activities affects learning and performance outcomes, a first step toward design principles for effective instructional materials.

  7. Model of fractionalization of Faraday lines in compact electrodynamics

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott D.; Motrunich, Olexei I.

    2014-12-01

    Motivated by ideas of fractionalization and intrinsic topological order in bosonic models with short-range interactions, we consider similar phenomena in formal lattice gauge theory models. Specifically, we show that a compact quantum electrodynamics (CQED) can have, besides the familiar Coulomb and confined phases, additional unusual confined phases where excitations are quantum lines carrying fractions of the elementary unit of electric field strength. We construct a model that has N -tupled monopole condensation and realizes 1 /N fractionalization of the quantum Faraday lines. This phase has another excitation which is a ZN quantum surface in spatial dimensions five and higher, but can be viewed as a quantum line or a quantum particle in four or three spatial dimensions, respectively. These excitations have statistical interactions with the fractionalized Faraday lines; for example, in three spatial dimensions, the particle excitation picks up a Berry phase of ei 2 π /N when going around the fractionalized Faraday line excitation. We demonstrate the existence of this phase by Monte Carlo simulations in (3+1) space-time dimensions.

  8. Torsion, magnetic monopoles and Faraday's law via a variational principle

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2015-05-01

    Even though Faraday's Law is a dynamical law that describes how changing E and B fields influence each other, by introducing a vector potential Aμ according to Fμν = ∂νAν - ∂νAμ Faraday's Law is satisfied kinematically, with the relation (-g)-1/2ɛμνστ ∇νFστ = 0 holding on every path in a variational procedure or path integral. In a space with torsion Qαβγ the axial vector Sμ = (-g)1/2ɛμαβγQαβγ serves as a chiral analog of Aμ, and via variation with respect to Sμ one can derive Faraday's Law dynamically as a stationarity condition. With Sμ serving as an axial potential one is able to introduce magnetic monopoles without Sμ needing to be singular or have a non-trivial topology. Our analysis permits torsion and magnetic monopoles to be intrinsically Grassmann, which could explain why they have never been detected. Our procedure permits us to both construct a Weyl geometry in which Aμ is metricated and then convert it into a standard Riemannian geometry.

  9. Development and first experimental tests of Faraday cup array.

    PubMed

    Prokůpek, J; Kaufman, J; Margarone, D; Krůs, M; Velyhan, A; Krása, J; Burris-Mog, T; Busold, S; Deppert, O; Cowan, T E; Korn, G

    2014-01-01

    A new type of Faraday cup, capable of detecting high energy charged particles produced in a high intensity laser-matter interaction environment, has recently been developed and demonstrated as a real-time detector based on the time-of-flight technique. An array of these Faraday cups was designed and constructed to cover different observation angles with respect to the target normal direction. Thus, it allows reconstruction of the spatial distribution of ion current density in the subcritical plasma region and the ability to visualise its time evolution through time-of-flight measurements, which cannot be achieved with standard laser optical interferometry. This is a unique method for two-dimensional visualisation of ion currents from laser-generated plasmas. A technical description of the new type of Faraday cup is introduced along with an ad hoc data analysis procedure. Experimental results obtained during campaigns at the Petawatt High-Energy Laser for Heavy Ion Experiments (GSI, Darmstadt) and at the Prague Asterix Laser System (AS CR) are presented. Advantages and limitations of the used diagnostic system are discussed. PMID:24517754

  10. Faraday rotation data analysis with least-squares elliptical fitting

    NASA Astrophysics Data System (ADS)

    White, Adam D.; McHale, G. Brent; Goerz, David A.; Speer, Ron D.

    2010-10-01

    A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the method is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.

  11. Todd, Faraday, and the electrical basis of brain activity.

    PubMed

    Reynolds, Edward H

    2004-09-01

    Robert Bentley Todd (1809-60) was the UK's first eminent neurologist and neuroscientist. An anatomist, physiologist, and clinical scientist with an interest in the nervous system, he was the first to confirm the electrical basis of brain activity in the 1840s. He was influenced by his contemporary, Michael Faraday at the Royal Institution, and by two colleagues at King's College, John Daniell and Charles Wheatstone, who were also working at the cutting edge of electrical science. Todd conceived of nervous polarity (force) generated in nervous centres and compared this with the polar force of voltaic electricity developed in the galvanic battery. He brilliantly foresaw each nerve vesicle (cell) and its related fibres (ie, neuron) as a distinct apparatus for the development and transmission of nervous polarity. Epilepsy was the result of periodic unnatural development of nervous force leading to the "disruptive discharge" described by Faraday. Faraday, who studied animal electricity in the Gymnotus (electric eel), and Todd saw nervous polarity as a higher form of interchangeable energy. PMID:15324724

  12. Infrared Laser Stark Spectroscopy of the OH\\cdot\\cdot\\cdotCH3OH Complex Isolated in Superfluid Helium Droplets

    NASA Astrophysics Data System (ADS)

    Leavitt, Christopher M.; Brice, Joseph T.; Douberly, Gary E.; Hernandez, Federico J.; Pino, Gustavo A.

    2015-06-01

    The elimination of volatile organic compounds (VOCs) from the atmosphere is initiated by reactions with OH, NO3 and O3. For oxygenated VOCs, such as alcohols, ketones, ethers, etc., reactions occur nearly exclusively with the hydroxyl radical. Furthermore, the potential energy surfaces associated with reactions between OH and oxygenated VOCs generally feature a pre-reactive complex, stabilized by hydrogen bonding, which results in rate constants that exhibit large negative temperature dependencies. This was explicitly demonstrated recently for the OH + methanol (MeOH) reaction, where the rate constant increased by nearly two orders of magnitude when the temperature decreased from 200 K to below 70 K, highlighting the potential impact of this reaction in the interstellar medium (ISM). In this study, we trap this postulated pre-reactive complex formed between OH and MeOH using He nanodroplet isolation (HENDI) techniques, and probe this species using a combination of mass spectrometry and infrared laser Stark spectroscopy. Atkinson, R.; Arey, J., Chem. Rev. 2003, 103, 4605-4638. Mellouki, A.; Le Bras, G.; Sidebottom, H., Chem. Rev. 2003, 103, 5077-5096. Smith, I. W. M.; Ravishankara, A. R., J. Phys. Chem. A 2002, 106, 4798-4807 Shannon, R. J.; Blitz, M. A.; Goddard, A.; Heard, D. E., Nat. Chem. 2013, 5, 745-749. Martin, J. C. G.; Caravan, R. L.; Blitz, M. A.; Heard, D. E.; Plane, J. M. C., J. Phys. Chem. A 2014, 118, 2693-2701.

  13. Infrared spectrum of the Ag(+)-(pyridine)2 ionic complex: probing interactions in artificial metal-mediated base pairing.

    PubMed

    Chakraborty, Shamik; Dopfer, Otto

    2011-07-11

    The isolated pyridine-Ag(+)-pyridine unit (Py-Ag(+)-Py) is employed as a model system to characterize the recently observed Ag(+)-mediated base pairing in DNA oligonucleotides at the molecular level. The structure and infrared (IR) spectrum of the Ag(+)-Py(2) cationic complex are investigated in the gas phase by IR multiple-photon dissociation (IRMPD) spectroscopy and quantum chemical calculations to determine the preferred metal-ion binding site and other salient properties of the potential-energy surface. The IRMPD spectrum has been obtained in the 840-1720 cm(-1) fingerprint region by coupling the IR free electron laser at the Centre Laser Infrarouge d'Orsay (CLIO) with a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an electrospray ionization source. The spectroscopic results are interpreted with quantum chemical calculations conducted at the B3LYP/aug-cc-pVDZ level. The analysis of the IRMPD spectrum is consistent with a σ complex, in which the Ag(+) ion binds to the nitrogen lone pairs of the two Py ligands in a linear configuration. The binding motif of Py-Ag(+)-Py in the gas phase is the same as that observed in Ag(+)-mediated base pairing in solution. Ag(+) bonding to the π-electron system of the aromatic ring is predicted to be a substantially less-favorable binding motif. PMID:21442717

  14. High-resolution far-infrared observations of the extended W51 complex

    NASA Technical Reports Server (NTRS)

    Rengarajan, T. N.; Cheung, L. H.; Fazio, G. G.; Shivanandan, K.; Mcbreen, B.

    1984-01-01

    A far-IR map with 1 arcmin resolution was obtained of the W51 H II region molecular cloud complex. The 40-120 microns survey was performed to study embedded sources which excite the H II gas. The far-IR emission distribution overlapped radio emissions from the region, implying that the extended dust clouds were heated by the same sources as the H II regions. Four compact sources were characterized and associated with concentrations of luminosities that suggested a scarcity of low-mass stars. The brightest source, labeled W51-I, has a luminosity/mass ratio of 150, high enough to indicate a burst of massive O star formation. No triggering mechanism was identified for the burst of star formation.

  15. Fourier transform infrared and Raman spectra, and AB initio calculations for cadmium(II)-cysteinate glycinate complex [Cd(Cys)(Gly)].

    PubMed

    Ramos, Joanna Maria; Faget O, Grisset; Felcman, Judith; Téllez S, Claudio A

    2008-12-15

    The cysteinate glycinate cadmium(II) complex was synthesized and structural analysis was carried out using the following methods: determination of the C, H, N, S and O contents, thermogravimetry, infrared and Raman spectra. The most probable structure for the complex at a minimum of energy was calculated by the density functional theory (DFT):B3LYP/3-21G quantum mechanical method. The infrared and Raman spectra were analyzed and bands assigned through the DFT procedures, the stabilization energy being equal to: E(RB+HF-LYP)= -6442.67784a.u. Features of the infrared and Raman spectra confirm theoretical structural prediction with respect to the metal-ligand bonds: Cd-O, Cd-S and Cd-N. Full assignment of the vibrational spectra was also supported by a carefully analysis of the distorted geometries generated by the normal modes. PMID:18534901

  16. A Submillimetre Study of Massive Star Formation Within the W51 Complex and Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Parsons, Harriet Alice Louise

    Despite its importance the fundamental question of how massive stars form remains unanswered, with improvements to both models and observations having crucial roles to play. To quote Bate et al. (2003) computational models of star formation are limited because "conditions in molecular clouds are not sufficiently well understood to be able to select a representative sample of cloud cores for the initial conditions". It is this notion that motivates the study of the environments within Giant Molecular Clouds (GMCs) and Infrared Dark Clouds (IRDCs), known sites of massive star formation, at the clump and core level. By studying large populations of these objects, it is possible to make conclusions based on global properties. With this in mind I study the dense molecular clumps within one of the most massive GMCs in the Galaxy: the W51 GMC. New observations of the W51 GMC in the 12CO, 13CO and C18O (3-2) transitions using the HARP instrument on the JCMT are presented. With the help of the clump finding algorithm CLUMPFIND a total of 1575 dense clumps are identified of which 1130 are associated with the W51 GMC, yielding a dense mass reservoir of 1.5 × 10^5 M contained within these clumps. Of these clumps only 1% by number are found to be super-critical, yielding a super-critical clump formation efficiency of 0.5%, below current SFE estimates of the region. This indicates star formation within the W51 GMC will diminish over time although evidence from the first search for molecular outflows presents the W51 GMC in an active light with a lower limit of 14 outflows. The distribution of the outflows within the region searched found them concentrated towards the W51A region. Having much smaller sizes and masses, obtaining global properties of clumps and cores within IRDCs required studying a large sample of these objects. To do this pre-existing data from the SCUBA Legacy Catalogue was utilised to study IRDCs within a catalogues based on 8 μm data. This data identified

  17. Infrared Multiple Photon Dissociation Spectroscopy of a Gas-Phase Oxo-Molybdenum Complex with 1,2-Dithiolene Ligands

    PubMed Central

    2015-01-01

    Electrospray ionization (ESI) in the negative ion mode was used to create anionic, gas-phase oxo-molybdenum complexes with dithiolene ligands. By varying ESI and ion transfer conditions, both doubly and singly charged forms of the complex, with identical formulas, could be observed. Collision-induced dissociation (CID) of the dianion generated exclusively the monoanion, while fragmentation of the monoanion involved decomposition of the dithiolene ligands. The intrinsic structure of the monoanion and the dianion were determined by using wavelength-selective infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory calculations. The IRMPD spectrum for the dianion exhibits absorptions that can be assigned to (ligand) C=C, C–S, C—C≡N, and Mo=O stretches. Comparison of the IRMPD spectrum to spectra predicted for various possible conformations allows assignment of a pseudo square pyramidal structure with C2v symmetry, equatorial coordination of MoO2+ by the S atoms of the dithiolene ligands, and a singlet spin state. A single absorption was observed for the oxidized complex. When the same scaling factor employed for the dianion is used for the oxidized version, theoretical spectra suggest that the absorption is the Mo=O stretch for a distorted square pyramidal structure and doublet spin state. A predicted change in conformation upon oxidation of the dianion is consistent with a proposed bonding scheme for the bent-metallocene dithiolene compounds [Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc.1976, 98, 1729−1742], where a large folding of the dithiolene moiety along the S···S vector is dependent on the occupancy of the in-plane metal d-orbital. PMID:24988369

  18. [Improved results of the trachea scar stenosis treatment by inclusion in the complex therapy of combined application diprospan and low-intensity infrared laser radiation].

    PubMed

    Israfilova, S B; Gasymov, É M

    2013-09-01

    The experience of treating 61 patients over the rumen of stenosis of the trachea was summarizes. To improve the results suggested inclusion complex diprospan treatment in combination with low intensity infrared laser radiation. The advantages of the proposed method of treatment of tracheal stenosis scarring are reduced severity of chronic inflammation, reducing the proliferation of granulation tissue. PMID:24501929

  19. Evaluating preservation methods for identifying Anopheles gambiae s.s. and Anopheles arabiensis complex mosquitoes species using near infra-red spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infra-red spectroscopy (NIRS) has been successfully used on fresh and RNAlater® preserved Anopheles gambiae complex to identify sibling species and age. No preservation methods other than RNAlater® have been tested to preserve mosquitoes for species identification using NIRS. However, RNAlater®...

  20. Thermal and near-infrared light induced spin crossover in a mononuclear iron(ii) complex with a tetrathiafulvalene-fused dipyridophenazine ligand.

    PubMed

    Pointillart, F; Liu, X; Kepenekian, M; Le Guennic, B; Golhen, S; Dorcet, V; Roisnel, T; Cador, O; You, Z; Hauser, J; Decurtins, S; Ouahab, L; Liu, S-X

    2016-07-28

    A mononuclear Fe(ii) complex involving a tetrathiafulvalene-based ligand exhibits thermal spin-crossover (around 143 K) with pronounced hysteresis behaviour (48 K). The chromophoric and π-extended ligand allows Near-Infrared (NIR) sensitization for the light-induced excited spin-state trapping (LIESST) with T(LIESST) = 90 K. PMID:27358063

  1. Charge-transfer complexes and their role in exciplex emission and near-infrared photovoltaics.

    PubMed

    Ng, Tsz-Wai; Lo, Ming-Fai; Fung, Man-Keung; Zhang, Wen-Jun; Lee, Chun-Sing

    2014-08-20

    Charge transfer and interactions at organic heterojunctions (OHJs) are known to have critical influences on various properties of organic electronic devices. In this Research News article, a short review is given from the electronic viewpoint on how the local molecular interactions and interfacial energetics at P/N OHJs contribute to the recombination/dissociation of electron-hole pairs. Very often, the P-type materials donate electrons to the N-type materials, giving rise to charge-transfer complexes (CTCs) with a P(δ+) -N(δ-) configuration. A recently observed opposite charge-transfer direction in OHJs is also discussed (i.e., N-type material donates electrons to P-type material to form P(δ-) -N(δ+) ). Recent studies on the electronic structures of CTC-forming material pairs are also summarized. The formation of P(δ-) -N(δ+) -type CTCs and their correlations with exciplex emission are examined. Furthermore, the potential applications of CTCs in NIR photovoltaic devices are reviewed. PMID:24799189

  2. Observation of two-dimensional Faraday waves in extremely shallow depth.

    PubMed

    Li, Xiaochen; Yu, Zhengyue; Liao, Shijun

    2015-09-01

    A family of two-dimensional Faraday waves in extremely shallow depth (1 mm to 2 mm) of absolute ethanol are observed experimentally using a Hele-Shaw cell that vibrates vertically. The same phenomena are not observed by means of water, ethanol solution, and silicone oil. These Faraday waves are quite different from the traditional ones. These phenomena are helpful to deepen and enrich our understandings about Faraday waves, and besides provide a challenging problem for computational fluid dynamics. PMID:26465563

  3. Comparison of algorithms for determination of rotation measure and Faraday structure. I. 1100–1400 MHz

    SciTech Connect

    Sun, X. H.; Akahori, Takuya; Anderson, C. S.; Farnes, J. S.; O’Sullivan, S. P.; Rudnick, L.; O’Brien, T.; Bell, M. R.; Bray, J. D.; Scaife, A. M. M.; Ideguchi, S.; Kumazaki, K.; Stepanov, R.; Stil, J.; Wolleben, M.; Takahashi, K.; Weeren, R. J. van E-mail: larry@umn.edu

    2015-02-01

    Faraday rotation measures (RMs) and more general Faraday structures are key parameters for studying cosmic magnetism and are also sensitive probes of faint ionized thermal gas. A definition of which derived quantities are required for various scientific studies is needed, as well as addressing the challenges in determining Faraday structures. A wide variety of algorithms has been proposed to reconstruct these structures. In preparation for the Polarization Sky Survey of the Universe's Magnetism (POSSUM) to be conducted with the Australian Square Kilometre Array Pathfinder and the ongoing Galactic Arecibo L-band Feeds Array Continuum Transit Survey (GALFACTS), we run a Faraday structure determination data challenge to benchmark the currently available algorithms, including Faraday synthesis (previously called RM synthesis in the literature), wavelet, compressive sampling, and QU-fitting. The input models include sources with one Faraday thin component, two Faraday thin components, and one Faraday thick component. The frequency set is similar to POSSUM/GALFACTS with a 300 MHz bandwidth from 1.1 to 1.4 GHz. We define three figures of merit motivated by the underlying science: (1) an average RM weighted by polarized intensity, RM{sub wtd}, (2) the separation Δϕ of two Faraday components, and (3) the reduced chi-squared χ{sub r}{sup 2}. Based on the current test data with a signal-to-noise ratio of about 32, we find the following. (1) When only one Faraday thin component is present, most methods perform as expected, with occasional failures where two components are incorrectly found. (2) For two Faraday thin components, QU-fitting routines perform the best, with errors close to the theoretical ones for RM{sub wtd} but with significantly higher errors for Δϕ. All other methods, including standard Faraday synthesis, frequently identify only one component when Δϕ is below or near the width of the Faraday point-spread function. (3) No methods as currently implemented

  4. Comparison of Algorithms for Determination of Rotation Measure and Faraday Structure. I. 1100-1400 MHz

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Rudnick, L.; Akahori, Takuya; Anderson, C. S.; Bell, M. R.; Bray, J. D.; Farnes, J. S.; Ideguchi, S.; Kumazaki, K.; O'Brien, T.; O'Sullivan, S. P.; Scaife, A. M. M.; Stepanov, R.; Stil, J.; Takahashi, K.; van Weeren, R. J.; Wolleben, M.

    2015-02-01

    Faraday rotation measures (RMs) and more general Faraday structures are key parameters for studying cosmic magnetism and are also sensitive probes of faint ionized thermal gas. A definition of which derived quantities are required for various scientific studies is needed, as well as addressing the challenges in determining Faraday structures. A wide variety of algorithms has been proposed to reconstruct these structures. In preparation for the Polarization Sky Survey of the Universe's Magnetism (POSSUM) to be conducted with the Australian Square Kilometre Array Pathfinder and the ongoing Galactic Arecibo L-band Feeds Array Continuum Transit Survey (GALFACTS), we run a Faraday structure determination data challenge to benchmark the currently available algorithms, including Faraday synthesis (previously called RM synthesis in the literature), wavelet, compressive sampling, and QU-fitting. The input models include sources with one Faraday thin component, two Faraday thin components, and one Faraday thick component. The frequency set is similar to POSSUM/GALFACTS with a 300 MHz bandwidth from 1.1 to 1.4 GHz. We define three figures of merit motivated by the underlying science: (1) an average RM weighted by polarized intensity, R{{M}wtd}, (2) the separation Δφ of two Faraday components, and (3) the reduced chi-squared χ r2. Based on the current test data with a signal-to-noise ratio of about 32, we find the following. (1) When only one Faraday thin component is present, most methods perform as expected, with occasional failures where two components are incorrectly found. (2) For two Faraday thin components, QU-fitting routines perform the best, with errors close to the theoretical ones for R{{M}wtd} but with significantly higher errors for Δφ . All other methods, including standard Faraday synthesis, frequently identify only one component when Δφ is below or near the width of the Faraday point-spread function. (3) No methods as currently implemented work well for

  5. Herschel far-infrared observations of the Carina Nebula complex. II. The embedded young stellar and protostellar population

    NASA Astrophysics Data System (ADS)

    Gaczkowski, B.; Preibisch, T.; Ratzka, T.; Roccatagliata, V.; Ohlendorf, H.; Zinnecker, H.

    2013-01-01

    Context. The Carina Nebula represents one of the largest and most active star forming regions known in our Galaxy. It contains numerous very massive (M ≳ 40 M⊙) stars that strongly affect the surrounding clouds by their ionizing radiation and stellar winds. Aims: Our recently obtained Herschel PACS and SPIRE far-infrared maps cover the full area (≈8.7 deg2) of the Carina Nebula complex (CNC) and reveal the population of deeply embedded young stellar objects (YSOs), most of which are not yet visible in the mid- or near-infrared. Methods: We study the properties of the 642 objects that are independently detected as point-like sources in at least two of the five Herschel bands. For those objects that can be identified with apparently single Spitzer counterparts, we use radiative transfer models to derive information about the basic stellar and circumstellar parameters. Results: We find that about 75% of the Herschel-detected YSOs are Class 0 protostars. The luminosities of the Herschel-detected YSOs with SED fits are restricted to values of ≤5400 L⊙, their masses (estimated from the radiative transfer modeling) range from ≈1 M⊙ to ≈10 M⊙. Taking the observational limits into account and extrapolating the observed number of Herschel-detected protostars over the stellar initial mass function suggest that the star formation rate of the CNC is ~0.017 M⊙/year. The spatial distribution of the Herschel YSO candidates is highly inhomogeneous and does not follow the distribution of cloud mass. Rather, most Herschel YSO candidates are found at the irradiated edges of clouds and pillars. The far-infrared fluxes of the famous object η Car are about a factor of two lower than expected from observations with the Infrared Space Observatory obtained 15 years ago; this difference may be a consequence of dynamical changes in the circumstellar dust in the Homunculus Nebula around η Car. Conclusions: The currently ongoing star formation process forms only low

  6. Near-Infrared Photoelectrochemical Conversion via Photoinduced Charge Separation in Supramolecular Complexes of Anionic Phthalocyanines with Li(+)@C60.

    PubMed

    Kawashima, Yuki; Ohkubo, Kei; Blas-Ferrando, Vicente Manuel; Sakai, Hayato; Font-Sanchis, Enrique; Ortíz, Javier; Fernández-Lázaro, Fernando; Hasobe, Taku; Sastre-Santos, Ángela; Fukuzumi, Shunichi

    2015-06-18

    Two phthalocyanines possessing carboxylate groups ((TBA)4H2Pc·1 and (TBA)4H2Pc·2) form 1:2 supramolecular complexes with lithium cation-encapsulated C60 (Li(+)@C60) [H2Pc·1(4-)/(Li(+)@C60)2 and H2Pc·2(4-)/(Li(+)@C60)2] in a polar mixed solvent. From the UV-vis spectral changes, the binding constants (K) were estimated as ca. 10(12) M(-2). Upon the photoexcitation of constructed supramolecular complexes, photoinduced electron transfer occurred to form the charge-separated (CS) state. The lifetime of the CS state was determined to be 1.2 ms for H2Pc·2(4-)/(Li(+)@C60)2, which is the longest CS lifetime among the porphyrinoid/fullerene supramolecular complexes. H2Pc·1(4-)/(Li(+)@C60)2 also afforded the long-lived CS state of 1.0 ms. The spin state of the long-lived CS states was determined to be a triplet, as indicated by the EPR signal at g = 4. The reorganization energy (λ) and the electronic coupling term were determined to be λ = 1.70 eV, V = 0.15 cm(-1) from the temperature dependence of the rate constant for the charge recombination of the CS state of H2Pc·1(4-)/(Li(+)@C60)2. The energy of the CS state (0.49 eV) is much smaller than the reorganization energy, indicating that the back-electron-transfer process is located in the Marcus normal region. The small electronic coupling term results from the spin-forbidden back electron transfer due to the triplet CS state. Supramolecular complexes of anionic zinc phthalocyanines with Li(+)@C60 were also prepared and investigated. The ZnPc·4(4-)/Li(+)@C60 supramolecular nanoclusters were assembled on the optically transparent electrode (OTE) of nanostructured SnO2 (OTE/SnO2) to construct the dye-sensitized solar cell. The IPCE (incident photon-to-photocurrent efficiency) values of OTE/SnO2/(ZnPc·4(4-)/Li(+)@C60)n were much higher than the sum of the two IPCE values of the individual systems OTE/SnO2/(Li(+)@C60)n and OTE/SnO2/(ZnPc·4(4-))n, covering the near-infrared region. PMID:25615010

  7. Reactions of Highly Uniform Zeolite H-Supported Rhodium Complexes: Transient Characterization by Infrared and X-ray Absorption Spectroscopies

    SciTech Connect

    Ogino, I.; Gates, B

    2010-01-01

    A zeolite H-{beta}-supported mononuclear rhodium diethene complex (Rh(C{sub 2}H{sub 4}){sub 2}{l_brace}O{sub 2}Al{r_brace}, where the braces indicate a part of the zeolite) was formed by the reaction of Rh(acac)({eta}{sub 2}-C{sub 2}H{sub 4}){sub 2} (acac = acetylacetonate, C{sub 5}H{sub 7}O{sub 2}{sup -}) with the zeolite. Transient characterization of the sample by X-ray absorption near edge structure (XANES) and infrared (IR) spectroscopies (combined with mass spectrometry of the effluent gas) while the sample was in contact with flowing CO indicates a simple stoichiometric conversion of the supported metal complex into another species, identified by the spectra as the zeolite-supported rhodium gem-dicarbonyl (Rh(CO){sub 2}{l_brace}O{sub 2}Al{r_brace}). The sharpness of the v{sub CO} bands in the IR spectrum indicates a high degree of uniformity of the supported rhodium gem-dicarbonyl, and isosbestic points in the XANES spectra as the transformation was occurring imply that the rhodium diethene complex was also highly uniform. Spectra similarly show that treatment of the supported rhodium gem-dicarbonyl with flowing C{sub 2}H{sub 4} resulted in another stoichiometrically simple transformation, giving a species suggested to be Rh(C{sub 2}H{sub 4})(CO){sub 2}{l_brace}O{sub 2}Al{r_brace}. The intermediate was ultimately transformed when the sample was purged with helium into another highly uniform supported species, inferred on the basis of IR spectra to be Rh(C{sub 2}H{sub 4})(CO){l_brace}O{sub 2}Al{r_brace}. Extended X-ray absorption fine structure spectra characterizing the supported rhodium diethene complex and the species formed from it show how the Rh-O bond distance at the Rh-support interface varied in response to the changes in the ligands bonded to the rhodium.

  8. A new ab initio potential energy surface and infrared spectra for the Ar–CS{sub 2} complex

    SciTech Connect

    Yuan, Ting; Sun, Xueli; Hu, Yi; Zhu, Hua

    2014-09-14

    We report a new three-dimensional potential energy surface for Ar–CS{sub 2} involving the Q{sub 3} normal mode for the υ{sub 3} antisymmetric stretching vibration of the CS{sub 2} molecule. The potential energies were calculated using the supermolecular method at the coupled-cluster singles and doubles level with noniterative inclusion of connected triples, using augmented correlation-consistent quadruple-zeta basis set plus midpoint bond functions. Two vibrationally averaged potentials with CS{sub 2} at both the ground (υ = 0) and the first excited (υ = 1)υ{sub 3} vibrational states were generated from the integration of the three-dimensional potential over the Q{sub 3} coordinate. Each potential was found to have a T-shaped global minimum and two equivalent linear local minima. The radial discrete variable representation /angular finite basis representation method and the Lanczos algorithm were applied to calculate the rovibrational energy levels. The calculated band origin shift of the complex (0.0622 cm{sup −1}) is very close to the observed one (0.0671 cm{sup −1}). The predicted infrared spectra and spectroscopic parameters based on the two averaged potentials are in excellent agreement with the available experimental data.

  9. HIGH-ALBEDO C-COMPLEX ASTEROIDS IN THE OUTER MAIN BELT: THE NEAR-INFRARED SPECTRA

    SciTech Connect

    Kasuga, Toshihiro; Usui, Fumihiko; Hasegawa, Sunao; Ootsubo, Takafumi; Kuroda, Daisuke

    2013-07-01

    Primitive, outer-belt asteroids are generally of low albedo, reflecting carbonaceous compositions like those of CI and CM meteorites. However, a few outer-belt asteroids having high albedos are known, suggesting the presence of unusually reflective surface minerals or, conceivably, even exposed water ice. Here, we present near-infrared (1.1-2.5 {mu}m) spectra of four outer-belt C-complex asteroids with albedos {>=}0.1. We find no absorption features characteristic of water ice (near 1.5 and 2.0 {mu}m) in the objects. Intimate mixture models set limits to the water ice by weight {<=}2%. Asteroids (723) Hammonia and (936) Kunigunde are featureless and have (60%-95%) amorphous Mg pyroxenes that might explain the high albedos. Asteroid (1276) Ucclia also shows a featureless reflection spectrum with (50%-60%) amorphous Mg pyroxenes. Asteroid (1576) Fabiola shows a possible weak, broad absorption band (1.5-2.1 {mu}m). The feature can be reproduced by (80%) amorphous Mg pyroxenes or orthopyroxene (crystalline silicate), either of which is likely to cause its high albedo. We discuss the origin of high-albedo components in primitive asteroids.

  10. Infra-red spectroscopic characteristics of naphthalocyanine in bis(naphthalocyaninato) rare earth complexes peripherally substituted with thiophenyl derivatives

    NASA Astrophysics Data System (ADS)

    Li, Xiaobo; Mao, Yajun; Xiao, Chi; Lu, Fanli

    2015-04-01

    The infra-red (IR) spectroscopic data for a series of eleven rare earth double-deckers MIII[Nc(SPh)8]2 (M = Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er) have been collected and systematically investigated. For MIII[Nc(SPh)8]2, typical IR marker bands for the naphthalocyanine anion radical [Nc(SPh)8]rad - were observed at 1317-1325 cm-1 as the most intense absorption bands, which can be attributed to the pyrrole stretching. As for Ce[Nc(SPh)8]2, the typical IR marker band was also observed at 1317 cm-1, which shows that the cerium complex exists as the form of CeIII[Nc(SPh)8]2-[Nc(SPh)8]rad -. In addition, both the Q-bands of electronic absorption spectra and the typical IR absorption bands of naphthalocyanine radical anion [Nc(SPh)8]rad - move to the high energy as the decrease of rare earth metal ionic radius. These facts suggest that the π-π electron interaction in these double-deckers becomes stronger along with the lanthanide contraction.

  11. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2014-02-01

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]- (FeRu) dissolved in D2O and formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4- (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm-1. The mixed-mode anharmonicities range from 2 to 14 cm-1. In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm-1. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

  12. Herschel far-infrared observations of the Carina Nebula complex - The embedded young stellar and protostellar population

    NASA Astrophysics Data System (ADS)

    Gaczkowski, Benjamin; Preibisch, Thomas; Ratzka, Thorsten; Roccatagliata, Veronica; Ohlendorf, Henrike; Pekruhl, Stephanie

    2013-07-01

    At a distance of 2.3 kpc, the Carina Nebula is the nearest southern region with a large enough massive stellar population to sample the top of the IMF and displays all phenomena of massive star formation. We have performed a 9 square-degree Herschel far-infrared survey of the Carina Nebula complex (CNC) which revealed, for the first time, the very complex and filamentary small-scale structure of the dense clouds. We discovered 642 objects that are independently detected as point-like sources in at least two of the five Herschel bands. About 75% of these are Class 0 protostars with masses between about one and ten solar masses estimated from radiative transfer modeling. Taking the observational limits into account and extrapolating the observed number of Herschel-detected protostars over the stellar initial mass function suggests that the star formation rate of the CNC is about 0.017 solar masses per year. The spatial distribution of the Herschel young stellar objects (YSO) candidates is highly inhomogeneous and does not follow the distribution of cloud mass. Rather, most Herschel YSO candidates are found at the irradiated edges of clouds and pillars. The currently ongoing star formation process forms only low-mass and intermediate-mass stars, but no massive stars. The characteristic spatial configuration of the YSOs provides support to the picture that the formation of this latest stellar generation is triggered by the advancing ionization fronts. Around the bubble-shaped HII region Gum 31 (containing the young stellar cluster NGC 3324) in the north-western part of the CNC we identified 752 candidate YSOs from Spitzer, WISE, and Herschel data and analyzed their spectral energy distributions. Their location in the rim of the bubble is suggestive of their being triggered by a 'collect and collapse' scenario, which agrees well with the observed parameters of the region which we obtained from density and temperature maps from our Herschel data.

  13. Michael Faraday, 30,000 Teenagers and Climate Change

    NASA Astrophysics Data System (ADS)

    Giles, K. A.; Wingham, D. J.

    2006-12-01

    One of the objectives of IPY is to engage the awareness, interest and understanding of schoolchildren, the general public and decision-makers worldwide in the purpose and value of polar research and monitoring. Between January and March 2006 I co-presented the Faraday Lecture, run by the Institution of Engineering Technology, which aims to interest the public, and young people in particular, in science and engineering. The topic of the lecture this year was climate change and the technologies that have the potential to reduce our carbon dioxide emissions. As a research fellow at the Centre for Polar Observation and Modelling, University College London, I was able to use my knowledge of the polar regions to help explain the fundamentals of human induced climate change, from using ice cores for paleoclimate studies to what would happen if Greenland melted. The lecture was attended by 30,000 people, mainly aged between 14 to 16, at theatres across the UK and Asia, as well as broadcast on the web to North America and Europe. While the lecture was generally well received, it was apparent that there are misconceptions about the roles of scientists and engineers and a limited understanding of the polar regions and why they are important. The Faraday Lecture is a useful example of a large-scale vehicle for public understanding of science, and for assessing what works and what does not work when addressing young audiences. We consider the lessons learnt from the Faraday lectures in terms of bringing the IPY activities to the attention of the next generation of polar scientists using not only lectures, but a also wider variety of multi-media techniques.

  14. Faraday rotator based on TSAG crystal with <001> orientation.

    PubMed

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Aleksey; Mironov, Evgeniy; Palashov, Oleg

    2016-07-11

    A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the <001> direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10-4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems. PMID:27410823

  15. Observation of Faraday Waves in a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Engels, Peter; Atherton, Collin; Hoefer, Mark

    2007-06-01

    Faraday waves in a cigar-shaped Bose-Einstein condensate are created. It is shown that periodically modulating the transverse confinement, and thus the nonlinear interactions in the BEC, excites small amplitude longitudinal oscillations through a parametric resonance. It is also demonstrated that even without the presence of a continuous drive, an initial transverse breathing mode excitation of the condensate leads to spontaneous pattern formation in the longitudinal direction. Finally, the effects of strongly driving the transverse breathing mode with large amplitude are investigated. In this case, impact-oscillator behavior and intriguing nonlinear dynamics, including the gradual emergence of multiple longitudinal modes, are observed.

  16. Observation of Faraday Waves in a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Engels, P.; Atherton, C.; Hoefer, M. A.

    2007-03-01

    Faraday waves in a cigar-shaped Bose-Einstein condensate are created. It is shown that periodically modulating the transverse confinement, and thus the nonlinear interactions in the BEC, excites small amplitude longitudinal oscillations through a parametric resonance. It is also demonstrated that even without the presence of a continuous drive, an initial transverse breathing mode excitation of the condensate leads to spontaneous pattern formation in the longitudinal direction. Finally, the effects of strongly driving the transverse breathing mode with large amplitude are investigated. In this case, impact-oscillator behavior and intriguing nonlinear dynamics, including the gradual emergence of multiple longitudinal modes, are observed.

  17. RF-sheath assessment of ICRF Faraday Screens

    SciTech Connect

    Colas, L.

    2007-09-28

    The line-integrated parallel RF electric field {delta}V{sub RF} is studied on 'long field lines' radially in front of an ICRF antenna closed by a Faraday screen (FS). Several issues are addressed analytically and numerically. To what extent is a FS necessary to shield {delta}V{sub RF} in presence of magnetized plasma, depending on strap phasing? How efficient is it as a function of FS misalignment on tilted magnetic field? Can a FS attenuate {delta}V{sub RF} produced on antenna frame?.

  18. Spun microstructured optical fibres for Faraday effect current sensors

    SciTech Connect

    Chamorovsky, Yury K; Starostin, Nikolay I; Morshnev, Sergey K; Gubin, Vladimir P; Ryabko, Maksim V; Sazonov, Aleksandr I; Vorob'ev, Igor' L

    2009-11-30

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is {approx}70% that of an ideal fibre, in good agreement with theoretical predictions. (optical fibres and fibreoptic sensors)

  19. Highly Emitting Near-Infrared Lanthanide “Encapsulated Sandwich” Metallacrown Complexes with Excitation Shifted Toward Lower Energy

    PubMed Central

    2015-01-01

    Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy to arrange several organic sensitizers at a well-controlled distance from a lanthanide cation. Herein we report a series of lanthanide “encapsulated sandwich” MC complexes of the form Ln3+[12-MCZn(II),quinHA-4]2[24-MCZn(II),quinHA-8] (Ln3+[Zn(II)MCquinHA]) in which the MC framework is formed by the self-assembly of Zn2+ ions and tetradentate chromophoric ligands based on quinaldichydroxamic acid (quinHA). A first-generation of luminescent MCs was presented previously but was limited due to excitation wavelengths in the UV. We report here that through the design of the chromophore of the MC assembly, we have significantly shifted the absorption wavelength toward lower energy (450 nm). In addition to this near-visible inter- and/or intraligand charge transfer absorption, Ln3+[Zn(II)MCquinHA] exhibits remarkably high quantum yields, long luminescence lifetimes (CD3OD; Yb3+, QLnL = 2.88(2)%, τobs = 150.7(2) μs; Nd3+, QLnL = 1.35(1)%, τobs = 4.11(3) μs; Er3+, QLnL = 3.60(6)·10–2%, τobs = 11.40(3) μs), and excellent photostability. Quantum yields of Nd3+ and Er3+ MCs in the solid state and in deuterated solvents, upon excitation at low energy, are the highest values among NIR-emitting lanthanide complexes containing C–H bonds. The versatility of the MC strategy allows modifications in the excitation wavelength and absorptivity through the appropriate design of the ligand sensitizer, providing a highly efficient platform with tunable properties. PMID:24432702

  20. Probing broken symmetry states in cuprate superconductors with polarization-sensitive infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, Alok; Arik, Mumtaz Murat; Seo, Jungryeol; Cerne, John; Zhang, Hao; Xu, Ke Jun; Wei, John Y. T.; Armitage, N. P.; Kirzhner, T.; Koren, G.

    The nature of the pseudogap state in high-temperature superconducting (HTS) cuprates has drawn a lot of attention in the past two decades. A fundamental question is whether the pseudogap is a distinct phase with its own broken symmetries. Recent optical studies in the near-IR (800 meV) and THz (2-6 meV) ranges have observed symmetry breaking in the pseudogap state of HTS cuprates, suggesting that the pseudogap is a distinct phase. To probe the spectral character of this broken symmetry, we have performed infrared/visible Faraday and Kerr effect measurements at zero magnetic field and various temperatures on a series of HTS cuprate thin films, grown epitaxially by pulsed laser-ablated deposition. We will present and discuss our data, primarily complex Faraday/Kerr angle as a function of energy (0.1-3 eV), temperature (10-300K) and sample orientation with respect to the incident light polarization. This work supported by NSF-DMR1410599, NSERC, CFI-OIT and the Canadian Institute for Advanced Research.

  1. Faraday cup with nanosecond response and adjustable impedance for fast electron beam characterization

    SciTech Connect

    Hu Jing; Rovey, Joshua L.

    2011-07-15

    A movable Faraday cup design with simple structure and adjustable impedance is described in this work. This Faraday cup has external adjustable shunt resistance for self-biased measurement setup and 50 {Omega} characteristic impedance to match with 50 {Omega} standard BNC coaxial cable and vacuum feedthroughs for nanosecond-level pulse signal measurements. Adjustable shunt resistance allows self-biased measurements to be quickly acquired to determine the electron energy distribution function. The performance of the Faraday cup is validated by tests of response time and amplitude of output signal. When compared with a reference source, the percent difference of the Faraday cup signal fall time is less than 10% for fall times greater than 10 ns. The percent difference of the Faraday cup signal pulse width is below 6.7% for pulse widths greater than 10 ns. A pseudospark-generated electron beam is used to compare the amplitude of the Faraday cup signal with a calibrated F-70 commercial current transformer. The error of the Faraday cup output amplitude is below 10% for the 4-14 kV tested pseudospark voltages. The main benefit of this Faraday cup is demonstrated by adjusting the external shunt resistance and performing the self-biased method for obtaining the electron energy distribution function. Results from a 4 kV pseudospark discharge indicate a ''double-humped'' energy distribution.

  2. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    ERIC Educational Resources Information Center

    Tweney, Ryan D.

    2011-01-01

    James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of…

  3. A Left-Hand Rule for Faraday's Law

    ERIC Educational Resources Information Center

    Salu, Yehuda

    2014-01-01

    A left-hand rule for Faraday's law is presented here. This rule provides a simple and quick way of finding directional relationships between variables of Faraday's law without using Lenz's rule.

  4. Herschel far-infrared observations of the Carina Nebula complex. III. Detailed cloud structure and feedback effects

    NASA Astrophysics Data System (ADS)

    Roccatagliata, V.; Preibisch, T.; Ratzka, T.; Gaczkowski, B.

    2013-06-01

    Context. The star formation process in large clusters/associations can be strongly influenced by the feedback from high-mass stars. Whether the resulting net effect of the feedback is predominantly negative (cloud dispersal) or positive (triggering of star formation due to cloud compression) is still an open question. Aims: The Carina Nebula complex (CNC) represents one of the most massive star-forming regions in our Galaxy. We use our Herschel far-infrared observations to study the properties of the clouds over the entire area of the CNC (with a diameter of ≈3.2°, which corresponds to ≈125 pc at a distance of 2.3 kpc). The good angular resolution (10''-36'') of the Herschel maps corresponds to physical scales of 0.1-0.4 pc, and allows us to analyze the small-scale (i.e., clump-size) structures of the clouds. Methods: The full extent of the CNC was mapped with PACS and SPIRE in the 70, 160, 250, 350, and 500 μm bands. We determined temperatures and column densities at each point in these maps by modeling the observed far-infrared spectral energy distributions. We also derived a map showing the strength of the UV radiation field. We investigated the relation between the cloud properties and the spatial distribution of the high-mass stars and computed total cloud masses for different density thresholds. Results: Our Herschel maps resolve for the first time the small-scale structure of the dense clouds over the entire spatial extent of the CNC. Several particularly interesting regions, including the prominent pillars south of η Car, are analyzed in detail. We compare the cloud masses derived from the Herschel data with previous mass estimates based on sub-mm and molecular line data. Our maps also reveal a peculiar wave-like pattern in the northern part of the Carina Nebula. Finally, we characterize two prominent cloud complexes at the periphery of our Herschel maps, which are probably molecular clouds in the Galactic background. Conclusions: We find that the

  5. Protection characteristics of a Faraday cage compromised by lightning burnthrough.

    SciTech Connect

    Warne, Larry Kevin; Bystrom, Edward; Jorgenson, Roy Eberhardt; Montoya, Sandra L.; Merewether, Kimball O.; Coats, Rebecca Sue; Martinez, Leonard E.; Jojola, John M.

    2012-01-01

    A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scope and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).

  6. The continuity of scientific discovery and its communication: the example of Michael Faraday.

    PubMed

    Gross, Alan G

    2009-01-01

    This paper documents the cognitive strategies that led to Faraday's first significant scientific discovery. For Faraday, discovery is essentially a matter seeing as, of substituting for the eye all possess the eye of analysis all scientists must develop. In the process of making his first significant discovery, Faraday learns to dismiss the magnetic attractions and repulsions he and others had observed; by means of systematic variations in his experimental set-up, he learns to see these motions as circular: it is the first indication that an electro-magnetic field exists. In communicating his discoveries, Faraday, of course, takes into consideration his various audiences' varying needs and their differences in scientific competence; but whatever his audience, Faraday learns to convey what it feels like to do science, to shift from seeing to seeing as, from sight to insight. PMID:19350498

  7. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    SciTech Connect

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectra of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.

  8. The (CH2)2O-H2O hydrogen bonded complex. Ab Initio calculations and Fourier transform infrared spectroscopy from neon matrix and a new supersonic jet experiment coupled to the infrared AILES beamline of synchrotron SOLEIL.

    PubMed

    Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebène, B; Alikhani, M E; Georges, R; Moudens, A; Goubet, M; Huet, T R; Pirali, O; Roy, P

    2011-03-31

    A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet). PMID:21381647

  9. Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces.

    PubMed

    Edwards, C S; Christensen, P R

    2013-04-10

    The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically <2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the mini-thermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars

  10. Low-frequency fourier transform infrared spectroscopy of the oxygen-evolving and quinone acceptor complexes in photosystem II.

    PubMed

    Chu, H A; Gardner, M T; O'Brien, J P; Babcock, G T

    1999-04-01

    The low-frequency (<1000 cm-1) region of the IR spectrum has the potential to provide detailed structural and mechanistic insight into the photosystem II/oxygen evolving complex (PSII/OEC). A cluster of four manganese ions forms the core of the OEC and diagnostic manganese-ligand and manganese-substrate modes are expected to occur in the 200-900 cm-1 range. However, water also absorbs IR strongly in this region, which has limited previous Fourier transform infrared (FTIR) spectroscopic studies of the OEC to higher frequencies (>1000 cm-1). We have overcome the technical obstacles that have blocked FTIR access to low-frequency substrate, cofactor, and protein vibrational modes by using partially dehydrated samples, appropriate window materials, a wide-range MCT detector, a novel band-pass filter, and a closely regulated temperature control system. With this design, we studied PSII/OEC samples that were prepared by brief illumination of O2 evolving and Tris-washed preparations at 200 K or by a single saturating laser flash applied to O2 evolving and inhibited samples at 250 K. These protocols allowed us to isolate low-frequency modes that are specific to the QA-/QA and S2/S1 states. The high-frequency FTIR spectra recorded for these samples and parallel EPR experiments confirmed the states accessed by the trapping procedures we used. In the S2/S1 spectrum, we detect positive bands at 631 and 602 cm-1 and negative bands at 850, 679, 664, and 650 cm-1 that are specifically associated with these two S states. The possible origins of these IR bands are discussed. For the low-frequency QA-/QA difference spectrum, several modes can be assigned to ring stretching and bending modes from the neutral and anion radical states of the quinone acceptor. These results provide insight into the PSII/OEC and demonstrate the utility of FTIR techniques in accessing low-frequency modes in proteins. PMID:10194375

  11. Advances in Optical Fiber-Based Faraday Rotation Diagnostics

    SciTech Connect

    White, A D; McHale, G B; Goerz, D A

    2009-07-27

    In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreement with our FRDs and other current sensors.

  12. Numerical study of unsteady processes in a Faraday MHD generator

    NASA Astrophysics Data System (ADS)

    Vinogradova, G. N.; Panchenko, V. P.

    1981-07-01

    A numerical study is presented on the unsteady processes occurring in a Faraday MHD generator with a high power-conversion efficiency. A supersonic MHD generator operating with an equilibrium plasma and designed to convert energy in a system using a thermonuclear reactor is considered, and the steady operating modes are established for cases when an ohmic load is connected, disconnected, or reduced. A magnetic field is assumed to be generated by a suitable profiling of the external magnetic field, and the working medium is modeled by an ideal gas. Partial differential equations are solved numerically by using a central difference predictor-corrector scheme. The study can be applied to problems (e.g., transient times, nominal parameter maximal values and rates of change, methods of regulating the generator and switching it on and off) arising during the design of MHD generators.

  13. The response function of modulated grid Faraday cup plasma instruments

    NASA Technical Reports Server (NTRS)

    Barnett, A.; Olbert, S.

    1986-01-01

    Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager Plasma Science (PLS) experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. The theoretical formulas were tested by multi-sensor analysis of solar wind data. The tests indicate that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.

  14. Faraday rotation imaging microscope with microsecond pulse magnet

    NASA Astrophysics Data System (ADS)

    Suwa, Masayori; Tsukahara, Satoshi; Watarai, Hitoshi

    2015-11-01

    We have fabricated a high-performance Faraday rotation (FR) imaging microscope that uses a microsecond pulse magnet comprising an insulated gated bipolar transistor and a 2 μF capacitor. Our microscope produced images with greater stability and sensitivity than those of previous microscopes that used millisecond pulse magnet; these improvements are likely due to high repetition rate and negligible Joule heating effects. The mechanical vibrations in the magnet coil caused by the pulsed current were significantly reduced. The present FR microscope constructed an averaged image from 1000 FR images within 10 min under 1.7 T. Applications of the FR microscope to discriminating three benzene derivatives in micro-capillaries and oscillation-free imaging of spherical polystyrene and polymethyl methacrylate microparticles demonstrated its high performance.

  15. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    SciTech Connect

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  16. Universal quantum gates for atomic systems assisted by Faraday rotation

    NASA Astrophysics Data System (ADS)

    Song, Guo-Zhu; Zhang, Mei

    2015-08-01

    Both cavity quantum electrodynamics and photons are promising candidates for quantum information processing. Here we present two efficient schemes for universal quantum gates, that is, Fredkin gates and \\sqrt{\\text{SWAP}} gates on atomic systems, assisted by Faraday rotation catalyzed by an auxiliary single photon. These gates are achieved by successfully reflecting an auxiliary single photon from an optical cavity with a single-trapped atom. They do not require additional qubits and they only need some linear-optical elements besides the nonlinear interaction between the flying photon and the atoms in the optical cavities. Moreover, these two universal quantum gates are robust. A high fidelity can be achieved in our schemes with current experimental technology. They may be very useful in quantum information processing in future, with the great progress on controlling atomic systems.

  17. Inverse Faraday Effect with Linearly Polarized Laser Pulses

    SciTech Connect

    Ali, S.; Davies, J. R.; Mendonca, J. T.

    2010-07-16

    The inverse Faraday effect is usually associated with circularly polarized radiation; here, we show that it can also occur for linearly polarized radiation. The quasistatic axial magnetic field generated by a laser propagating in plasma can be calculated by considering both the spin and the orbital angular momenta of the laser pulse. A net spin is present when the radiation is circularly polarized and a net orbital angular momentum is present if there is any deviation from perfect rotational symmetry. The orbital angular momentum gives an additional contribution to the axial magnetic field that can enhance or reduce the effect usually attributed to circular polarization and strongly depends on the intensity profile of the Laguerre-Gaussian modes involving the azimuthal and radial mode numbers.

  18. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul L.; Mørch, Troels; Hilliard, Andrew J.; Arlt, Jan; Sherson, Jacob F.

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  19. Non-destructive Faraday imaging of dynamically controlled ultracold atoms.

    PubMed

    Gajdacz, Miroslav; Pedersen, Poul L; Mørch, Troels; Hilliard, Andrew J; Arlt, Jan; Sherson, Jacob F

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds. PMID:24007051

  20. Aurora on Uranus - A Faraday disc dynamo mechanism

    NASA Astrophysics Data System (ADS)

    Hill, T. W.; Dessler, A. J.; Rassbach, M. E.

    1983-10-01

    A mechanism is proposed whereby the solar wind flowing past the magnetosphere of Uranus causes a Faraday disk dynamo topology to be established and power to be extracted from the kinetic energy of rotation of Uranus. An immediate consequence of this dynamo is the generation of Birkeland currents that flow in and out of the sunlit polar cap with the accompanying production of polar aurora. The power extracted from planetary rotation is calculated as a function of planetary dipole magnetic moment and the ionospheric conductivity of Uranus. For plausible values of ionospheric conductivity, the observed auroral power requires a magnetic moment corresponding to a surface equatorial field of the order of 4 Gauss, slightly larger than the value 1.8 Gauss given by the empirical 'magnetic Bodes law'.

  1. Assignment of the Vibrations in the Near-Infrared Spectra of Phenol-OH(OD) Derivatives and Application to the Phenol-Pyrazine Complex

    NASA Astrophysics Data System (ADS)

    Rospenk, M.; Leroux, N.; Zeegers-Huyskens, Th.

    1997-06-01

    The near-infrared spectra (7200-3800 cm-1) of seven phenols OH-OD (4-CH3, H, 4-Cl, 4-Br, 3-Br, 3,4-diCl, 3-5-diCl) are investigated at room temperature in carbon tetrachloride. The mid-infrared spectra of some phenol-OD have also been studied. Beside the first overtone of the ν(OH) stretching vibration, six absorptions disappear upon deuteration. The absorptions are assigned to combinations involving the ν(OH) stretching mode and aromatic ring vibrations, the ν(C-O) mode, or the δ(OH) mode. The anharmonicity and coupling constants are discussed. The isotopic ratio of the ν(OH) stretching fundamentals, of their first overtone, and the ratio of the anharmonicity constants are very insensitive to the nature of the phenol. The stability constants of complexes between phenols and base can be computed from several near-infrared absorptions and this is illustrated for the 3,5-dichlorophenol-pyrazine complex.

  2. Infrared spectra of HF complexes with CCl{sub 4}, CHCl{sub 3}, and CH{sub 2}Cl{sub 2} in solid argon

    SciTech Connect

    Hunt, R.D.; Andrews, L.

    1992-08-20

    Hydrogen fluoride complexes with CCl{sub 4}, CHCl{sub 3}, and CH{sub 2}Cl{sub 2} were prepared in argon matrices and characterized by infrared spectroscopy. The spectra of CCl{sub 4} and HF revealed a strong CCl{sub 4}-HF complex absorption at 3876 cm{sup {minus}1} with a considerably weaker band at 3904 cm{sup {minus}1} due to the CCl{sub 4}-FH complex. Only one 1:2 complex, CCl{sub 4}-HF-HF, was observed at higher HF concentrations and matrix annealings. Similarly, the HF interaction with CH{sub 2}Cl{sub 2} produced two 1:1 complexes and one 1:2 complex. However, the major product absorption at 3901 cm{sup {minus}1} was assigned to the anti-hydrogen-bonded complex, Ch{sub 2}Cl{sub 2}-FH, while a less intense doublet due to the CH{sub 2}Cl{sub 2}-HF complex appeared at 3799 and 3793 cm{sup {minus}1}. The IR spectra of CHCl{sub 3} and HF were more complicated due to the presence of a third 1:1 complex. The CHCl{sub 3}-HF complex band at 3860 cm{sup {minus}1} was clearly the strongest product absorption. In addition, the ChCl{sub 3}- H complex produced a 3903-cm{sup {minus}1} absorption, while a triplet probably due to the HF-HCCl{sub 3} complex was observed at 3893, 3883, and 3875 cm{sup {minus}1}. Finally, the acid-base properties of these common solvents were considered. 31 refs., 4 figs., 1 tab.

  3. A DFT study of infrared spectra and Monte Carlo predictions of the solvation shell of Praziquantel and β-cyclodextrin inclusion complex in liquid water.

    PubMed

    de Oliveira, C X; Ferreira, N S; Mota, G V S

    2016-01-15

    In this paper, we report a theoretical study of the inclusion complexes of Praziquantel (PZQ) and β-cyclodextrin (β-CD) in liquid water. The starting geometry has been carried out by molecular mechanics simulations, and afterwards optimized in B3LYP level with a 6-311G(d) basis set. Monte Carlo simulations have been used to calculate the solvation shell of the PZQ/β-CD inclusion complexes. Moreover, the vibrational frequencies and the infrared intensities for the PZQ/β-CD complex were computed using the B3LYP method. It is demonstrated that this combined model can yield well-converged thermodynamic data even for a modest number of sample configurations, which makes the methodology particularly adequate for understanding the solute-solvent interaction used for generating the liquid structures of one solute surrounded by solvent molecules. The complex solvation shell showed an increase of the water molecule level in relation to the isolated PZQ molecule because of the hydrophilic effect of the CD molecule. The infrared spectra showed that the contribution that originated in the PZQ molecule was not predominant in the upper-wave number region in the drug/β-CD. The movement that purely originated in the PZQ molecule was localized in the absorption band, ranging from 1328 to 1688cm(-1). PMID:26296254

  4. A DFT study of infrared spectra and Monte Carlo predictions of the solvation shell of Praziquantel and β-cyclodextrin inclusion complex in liquid water

    NASA Astrophysics Data System (ADS)

    de Oliveira, C. X.; Ferreira, N. S.; Mota, G. V. S.

    2016-01-01

    In this paper, we report a theoretical study of the inclusion complexes of Praziquantel (PZQ) and β-cyclodextrin (β-CD) in liquid water. The starting geometry has been carried out by molecular mechanics simulations, and afterwards optimized in B3LYP level with a 6-311G(d) basis set. Monte Carlo simulations have been used to calculate the solvation shell of the PZQ/β-CD inclusion complexes. Moreover, the vibrational frequencies and the infrared intensities for the PZQ/β-CD complex were computed using the B3LYP method. It is demonstrated that this combined model can yield well-converged thermodynamic data even for a modest number of sample configurations, which makes the methodology particularly adequate for understanding the solute-solvent interaction used for generating the liquid structures of one solute surrounded by solvent molecules. The complex solvation shell showed an increase of the water molecule level in relation to the isolated PZQ molecule because of the hydrophilic effect of the CD molecule. The infrared spectra showed that the contribution that originated in the PZQ molecule was not predominant in the upper-wave number region in the drug/β-CD. The movement that purely originated in the PZQ molecule was localized in the absorption band, ranging from 1328 to 1688 cm- 1.

  5. The 8.3 and 12.4 micron imaging of the Galactic Center source complex with the Goddard infrared array camera

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Tresch-Fienberg, R.; Fazio, G. G.; Hoffmann, W. F.; Gatley, I.; Lamb, G.; Shu, P.; Mccreight, C. R.

    1985-01-01

    A 30 x 30 arcsec field at the Galactic Center (1.5 x 1.5 parsec) was mapped at 8.3 microns and 12.41 microns with high spatial resolution and accurate relative astrometry, using the 16 x 16 Si:Bi accumulation mode charge injection device Goddard infrared array camera. The design and performance of the array camera detector electronics system and image data processing techniques are discussed. Color temperature and dust opacity distributions derived from the spatially accurate images indicate that the compact infrared sources and the large scale ridge structure are bounded by warmer, more diffuse material. None of the objects appear to be heated appreciably by internal luminosity sources. These results are consistent with the model proposing that the complex is heated externally by a strong luminosity source at the Galactic Center, which dominates the energetics of the inner few parsecs of the galaxy.

  6. Use of Near-Infrared Spectroscopy to Age-Grade and Identify Siblings of Anopheles Gambiae Complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used near-infrared spectroscopy (NIRS) to rapidly and non-destructively determine species and age of Anopheles gambiae ss (G3, Mali-NIH, Kisumu, ZANU, and Ifakara strains) and An. arabiensis (Dongola, KGB, and Ifakara strains). We developed NIR calibrations using mosquitoes reared and scanned at ...

  7. Experimental evidence for blue-shifted hydrogen bonding in the fluoroform-hydrogen chloride complex: a matrix-isolation infrared and ab initio study.

    PubMed

    Gopi, R; Ramanathan, N; Sundararajan, K

    2014-07-24

    The 1:1 hydrogen-bonded complex of fluoroform and hydrogen chloride was studied using matrix-isolation infrared spectroscopy and ab initio computations. Using B3LYP and MP2 levels of theory with 6-311++G(d,p) and aug-cc-pVDZ basis sets, the structures of the complexes and their energies were computed. For the 1:1 CHF3-HCl complexes, ab initio computations showed two minima, one cyclic and the other acyclic. The cyclic complex was found to have C-H · · · Cl and C-F · · · H interactions, where CHF3 and HCl sub-molecules act as proton donor and proton acceptor, respectively. The second minimum corresponded to an acyclic complex stabilized only by the C-F · · · H interaction, in which CHF3 is the proton acceptor. Experimentally, we could trap the 1:1 CHF3-HCl cyclic complex in an argon matrix, where a blue-shift in the C-H stretching mode of the CHF3 sub-molecule was observed. To understand the nature of the interactions, Atoms in Molecules and Natural Bond Orbital analyses were carried out to unravel the reasons for blue-shifting of the C-H stretching frequency in these complexes. PMID:24979667

  8. Infrared absorption spectra of the CO(2)/H(2)O complex in a cryogenic nitrogen matrix--detection of a new bending frequency.

    PubMed

    Zhang, Xu; Sander, Stanley P

    2011-09-01

    Infrared absorption spectra have been measured for the mixture of CO(2) and H(2)O in a cryogenic nitrogen matrix. The 1:1 CO(2)/H(2)O complex has been observed. Each structure of this complex should have two bending frequencies corresponding to the CO(2) fundamental bending mode (ν(2)). In this work, three bending frequencies corresponding to the CO(2) fundamental bending mode (ν(2)) have been detected; one of them at 660.3 cm(-1) is reported here for the first time. This finding helps confirm the existence of two structures for this complex. A new feature attributed to a CO(2) and H(2)O complex is observed at 3604.4 cm(-1) and is tentatively assigned to the CO(2)/H(2)O complex band corresponding to the CO(2) combination mode (ν(3) + 2ν(2)). In addition, a band that belongs to a CO(2) and H(2)O complex is detected at 3623.8 cm(-1) for the first time and is tentatively assigned to the (CO(2))(2)/H(2)O complex band corresponding to the symmetric stretching mode (ν(1)) of H(2)O. PMID:21702496

  9. Infrared spectroscopy of the Ti(H2O)Ar+ ion-molecule complex: Electronic state switching induced by argon

    NASA Astrophysics Data System (ADS)

    Ward, T. B.; Carnegie, P. D.; Duncan, M. A.

    2016-06-01

    Titanium-water complexes are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared laser photodissociation spectroscopy using argon complex predissociation. Density functional theory calculations provide structures and vibrational spectra for these ions. Spectra in the O-H stretching region indicate that the water is intact in these complexes, even though inserted structures are computed to be more stable. Although the ground state of Ti(H2O)+ is established to be a quartet, that predicted and observed for Ti(H2O)Ar+ is a doublet. Attachment of argon changes the electronic ground state of this system.

  10. Photoperturbation of the heme a3-CuB binuclear center of cytochrome c oxidase CO complex observed by Fourier transform infrared spectroscopy.

    PubMed Central

    Park, S; Pan, L P; Chan, S I; Alben, J O

    1996-01-01

    Purified cytochrome c oxidase CO complex from beef heart has been studied by Fourier transform infrared absorbance difference spectroscopy. Photolysis at 10-20 Kelvin results in dissociation of a3FeCO, formation of CuBCO, and perturbation of the a3-heme and CuB complex. The vibrational perturbation spectrum between 900 and 1700 cm-1 contains a wealth of information about the binuclear center. Appearance in infrared photoperturbation difference spectra of virtually all bands previously reported from resonance Raman spectra indicate the importance of polarization along the 4-vinyl:8-formyl axis, which results in the reduction of heme symmetry to C2v. Frequency-shifted bands due to the 8-formyl and 4-vinyl groups of the a3-heme have been identified and quantitated. The frequency shifts have been interpreted as being due to a change in porphyrin polarization with change in spin state of the iron by photodissociation of CO or perturbation of the CuB coordination complex. PMID:8842240

  11. The Continuity of Scientific Discovery and Its Communication: The Example of Michael Faraday

    PubMed Central

    Gross, Alan G.

    2009-01-01

    This paper documents the cognitive strategies that led to Faraday’s first significant scientific discovery. For Faraday, discovery is essentially a matter seeing as, of substituting for the eye all possess the eye of analysis all scientists must develop. In the process of making his first significant discovery, Faraday learns to dismiss the magnetic attractions and repulsions he and others had observed; by means of systematic variations in his experimental set-up, he learns to see these motions as circular: it is the first indication that an electro-magnetic field exists. In communicating his discoveries, Faraday, of course, takes into consideration his various audiences’ varying needs and their differences in scientific competence; but whatever his audience, Faraday learns to convey what it feels like to do science, to shift from seeing to seeing as, from sight to insight. PMID:19350498

  12. Graphit-ceramic RF Faraday-thermal shield and plasma limiter

    DOEpatents

    Hwang, David L.; Hosea, Joel C.

    1989-01-01

    The present invention is directed to a process of brazing a ceramic mater to graphite. In particular, the brazing procedure is directed to the production of a novel brazed ceramic graphite product useful as a Faraday shield.

  13. Geometric phases of the Faraday rotation of electromagnetic waves in magnetized plasmas

    SciTech Connect

    Liu Jian; Qin Hong

    2012-10-15

    Geometric phases of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase are investigated. The influence of the geometric phase to plasma diagnostics using the Faraday rotation is discussed as an application of the theory.

  14. Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma

    SciTech Connect

    Jian Liu and Hong Qin

    2011-11-07

    The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.

  15. Diode-laser frequency stabilization based on the resonant Faraday effect

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    The authors present the results of a method for frequency stabilizing laser diodes based on the resonant Faraday effects. A Faraday cell in conjunction with a polarizer crossed with respect to the polarization of the laser diode comprises the intracavity frequency selective element. In this arrangement, a laser pull-in range of 9 A was measured, and the laser operated at a single frequency with a linewidth less than 6 MHz.

  16. Structural characterization of gas-phase cysteine and cysteine methyl ester complexes with zinc and cadmium dications by infrared multiple photon dissociation spectroscopy.

    PubMed

    Coates, Rebecca A; McNary, Christopher P; Boles, Georgia C; Berden, Giel; Oomens, Jos; Armentrout, P B

    2015-10-21

    Structural characterization of gas-phase ions of cysteine (Cys) and cysteine methyl ester (CysOMe) complexed to zinc and cadmium is investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy using a free electron laser in combination with density functional theory calculations. IRMPD spectra are measured for [Zn(Cys-H)](+), [Cd(Cys-H)](+), [Zn(CysOMe-H)](+), [Cd(CysOMe-H)](+) and CdCl(+)(CysOMe) and are accompanied by quantum mechanical calculations of the predicted linear absorption spectra at the B3LYP/6-311+G(d,p) (Zn(2+) complexes) and B3LYP/def2TZVP levels (Cd(2+) complexes). On the basis of these experiments and calculations, the conformation that best reproduces the IRMPD spectra for the complexes of the deprotonated amino acids, [M(Cys-H)](+) and [M(CysOMe-H)](+), is a charge-solvated (CS) tridentate structure where the metal dication binds to the amine and carbonyl groups of the amino acid backbone and the deprotonated sulfur atom of the side chain, [N,CO,S(-)]. The intact amino acid complex, CdCl(+)(CysOMe) binds in the equivalent motif [N,CO,S]. These binding motifs are in agreement with the predicted ground structures of these complexes at the B3LYP, B3LYP-GD3BJ (with empirical dispersion corrections), B3P86, and MP2(full) levels. PMID:25880327

  17. Coronal Faraday Rotation Observations: Measurements and Limits on Plasma Inhomogeneities

    NASA Astrophysics Data System (ADS)

    Mancuso, Salvatore; Spangler, Steven R.

    1999-11-01

    We report Faraday rotation measurements of the extended radio galaxy J0039+0319 (4C+03.01) seen through the solar corona when the source was at an average distance of 8.6 Rsolar from the center of the Sun. Nearly continuous polarimetric observations were made over an 11 hour period on 1997 March 28 with the NRAO Very Large Array at frequencies of 1465 and 1635 MHz. The observations were made near solar minimum conditions. Observations of radio galaxies have two advantages with respect to spacecraft transmitter signals. (1) The λ2 dependence of the polarization position angle expected of Faraday rotation can be verified. (2) Observations of spatially extended radio galaxies have the potential of directly measuring the propagation speed of coronal MHD irregularities. With the use of observations made when the source was far from the Sun, we measure an average rotation measure of +6.2+/-1.0 rad m-2 attributable to the corona. A rotation-measure time series was obtained for the most polarized component of the source. This rotation-measure time series showed slow variations during the observing session, with a total change of about 3 rad m-2. This variation is attributed to large-scale gradients and static plasma structures in the corona. We also obtain a weak detection of rotation-measure fluctuations on timescales of 15 minutes to 1 hour, which may be due to coronal Alfvén waves. This fluctuating component of the coronal rotation measure has an rms value <=0.40 rad m-2, comparable to previously reported detections. This measurement is then used to place model-dependent upper limits to the Alfvén wave flux at the coronal base. Depending on the precise geometry of the solar wind flow from the coronal base to 8.6 Rsolar, the inferred wave flux at the coronal base ranges from 2.4×104 to 2.3×105 ergs s-1 cm-2. These values range from slightly below to more than an order of magnitude below the wave flux needed to heat and accelerate the solar wind to its observed

  18. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  19. The mean coronal magnetic field determined from Helios Faraday rotation measurements

    NASA Technical Reports Server (NTRS)

    Patzold, M.; Bird, M. K.; Volland, H.; Levy, G. S.; Seidel, B. L.; Stelzried, C. T.

    1987-01-01

    Coronal Faraday rotation of the linearly polarized carrier signals of the Helios spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3-10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975-1976 was found to decrease with radial distance according to r exp-alpha, where alpha = 2.7 + or - 0.2. The mean field magnitude was 1.0 + or - 0.5 x 10 to the -5th tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.

  20. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    PubMed Central

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 − (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  1. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 ‑ (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  2. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    PubMed

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  3. Faraday rotation echo spectroscopy and detection of quantum fluctuations

    PubMed Central

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials. PMID:24733086

  4. Theory of Kerr and Faraday rotation in Topological Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Kargarian, Mehdi; Randeria, Mohit; Trivedi, Nandini

    2015-03-01

    Topological Weyl semimetals are characterized by bulk Dirac nodes separated in momentum space by a distance 2 b and lead to Fermi arcs in the surfaces electronic structure. We calculate the Faraday θF and Kerr θK angles for electromagnetic waves scattered from such a Weyl semimetal using the Kubo formalism. (1) For thin films with electromagnetic radiation incident on a surface without arcs, we show that θK = bd / απ and θF = απ / bd where α is the fine structure constant, and the film thickness d << λ , the wavelength. We further show multiple reflections give rise to giant Kerr rotation, under certain conditions, for a film on a substrate. (2) In the case when the electromagnetic radiation is incident on the surface with arcs, the wave propagating inside the material acquires a longitudinal component of the electric field proportional to b. We discuss the implications of our results for thin films of pyrochlore iridates, and also for the recently discovered Dirac semimetals in a magnetic field. We acknowledge the support of the CEM, an NSF MRSEC, under Grant DMR-1420451.

  5. Probing the central parsecs of AGN using Faraday Rotation

    NASA Astrophysics Data System (ADS)

    Zavala, R. T.; Taylor, G. B.

    2002-05-01

    A broad frequency range and low instrumental polarization makes the Very Long Baseline Array (VLBA) an ideal instrument for studying polarimetry at sub-milliarcsecond resolution. To take advantage of these unique capabilities we have conducted a multi-frequency polarization survey of 40 radio-loud AGN (Quasars, BL Lacs, and radio galaxies). Our aim is to use Faraday Rotation Measures (RMs) as a probe of the central 1-50 parsecs of these objects. The RM is produced by the line of sight magnetic field weighted by the electron density. Using the electron density established through spectral line diagnostics a magnetic field strength and topology can be estimated within a few parsecs of the central engines of these AGN. The observations for the survey are complete, and we present the first results for 8 quasars, 5 BL Lacs, and 4 radio galaxies. The magnitudes for the RMs range from several thousand rad m-2 in the quasars and radio galaxies to a few hundred rad m-2 in the BL Lac objects. These values are in agreement with the basic ideas of the unified model for AGN. We also observe variations in the RM on small spatial (< ~ 1 pc) in radio galaxies and quasars; and short time scales ( ~ 6 months) in the quasars 3C 273 and 3C 279. R.T.Z. gratefully acknowledges support from a pre-doctoral research appointment at NRAO and from the New Mexico Alliance for Graduate Education and the Professiorate through NSF grant HRD-0086701.

  6. SIMULATED FARADAY ROTATION MEASURES TOWARD HIGH GALACTIC LATITUDES

    SciTech Connect

    Akahori, Takuya; Kim, Jongsoo; Ryu, Dongsu; Gaensler, B. M. E-mail: akahori@physics.usyd.edu.au E-mail: ryu@canopus.cnu.ac.kr

    2013-04-20

    We study the Faraday rotation measure (RM) due to the Galactic magnetic field (GMF) toward high Galactic latitudes. The RM arises from the global, regular component as well as from the turbulent, random component of the GMF. We model the former based on observations and the latter using the data of magnetohydrodynamic turbulence simulations. For a large number of different GMF models, we produce mock RM maps around the Galactic poles and calculate various statistical quantities with the RM maps. We find that the observed medians of RMs toward the north and south Galactic poles, {approx}0.0 {+-} 0.5 rad m{sup -2} and {approx} + 6.3 {+-} 0.5 rad m{sup -2}, are difficult to explain with any of our many alternate GMF models. The standard deviation of observed RMs, {approx}9 rad m{sup -2}, is clearly larger than that of simulated RMs. The second-order structure function of observed RMs is substantially larger than that of simulated RMs, especially at small angular scales. We discuss other possible contributions to RM toward high Galactic latitudes. Besides observational errors and the intrinsic RM of background radio sources against which RM is observed, we suggest that the RM due to the intergalactic magnetic field may account for a substantial fraction of the observed RM. Finally, we note that reproducing the observed medians may require additional components or/and structures of the GMF that are not present in our models.

  7. Relation of magnetism and electricity beyond Faraday-Maxwell electrodynamics

    NASA Astrophysics Data System (ADS)

    Kurkin, M. I.; Orlova, N. B.

    2014-11-01

    A comparison has been performed between the Landau-Dzyaloshinskii-Astrov magnetoelectric effects and the electromagnetic effects caused by the electromagnetic Faraday induction and Maxwell displacement currents. The requirement for the spontaneous violation of symmetry relative to space inversion and time reversion is formulated as the condition for the existence of magnetoelectric effects. An analysis is performed of some results obtained by E.A. Turov both personally and in association with colleagues, which made a significant contribution to the development of the science of magnetoelectricity. These results include the development of the scheme of a simplified symmetry analysis for describing collinear spin structures; the use of this scheme for the invariant expansion of thermodynamic potentials for the magnetic materials with different types of magnetic ordering; the formulation of the microscopic model of magnetoelectricity with the use of the relation between spins and electroactive optical phonons; the study of the phenomena of the enhancement of magnetoelectric effects upon the magnetic resonance; the analysis of the opportunities of electrodipole excitation and of the detection of different signals of magnetic resonance; and the study of the manifestations of magnetoelectric effects in magnetoacoustics and optics.

  8. Magneto-optical Faraday effect in nanocrystalline oxides

    NASA Astrophysics Data System (ADS)

    Morales, J. R.; Amos, N.; Khizroev, S.; Garay, J. E.

    2011-05-01

    Magneto-optical materials have widespread applications in communication and optical devices. Besides existing applications such as optical diodes, untapped potential applications could be accessed should magneto-optical properties be improved such that smaller magnetic fields can be employed. Here we present an efficient method for fabricating oxide materials that possess excellent optical and magnetic properties—they are transparent to visible light yet have high magnetic susceptibility. Combined, these properties produce large Faraday rotations; the measured Verdet constant is >-300 rad T-1 m-1 at 632.8 nm, a high value for a thick, optically transparent material. Because this Verdet constant is more than twice that of the state of the art material, these nanocrystalline oxides produce polarized light rotations with less than half the applied magnetic field necessary. They are made by densifying rare earth nanocrystalline powder into dense, large-sized bodies using an electric current activated technique (sometimes known as spark plasma sintering). The processing temperature is optimized in order to achieve sufficient density without causing excessive phase changes that would destroy light transparency. This process produces materials quickly (<20 min), which, combined with high magneto-optical properties, promises less expensive, smaller, more portable magneto-optical devices.

  9. Na-Faraday rotation filtering: The optimal point

    PubMed Central

    Kiefer, Wilhelm; Löw, Robert; Wrachtrup, Jörg; Gerhardt, Ilja

    2014-01-01

    Narrow-band optical filtering is required in many spectroscopy applications to suppress unwanted background light. One example is quantum communication where the fidelity is often limited by the performance of the optical filters. This limitation can be circumvented by utilizing the GHz-wide features of a Doppler broadened atomic gas. The anomalous dispersion of atomic vapours enables spectral filtering. These, so-called, Faraday anomalous dispersion optical filters (FADOFs) can be by far better than any commercial filter in terms of bandwidth, transition edge and peak transmission. We present a theoretical and experimental study on the transmission properties of a sodium vapour based FADOF with the aim to find the best combination of optical rotation and intrinsic loss. The relevant parameters, such as magnetic field, temperature, the related optical depth, and polarization state are discussed. The non-trivial interplay of these quantities defines the net performance of the filter. We determine analytically the optimal working conditions, such as transmission and the signal to background ratio and validate the results experimentally. We find a single global optimum for one specific optical path length of the filter. This can now be applied to spectroscopy, guide star applications, or sensing. PMID:25298251

  10. Na-Faraday rotation filtering: the optimal point.

    PubMed

    Kiefer, Wilhelm; Löw, Robert; Wrachtrup, Jörg; Gerhardt, Ilja

    2014-01-01

    Narrow-band optical filtering is required in many spectroscopy applications to suppress unwanted background light. One example is quantum communication where the fidelity is often limited by the performance of the optical filters. This limitation can be circumvented by utilizing the GHz-wide features of a Doppler broadened atomic gas. The anomalous dispersion of atomic vapours enables spectral filtering. These, so-called, Faraday anomalous dispersion optical filters (FADOFs) can be by far better than any commercial filter in terms of bandwidth, transition edge and peak transmission. We present a theoretical and experimental study on the transmission properties of a sodium vapour based FADOF with the aim to find the best combination of optical rotation and intrinsic loss. The relevant parameters, such as magnetic field, temperature, the related optical depth, and polarization state are discussed. The non-trivial interplay of these quantities defines the net performance of the filter. We determine analytically the optimal working conditions, such as transmission and the signal to background ratio and validate the results experimentally. We find a single global optimum for one specific optical path length of the filter. This can now be applied to spectroscopy, guide star applications, or sensing. PMID:25298251

  11. Homogenized boundary conditions and resonance effects in Faraday cages

    PubMed Central

    Hewitt, I. J.

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775

  12. A Faraday rotation diagnostic for Z pinch experiments

    NASA Astrophysics Data System (ADS)

    Gao, K. W.; Intrator, T. P.; Weber, T. E.; Yoo, C. B.; Klarenbeek, J.

    2012-10-01

    The MagLIF experiment is an approach to Magneto Inertial Fusion (MIF) that will compress a laser preheated magnetized plasma inside a small sub cm size beryllium capsule and the magnetic field inside. A good measurement of the compressed magnetic field will help us understand how the compression proceeds, and the time scale over which field diffuses out. We are working on a first step to the direct measurement of vacuum magnetic field (expected to be mostly Bz) compression time history, potentially space-resolved, without a plasma fill. A small magneto-active section of optical fiber can measure magnetic fields in the 1-1000 Tesla range. Directly measured vacuum Bz is an initial but important step towards validating the codes supporting MagLIF. The technology will use a Terbium doped optical fiber as a Faraday rotation medium. The optical path and hardware is simple, inexpensive, and small enough to fit inside a MagLIF capsule, and can be radiation hardened. Low noise, optically coupled magnetic field measurements will be possible for vacuum MagLIF shots.

  13. A sensitive Faraday rotation setup using triple modulation

    NASA Astrophysics Data System (ADS)

    Phelps, G.; Abney, J.; Broering, M.; Korsch, W.

    2015-07-01

    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air was tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/λ2 dependence was observed.

  14. A sensitive Faraday rotation setup using triple modulation

    SciTech Connect

    Phelps, G.; Abney, J.; Broering, M.; Korsch, W.

    2015-07-15

    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air was tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/λ{sup 2} dependence was observed.

  15. Faraday rotation spectroscopy in multi-pass atomic vapor cells

    NASA Astrophysics Data System (ADS)

    Li, Shuguang; Vachaspati, Pranjal; Dural, Nezih; Romalis, Michael

    2011-05-01

    Many important applications of atomic vapors, such as quantum measurements, light storage experiments, and atomic magnetometers benefit from large optical depth of the atomic ensemble. We explore multi-pass cells using cylindrical mirrors with a hole for the entrance and exit of the laser beam to achieve very high optical depth while sampling a large number of atoms. Such cells are much less sensitive to mirror quality and alignment compared to optical cavities and do not require laser frequency locking, mode matching or power coupling matching. Cells with more than 100 passes have been fabricated using internal high-reflectivity mirrors. We have performed paramagnetic Faraday rotation measurements on Rb vapor and have observed atomic rotation angles in excess of 60 radians. Quantum spin noise from unpolarized atomic vapor has also been observed with a high signal-to-noise ratio. This system also exhibits non-linear spin relaxation due to spin-exchange collisions, opening the possibility of using spin-squeezing techniques to improve long-term sensitivity of frequency measurements. We will report on the development of a scalar atomic magnetometer using such spin-squeezing techniques.

  16. Me-3,2-HOPO Complexes of Near Infra-Red (NIR) Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution

    SciTech Connect

    Moore, Evan G.; Xu, Jide; Dodani, Sheel; Jocher, Christoph; D'Aleo, Anthony; Seitz, Michael; Raymond, Kenneth

    2009-11-10

    The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution ({Phi}{sub tot}{sup Yb} {approx} 0.09-0.22%). Furthermore, the complexes demonstrate very high stability (pYb {approx} 18.8-21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a model Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G{sup ++}(d,p) level of theory for a simplified model monovalent sodium complex.

  17. Me-3,2-HOPO Complexes of Near Infra-Red (NIR) Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution

    PubMed Central

    Moore, Evan G.; Xu, Jide; Dodani, Sheel C.; Jocher, Christoph J.; D'Aléo, Anthony; Seitz, Michael; Raymond, Kenneth N.

    2011-01-01

    The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution (ΦtotYb~0.09−0.22%). Furthermore, the complexes demonstrate very high stability (pYb ~ 18.8 – 21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a model Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G++(d,p) level of theory for a simplified model monovalent sodium complex. PMID:20364838

  18. The gas-phase bis-uranyl nitrate complex [(UO2)(2)(NO3)(5)](-): infrared spectrum and structure

    SciTech Connect

    Gary S. Groenewold; Michael J. van Stipdonk; Jos Oomens; Wibe de Jong; Michael E. McIlwain

    2011-12-01

    The infrared spectrum of the bis-uranyl nitrate complex [(UO{sub 2}){sub 2}(NO{sub 3}){sub 5}]{sup -} was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate nu3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex [(UO{sub 2}){sub 2}(NO{sub 3}){sub 5}]{sup -} compared to the mono-complex [UO{sub 2}(NO{sub 3}){sub 3}]{sup -}, as indicated by a higher O-U-O asymmetric stretching (nu3) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the {nu}{sub 3} frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The structure was calculated using density functional theory (B3LYP functional), which produced a structure in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  19. The gas-phase bis-uranyl nitrate complex [(UO2)2(NO3)5]-: infrared spectrum and structure

    SciTech Connect

    Groenewold, G. S.; van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; McIIwain, Michael E.

    2011-12-01

    The infrared spectrum of the bis-uranyl nitrate complex [(UO2)2(NO3)5]- was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate v3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex [(UO2)2(NO3)5]- compared to the mono-complex [UO2(NO3)3]-, as indicated by a higher O-U-O asymmetric stretching (v3) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the v3 frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The lowest energy structure predicted by density functional theory (B3LYP functional) calculations was one in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  20. Complex organic matter in space: about the chemical composition of carriers of the Unidentified Infrared Bands (UIBs) and protoplanetary emission spectra recorded from certain astrophysical objects.

    PubMed

    Cataldo, Franco; Keheyan, Yeghis; Heymann, Dieter

    2004-02-01

    In this communication we present the basic concept that the pure PAHs (Polycyclic Aromatic Hydrocarbons) can be considered only the ideal carriers of the UIBs (Unidentified Infrared Bands), the emission spectra coming from a large variety of astronomical objects. Instead we have proposed that the carriers of UIBs and of protoplanetary nebulae (PPNe) emission spectra are much more complex molecular mixtures possessing also complex chemical structures comparable to certain petroleum fractions obtained from the petroleum refining processes. The demonstration of our proposal is based on the comparison between the emission spectra recorded from the protoplanetary nebulae (PPNe) IRAS 22272+ 5435 and the infrared absorption spectra of certain 'heavy' petroleum fractions. It is shown that the best match with the reference spectrum is achieved by highly aromatic petroleum fractions. It is shown that the selected petroleum fractions used in the present study are able to match the band pattern of anthracite coal. Coal has been proposed previously as a model for the PPNe and UIBs but presents some drawbacks which could be overcome by adopting the petroleum fractions as model for PPNe and UIBs in place of coal. A brief discussion on the formation of the petroleum-like fractions in PPNe objects is included. PMID:14979641

  1. Matrix Isolation Infrared Spectroscopy of an O-H···π Hydrogen-Bonded Complex between Formic Acid and Benzene.

    PubMed

    Banerjee, Pujarini; Bhattacharya, Indrani; Chakraborty, Tapas

    2016-05-26

    Mid-infrared spectra of an O-H···π hydrogen-bonded 1:1 complex between formic acid and benzene were measured by isolating the complex in an argon matrix at a temperature of 8 K. The O-H stretching fundamental of formic acid (νO-H) undergoes a red shift of 120 cm(-1), which is the largest among the known π-hydrogen bonded complexes of an O-H donor with respect to benzene as acceptor. Electronic structure theory methods were used extensively to suggest a suitable geometry of the complex that is consistent with a recent study performed at CCSD(T)/CBS level by Zhao et al. (J. Chem. Theory Comput. 2009, 5, 2726-2733), as well as with the measured IR spectral shifts of the present study. It has been determined that density functional theory (DFT) D functionals as well as parametrized DFT functionals like M06-2X, in conjunction with modestly sized basis sets like 6-31G (d, p), are sufficient for correct predictions of the spectral shifts observed in our measurement and also for reproducing the value of the binding energy reported by Zhao et al. We also verified that these low-cost methods are sufficient in predicting the νO-H spectral shifts of an analogous O-H···π hydrogen-bonded complex between phenol and benzene. However, some inconsistencies with respect to shifts of νO-H arise when diffuse functions are included in the basis sets, and the origin of this anomaly is shown to lie in the predicted geometry of the complex. Natural bond orbital (NBO) and atoms-in-molecule (AIM) analyses were performed to correlate the spectral behavior of the complex with its geometric parameters. PMID:27163753

  2. Synthesis, structure, infrared and fluorescence spectra of new rare earth complexes with 6-hydroxy chromone-3-carbaldehyde benzoyl hydrazone

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Dui; Yang, Zheng-Yin; Zhang, Ding-Wa; Wang, Yan

    2006-01-01

    A novel 6-hydroxy chromone-3-carbaldehyde benzoyl hydrazone ligand and its four complexes, [LnL2(NO3)2]NO3 [Ln = Eu(1), Sm(2), Tb(3), Dy(4)], were synthesized. The complexes were characterized by the elemental analyses, molar conductivity and IR spectra. The crystal and molecular structure of Sm(III) complex was determined by single-crystal X-ray diffraction: crystallized in the triclinic system, space group P-1, Z = 1, a = 11.037(4) Å, b = 14.770(5) Å, c = 15.032(7) Å, α = 60.583(4), β = 75.528(7), γ = 88.999(4), R1 = 0.0349. The fluorescence properties of complexes in the solid state and in the organic solvent were studied in detail, respectively. Under the excitation of ultraviolet light, strong red fluorescence of solid europium complex was observed. But the green fluorescence of solid terbium complex was not observed. These observations show that the ligand favor energy transfers to the emitting energy level of Eu3+. Some factors that influence the fluorescent intensity were also discussed.

  3. Faraday Rotation Probing of the Solar Corona in 1997

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Spangler, S. R.

    1999-05-01

    Faraday rotation observations of polarized radiation from natural radio sources yield a unique diagnostic of the coronal magnetic field and electron density at heliocentric distances not reached by spacecraft. Dual frequency polarization measurements yield the rotation measure, which is proportional to int n_e vec {B} * ds, where n_e is the electron density, vec {B} is the magnetic field, and the integral is along the line of sight. We made linear polarization observations with the NRAO Very Large Array of several polarized radio sources occulted by the solar corona. The observations were made at frequencies of 1465 and 1665 MHz on four days in May, 1997. The observations cover a full solar rotation and sample solar elongations ranging from about 5 to 14 solar radii. The magnitudes of the rotation measures observed range from 11 to less than 1 radians/m(2) . We attribute the relatively low values for the rotation measures to the magnetohydrodynamic state of the corona at the time of the observations. The coronal magnetic field was quasi-dipolar with the lines of sight to the sources generally not crossing sector boundaries. The highest plasma density was at the streamer belt at low latitudes, which was missed by many of the lines of sight. The largest rotation measure was observed for the source 3C79 on May 11, 1997, and corresponds to a case in which the line of sight passed through the streamer belt at small solar elongation. This research was supported by grant ATM96-16721 from the National Science Foundation.

  4. Weakly nonlinear analysis of impulsively-forced Faraday waves.

    PubMed

    Catllá, Anne; Porter, Jeff; Silber, Mary

    2005-11-01

    Parametrically-excited surface waves, forced by a repeating sequence of delta-function impulses, are considered within the framework of the Zhang-Viñals model [W. Zhang and J. Viñals, J. Fluid Mech. 336, 301 (1997)]. With impulsive forcing, the linear stability analysis can be carried out exactly and leads to an implicit equation for the neutral stability curves. As noted previously [J. Bechhoefer and B. Johnson, Am. J. Phys. 64, 1482 (1996)], in the simplest case of N=2 equally-spaced impulses per period (which alternate up and down) there are only subharmonic modes of instability. The familiar situation of alternating subharmonic and harmonic resonance tongues emerges only if an asymmetry in the spacing between the impulses is introduced. We extend the linear analysis for N=2 impulses per period to the weakly nonlinear regime, where we determine the leading order nonlinear saturation of one-dimensional standing waves as a function of forcing strength. Specifically, an analytic expression for the cubic Landau coefficient in the bifurcation equation is derived as a function of the dimensionless spacing between the two impulses and the fluid parameters that appear in the Zhang-Viñals model. As the capillary parameter is varied, one finds a parameter regime of wave amplitude suppression, which is due to a familiar 1:2 spatiotemporal resonance between the subharmonic mode of instability and a damped harmonic mode. This resonance occurs for impulsive forcing even when harmonic resonance tongues are absent from the neutral stability curves. The strength of this resonance feature can be tuned by varying the spacing between the impulses. This finding is interpreted in terms of a recent symmetry-based analysis of multifrequency forced Faraday waves [J. Porter, C. M. Topaz, and M. Silber, Phys. Lett. 93, 034502 (2004); C. M. Topaz, J. Porter, and M. Silber, Phys. Rev. E 70, 066206 (2004)]. PMID:16383732

  5. Diagnostics of the solar corona from comparison between Faraday rotation measurements and magnetohydrodynamic simulations

    SciTech Connect

    Le Chat, G.; Cohen, O.; Kasper, J. C.; Spangler, S. R.

    2014-07-10

    Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.

  6. Faraday laser using 1.2 km fiber as an extended cavity

    NASA Astrophysics Data System (ADS)

    Tao, Zhiming; Zhang, Xiaogang; Pan, Duo; Chen, Mo; Zhu, Chuanwen; Chen, Jingbiao

    2016-07-01

    We demonstrate a Faraday laser using a 1.2 km fiber as an extended cavity, which provides optical feedback and obtains small free spectrum range (FSR) of 83 kHz, and have succeeded in limiting the laser frequency to a crossover transition {5}2{S}1/2,F=2\\to {5}2{P}3/2,F\\prime =1,3 of the natural 87Rb at 780 nm. The Faraday laser is based on a Faraday anomalous dispersion optical filter (FADOF) with an ultra-narrow bandwidth and the long fiber extended cavity of 1.2 km. The peak transmission assigned to the crossover transition F=2\\to F\\prime =1,3 in the FADOF is 20.5% with an ultra-narrow bandwidth of 29.1 MHz. The Allan deviation of the Faraday laser is around 6.0× {10}-11 in 0.06 to 1 s sampling time. Laser frequency is always kept in the center of the transmitted peak assigned to F=2\\to F\\prime =1,3. The Faraday laser realized here can provide light exactly resonant with an atomic transition used for atom–photon interaction experiments and is insensitive to diode temperature and injection current fluctuations.

  7. Infrared spectra and electronic structure calculations for NN complexes with U, UN, and NUN in solid argon, neon, and nitrogen.

    PubMed

    Andrews, Lester; Wang, Xuefeng; Gong, Yu; Kushto, Gary P; Vlaisavljevich, Bess; Gagliardi, Laura

    2014-07-17

    Reactions of laser-ablated U atoms with N2 molecules upon codeposition in excess argon or neon at 4 K gave intense NUN and weak UN absorptions. Annealing produced progressions of new absorptions for the UN2(N2)1,2,3,4,5 and UN(N2)1,2,3,4,5,6 complexes. The neon-to-argon matrix shift decreases with increasing NN ligation and therefore the number of noble gas atoms left in the primary coordination sphere around the NUN molecule. Small matrix shifts are observed when the secondary coordination layers around the primary UN2(N2)1,2,3,4,5 and UN(N2)1,2,3,4,5,6 complexes are changed from neon-to-argon to nitrogen. Electronic structure, energy, and frequency calculations provide support for the identification of these complexes and the characterization of the N≡U≡N and U≡N core molecules as terminal uranium nitrides. Codeposition of U with pure nitrogen produced the saturated U(NN)7 complex, which UV irradiation converted to the NUN(NN)5 complex with slightly lower frequencies than found in solid argon. PMID:24878246

  8. Synthesis of a quantum nanocrystal-gold nanoshell complex for near-infrared generated fluorescence and photothermal decay of luminescence.

    PubMed

    Lin, Adam Y; Young, Joseph K; Nixon, Ariel V; Drezek, Rebekah A

    2014-09-21

    Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl)trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals excited at the same wavelength were used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs are altered and the luminescent output is significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation. PMID:25096858

  9. Synthesis of Quantum Nanocrystal-Gold Nanoshell Complex for Near Infrared Generated Fluorescence and Photothermal Decay of Luminescence

    PubMed Central

    Lin, Adam Y.; Young, Joseph K.; Nixon, Ariel V.; Drezek, Rebekah A.

    2015-01-01

    Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl) trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals were excited at the same wavelength used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs is altered and the luminescent output significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation. PMID:25096858

  10. Preliminary analysis of thermal-infrared multispectral scanner data of the Iron Hill, Colorado carbonatite-alkalic rock complex

    NASA Technical Reports Server (NTRS)

    Rowan, Lawrence C.; Watson, Kenneth; Miller, Susanne H.

    1992-01-01

    The Iron Hill carbonatite-alkalic igneous rock complex is in the Powderhorn mining district, approximately 40 km south-southwest of Gunnison, Colorado. The complex, which occupies about 30 sq km, was emplaced in metasedimentay and metavolcanic rocks during the later Precambrian or early Cambrian. The main rock types in the complex, from oldest to youngest, are fenite, pyroxenite, uncompahgrite, ijolite, nepheline syenite, and dolomitic carbonatite. The carbonatite is limonitic and forms an elliptially shaped 4 sq km stock. Calcitic and dolomitic carbonatite dikes are also numerous throughout the complex and in the pre-existing rocks. Pyroxenite is the most widespread rock type within the complex, but pyroxene is extensively altered to biotite, phlogopite, and vermiculite. Fenite, which formed through Na, K-metasomatism of the country rocks, typically contains more feldspar and less quartz than the equivalent unaltered country rocks. The other alkalic rock types are less widespread and less well exposed. Parts of the complex are covered by Oligocene ash-flow tuff and alluvial, colluvial, and glacial deposits. Sagebrush and grass cover is moderately dense to very dense at low to intermediate elevations; coniferous tree cover is dense at high elevations and on some north-facing slopes at lower elevations. A new algorithm was used to compute spectral emissivity ratios, independent of any emissivity assumptions. This algorithm has the advantage that any of the possible emissivity ratios can be computed and, thus, a large variety of composite ratio images can be constructed, which permits examination of various geologic hypotheses based on the spectral properties of the surface materials.

  11. Infrared laser induced conformational and structural changes of glycine and glycine·water complex in low-temperature matrices

    NASA Astrophysics Data System (ADS)

    Coussan, Stéphane; Tarczay, György

    2016-01-01

    Conformational and structural changes of matrix-isolated glycine and glycine·water complexes induced by the selective MIR excitation of the fundamental OH and NH stretching vibrational modes were studied. The observed spectral changes are consistent with the former assignments based on matrix-isolation IR spectroscopy combined with NIR laser irradiation. Since fewer conformational barriers can be reached by MIR than by NIR excitations, fewer processes are promoted effectively by MIR radiation. The comparison of spectral changes induced by selective MIR and NIR excitations can facilitate the conformational analysis of complex molecular systems and it can also yield information on the barrier heights.

  12. Comparison of Color Fundus Photography, Infrared Fundus Photography, and Optical Coherence Tomography in Detecting Retinal Hamartoma in Patients with Tuberous Sclerosis Complex

    PubMed Central

    Bai, Da-Yong; Wang, Xu; Zhao, Jun-Yang; Li, Li; Gao, Jun; Wang, Ning-Li

    2016-01-01

    Background: A sensitive method is required to detect retinal hamartomas in patients with tuberous sclerosis complex (TSC). The aim of the present study was to compare the color fundus photography, infrared imaging (IFG), and optical coherence tomography (OCT) in the detection rate of retinal hamartoma in patients with TSC. Methods: This study included 11 patients (22 eyes) with TSC, who underwent color fundus photography, IFG, and spectral-domain OCT to detect retinal hamartomas. TSC1 and TSC2 mutations were tested in eight patients. Results: The mean age of the 11 patients was 8.0 ± 2.1 years. The mean spherical equivalent was −0.55 ± 1.42 D by autorefraction with cycloplegia. In 11 patients (22 eyes), OCT, infrared fundus photography, and color fundus photography revealed 26, 18, and 9 hamartomas, respectively. The predominant hamartoma was type I (55.6%). All the hamartomas that detected by color fundus photography or IFG can be detected by OCT. Conclusion: Among the methods of color fundus photography, IFG, and OCT, the OCT has higher detection rate for retinal hamartoma in TSC patients; therefore, OCT might be promising for the clinical diagnosis of TSC. PMID:27174333

  13. Infrared and Raman spectra of ethylene trithiocarbonate complexes of some Zn(II), Cd(II) and Hg(II) halides

    NASA Astrophysics Data System (ADS)

    Contreras, J. Guillermo; Gnecco, Juan A.

    Coordination compounds of ethylene trithiocarbonate (ETTC) with some Zn(II), Cd(II) and Hg(II) halides have been prepared, characterized and their infrared and Raman spectra recorded. The i.r. spectra in the range 4000-400 cm -1 suggest that the organic ligand is bonded to the metal ions through its exocyclic sulphur atom, whereas the far-i.r. and Raman spectra show that the complexes of the type HgX 2(ETTC) (X = Cl, Br or I) possess a trans dimeric halogen-bridged structure. The Cd(II) and Zn(II) species are of the type MX 2(ETTC) 2 and they possess a pseudotetrahedral structure of C2υ symmetry.

  14. Ab initio potential energy and dipole moment surfaces, infrared spectra, and vibrational predissociation dynamics of the 35Cl-⋯H2/D2 complexes

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. A.; Grinev, T. A.; Kłos, J.; Bieske, E. J.; Szczȩśniak, M. M.; Chałasiński, G.

    2003-12-01

    Three-dimensional potential energy and dipole moment surfaces of the Cl--H2 system are calculated ab initio by means of a coupled cluster method with single and double excitations and noniterative correction to triple excitations with augmented correlation consistent quadruple-zeta basis set supplemented with bond functions, and represented in analytical forms. Variational calculations of the energy levels up to the total angular momentum J=25 provide accurate estimations of the measured rotational spectroscopic constants of the ground van der Waals levels n=0 of the Cl-⋯H2/D2 complexes although they underestimate the red shifts of the mid-infrared spectra with v=0→v=1 vibrational excitation of the monomer. They also attest to the accuracy of effective radial interaction potentials extracted previously from experimental data using the rotational RKR procedure. Vibrational predissociation of the Cl-⋯H2/D2(v=1) complexes is shown to follow near-resonant vibrational-to-rotational energy transfer mechanism so that more than 97% of the product monomers are formed in the highest accessible rotational level. This mechanism explains the strong variation of the predissociation rate with isotopic content and nuclear spin form of the complex. Strong deviation of the observed relative abundances of ortho and para forms of the complexes from those of the monomers is qualitatively explained by the secondary ligand exchange reactions in the ionic beam, within the simple thermal equilibrium model. Positions and intensities of the hot v=0, n=1→v=1, n=1 and combination v=0, n=0→v=1, n=1 bands are predicted, and implications to the photoelectron spectroscopy of the complex are briefly discussed.

  15. Near infrared-red models for the remote estimation of chlorophyll- a concentration in optically complex turbid productive waters: From in situ measurements to aerial imagery

    NASA Astrophysics Data System (ADS)

    Gurlin, Daniela

    Today the water quality of many inland and coastal waters is compromised by cultural eutrophication in consequence of increased human agricultural and industrial activities and remote sensing is widely applied to monitor the trophic state of these waters. This study explores near infrared-red models for the remote estimation of chlorophyll-a concentration in turbid productive waters and compares several near infrared-red models developed within the last 35 years. Three of these near infrared-red models were calibrated for a dataset with chlorophyll-a concentrations from 2.3 to 81.2 mg m -3 and validated for independent and statistically significantly different datasets with chlorophyll-a concentrations from 4.0 to 95.5 mg m-3 and 4.0 to 24.2 mg m-3 for the spectral bands of the MEdium Resolution Imaging Spectrometer (MERIS) and Moderate-resolution Imaging Spectroradiometer (MODIS). The developed MERIS two-band algorithm estimated chlorophyll-a concentrations from 4.0 to 24.2 mg m-3, which are typical for many inland and coastal waters, very accurately with a mean absolute error 1.2 mg m-3. These results indicate a high potential of the simple MERIS two-band algorithm for the reliable estimation of chlorophyll-a concentration without any reduction in accuracy compared to more complex algorithms, even though more research seems required to analyze the sensitivity of this algorithm to differences in the chlorophyll-a specific absorption coefficient of phytoplankton. Three near infrared-red models were calibrated and validated for a smaller dataset of atmospherically corrected multi-temporal aerial imagery collected by the hyperspectral airborne imaging spectrometer for applications (AisaEAGLE). The developed algorithms successfully captured the spatial and temporal variability of the chlorophyll-a concentrations and estimated chlorophyll- a concentrations from 2.3 to 81.2 mg m-3 with mean absolute errors from 4.4 mg m-3 for the AISA two band algorithm to 5.2 mg m-3

  16. Faraday Structure of the Jets of the Microquasar SS433. I. Rotation Measure Distribution

    NASA Astrophysics Data System (ADS)

    Kosowsky, Michael; Roberts, David H.; Wardle, John F. C.

    2014-06-01

    We report a detailed study of the Faraday rotation in the jets of SS433 using five epochs of data from the Jansky VLA. Observations spanning 4.5-8.5 GHz were used to create linear polarization images in multiple spectral windows using CASA, and the data passed to AIPS for analysis. We used both the traditional rotation measure derivation task RM and the Faraday rotation measure synthesis task FARS to derive the distribution of the Faraday rotation measure ("RM") across the source. We find it to be non-uniform, indicating that at least part of the RM is local to the source. We track the evolution of the RM structure over a period of about 50 days and find significant changes, further supporting the local origin of some of the rotation. In a companion paper we attempt to correlate the RM structure with the well-known 3-D morphology of the jets.

  17. Faraday rotation influence factors in tellurite-based glass and fibers

    NASA Astrophysics Data System (ADS)

    Chen, Qiuling; Wang, Hui; Wang, Qingwei; Chen, Qiuping

    2015-09-01

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO2-ZnO-Na2O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement.

  18. Basic research for development of the beam profile monitor based on a Faraday cup array system

    NASA Astrophysics Data System (ADS)

    Park, Mook-Kwang

    2015-10-01

    The basic design used to develop a beam profile monitor based on a Faraday cup array (FCA), which has the advantages of high robustness, reliability, and long-term stability, along with the ability to measure the ion current over a wide dynamic range, was developed. The total system is divided into three parts: i.e., a faraday cup, measuring electronics, and a display program part. The FCA was considered to consist of a collimator, suppressor, insulator frame, and 64 (8 × 8 array) tiny Faraday cups (FC). An electronic circuit using a multiplexer was applied to effectively address many signal lines and the printed circuit board (PCB) was designed to be divided into three parts, i.e., an electrode PCB (ELEC PCB), capacitance PCB (CAP PCB), and control PCB (CON PCB).

  19. Giant plateau in the terahertz Faraday angle in gated Bi2Se3

    NASA Astrophysics Data System (ADS)

    Jenkins, Gregory S.; Sushkov, Andrei B.; Schmadel, Don C.; Kim, M.-H.; Brahlek, Matthew; Bansal, Namrata; Oh, Seongshik; Drew, H. Dennis

    2012-12-01

    We report gated terahertz Faraday angle measurements on epitaxial Bi2Se3 thin films capped with In2Se3. A plateau is observed in the real part of the Faraday angle at an onset gate voltage corresponding to no band bending at the surface, which persists into accumulation. The plateau is two orders of magnitude flatter than the step size expected from a single Landau level in the low-frequency limit, quantized in units of the fine structure constant. At 8 T, the plateau extends over a range of gate voltage that spans an electron density greater than 14 times the quantum flux density. Both the imaginary part of the Faraday angle and transmission measurements indicate dissipative off-axis and longitudinal conductivity channels associated with the plateau.

  20. Michael Faraday on the Learning of Science and Attitudes of Mind

    NASA Astrophysics Data System (ADS)

    Crawford, Elspeth

    The paper makes use of Michael Faraday's ideas about learning, in particular his thoughts about attitudes to the unknowns of science and the development of an attitude which improves scientific decision-making. An invented scenario involving nursery school children demonstrates some attitudes displayed there. Discussion of the scenario and variation in possible outcomes suggests that Faraday's views are relevant to scientific learning in general. The main thesis of the paper is that it is central to learning in science to acknowledge that there is an inner struggle involved in facing unknowns, and that empathy with the fears and expectations of learners is an essential quality if genuinely scientific thought is to develop. It is suggested, following Faraday, that understanding our own feelings while we teach is a pre-requisite to enabling such empathy and that only then will we be in a position to evaluate accurately whether or not our pupils are thinking scientifically.

  1. Dispersion of Electric-Field-Induced Faraday Effect in Magnetoelectric Cr2O3

    NASA Astrophysics Data System (ADS)

    Wang, Junlei; Binek, Christian

    2016-03-01

    The frequency dependence of the electric-field-induced magneto-optical Faraday effect is investigated in the magnetoelectric antiferromagnet chromia. Two electrically induced Faraday signals superimpose in proportion to the linear magnetoelectric susceptibility α and the antiferromagnetic order parameter η . The relative strength of these contributions is determined by the frequency of the probing light and can be tuned between extreme characteristics following the temperature dependence of α or η . The frequency dependence is analyzed in terms of electric dipole transitions of perturbed Cr3 + crystal-field states. The results allow us to measure voltage-controlled selection, isothermal switching, and temperature dependence of η in a tabletop setup. The voltage-specific Faraday rotation is independent of the sample thickness, making the method scalable and versatile down to the limit of dielectric breakdown.

  2. Optimization of lithography process for the fabrication of Micro-Faraday cup array

    NASA Astrophysics Data System (ADS)

    Arab, J. M.; Brahmankar, P. K.; Pawade, R. S.; Srivastava, A. K.

    2016-05-01

    Micro-faraday cup array detector (MFCAD) is used for the detection of charge of incoming ions in mass spectrometry. The optimization of complete lithography process for the fabrication of Micro-Faraday cup array detector structure in photoresist (AZ4903) on silicon substrate is reported in this work. An UV-LED based exposure system is designed for the transfer of micro-faraday cup structure on to the photoresist. The assembly consists of exposure system, collimating lens and mask/substrate holder. The fabrication process consists of coating of photoresist on Silicon substrate, designing and printing the photo mask and finally the UV lithography. These fabricated structures are characterized using optical microscope. The dimensions achieved are found to be similar as compared to the photo mask.

  3. Ga(3+)/Ln(3+) Metallacrowns: A Promising Family of Highly Luminescent Lanthanide Complexes That Covers Visible and Near-Infrared Domains.

    PubMed

    Chow, Chun Y; Eliseeva, Svetlana V; Trivedi, Evan R; Nguyen, Tu N; Kampf, Jeff W; Petoud, Stéphane; Pecoraro, Vincent L

    2016-04-20

    Luminescent lanthanide(III)-based molecular scaffolds hold great promises for materials science and for biological applications. Their fascinating photophysical properties enable spectral discrimination of emission bands that range from the visible to the near-infrared (NIR) regions. In addition, their strong resistance to photobleaching makes them suitable for long duration or repeated biological experiments using a broad range of sources of excitation including intense and focalized systems such as lasers (e.g., confocal microscopy). A main challenge in the creation of luminescent lanthanide(III) complexes lies in the design of a ligand framework that combines two main features: (i) it must include a chromophoric moiety that possesses a large molar absorptivity and is able to sensitize several different lanthanide(III) ions emitting in the visible and/or in the near-infrared, and (ii) it must protect the Ln(3+) cation by minimizing nonradiative deactivation pathways due to the presence of -OH, -NH and -CH vibrations. Herein, a new family of luminescent Ga(3+)/Ln(3+) metallacrown (MC) complexes is reported. The MCs with the general composition [LnGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] (Ln-1, Ln = Sm(3+)-Yb(3+)) were synthesized in a one pot reaction using salicylhydroxamic acid (H3shi) with Ga(3+) and Ln(3+) nitrates as reagents. The molecular structure of [DyGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] was obtained by X-ray analysis of single crystals and shows that the complex is formed as a [12-MCGa(III)shi-4] core with four benzoate molecules bridging the central Dy(3+) ion to the Ga(3+) ring metals. The powder X-ray diffraction analysis demonstrates that all other isolated complexes are isostructural. The extended analysis of the luminescence properties of these complexes, excited by the electronic states of the chromophoric ligands, showed the presence of characteristic, sharp f-f transitions that can be generated not only in the NIR (Sm, Dy, Ho, Er, Yb) but also in the

  4. An infrared sensor analysing label-free the secondary structure of the Abeta peptide in presence of complex fluids.

    PubMed

    Nabers, Andreas; Ollesch, Julian; Schartner, Jonas; Kötting, Carsten; Genius, Just; Haußmann, Ute; Klafki, Hans; Wiltfang, Jens; Gerwert, Klaus

    2016-03-01

    The secondary structure change of the Abeta peptide to beta-sheet was proposed as an early event in Alzheimer's disease. The transition may be used for diagnostics of this disease in an early state. We present an Attenuated Total Reflection (ATR) sensor modified with a specific antibody to extract minute amounts of Abeta peptide out of a complex fluid. Thereby, the Abeta peptide secondary structure was determined in its physiological aqueous environment by FTIR-difference-spectroscopy. The presented results open the door for label-free Alzheimer diagnostics in cerebrospinal fluid or blood. It can be extended to further neurodegenerative diseases. An immunologic ATR-FTIR sensor for Abeta peptide secondary structure analysis in complex fluids is presented. PMID:25808829

  5. Achieving near-infrared emission in platinum(ii) complexes by using an extended donor-acceptor-type ligand.

    PubMed

    Zhang, You-Ming; Meng, Fanyuan; Tang, Jian-Hong; Wang, Yafei; You, Caifa; Tan, Hua; Liu, Yu; Zhong, Yu-Wu; Su, Shijian; Zhu, Weiguo

    2016-03-15

    A series of C^N ligands with donor-acceptor (D-A) frameworks, i.e. TPA-BTPy, TPA-BTPy-Fl and Fl(TPA-BTPy)2, as well as their mono- and di-nuclear platinum(ii) complexes of (TPA-BTPy)Pt(pic), (TPA-BTPy-Fl)Pt(pic) and [Fl(TPA-BTPy)2]Pt2(pic)2 are respectively designed and synthesized, in which triphenylamine (TPA) and fluorene (Fl) are used as the D units, 4-(pyrid-2-yl)benzothiadiazole (BTPy) as the A unit, and the picolinate anion (pic) as the auxiliary ligand. Their thermal, photophysical and electrochemical characteristics were investigated. Compared to mono-nuclear platinum complexes and their free ligands, this dinuclear one of [Fl(TPA-BTPy)2]Pt2(pic)2 shows an obvious interaction from the platinum atom to ligand and dual emission peaks at 828 and 601 nm in thin films. Upon oxidation with antimony pentachloride in dichloromethane, charge transfer transitions between the platinum and ligand are observed for the three complexes. The single-emissive-layer polymer light-emitting devices doped with [Fl(TPA-BTPy)2]Pt2(pic)2 display a strong electroluminescence with dual emission peaks at 780 and 600 nm at a dopant concentration over 4 wt%. A maximum external quantum efficiency of 0.02% with a radiance of 59 μW cm(-2) is obtained in the device at 30 wt% dopant concentration. This work indicates that the use of an extended D-A-type ligand is an effective strategy to achieve NIR emission for platinum complexes in PLEDs. PMID:26880278

  6. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures

    USGS Publications Warehouse

    Fullerton, Aimee H.; Torgersen, Christian; Lawler, Joshua J.; Faux, Russell N.; Steel, E. Ashley; Beechie, Timothy J.; Ebersole, Joseph L.; Leibowitz, Scott J.

    2015-01-01

    Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and leveling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature versus distance) for 53 rivers in the Pacific Northwest (USA) using an extensive dataset of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically, and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient, and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform, or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling

  7. Near-infrared electrochromism in electropolymerized metallopolymeric films of a phen-1,4-diyl-bridged diruthenium complex.

    PubMed

    Nie, Hai-Jing; Zhong, Yu-Wu

    2014-10-20

    A phen-1,4-diyl-bridged tris-bidentate diruthenium complex 3(PF6)2, [Ru2(dpb)(vbpy)4](PF6)2, has been designed and prepared, where dpb is 1,4-di(pyrid-2-yl)benzene and vbpy is 5-vinyl-2,2'-bipyridine. Upon reductive electropolymerization, metallopolymeric thin films of this complex have been deposited on platinum and ITO glass electrode surfaces. These films display two well-separated redox couples at +0.16 and +0.60 V versus Ag/AgCl. In the mixed-valent state, these films display intense intervalence charge transfer absorptions around 1300 nm. The electrochromic behavior at this wavelength has been examined by spectroelectrochemical measurements and double-potential-step chronoamperometry. A highest optical contrast ratio of 41% at 1300 nm with a coloration efficiency of 200 cm(2)/C has been achieved. The electrochromic behavior is highly dependent on the surface coverage. The highest contrast ratio was obtained with a film of 6.0 × 10(-9) mol/cm(2). In addition, a monoruthenium complex 2(PF6), [Ru(dpb)(vbpy)2](PF6), has been prepared and electropolymerized for a comparison study. PMID:25300035

  8. Structure of the complex UCl4•2DMF by vibrational infrared spectroscopy and density functional theory

    NASA Astrophysics Data System (ADS)

    Shundalau, M. B.; Komyak, A. I.; Zazhogin, A. P.; Umreiko, D. S.

    2012-03-01

    Structural models are designed and spectral characteristics are computed based on DFT calculations for a complex of UCl4 with two molecules of DMF (UCl4•2DMF). The calculations were carried out using a B3LYP hybrid functional in the LANL2DZ effective core potential approximation for the uranium atom and an allelectron basis set, cc-pVDZ, for all other atoms with partial force-field scaling. Two structural variants were found for the complex. The first structure is more stable, has C i symmetry, and is characterized by trans arrangement of ligands. The energy of the second structure of C2 symmetry (with cis arrangement of ligands) is greater by 46 kJ/mol. The formation of the complex is shown to be accompanied by significant changes in the structure of UCl4. The obtained spectral characteristics are analyzed and compared with experimental data. The adequacy of the proposed models and the agreement between calculation and experiment are demonstrated.

  9. Singlet and triplet excitation management in a bichromophoric near-infrared-phosphorescent BODIPY-benzoporphyrin platinum complex

    SciTech Connect

    Whited, M. T.; Djurovich, P. I.; Roberts, Sean T.; Durrell, A. C.; Schlenker, C. W.; Bradforth, Stephen E.; Thompson, Mark E.

    2011-01-12

    Multichromophoric arrays provide one strategy for assembling molecules with intense absorptions across the visible spectrum but are generally focused on systems that efficiently produce and manipulate singlet excitations and therefore are burdened by the restrictions of (a) unidirectional energy transfer and (b) limited tunability of the lowest molecular excited state. In contrast, we present here a multichromophoric array based on four boron dipyrrins (BODIPY) bound to a platinum benzoporphyrin scaffold that exhibits intense panchromatic absorption and efficiently generates triplets. The spectral complementarity of the BODIPY and porphryin units allows the direct observation of fast bidirectional singlet and triplet energy transfer processes (kST(1BDP→1Por) = 7.8 × 1011 s-1, kTT(3Por→3BDP) = 1.0 × 1010 s-1, kTT(3BDP→3Por) = 1.6 × 1010 s-1), leading to a long-lived equilibrated [3BDP][Por]⇌[BDP][3Por] state. This equilibrated state contains approximately isoenergetic porphyrin and BODIPY triplets and exhibits efficient near-infrared phosphorescence (λem = 772 nm, Φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable redistribution of energy from the core back onto the antennae.

  10. Faraday-effect light-valve arrays for adaptive optical instruments

    SciTech Connect

    Hirleman, E.D.; Dellenback, P.A.

    1987-01-01

    The ability to adapt to a range of measurement conditions by autonomously configuring software or hardware on-line will be an important attribute of next-generation intelligent sensors. This paper reviews the characteristics of spatial light modulators (SLM) with an emphasis on potential integration into adaptive optical instruments. The paper focuses on one type of SLM, a magneto-optic device based on the Faraday effect. Finally, the integration of the Faraday-effect SLM into a laser-diffraction particle-sizing instrument giving it some ability to adapt to the measurement context is discussed.

  11. Polarization-independent optical circulator for high accuracy Faraday depolarization lidar.

    PubMed

    Shiina, Tatsuo; Noguchi, Kazuo; Fukuchi, Tetsuo

    2012-03-01

    A high precision, polarization-independent optical circulator was developed for high accuracy Faraday depolarization lidar. Glan laser prisms and other novel optics were utilized in the circulator optics, resulting in a high extinction ratio of polarization of >30 dB. High accuracy is needed to detect a small rotation angle in the polarization plane of the propagating beam. It is generated by the Faraday effect due to the lightning discharge. The developed circulator delivered high performance of insertion loss and isolation as laser transmitter and echo receiver in the inline lidar optics. PMID:22410893

  12. Growth and Faraday rotation characteristics of TbVO4 crystals

    NASA Astrophysics Data System (ADS)

    Guo, Feiyun; Chen, Xin; Gong, Zhongliang; Chen, Xiang; Zhao, Bin; Chen, Jianzhong

    2015-09-01

    TbVO4 (TV) single crystals with dimensions of 18 × 18 × 16 mm3 were grown by Czochralski method under different atmosphere. XPS studies revealed the presence of V4+ and Tb4+ in TV crystal grown at 99.9% N2 atmosphere, which caused a wide absorption peak centered at 950 nm in the transmission spectrum. TV crystal grown at 80% N2 + 20% CO2 mixed atmosphere has high transmittance at 600-1500 nm waveband. Faraday rotation spectra of TV crystal were measured. TV crystal has a larger Faraday rotation than terbium gallium garnet (TGG) crystal at 500-1500 nm waveband.

  13. Interaction of vortex lattice with ultrasound and the acoustic Faraday effect

    SciTech Connect

    Dominguez, D.; Bulaevskii, L.; Ivlev, B.; Maley, M.; Bishop, A.R. |

    1995-03-27

    The interaction of sound with the vortex lattice is considered for high-{ital T}{sub {ital c}} superconductors, taking into account pinning and electrodynamic forces between vortices and crystal displacements. At low temperatures the Magnus force results in the acoustic Faraday effect; the velocity of sound propagating along the magnetic field depends on the polarization. This effect is linear in the Magnus force and magnetic field in crystals with equivalent {ital a} and {ital b} axes for a field parallel to the {ital c} axis. In the thermally activated flux flow regime, the Faraday effect is caused by electric and magnetic fields induced by vortices and acting on ions.

  14. Strong interband Faraday rotation in 3D topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Ohnoutek, L.; Hakl, M.; Veis, M.; Piot, B. A.; Faugeras, C.; Martinez, G.; Yakushev, M. V.; Martin, R. W.; Drašar, Č.; Materna, A.; Strzelecka, G.; Hruban, A.; Potemski, M.; Orlita, M.

    2016-01-01

    The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass.

  15. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  16. Effective transition probability for the Faraday effect of lanthanide(III) ion solutions.

    PubMed

    Miyamoto, Kayoko; Isai, Kento; Suwa, Masayori; Watarai, Hitoshi

    2009-05-13

    The Faraday effects of 14 lanthanide(III) ion solutions were systematically analyzed on the basis of the Faraday C term. The effective transition probability, K, which measures the magneto-optical contribution of the 4f(n) --> 4f(n-1)5d transition to the molar Verdet constant, was determined. Linear correlations between K and the square root of the molar magnetic susceptibility of the lanthanide(III) ions, chi(m)(1/2), were obtained. From the observed new regularity, K for promethium(III) was estimated. PMID:19378955

  17. Kerr and Faraday microscope for space- and time-resolved studies

    NASA Astrophysics Data System (ADS)

    Schmitt, Oliver; Steil, Daniel; Alebrand, Sabine; Ganss, Fabian; Hehn, Michel; Mangin, Stéphane; Albrecht, Manfred; Mathias, Stefan; Cinchetti, Mirko; Aeschlimann, Martin

    2014-09-01

    We present a multi-purpose scanning magneto-optical microscope for the investigation of magnetic thin films. The setup can be used for both static and time-resolved (pump-probe) measurements. It is moreover compatible with samples with arbitrary magnetic anisotropy, as it allows Kerr measurements in polar and longitudinal geometry as well as in transmission (Faraday geometry). We demonstrate that the microscope can be used in the following modi: (i) static imaging mode (in polar Kerr and Faraday geometry) with a spatial resolution of 1.7 μm; (ii) time-resolved mode (polar Kerr geometry) with a temporal resolution of 300 femtoseconds.

  18. Enhanced Faraday rotation by crystals of core-shell magnetoplasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Varytis, P.; Pantazopoulos, P. A.; Stefanou, N.

    2016-06-01

    Collective hybridized plasmon modes, which enable strong magnetooptical coupling and consequent enhanced Faraday effect in three-dimensional periodic assemblies of magnetic dielectric nanoparticles coated with a noble-metal shell, are studied by means of rigorous full electrodynamic calculations using an extension of the layer-multiple-scattering method, in conjunction with the effective-medium approximation. A thorough analysis of relevant photonic dispersion diagrams and transmission spectra provides a consistent explanation of the underlying physical mechanisms to a degree that goes beyond existing interpretation. It is shown that properly designed structures of such composite magnetoplasmonic nanoparticles offer a versatile platform for engineering increased and broadband Faraday rotation.

  19. Graphite-ceramic rf Faraday-thermal shield and plasma limiter

    DOEpatents

    Hwang, D.L.Q.; Hosea, J.C.

    1983-05-05

    The present invention is directed to a brazing procedure for joining a ceramic or glass material (e.g., Al/sub 2/O/sub 3/ or Macor) to graphite. In particular, the present invention is directed to a novel brazing procedure for the production of a brazed ceramic graphite product useful as a Faraday shield. The brazed ceramic graphite Faraday shield of the present invention may be used in Magnetic Fusion Devices (e.g., Princeton Large Torus Tokamak) or other high temperature resistant apparatus.

  20. The Rb 780-nanometer Faraday anomalous dispersion optical filter: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Yin, B.; Alvarez, L. S.; Shay, T. M.

    1994-01-01

    The Faraday anomalous dispersion optical filter may provide ultra-high background noise rejection for free-space laser communications systems. The theoretical model for the filter is reported. The experimental measurements and their comparison with theoretical results are discussed. The results show that the filter can provide a 56-dB solar background noise rejection with about a 2-GHz transmission bandwidth and no image degradation. To further increase the background noise rejection, a composite Zeeman and Faraday anomalous dispersion optical filter is designed and experimentally demonstrated.

  1. Infrared band extinctions and complex refractive indices of crystalline C2H2 and C4H2

    NASA Astrophysics Data System (ADS)

    Khanna, R. K.; Ospina, Mario J.; Zhao, Guizhi

    1988-03-01

    Thermal IR absorption intensities are obtained for thin films of crystalline C2H2 and C4H2 at 70 K, and their n and k complex refractive indices are ascertained by separating true film absorption from interface reflection on the basis of an analysis of the transmission spectrum ratio for two sample thicknesses. This method significantly simplifies the n and k iteration process. The n and k values determined in the laboratory will in most cases reproduce a given sample thickness' observed transmission to within + or - 5 percent.

  2. Infrared band extinctions and complex refractive indices of crystalline C2H2 and C4H2

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Ospina, Mario J.; Zhao, Guizhi

    1988-01-01

    Thermal IR absorption intensities are obtained for thin films of crystalline C2H2 and C4H2 at 70 K, and their n and k complex refractive indices are ascertained by separating true film absorption from interface reflection on the basis of an analysis of the transmission spectrum ratio for two sample thicknesses. This method significantly simplifies the n and k iteration process. The n and k values determined in the laboratory will in most cases reproduce a given sample thickness' observed transmission to within + or - 5 percent.

  3. Hydrogen-bonding interactions of uric acid complexes with water/melamine by mid-infrared spectroscopy.

    PubMed

    Saigusa, Hiroyuki; Nakamura, Daisuke; Urashima, Shu-hei

    2015-09-21

    Hydrogen (H)-bonding interactions of uric acid (UA) with water have been investigated via IR-UV double resonance measurements in the mid-IR region. Comparison of the present results with those obtained previously in the near-IR region enables us to examine microscopic hydration effects that are specific to the H-bonding acceptor sites of UA. It is shown that hydration of the C8O site promotes the mode coupling of this stretch with the C2O stretch. The occurrence of this coupling is manifested in the IR intensity pattern, in which the transition associated with the in-phase contribution C8O + C2O is significantly suppressed, whereas the corresponding out-of-phase contribution gives rise to a strong peak. We also measured the mid-IR spectra of the 1 : 1 complex formed between UA and melamine (MEL) and carried out a structural analysis using the spectroscopic signature of the H-bonding derived from the result of the monohydrated cluster. It is shown that the complex possesses a triple H-bonding structure with the C2O acceptor site of UA H-bonded to MEL. Furthermore, the IR-depleted UV spectroscopy technique was employed in order to ascertain whether other structural isomers are present in the probe UV spectra. PMID:26271289

  4. Structural dynamics of nitrosylruthenium isomeric complexes studied with steady-state and transient pump-probe infrared spectroscopies.

    PubMed

    Zhao, Yan; Yang, Fan; Wang, Jianru; Yu, Pengyun; Pan, Huifen; Wang, Hongfei; Wang, Jianping

    2016-09-01

    The characteristic nitrosyl stretching (NO) in the region of 1800-1900cm(-1) was used to study the geometric and ligand effect on two nitrosylruthenium complexes, namely [Ru(OAc)(2QN)2NO] (QN=2-chloro-8-quinolinol (H2cqn) or QN=2-methyl-8-quinolinol (H2mqn)). The NO stretching frequency (νNO) was found in the following order: νcis-1 (2cqn)>νcis-2 (2cqn)>νcis-1 (2mqn)>νtrans (2mqn). The results exhibited a spectral sensitivity of the NO mode to both charge distribution and ligand arrangement, which was supported by ab initio computations and natural bond orbital (NBO) analyses. Further, the vibrational population of the vibrationally excited NO stretching mode was found to relax on the order of 7-10ps, showing less than 30% variation from one isomer to another, which were explained on the basis of NO local structures and solute-solvent interactions in these isomeric nitrosylruthenium complexes. PMID:27209490

  5. Structural dynamics of nitrosylruthenium isomeric complexes studied with steady-state and transient pump-probe infrared spectroscopies

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yang, Fan; Wang, Jianru; Yu, Pengyun; Pan, Huifen; Wang, Hongfei; Wang, Jianping

    2016-09-01

    The characteristic nitrosyl stretching (NO) in the region of 1800-1900 cm- 1 was used to study the geometric and ligand effect on two nitrosylruthenium complexes, namely [Ru(OAc)(2QN)2NO] (QN = 2-chloro-8-quinolinol (H2cqn) or QN = 2-methyl-8-quinolinol (H2mqn)). The NO stretching frequency (νNO) was found in the following order: νcis-1 (2cqn) > νcis-2 (2cqn) > νcis-1 (2mqn) > νtrans (2mqn). The results exhibited a spectral sensitivity of the NO mode to both charge distribution and ligand arrangement, which was supported by ab initio computations and natural bond orbital (NBO) analyses. Further, the vibrational population of the vibrationally excited NO stretching mode was found to relax on the order of 7-10 ps, showing less than 30% variation from one isomer to another, which were explained on the basis of NO local structures and solute-solvent interactions in these isomeric nitrosylruthenium complexes.

  6. Growth, Faraday and inverse Faraday characteristics of Tb2Ti2O7 crystal.

    PubMed

    Guo, Feiyun; Sun, Yilin; Yang, Xiongsheng; Chen, Xin; Zhao, Bin; Zhuang, Naifeng; Chen, Jianzhong

    2016-03-21

    Tb2Ti2O7 (TTO) single crystal with dimensions of 20 × 20 × 16 mm3 was grown by the Czochralski method. Rietveld structure refinement of X-ray diffraction (XRD) data confirms that the compound crystallizes in the cubic system with pyrochlore structure. Transmission spectra, Magnetic circular dichroism (MCD) spectra, Faraday and inverse Faraday characteristics of TTO crystal have been measured and analyzed in detail. The results demonstrate that TTO crystal has high transmittance at 700-1400 nm waveband and a larger Verdat constant than that of TGG reported. Magnetic circular dichroism (MCD) spectra showed that the 4f→4f transitions of Tb3+ have significant contributions to the magneto-optical activity (MOA). In the time-resolved pump-probe spectroscopy, the rotation signals of the probe beam based on the inverse Faraday effect in magneto-optical crystal were observed at zero time delay, the full width at half maximum of the rotation and ellipticity signals can be as fast as ~500 fs, which indicates that TTO crystal can be a promising material for ultrafast all-optical magnetic switching. PMID:27136771

  7. Infrared photodissociation of a water molecule from a flexible molecule-H{sub 2}O complex: Rates and conformational product yields following XH stretch excitation

    SciTech Connect

    Clarkson, Jasper R.; Herbert, John M.; Zwier, Timothy S.

    2007-04-07

    Infrared-ultraviolet hole-burning and hole-filling spectroscopies have been used to study IR-induced dissociation of the tryptamine{center_dot}H{sub 2}O and tryptamine{center_dot}D{sub 2}O complexes. Upon complexation of a single water molecule, the seven conformational isomers of tryptamine collapse to a single structure that retains the same ethylamine side chain conformation present in the most highly populated conformer of tryptamine monomer. Infrared excitation of the tryptamine{center_dot}H{sub 2}O complex was carried out using a series of infrared absorptions spanning the range of 2470-3715 cm{sup -1}. The authors have determined the conformational product yield over this range and the dissociation rate near threshold, where it is slow enough to be measured by our methods. The observed threshold for dissociation occurred at 2872 cm{sup -1} in tryptamine{center_dot}H{sub 2}O and at 2869 cm{sup -1} in tryptamine{center_dot}D{sub 2}O, with no dissociation occurring on the time scale of the experiment ({approx}2 {mu}s) at 2745 cm{sup -1}. The dissociation time constants varied from {approx}200 ns for the 2869 cm{sup -1} band of tryptamine{center_dot}D{sub 2}O to {approx}25 ns for the 2872 cm{sup -1} band of tryptamine{center_dot}H{sub 2}O. This large isotope dependence is associated with a zero-point energy effect that increases the binding energy of the deuterated complex by {approx}190 cm{sup -1}, thereby reducing the excess energy available at the same excitation energy. At all higher energies, the dissociation lifetime was shorter than the pulse duration of our lasers (8 ns). At all wavelengths, the observed products in the presence of collisions are dominated by conformers A and B of tryptamine monomer, with small contributions from the other minor conformers. In addition, right at threshold (2869 cm{sup -1}), tryptamine{center_dot}D{sub 2}O dissociates exclusively to conformer A in the absence of collisions with helium, while both A and B conformational

  8. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  9. Dynamic Interplay of Coherent Rotations and Domain Wall Motion in Faraday Rotators based on Ferromagnetic Crystals

    NASA Astrophysics Data System (ADS)

    Garzarella, Anthony; Wu, Dong; Shinn, Mannix

    Under small, externally-applied magnetic fields, the Faraday rotation in magneto-optic material containing ferromagnetic domains is driven primarily by two principal mechanisms: domain wall motion and coherent domain rotations. Domain wall motion yields a larger Faraday responsivity but is limited by magnetically induced optical incoherence and by damping effects. Coherent domain rotation yields smaller Faraday rotations, but exhibits a flatter and broader frequency response. The two mechanisms occur along orthogonal principal axes and may be probed independently. However, when probed along an oblique angle to the principal axes, the relationship between the Faraday rotation and the external field changes from linear to tensorial. Although this may lead to more complicated phenomena (e.g. a sensitivity axis that depends on RF frequency), the interplay of domain rotation and domain wall motion can be exploited to improve responsivity or bandwidth. The detailed experimental data can be understood in terms of a quantitative model for the magnitude and direction of the responsivity vector. Applications to magnetic field sensors based on arrayed bismuth doped iron garnet films will be emphasized in this presentation.

  10. All-Fiber Optical Magnetic Field Sensor Based on Faraday Rotation

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-18

    An all-fiber optical magnetic field sensor with a sensitivity of 0.49 rad/T is demonstrated. It consists of a fiber Faraday rotator (56-wt.%-terbium–doped silica fiber) and a fiber polarizer (Corning SP1060 fiber).

  11. A Bright Spark: Open Teaching of Science Using Faraday's Lectures on Candles

    ERIC Educational Resources Information Center

    Walker, Mark; Groger, Martin; Schutler, Kirsten; Mosler, Bernd

    2008-01-01

    As well as being a founding father of modern chemistry and physics Michael Faraday was also a skilled lecturer, able to explain scientific principles and ideas simply and concisely to nonscientific audiences. However science didactics today emphasizes the use of open and student-centered methods of teaching in which students find and develop…

  12. Michael Faraday on the Learning of Science and Attitudes of Mind.

    ERIC Educational Resources Information Center

    Crawford, Elspeth

    1998-01-01

    Makes use of Michael Faraday's ideas on learning, focusing on his attitudes toward the unknowns of science and the development of an attitude that improves scientific decision making. This approach acknowledges that there is an inner struggle involved in facing unknowns. (DDR)

  13. If Maxwell Had Worked between Ampere and Faraday: An Historical Fable with a Pedagogical Moral.

    ERIC Educational Resources Information Center

    Jammer, Max; Stachel, John

    1980-01-01

    Describes a new pedagogical approach to electromagnetic theory, in which the displacement current and the Galilean relativity principle are introduced before discussion of the Faraday induction term. Rationale for the alternate order of introducing these concepts and laws is explained, relative to their historical development. (CS)

  14. Far off-resonance laser frequency stabilization using multipass cells in Faraday rotation spectroscopy.

    PubMed

    Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai

    2016-04-01

    We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50  mm and the reflected optical path length was 2L=100  mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6  GHz and 4 MHz/h at a detuning of -5.2  GHz were also obtained for the transmitted and reflected light Faraday signal. PMID:27139650

  15. Design and construction of a Faraday cup for measurement of small electronic currents

    NASA Technical Reports Server (NTRS)

    Veyssiere, A.

    1985-01-01

    The design of a device to measure and integrate very small currents generated by the impact of a charged particle beam upon a Faraday cut is described. The main component is a graphite block capable of stopping practically all the incident changes. The associated electronic apparatus required to measure better than 10/13 ampere with a precision of 10/0 is described.

  16. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes, the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  17. Modulation and suppression of weak Cotton-Mouton effect by Faraday rotation

    NASA Astrophysics Data System (ADS)

    Kravtsov, Yu. A.; Chrzanowski, J.

    2011-06-01

    Polarization of electromagnetic waves in magnetized plasma is studied in conditions, when Cotton-Mouton effect is weak enough as compared with Faraday one. Evolution of polarization state is described by new mathematical approach, namely, by angular variables technique (AVT) which describes evolution of the angular parameters of polarization ellipse in magnetized plasma. The method of consequent approximations is applied, which uses the ratio ( Ω ⊥/ Ω 3) of Cotton-Mouton and Faraday terms, as a small parameter of a problem and allows obtaining simple analytical expressions for azimuthal and ellipticity angles in frame of the first and second approximations. The phenomenon of ellipticity modulation and suppression by Faraday rotation is revealed, which consists in ellipticity decreasing for stronger Faraday rotation, what makes polarization closer to linear one. Numerical illustration of the phenomenon are presented. It is shown that account of the second-order terms of the method of consequent approximation provides an accuracy better than 1% even in conditions, when small parameter Ω ⊥/ Ω 3 achieves the value 1/4.

  18. Faraday and resonant waves in binary collisionally-inhomogeneous Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sudharsan, J. B.; Radha, R.; Carina Raportaru, Mihaela; Nicolin, Alexandru I.; Balaž, Antun

    2016-08-01

    We study Faraday and resonant waves in two-component quasi-one-dimensional (cigar-shaped) collisionally inhomogeneous Bose–Einstein condensates subject to periodic modulation of the radial confinement. We show by means of extensive numerical simulations that, as the system exhibits stronger spatially-localised binary collisions (whose scattering length is taken for convenience to be of Gaussian form), the system becomes effectively a linear one. In other words, as the scattering length approaches a delta-function, we observe that the two nonlinear configurations typical for binary cigar-shaped condensates, namely the segregated and the symbiotic one, turn into two overlapping Gaussian wave functions typical for linear systems, and that the instability onset times of the Faraday and resonant waves become longer. Moreover, our numerical simulations show that the spatial period of the excited waves (either resonant or Faraday ones) decreases as the inhomogeneity becomes stronger. Our results also demonstrate that the topology of the ground state impacts the dynamics of the ensuing density waves, and that the instability onset times of Faraday and resonant waves, for a given level of inhomogeneity in the two-body interactions, depend on whether the initial configuration is segregated or symbiotic.

  19. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  20. Shot-noise-limited optical Faraday polarimetry with enhanced laser noise cancelling

    SciTech Connect

    Li, Jiaming; Luo, Le Carvell, Jeff; Cheng, Ruihua; Lai, Tianshu Wang, Zixin

    2014-03-14

    We present a shot-noise-limited measurement of optical Faraday rotations with sub-ten-nanoradian angular sensitivity. This extremely high sensitivity is achieved by using electronic laser noise cancelling and phase sensitive detection. Specially, an electronic laser noise canceller with a common mode rejection ratio of over 100 dB was designed and built for enhanced laser noise cancelling. By measuring the Faraday rotation of ambient air, we demonstrate an angular sensitivity of up to 9.0×10{sup −9} rad/√(Hz), which is limited only by the shot-noise of the photocurrent of the detector. To date, this is the highest angular sensitivity ever reported for Faraday polarimeters in the absence of cavity enhancement. The measured Verdet constant of ambient air, 1.93(3)×10{sup −9}rad/(G cm) at 633 nm wavelength, agrees extremely well with the earlier experiments using high finesse optical cavities. Further, we demonstrate the applications of this sensitive technique in materials science by measuring the Faraday effect of an ultrathin iron film.

  1. Exploring Faraday's Law of Electrolysis Using Zinc-Air Batteries with Current Regulative Diodes

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Paku, Miei

    2007-01-01

    Current regulative diodes (CRDs) are applied to develop new educational experiments on Faraday's law by using a zinc-air battery (PR2330) and a resistor to discharge it. The results concluded that the combination of zinc-air batteries and the CRD array is simpler, less expensive, and quantitative and gives accurate data.

  2. Conditions for the Validity of Faraday's Law of Induction and Their Experimental Confirmation

    ERIC Educational Resources Information Center

    Lopez-Ramos, A.; Menendez, J. R.; Pique, C.

    2008-01-01

    This paper, as its main didactic objective, shows the conditions needed for the validity of Faraday's law of induction. Inadequate comprehension of these conditions has given rise to several paradoxes about the issue; some are analysed and solved in this paper in the light of the theoretical deduction of the induction law. Furthermore, an…

  3. An accurate and efficient algorithm for Faraday rotation corrections for spaceborne microwave radiometers

    NASA Astrophysics Data System (ADS)

    Singh, Malkiat; Bettenhausen, Michael H.

    2011-08-01

    Faraday rotation changes the polarization plane of linearly polarized microwaves which propagate through the ionosphere. To correct for ionospheric polarization error, it is necessary to have electron density profiles on a global scale that represent the ionosphere in real time. We use raytrace through the combined models of ionospheric conductivity and electron density (ICED), Bent, and Gallagher models (RIBG model) to specify the ionospheric conditions by ingesting the GPS data from observing stations that are as close as possible to the observation time and location of the space system for which the corrections are required. To accurately calculate Faraday rotation corrections, we also utilize the raytrace utility of the RIBG model instead of the normal shell model assumption for the ionosphere. We use WindSat data, which exhibits a wide range of orientations of the raypath and a high data rate of observations, to provide a realistic data set for analysis. The standard single-shell models at 350 and 400 km are studied along with a new three-shell model and compared with the raytrace method for computation time and accuracy. We have compared the Faraday results obtained with climatological (International Reference Ionosphere and RIBG) and physics-based (Global Assimilation of Ionospheric Measurements) ionospheric models. We also study the impact of limitations in the availability of GPS data on the accuracy of the Faraday rotation calculations.

  4. Band profile of hydroxyl groups in the infrared spectrum of hydrogen-bonded surface complexes: Ammonia on silicon dioxide

    SciTech Connect

    Pavlov, A.Y.; Tsyganenko, A.A.

    1994-07-01

    Dependences of the band maximum and band half-width of the stretching modes of surface OH and OD groups perturbed by ammonia adsorption on Aerosil were studied as functions of sample temperature, amount of adsorbed ammonia, and thermal treatment in vacuum. The appearance of a low-frequency wing was explained by the formation of polymer chains of OH groups coupled via adsorbed molecules. The latter tend to form a second bond with an oxygen atom of the neighboring OH group in addition to a hydrogen bond with a hydroxyl proton via nitrogen. The wide band at 3250 cm{sup -1} was assigned to NH groups of adsorbed molecules perturbed by H-bonding with oxygen. This band is observed as a shoulder of the coupled-OH group band. The large width of the latter as well as its temperature behavior was explained by differences in the arrangement of OH groups and by anharmonic coupling with the low-frequency vibrational modes of the complex. 14 refs., 4 figs., 4 tabs.

  5. If Maxwell had worked between Ampère and Faraday: An historical fable with a pedagogical moral

    NASA Astrophysics Data System (ADS)

    Jammer, Max; Stachel, John

    1980-01-01

    If one drops the Faraday induction term from Maxwell's equations, they become exactly Galilei invariant. This suggests that if Maxwell had worked between Ampère and Faraday, he could have developed this Galilei-invariant electromagnetic theory so that Faraday's discovery would have confronted physicists with the dilemma: give up the Galileian relativity principle for electromagnetism (ether hypothesis), or modify it (special relativity). This suggests a new pedagogical approach to electromagnetic theory, in which the displacement current and the Galileian relativity principle are introduced before the induction term is discussed.

  6. Near-Infrared-to-Visible Photon Upconversion Sensitized by a Metal Complex with Spin-Forbidden yet Strong S0-T1 Absorption.

    PubMed

    Amemori, Shogo; Sasaki, Yoichi; Yanai, Nobuhiro; Kimizuka, Nobuo

    2016-07-20

    Near-infrared (NIR)-to-visible (vis) photon upconversion (UC) is useful for various applications; however, it remains challenging in triplet-triplet annihilation-based UC, mainly due to the energy loss during the S1-to-T1 intersystem crossing (ISC) of molecular sensitizers. In this work, we circumvent this energy loss by employing a sensitizer with direct S0-to-T1 absorption in the NIR region. A mixed solution of an osmium complex having a strong S0-T1 absorption and rubrene emitter upconverts NIR light (λ = 938 nm) to visible light (λ = 570 nm). Sensitizer-doped emitter nanoparticles are prepared by re-precipitation and dispersed into an oxygen-barrier polymer. The obtained composite film shows a stable NIR-to-vis UC emission based on triplet energy migration (TEM), even in air. A high UC quantum yield of 3.1% is observed for this TEM-UC system, expanding the scope of molecular sensitizers for NIR-to-vis UC. PMID:27354325

  7. Infrared diode laser spectroscopy of the Ne-D2O van der Waals complex: Strong Coriolis and angular-radial coupling

    NASA Astrophysics Data System (ADS)

    Li, Song; Zheng, Rui; Zhu, Yu; Duan, Chuanxi

    2011-10-01

    Four internal-rotation/vibration bands of the Ne-D2O complex have been measured in the v2 bend region of D2O using a tunable infrared diode laser spectrometer to probe a slit supersonic expansion. Three ortho bands are excited from the ground state Σ(000) to the Σ and Π(111, υ2 = 1) internal rotor states and the n = 1, Σ(000, υ2 = 1) stretching-internal rotor combination state. Strong perturbations between the excited vibrational states are evident. The observed spectra are analyzed separately with a three-state J-dependent Coriolis plus J-independent angular-radial coupling model [M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 106, 3078 (1997), 10.1063/1.473051] and a three-state Coriolis coupling model [R. C. Cohen and R. J. Saykally, J. Chem. Phys. 95, 7891 (1991), 10.1063/1.461318]. The former model works more successfully than the latter. Molecular constants for the ground and excited vibrational states of ortho 20Ne-D2O isotopomer as well as the Coriolis and angular-radial coupling constants are determined accurately. The van der Waals stretching frequency is estimated to be νs = 24.85 cm-1 in the ground state and decreases to about 20.8 cm-1 upon vibrational excitation of the D2O bend.

  8. Highly transparent terbium gallium garnet crystal fabricated by the floating zone method for visible-infrared optical isolators

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; yang, Lei; Wang, Xiangyong; Wang, Jun; Hang, Yin

    2015-08-01

    Highly transparent terbium gallium garnet (Tb3Ga5O12; TGG) single crystal having a large Verdet constant based on the visible and near-infrared region (VIS-NIR) Faraday rotator was grown by Floating Zone (FZ) growth machine. We successfully grew TGG single-crystal rods of 8-10 mm in diameter, which was suitable for the use in optical devices. The crystal showed a full-width at half-maximum as little as 18 arcsec by the X-ray rocking curve measurement. The Faraday rotation (B = 0.55T) was investigated at wavelength of 532, 632.8, 1064 nm at room temperature. The lower weak absorption coefficient, higher Verdet constant, thermal conductivity and laser induced damage threshold (LIDT) compared to the commercial TGG gives the great potential of using this new method to meet the increasing demand of VIS-NIR Faraday rotators (FRs).

  9. A Faraday rotation search for magnetic fields in quasar damped Ly alpha absorption systems

    NASA Technical Reports Server (NTRS)

    Oren, Abraham L.; Wolfe, Arthur M.

    1995-01-01

    We present the results of a Faraday rotation survey of 61 radio-bright QSOs conducted at the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The Galactic contribution to the Faraday rotation is estimated and subtracted to determine the extragalactic rotation measure (RRM) for each source. Eleven of these QSOs are known to exhibit damped Ly alpha absorption. The rate of incidence of significant Faraday rotation of these 11 sources is compared to the remaining 50 and is found to be higher at the 99.8% confidence level. However, as this is based upon only two detections of Faraday rotation in the damped Ly alpha sample, the result is only tentative. If the two detections in the damped Ly alpha sample are dug to the absorbing systems, then the inferred rotation measure induced by these systems is roughly 250 rad/sq m. The two detections were for the two lowest redshift absorbers in the sample. We find that a rotation measure of 250 rad/sq m would have gone undetected for any other absorber in the damped Ly alpha sample due to the 1/(1 + 2) squared dilution of the observed RRM with redshift. Thus the data are consistent with, but do not prove, the hypothesis that Faraday rotation is a generic property of damped Ly alpha absorbers. We do not confirm the suggestion that the amplitude of RRMs increases with redshift. Rather, the data are consistent with no redshift evolution. We find that the uncertainty in the estimation of the Galactic rotation measure (GRM) is a more serious problem than previously realized for extra-galactic Faraday rotation studies of QSO absorbers. A careful analysis of current methods for estimating GRM indicate that it can be determined to an accuracy of about 15 - 20 rad/sq m. Previous studies underestimated this uncertainty by more than a factor of 2. Due to this uncertainty, rotation measures such as we suspect are associated with damped Ly alpha absorption systems can only be detected at redshifts less than z approximately

  10. Using chaotic Faraday waves to create a two-dimensional pseudo-thermal bath for floating particles with tunable interaction potentials

    NASA Astrophysics Data System (ADS)

    Welch, Kyle; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric

    2013-03-01

    Whether chaos in actively driven systems can be described by an effective temperature is an unresolved question in the study of nonlinear physics. We use chaotic Faraday waves to create a two-dimensional pseudo-thermal bath to investigate tunable interactions between floating particles. By vertically oscillating a liquid with an acceleration greater than g we excite the Faraday instability and create surface waves. Increasing this acceleration above some critical value causes this instability to become chaotic with fluctuations over a broad range of length scales. Particles placed on the surface are buffeted by random excitations in analogy to Brownian motion. We can change the ``temperature'' of the pseudo-thermal bath by manipulating the driving frequency and amplitude, a feature of the system we verify using real-time tracking to follow the diffusive movement of a single particle. With an eye toward creating complex self-assembling systems we use this system to measure the tunable interaction potential in two-, three-, and many-particle systems and to probe the effects of particle size, shape, symmetry, and wetting properties.

  11. Bimolecular reaction of CH3 + CO in solid p-H2: infrared absorption of acetyl radical (CH3CO) and CH3-CO complex.

    PubMed

    Das, Prasanta; Lee, Yuan-Pern

    2014-06-28

    We have recorded infrared spectra of acetyl radical (CH3CO) and CH3-CO complex in solid para-hydrogen (p-H2). Upon irradiation at 248 nm of CH3C(O)Cl/p-H2 matrices, CH3CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (ν9), 2989.1 (ν1), 2915.6 (ν2), 1880.5 (ν3), 1419.9 (ν10), 1323.2 (ν5), 836.6 (ν7), and 468.1 (ν8) cm(-1) were observed. When CD3C(O)Cl was used, lines of CD3CO at 2246.2 (ν9), 2244.0 (ν1), 1866.1 (ν3), 1046.7 (ν5), 1029.7 (ν4), 1027.5 (ν10), 889.1 (ν6), and 723.8 (ν7) cm(-1) appeared. Previous studies characterized only three vibrational modes of CH3CO and one mode of CD3CO in solid Ar. In contrast, upon photolysis of a CH3I/CO/p-H2 matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH3-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm(-1). The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH3CO can be readily produced from photolysis of CH3C(O)Cl because of the diminished cage effect in solid p-H2 but not from the reaction of CH3 + CO because of the reaction barrier. Even though CH3 has nascent kinetic energy greater than 87 kJ mol(-1) and internal energy ∼42 kJ mol(-1) upon photodissociation of CH3I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ∼27 kJ mol(-1) for the formation of CH3CO from the CH3 + CO reaction; a barrierless channel for formation of a CH3-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H2. PMID:24985634

  12. Bimolecular reaction of CH3 + CO in solid p-H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex

    NASA Astrophysics Data System (ADS)

    Das, Prasanta; Lee, Yuan-Pern

    2014-06-01

    We have recorded infrared spectra of acetyl radical (CH3CO) and CH3-CO complex in solid para-hydrogen (p-H2). Upon irradiation at 248 nm of CH3C(O)Cl/p-H2 matrices, CH3CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (ν9), 2989.1 (ν1), 2915.6 (ν2), 1880.5 (ν3), 1419.9 (ν10), 1323.2 (ν5), 836.6 (ν7), and 468.1 (ν8) cm-1 were observed. When CD3C(O)Cl was used, lines of CD3CO at 2246.2 (ν9), 2244.0 (ν1), 1866.1 (ν3), 1046.7 (ν5), 1029.7 (ν4), 1027.5 (ν10), 889.1 (ν6), and 723.8 (ν7) cm-1 appeared. Previous studies characterized only three vibrational modes of CH3CO and one mode of CD3CO in solid Ar. In contrast, upon photolysis of a CH3I/CO/p-H2 matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH3-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm-1. The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH3CO can be readily produced from photolysis of CH3C(O)Cl because of the diminished cage effect in solid p-H2 but not from the reaction of CH3 + CO because of the reaction barrier. Even though CH3 has nascent kinetic energy greater than 87 kJ mol-1 and internal energy ˜42 kJ mol-1 upon photodissociation of CH3I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ˜27 kJ mol-1 for the formation of CH3CO from the CH3 + CO reaction; a barrierless channel for formation of a CH3-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H2.

  13. Measuring the Solar Magnetic Field with STEREO A Radio Transmissions: Faraday Rotation Observations using the 100m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; Jensen, E.; Wexler, D.; Heiles, C.; Kepley, A.; Kuiper, T.; Bisi, M.

    2016-04-01

    The STEREO mission spacecraft recently passed through superior conjunction, providing an opportunity to probe the solar corona using radio transmissions. Strong magnetic field and dense plasma environment induce Faraday rotation of the linearly polarized fraction of the spacecraft radio carrier signal. Variations in the Faraday rotation signify changes in magnetic field components and plasma parameters, and thus can be used to gain understanding processes of the quiescent sun as well as active outbursts including coronal mass ejections. Our 2015 observing campaign resulted in a series of measurements over several months with the 100m Green Bank Telescope (GBT) to investigate the coronal Faraday rotation at various radial distances. These observations reveal notable fluctuations in the Faraday rotation of the signal in the deep corona, and should yield unique insights into coronal magnetohydrodynamics down to a 1.5 solar radius line-of-sight solar elongation.

  14. Infrared thermography

    SciTech Connect

    Roberts, C.C. Jr.

    1982-12-01

    Infrared thermography is a useful tool for the diagnosis of problems in building systems. In instances where a building owner has several large buildings, an investment in a typical $30,000 infrared system may be cost effective. In most instances, however, the rental of an infrared system or the hiring of an infrared consulting service is a cost effective alternative. As can be seen from the several applications presented here, any mechanical problem manifesting itself in an atypical temperature pattern can usually be detected. The two primary savings generated from infrared analysis of building systems are maintenance and energy.

  15. Useful Equations for Calculating the Induced Voltage Inside a Faraday Cage that has been Struck by Lightning

    SciTech Connect

    JORGENSON, ROY E.; WARNE, LARRY K.

    2001-09-01

    One of the tasks performed routinely by the Electromagnetics and Plasma Physics Analysis Department at Sandia National Laboratories is analyzing the effects of direct-strike lightning on Faraday cages that protect sensitive items. The Faraday cages analyzed thus far have many features in common. This report is an attempt to collect equations and other information that have been routinely used in the past in order to facilitate future analysis.

  16. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS

    SciTech Connect

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.

    2012-10-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  17. Comparison of NAVSTAR satellite L band ionospheric calibrations with Faraday rotation measurements

    NASA Technical Reports Server (NTRS)

    Royden, H. N.; Miller, R. B.; Buennagel, L. A.

    1984-01-01

    It is pointed out that interplanetary navigation at the Jet Propulsion Laboratory (JPL) is performed by analyzing measurements derived from the radio link between spacecraft and earth and, near the target, onboard optical measurements. For precise navigation, corrections for ionospheric effects must be applied, because the earth's ionosphere degrades the accuracy of the radiometric data. These corrections are based on ionospheric total electron content (TEC) determinations. The determinations are based on the measurement of the Faraday rotation of linearly polarized VHF signals from geostationary satellites. Problems arise in connection with the steadily declining number of satellites which are suitable for Faraday rotation measurements. For this reason, alternate methods of determining ionospheric electron content are being explored. One promising method involves the use of satellites of the NAVSTAR Global Positioning System (GPS). The results of a comparative study regarding this method are encouraging.

  18. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Josh; Broering, Mark; Korsch, Wolfgang

    2016-03-01

    Off-resonance Faraday rotation can offer a new method to monitor the nuclear spin polarization of a dense 3He target and gain access to new information about the magnetic polarizability of the 3He nucleus. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3He target polarization. Progress towards detecting nuclear spin optical rotation on 3He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  19. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.

    PubMed

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-21

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model. PMID:27420800

  20. InGaAs spin light emitting diodes measured in the Faraday and oblique Hanle geometries

    NASA Astrophysics Data System (ADS)

    Mansell, R.; Laloë, J.-B.; Holmes, S. N.; Petrou, A.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Barnes, C. H. W.

    2016-04-01

    InGaAs quantum well light emitting diodes (LED) with spin-injecting, epitaxial Fe contacts were fabricated using an in situ wafer transfer process where the semiconductor wafer was transferred under ultrahigh vacuum (UHV) conditions to a metals growth chamber to achieve a high quality interface between the two materials. The spin LED devices were measured optically with applied magnetic fields in either the Faraday or the oblique Hanle geometries in two experimental set-ups. Optical polarizations efficiencies of 4.5% in the Faraday geometry and 1.5% in the Hanle geometry are shown to be equivalent. The polarization efficiency of the electroluminescence is seen to decay as the temperature increases although the spin lifetime remains constant due to the influence of the D’yakonov–Perel’ spin scattering mechanism in the quantum well.

  1. Faraday waves in Bose-Einstein condensates with engineering three-body interactions

    NASA Astrophysics Data System (ADS)

    Abdullaev, F. Kh; Gammal, A.; Tomio, Lauro

    2016-01-01

    We consider Bose-Einstein condensates with two- and three-body interactions periodically varying in time. Two models of time-dependent three-body interactions, with quadratic and quartic dependence on the two-body atomic scattering length a s , are studied. It is shown that parametric instabilities in the condensate lead to the generation of Faraday waves (FWs), with wavelengths depending on the background scattering length, as well as on the frequency and amplitude of the modulations of a s . From an experimental perspective, this opens a new possibility to tune the period of Faraday patterns by varying not only the frequency of modulations and background scattering length, but also the amplitude of the modulations. The latter effect can be used to estimate the parameters of three-body interactions from the FW experimental results. Theoretical predictions are confirmed by numerical simulations of the corresponding extended Gross-Pitaevskii equation.

  2. Faraday-active Fabry-Perot resonator: transmission, reflection, and emissivity.

    PubMed

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2012-05-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection, and emissivity of the resonator not only for polarized, but also for unpolarized, light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures. PMID:22561938

  3. The Influence of Antenna Pattern on Faraday Rotation in Remote Sensing at L-band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Jacob, S. Daniel

    2007-01-01

    Faraday rotation is a change in the polarization vector of electromagnetic radiation that occurs as the waves propagate from the Earth surface through the ionosphere to a spaceborne sensor. This change can cause errors in monitoring parameters at the surface such as soil moisture and sea surface salinity and it is an important consideration for radiometers on future missions in space such as NASA's Aquarius mission and ESA's SMOS mission. Two prominent strategies for compensating for Faraday rotation are using a sum of the signal at two polarizations and using the correlation between the signals at the two polarizations. These strategies work for an idealized antenna. This paper evaluates the strategies in the context of realistic antennas such as will be built for the Aquarius radiometer. Realistic antennas will make small differences that need to be included in planning for retrieval algorithms in future missions.

  4. Dual role of gravity on the Faraday threshold for immiscible viscous layers.

    PubMed

    Batson, W; Zoueshtiagh, F; Narayanan, R

    2013-12-01

    This work discusses the role of gravity on the Faraday instability, and the differences one can expect to observe in a low-gravity experiment when compared to an earth-based system. These differences are discussed in the context of the viscous linear theory for laterally infinite systems, and a surprising result of the analysis is the existence of a crossover frequency where an interface in low gravity switches from being less to more stable than an earth-based system. We propose this crossover exists in all Faraday systems, and the frequency at which it occurs is shown to be strongly influenced by layer height. In presenting these results physical explanations are provided for the behavior of the predicted forcing amplitude thresholds and wave number selection. PMID:24483552

  5. Probing the gravitational Faraday rotation using quasar X-ray microlensing.

    PubMed

    Chen, Bin

    2015-01-01

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission. PMID:26574051

  6. Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    SciTech Connect

    Zhang, J.; Crocker, N. A.; Carter, T. A.; Kubota, S.; Peebles, W. A.

    2010-10-15

    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation, it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.

  7. Closing remarks on Faraday Discussion 107: Interactions of acoustic waves with thin films and interfaces

    SciTech Connect

    Martin, S.J.

    1997-11-01

    The papers in this Faraday Discussion represent the state-of-the-art in using acoustic devices to measure the properties of thin films and interfaces. Sauerbrey first showed that the mass sensitivity of a quartz crystal could be used to measure the thickness of vacuum-deposited metals. Since then, significant progress has been made in understanding other interaction mechanisms between acoustic devices and contacting media. Bruckenstein and Shay and Kanazawa and Gordon showed that quartz resonators could be operated in a fluid to measure surface mass accumulation and fluid properties. The increased understanding of interactions between acoustic devices and contacting media has allowed new information to be obtained about thin films and interfaces. These closing remarks will summarize the current state of using acoustic techniques to probe thin films and interfaces, describe the progress reported in this Faraday Discussion, and outline some remaining problems. Progress includes new measurement techniques, novel devices, new applications, and improved modeling and data analysis.

  8. Explanation of the computer listings of Faraday factors for INTASAT users

    NASA Technical Reports Server (NTRS)

    Nesterczuk, G.; Llewellyn, S. K.; Bent, R. B.; Schmid, P. E.

    1974-01-01

    Using a simplified form of the Appleton-Hartree formula for the phase refractive index, a relationship was obtained between the Faraday rotation angle along the angular path and the total electron content along the vertical path, intersecting the angular at the height of maximum electron density. Using the second mean value theorem of integration, the function B cosine theta second chi was removed from under the integral sign and replaced by a 'mean' value. The mean value factors were printed on the computer listing for 39 stations receiving signals from the INTASAT satellite during the specified time period. The data is presented by station and date. Graphs are included to demonstrate the variation of the Faraday factor with local time and season, with magnetic latitude, elevation and azimuth angles. Other topics discussed include a description of the bent ionospheric model, the earth's magnetic field model, and the sample computer listing.

  9. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures

    NASA Astrophysics Data System (ADS)

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-01

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  10. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Joshua; Broering, Mark; Korsch, Wolfgang

    2016-05-01

    Off-resonance Faraday rotation can offer a method to measure the nuclear spin optical rotation of the 3 He nucleus and gain access to new information about the atomic polarizability of the Helium atom. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3 He target polarization. Progress towards detecting nuclear spin optical rotation on 3 He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  11. Probing the gravitational Faraday rotation using quasar X-ray microlensing

    PubMed Central

    Chen, Bin

    2015-01-01

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission. PMID:26574051

  12. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    NASA Technical Reports Server (NTRS)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  13. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    PubMed

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  14. Strong interband Faraday rotation in 3D topological insulator Bi2Se3

    PubMed Central

    Ohnoutek, L.; Hakl, M.; Veis, M.; Piot, B. A.; Faugeras, C.; Martinez, G.; Yakushev, M. V.; Martin, R. W.; Drašar, Č.; Materna, A.; Strzelecka, G.; Hruban, A.; Potemski, M.; Orlita, M.

    2016-01-01

    The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass. PMID:26750455

  15. Strong interband Faraday rotation in 3D topological insulator Bi2Se3.

    PubMed

    Ohnoutek, L; Hakl, M; Veis, M; Piot, B A; Faugeras, C; Martinez, G; Yakushev, M V; Martin, R W; Drašar, Č; Materna, A; Strzelecka, G; Hruban, A; Potemski, M; Orlita, M

    2016-01-01

    The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass. PMID:26750455

  16. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    PubMed Central

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  17. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    NASA Astrophysics Data System (ADS)

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  18. Interaction of Cotton-Mouton and Faraday effect under different initial polarization state of incident beam

    NASA Astrophysics Data System (ADS)

    Chrzanowski, J.; Kravtsov, Yu. A.

    2010-12-01

    The evolution of polarization along the ray in homogeneous plasma is analyzed in situation when Faraday and Cotton-Mouton effects are not small and comparable with each other. On the basis of the quasi-isotropic approximation of geometrical optics method authors find the numerical solution for azimuthal and ellipticity angles of polarization ellipse and analyze how the initial state of the incident beam affects obtained results. Numerical modeling is performed for plasma parameters comparable with those acceptable for the ITER project.

  19. Faraday rotation of cobalt ferrite nanoparticle polymer composite films at cryogenic temperatures.

    PubMed

    Demir, Veysi; Gangopadhyay, Palash; Norwood, Robert A; Peyghambarian, Nasser

    2014-04-01

    This paper investigates the behavior of the Verdet constant for cobalt ferrite (CoFe₂O₄) nanoparticles polymer composite films at low temperatures using a 532 nm laser source. An experimental setup for Faraday rotation (FR) at low temperatures is introduced and FRs were measured at various temperatures. Verdet constants were deduced from the paramagnetic model for terbium gallium garnet glass where ~4× improvement was observed at 40° K for CoFe₂O₄ composite film. PMID:24787165

  20. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    SciTech Connect

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-15

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10{sup -4} Pa Xe (3.3x10{sup -6} Torr Xe) to 1.1x10{sup -3} Pa Xe (8.4x10{sup -6} Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures.

  1. All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Zuegel, J. D.; Marciante, J. R.

    2010-01-01

    An all-fiber isolator with 17 dB optical isolation is demonstrated. The fiber Faraday rotator uses 56 wt. % terbium (Tb)-doped silicate fiber, and the fiber polarizers are Corning SP1060 single-polarization fiber. Finally, the effective Verdet constant of the Tb-doped fiber is measured to be -24.5±1.0 rad/(Tm) at 1053 nm, which is 20 times larger than silica fiber and 22% larger than previously reported results.

  2. Measurements of coronal Faraday rotation at 4.6 R {sub ☉}

    SciTech Connect

    Kooi, Jason E.; Fischer, Patrick D.; Buffo, Jacob J.; Spangler, Steven R.

    2014-03-20

    Many competing models for the coronal heating and acceleration mechanisms of the high-speed solar wind depend on the solar magnetic field and plasma structure in the corona within heliocentric distances of 5 R {sub ☉}. We report on sensitive Very Large Array (VLA) full-polarization observations made in 2011 August, at 5.0 and 6.1 GHz (each with a bandwidth of 128 MHz) of the radio galaxy 3C 228 through the solar corona at heliocentric distances of 4.6-5.0 R {sub ☉}. Observations at 5.0 GHz permit measurements deeper in the corona than previous VLA observations at 1.4 and 1.7 GHz. These Faraday rotation observations provide unique information on the magnetic field in this region of the corona. The measured Faraday rotation on this day was lower than our a priori expectations, but we have successfully modeled the measurement in terms of observed properties of the corona on the day of observation. Our data on 3C 228 provide two lines of sight (separated by 46'', 33,000 km in the corona). We detected three periods during which there appeared to be a difference in the Faraday rotation measure between these two closely spaced lines of sight. These measurements (termed differential Faraday rotation) yield an estimate of 2.6-4.1 GA for coronal currents. Our data also allow us to impose upper limits on rotation measure fluctuations caused by coronal waves; the observed upper limits were 3.3 and 6.4 rad m{sup –2} along the two lines of sight. The implications of these results for Joule heating and wave heating are briefly discussed.

  3. Heat Flux Calculation and Problem of Flaking of Boron Carbide Coatings on the Faraday Screen of the ICRH Antennas During Tore Supra High Power, Long Pulse Operation

    SciTech Connect

    Corre, Y.; Lipa, M.; Agarici, G.; Basiuk, V.; Colas, L.; Courtois, X.; Dumont, R. J.; Ekedahl, A.; Gardarein, J. L.; Klepper, C Christopher; Martin, V.; Moncada, V.; Portafaix, C.; Rigollet, F.; Tawizgant, R.; Travere, J. M.; Valliez, K.

    2011-01-01

    Reliable and repetitive high power and long pulse tokamak operation is strongly dependant of the ability to secure the Plasma Facing Components (PFCs). In Tore Supra, a network of 7 infrared (IR) video cameras is routinely used to prevent PFCs overheating and damage in selected regions. Real time feedback control and offline analysis are essential for basic protection and understanding of abnormal thermal events. One important limitation detected by the IR real time feed-back loop during high power RF operation (injected power of 9.5 MW over 26 s and 12 MW over 10 s have been achieved respectively in 2006 and 2008) is due to the interaction between fast ions which increase the power flux density and flaking of the boron carbide coatings on the Faraday screen box of the ICRH antennas. An IR-based experimental procedure is proposed in order to detect new flakes during plasma operation. The thermal response of the B4C coating is studied with and without flaking during plasma operation. The experimental heat flux deposited by fast ion losses on the Faraday screen is calculated for high (3.8 T) and low magnetic field (2 T) during high RF power operation (with fundamental hydrogen minority and second harmonic ICRH heating schemes respectively). The paper addresses both thermal science issues applied to machine protection and limitation due to fast ions issues during high RF power, long pulse operation. Safety margin to critical heat flux and number of fatigue cycles under heat load are presented in the paper.

  4. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Chang, S. C.; Chang, Y. C.

    2013-07-01

    An experimental approach of inclined incidence magneto-optic Faraday effect observed in the polar plane is applied. Three samples containing ferromagnetic cobalt ultrathin films on a semiconductor zinc oxide (0001) single crystal substrate with in-plane and out-of-plane anisotropy are evaluated. Through the fine adjustment of crossed polarizers in the magneto-optic effect measurement completely recorded the detail optical and magneto-optical responses from the birefringent crystal substrate and the magnetic film, especially for the signal induced from the substrate with uniaxial optical axis. The angle dependency of interference phenomena periodically from the optical and magneto-optical responses is attributed to the birefringence even in the absence of a magnetic field. The new type of observation finds that the transmission Faraday intensity in the oblique incidence includes a combination of polarization rotations, which results from optical compensation from the substrate and magneto-optical Faraday effects from the film. The samples grown at different rates and examined by this method exhibit magnetic structure discriminations. This result can be applied in the advanced polarized-light technologies to enhance the spatial resolution of magnetic surfaces with microstructural information under various magnetic field direction.

  5. Giant Faraday rotation induced by the Berry phase in bilayer graphene under strong terahertz fields

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xu, Xiaodong; Liu, Ren-Bao

    2014-04-01

    High-order terahertz (THz) sideband generation in semiconductors is a phenomenon with physics similar to that of high-order harmonic generation but in a regime of much lower frequency. Our previous paper [1] found that the electron-hole pair excited by a weak optical laser can accumulate a Berry phase along a cyclic trajectory under the driving of a strong elliptically polarized THz field. Furthermore, the Berry phase appears as the Faraday rotation angle of the emission signal under short-pulse excitation in monolayer MoS_{2}. In this paper, the theory of the Berry phase in THz extreme nonlinear optics is applied to biased bilayer graphene with Bernal stacking, which has similar Bloch band features and optical properties to monolayer MoS_{2}, such as the time-reversal related valleys and the valley contrasting optical selection rule. However, the biased bilayer graphene has much larger Berry curvature than monolayer MoS_{2}, which leads to a large Berry phase of the quantum trajectory and in turn a giant Faraday rotation of the optical emission (˜1 rad for a THz field with frequency 1 THz and strength 8 kV cm-1). This surprisingly big angle shows that the Faraday rotation can be induced more efficiently by the Berry curvature in momentum space than by the magnetic field in real space. It provides opportunities to use bilayer graphene and THz lasers for ultrafast electro-optical devices.

  6. High frequency current sensors using the Faraday effect in optical fibers

    SciTech Connect

    Cernosek, R.W.

    1994-09-01

    This study investigates the high frequency response of Faraday effect optical fiber current sensors that are bandwidth-limited by the transit time of the light in the fiber. Mathematical models were developed for several configurations of planar (collocated turns) and travelling wave (helical turns) singlemode fiber sensor coils, and experimental measurements verified the model predictions. High frequency operation above 500 MHz, with good sensitivity, was demonstrated for several current sensors; this frequency region was not previously considered accessible by fiber devices. Planar fiber coils in three configurations were investigated: circular cross section with the conductor centered coaxially; circular cross section with the conductor noncentered; and noncircular cross section with arbitrary location of the conductor. The helical travelling wave fiber coils were immersed in the dielectric of a coaxial transmission line to improve velocity phase matching between the field and light. Three liquids (propanol, methanol, and water) and air were used as transmission line dielectric. Complete models, which must account for liquid dispersion and waveguide dispersion from the multilayer dielectric in the transmission line, were developed to describe the Faraday response of the travelling wave sensors. Other travelling wave current sensors with potentially greater Faraday sensitivity, wider bandwidth and smaller size are investigated using the theoretical models developed for the singlemode fibers coils.

  7. Implementation of Positive Operator-Valued Measure in Passive Faraday Mirror Attack

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Long; Gao, Ming; Ma, Zhi

    2015-03-01

    Passive Faraday-mirror (PFM) attack is based on imperfect Faraday mirrors in practical quantum cryptography systems and a set of three-dimensional Positive Operator-Valued Measure (POVM) operators plays an important role in this attack. In this paper, we propose a simple scheme to implement the POVM in PFM attack on an Faraday-Michelson quantum cryptography system. Since the POVM can not be implemented directly with previous methods, in this scheme it needs to expand the states sent by Alice and the POVM operators in the attack into four-dimensional Hilbert space first, without changing the attacking effect by calculation. Based on the methods proposed by Ahnert and Payne, the linear-optical setup for implementing the POVM operators is derived. At last, the complete setup for realizing the PFM attack is presented with all parameters. Furthermore, our scheme can also be applied to realize PFM attack on a plug-and-play system by changing the parameters in the setup. Supported by National Natural Science Foundation of China under Grant Nos. 61472446, U1204602, and National High Technology Research and Development Program of China under Grant No. 2011AA010803, and the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing under Grant No. 2013A14

  8. Giant Faraday effect due to Pauli exclusion principle in 3D topological insulators.

    PubMed

    Paudel, Hari P; Leuenberger, Michael N

    2014-02-26

    Experiments using ARPES, which is based on the photoelectric effect, show that the surface states in 3D topological insulators (TI) are helical. Here we consider Weyl interface fermions due to band inversion in narrow-bandgap semiconductors, such as Pb1-xSnxTe. The positive and negative energy solutions can be identified by means of opposite helicity in terms of the spin helicity operator in 3D TI as ĥ(TI) = (1/ |p|_ |) β (σ|_ x p|_ ) · z^, where β is a Dirac matrix and z^ points perpendicular to the interface. Using the 3D Dirac equation and bandstructure calculations we show that the transitions between positive and negative energy solutions, giving rise to electron-hole pairs, obey strict optical selection rules. In order to demonstrate the consequences of these selection rules, we consider the Faraday effect due to the Pauli exclusion principle in a pump-probe setup using a 3D TI double interface of a PbTe/Pb₀.₃₁Sn₀.₆₉Te/PbTe heterostructure. For that we calculate the optical conductivity tensor of this heterostructure, which we use to solve Maxwell's equations. The Faraday rotation angle exhibits oscillations as a function of probe wavelength and thickness of the heterostructure. The maxima in the Faraday rotation angle are of the order of mrds. PMID:24501191

  9. Room-Temperature Femtosecond Faraday Effect in CdMnTe Single Crystals

    NASA Astrophysics Data System (ADS)

    Wang, D.; Sobolewski, R.; Mikulics, M.; Mycielski, A.

    2006-03-01

    We report the subpicosecond Faraday effect, measured in high quality Cd1-xMnxTe (x = 0.12 and x = 0.09) single crystals at room temperature. Using a femtosecond pump-probe technique, we were able to generate sub-picosecond current pulses by illuminating a free-standing LT-GaAs photoswitch, couple those pulses to the CdMnTe probe crystal using a coplanar transmission line, and, finally, optically sample the temporal evolution of the resulting magnetic transients with subpicosecond resolution and the excellent signal-to-noise ratio. The ultrafast (below 600 fs) Faraday rotation, responsible for the observed magneto-optical effect, has been attributed to the ultrafast spin dynamics of holes in our p-type CdMnTe crystals. The observed femtosecond Faraday effect can be the basis for a development of a magneto-optical sampling system for ultrafast, time-resolved characterization of current transients in novel electronic and spintronic devices.

  10. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission

    NASA Technical Reports Server (NTRS)

    Arnoult, K. M.; Wdowiak, T. J.; Beegle, L. W.

    2000-01-01

    We have demonstrated by experiment that, in an energetic environment, a simple polycyclic aromatic hydrocarbon (PAH) such as naphthalene will undergo chemical reactions that produce a wide array of more complex species (an aggregate). For a stellar wind of a highly evolved star (post-asymptotic giant branch [post-AGB]), this process would be in addition to what is expected from reactions occurring under thermodynamic equilibrium. A surprising result of that work was that produced in substantial abundance are hydrogenated forms that are hybrids of polycyclic aromatic and polycyclic alkanes. Infrared spectroscopy described here reveals a spectral character for these materials that has much in common with that observed for the constituents of circumstellar clouds of post-AGB stars. It can be demonstrated that a methylene (-CH2-) substructure, as in cycloalkanes, is the likely carrier of the 6.9 microns band emission of dust that has recently been formed around IRAS 22272+5433, NGC 7027, and CPD -56 8032. Ultraviolet spectroscopy previously done with a lower limit of 190 nm had revealed that this molecular aggregate can contribute to the interstellar extinction feature at 2175 angstroms. We have now extended our UV spectroscopy of these materials to 110 nm by a vacuum ultraviolet technique. That work, described here, reveals new spectral characteristics and describes how material newly formed during the late stages of stellar evolution could have produced an extinction feature claimed to exist at 1700 angstroms in the spectrum of HD 145502 and also how the newly formed hydrocarbon material would be transformed/aged in the general interstellar environment. The contribution of this molecular aggregate to the rise in interstellar extinction at wavelengths below 1500 angstroms is also examined. The panspectral measurements of the materials produced in the laboratory, using plasmas of H, He, N, and O to convert the simple PAH naphthalene to an aggregate of complex species

  11. Stability of Glycine to Energetic Processing Under Astrophysical Conditions Investigated via Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maté, Belén; Herrero, Victor Jose; Tanarro, Isabel; Escribano, Rafael

    2015-06-01

    Glycine, the simplest aminoacid, has been detected in comets and meteorites in our Solar System. Its detection in the interstellar medium is not improbable since other organic molecules of comparable complexity have been observed. Information of how complex organic molecules resist the energetic processing that they may suffer in different regions of space is of great interest for astrochemists and astrobiologists. Further to previous investigations we have studied in this work, via infrared spectroscopy, the effect of 2 keV electron bombardment on amorphous and crystalline glycine layers at low temperatures, to determine its destruction cross section under astrophysical conditions. Energetic electrons are known to be present in the solar wind and in planetary magnetospheres, and are also formed in the interaction of cosmic rays with matter. Moreover, we have probed the shielding effect of water ice layers grown on top of the glycine samples at 90 K. These experiment aim to mimic the conditions of the aminoacid in ice mantles on dust grains in the interstellar medium or in some outer Solar System objects, with a water ice surface crust. A residual material, product of glycine decomposition, was found at the end of the processing. A tentative assignment of the infrared spectra of the residue will be discussed in the presentation. E. Herbst and E. F. van Dishoeck, Annu. Rev. Astro. Astrophys. 2009, 47:427-480 B. Maté, Y. Rodriguez-Lazcano, O. Gálvez, I. Tanarro and R. Escribano, Phys Chem Chem Phys, 2011, 13, 12268. B. Maté, I. Tanarro, M.A. Moreno, M. Jiménez-Redondo, R. Escribano, and V. J. Herrero, Faraday Discussions, 2014, DOI: 10.1039/c3fd00132f.

  12. Matrix-isolation infrared studies of 1:1 molecular complexes containing chloroform (CHCl3) and Lewis bases: Seamless transition from blue-shifted to red-shifted hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Ito, Fumiyuki

    2012-07-01

    The infrared spectra of molecular complexes containing chloroform (CHCl3) and Lewis bases (N2, CO, H2O, and CH3CN) have been observed in an Ar matrix, and vibrational peaks for the 1:1 complexes have been assigned. The C-H stretching band of chloroform in the complexes showed a seamless transition from a blue shift (for N2 and CO) to a red shift (H2O and CH3CN), in accord with the proton affinity of the base molecules. Density functional calculations predicted that the C-H. .(σ-type lone pair) isomer is the most stable, which is consistent with the observed vibrational peak shift upon complex formation. The underlying mechanisms of the C-H hydrogen bond were explored using the topological properties of the electronic charge density and natural orbital analyses.

  13. Photophysical properties of near-infrared-emitting Ln(III) complexes with 1-(9-Anthryl)-4,4,4-trifluoro-1,3-butandione (Ln = Nd and Er).

    PubMed

    Nah, Min-Kook; Cho, Hyung-Gook; Kwon, Hyun-Jung; Kim, Yeong-Joon; Park, Changmoon; Kim, Hwan Kyu; Kang, Jun-Gill

    2006-09-01

    We report the synthesis and photophysical properties of Nd(III) and Er(III) complexes with 1-(9-anthryl)-4,4,4-trifluoro-1,3-butandione (9-ATFB). The complexes of [Nd(9-ATFB)4]- and [Er(9-ATFB)4]- produced sensitized near-infrared (NIR) luminescence via the excitation of anthracene. This suggests that the intramolecular energy transfer occurred from the singlet excited state of anthracene to the resonance levels of the metal ions, since the phosphorescence of anthracene is forbidden under normal conditions. The observed quantum yield of the visible luminescence showed that the energy transfer is more efficient for [Nd(9-ATFB)4]- than for [Er(9-ATFB)4]-. The lifetimes of the NIR luminescence of the complexes were in the microsecond range. The quantum yields of the sensitized NIR of the complexes were estimated using the lifetime and the energy-transfer quantum yield. PMID:16942041

  14. Phase equilibrium in poly(rA).poly(rU) complexes with Cd2+ and Mg2+ ions, studied by ultraviolet, infrared, and vibrational circular dichroism spectroscopy.

    PubMed

    Blagoi, Yurii; Gladchenko, Galina; Nafie, Laurence A; Freedman, Teresa B; Sorokin, Victor; Valeev, Vladimir; He, Yanan

    2005-08-01

    Ultraviolet (UV) and infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy were used to study conformational transitions in the double-stranded poly(rA). poly(rU) and its components-single-stranded poly(rA) and poly(rU) in buffer solution (pH 6.5) with 0.1M Na+ and different Mg2+ and Cd2+ (10(-6) to 10(-2) M) concentrations. Transitions were induced by elevated temperature that changed from 10 up to 96 degrees C. IR absorption and VCD spectra in the base-stretching region were obtained for duplex, triplex, and single-stranded forms of poly(rA) . poly(rU) at [Mg2+],[Cd2+]/[P] = 0.3. For single-stranded polynucleotides, the kind of conformational transition (ordering --> disordering --> compaction, aggregation) is conditioned by the dominating type of Me2+-polymer complex that in turn depends on the ion concentration range. The phase diagram obtained for poly(rA) . poly(rU) has a triple point ([Cd2+] approximately 10(-4)M) at which the helix-coil (2 --> 1) transition is replaced with a disproportion transition 2AU --> A2U + poly(rA) (2 --> 3) and the subsequent destruction of the triple helix (3 --> 1). The 2 --> 1 transitions occur in the narrow temperature interval of 2 degrees -5 degrees . Unlike 2 --> 1 and 3 --> 1 melting, the disproportion 2 --> 3 transition is a slightly cooperative one and observed over a wide temperature range. At [Me2+] approximately 10(-3) M, the temperature interval of A2U stability is not less than 20 degrees C. In the case of Cd2+, it increases with the rise of ion concentration due to the decrease of T(m) (2-->3). The T(m) (3-->1) value is practically unchanged up to [Cd2+] approximately 10(-3)M. Differences between diagrams for Mg(2+) and Cd2+ result from the various kinds of ion binding to poly(rA).poly-(rU) and poly(rA). PMID:15892121

  15. A low-mass faraday cup experiment for the solar wind

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Steinberg, J. T.; Mcnutt, R. L., Jr.

    1993-01-01

    Faraday cups have proven to be very reliable and accurate instruments capable of making 3-D velocity distribution measurements on spinning or 3-axis stabilized spacecraft. Faraday cup instrumentation continues to be appropriate for heliospheric missions. As an example, the reductions in mass possible relative to the solar wind detection system about to be flown on the WIND spacecraft were estimated. Through the use of technology developed or used at the MIT Center for Space Research but were not able to utilize for WIND: surface-mount packaging, field-programmable gate arrays, an optically-switched high voltage supply, and an integrated-circuit power converter, it was estimated that the mass of the Faraday Cup system could be reduced from 5 kg to 1.8 kg. Further redesign of the electronics incorporating hybrid integrated circuits as well as a decrease in the sensor size, with a corresponding increase in measurement cycle time, could lead to a significantly lower mass for other mission applications. Reduction in mass of the entire spacecraft-experiment system is critically dependent on early and continual collaborative efforts between the spacecraft engineers and the experimenters. Those efforts concern a range of issues from spacecraft structure to data systems to the spacecraft power voltage levels. Requirements for flight qualification affect use of newer, lighter electronics packaging and its implementation; the issue of quality assurance needs to be specifically addressed. Lower cost and reduced mass can best be achieved through the efforts of a relatively small group dedicated to the success of the mission. Such a group needs a fixed budget and greater control over quality assurance requirements, together with a reasonable oversight mechanism.

  16. Measurements of Faraday Rotation through the Solar Corona at 4.6 Solar Radii

    NASA Astrophysics Data System (ADS)

    Kooi, Jason E.; Fischer, P. D.; Buffo, J. J.; Spangler, S. R.

    2013-07-01

    Identifying and understanding (1) the coronal heating mechanism and (2) the acceleration mechanism for the high-speed solar wind are two of the most important modern problems in solar physics. Many competing models of the high-speed solar wind depend on the solar magnetic field inside heliocentric distances of 5 solar radii. We report on sensitive VLA full-polarization observations made in August, 2011, at 5.0 and 6.1 GHz (each with a bandwidth of 128 MHz) of the radio galaxy 3C228 through the solar corona at heliocentric distances of 4.6 - 5.0 solar radii. Observations at 5.0 GHz (C-band frequencies) permit measurements deeper in the corona than previous VLA observations at 1.4 and 1.7 GHz. These Faraday rotation observations provide unique information on the plasma density and magnetic field strength in this region of the corona. The measured Faraday rotation on this day was lower than our a priori expectations, but we have successfully modeled the measurement in terms of observed properties of the corona on the day of observation. Further, 3C228 provides two lines of sight (separated by 46”) that allow measurement of differential Faraday rotation. These data may provide constraints on the magnitude of coronal currents and, thus, on the role Joule heating plays in the corona. Fluctuations in the observed rotation measure may also place constraints on wave-turbulence models by constraining the magnitude of coronal Alfvén waves.

  17. Statistical techniques for detecting the intergalactic magnetic field from large samples of extragalactic Faraday rotation data

    SciTech Connect

    Akahori, Takuya; Gaensler, B. M.; Ryu, Dongsu E-mail: bryan.gaensler@sydney.edu.au

    2014-08-01

    Rotation measure (RM) grids of extragalactic radio sources have been widely used for studying cosmic magnetism. However, their potential for exploring the intergalactic magnetic field (IGMF) in filaments of galaxies is unclear, since other Faraday-rotation media such as the radio source itself, intervening galaxies, and the interstellar medium of our Galaxy are all significant contributors. We study statistical techniques for discriminating the Faraday rotation of filaments from other sources of Faraday rotation in future large-scale surveys of radio polarization. We consider a 30° × 30° field of view toward the south Galactic pole, while varying the number of sources detected in both present and future observations. We select sources located at high redshifts and toward which depolarization and optical absorption systems are not observed so as to reduce the RM contributions from the sources and intervening galaxies. It is found that a high-pass filter can satisfactorily reduce the RM contribution from the Galaxy since the angular scale of this component toward high Galactic latitudes would be much larger than that expected for the IGMF. Present observations do not yet provide a sufficient source density to be able to estimate the RM of filaments. However, from the proposed approach with forthcoming surveys, we predict significant residuals of RM that should be ascribable to filaments. The predicted structure of the IGMF down to scales of 0.°1 should be observable with data from the Square Kilometre Array, if we achieve selections of sources toward which sightlines do not contain intervening galaxies and RM errors are less than a few rad m{sup –2}.

  18. SIRTF - The Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Werner, Michael W.; Eisenhardt, Peter

    1988-01-01

    The complexity and variety of objects in the infrared universe have been revealed by the Infrared Astronomical Satellite (IRAS). Further exploration of this universe will be possible with the Space Infrared Telescope Facility (SIRTF), which offers vast improvements in sensitivity and resolution over IRAS. SIRTF's planned capabilities and current status are briefly reviewed.

  19. Reconstruction of polar magnetic field from single axis tomography of Faraday rotation in plasmas

    SciTech Connect

    Flacco, A.; Rax, J.-M.; Malka, V.

    2012-10-15

    An integral back-transform has been developed to retrieve the polar magnetic component in a cylindrically symmetric plasma from a single projection. The formula is derived from parallel forward Radon transform (Abel transform) of a source-free vector field. Two numerical schemes are proposed to solve the backward transform. These schemes have been tested successfully with predefined plasma parameters. The practical application to the analysis of experimental Faraday rotation measurements is also presented, leading to the reconstruction of the transverse profile of the magnetic field.

  20. A low loss Faraday isolator for squeezed vacuum injection in Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Goetz, Ryan; Tanner, David; Mueller, Guido

    2016-03-01

    Using conventional interferometry, the strain sensitivity of Advanced LIGO is limited by a quantum noise floor known as the standard quantum limit (SQL). Injecting squeezed vacuum states into the output port of the interferometer allows for detector sensitivities below the SQL at frequencies within a band of observational interest. The effectiveness of squeezing in reducing quantum noise is strongly dependent upon the optical loss in the squeezed path. Thus, to combine the squeezed vacuum state with the interferometer output we require a Faraday isolator with both high power-throughput efficiency and high isolation ratio. A prototype isolator is currently being developed, and we will discuss the design goals and current status.

  1. Theory of the inverse Faraday effect in view of ultrafast magnetization experiments

    NASA Astrophysics Data System (ADS)

    Popova, Daria; Bringer, Andreas; Blügel, Stefan

    2011-12-01

    We supplement the theory of the inverse Faraday effect, which was developed in the 1960s, to the conditions used today in ultrafast magnetization experiments. We show that assumptions used to derive the effective Hamiltonian and magnetization are not valid under these conditions. We extended the approach to be applicable to describe magnetization dynamics at femtosecond time scales. We show that after the action of an ultrafast laser pulse the system is brought with a certain probability to a state, the magnetic signature of which is different from before the excitation.

  2. Theoretical investigation of the inverse Faraday effect via a stimulated Raman scattering process

    NASA Astrophysics Data System (ADS)

    Popova, Daria; Bringer, Andreas; Blügel, Stefan

    2012-03-01

    We study theoretically the origin and mechanism of the ultrafast inverse Faraday effect, which is a magneto-optical effect, attracting much interest nowadays. Laser-induced subpicosecond spin dynamics in hydrogenlike systems and isolated many-electron atoms are investigated in order to get insight into this process. We show that the stimulated Raman scattering process leads to a change of the magnetic state of a system. We obtain the time evolution of the induced magnetization, its dependencies on laser properties, and the connection with the spin-orbit coupling of a system.

  3. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Spun microstructured optical fibresfor Faraday effect current sensors

    NASA Astrophysics Data System (ADS)

    Chamorovsky, Yury K.; Starostin, Nikolay I.; Morshnev, Sergey K.; Gubin, Vladimir P.; Ryabko, Maksim V.; Sazonov, Aleksandr I.; Vorob'ev, Igor'L.

    2009-11-01

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is ~70% that of an ideal fibre, in good agreement with theoretical predictions.

  4. Faraday waves on finite thickness smectic A liquid crystal and polymer gel materials

    SciTech Connect

    Ovando-Vazquez, C.; Rodriguez, O. Vazquez; Hernandez-Contreras, M.

    2008-11-13

    We studied with linear stability theory the Faraday waves on the surface of a smectic A liquid crystal and polymer gel-vapor systems of finite thicknesses. Model smectic A material exhibits alternating subharmonic-harmonic patterns of stability curves in a plot of driving acceleration versus wave number. For the case of highly viscoelastic gel media there are coexisting surface modes of harmonic and subharmonic types that correspond to peaks in the plot of the critical acceleration as a function of wave frequency. Larger frequencies lead to subsequent peaks of coexisting subharmonic waves only.

  5. Detection of a weak magnetic field via cavity-enhanced Faraday rotation

    NASA Astrophysics Data System (ADS)

    Xia, Keyu; Zhao, Nan; Twamley, Jason; EQuS Collaboration

    2015-10-01

    We study the sensitive detection of a weak static magnetic field via Faraday rotation induced by an ensemble of spins in a bimodal degenerate microwave cavity. We determine the limit of the resolution for the sensitivity of the magnetometry achieved using either single-photon or multiphoton inputs. For the case of a microwave cavity containing an ensemble of nitrogen-vacancy defects in diamond, we obtain a magnetometry sensitivity exceeding 5.2 n T /√{Hz } utilizing a single-photon probe field, while for a multiphoton input we achieve a subfemtotesla sensitivity using a coherent-probe microwave field with power of Pin=1 n W .

  6. Shedding light on dark matter: A Faraday rotation experiment to limit a dark magnetic moment

    SciTech Connect

    Gardner, Susan

    2009-03-01

    A Faraday rotation experiment can set limits on the magnetic moment of a electrically-neutral, dark-matter particle, and the limits increase in stringency as the candidate-particle mass decreases. Consequently, if we assume the dark-matter particle to be a thermal relic, our most stringent constraints emerge at the keV mass scale. We discuss how such an experiment could be realized and determine the limits on the magnetic moment as a function of mass which follow given demonstrated experimental capacities.

  7. Chain-induced effects in the Faraday instability on ferrofluids in a horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Mekhonoshin, V. V.; Lange, Adrian

    2004-04-01

    The linear stability analysis of the Faraday instability on a viscous ferrofluid in a horizontal magnetic field is performed. Strong dipole-dipole interactions lead to the formation of chains elongated in the field direction. The formation of chains results in a qualitative new behavior of the ferrofluid. This new behavior is characterized by a neutral stability curve similar to that observed earlier for Maxwell viscoelastic liquids and causes a significant weakening of the energy dissipation at high frequencies. In the case of a ferrofluid with chains in a horizontal magnetic field, the effective viscosity is anisotropic and depends on the field strength as well as on the wave frequency.

  8. The magnetic field of the Large Magellanic Cloud revealed through Faraday rotation.

    PubMed

    Gaensler, B M; Haverkorn, M; Staveley-Smith, L; Dickey, J M; McClure-Griffiths, N M; Dickel, J R; Wolleben, M

    2005-03-11

    We have measured the Faraday rotation toward a large sample of polarized radio sources behind the Large Magellanic Cloud (LMC) to determine the structure of this galaxy's magnetic field. The magnetic field of the LMC consists of a coherent axisymmetric spiral of field strength approximately 1 microgauss. Strong fluctuations in the magnetic field are also seen on small (<0.5 parsec) and large (approximately 100 parsecs) scales. The large bursts of recent star formation and supernova activity in the LMC argue against standard dynamo theory, adding to the growing evidence for rapid field amplification in galaxies. PMID:15761149

  9. Effects of diamagnetic Ga dilution on the Faraday response of bismuth-doped iron garnet films

    NASA Astrophysics Data System (ADS)

    Garzarella, A.; Shinn, M. A.; Wu, Dong Ho

    2016-06-01

    In bismuth-doped iron garnets, diamagnetic dilution of Fe with Ga is a well-known method to increase the Faraday rotation response under externally applied magnetic fields. It is found, however, that while this method improves responsivity at larger field strengths, the responsivity under smaller fields (which are more typical in sensing applications) is generally unaffected by Ga doping. The data indicate that the low-field responsivity is limited by anomalous pinning effects in the rotational magnetization process of the ferromagnetic domains. To overcome this, a magnetic biasing technique was developed, which enhances responsivity by activating Barkhausen steps in the films to free the domains from their pinning sites.

  10. Excited state Faraday anomalous dispersion optical filters based on indirect laser pumping.

    PubMed

    Yin, Longfei; Luo, Bin; Chen, Zhongjie; Zhong, Lei; Guo, Hong

    2014-02-15

    The direct pump method now used in excited state Faraday anomalous dispersion optical filters (ES-FADOFs) requires that the transition between the target and the ground state is an electric dipole allowed transition and that a laser that operates at the exact pump wavelength is available. This is not always satisfied in practice. An indirect laser pump method for ES-FADOF is proposed and experimentally realized. Compared with the commonly used direct pump method, this indirect pump method can reach the same performance using lasers at very different wavelengths. This method can greatly extend the wavelength range of FADOF and provide a novel scheme for ES-FADOF design. PMID:24562221

  11. Influence of cubic nonlinearity on compensation of thermally induced polarisation distortions in Faraday isolators

    SciTech Connect

    Kuzmina, M S; Khazanov, E A

    2013-10-31

    The problem on laser radiation propagation in a birefringent medium is solved with the allowance made for thermally induced linear birefringence under the conditions of cubic nonlinearity. It is shown that at high average and peak radiation powers the degree of isolation in a Faraday isolator noticeably reduces due to the cubic nonlinearity: by more than an order of magnitude when the B-integral is equal to unity. This effect is substantial for pulses with the energy of 0.2 – 3 J, duration of 10 ps to 4 ns and pulse repetition rate of 0.2 – 40 kHz. (components of laser devices)

  12. Tools for laser spectroscopy: The design and construction of a Faraday isolator

    NASA Astrophysics Data System (ADS)

    Winter, S.; Mok, C.; Kumarakrishnan, A.

    2006-09-01

    We discuss the design and construction of a Faraday isolator for diode laser spectroscopy using commercially available components. The design involves modelling the magnetic field of an assembly of cylindrical magnets and verifying the predictions using a sensor. We obtain an isolation ratio for optical feedback of similar to 35 dB at a wavelength of 780 nm. The cost is approximately one-fourth the cost of an equivalent commercially available device. We expect that the design can be widely used in experiments in laser spectroscopy and in advanced undergraduate laboratory experiments.

  13. Infrared Spectra of the CO_2-H_2O, CO_2-(H_2O)2, and (CO_2)2-H_2O Complexes Isolated in Solid Neon Between 90 and 5300 wn

    NASA Astrophysics Data System (ADS)

    Tremblay, Benoît; Soulard, Pascale

    2015-06-01

    The van der Waals complex of H_2O with CO_2 has attracted considerable theoretical interest since it is a typical example of a weak binding complex (less than 3 kcal/mol), but a very few IR data are available in gas. For these reasons, we have studied in solid neon hydrogen bonded complexes involving carbon dioxide and water molecules. Evidence for the existence of at least three (CO_2)m(H_2O)n, or m:n, complexes has been obtained from the appearance of many new absorptions near the well-know monomers fundamental transitions. Concentration effects and detailed vibrational analysis allowed identification of fifteen, eleven and four transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra+intermolecular transitions. All of these results significantly increase the number of one and, especially, two quanta vibrational transitions observed for these complexes, and anharmonic coupling constants have been derived. This study shows the high sensibility of the solid neon isolation for the spectroscopy of the hydrogen-bonded complexes since two quanta transitions can't be easily observed in gas phase.

  14. Suppression of Faraday waves in a Bose-Einstein condensate in the presence of an optical lattice

    SciTech Connect

    Capuzzi, Pablo; Gattobigio, Mario; Vignolo, Patrizia

    2011-01-15

    We study the formation of Faraday waves in an elongated Bose-Einstein condensate in the presence of a one-dimensional optical lattice. The waves are parametrically excited by modulating the radial confinement of the condensate close to a transverse breathing mode of the system. For very shallow optical lattices, phonons with a well-defined wave vector propagate along the condensate, as in the absence of the lattice, and we observe the formation of a Faraday pattern. We find that by increasing the potential depth the local sound velocity decreases, and when it equals the condensate local phase velocity, the condensate develops an incoherent superposition of several modes and the parametric excitation of Faraday waves is suppressed.

  15. Why Infrared?

    ERIC Educational Resources Information Center

    Harris, J. R.

    1973-01-01

    Discusses applications of techniques developed for the remote sensing of infrared radiation. In addition to military applications, remote sensing has become important in collecting environmental data and detecting ecological problems. (JR)

  16. All-Fiber Optical Magnetic-Field Sensor Based on Faraday Rotation in Highly Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-03-03

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium–doped silicate fiber with a Verdet constant of –24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  17. Ultraviolet-visible optical isolators based on CeF{sub 3} Faraday rotator

    SciTech Connect

    Víllora, Encarnación G. Shimamura, Kiyoshi; Plaza, Gustavo R.

    2015-06-21

    The first ultraviolet (UV) and visible optical isolators based on CeF{sub 3} are demonstrated. CeF{sub 3} possesses unique properties as Faraday rotator for the UV-visible wavelength region: a wide transparency range (wavelength of >300 nm) and an outstanding Verdet constant. In contrast, currently used terbium-gallium garnets and magneto-optical glasses possess a low transparency in the visible and a small Verdet constant in the UV, respectively. The optical isolator prototypes consist of a CeF{sub 3} rod, a single ring magnet, and a couple of beam splitters. The ring magnets have been designed to guarantee a homogeneous magnetic field; for it, numerical simulations have been carried out. The two prototypes are very compact and operate in the UV at 355 and in the visible at 405 nm, respectively. The performance of these devices indicates the high potential of CeF{sub 3} as a new UV-visible Faraday rotator, specially for shorter wavelengths where at present there are no optical isolators available.

  18. Terahertz modulation of the Faraday rotation by laser pulses via the optical Kerr effect

    NASA Astrophysics Data System (ADS)

    Subkhangulov, R. R.; Mikhaylovskiy, R. V.; Zvezdin, A. K.; Kruglyak, V. V.; Rasing, Th.; Kimel, A. V.

    2016-02-01

    The magneto-optical Faraday effect played a crucial role in the elucidation of the electromagnetic nature of light. Today it is powerful means to probe magnetism and the basic operational principle of magneto-optical modulators. Understanding the mechanisms allowing for modulation of the magneto-optical response at terahertz frequencies may have far-reaching consequences for photonics, ultrafast optomagnetism and magnonics, as well as for future development of ultrafast Faraday modulators. Here we suggest a conceptually new approach for an ultrafast tunable magneto-optical modulation with the help of counter-propagating laser pulses. Using terbium gallium garnet (Tb3Ga5O12) we demonstrate the feasibility of such magneto-optical modulation with a frequency up to 1.1 THz, which is continuously tunable by means of an external magnetic field. Besides the novel concept for ultrafast magneto-optical polarization modulation, our findings reveal the importance of accounting for propagation effects in the interpretation of pump-probe magneto-optical experiments.

  19. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    NASA Astrophysics Data System (ADS)

    Tweney, Ryan D.

    2011-07-01

    James Clerk Maxwell `translated' Michael Faraday's experimentally-based field theory into the mathematical representation now known as `Maxwell's Equations.' Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of electricity and magnetism. Examination of Maxwell's procedures opens many issues about the role of mathematical representation in physics and the learning background required for its success. Specifically, Maxwell's training in `Cambridge University' mathematical physics emphasized the use of analogous equations across fields of physics and the repeated solving of extremely difficult problems in physics. Such training develops an array of overlearned mathematical representations supported by highly sophisticated cognitive mechanisms for the retrieval of relevant information from long term memory. For Maxwell, mathematics constituted a new form of representation in physics, enhancing the formal derivational and calculational role of mathematics and opening a cognitive means for the conduct of `experiments in the mind' and for sophisticated representations of theory.

  20. Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer

    PubMed Central

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-01-01

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope (15NO) detection sensitivity of 0.36 ppbv·Hz−1/2, corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10−8 rad·Hz−1/2 and noise-equivalent absorbance (αL)min of 6.27 × 10−8 Hz−1/2. White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies. PMID:26473876

  1. Simultaneous Cotton-Mouton and Faraday rotation angle measurements on JET

    SciTech Connect

    Boboc, A.; Zabeo, L.; Murari, A.

    2006-10-15

    The change in the ellipticity of a laser beam that passes through plasma due to the Cotton-Mouton effect can provide additional information on the plasma density. This approach, complementary to the more traditional interferometric methods, has been implemented recently using the JET interferometer-polarimeter with a new setup. Routine Cotton-Mouton phase shift measurements are made on the vertical central chords simultaneously with the Faraday rotation angle data. These new data are used to provide robust line-integrated density measurements in difficult plasma scenarios, with strong Edge Localized Modes (ELMs) or pellets. These always affect interferometry, causing fringe jumps and preventing good control of the plasma density. A comparison of line-integrated density from polarimetry and interferometry measurements shows an agreement within 10%. Moreover, in JET the measurements can be performed close to a reactor relevant range of parameters, in particular, at high densities and temperatures. This provides a unique opportunity to assess the quality of the Faraday rotation and Cotton-Mouton phase shift measurements where both effects are strong and mutual nonlinear interaction between the two effects takes place.

  2. Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Liang, Lin-Mei

    2011-06-01

    The Faraday mirror (FM) plays a very important role in maintaining the stability of two-way plug-and-play quantum key distribution (QKD) systems. However, the practical FM is imperfect, which will not only introduce an additional quantum bit error rate (QBER) but also leave a loophole for Eve to spy the secret key. In this paper we propose a passive Faraday mirror attack in two-way QKD system based on the imperfection of FM. Our analysis shows that if the FM is imperfect, the dimension of Hilbert space spanned by the four states sent by Alice is three instead of two. Thus Eve can distinguish these states with a set of Positive Operator Valued Measure (POVM) operators belonging to three-dimension space, which will reduce the QBER induced by her attack. Furthermore, a relationship between the degree of the imperfection of FM and the transmittance of the practical QKD system is obtained. The results show that the probability that Eve loads her attack successfully depends on the degree of the imperfection of FM rapidly, but the QBER induced by Eve’s attack changes slightly with the degree of the FM imperfection.

  3. Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system

    SciTech Connect

    Sun Shihai; Jiang Musheng; Liang Linmei

    2011-06-15

    The Faraday mirror (FM) plays a very important role in maintaining the stability of two-way plug-and-play quantum key distribution (QKD) systems. However, the practical FM is imperfect, which will not only introduce an additional quantum bit error rate (QBER) but also leave a loophole for Eve to spy the secret key. In this paper we propose a passive Faraday mirror attack in two-way QKD system based on the imperfection of FM. Our analysis shows that if the FM is imperfect, the dimension of Hilbert space spanned by the four states sent by Alice is three instead of two. Thus Eve can distinguish these states with a set of Positive Operator Valued Measure (POVM) operators belonging to three-dimension space, which will reduce the QBER induced by her attack. Furthermore, a relationship between the degree of the imperfection of FM and the transmittance of the practical QKD system is obtained. The results show that the probability that Eve loads her attack successfully depends on the degree of the imperfection of FM rapidly, but the QBER induced by Eve's attack changes slightly with the degree of the FM imperfection.

  4. Cascaded Magneto-Optical Ring Resonator Structures for Tunable Faraday Rotation and Reduced Isolator Footprint

    NASA Astrophysics Data System (ADS)

    Cengiz Onbasli, Mehmet; Hu, Juejun; Bi, Lei; Dionne, Gerald F.; Ross, Caroline A.

    2012-02-01

    On-chip optical isolators are indispensible components of integrated optics, and can be modified to enable four-port and multi-port circulators and modulators. We have implemented an on-chip optical isolator by placing a racetrack resonator next to a single mode waveguide and coating half of the resonator with a uniformly magnetized magneto-optical film, which breaks the time-reversal symmetry of light propagation and provides different refractive indices and phase shifts for forward and backward propagating waves. At every pass, the optical mode inside the resonator accumulates Faraday rotation in addition to phase shift due to propagation. The transmission from the output port of the waveguide has a Lorentzian dip due to the resonance peak of the resonator. Light can only propagate in the clockwise direction inside the resonator. Here we model how cascading multiple ring resonators can increase the overall quality factor of the isolator and narrow the resonance linewidth, due to the longer photon lifetime inside the cavity. As a result of better control of Faraday rotation, the isolation ratio is enhanced and the device footprint is reduced with respect to Mach-Zehnder waveguide isolators.

  5. FARADAY ROTATION DISTRIBUTIONS FROM STELLAR MAGNETISM IN WIND-BLOWN BUBBLES

    SciTech Connect

    Ignace, R.; Pingel, N. M. E-mail: nmpingle@wisc.edu

    2013-03-01

    Faraday rotation is a valuable tool for detecting magnetic fields. Here, the technique is considered in relation to wind-blown bubbles. In the context of spherical winds with azimuthal or split monopole stellar magnetic field geometries, we derive maps of the distribution of position angle (P.A.) rotation of linearly polarized radiation across projected bubbles. We show that the morphology of maps for split monopole fields are distinct from those produced by the toroidal field topology; however, the toroidal case is the one most likely to be detectable because of its slower decline in field strength with distance from the star. We also consider the important case of a bubble with a spherical sub-volume that is field-free to approximate crudely a 'swept-up' wind interaction between a fast wind (or possibly a supernova ejecta shell) overtaking a slower magnetized wind from a prior state of stellar evolution. With an azimuthal field, the resultant P.A. map displays two arc-like features of opposite rotation measure, similar to observations of the supernova remnant G296.5+10.0. We illustrate how P.A. maps can be used to disentangle Faraday rotation contributions made by the interstellar medium versus the bubble. Although our models involve simplifying assumptions, their consideration leads to a number of general robust conclusions for use in the analysis of radio mapping data sets.

  6. Ultraviolet-visible optical isolators based on CeF3 Faraday rotator

    NASA Astrophysics Data System (ADS)

    Víllora, Encarnación G.; Shimamura, Kiyoshi; Plaza, Gustavo R.

    2015-06-01

    The first ultraviolet (UV) and visible optical isolators based on CeF3 are demonstrated. CeF3 possesses unique properties as Faraday rotator for the UV-visible wavelength region: a wide transparency range (wavelength of >300 nm) and an outstanding Verdet constant. In contrast, currently used terbium-gallium garnets and magneto-optical glasses possess a low transparency in the visible and a small Verdet constant in the UV, respectively. The optical isolator prototypes consist of a CeF3 rod, a single ring magnet, and a couple of beam splitters. The ring magnets have been designed to guarantee a homogeneous magnetic field; for it, numerical simulations have been carried out. The two prototypes are very compact and operate in the UV at 355 and in the visible at 405 nm, respectively. The performance of these devices indicates the high potential of CeF3 as a new UV-visible Faraday rotator, specially for shorter wavelengths where at present there are no optical isolators available.

  7. Implementation and automation of a Faraday experiment for the magneto-optical characterization of ferrofluids

    NASA Astrophysics Data System (ADS)

    Velásquez, A. A.; Urquijo, J. P.

    2016-01-01

    This work presents the design, assembly and automation of a Faraday experiment for use in characterization of the magneto-optical response of fluids and ferrofluids. The magneto-optical Faraday experiment was automated using programmable equipment, controlled through the IEEE-488 port via Standard Commands for Programmable Instruments executed from a graphical interface developed in LabVIEW software. To calibrate the system the Verdet constants of distilled water and isopropyl alcohol were measured, obtaining an error percentage less than 2% for both fluids. Subsequently we used the system for measuring the Verdet constant of a ferrofluid of iron oxide nanoparticles diluted in distilled water, which was synthesized and, before its dilution, characterized by scanning electron microscopy, room temperature Mössbauer spectroscopy and vibrating sample magnetometry. We found that the Verdet constant of the diluted ferrofluid was smaller than that of distilled water, indicating opposite contributions of the effects of the diamagnetic and paramagnetic phases present in the ferrofluid to the magneto-optical effect. Details of the assembly, control of the experiment and development of the measurements are presented in this paper.

  8. Nitric oxide isotopic analyzer based on a compact dual-modulation Faraday rotation spectrometer.

    PubMed

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-01-01

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope ((15)NO) detection sensitivity of 0.36 ppbv·Hz(-1/2), corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10(-8) rad·Hz(-1/2) and noise-equivalent absorbance (αL)min of 6.27 × 10(-8) Hz(-1/2). White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies. PMID:26473876

  9. The birth of the electric machines: a commentary on Faraday (1832) 'Experimental researches in electricity'.

    PubMed

    Al-Khalili, Jim

    2015-04-13

    The history of science is filled with examples of key discoveries and breakthroughs that have been published as landmark texts or journal papers, and to which one can trace the origins of whole disciplines. Such paradigm-shifting publications include Copernicus' De revolutionibus orbium coelestium (1543), Isaac Newton's Philosophiæ Naturalis Principia Mathematica (1687) and Albert Einstein's papers on relativity (1905 and 1915). Michael Faraday's 1832 paper on electromagnetic induction sits proudly among these works and in a sense can be regarded as having an almost immediate effect in transforming our world in a very real sense more than any of the others listed. Here we review the status of the subject-the relationship between magnetism and electricity both before and after Faraday's paper and delve into the details of the key experiments he carried out at the Royal Institution outlining clearly how he discovered the process of electromagnetic induction, whereby an electric current could be induced to flow through a conductor that experiences a changing magnetic field. His ideas would not only enable Maxwell's later development of his theory of classical electromagnetism, but would directly lead to the development of the electric dynamo and electric motor, two technological advances that are the very foundations of the modern world. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750145

  10. Faraday instability of a two-layer liquid film with a free upper surface

    NASA Astrophysics Data System (ADS)

    Pototsky, Andrey; Bestehorn, Michael

    2016-06-01

    We study the linear stability of a laterally extended flat two-layer liquid film under the influence of external vertical vibration. The first liquid layer rests on a vibrating solid plate and is overlaid by a second layer of immiscible fluid with deformable upper surface. Surface waves, excited as the result of the Faraday instability, can be characterized by a time-dependent relative amplitude of the displacements of the liquid-liquid and the liquid-gas interfaces. The in-phase displacements are associated with a zigzag (barotropic) mode and the antiphase displacement corresponds to the varicose thinning mode. We numerically determine the stability threshold in the vibrated two-layer film and compute the dispersion relation together with the decay rates of the surface waves in the absence of vibration. The in-phase and the antiphase displacements are strongly coupled in the vibrated system. The interplay between the Faraday and the Rayleigh-Taylor instabilities in the system with heavier fluid on top of a lighter fluid is analyzed.

  11. SCIENTIFIC VERIFICATION OF FARADAY ROTATION MODULATORS: DETECTION OF DIFFUSE POLARIZED GALACTIC EMISSION

    SciTech Connect

    Moyerman, S.; Bierman, E.; Kaufman, J.; Keating, B. G.; Ade, P. A. R.; Aiken, R.; Hristov, V. V.; Jones, W. C.; Mason, P. V.; Barkats, D.; Bischoff, C.; Kovac, J. M.; Bock, J. J.; Dowell, C. D.; Chiang, H. C.; Duband, L.; Hivon, E. F.; Holzapfel, W. L.; Kuo, C. L.; Leitch, E. M.; and others

    2013-03-01

    The design and performance of a wide bandwidth linear polarization modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP's 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP's measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP's 43 pixels without FRMs.

  12. Inferring E region electron density profiles at Jicamarca from Faraday rotation of coherent scatter

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Chau, J. L.

    2001-12-01

    A new technique for measuring E region plasma density profiles in the equatorial electrojet using a bistatic coherent scatter radar is described. The technique utilizes the Faraday rotation of the obliquely and coherently scattered signal. Plasma density versus altitude is inferred from the rate of Faraday rotation as a function of range and elevation angle. A narrow beam width is required to minimize returns from unwanted azimuths, but this can be achieved in a bistatic experiment using relatively small antenna arrays with widely spaced elements. We give a sample time sequence of daytime electron density profiles that were measured with the new technique at altitudes between 95 and 110 km. Scatter from pure two-stream waves makes it possible to measure both the bottomside and topside density profiles during the day. The importance of this new technique becomes evident when one realizes that only a few rocket flights have provided density profiles through these altitudes at the magnetic equator; the region has been inaccessible to any remote sensing technique until now.

  13. Infrared and microwave spectra of the acetylene-ammonia and carbonyl sulfide-ammonia complexes: a comparative study of a weak C-H···N hydrogen bond and an S···N bond.

    PubMed

    Liu, Xunchen; Xu, Yunjie

    2011-08-21

    We report a combined high resolution infrared and microwave spectroscopic investigation of the acetylene-ammonia and carbonyl sulfide-ammonia complexes using a pulsed slit-nozzle multipass absorption spectrometer based on a quantum cascade laser and a pulsed nozzle beam Fourier transform microwave spectrometer, respectively. The ro-vibrational transitions of the acetylene-ammonia complex have been measured at 6 μm in the vicinity of the ν(4) band of ammonia for the first time. The previously reported pure rotational transitions have been extended to higher J and K values with (14)N nuclear quadrupole hyperfine components detected and analyzed. The spectral analysis reveals that acetylene binds to ammonia through a C-H···N weak hydrogen bond to form a C(3v) symmetric top, consistent with the previous microwave [Fraser et al., J. Chem. Phys., 1984, 80, 1423] and infrared spectroscopic study at 3 μm [Hilpert et al., J. Chem. Phys., 1996, 105, 6183]. A parallel study has also been carried out for the carbonyl sulfide-ammonia complex whose pure rotational and ro-vibrational spectra at 6 μm have been detected and analyzed for the first time. The spectral and the subsequent structural analyses, in conjunction with the corresponding ab initio calculation, indicate that the OCS-NH(3) complex assumes C(3v) symmetry with S pointing to N of NH(3), in contrast to the T-shaped geometries obtained for the isoelectronic N(2)O-NH(3) and CO(2)-NH(3) complexes. PMID:21776482

  14. Vibration mitigation in J-TEXT far-infrared diagnostic systems

    SciTech Connect

    Li, Q.; Chen, J.; Zhuang, G.; Wang, Z. J.; Gao, L.; Chen, W.

    2012-10-15

    Optical structure stability is an important issue for far-infrared (FIR) phase measurements. To ensure good signal quality, influence of vibration should be minimized. Mechanical amelioration and optical optimization can be taken in turn to decrease vibration's influence and ensure acceptable measurement. J-TEXT (Joint Texal Experiment Tokamak, formerly TEXT-U) has two FIR diagnostic systems: a HCN interferometer system for electron density measurement and a three-wave polarimeter-interferometer system (POLARIS) for electron density and Faraday effect measurements. All use phase detection techniques. HCN interferometer system has almost eliminated the influence of vibration after mechanical amelioration and optical optimization. POLARIS also obtained first experimental results after mechanical stability improvements and is expected to further reduce vibration's influence on Faraday angle to 0.1 Degree-Sign after optical optimization.

  15. Two-center three-electron bonding in ClNH3 revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH3 → ClNH2 + H reaction

    NASA Astrophysics Data System (ADS)

    Moradi, Christopher P.; Xie, Changjian; Kaufmann, Matin; Guo, Hua; Douberly, Gary E.

    2016-04-01

    Pyrolytic dissociation of Cl2 is employed to dope helium droplets with single Cl atoms. Sequential addition of NH3 to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH3 → ClNH2 + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C3v symmetric top. Frequency shifts from NH3 and dipole moment measurements are consistent with a ClNH3 complex containing a relatively strong two-center three-electron (2c-3e) bond. The nature of the 2c-3e bonding in ClNH3 is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH3Cl and Cl-HNH2, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH3 → HCl + NH2.

  16. Two-center three-electron bonding in ClNH3 revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH3 → ClNH2 + H reaction.

    PubMed

    Moradi, Christopher P; Xie, Changjian; Kaufmann, Matin; Guo, Hua; Douberly, Gary E

    2016-04-28

    Pyrolytic dissociation of Cl2 is employed to dope helium droplets with single Cl atoms. Sequential addition of NH3 to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH3 → ClNH2 + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C3v symmetric top. Frequency shifts from NH3 and dipole moment measurements are consistent with a ClNH3 complex containing a relatively strong two-center three-electron (2c-3e) bond. The nature of the 2c-3e bonding in ClNH3 is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH3Cl and Cl-HNH2, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH3 → HCl + NH2. PMID:27131544

  17. Homo- and Heterobimetallic Ruthenium(II) and Osmium(II) Complexes Based on a Pyrene-Biimidazolate Spacer as Efficient DNA-Binding Probes in the Near-Infrared Domain.

    PubMed

    Mardanya, Sourav; Karmakar, Srikanta; Mondal, Debiprasad; Baitalik, Sujoy

    2016-04-01

    We report in this work a new family of homo- and heterobimetallic complexes of the type [(bpy)2M(Py-Biimz)M'(II)(bpy)2](2+) (M = M' = Ru(II) or Os(II); M = Ru(II) and M' = Os(II)) derived from a pyrenyl-biimidazole-based bridge, 2-imidazolylpyreno[4,5-d]imidazole (Py-BiimzH2). The homobimetallic Ru(II) and Os(II) complexes were found to crystallize in monoclinic form with space group P21/n. All the complexes exhibit strong absorptions throughout the entire UV-vis region and also exhibit luminescence at room temperature. For osmium-containing complexes (2 and 3) both the absorption and emission band stretched up to the NIR region and thus afford more biofriendly conditions for probable applications in infrared imaging and phototherapeutic studies. Detailed luminescence studies indicate that the emission originates from the respective (3)MLCT excited state mainly centered in the [M(bpy)2](2+) moiety of the complexes and is only slightly affected by the pyrene moiety. The bimetallic complexes show two successive one-electron reversible metal-centered oxidations in the positive potential window and several reduction processes in the negative potential window. An efficient intramolecular electronic energy transfer is found to occur from the Ru center to the Os-based component in the heterometallic dyad. The binding studies of the complexes with DNA were thoroughly studied through different spectroscopic techniques such as UV-vis absorption, steady-state and time-resolved emission, circular dichroism, and relative DNA binding study using ethidium bromide. The intercalative mode of binding was suggested to be operative in all cases. Finally, computational studies employing DFT and TD-DFT were also carried out to interpret the experimentally observed absorption and emission bands of the complexes. PMID:27011117

  18. Infrared Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A sensitive infrared camera that observes the blazing plumes from the Space Shuttle or expendable rocket lift-offs is capable of scanning for fires, monitoring the environment and providing medical imaging. The hand-held camera uses highly sensitive arrays in infrared photodetectors known as quantum well infrared photo detectors (QWIPS). QWIPS were developed by the Jet Propulsion Laboratory's Center for Space Microelectronics Technology in partnership with Amber, a Raytheon company. In October 1996, QWIP detectors pointed out hot spots of the destructive fires speeding through Malibu, California. Night vision, early warning systems, navigation, flight control systems, weather monitoring, security and surveillance are among the duties for which the camera is suited. Medical applications are also expected.

  19. Infrared Thermometer

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Diatek Corporation, San Diego, CA and the Jet Propulsion Lab developed the Diatek Model 7000 aural thermometer which weighs only eight ounces, and measures temperature in less than two seconds using infrared astronomy technology to measure the amount of infrared energy emitted by the eardrum (the same way temperature of stars and planets is measured). This method avoids contact with mucous membranes, virtually eliminating the possibility of cross infection, and permits temperature measurement of newborn, critically ill, or incapacitated patients. Diatek Corporation was purchased by Welch Allyn Inc. The Diatek Model 7000 is now marketed as SureTemp.

  20. Infrared Scanning

    NASA Technical Reports Server (NTRS)

    1987-01-01

    United Scanning Technologies, Inc.'s Infrared thermography is a relatively new noncontact, nondestructive inspection and testing tool which makes temperatures visible to the human eye. Infrared scanning devices produce images that show, by color or black and white shading differences, heat losses through damaged or inadequately insulated walls or roofs. The MISS Aeroscan services are designed to take the guesswork out of industrial roof maintenance and provide companies big savings by identifying the location of moisture damage from roof leaks, effectively targeting maintenance attention.