Science.gov

Sample records for infrared finite observables

  1. Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1982-01-01

    The infrared astronomical data base and its principal data product, the catalog of Infrared Observations (CIO), comprise a machine readable library of infrared (1 microns to 1000 microns astronomical observations. To date, over 1300 journal articles and 10 major survey catalogs are included in this data base, which contains about 55,000 individual observations of about 10,000 different infrared sources. Of these, some 8,000 sources are identifiable with visible objects, and about 2,000 do not have known visible counterparts.

  2. Far infrared supplement: Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1984-01-01

    The Far Infrared Supplement: catalog of infrared observations summarizes all infrared astronomical observations at far infrared wavelengths published in the scientific literature between 1965 and 1982. The Supplement list contains 25% of the observations in the full catalog of infrared observations (C10), and essentially eliminates most visible stars from the listings. The Supplement is more compact than the main Catalog (it does not contain the bibliography and position index of the C10), and is intended for easy reference during astronomical observations.

  3. Far infrared supplement: Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1982-01-01

    The development of a new generation of orbital, airborne and ground-based infrared astronomical observatory facilities, including the infrared astronomical satellite (IRAS), the cosmic background explorer (COBE), the NASA Kuiper airborne observatory, and the NASA infrared telescope facility, intensified the need for a comprehensive, machine-readable data base and catalog of current infrared astronomical observations. The Infrared Astronomical Data Base and its principal data product, this catalog, comprise a machine-readable library of infrared (1 micrometer to 1000 micrometers) astronomical observations published in the scientific literature since 1965.

  4. Infrared observations of comets

    NASA Astrophysics Data System (ADS)

    Hobbs, R. W.

    1981-10-01

    Infrared observation are important for deducing a great deal about properties of the cometary dust surrounding the cometary nucleus. All observations in the infrared are limited to long period comets. Three features of the spectrum which seem to be present in nearly all of the comets observed are discussed. First, there is a peak in the spectrum in the near infrared and visible wavelength, which can be attributed to scattered sunlight. This feature, as expected, gets fainter as a comet recedes from the sun. The second dominant feature in the spectrum is a broad peak in the infrared which is attributed to the thermal emission of the dust in the coma. This part of the spectrum also gets dimmer as the comet gets further from the sun but, at the same time the peak of the spectrum shifts to longer wavelengths, indicating that the dust from which this radiation arises is cooling as the comets recedes. The other feature in the spectrum which is noted is the emission feature at about 10 microns attributed to emission from metallic silicates. T.M.

  5. Mauna Kea Observatory infrared observations

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.

    1974-01-01

    Galactic and solar system infrared observations are reported using a broad variety of radiometric and spectroscopic instrumentation. Infrared programs and papers published during this period are listed.

  6. Far infrared supplement: Catalog of infrared observations, second edition

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Schmitz, Marion; Mead, Jaylee M.

    1988-01-01

    The Far Infrared Supplement: Catalog of Infrared Observations summarizes all infrared astronomical observations at far infrared wavelengths (5 to 1000 microns) published in the scientific literature from 1965 through 1986. The Supplement list contain 25 percent of the observations in the full Catalog of Infrared Observations (CIO), and essentially eliminates most visible stars from the listings. The Supplement is thus more compact than the main catalog, and is intended for easy reference during astronomical observations. The Far Infrared Supplement (2nd Edition) includes the Index of Infrared Source Positions and the Bibliography of Infrared Astronomy for the subset of far infrared observations listed.

  7. Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian

    2015-10-01

    Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.

  8. Infrared observations of AE Aquarii

    NASA Technical Reports Server (NTRS)

    Tanzi, E. G.; Chincarini, G.; Tarenghi, M.

    1981-01-01

    Broadband infrared observations of the cataclysmic variable AE Aquarii are reported. The observations were obtained in the J, H, K and L filters with the InSb photometer attached to the 1-m telescope of the European Southern Observatory. The infrared energy distribution observed from 0.35 to 3.5 microns for phase 0.5 suggests a spectral type of K5 V for the secondary and a distance to the system of approximately 70 pc if an absolute magnitude of 7.3 is assumed. Monitoring of the flux at 2.2 microns reveals a variability with an amplitude of approximately 0.3 magnitude over one third of the orbital period, the nature of which is under investigation.

  9. Infrared astronomical data base and catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Schmitz, M.; Gezari, D. Y.; Mead, J. M.

    1981-01-01

    The NASA/Goddard Space Flight Center has developed a computer data base of infrared astronomical observations. The data base represents a machine-readable library of infrared observational data published in the relevant literature since 1960 for celestial sources outside the solar system. It likewise includes the contents of infrared surveys and catalogs. A catalog of infrared observations has been developed in both printed and magnetic-tape formats. The data base will be accessed through a bibliographic guide and an atlas of infrared source names and positions. Future plans also include two-dimensional graphical displays of infrared data and a user-interactive data terminal.

  10. Infrared finite ghost propagator in the Feynman gauge

    SciTech Connect

    Aguilar, A. C.; Papavassiliou, J.

    2008-06-15

    We demonstrate how to obtain from the Schwinger-Dyson equations of QCD an infrared finite ghost propagator in the Feynman gauge. The key ingredient in this construction is the longitudinal form factor of the nonperturbative gluon-ghost vertex, which, contrary to what happens in the Landau gauge, contributes nontrivially to the gap equation of the ghost. The detailed study of the corresponding vertex equation reveals that in the presence of a dynamical infrared cutoff this form factor remains finite in the limit of vanishing ghost momentum. This, in turn, allows the ghost self-energy to reach a finite value in the infrared, without having to assume any additional properties for the gluon-ghost vertex, such as the presence of massless poles. The implications of this result and possible future directions are briefly outlined.

  11. Infrared observations of cometary solids

    NASA Astrophysics Data System (ADS)

    Camejo, H. C.

    1982-03-01

    Infrared photometry was used to determine the physical characteristics of cometary solids. Observations were made of the reflected and thermal parts of the spectra of seven comets. Two of these comets, Bowell and West, were nonperiodic; the other five, Chernyhk, Encke, Kearns-Kwee, Stephan-Oterma, and Tuttle, were periodic. Observations in the 3 micron region of the spectrum of Comet Bowell provide the first direct evidence for the presence of H2O ice in a comet. The observations of the periodic comets yield the following picture of the dust in this type of object: grains with a size distribution ranging from about 0.3 to 10 microns and peaking around a few microns. These grains were made up of at least two components, a silicate material and an absorbing material. These characteristics are remarkably similar to those of the dust in nonperiodic comets. Comet West is the first case of a splitting comet in which the fragments were observed to have differences in their dusty component. These observations suggest that the nucleus of this comet did not have an 'onion skin' or layered structure but rather had pockets containing dust grains with different size distributions. Based on the results presented, the relation between cometary and interstellar dust, and the origin of comets are discussed.

  12. Infrared astronomical data base and catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Schmitz, M.; Gezari, D. Y.; Mead, J. M.

    1982-01-01

    A computer data base of infrared astronomical observations has been established at NASA/Goddard Space Flight Center. It contains a summary of all infrared (1-100 microns) observations of celestial sources outside the solar system, published in the major scientific journals since 1960, as well as the contents of infrared surveys and catalogs. A Catalog of Infrared Observations (CIO) has been developed from the data base in printed and magnetic tape versions. A bibliographic Guide to the Infrared Astronomical Literature, and an Altas of Infrared Source Names and Positions will be published in conjunction with the catalog. Future plans include development of an interactive data system at Goddard which will give a user direct access to the computerized data.

  13. Catalog of infrared observations including: Bibliography of infrared astronomy and index of infrared source positions

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1984-01-01

    The Catalog of Infrared Observations and its Far Infrared Supplement summarize all infrared astronomical observations at infrared wavelengths published in the scientific literature between 1965 and 1982. The Catalog includes as appendices the Bibliography of infrared astronomy which keys observations in the Catalog with the original journal references, and the index of infrared source positions which gives source positions for alphabetically listed sources in the Catalog. The Catalog data base contains over 85,000 observations of about 10,000 infrared sources, of which about 2,000 have no known visible counterpart.

  14. Catalog of infrared observations. Part 2: Appendixes

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Schmitz, Marion; Mead, Jaylee M.

    1987-01-01

    The Catalog of Infrared Observations (CIO) is a compilation of infrared astronomical observational data obtained from an extensive literature search of astronomical journals and major astronomical catalogs and surveys. The literature searches are complete for years 1965 to 1986. Supporting appendixes are published in this part. The appendices include an atlas of infrared source positions, two bibliographies of infrared literature upon which the search was based, and, keyed to the main Catalog listings (organized alphabetically by first author, and by date), an atlas of infrared spectral ranges, and IRAS data for the CIO sources. The complete CIO database is available to qualified users in printed microfiche and magnetic tape formats.

  15. Scattering matrix of infrared radiation by ice finite circular cylinders.

    PubMed

    Xu, Lisheng; Ding, Jilie; Cheng, Andrew Y S

    2002-04-20

    Scattering matrix characteristics of polydisperse, randomly oriented, small ice crystals modeled by finite circular cylinders with various ratios of the length to diameter (L/D) ratio are calculated by use of the exact T-matrix approach, with emphasis on the thermal infrared spectral region that extends from the atmospheric short-wave IR window to the far-IR wavelengths to as large as 30 microm. The observed ice crystal size distribution and the well-known power-law distribution are considered. The results of the extensive calculations show that the characteristics of scattering matrix elements of small ice circular cylinders depend strongly on wavelengths and refractive indices, particle size distributions, and the L/D ratios. The applicability of the power-law distribution and particle shapes for light scattering calculations for small ice crystals is discussed. The effects of the effective variance of size distribution on light scattering characteristics are addressed. It seems from the behavior of scattering matrix elements of small ice crystals that the combination of 25 and 3.979 microm has some advantages and potential applications for remote sensing of cirrus and other ice clouds. PMID:12003228

  16. Catalog of Infrared Observations, Third Edition

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Schmitz, Marion; Pitts, Patricia S.; Mead, Jaylee M.

    1993-01-01

    The Far Infrared Supplement contains a subset of the data in the full Catalog of Infrared Observations (all observations at wavelengths greater than 4.6 microns). The Catalog of Infrared Observations (CIO), NASA RP-1294, is a compilation of infrared astronomical observational data obtained from an extensive literature search of scientific journals and major astronomical catalogs and surveys. The literature search is complete for years 1965 through 1990 in this Third Edition. The Catalog contains about 210,000 observations of roughly 20,000 individual sources and supporting appendices. The expanded Third Edition contains coded IRAS 4-band data for all CIO sources detected by IRAS. The appendices include an atlas of infrared source positions (also included in this volume), two bibliographies of Catalog listings, and an atlas of infrared spectral ranges. The complete CIO database is available to qualified users in printed, microfiche, and magnetic-tape formats.

  17. Observational constraints on finite scale factor singularities

    SciTech Connect

    Denkiewicz, Tomasz

    2012-07-01

    We discuss the combined constraints on a Finite Scale Factor Singularity (FSF) universe evolution scenario, which come from the shift parameter R, baryon acoustic oscillations (BAO) A, and from the type Ia supernovae. We show that observations allow existence of such singularities in the 2 × 10{sup 9} years in future (at 1σ CL) which is much farther than a Sudden Future Singularity (SFS), and that at the present moment of the cosmic evolution, one cannot differentiate between cosmological scenario which allow finite scale factor singularities and the standard ΛCDM dark energy models. We also show that there is an allowed value of m = 2/3 within 1σ CL, which corresponds to a dust-filled Einstein-de-Sitter universe limit of the early time evolution and so it is pasted into a standard early-time scenario.

  18. Infrared detectors for Earth observation

    NASA Astrophysics Data System (ADS)

    Barnes, K.; Davis, R. P.; Knowles, P.; Shorrocks, N.

    2016-05-01

    IASI (Infrared Atmospheric Sounding Interferometer), developed by CNES and launched since 2006 on the Metop satellites, is established as a major source of data for atmospheric science and weather prediction. The next generation - IASI NG - is a French national contribution to the Eumetsat Polar System Second Generation on board of the Metop second generation satellites and is under development by Airbus Defence and Space for CNES. The mission aim is to achieve twice the performance of the original IASI instrument in terms of sensitivity and spectral resolution. In turn, this places very demanding requirements on the infrared detectors for the new instrument. Selex ES in Southampton has been selected for the development of the infrared detector set for the IASI-NG instruments. The wide spectral range, 3.6 to 15.5 microns, is covered in four bands, each served by a dedicated detector design, with a common 4 x 4 array format of 1.3 mm square macropixels. Three of the bands up to 8.7 microns employ photovoltaic MCT (mercury cadmium telluride) technology and the very long wave band employs photoconductive MCT, in common with the approach taken between Airbus and Selex ES for the SEVIRI instrument on Second Generation Meteosat. For the photovoltaic detectors, the MCT crystal growth of heterojunction photodiodes is by the MOVPE technique (metal organic vapour phase epitaxy). Novel approaches have been taken to hardening the photovoltaic macropixels against localised crystal defects, and integrating transimpedance amplifiers for each macropixel into a full-custom silicon read out chip, which incorporates radiation hard design.

  19. Infrared Astronomy. [observations of extragalactic sources

    NASA Technical Reports Server (NTRS)

    Neugebauer, G.; Soifer, B. T.; Matthews, K.

    1981-01-01

    Several observational programs in infrared astronomy are described and significant findings are briefly discussed. The near infrared work concentrates largely on the use of the 5 m Hale telescope in spectroscopic and photometric studies of extragalactic sources. Observations of the P alpha line profile in a low redshift quasar, X-ray bursters, reflection nebula, and cataclysmic variables are included. Millimeter continuum observations of dust emission from quasars and galactic molecular clouds are also discussed. Finally, improvements to instrumentation are reported.

  20. Infrared Observations of Cometary Dust and Nuclei

    NASA Technical Reports Server (NTRS)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  1. Catalog of infrared observations. Part 1: Data

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Schmitz, Marion; Mead, Jaylee M.

    1987-01-01

    The Catalog of Infrared Observations (CIO) is a compilation of infrared astronomical observational data obtained from an extensive literature search of astronomical journals and major astronomical catalogs and surveys. The literature searches are complete for 1965 through 1986 in this Second Edition. The Catalog is published in two parts, with the observational data (roughly 200,000 observations of 20,000 individual sources) listed in Part I, and supporting appendices in Part II. The expanded Second Edition contains a new feature: complete IRAS 4-band data for all CIO sources detected, listed with the main Catalog observations, as well as in complete detail in the Appendix. The appendices include an atlas of infrared source positions, two bibliographies of infrared literature upon which the search was based, and, keyed to the main Catalog listings (organized alphabetically by author and then chronologically), an atlas of infrared spectral ranges, and IRAS data from the CIO sources. The complete CIO database is available to qualified users in printed microfiche and magnetic tape formats.

  2. Astronomical observations with an infrared array camera

    SciTech Connect

    Tresch-Fienberg, R.M.

    1985-01-01

    Astronomical observations with an infrared array camera demonstrate that arrays are excellent for high spatial resolution photometric mapping of celestial objects. The author describes a a 16 x 16 pixel array camera system based on a bismuth-doped silicon charge injection device optimized for use in the 8-13 micron atmospheric window. Observing techniques and image processing algorithms that are unique to the use of an array detector are also discussed. Multi-wavelength, 1-2 arcsec resolution images of three different celestial objects are presented. For the galactic center, maps of the infrared color temperature and emission optical depth are derived. The results are consistent with a model in which a low density region with a massive luminosity source at its center is encircled by a ring of gas and dust from which material may be infalling toward the nucleus. Multiple luminosity sources are not required to explain the infrared appearance of the galactic center. Images of Seyfert galaxy NGC 1068 are the first to resolve the infrared structure of the nucleus and show that it is similar to that at optical and radio wavelengths. Infrared emission extended northeast of the nucleus is identified with the radio jet. Combined with optical spectra and charge coupled device images, the new data imply a causal relationship between the Seyfert activity in the nucleus and the starburst in the disk.

  3. Infrared observations of RS CVn stars

    NASA Technical Reports Server (NTRS)

    Berriman, G.; De Campli, W. M.; Werner, M. W.; Hatchett, S. P.

    1983-01-01

    The paper presents infrared photometry of the RS CVn binary stars AR Lac (1.2-10 microns) and MM Her (1.2-3.5 microns) as they egressed from their primary and secondary eclipses; of the eclipsing systems RS CVn and Z Her at maximum light (1.2-10 microns) and of the non-eclipsing systems UX Ari and HR 1099 (1.2-10 microns). An analysis of these and published V data based on flux ratio diagrams (linear analogues of color-color diagrams) shows that G and K stars supply the infrared light of these systems. In AR Lac, the combined light of a G5-K0 subgiant and either a late F dwarf or an early F subgiant can account for the observed visual and infrared light curves. None of these systems shows infrared emission from circumstellar matter. This result is simply understood: dust grains would not be expected to form in the physical conditions surrounding the subgiant, and the corona and chromosphere (whose properties have been deduced from spectroscopic X-ray observations) should not produce appreciable infrared emission.

  4. Infrared continuum observations of the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Hudson, H.; Levan, P.; Lindsey, C.

    1979-01-01

    The far-infrared wavelengths (10 microns to 1 mm) were used to study the spatial and temporal structure of the solar atmosphere. Observational results were obtained on flares, faculae, sunspots, and on the center-to-limb intensity distribution, as well as on time variability within these regions. A program of precise monitoring of slow variations in the integrated solar luminosity was shown to be feasible, and initial steps to implement observations were completed.

  5. Observations of Luminous Infrared Galaxies with Herschel

    NASA Astrophysics Data System (ADS)

    Armus, Lee

    2014-01-01

    A major result of the IRAS survey was the discovery of a large population of luminous infrared galaxies (LIRGs) which emit a significant fraction of their bolometric luminosity in the far-infrared. LIRGs cover the full range of morphologies from isolated disk galaxies, to advanced mergers, exhibiting enhanced star-formation rates and a higher fraction of Active Galactic Nuclei (AGN) compared to less luminous galaxies. A detailed study of low-redshift LIRGs is critical for our understanding of the cosmic evolution of galaxies and black holes, since LIRGs comprise the bulk of the cosmic far-infrared background and dominate the star-formation between 0.5 < z < 1. With ISO, it was possible to measure the full suite of infrared diagnostic lines in local normal and luminous infrared galaxies for the first time, but samples were small and observations challenging. With Herschel, we have been able to study large samples of low-redshift LIRGs, and even probe the physical conditions in poweful starburst galaxies out to significant redshifts. By combining the Herschel data with those from Spitzer, it is now possible to understand the heating and cooling of the dust and gas in complete samples of LIRGs for the first time. I will review recent results from a number of GTO, OTKP and GO programs in an attempt to summarize the advances we have made in understanding star formation and black hole accretion in LIRGs as a direct result of the Herschel mission.

  6. Infrared Observations of FS CMa Stars

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Russell, R. W.; Lynch, D. K.; Grady, C. A.; Hammel, H. B.; Beerman, L. C.; Day, A. N.; Huelsman, D.; Rudy, R. J.; Brafford, S. M.; Halbedel, E. M.

    2009-01-01

    A subset of non-supergiant B[e] stars has recently been recognized as forming a fairly unique class of objects with very strong emission lines, infrared excesses, and locations not associated with star formation. The exact evolutionary state of these stars, named for the prototype FS CMa, is uncertain, and they have often been classified as isolated Herbig AeBe stars. We present infrared observations of two of these stars, HD 45677 (FS CMa), HD 50138 (MWC 158), and the candidate FS CMa star HD 190073 (V1295 Aql) that span over a decade in time. All three exhibit an emission band at 10 microns due to amorphous silicates, confirming that much (if not all) of the infrared excess is due to dust. HD 50138 is found to exhibit 20% variability between 3-13 microns that resembles that found in pre-main sequence systems (HD 163296 and HD 31648). HD 45677, despite large changes at visual wavelengths, has remained relatively stable in the infrared. To date, no significant changes have been observed in HD 190073. This work is supported in part by NASA Origins of Solar Systems grant NAG5-9475, NASA Astrophysics Data Program contract NNH05CD30C, and the Independent Research and Development program at The Aerospace Corporation.

  7. Infrared Observations of Late Type Stars

    NASA Technical Reports Server (NTRS)

    Merrill, K. M.

    1977-01-01

    Substantive mass loss resulting in appreciable circumstellar dust envelopes is common in late-type stars. The evolutionary history and physical state of a cool star determine the chemistry within the outer stellar atmosphere mirrored by the molecular and particulate material present in the envelope. The observational consequences of this debris determined by moderate spectral resolution infrared spectrophotometry are reviewed. Significant information is provided by observations of the emergent energy flux of both the cool stellar photosphere and of the circumstellar dust envelope. The observation suggests that mass-loss occurs to some degree throughout late stellar evolutionary phases and that occasional periods of high mass loss are not uncommon.

  8. Infrared observations of anonymous IRC sources

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.; Ney, E. P.

    1974-01-01

    Infrared (0.9 to 18 microns) observations of 232 anonymous 2-micron Sky survey (IRC) sources are reported. Most of the objects appear to be late-type stars with little or no long-wave excess. About ten percent exhibit large excesses. Thirty-one of the brightest 11-micron sources have been remeasured to determine variability. These brighter objects appear to fall into two groups; one group resembles NML Tauri, while the other is like NML Cygni.

  9. Near Infrared Astronomical Observing During the Daytime

    NASA Astrophysics Data System (ADS)

    Tinn Chee Jim, Kevin; Pier, Edward Alan; Cognion, Rita L.

    2015-08-01

    Ground-based, near-infrared astronomy has been mostly restriced to nighttime observing with occasional, bright solar system objects observed during the daytime. But for astronomical phenomena that are time-varying on timescales of less than a day, it would be advantageous to be able to gather data during the day and night. We explore some of the limitations of observing in the J, H, and K bands during the daytime. Atmospheric radiative transfer simulations show that K is the optimal common astronomical filter for daytime observations on Mauna Kea, but the J and H filters can also be used. Observations from Mauna Kea show that it is possible to observe objects at least as faint as K=15.5 during the early afternoon, with photometric accuracies only slightly worse than those obtained at night.

  10. Simulation on polarization states of finite surface for infrared scenes

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Wang, Lin; Shao, Xiaopeng; Liu, Fei

    2015-05-01

    A simulation method for analyzing polarization states for infrared scenes is proposed in order to study the polarization features of infrared spontaneous emission deeply, since current infrared polarization devices can't show the polarization signature of infrared spontaneous emission for a target or an object well. A preliminary analysis on polarization characteristics of infrared spontaneous emission in the ideal case is carried out and also a corresponding ideal model is established through Kirchhoff's law and the Fresnel theorem. Based on the newly built ideal model, a three-dimensional (3D) scene modeling and simulation based on the OpenSceneGraph (OSG) rendering engine is utilized to obtain the polarization scene of infrared emission under ideal conditions. Through the corresponding software, different infrared scenes can be generated by adjusting the input parameters. By interacting with the scene, the infrared polarization images can be acquired readily, also a fact can be obviously confirmed that the degree of linear polarization (DoLP) for an object in the 3D scene varies with the many factors such as emission angle and complex refractive index. Moreover, large difference between two kinds of material such as metal and nonmetal in the polarization characteristics of infrared spontaneous emission at the same temperature can be easily discerned in the 3D scene. The 3D scene simulation and modeling in the ideal case provides a direct understanding on infrared polarization property, which is of great significance for the further study of infrared polarization characteristics in the situation of real scenes.

  11. Infrared algorithm development for ocean observations

    NASA Technical Reports Server (NTRS)

    Brown, Otis B.

    1995-01-01

    Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared retrievals. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, and participation in MODIS (project) related activities. Efforts in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, involvement in field studies, production and evaluation of new computer networking strategies, and objective analysis approaches.

  12. BIMA Observations of MSX Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Wyrowski, F.; Carey, S. J.; Egan, M. P.; Feldman, P. A.; Redman, R. O.

    2000-12-01

    We present high-angular-resolution observations of cold, dense condensations within a new population of infrared-dark clouds (IRDCs) identified during the MSX mid-infrared survey of the Galactic Plane (Egan et al. 1998, ApJL 494, 199). The observations were conducted with the Berkeley-Illinois-Maryland-Association interferometer (BIMA) in its B, C and D array configurations at 3mm. In all four observed sources we detected compact (<0.4 pc), slightly resolved, massive cores. In one case, the core is resolved into multiple components with sizes < 4000 AU. We will compare the 3mm continuum results with previous SCUBA imaging (Carey et al. 2000, ApJL, in press) to constrain dust properties and temperatures in the dark cloud cores. Simultaneously, we obtained spectral line images of N2H+ (1--0) toward the clouds. The agreement between N2H+ and 850 μ m emission is almost perfect, confirming chemical models of prestellar cores, which predict little depletion of N2H+ in these sources (Bergin & Langer 1997, ApJ 486, 316). Hence, N2H+ is an ideal tool to investigate their kinematical characteristics complementary to SCUBA mapping of the mass distribution of the IRDCs. FW is supported by the National Science Foundation under Grant No. 96-13716.

  13. Infrared spectroscopy of exoplanets: observational constraints.

    PubMed

    Encrenaz, Thérèse

    2014-04-28

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations. PMID:24664918

  14. Infrared spectroscopy of exoplanets: observational constraints

    PubMed Central

    Encrenaz, Thérèse

    2014-01-01

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations. PMID:24664918

  15. Dynamical observer for a flexible beam via finite element approximations

    NASA Technical Reports Server (NTRS)

    Manitius, Andre; Xia, Hong-Xing

    1994-01-01

    The purpose of this view-graph presentation is a computational investigation of the closed-loop output feedback control of a Euler-Bernoulli beam based on finite element approximation. The observer is part of the classical observer plus state feedback control, but it is finite-dimensional. In the theoretical work on the subject it is assumed (and sometimes proved) that increasing the number of finite elements will improve accuracy of the control. In applications, this may be difficult to achieve because of numerical problems. The main difficulty in computing the observer and simulating its work is the presence of high frequency eigenvalues in the finite-element model and poor numerical conditioning of some of the system matrices (e.g. poor observability properties) when the dimension of the approximating system increases. This work dealt with some of these difficulties.

  16. Observations of Circumstellar Disks with Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel

    2008-01-01

    Star formation is arguably the area of astrophysics in which infrared interferometry has had the biggest impact. The optically thick portion of T Tauri and Herbig Ae/Be disks DO NOT extend to a few stellar radii of the stellar surface. Emission is coming from near the dust sublimation radius, but not all from a single radius. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. Observational prospects are rapidly improving: a) Higher spectral resolution will allow observations of the gas: jets, winds, accretion. b) Closure phase and imaging will help eliminate model uncertainties/dependencies.

  17. Infrared observations of the dust coma

    NASA Technical Reports Server (NTRS)

    Campins, Humberto C.; Tokunaga, Alan T.

    1988-01-01

    The main infrared observational results were briefly reviewed at the start of this session. The new results are summarized. All of these results have yet to be synthesized into a self-consistent picture of the dust grain composition, dust production history, outburst mechanisms, and composition of the nucleus. The workshop discussion was helpful in pointing out problems faced by theorists, such as data quality, the lack of the proper theory for computing the scattering and emission of irregular particles, and in some cases the lack of optical constants of realistic materials. It is expected that the gross spectral and dynamical properties of Halley's Comet can be understood in time, even if the details of the observations and the theoretical calculations continue to vex us in the future.

  18. Infrared features of unquenched finite temperature lattice Landau gauge QCD

    SciTech Connect

    Furui, Sadataka; Nakajima, Hideo

    2007-09-01

    The color diagonal and color antisymmetric ghost propagators slightly above T{sub c} of N{sub f}=2 MILC 24{sup 3}x12 lattices are measured and compared with zero-temperature unquenched N{sub f}=2+1 MILC{sub c} 20{sup 3}x64 and MILC{sub f} 28{sup 3}x96 lattices and zero-temperature quenched 56{sup 4} {beta}=6.4 and 6.45 lattices. The expectation value of the color antisymmetric ghost propagator {phi}{sup c}(q) is zero, but its Binder cumulant, which is consistent with that of N{sub c}{sup 2}-1 dimensional Gaussian distribution below T{sub c}, decreases above T{sub c}. Although the color diagonal ghost propagator is temperature independent, the l{sup 1} norm of the color antisymmetric ghost propagator is temperature dependent. The expectation value of the ghost condensate observed at zero-temperature unquenched configuration is consistent with 0 in T>T{sub c}. We also measure transverse, magnetic, and electric gluon propagator and extract gluon screening masses. The running coupling measured from the product of the gluon dressing function and the ghost dressing function are almost temperature independent, but the effect of A{sup 2} condensate observed at zero temperature is consistent with 0 in T>T{sub c}. The transverse gluon dressing function at low temperature has a peak in the infrared at low temperature, but it becomes flatter at high temperature. The magnetic gluon propagator at high momentum depends on the temperature. These data imply that the magnetic gluon propagator and the color antisymmetric ghost propagator are affected by the presence of dynamical quarks, and there are strong nonperturbative effects through the temperature-dependent color antisymmetric ghost propagator.

  19. SCUBA Observations of MSX Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Carey, S. J.; Redman, R. O.; Feldman, P. A.; Egan, M. P.; Shipman, R. F.

    1999-01-01

    We present 850 and 450 μ m continuum images of 9 infrared dark clouds (IRDCs; Egan et al. 1998, ApJ, 494, L199) taken with the Submillimeter Common-User Bolometer Array (SCUBA) on the JCMT. The IRDCs appear to be very large (1-10 pc diameter) molecular cores with gas densities > 106 cm-3 and temperatures around 10 K. Approximately 5000 IRDCs have been identified in a survey of the inner Galactic Plane with the distribution of IRDCs peaking at the longitudes of spiral arm tangent points and the molecular ring. All nine clouds were detected as strong submillimeter sources with peak flux densities of 1 Jy/beam at 850 μ m. In general, the submillimeter emission follows the mid-infrared extinction and H2CO rotational line emission morphologies (Carey et al. 1998, ApJ, 508, 721). The submillimeter data reveals substructure in the IRDCs including bright 850 μ m knots. The observed H2CO line profiles are non-Gaussian suggesting the presence of molecular outflows in some of the IRDCs. It is likely that the 850 μ m emission peaks are either Class 0 protostars or pre-protostellar objects. Estimates of the dust mass and temperature will be compared to previous estimates of gas mass and temperature for IRDCs.

  20. Airborne Infrared Spectrograph for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Golub, L.; Cheimets, P.; DeLuca, E. E.; Samra, J.; Judge, P. G.

    2015-12-01

    Direct measurements of the coronal magnetic field have significant potential to enhance our understanding of coronal dynamics, and improve forecasting models. Of particular interest are observations of coronal field lines in the Transition Corona, the transitional region between closed and open flux systems, providing important information on eruptive instabilities and on the origin of the slow solar wind. While current instruments routinely observe the photospheric and chromospheric magnetic fields, the proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are five forbidden magnetic dipole transitions between 1.4 and 4 um. The airborne system will consist of a telescope, grating spectrometer and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the 21 August 2017 total solar eclipse. We will discuss the scientific objectives of the 2017 flight, describe details of the instrument design, and present the observing program for the eclipse.

  1. Infrared observations of the neptunian system.

    PubMed

    Conrath, B; Flasar, F M; Hanel, R; Kunde, V; Maguire, W; Pearl, J; Pirraglia, J; Samuelson, R; Gierasch, P; Weir, A; Bezard, B; Gautier, D; Cruikshank, D; Horn, L; Springer, R; Shaffer, W

    1989-12-15

    The infrared interferometer spectrometer on Voyager 2 obtained thermal emission spectra of Neptune with a spectral resolution of 4.3 cm(-1). Measurements of reflected solar radiation were also obtained with a broadband radiometer sensitive in the visible and near infrared. Analysis of the strong C(2)H(2) emission feature at 729 cm(-1) suggests an acetylene mole fraction in the range between 9 x 10(-8) and 9 x 10(-7). Vertical temperature profiles were derived between 30 and 1000 millibars at 70 degrees and 42 degrees S and 30 degrees N. Temperature maps of the planet between 80 degrees S and 30 degrees N were obtained for two atmospheric layers, one in the lower stratosphere between 30 and 120 millibars and the other in the troposphere between 300 and 1000 millibars. Zonal mean temperatures obtained from these maps and from latitude scans indicate a relatively warm pole and equator with cooler mid-latitudes. This is qualitatively similar to the behavior found on Uranus even though the obliquities and internal heat fluxes of the two planets are markedly different. Comparison of winds derived from images with the vertical wind shear calculated from the temperature field indicates a general decay of wind speed with height, a phenomenon also observed on the other three giant planets. Strong, wavelike longitudinal thermal structure is found, some of which appears to be associated with the Great Dark Spot. An intense, localizd cold region is seen in the lower stratosphere, which does not appear to be correlated with any visible feature. A preliminary estimate of the effective temperature of the planet yields a value of 59.3 +/- 1.0 kelvins. Measurements of Triton provide an estimate of the daytime surface temperature of 38(+3)(-4) kelvins. PMID:17755999

  2. Near-infrared observations of blue transient ASASSN-14jv

    NASA Astrophysics Data System (ADS)

    Joshi, Vishal; Srivastava, Mudit; Ashok, N. M.; Banerjee, D. P. K.; V. Venkataraman, V.

    2014-11-01

    We report the near-infrared observations of the bright transient ASASSN-14jv obtained on 2014 Nov. 10.83 UT with the 1.2-m telescope at Mt.Abu Infrared Observatory using the Near-Infrared Imager/Spectrometer with a 256x256 NICMOS3 array.

  3. Finite field of view effects on inversion of limb thermal emission observations. [balloon sounding of stratosphere

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Conrath, B. J.; Kunde, V. G.; Maguire, W. C.

    1985-01-01

    It is pointed out that the technique of thermal emission spectroscopy provides an effective means for remote sounding of stratospheric temperature structure and constituent distributions. One procedure for measuring the stratospheric infrared spectrum involves the conduction of observations along ray paths tangent to the stratospheric limb. Thermal emission limb tangent observations have certain advantages compared to other types of observations. The techniques for determining temperature and trace gas distributions from limb thermal emission radiances are based on the assumption that the bulk of opacity lies near the tangent point. Ideally, the field of view (FOV) of the observing instrument should be very small. The effect of a finite FOV is to reduce the spatial resolution of the retrieved temperature and constituent profiles. The present investigation is concerned with the effects of the FOV on the inversion of infrared thermal emission measurements for balloon platforms. Attention is given to a convenient method for determining the weighting functions.

  4. Infrared Observations of beta Pictoris Analogs

    NASA Astrophysics Data System (ADS)

    Fajardo-Acosta, S. B.; Knacke, R. F.; Telesco, C. M.

    1993-12-01

    We searched for 10 microns silicate emission from circumstellar dust in 13 main-sequence stars that possibly exemplify the beta Pictoris phenomenon. We have previously detected the silicate feature in 51 Oph (Fajardo-Acosta, Telesco, & Knacke 1993, ApJ, in press) through mid-IR narrowband spectrophotometry (FWHM ~ 1 microns) with the MSFC Big Mac camera and the 2--30 microns Facility bolometer at the IRTF. We are using the same instrumentation in our survey of other Vega-type disks. These observations were motivated by the detection of the silicate feature in beta Pic (Telesco & Knacke 1991, ApJ, 372, L29). We followed the detections in beta Pic and 51 Oph with 2.9--13.5 microns intermediate-resolution (lambda /Delta lambda ~ 50) spectroscopy with the Aerospace Corp. Infrared Spectrograph. The higher resolution data confirmed the analogy of the silicate features in beta Pic (Knacke et al. 1993, ApJ, in press) and 51 Oph (Russell et al. 1993, in prep.) to similar features in Solar System cometary spectra. Among the Vega-type stars we recently observed, beta UMa, zeta Lep, sigma Her, and gamma Oph exhibit significant dust emission at 10 microns (>= 0.15 Jy). We expect to resolve whether silicate emission is present with the higher spectral resolution available with the Aerospace Spectrograph. We have compared the spectrum of beta Pic with those in the data compilation of the IRAS Low Resolution Spectrograph. Of the 5425 sources, 88 exhibit 10 microns silicate emission features that match beta Pic's reasonably well. Many of these sources do not have known associations; those that do are typically low-mass giant branch Miras or massive supergiants. We are investigating at least 5 possible associations with early-type main-sequence stars. This research was sponsored by the NASA Origins of Solar Systems Research Program under grant NAGW-2334.

  5. Unified description of seagull cancellations and infrared finiteness of gluon propagators

    NASA Astrophysics Data System (ADS)

    Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J.

    2016-08-01

    We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent lattice simulations. Our analysis is manifestly gauge invariant, in the sense that it preserves the transversality of the gluon self-energy, and gauge independent, given that the conclusions do not depend on the choice of the gauge-fixing parameter within the linear covariant gauges. The central construction relies crucially on the subtle interplay between the Abelian Ward identities satisfied by the nonperturbative vertices and a special integral identity that enforces a vast number of "seagull cancellations" among the one- and two-loop dressed diagrams of the gluon Schwinger-Dyson equation. The key result of these considerations is that the gluon propagator remains rigorously massless, provided that the vertices do not contain (dynamical) massless poles. When such poles are incorporated into the vertices, under the pivotal requirement of respecting the gauge symmetry of the theory, the terms comprising the Ward identities conspire in such a way as to still enforce the total annihilation of all quadratic divergences, inducing, at the same time, residual contributions that account for the saturation of gluon propagators in the deep infrared.

  6. Easy Observation of Infrared Spectral Lines

    ERIC Educational Resources Information Center

    Cortel, Adolf

    2012-01-01

    The spectra of some chemical elements display intense infrared (IR) lines that can be used more effectively than the ones in the visible region for identification purposes. A simple setup, based on the IR sensitivity of a handycam in nightshot mode, is described to record the visible as well as the IR spectra from decorative bulbs or salts on the…

  7. Cooled grating infrared spectrometer for astronomical observations

    NASA Astrophysics Data System (ADS)

    Houck, J. R.; Gull, G. E.

    A liquid helium-cooled infrared spectrometer for the 16 to 50 micron range is described. The instrument has six detectors, three each of Si:Sb and Ge:Ga and two diffraction gratings mounted back-to-back. Cold preoptics are used to match the spectrometer to the telescope. In its nominal configuration the system resolution is 0.03 micron from 16 to 30 microns and 0.07 micron from 28 to 50 microns. A cooled filter wheel is used to change order sorting filters. The gratings are driven by a steel band and gear train operating at 4 K. The detector outputs are amplified by a TIA, employing a matched pair of JFETs operating at 70 K inside the dewar. The external warm electronics include a gain stage for the TIA and dc-coupled gating circuit to remove charged-particle (cosmic-ray secondary)-induced noise spikes. The gating circuit reduces the overall system noise by a factor of two when the spectrometer is used on NASA's Kuiper Airborne Observatory. Sample spectra are presented and the deglitcher performance is illustrated.

  8. Finite Gyroradius Effects Observed in Pickup Oxygen Ions at Venus

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Intriligator, Devrie; Grebowsky, Joseph M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On the dayside of Venus, the hot oxygen corona extending above the ionopause is the principal source of pickup oxygen ions. The ions are born here and picked up by the ionosheath plasma as it is deflected around the planet. These pickup ions have been observed by the Orbiter Plasma Analyzer (OPA) throughout the Pioneer Venus Orbiter (PVO) mission. They were observed over a region extending from their dayside source to great distances downstream (about 10 Venus radii), in the solar wind wake, as PVO passed through apoapsis. Finite gyroradius effects in the velocity distribution of the oxygen pickup ions are expected in the source region because the gyroradius is several times larger than the scale height of the hot oxygen source. Such effects are also expected in those regions of the ionosheath where the scale lengths of the magnetic field and the ambient plasma velocity field are less than the pickup ion gyroradius. While explicitly accounting for the spatial distribution of the hot oxygen source, an analytic expression for the pickup oxygen ion velocity distribution is developed to study how it is affected by finite gyroradii. The analysis demonstrates that as the gyroradius increases by factors of three to six above the hot oxygen scale height, the peak of the pickup oxygen ion flux distribution decreases 25 to 50% below the maximum allowed speed, which is twice the speed of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. The pickup oxygen ion flux distribution observed by OPA is shown to follow this behavior in the source region. It is also shown that this result is consistent with the pickup ion distributions observed in the wake, downstream of the source, where the flux peaks are usually well below the maximum allowed speed.

  9. NGC 2024: Far-infrared and radio molecular observations

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr.; Lada, C. J.; Schwartz, P. R.; Smith, H. A.; Smith, J.; Glaccum, W.; Harper, D. A.; Loewenstein, R. F.

    1984-01-01

    Far infrared continuum and millimeter wave molecular observations are presented for the infrared and radio source NGC 2024. The measurements are obtained at relatively high angular resolution, enabling a description of the source energetics and mass distribution in greater detail than previously reported. The object appears to be dominated by a dense ridge of material, extended in the north/south direction and centered on the dark lane that is seen in visual photographs. Maps of the source using the high density molecules CS and HCN confirm this picture and allow a description of the core structure and molecular abundances. The radio molecular and infrared observations support the idea that an important exciting star in NGC 2024 has yet to be identified and is centered on the dense ridge about 1' south of the bright mid infrared source IRS 2. The data presented here allows a presentation of a model for the source.

  10. Infrared observations of outer planet satellites

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.

    1988-01-01

    This task supports IR observations of the outer planet satellites. These data provide vital information about the thermophysical properties of satellite surfaces, including internal heat sources for Io. Observations include both broad and narrow band measurementsin the 2 to 20 micrometer spectral range. The program in the last year has aimed at obtaining lonitude coverage on Io to establish stability of hot spot patterns previously reported. Several runs produced the most complete data set for an apparition since the start of the program. Unfortunately, bad weather limited coverage of key longitude ranges containing the largest known hot spot Loki. Among the preliminary results is the observation of an outburst in Io's thermal flux that was measured at 4.8, 8.7 and 20 micrometer. Analysis of the data has given the best evidence to date of silicate volcanism on Io; this is one of the most significant pieces of the puzzle as to the relative roles of silicate and sulfur volcanism on Io. Researchers are collaborating with J. Goguen (NRC RRA to finish reduction of mutual event data, which have already improved ephermeris information for the satellites. The data appear to place significant limits on the characteristics of any leading side hot spots.

  11. Simultaneous far-infrared, near-infrared, and radio observations of OH/IR stars

    NASA Technical Reports Server (NTRS)

    Werner, M. W.; Beckwith, S.; Gatley, I.; Sellgren, K.; Whiting, D. L.; Berriman, G.

    1980-01-01

    Simultaneous far-infrared, near-infrared, and radio observations have been made of five infrared stars which show OH maser emission at 1612 MHz. These stars have very thick circumstellar dust shells and are not seen optically. The data permit a direct comparison of the far-infrared and maser emission from these sources, which strongly supports the hypothesis that the maser emission is pumped by 35 micron photons. A comparison with data obtained at earlier epochs suggests that the maser emission is saturated. The infrared and radio data are used together with estimates of the source distances to determine the luminosities and mass loss rates for these objects. The luminosities lie in the range 2000-30,000 solar luminosities and are consistent with either Mira variable or M supergiant classifications for the underlying stars. The estimated mass loss rates lie between 0.000005-0.00007 solar mass/year.

  12. Far-infrared observations of Circinus and NGC 4945 galaxies

    NASA Technical Reports Server (NTRS)

    Bisht, R. S.; Ghosh, S. K.; Iyengar, K. V. K.; Rengarajan, T. N.; Tandon, S. N.; Verma, R. P.

    1990-01-01

    Circinus and NGC 4945 are two galaxies luminous in the infrared and are characterized by compact non thermal radio nuclei, deep silicate absorption features and unusually strong water vapor maser luminosities. Moorwood and Glass (1984) have observed these galaxies extensively in the 1 to 20 micron range. In the far-infrared, observations up to 100 microns are available from the Infrared Astronomy Satellite (IRAS). In order to study the cool dust component of these galaxies, researchers observed them at 150 microns using the Tata Institute of Fundamental Research (TIFR) 100 cm balloon-borne telescope. Here, they report observations along with deconvolved maps at 50 and 100 microns obtained from the Chopped Photometric Channel (CPC) on board IRAS.

  13. A method for combining passive microwave and infrared rainfall observations

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Giglio, Louis

    1995-01-01

    Because passive microwave instruments are confined to polar-orbiting satellites, rainfall estimates must interpolate across long time periods, during which no measurements are available. In this paper the authors discuss a technique that allows one to partially overcome the sampling limitations by using frequent infrared observations from geosynchronous platforms. To accomplish this, the technique compares all coincident microwave and infrared observations. From each coincident pair, the infrared temperature threshold is selected that corresponds to an area equal to the raining area observed in the microwave image. The mean conditional rainfall rate as determined from the microwave image is then assigned to pixels in the infrared image that are colder than the selected threshold. The calibration is also applied to a fixed threshold of 235 K for comparison with established infrared techniques. Once a calibration is determined, it is applied to all infrared images. Monthly accumulations for both methods are then obtained by summing rainfall from all available infrared images. Two examples are used to evaluate the performance of the technique. The first consists of a one-month period (February 1988) over Darwin, Australia, where good validation data are available from radar and rain gauges. For this case it was found that the technique approximately doubled the rain inferred by the microwave method alone and produced exceptional agreement with the validation data. The second example involved comparisons with atoll rain gauges in the western Pacific for June 1989. Results here are overshadowed by the fact that the hourly infrared estimates from established techniques, by themselves, produced very good correlations with the rain gauges. The calibration technique was not able to improve upon these results.

  14. AIRS Infrared Polarization Sensitivity and In-Flight Observations

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Elliott, Denis; Broberg, Steven E.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) is a space-based instrument that measures the upwelling atmospheric spectrum in the infrared. AIRS is one of several instruments on the EOS-Aqua spacecraft launched on May 4, 2002: Typically, instrument polarization is not a concern in the infrared because the scene is usually not significantly polarized. A small amount of polarization is expected over ocean, which can be seen in the AIRS 3.7 (micro)m window channels. The polarization is seen as a signal difference between two channels with the same center frequency but different polarizations. The observations are compared to a model that relies on measurements of instrument polarization made pre-flight. A first look at a comparison of the observations of sea surface polarization to expectations is presented.

  15. Near to Mid-Infrared Observations of Recent Supernovae with Infrared Camera (IRC) onboard AKARI

    NASA Astrophysics Data System (ADS)

    Sakon, I.; Onaka, T.; Wada, T.; Usui, F.; Kaneda, H.; Ohyama, Y.; Oyabu, S.; Ishihara, D.; Tanabé, T.; Matsuhara, H.; Nakagawa, T.; Murakami, H.; Minezaki, T.; Yoshii, Y.; Nozawa, T.; Nomoto, K.; Tanaka, M.; Tominaga, N.; Kozasa, T.

    2009-12-01

    We present our latest results on near- to mid-infrared observations of supernovae within one year after the explosion with Infrared Camera (IRC) on board AKARI. In this project, we aim to explore the dust formation scenario in the ejecta of core-collapse supernovae. So far, observations of several recent supernovae including SN2006jc and SN2008ax have been carried out as part of the Directors Time of AKARI. At the same time, we have set about the near-infrared slit-less spectroscopic observations of nearby galaxies with high supernovae frequency in preparation for a future supernova in the AKARI Phase-3 Open Time Program “Near-infrared Slit-less Spectroscopy of Nearby Galaxies; Waiting for Supernovae Momentarily (NEWSY)” (P.I. Sakon, I.). The obtained near- to mid-infrared spectral energy distribution (SED) of early-time supernovae is quite valuable and unique to investigate the properties of dust formed around the massive star and will further deepen our knowledge on the origin of dust especially in the early universe.

  16. Observation of infrared emission spectra from silicon combustion products

    NASA Astrophysics Data System (ADS)

    Smit, Kenneth J.; De Yong, Leo V.; Gray, Rodney

    1996-05-01

    The combustion of silicon based pyrotechnic compositions is observed with time resolved infrared spectrometry. This revealed the build up of strong emission at 9.1 ± 0.1 μm, which is associated with condensed silicon dioxide particulates. Time averaged spectra for compositions containing different oxidants or binders illustrate the dependence of SiO 2 emission intensity on composition.

  17. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2003-01-01

    The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.

  18. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  19. Infrared sensing of non-observable human biometrics

    NASA Astrophysics Data System (ADS)

    Willmore, Michael R.

    2005-05-01

    Interest and growth of biometric recognition technologies surged after 9/11. Once a technology mainly used for identity verification in law enforcement, biometrics are now being considered as a secure means of providing identity assurance in security related applications. Biometric recognition in law enforcement must, by necessity, use attributes of human uniqueness that are both observable and vulnerable to compromise. Privacy and protection of an individual's identity is not assured during criminal activity. However, a security system must rely on identity assurance for access control to physical or logical spaces while not being vulnerable to compromise and protecting the privacy of an individual. The solution resides in the use of non-observable attributes of human uniqueness to perform the biometric recognition process. This discussion will begin by presenting some key perspectives about biometric recognition and the characteristic differences between observable and non-observable biometric attributes. An introduction to the design, development, and testing of the Thermo-ID system will follow. The Thermo-ID system is an emerging biometric recognition technology that uses non-observable patterns of infrared energy naturally emanating from within the human body. As with all biometric systems, the infrared patterns recorded and compared within the Thermo-ID system are unique and individually distinguishable permitting a link to be confirmed between an individual and a claimed or previously established identity. The non-observable characteristics of infrared patterns of human uniqueness insure both the privacy and protection of an individual using this type of biometric recognition system.

  20. Thermal infrared nadir observations of 24 atmospheric gases

    NASA Astrophysics Data System (ADS)

    Clarisse, Lieven; R'Honi, Yasmina; Coheur, Pierre-François; Hurtmans, Daniel; Clerbaux, Cathy

    2011-05-01

    Thermal infrared nadir sounders are ideal for observing total columns or vertical profiles of atmospheric gases such as water, carbon dioxide and ozone. High resolution sounders with a spectral resolution below 5 cm-1 can distinguish fine spectral features of trace gases. Forty years after the launch of the first hyperspectral sounder IRIS, we have now several state of the art instruments in orbit, with improved instrumental specifications. In this letter we give an overview of the trace gases which have been observed by infrared nadir sounders, focusing on new observations of the Infrared Atmospheric Sounding Interferometer (IASI). We present typical observations of 14 rare reactive trace gas species. Several species are reported here for the first time in nadir view, including nitrous acid, furan, acetylene, propylene, acetic acid, formaldehyde and hydrogen cyanide, observations which were made in a pyrocumulus cloud from the Australian bush fires of February 2009. Being able to observe this large number of reactive trace gases will likely improve our knowledge of source emissions and their impact on the environment and climate.

  1. MOMIE: MIKE Observations of Mid-Infrared Excesses

    NASA Astrophysics Data System (ADS)

    Uzpen, Brian R.; Kobulnicky, H. A.; Thom, C.; Putman, M. E.

    2006-12-01

    We have identified 36 B8--K main-sequence stars that exhibit a midbut not a near infrared excess from the Spitzer Space Telescope's Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE; Benjamin et al. 2003) and Mid-Course Space Experiment (MSX; Egan 2003) (Uzpen et al. 2006). We have obtained MIKE echelle observations of 15 of these objects. These sources have disk components ranging in temperature from 190-800 K and fractional infrared luminosity from 5.2x10^-4 1.3x10^-2. We also obtained observations of 5 of the 6 sources that exhibited a near-IR and mid-IR excess. These sources range in disk temperature 400-580 K and fractional infrared luminosity from 5.8x10^-2 2.0x10^-1. We highlight what the high resolution spectra for these sources reveals in terms of rotational velocities, gas accretion signatures, and stellar ages of mid-IR excess stars with putative circumstellar disks.

  2. Infrared observations of gravitational lensing in Abell 2219 with CIRSI

    NASA Astrophysics Data System (ADS)

    Gray, Meghan E.; Ellis, Richard S.; Refregier, Alexandre; Bézecourt, Jocelyn; McMahon, Richard G.; Beckett, Martin G.; Mackay, Craig D.; Hoenig, Michael D.

    2000-10-01

    We present the first detection of a gravitational depletion signal at near-infrared wavelengths, based on deep panoramic images of the cluster Abell 2219 (z=0.22) taken with the Cambridge Infrared Survey Instrument (CIRSI) at the prime focus of the 4.2-m William Herschel Telescope. Infrared studies of gravitational depletion offer a number of advantages over similar techniques applied at optical wavelengths, and can provide reliable total masses for intermediate-redshift clusters. Using the maximum-likelihood technique developed by Schneider, King & Erben, we detect the gravitational depletion at the 3σ confidence level. By modelling the mass distribution as a singular isothermal sphere and ignoring the uncertainty in the unlensed number counts, we find an Einstein radius of θE ~= 13.7+3.9-4.2 arcsec (66per cent confidence limit). This corresponds to a projected velocity dispersion of σv~800kms-1, in agreement with constraints from strongly lensed features. For a Navarro, Frenk & White mass model, the radial dependence observed indicates a best-fitting halo scalelength of 125h-1kpc. We investigate the uncertainties arising from the observed fluctuations in the unlensed number counts, and show that clustering is the dominant source of error. We extend the maximum-likelihood method to include the effect of incompleteness, and discuss the prospects of further systematic studies of lensing in the near-infrared band.

  3. Nonuniform Dust Outflow Observed around Infrared Object NML Cygni

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Bester, M.; Danchi, W. C.; Johnson, M. A.; Lipman, E. A.; Townes, C. H.; Tuthill, P. G.; Geballe, T. R.; Nishimoto, D.; Kervin, P. W.

    1997-05-01

    Measurements by the University of California Berkeley Infrared Spatial Interferometer at 11.15 μm have yielded strong evidence for multiple dust shells and/or significant asymmetric dust emission around NML Cyg. New observations reported also include multiple 8-13 μm spectra taken from 1994-1995 and N-band (10.2 μm) photometry from 1980-1992. These and past measurements are analyzed and fitted to a model of the dust distribution around NML Cyg. No spherically symmetric single dust shell model is found consistent with both near- and mid-infrared observations. However, a circularly symmetric maximum entropy reconstruction of the 11 μm brightness distribution suggests a double-shell model for the dust distribution. Such a model, consisting of a geometrically thin shell of intermediate optical depth (τ11 μm ~ 1.9) plus an outer shell (τ11 μm ~ 0.33), is consistent not only with the 11 μm visibility data but also with near-infrared speckle measurements, the broadband spectrum, and the 9.7 μm silicate feature. The outer shell, or large-scale structure, is revealed only by long-baseline interferometry at 11 μm, being too cold (~400 K) to contribute in the near-infrared and having no unambiguous spectral signature in the mid-infrared. The optical constants of Ossenkopf, Henning, & Mathis proved superior to the Draine & Lee (1984) constants in fitting the detailed shape of the silicate feature and broadband spectrum for this object. Recent observations of H2O maser emission around NML Cyg by Richards, Yates, & Cohen (1996) are consistent with the location of the two dust shells and provide further evidence for the two-shell model.

  4. Infrared Observations Of Volatile Molecules In Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Crovisier, J.

    1997-09-01

    Infrared observations of comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp) benefited from the high spectral resolution and sensitivity of échelle spectrometers now equipping ground-based telescopes and from the availability of the Infrared Space Observatory (ISO). From the ground, several hydrocarbons were unambiguously detected for the first time: CH4, C2H2, C2H6. Water was observed through several of its hot vibrational bands, escaping telluric absorption. CO, HCN, NH3 and OCS were also observed, as well as several radicals. This permitted the evaluation of molecular production rates, of rotational temperature, and — taking advantage of the 1-D imaging of long-slit spectroscopy — of the space distribution of these species. With ISO, carbon dioxide was directly observed for the second time in a comet (after its detection from the Vega probes in P/Halley). The spectrum of water was investigated in detail (several bands of vibration and far-infrared rotational lines), permitting the evaluation of the rotational temperature of water, and of it spin temperature from the ortho-to-para ratio. Water ice was identified in the grains of Hale-Bopp as far as 7 AU from the ground and possibly at 3 AU with ISO. The composition of cometary volatiles appears to be strikingly similar to that of interstellar ices.

  5. Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.

    2006-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.

  6. Serendipity Observations of Far Infrared Cirrus Emission in the Spitzer Infrared Nearby Galaxies Survey: Analysis of Far-Infrared Correlations

    NASA Astrophysics Data System (ADS)

    Bot, Caroline; Helou, George; Boulanger, François; Lagache, Guilaine; Miville-Deschenes, Marc-Antoine; Draine, Bruce; Martin, Peter

    2009-04-01

    We present an analysis of far-infrared (FIR) dust emission from diffuse cirrus clouds. This study is based on serendipitous observations at 160 μm at high-galactic latitude with the Multiband Imaging Photometer onboard the Spitzer Space Telescope by the Spitzer Infrared Nearby Galaxies Survey. These observations are complemented with IRIS data at 100 and 60 μm and constitute one of the most sensitive and unbiased samples of FIR observations at a small scale of diffuse interstellar clouds. Outside regions dominated by the cosmic infrared background fluctuations, we observe a substantial scatter in the 160/100 colors from cirrus emission. We compared the 160/100 color variations to 60/100 colors in the same fields and find a trend of decreasing 60/100 with increasing 160/100. This trend cannot be accounted for by current dust models by changing solely the interstellar radiation field. It requires a significant change of dust properties such as grain size distribution or emissivity or a mixing of clouds in different physical conditions along the line of sight. These variations are important as a potential confusing foreground for extragalactic studies. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  7. The Infrared Database of Extragalactic Observables from Spitzer (IDEOS)

    NASA Astrophysics Data System (ADS)

    Spoon, Henrik

    During the cryogenic phase of the successful Spitzer mission the Infrared Spectrograph (IRS) performed approximately 15,000 observations of galactic and extragalactic sources. Among these are low-resolution spectra of more than 4200 galaxies beyond the Local Group. Results have been published in a great number of papers, led not only by hardcore infrared observers but increasingly also by non-native infrared astronomers. As the PI team of the IRS instrument, we are especially proud of the achievements of the IRS spectrograph, and we feel a special obligation to enhance the legacy value of its many observations. Last Summer we completed the Cornell Atlas of Spitzer-IRS Sources (CASSIS), containing homogeneously, expert-reduced low-resolution IRS spectra for over 11,000 observations. The spectra are available for download from our newly created CASSIS web portal. Here we propose to continue these efforts by fitting the low-resolution extragalactic spectra in the CASSIS atlas and create an Infrared Database of Extragalactic Observables from Spitzer (IDEOS) of homogeneously measured mid-infrared spectroscopic observables of more than 4200 galaxies beyond the Local Group. IDEOS will provide astronomers with widely varying scientific interests access to diagnostics that were previously available only for limited samples, or available on-the- fly only to expert users. The completion of IDEOS will coincide with the completion of ALMA. By their nature, CASSIS galaxies are attractive targets for high S/N ALMA observations. IDEOS will provide easily-accessible mid-IR selection criteria for compilation of ALMA target lists for probing significant questions on the AGN environment, the nature of starburst activity, or the AGN/starburst connection. The virtual observatory accessibility will also greatly automate the collation of synoptic results, particularly in the compilation of SEDs and in the cross-matching of targets for trend plots of spectroscopic observables. IDEOS will

  8. Stress evaluation of Through-Silicon Vias using micro-infrared photoelasticity and finite element analysis

    NASA Astrophysics Data System (ADS)

    Su, Fei; Lan, Tianbao; Pan, Xiaoxu

    2015-11-01

    The Through-SiliconVias (TSV) is a key component of three dimensional electronic packaging. Obtaining its stresses is very important for evaluating its reliability. A micro-infrared photoelasticity system with a thermal loading function was built and applied to characterize the stresses of the TSV structure. Through testing it was found that the stress of each TSV is different even if their fabrication technology is exactly the same, that different TSVs obtain their stress free states at different elevated temperatures, and that their stress free states are maintained even when the temperature is further elevated. A finite element model was used to quantitatively determine the stresses of a TSV under different stress-free temperatures. Different virtual photoelasticity fringe patterns were then created based on the principle of photoelasticity and the simulated stresses. Comparing the virtual fringe patterns with the experimental pattern, an appropriate virtual photoelasticity fringe pattern and the corresponding stresses of TSV were determined

  9. Thermal-infrared spectral observations of geologic materials in emission

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Luth, Sharon J.

    1987-01-01

    The thermal-infrared spectra of geologic materials in emission were studied using the prototype Thermal Emission Spectrometer (TES). A variety of of processes and surface modifications that may influence or alter the spectra of primary rock materials were studied. It was confirmed that thermal emission spectra contain the same absorption features as those observed in transmission and reflection spectra. It was confirmed that the TES instrument can be used to obtain relevant spectra for analysis of rock and mineral composition.

  10. Infrared Observations Of Dust Emission From Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.; Fernández, Y. R.; A'Hearn, M. F.; Kostiuk, T.; Livengood, T. A.; Käufl, H. U.; Hoffmann, W. F.; Dayal, A.; Ressler, M. E.; Hanner, M. S.; Fazio, G. G.; Hora, J. L.; Peschke, S. B.; Grün, E.; Deutsch, L. K.

    1997-07-01

    We present infrared imaging and photometry of the bright, giant comet C/1995 O1 (Hale-Bopp). The comet was observed in an extended infrared and optical observing campaign in 1996 1997. The infrared morphology of the comet was observed to change from the 6 to 8 jet “porcupine” structure in 1996 to the “pinwheel” structure seen in 1997; this has implications for the position of the rotational angular momentum vector. Long term light curves taken at 11.3 μm indicate a dust production rate that varies with heliocentric distance as ∶ r-1.4. Short term light curves taken at perihelion indicate a rotational periodicity of 11.3 hours and a projected dust outflow speed of ∶ 0.4 km s-1. The spectral energy distribution of the dust on October 31, 1996 is well modeled by a mixture of 70% silicaceous and 30% carbonaceous non-porous grains, with a small particle dominated size distribution like that seen for comet P/Halley (McDonnell et al., 1991), an overall dust production rate of 2 × 105 kg s-1, a dust-to-gas ratio of ∶5, and an albedo of 39%.

  11. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2006-01-01

    The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.

  12. VLBI observations of Infrared-Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Middelberg, Enno; Phillips, Chris; Norris, Ray; Tingay, Steven

    2006-10-01

    We propose to observe a small sample of radio sources from the ATLAS project (ATLAS = Australia Telescope Large Area Survey) with the LBA, to determine their compactness and map their structures. The sample consists of three radio sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubbed Infrared-Faint Radio Sources, or IFRS, is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations: we will map their structure to test whether they resemble core-jet or double-lobed morphologies, and we will measure the flux densities on long baselines, to determine their compactness. Previous snapshot-style LBA observations of two other IFRS yielded no detections, hence we propose to use disk-based recording with 512 Mbps where possible, for highest sensitivity. With the observations proposed here, we will increase the number of VLBI-observed IFRS from two to five, soon allowing us to draw general conclusions about this intriguing new class of objects.

  13. Sensitive observations with the Spacelab 2 infrared telescope

    NASA Astrophysics Data System (ADS)

    Young, E. T.; Rieke, G. H.; Gautier, T. N.; Hoffmann, W. F.; Low, F. J.; Poteet, W.; Fazio, G. G.; Koch, D.; Traub, W. A.; Urban, E. W.

    The small helium-cooled infrared telescope (Spacelab IRT) is a multiband instrument capable of highly sensitive observations from space. The experiment consists of a cryogenically cooled, very well baffled telescope with a ten channel focal plane array. During the Spacelab 2 flight of the Space Shuttle, this instrument will make observations between 5 and 120 micron wavelength that will be background limited by the expected zodiacal emission. Design considerations necessitated by this level of performance are discussed in this paper. In particular, the operation of a very sensitive focal plane array in the space environment is described. The Spacelab IRT will be used to map the extended, low-surface brightness celestial emission. During the seven day length of the mission better than 70 percent sky coverage is expected. The instrument will also be used to measure the infrared contamination environment of the Space Shuttle. This information will be important in the development of the next generation of infrared astronomical instruments. The performance of the Spacelab IRT, in particular its sensitivity to the contamination environment is detailed.

  14. Infrared observations of the saturnian system from voyager 2.

    PubMed

    Hanel, R; Conrath, B; Flasar, F M; Kunde, V; Maguire, W; Pearl, J; Pirraglia, J; Samuelson, R; Cruikshank, D; Gautier, D; Gierasch, P; Horn, L; Ponnamperuma, C

    1982-01-29

    During the passage of Voyager 2 through the Saturn system, infrared spectral and radiometric data were obtained for Saturn, Titan, Enceladus, Tethys, Iapetus, and the rings. Combined Voyager 1 and Voyager 2 observations of temperatures in the upper troposphere of Saturn indicate a seasonal asymmetry between the northern and southern hemispheres, with superposed small-scale meridional gradients. Comparison of high spatial resolution data from the two hemispheres poleward of 60 degrees latitude suggests an approximate symmetry in the small-scale structure, consistent with the extension of a symmetric system of zonal jets into the polar regions. Longitudinal variations of 1 to 2 K are observed. Disk- averaged infrared spectra of Titan show little change over the 9-month interval between Voyager encounters. By combining Voyager 2 temperature measurements with ground-based geometric albedo determinations, phase integrals of 0.91 +/- 0.13 and 0.89 +/- 0.09 were derived for Tethys and Enceladus, respectively. The subsolar point temperature of dark material on Iapetus must exceed 110 K. Temperatures (and infrared optical depths) for the A and C rings and for the Cassini division are 69 +/- 1 K (0.40 +/- 0.05), 85 +/- 1 K (0.10 +/- 0.03), and 85 +/- 2 K (0.07 +/- 0.04), respectively. PMID:17771275

  15. Remote sensing cloud properties from high spectral resolution infrared observations

    NASA Technical Reports Server (NTRS)

    Smith, William L.; Ma, Xia L.; Ackerman, Steven A.; Revercomb, H. E.; Knuteson, R. O.

    1993-01-01

    A technique for estimating cloud radiative properties (spectral emissivity and reflectivity) in the IR is developed based on observations at a spectral resolution of approximately 0.5/cm. The algorithm uses spectral radiance observations and theoretical calculations of the IR spectra for clear and cloudy conditions along with lidar-determined cloud-base and cloud-top pressure. An advantage of the high spectral resolution observations is that the absorption effects of atmospheric gases are minimized by analyzing between gaseous absorption lines. The technique is applicable to both ground-based and aircraft-based platforms and derives the effective particle size and associated cloud water content required to satisfy, theoretically, the observed cloud IR spectra. The algorithm is tested using theoretical simulations and applied to observations made with the University of Wisconsin's ground-based and NASA ER-2 aircraft High-Resolution Infrared Spectrometer instruments.

  16. Infrared observations of the saturnian system from voyager 1.

    PubMed

    Hanel, R; Conrath, B; Flasar, F M; Kunde, V; Maguire, W; Pearl, J; Pirraglia, J; Samuelson, R; Herath, L; Allison, M; Cruikshank, D; Gautier, D; Gierasch, P; Horn, L; Koppany, R; Ponnamperuma, C

    1981-04-10

    During the passage of Voyager 1 through the Saturn system, the infrared instrument acquired spectral and radiometric data on Saturn, the rings, and Titan and other satellites. Infrared spectra of Saturn indicate the presence of H(2), CH(4), NH(3), PH(3), C(2)H(2), C(2)H(6), and possibly C(3)H(4) and C(3)H(8). A hydrogen mole fraction of 0.94 is inferred with an uncertainty of a few percent, implying a depletion of helium in the atmosphere of Saturn relative to that of Jupiter. The atmospheric thermal structure of Saturn shows hemisphere asymmetries that are consistent with a response to the seasonally varying insolation. Extensive small-scale latitudinal structure is also observed. On Titan, positive identifications of infrared spectral features are made for CH(4), C(2)H(2), C(2)H(4), C(2)H(6), and HCN; tentative identifications are made for C(3)H(4) and C(3)H(8). The infrared continuum opacity on Titan appears to be quite small between 500 and 600 cm(-1), implying that the solid surface is a major contributor to the observed emission over this spectral range; between 500 and 200 cm(-1) theopacity increases with decreasing wave number, attaining an optical thickness in excess of 2 at 200 cm(-1). Temperatures near the 1-millibar level are independent of longitude and local time but show a decrease of approximately 20 K between the equator and north pole, which suggests a seasonally dependent cyclostrophic zonal flow in the stratosphere of approximately 100 meters per second. Measurements of the C ring of Saturn yield a temperature of 85 +/- 1 K and an infrared optical depth of 0.09 +/- 0.01. Radiometer observations of sunlight transmitted through the ring system indicate an optical depth of 10(-1.3 +/-0.3) for the Cassini division. A phase integral of 1.02 +/- 0.06 is inferred for Rhea, which agrees with values for other icy bodies in the solar system. Rhea eclipse observations indicate the presence of surface materials with both high and low thermal inertias, the

  17. Far infrared supplement. Third edition: Catalog of infrared observations (lambda greater than or equal to 4.6 micrometers)

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Schmitz, Marion; Pitts, Patricia S.; Mead, Jaylee M.

    1993-01-01

    The Far Infrared Supplement contains a subset of the data in the full Catalog of Infrared Observations (all observations at wavelengths greater than 4.6 microns). The Catalog of Infrared Observations (CIO), NASA RP-1294, is a compilation of infrared astronomical observational data obtained from an extensive literature search of scientific journals and major astronomical catalogs and surveys. The literature search is complete for years 1965 through 1990 in this third edition. The catalog contains about 210,000 observations of roughly 20,000 individual sources, and supporting appendices. The expanded third edition contains coded IRAS 4-band data for all CIO sources detected by IRAS. The appendices include an atlas of infrared source positions (also included in this volume), two bibliographies of catalog listings, and an atlas of infrared spectral ranges. The complete CIO database is available to qualified users in printed, microfiche, and magnetic tape formats.

  18. Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant

    NASA Astrophysics Data System (ADS)

    Roush, T. L.; Colaprete, A.; Thompson, S.; Cook, A.; Kleinhenz, J.

    2014-12-01

    Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (~1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.

  19. Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Thompson, Sarah; Cook, Amanda; Kleinhenz, Julie

    2014-01-01

    Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.

  20. Infrared Observations of SO emission from Io's Atmosphere during Eclipse

    NASA Astrophysics Data System (ADS)

    de Kleer, K.; De Pater, I.; Adamkovics, M.

    2013-12-01

    Io, the volcanic moon of Jupiter, hosts an atmosphere dominated by SO2 and SO, but the question of the direct source of these molecules is still debated. Many different approaches have been taken to establish a link between volcanic activity on Io and atmospheric effects, to distinguish whether the atmosphere is supplied by volcanic outgassing or ice sublimation. In the infrared, atmospheric emission lines are lost in reflected sunlight; observing Io in eclipse provides a unique opportunity to study infrared lines, during a time when most of Io's atmosphere may be frozen out in Jupiter's shadow. In 1999 the a1Δ → Χ3Σ- transition of SO at 1.707 μm was discovered by de Pater et al. (2002); Laver et al. (2007) made additional observations, which they fit with equilibrium models to infer a likely volcanic origin for the SO. Here we present additional high spectral resolution observations of the 1.707 μm SO line while Io is in eclipse. We model these observations with equilibrium and non-LTE models, and address implications for the origin of SO on Io.

  1. Small particle cirrus observed by the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Eldering, A.; Fishbein, E. F.

    2003-04-01

    The high-resolution spectra of the Atmospheric Infrared Sounder (AIRS) have provided an opportunity to globally observe small particle-dominated cirrus clouds. The shape of the radiance spectra in the atmospheric windows is uniquely influenced by small ice crystals with an effective radius (reff) of a few 10s of microns and smaller. In some rare instances, minima in the AIRS brightness temperature (BT) spectra between 800 to 850 cm-1 are seen, consistent with the existence of ice particles with an reff smaller than 3 microns. Much more frequent occurences of small ice particle clouds with reff larger than 3 microns are observed through the large 998 to 811 cm-1 BT differences without minima. The small particle events are occasionally found in orographic cirrus clouds, in and around cumulonimbus towers, and in cirrus bands far removed from convection and orography. Several cases spanning the variety of small particle-dominated cirrus events will be presented. AIRS, located on the EOS-Aqua platform, is a high-resolution grating spectrometer that scans at angles 49.5 degrees on either side of nadir view, at both visible and infrared wavelengths. The surface footprint is 13.5 km at the nadir view, and coverage in the infrared is in three bandpasses (649-1136, 1265-1629, and 2169-2674 cm-1). Comparisons of observed spectra are made with simulated spectra generated by a plane-parallel scattering radiative transfer model using ice particle shapes and sizes calculated by the T-matrix method. These comparisons yield information on small particle cirrus cloud reff and optical depth. Aumann, H.H., and R.J. Pagano, Atmospheric Infrared Sounder on the Earth Observing System. Opt. Eng. 33, 776-784, 1994. Mishchenko, M.I., and L.D. Travis, Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309-324, 1998. Moncet, J.L., and S.A. Clough

  2. Infrared algorithm development for ocean observations with EOS/MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Otis B.

    1994-01-01

    Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared retrievals. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, and participation in MODIS (project) related activities. Efforts in this contract period have focused on radiative transfer modeling and evaluation of atmospheric path radiance efforts on SST estimation, exploration of involvement in ongoing field studies, evaluation of new computer networking strategies, and objective analysis approaches.

  3. Atmospheric Infrared Sounder on the Earth Observing System

    SciTech Connect

    Aumann, H.H.; Pagano, R.J. . Jet Propulsion Lab.)

    1994-03-01

    Recent breakthroughs in IR detector array and cryocooler technology have made it possible to convert the concepts of optimum, passive, IR sounding to a practical satellite-borne instrument: the Atmospheric infrared Sounder (AIRS), a grating array IR spectrometer temperature sounder. AIRS, together with the Advanced Microwave Sounding Unit and the Microwave Humidity Sounder, will form a complementary sounding system for the Earth Observing System to be launched in the year 2000. The three instruments are expected to become the new operational sounding system for the National Oceanic and Atmospheric Administration.

  4. Infrared Algorithm Development for Ocean Observations with EOS/MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Otis B.

    1997-01-01

    Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared measurements. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, development of experimental instrumentation, and participation in MODIS (project) related activities. Activities in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, undertake field campaigns, analysis of field data, and participation in MODIS meetings.

  5. Io Science Opportunities with JIMO: Observing in the Infrared

    NASA Technical Reports Server (NTRS)

    Smythe, W. D.; Lopes, R.; Spencer, J. R.

    2003-01-01

    The Jupiter Icy Moons Orbiter presents an opportunity to greatly improve our understanding of the most dynamic body in the solar system. Io is the best place to study tidal heating of the Galilean moons, provides unique insights into Earth history and is a unique laboratory for basic planetary physics. Many important questions about Io remain after Galileo that cannot be addressed from Earth or Earth orbit, but could be answered by limited observing time from JIMO with the appropriate instrumentation. Here we outline the requirements in the infrared.

  6. W3 North: Far-infrared and radio molecular observations

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr.; Schwartz, P. R.; Smith, H. A.; Lada, C. J.; Glaccum, W.; Harper, D. A.

    1984-01-01

    The W3 North (G133.8 + 1.4) source is the northernmost member of a string of active star forming regions that marks the western boundary of the giant HII region W4. Far infrared and radio observations of molecular CO were made of the W3 star forming region. The W3 North object shows extended dust and gas emission which suggests a fairly advanced disruption of a molecular cloud. An estimate of the age of the embedded HII region is given, and emission maps of the W3 object are presented. The W3 North source may be the oldest object among the W3 complex of sources.

  7. Infrared Observations from the New Solar Telescope at Big Bear

    NASA Astrophysics Data System (ADS)

    Goode, Philip R.; Cao, Wenda

    2013-10-01

    The 1.6 m clear aperture solar telescope in Big Bear is operational and with its adaptive optics (AO) system it provides diffraction limited solar imaging and polarimetry in the near-infrared (NIR). While the AO system is being upgraded to provide diffraction limited imaging at bluer wavelengths, the instrumentation and observations are concentrated in the NIR. The New Solar Telescope (NST) operates in campaigns, making it the ideal ground-based telescope to provide complementary/supplementary data to SDO and Hinode. The NST makes photometric observations in Hα (656.3 nm) and TiO (705.6 nm) among other lines. As well, the NST collects vector magnetograms in the 1565 nm lines and is beginning such observations in 1083.0 nm. Here we discuss the relevant NST instruments, including AO, and present some results that are germane to NASA solar missions.

  8. Fault detection for linear distributed-parameter systems using finite-dimensional functional observers

    NASA Astrophysics Data System (ADS)

    Deutscher, Joachim

    2016-03-01

    In this article, finite-dimensional residual generators are directly designed for Riesz-spectral systems with bounded input and output operators to detect faults. This is achieved by using finite-dimensional observers, that can estimate linear functionals of the state without spillover. These observers allow for a decoupling of the unknown disturbances from the estimation error dynamics under mild assumptions. Then, a finite-dimensional residual generator is obtained by approximately decoupling the state from the residual, that is generated by the observer states and the outputs. It is shown that the resulting approximation error can be made small by increasing the observer order. Then, fault detection with the finite-dimensional residual generator can be assured by introducing a time-varying threshold. A faulty Euler-Bernoulli beam with structural damping illustrates the proposed finite-dimensional fault detection approach.

  9. Mid-Infrared Observations of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Stolovy, Susan Renee

    1997-06-01

    This thesis explores the mid-infrared properties of the Galactic Center from two sets of observations. The goal of the first project was to detect or set an upper limit on the mid-infrared flux from the non-thermal radio source and black hole candidate known as Sgr A*, which is located at the dynamical center of the Galaxy. Deep images of the central parsec of the Galaxy with 0.7'' resolution were obtained at 8.7 μm and 11.6 μm. Analysis of these images reveals for the first time a mid-infrared source coincident with Sgr A* to within the diffraction limit. This detection was difficult due to the poor contrast between the source and the strong background diffuse emission. A detection at each wavelength was established after employing deconvolution techniques. The derived fluxes are too bright and the spectrum is too red to be consistent with current dustless accretion disk models. The mid-infrared emission is best explained by the presence of warm dust which may be associated with an accretion disk at Sgr A* or heated by local stellar sources. The second set of observations is a study of the distribution and kinematics of the atomic gas in the inner few parsecs of the Galaxy as traced by the forbidden (SiII) line at 34.8 μm. The integrated (SiII) emission peaks near Sgr A* and extends past the inner edge of the Circumnuclear Disk (CND), passing through a gap in the dense molecular material to the northwest. The (SiII) maps have a spatial resolution of 15'' and a spectral resolution of 50 km/s. The spectra, which are characterized by generally broad linewidths (>100 km/s), are kinematically consistent with the CND rotation to the southwest but not to the north. The northern extension may be experiencing shocks and is likely to be infalling along the Northern Arm. Observations of high and (SiII) / (OI) and (SiII) dust continuum ratios support the conjecture that turbulent motions and shocks in the inner few parsecs of the Galaxy are destroying dust grains, thus

  10. The NASA Infrared Telescope Facility (IRTF): New Observational Capabilities

    NASA Astrophysics Data System (ADS)

    Tokunaga, Alan T.; Bus, S. J.; Connelley, Michael S.; Rayner, John T.

    2015-11-01

    The NASA Infrared Telescope Facility (IRTF) is a 3.0-m infrared telescope located at an altitude of 4.2 km near the summit of Mauna Kea on the island of Hawaii. The IRTF was established by NASA to support planetary science missions. Current instruments include: (1) SpeX, a 0.7-5.3 μm moderate resolution spectrograph with a slit-viewing camera that is also an imager, (2) MORIS, a high-speed CCD imager attached to SpeX for simultaneous visible and near-infrared observations, and (3) CSHELL, a 1-5 μm high-resolution spectrograph. MORIS can also be used as a visible wavelength guider for SpeX. Detector upgrades have recently been made to SpeX. We discuss new observational capabilities resulting from completion of a new echelle spectrograph for 1-5 μm with resolving power of 70,000 with a 0.375 arcsec slit. This instrument will be commissioned starting in the spring of 2016. We also plan to restore to service our 8-25 μm camera, MIRSI. It will be upgraded with a closed-cycle cooler that will eliminate the need for liquid helium and allow continuous use of MIRSI on the telescope. This will enable thermal observations of NEOs on short notice. We also plan to upgrade MIRSI to have a simultaneous visible imager for guiding and for photometry. The IRTF supports remote observing from any site. This eliminates the need for travel to the observatory and short observing time slots can be supported. We also welcome onsite visiting astronomers. In the near future we plan to implement a low-order wave-front sensor to allow real-time focus and collimation of the telescope. This will greatly improve observational efficiency. For further information on the IRTF and its instruments including visitor instruments, see: http://irtfweb.ifa.hawaii.edu/. We gratefully acknowledge the support of NASA contract NNH14CK55B, NASA Science Mission Directorate.

  11. Observable measure of quantum coherence in finite dimensional systems.

    PubMed

    Girolami, Davide

    2014-10-24

    Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes. PMID:25379903

  12. Infrared Observations of Minor Planets in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Blackman, Ryan; Trilling, David; Mommert, Michael; Burt, Brian; MacLennan, Eric

    2014-11-01

    Most minor planets in the Solar System reside in stable regions, and the flux of objects out of any of these regions is particularly informative in understanding the evolution of the Solar System. It is generally believed that Centaurs are derived from the trans-Neptunian object (TNO) population, and that the Jupiter-family comet (JFC) population is derived from the Centaurs. This progression is described dynamically, and there is little concrete evidence to date of how the physical properties of TNOs, Centaurs, and JFCs relate. We are searching for evidence of this relationship through comparing the mean albedos of members of these populations, with the expectation that smaller semi-major axes would lead to increased radiolysis rates and therefore lower albedos. The albedos of minor planets are accessible through infrared observations with space telescopes. We use results from the literature, works in progress, and our own measurements using data from the Wide-field Infrared Survey Explorer (WISE), and have a total sample size of around 150 objects. We will present our statistical results on the mean albedos in the TNO, Centaur, and JFC populations together with our analysis of the observation biases inherent in individual and combined surveys. We will present our conclusions about the TNO/Centaur/JFC evolution based on our results.

  13. Far Infrared and Submillimeter Observations of the Giant Planets

    NASA Technical Reports Server (NTRS)

    Loewenstein, R. F.; Harper, D. A.; Hildebrand, R. H.; Keene, J.; Orton, G. S.; Whitcomb, S. E.

    1984-01-01

    Far infrared measurements of the effective temperatures of Jupiter, Saturn, Uranus and Neptune were made. The measurements presented here cover the range from 35-1000 micrometers in relatively narrow bands. The observations at lambda 350 micrometers were made at the 3m NASA Infrared Telescope Facility (IRTF) of the Mauna Kea Observatory; those at lambda 350 micrometer were made on the Kuiper Airborne Observatory (KAO). All observations of Saturn were made when the ring inclination to Earth was 1.7 deg assuring an unambiguous measurement of the flux from the disk itself. Mars was used as the calibration reference. The results represent a consistent set of calibration standards. In these measurements, it is assumed that sub b(lambda = 350 micrometers) = T sub (lambda 350 micrometers). Measurements have been made of roughly 50% of the total flux emitted by Jupiter, 65% by Saturn, and 92% by Uranus and Neptune. These measurements therefore permit a considerable reduction in the uncertainties associated with the bolometric thermal outputs of the planets. The effective temperatures (T sub e) and the ratios of emitted to absorbed solar radiation were calculated.

  14. Using near infrared light for deep sea mining observation systems

    NASA Astrophysics Data System (ADS)

    Lu, Huimin; Li, Yujie; Li, Xin; Yang, Jianmin; Serikawa, Seiichi

    2015-10-01

    In this paper, we design a novel deep-sea near infrared light based imaging equipment for deep-sea mining observation systems. The spectral sensitivity peaks are in the red region of the invisible spectrum, ranging from 750nm to 900nm. In addition, we propose a novel underwater imaging model that compensates for the attenuation discrepancy along the propagation path. The proposed model fully considered the effects of absorption, scattering and refraction. We also develop a locally adaptive Laplacian filtering for enhancing underwater transmission map after underwater dark channel prior estimation. Furthermore, we propose a spectral characteristic-based color correction algorithm to recover the distorted color. In water tank experiments, we made a linear scale of eight turbidity steps ranging from clean to heavily scattered by adding deep sea soil to the seawater (from 500 to 2000 mg/L). We compared the results of different turbidity underwater scene, illuminated alternately with near infrared light vs. white light. Experiments demonstrate that the enhanced NIR images have a reasonable noise level after the illumination compensation in the dark regions and demonstrates an improved global contrast by which the finest details and edges are significantly enhanced. We also demonstrate that the effective distance of the designed imaging system is about 1.5 meters, which can meet the requirement of micro-terrain observation around the deep-sea mining systems. Remotely Operated Underwater Vehicle (ROV)-based experiments also certified the effectiveness of the proposed method.

  15. Near-infrared observations of IRAS minisurvey galaxies

    NASA Technical Reports Server (NTRS)

    Carico, D. P.; Soifer, B. T.; Elias, J. H.; Matthews, K.; Neugebauer, G.; Beichman, C.

    1986-01-01

    Near-infrared photometry was obtained for 82 galaxies from the Infrared Astronomy Satellite (IRAS) minisurvey, a sample of infrared selected galaxies. The near-infrared colors of these galaxies are similar to those of normal field spiral galaxies, but cover a larger range in J - H and H - K. There is evidence of a tighter correlation between the near and far infrared emission than exists between far-infrared and the visible emission. These results suggest that hot dust emission contributes to the 2.2 micron luminosity, and extinction by dust affects both the near-infrared colors and the visible luminosities. In addition, there is an indication that the far-infrared emission in many of the minisurvey galaxies is coming from a strong nuclear component.

  16. Thermal Infrared MMTAO Observations of the HR 8799 Planetary System

    NASA Astrophysics Data System (ADS)

    Hinz, Philip M.; Rodigas, Timothy J.; Kenworthy, Matthew A.; Sivanandam, Suresh; Heinze, Aren N.; Mamajek, Eric E.; Meyer, Michael R.

    2010-06-01

    We present direct imaging observations at wavelengths of 3.3, 3.8 (L' band), and 4.8 (M band) μm, for the planetary system surrounding HR 8799. All three planets are detected at L' . The c and d components are detected at 3.3 μm, and upper limits are derived from the M-band observations. These observations provide useful constraints on warm giant planet atmospheres. We discuss the current age constraints on the HR 8799 system and show that several potential co-eval objects can be excluded from being co-moving with the star. Comparison of the photometry is made to models for giant planet atmospheres. Models that include non-equilibrium chemistry provide a reasonable match to the colors of c and d. From the observed colors in the thermal infrared, we estimate T eff < 960 K for b and T eff = 1300 and 1170 K for c and d, respectively. This provides an independent check on the effective temperatures and thus masses of the objects from the Marois et al. results. Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.

  17. Titan's Seasonal Changes Observed in the Thermal Infrared (Invited)

    NASA Astrophysics Data System (ADS)

    Jennings, D. E.; Anderson, C. M.; Nixon, C. A.; Bjoraker, G. L.; Achterberg, R. K.; Flasar, F.; Cottini, V.; Coustenis, A.; Vinatier, S.; Teanby, N. A.; Bampasidis, G.

    2013-12-01

    A central goal of the Cassini Mission is the detection and tracking of seasonal variations on Titan. Cassini arrived in the Saturn system in late northern winter and has so far observed for almost four Titan months, enough time to see significant changes as solar warming has moved northward. In the thermal infrared the shift has been apparent both in emission from the atmosphere and temperatures at the surface. Gases, clouds and aerosols in the atmosphere warm and cool with the seasons, accumulate and dissipate, and undergo transport on a global scale. Warming of the surface helps drive the exchange of heat and volatiles with the atmosphere, which contributes to weather. Seasonal activity in the north can be expected to be repeated in the south over the course of a year, so that it may be possible by the end of the Cassini Mission to combine winter-spring data from the north and summer-autumn data from the south to build up a picture that covers almost a full annual cycle. The Composite Infrared Spectrometer (CIRS) on Cassini records thermal infrared spectra in the 7-1000 micron range. CIRS has found that surface temperatures at Titan's poles are about 2.5 K lower than near the equator and that the temperatures moved from peaking south of the equator in 2005 to being approximately centered at the equator in 2011. As Titan passed through equinox in 2009, CIRS watched as atmospheric patterns that had been associated with northern winter began to emerge in the south. Emission from stratospheric gases and condensates varied dramatically as temperatures, chemistry and transport configurations adjusted to the season. Complex nitriles that had only been present at high northern latitudes began to appear near the South Pole while a polar ice cloud, originally identified in the north by its spectral emission, made an abrupt debut in the south. We expect much more evidence of seasonal evolution in the thermal infrared as CIRS continues to study Titan through the remainder of

  18. XMM-Newton observations of three interacting luminous infrared galaxies

    SciTech Connect

    Mudd, Dale; Mathur, Smita; Guainazzi, Matteo; Piconcelli, Enrico; Nicastro, Fabrizio; Bianchi, Stefano; Komossa, S.; Vignali, Cristian; Lanzuisi, Giorgio; Fiore, Fabrizio; Maiolino, Roberto

    2014-05-20

    We investigate the X-ray properties of three interacting luminous infrared galaxy systems. In one of these systems, IRAS 18329+5950, we resolve two separate sources. A second and third source, IRAS 19354+4559 and IRAS 20550+1656, have only a single X-ray source detected. We compare the observed emission to point-spread function (PSF) profiles and determine that they are all consistent with the PSF, albeit with large uncertainties for some of our sources. We then model the spectra to determine soft (0.5-2 keV) and hard (2-10 keV) luminosities for the resolved sources and compare these to relationships found in the literature between infrared and X-ray luminosities for starburst galaxies. We obtain luminosities (0.5-10 keV) ranging from 1.7 to 7.3 × 10{sup 41} erg s{sup –1} for our systems. These X-ray luminosities are consistent with predictions for star-formation-dominated sources and thus are most likely due to starbursts, but we cannot conclusively rule out active galactic nuclei.

  19. MOLECULAR LINE OBSERVATIONS OF INFRARED DARK CLOUDS. II. PHYSICAL CONDITIONS

    SciTech Connect

    Gibson, David; Plume, Rene; Evans, Natalie; Bergin, Edwin; Ragan, Sarah

    2009-11-01

    Using a source selection biased toward high-mass star-forming regions, we used a large velocity gradient code to calculate the H{sub 2} densities and CS column densities for a sample of Midcourse Space Experiment 8 mum infrared dark cores. Our average H{sub 2} density and CS column density were 1.14 x 10{sup 6}cm{sup -3} and 1.21 x 10{sup 13} cm{sup -2}, respectively. In addition, we have calculated the Jeans mass and Virial mass for each core to get a better understanding of their gravitational stability. We found that core masses calculated from observations of N{sub 2}H{sup +} J = 1->0 and C{sup 18}O J = 1->0 by Ragan et al. (Paper I) were sufficient for collapse, though most regions are likely to form protoclusters. We have explored the star-forming properties of the molecular gas within our sample and find some diversity which extends the range of infrared dark clouds from the very massive clouds that will create large clusters, to clouds that are similar to some of our local counterparts (e.g., Serpens, Ophiuchus).

  20. Spitzer mid-infrared spectroscopic observations of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Mata, H.; Ramos-Larios, G.; Guerrero, M. A.; Nigoche-Netro, A.; Toalá, J. A.; Fang, X.; Rubio, G.; Kemp, S. N.; Navarro, S. G.; Corral, L. J.

    2016-06-01

    We present Spitzer Space Telescope archival mid-infrared (mid-IR) spectroscopy of a sample of 11 planetary nebulae (PNe). The observations, acquired with the Spitzer Infrared Spectrograph (IRS), cover the spectral range 5.2-14.5 μm that includes the H2 0-0 S(2) to S(7) rotational emission lines. This wavelength coverage has allowed us to derive the Boltzmann distribution and calculate the H2 rotational excitation temperature (Tex). The derived excitation temperatures have consistent values ≃900 ± 70 K for different sources despite their different structural components. We also report the detection of mid-IR ionic lines of [Ar III], [S IV], and [Ne II] in most objects, and polycyclic aromatic hydrocarbon features in a few cases. The decline of the [Ar III]/[Ne II] line ratio with the stellar effective temperature can be explained either by a true neon enrichment or by high density circumstellar regions of PNe that presumably descend from higher mass progenitor stars.

  1. THERMAL INFRARED MMTAO OBSERVATIONS OF THE HR 8799 PLANETARY SYSTEM

    SciTech Connect

    Hinz, Philip M.; Rodigas, Timothy J.; Kenworthy, Matthew A.; Sivanandam, Suresh; Meyer, Michael R.; Heinze, Aren N.; Mamajek, Eric E.

    2010-06-10

    We present direct imaging observations at wavelengths of 3.3, 3.8 (L' band), and 4.8 (M band) {mu}m, for the planetary system surrounding HR 8799. All three planets are detected at L' . The c and d components are detected at 3.3 {mu}m, and upper limits are derived from the M-band observations. These observations provide useful constraints on warm giant planet atmospheres. We discuss the current age constraints on the HR 8799 system and show that several potential co-eval objects can be excluded from being co-moving with the star. Comparison of the photometry is made to models for giant planet atmospheres. Models that include non-equilibrium chemistry provide a reasonable match to the colors of c and d. From the observed colors in the thermal infrared, we estimate T {sub eff} < 960 K for b and T {sub eff} = 1300 and 1170 K for c and d, respectively. This provides an independent check on the effective temperatures and thus masses of the objects from the Marois et al. results.

  2. Infrared observations of the Jovian system from Voyager 1

    NASA Technical Reports Server (NTRS)

    Hanel, R.; Conrath, B.; Flasar, M.; Kunde, V.; Lowman, P.; Maguire, W.; Gautier, D.; Gierasch, P.; Kumar, S.; Ponnamperuma, C.

    1979-01-01

    The infrared spectroscopy and radiometry investigation has obtained spectra of Jupiter and its satellites between approximately 180 and 2500 kayser with a spectral resolution of 4.3 kayser. The Jupiter spectra show clear evidence of H2, CH4, C2H2, C2H6, CH3D, NH3, PH3, H2O, and GeH4. A helium concentration of 0.11 plus or minus 0.03 by volume is obtained. Meridional temperature cross sections show considerable structure. At high latitudes, the stratosphere is warmer in the north than in the south. The upper troposphere and lower stratosphere are locally cold over the Great Red Spot. Amalthea is warmer than expected. Considerable thermal structure is observed on Io, including a relatively hot region in the vicinity of a volcanic feature.

  3. Infrared observations of the jovian system from voyager 1.

    PubMed

    Hanel, R; Conrath, B; Flasar, M; Kunde, V; Lowman, P; Maguire, W; Pearl, J; Pirraglia, J; Samuelson, R; Gautier, D; Gierasch, P; Kumar, S; Ponnamperuma, C

    1979-06-01

    The infrared spectroscopy and radiometry investigation has obtained spectra of Jupiter and its satellites between approximately 180 and 2500 cm(-1) with a spectral resolution of 4.3 cm(-1). The Jupiter spectra show clear evidence of H(2), CH(4) C(2)H(2), C(2)H(6), CH(3)D, NH(3), PH(3), H(2)O, and GeH(4). A helium concentration of 0.11 +/- 0.03 by volume is obtained. Meridional temperature cross sections show considerable structure. At high latitudes, the stratosphere is warmer in the north than in the south. The upper troposphere and lower stratosphere are locally cold over the Great Red Spot. Amalthea is warmer than expected. Considerable thermal structure is observed on Io, including a relatively hot region in the vicinity of a volcanic feature. PMID:17800431

  4. Gemini near-infrared observations of Europa's Hydrated Surface Materials

    NASA Astrophysics Data System (ADS)

    Tsang, C.; Spencer, J. R.; Grundy, W. M.; Dalton, J. B.

    2012-12-01

    Europa is a highly dynamic icy moon of Jupiter. It is thought the moon harbors a subsurface ocean, with the potential to sustain life, with Europa being a key target of ESA's forthcoming Jupiter Icy Moons Orbiter (JUICE) mission. However, much is not known concerning the chemistry of the subsurface ocean. The surface is dominated by water ice, with a hydrated non-ice material component providing the distinctive albedo contrasts seen at visible and near-infrared wavelengths. These non-ice materials are concentrated at disrupted surface regions, providing a diagnostic probe for the chemistry and characteristics of the liquid ocean beneath. Leading but potentially competing theories on the composition of these hydrated non-ice materials suggest either sulfuric acid-water mixtures (Carlson et al., 1999) or hydrated magnesium/sodium salts (McCord et al., 1999). Recent reanalysis of Galileo-NIMS observations suggest a mixture of both - hydrated salts are present at all longitudes but the sulfuric acid hydrates are localized on the trailing side. We present preliminary analysis of new ground-based Gemini disk-resolved spectroscopy of Europa using the Near-Infrared Integrated Field Spectrometer (NIFS), taken in late 2011, at H (1.49 - 1.80 μm) and K bands (1.99 - 2.40 μm) with spectral resolving powers of ~ 5300. At these NIR wavelengths, with spectral resolution much better than Galileo-NIMS, the spectral absorption and continuum characteristics of these ice and non-ice materials can be separated out. In addition, the spatial resolution potentially allows identification of localized materials whose signature would be diluted in disk-integrated spectra. These observations of the trailing hemisphere use Altair adaptive optics to achieve spatial resolutions of 0.1" (~310 km per pixel) or better, potentially leading to better identification of the non-ice materials and their spatial distributions. References Carlson, R.W., R.E. Johnson, and M.S. Anderson 1999. Sulfuric acid

  5. Exploration of the Saturn System by the Cassini Mission: Observations with the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.

    2014-01-01

    Outline: Introduction to the Cassini mission, and Cassini mission Objectives; Cassini spacecraft, instruments, launch, and orbit insertion; Saturn, Rings, and Satellite, Titan; Composite Infrared Spectrometer (CIRS); and Infrared observations of Saturn and titan.

  6. Observation of finite-. beta. MHD phenomena in tokamaks

    SciTech Connect

    McGuire, K.M.

    1984-09-01

    Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1 internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.

  7. Far-infrared Imaging Observations of the Chamaeleon Region

    NASA Astrophysics Data System (ADS)

    Ikeda, Norio; Kitamura, Yoshimi; Takita, Satoshi; Ueno, Munetaka; Suzuki, Toyoaki; Kawamura, Akiko; Kaneda, Hidehiro

    2012-01-01

    We have carried out far-infrared imaging observations toward the Chamaeleon star-forming region by the Far-Infrared Surveyor (FIS) on board the AKARI satellite. The AKARI images cover a total area of 33.79 deg2, corresponding to 210 pc2 at the distance to the source. Using the FIS bands of 65-160 μm and the COBE/DIRBE bands of 60-240 μm, we constructed column density maps of cold (11.7 K) and warm (22.1 K) dust components with a linear resolution of 0.04 pc. On the basis of their spatial distributions and physical properties, we interpret that the cold component corresponds to the molecular clouds and the warm one the cold H I clouds, which are thought to be in a transient phase between atomic and molecular media. The warm component is shown to be uniformly distributed at a large spatial scale of ~50 pc, while a several pc-scale gradient along the east-west direction is found in the distribution of the cold component. The former is consistent with a formation scenario of the cold H I clouds through the thermal instability in the warm neutral medium triggered by a 100 pc scale supernova explosion. This scenario, however, cannot produce the latter, several pc-scale gradient in molecular cloud mass. We conclude that the gravitational fragmentation of the cold H I cloud likely created the molecular clouds with spatial scale as small as several pc.

  8. FAR-INFRARED IMAGING OBSERVATIONS OF THE CHAMAELEON REGION

    SciTech Connect

    Ikeda, Norio; Kitamura, Yoshimi; Takita, Satoshi; Ueno, Munetaka; Suzuki, Toyoaki

    2012-01-20

    We have carried out far-infrared imaging observations toward the Chamaeleon star-forming region by the Far-Infrared Surveyor (FIS) on board the AKARI satellite. The AKARI images cover a total area of 33.79 deg{sup 2}, corresponding to 210 pc{sup 2} at the distance to the source. Using the FIS bands of 65-160 {mu}m and the COBE/DIRBE bands of 60-240 {mu}m, we constructed column density maps of cold (11.7 K) and warm (22.1 K) dust components with a linear resolution of 0.04 pc. On the basis of their spatial distributions and physical properties, we interpret that the cold component corresponds to the molecular clouds and the warm one the cold H I clouds, which are thought to be in a transient phase between atomic and molecular media. The warm component is shown to be uniformly distributed at a large spatial scale of {approx}50 pc, while a several pc-scale gradient along the east-west direction is found in the distribution of the cold component. The former is consistent with a formation scenario of the cold H I clouds through the thermal instability in the warm neutral medium triggered by a 100 pc scale supernova explosion. This scenario, however, cannot produce the latter, several pc-scale gradient in molecular cloud mass. We conclude that the gravitational fragmentation of the cold H I cloud likely created the molecular clouds with spatial scale as small as several pc.

  9. Some observations of separated flow on finite wings

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Ngo, H. T.; De Seife, R. C.

    1982-01-01

    Wind tunnel test results for aspects of flow over airfoils exhibiting single and multiple trailing edge stall 'mushroom' cells are reported. Rectangular wings with aspect ratios of 4.0 and 9.0 were tested at Reynolds numbers of 480,000 and 257,000, respectively. Surface flow patterns were visualized by means of a fluorescent oil flow technique, separated flow was observed with a tuft wand and a water probe, spanwise flow was studied with hot-wire anemometry, smoke flow and an Ar laser illuminated the centerplane flow, and photographs were made of the oil flow patterns. Swirl patterns on partially and fully stalled wings suggested vortex flow attachments in those regions, and a saddle point on the fully stalled AR=4.0 wing indicated a secondary vortex flow at the forward region of the separation bubble. The separation wake decayed downstream, while the tip vortex interacted with the separation bubble on the fully stalled wing. Three mushroom cells were observed on the AR=9.0 wing.

  10. Mid infrared observations of Van Maanen 2: no substellar companion.

    SciTech Connect

    Farihi, J; Becklin, E; Macintosh, B

    2004-11-03

    The results of a comprehensive infrared imaging search for the putative 0.06 M{sub {circle_dot}} astrometric companion to the 4.4 pc white dwarf van Mannen 2 are reported. Adaptive optics images acquired at 3.8 {micro}m reveal a diffraction limited core of 0.09 inch and no direct evidence of a secondary. Models predict that at 5 Gyr, a 50 M{sub J} brown dwarf would be only 1 magnitude fainter than van Maanen 2 at this wavelength and the astrometric analysis suggested a separation of 0.2 inch. In the case of a chance alignment along the line of sight, a 0.4 mag excess should be measured. An independent photometric observation at the same wavelength reveals no excess. In addition, there exist published ISO observations of van Maanen 2 at 6.8 {micro}m and 15.0 {micro}m which are consistent with photospheric flux of a 6750 K white dwarf. If recent brown dwarf models are correct, there is no substellar companion with T{sub eff} {approx}> 500 K.

  11. Stratospheric infrared continuum absorptions observed by the ATMOS instrument

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Namkung, J. S.; Farmer, C. B.; Norton, R. H.

    1989-01-01

    A quantitative analysis of infrared continuum absorption features observed in ATMOS/Spacelab 3 (1985) spectra of the lower stratosphere is reported. Continuous absorption produced primarily by the collision-induced fundamental vibration-rotation band of O2 and to a lesser extent by the superposition of H2O far line wings has been observed in the 1400 to 1800/cm interval below tangent heights of about 25 km. Continuum optical depths measured in microwindows nearly free of atmospheric line absorption are 0.78 + or - 0.06 times those calculated with the O2 absorption coefficients of Timofeyev and Tonkov (1978). Transmittance measurements in microwindows between 2395 and 2535/cm have been used to study continuous absorption from the collision induced fundamental vibration-rotation band of N2 and the far wings of strong CO2 lines. The measured transmittances have been analyzed to derive best fit absorption coefficients for the N2 pressure-induced band at lower stratospheric temperatures (about 210 K).

  12. Near-infrared spectroscopic observations of Comets by Japanese Infrared Satellite

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Yamaguchi, Mitsuru; Ootsubo, Takafumi; Kawakita, Hideyo; Hamada, Saki

    Comets are thought to be one of the primeordial bodies in the solar system. Chemical abun-dances of the cometary icy materials are precious clue to the conditions in the early solar system. H2O is the most abundant species of the cometry nucleus, but CO and CO2 are also abundant with diversities. Especially, CO2 cannot be directly observed by ground-based ob-servations because of the strong absorption by telluric CO2. Thus, only the space observatory (or spacecraft) can access CO2 in comets directly. We observed some comets by "AKARI", Japanese infrared satellite. It has 68.5 cm telescope with InfraRed Camera (IRC). The IRC also has a spectroscopic capability (both grism and prism were available for disperser). The data we present were taken by the IRC in the grism mode. The IRC with grism can cover the wavelength range from 2.5 to 5 microns where vibrational fundamental bands of H2O, CO2, and CO (at 2.7, 4.3, and 4.7 microns) are usually recognized as emission in cometary spectra. We determined the mixng ratios of CO and CO2 relative to H2O for 5 comets: C/2006 W3, C/2006 OF2, C/2006 W3, /2007 N3, and C/2007 W1. These comets were observed at various heliocetric distances, so their mixing ratios can not be compared directly among these comets. We tried to convert the obtained mixing ratios at various heliocentric distancees to the mixing ratios at 1 AU from the Sun. Previous studies of mixing ratios of CO2 and CO relative to H2O were carried out by the Vega space craft (1P/Halley), ISO (C/1995 O1 and 103P/Hartley 2) and Deep Impcat spacecraft (9P/Tempel 1). We also applied the conversion factors to those prvious works. We will discuss about the diversity of mixing ratios of CO2 and CO in these comets.

  13. AIRS Infrared Radiance Validation Concept Using Earth Scene Observations

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Aumann, H. H.; Pagano, T. S.; Strow, L. L.

    2001-05-01

    The Atmospheric Infrared Sounder (AIRS) will fly onboard the NASA Earth Observing Satellite (EOS)polar-orbiting Aqua spacecraft. AIRS, a high resolution infrared spectrometer with visible and near-infrared spectral channels, has been designed to provide atmospheric temperature and moisture profiles at least as accurate as those measured by standard radiosondes. Calibration studies of the response of each of the AIRS 4000+ detectors will begin as soon as the spacecraft orbit and instrument have stabilized. These studies are needed to help assess the contribution of instrument measurement errors to the spectral radiance determination. Some of the uncertainties will be determined from measurements of the onboard calibrators. Other sources of measurement uncertainty, such as scan mirror polarization and spectral response functions, require views of Earth at nadir and at oblique viewing angles, in cloud-free conditions. During early operation of the instrument, the blackbody radiance determination will rely on pre-launch measurements and models of the spectral response functions. During this phase of the operation, we have chosen an approach for initial assessment of the accuracy of the measured radiance that is not dependent on an exact knowledge of the spectral position of the detectors. Radiances will be evaluated in narrow regions that are well removed from spectral line features. There are potentially hundreds of detectors that can be used for this purpose. Our work to date has focused on a subset of these detectors located in atmospheric window regions between 2500-2700 cm-1 and 800-1200 cm-1. Pre-launch thermal-vacuum blackbody calibration results indicate that, using a reasonable cross-section of detectors, it should be possible to extrapolate the performance of a sparse set of detectors to the general state of the instrument calibration. In this paper we describe some initial results using a simple statistical methodology that compares outgoing radiances in

  14. Global ammonia distribution derived from infrared satellite observations

    NASA Astrophysics Data System (ADS)

    Clarisse, Lieven; Clerbaux, Cathy; Dentener, Frank; Hurtmans, Daniel; Coheur, Pierre-François

    2009-07-01

    Global ammonia emissions have more than doubled since pre-industrial times, largely owing to agricultural intensification and widespread fertilizer use. In the atmosphere, ammonia accelerates particulate matter formation, thereby reducing air quality. When deposited in nitrogen-limited ecosystems, ammonia can act as a fertilizer. This can lead to biodiversity reductions in terrestrial ecosystems, and algal blooms in aqueous environments. Despite its ecological significance, there are large uncertainties in the magnitude of ammonia emissions, mainly owing to a paucity of ground-based observations and a virtual absence of atmospheric measurements. Here we use infrared spectra, obtained by the IASI/MetOp satellite, to map global ammonia concentrations from space over the course of 2008. We identify several ammonia hotspots in middle-low latitudes across the globe. In general, we find a good qualitative agreement between our satellite measurements and simulations made using a global atmospheric chemistry transport model. However, the satellite data reveal substantially higher concentrations of ammonia north of 30∘N, compared with model projections. We conclude that ammonia emissions could have been significantly underestimated in the Northern Hemisphere, and suggest that satellite monitoring of ammonia from space will improve our understanding of the global nitrogen cycle.

  15. Observations of dust acoustic waves driven at high frequencies: Finite dust temperature effects and wave interference

    SciTech Connect

    Thomas, Edward Jr.; Fisher, Ross; Merlino, Robert L.

    2007-12-15

    An experiment has been performed to study the behavior of dust acoustic waves driven at high frequencies (f>100 Hz), extending the range of previous work. In this study, two previously unreported phenomena are observed--interference effects between naturally excited dust acoustic waves and driven dust acoustic waves, and the observation of finite dust temperature effects on the dispersion relation.

  16. Thermal Infrared ASTER Observations of Faults in Southern California

    NASA Astrophysics Data System (ADS)

    Eneva, M.

    2005-12-01

    Reports on earthquake precursors observed in the thermal infrared (TIR) data from several satellites have caused mixed reactions. Some researchers have identified precursory anomalies, such as increased temperatures of several degrees over several days in areas extending up to hundreds of kilometers. In view of the uncertainties in the data, others have been skeptical that such changes can be reliably and uniquely associated with seismic events. This problem is a subset of the more general question how to interpret TIR observations from space for the purpose of fault characterization. Although faults are often clearly discernable in thermal images, the contributions of various factors to any temporal variability in their thermal properties are not clear. These factors include vegetation, soil moisture, surface and air temperature, atmospheric water vapor, and perhaps even wind. Extracting anomalies specifically associated with earthquakes in view of this natural variability and in the presence of observational uncertainties is a difficult task at best. Using standard higher-level TIR products (e.g., surface temperature) derived from radiance at sensor is likely questionable without additional corrections. We address these questions through the analysis of 60 km x 60 km images collected by the ASTER instrument on board of the Terra satellite. ASTER is unique in that five of its 14 channels are TIR, with a spatial resolution of 90 m (compared with at least 1-km spatial resolution of instruments used in previous reports of precursory anomalies). We focus on a specific area in southern California (32.80N - 34.50N, 115.90W - 117.20W) that includes substantial parts of the San Andreas, San Jacinto and Elsinore faults, as well as two recent M5.2 and M4.9 earthquakes (June 12 and 16, 2005). In addition to the existing ASTER data, mostly collected in the daytime, we have made arrangements for future data collections over the next year, with emphasis on nighttime TIR data

  17. Infrared Observations of G0.18-0.04

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.; Colgan, Sean W. J.; Cotera, Angela S.; Erickson, Edwin F.; Haas, Michael R.; Morris, Mark; Rubin, Robert H.

    1997-10-01

    The Galactic center H II region, G0.18-0.04, also known as the ``Sickle,'' is located where the nonthermal ``Arc'' crosses the Galactic plane. The Sickle appears to be the ionized edge of a dense molecular cloud. The source of ionization has been ascribed to both the interaction of the cloud with the magnetic field of the Arc and to the hot stars in the adjacent cluster, AFGL 2004, also known as the ``Quintuplet Cluster.'' This paper addresses the relative locations of the stars, the ionized and molecular gas, and the sources of gas excitation and dust heating. The far-infrared forbidden lines of [S III] 18.7 and 33.5 μm, [Si II] 34.8 μm, [Ne III] 36.0 μm, [O III] 51.8 and 88.4 μm, [N III] 57.3 μm, [O I] 63.2 and 146 μm, [C II] 158 μm, and [N II] 205 μm and the adjacent continua were observed with NASA's Kuiper Airborne Observatory at 11 positions around G0.18-0.04, including G0.15-0.05, also known as the ``Pistol.'' The beam size was 40"-60". The electron density, the ionic abundances, and the ionization structure of the H II region were estimated from the doubly ionized line fluxes. The density and radiation field found in the photodissociation region (PDR) between the H II region and the molecular cloud were estimated from the [C II] and [O I] line fluxes and the far-infrared continuum. The ionization structure and the PDR properties were compared to shell models of H II regions with varying distances from their exciting stars. The agreement of observations and models indicates that the hot stars of AFGL 2004 are the likely source of ionization of the Sickle. Additional hot stars are necessary to ionize the more outlying positions. However, the low ionization and high PDR radiation field of the Pistol imply that it cannot be as close to AFGL 2004 as is indicated by its proximity on the sky. Instead, the Pistol is probably ionized by the luminous blue variable candidate, Pistol Source A. The extinction to the region was estimated from the IRAS low

  18. Direct observation of finite size effects in chains of antiferromagnetically coupled spins.

    PubMed

    Guidi, T; Gillon, B; Mason, S A; Garlatti, E; Carretta, S; Santini, P; Stunault, A; Caciuffo, R; van Slageren, J; Klemke, B; Cousson, A; Timco, G A; Winpenny, R E P

    2015-01-01

    Finite spin chains made of few magnetic ions are the ultimate-size structures that can be engineered to perform spin manipulations for quantum information devices. Their spin structure is expected to show finite size effects and its knowledge is of great importance both for fundamental physics and applications. Until now a direct and quantitative measurement of the spatial distribution of the magnetization of such small structures has not been achieved even with the most advanced microscopic techniques. Here we present measurements of the spin density distribution of a finite chain of eight spin-3/2 ions using polarized neutron diffraction. The data reveal edge effects that are a consequence of the finite size and of the parity of the chain and indicate a noncollinear spin arrangement. This is in contrast with the uniform spin distribution observed in the parent closed chain and the collinear arrangement in odd-open chains. PMID:25952539

  19. Rocket-borne instrument for observations of near-infrared and far-infrared extended astrophysical emission

    NASA Technical Reports Server (NTRS)

    Matsuhara, Hideo; Kawada, Mitsunobu; Matsumoto, Toshio; Matsuura, Shuji; Tanaka, Masahiro; Bock, James J.; Hristov, Viktor V.; Lange, Andrew E.; Mauskopf, Philip D.; Richards, Paul L.

    1994-01-01

    We give a detailed description of the design and flight performance of an instrument onboard the S-520-15 rocket of the Institute of Space and Astronautical Science. The isntrument, consisting of a near-infrared spectrometer and a far-infrared photometer at the focus of a 10 cm liquid-helium cooled telescope, was designed to observe both the brightness and distribution of diffuse emission with high sensitivity. The rocket was successfully launched and the instrument observed near-infrared and far-infrared continuum emission, as well as (C II) 157.7 micrometer line emission from regions at high Galactic latitude. We also give a brief description of the design and performance of an onboard attitude control system.

  20. Infrared, radio, and X-ray observations of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Neugebauer, G.; Hawkins, F. J.; Mason, K. O.; Sanford, P. W.; Matthews, K.; Packman, D.; Schupler, B.; Stark, A.; Wynn-Williams, C. G.

    1974-01-01

    Infrared observations of Cyg X-3 are presented along with X-ray and radio data. A study of the data shows evidence for several types of behavior in the infrared flux variations of Cyg X-3. It is pointed out that a lack of periodic variations observed can be due either to a real absence of these variations or to a masking by an outburst preceding the observation time. There is no simple radio-infrared correlation, although both radio and infrared emissions were observed during the same period of time.

  1. Infrared Observations of G0.18-0.04

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Colgan, Sean W. J.; Cotera, Angela S.; Erickson, Edwin F.; Haas, Michael R.; Morris, Mark; Rubin, Robert H.; Witteborn, Fred C. (Technical Monitor)

    1996-01-01

    The Galactic Center H(II) region, G0.18-0.04, the 'Sickle', is located where the nonthermal 'Arc' crosses the Galactic plane. The Sickle appears to be the ionized edge of a dense molecular cloud. The source of ionization has been ascribed to both the interaction of the cloud with the magnetic field of the Arc and to the hot stars in the adjacent cluster, AFGL 2004, also known as the 'Quintuplet Cluster'. This paper addresses the relative locations of the stars, the ionized and molecular gas, and the sources of gas excitation and dust heating. Using NASA's Kuiper Airborne Observatory, we have observed the far infrared forbidden lines of [S(III)] 18.7 and 33.5 micrometers, [Si(II)] 34.8 micrometers, [Ne(III)] 36.0 micrometers, [O(III)] 51.8 and 88.4 micrometers, [N(III)] 57.3 micrometers, [O(II)] 63.2 and 146 micrometers, [C(II)] 158 micrometers, and [N(II)] 205 micrometers and the adjacent continua at 11 positions around G0.18-0.04, including G0.15-0.05, the 'Pistol', in a beamsize of 40 - 60 arcsec. The electron density, the ionic abundances, and the ionization structure of the H(II) region are estimated from the doubly ionized line fluxes. The density and radiation field found in the photodissociation region (PDR) between the H(II) region and the molecular cloud are estimated from the [C(II)] and [O(I)] line fluxes and the far-infrared continuum. We compare the ionization structure and the PDR properties to shell models of H(II) regions with varying distances from their exciting stars. The agreement of observations and models indicates that the hot stars of AFGL 2004 are the likely source of ionization of the Sickle. Additional hot stars are necessary to ionize the more outlying positions. However, because of its low ionization and high PDR radiation field, the Pistol cannot be as close to AFGL 2004 as indicated by its close proximity on the sky. Instead, the Pistol is probably ionized by the luminous blue variable candidate, Pistol Source A. We estimated the

  2. Infrared observations of OB star formation in NGC 6334

    NASA Technical Reports Server (NTRS)

    Harvey, P. M.; Gatley, I.

    1983-01-01

    Infrared photometry and maps from 2 to 100 microns are presented for three of the principal far infrared sources in NGC 6334. Each region is powered by two or more very young stars. The distribution of dust and ionized gas is probably strongly affected by the presence of the embedded stars; one of the sources is a blister H II region, another has a bipolar structure, and the third exhibits asymmetric temperature structure. The presence of protostellar objects throughout the region suggests that star formation has occurred nearly simultaneously in the whole molecular cloud rather than having been triggered sequentially from within. Previously announced in STAR as N83-16263

  3. Infrared observations of OB star formation in NGC 6334

    NASA Technical Reports Server (NTRS)

    Harvey, P. M.; Gatley, I.

    1982-01-01

    Infrared photometry and maps from 2 to 100 microns are presented for three of the principal far infrared sources in NGC 6334. Each region is powered by two or more very young stars. The distribution of dust and ionized gas is probably strongly affected by the presence of the embedded stars; one of the sources is a blister H II region, another has a bipolar structure, and the third exhibits asymmetric temperature structure. The presence of protostellar objects throughout the region suggests that star formation has occurred nearly simultaneously in the whole molecular cloud rather than having been triggered sequentially from within.

  4. Infrared and Visible Observations of South Polar Spots and Fans

    NASA Astrophysics Data System (ADS)

    Christensen, P. R.; Kieffer, H. H.; Titus, T. N.

    2005-12-01

    A variety of relatively low-albedo features that form in regions of the south polar cap during early spring have been previously reported. Four types of these dark features have been recognized: spots, fans, blotches, and halos. The spots are typically <15-50 m in diameter with typical spacings of several 100 m. Fans are 10's to 100's of m in length, 10-30 deg. in angular size, typically originate from a preexisting dark spot, and all point in a similar direction within a given area. Blotches are larger than spots, 100's of m to 10's of km in size, with less distinct boundaries, and, unlike most spots, have albedo patterns that match from winter to summer. Halos are roughly circularly symmetric annuli 10's to 100's of m in diameter surrounding spots. All of these features are only slightly darker than the surrounding ice, with TES-derived albedos of 0.22 versus 0.23 for the ice. We have observed these features with THEMIS in 100-m per pixel infrared and 18-m per pixel visible imaging, focusing intensely on a specific region (99 E, 86.2 S) where spot and fan formation was observed the previous Mars year. A few dark spots form before sunrise, with significant spot formation occurring immediately following sunrise. A large number of spots form fans within 10-20 days. All of these features are within 5 C of CO2 ice temperatures, indicating that they must be must be a very thin layer (<1 mm) that is on top of the CO2 ice, and do not represent surface defrosting. H. Kieffer initially developed a conceptual model to account for the observed observations of the spots, fans, and blotches. In this model relatively dark, granular material lies at the surface during summer. One to two meters of CO2 ice forms the residual cap during winter. This ice anneals to form a translucent slab, allowing sunlight to penetrate to the subsurface, and forming an impermeable layer. After sunrise, insolation reaches and heats the substrate, leading to sublimation of the CO2 ice from the base

  5. Infrared Observations of Temperature Modulations on the Hudson River

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; Zappa, C. J.; Smith, R. A.

    2011-12-01

    The thermal boundary layer at the surface of a river is constantly disrupted and renewed by physical processes associated with convection, turbulence, wind stress, heat flux, and other environmental factors. These disruptions cause temperature modulations in the surface layer which can be measured with an infrared (IR) sensor. Over the course of two ten-day periods in August and November of 2010, we imaged the Hudson River from atop a nearby cliff using a large-format, mid-wave IR sensor. Time series imagery was collected for 5 to 10 minute periods, every 30 minutes for the entirety of each experiment. In the field of view, several in situ instruments were mounted to a steel piling driven into the river bed. Above and below the water surface, an array of instruments were installed to measure heat flux, wind speed, air and water temperature, current velocity, humidity, radiance, and conductivity. In this analysis, we investigate the relationship between the temperature modulations present in the IR imagery, which are associated with coherent features advecting with the mean flow, and the environmental parameters measured from our in situ instruments. The IR imagery from these experiments show a diverse range of temperature modulation patterns, on scales of 20cm to several tens of meters, often masked by the presence of surface waves. At low grazing angles, the IR images of the water surface are comprised of a combination of emitted radiance from temperature modulations on the surface and reflected radiance from the sky above. To separate out the emitted signal from the reflected signal, we employ a Fourier space filtering technique to exclude the variance in the imagery due to the surface waves. We find the remaining emitted signal to be correlated with wind speed and the air-water temperature difference, and weakly or uncorrelated with stratification and mean current speed. We report on both the signal processing technique used to extract the emitted signal from

  6. Infrared Observations of Comets Halley and Wilson and Properties of the Grains

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S. (Editor)

    1988-01-01

    The presented papers and discussions at a workshop held at Cornell Univ. are summarized. The infrared observations of Comet Halley and Comet Wilson are reviewed and they are related to optical properties and composition of cometary grains. Relevant laboratory studies are also discussed. Recommendations are made for future infrared comet observations and supporting laboratory investigations.

  7. Observations of vertically propagating driven dust acoustic waves: Finite temperature effects

    SciTech Connect

    Williams, Jeremiah D.; Thomas, Edward Jr.; Marcus, Lydia

    2008-04-15

    In this study, the first measurement of the dispersion relationship for a vertically propagating (i.e., parallel to gravity), driven dust acoustic wave is reported. Finite dust temperature effects were observed in the dispersion relation of the dust acoustic wave.

  8. Multi-constrained fault estimation observer design with finite frequency specifications for continuous-time systems

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Jiang, Bin; Shi, Peng; Xu, Jinfa

    2014-08-01

    The design of a multi-constrained full-order fault estimation observer (FFEO) with finite frequency specifications is studied for continuous-time systems. By constructing an augmented system, a multi-constrained FFEO in finite frequency domain is proposed to achieve fault estimation. Meanwhile, the presented FFEO can avoid the overdesign problem generated by the entire frequency domain by the generalised Kalman-Yakubovich-Popov lemma. Furthermore, by introducing slack variables, improved results on FFEO design in different frequency domains are obtained such that different Lyapunov matrices can be separately designed for each constraint. Simulation results are presented to demonstrate the effectiveness and potentials of the proposed techniques.

  9. INFRARED SPECTRAL OBSERVATION OF EIGHT BL LAC OBJECTS FROM THE SPITZER INFRARED SPECTROGRAPH

    SciTech Connect

    Chen, P. S.; Shan, H. G.

    2011-05-01

    The Spitzer Infrared Spectrograph (IRS) low-resolution spectra for eight BL Lac objects are presented in this paper. It can be seen that the infrared spectrum of S5 0716+714 shows in the IRS region many emission features that would be from a nearby galaxy. It is also shown that, except for the silicate absorptions around 10 {mu}m for some sources, emission lines in the infrared spectra for the other seven BL Lac objects are indeed very weak or absent. In addition, ignoring the silicate feature, all spectra can be well fitted by a power-law distribution indicative of the emission mechanism of the synchrotron radiation for these BL Lac objects in the IRS region.

  10. The Atmospheric Infrared Sounder (AIRS) on the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.; Strow, Larrabee

    2001-01-01

    AIRS, the Atmospheric Infrared Sounder on the EOS-Aqua, produces global high precision spectra from 3.7 - 15.4 micron with spectral resolving power mu/delta mu = 1200 twice each day from 708 km orbital altitude. AIRS is the first hyperspectral infrared spectrometer designed to support NOAA/NCEP's operational requirements for medium range weather forecasting during its nominal 7 year lifetime. AIRS, together with the AMSU and HSB microwave radiometers, will achieve global retrieval accuracy of better then 1K rms in the lower troposphere under clear and partly cloudy condition. Based on the excellent radiometric and spectral performance demonstrated during the pre-launch testing, the assimilation of AIRS data into the forecast model is expected to result in major forecast improvements. Launch of AIRS on the EOS AQUA is scheduled for May 2001.

  11. On the performance of infrared sensors in earth observations

    NASA Technical Reports Server (NTRS)

    Johnson, L. F.

    1972-01-01

    The performance of infrared sensing systems is dependent upon the radiative properties of targets in addition to constraints imposed by system components. The unclassified state-of-the-art of infrared system performance figures is reviewed to indicate the relevance to system performance of target radiative properties. A theory of rough surface scattering is developed which allows the formulation of the reflective characteristics of extended targets. The thermal radiation emission from extended targets is formulated on the basis of internal radiation characteristics of natural materials and the transmissive scattering effects at the surface. Finally, the total radiative characteristics may be expressed as functions of material properties and incident and received directions, although the expressions are extremely complex functions and do not account for the effects of shadowing or multiple scattering. It is believed that the theory may be extended to include these effects and to incorporate the local radii of curvature of the surface.

  12. Snow studies using thermal infrared observations from earth satellites

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.

    1972-01-01

    The application of satellite high resolution infrared data was studied for mapping snow cover. The study has two objectives: (1) to determine whether existing radiometers onboard the Nimbus and ITOS satellites can provide hydrologically useful snow information, and (2) to develop analysis techniques applicable to future IR sensor systems on earth satellites. The IR measurements are being analyzed in conjunction with concurrent satellite photographs and conventional snow cover data.

  13. Visible and infrared imaging radiometers for ocean observations

    NASA Technical Reports Server (NTRS)

    Barnes, W. L.

    1977-01-01

    The current status of visible and infrared sensors designed for the remote monitoring of the oceans is reviewed. Emphasis is placed on multichannel scanning radiometers that are either operational or under development. Present design practices and parameter constraints are discussed. Airborne sensor systems examined include the ocean color scanner and the ocean temperature scanner. The costal zone color scanner and advanced very high resolution radiometer are reviewed with emphasis on design specifications. Recent technological advances and their impact on sensor design are examined.

  14. Modeling Titan's thermal infrared spectrum for high-resolution space observations

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Encrenaz, Th.; Bezard, B.; Bjoraker, G.; Graner, G.; Dang-Nhu, M.; Arie, E.

    1993-04-01

    The observability of minor species in Titan's atmosphere in its infrared thermal range is systematically studied and modeled to generate synthetic spectra. The model results on methane, water vapor, benzene, allene, and other heavier trace molecules are used to illustrate the capabilities of instruments aboard the Infrared Space Observatory, in particular a high-resolution composite infrared spectrometer, to determine vertical distributions of the molecules in a few hours of integration time.

  15. Atmospheric Infrared Sounder on the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1995-01-01

    The Atmospheric Infrared Sounder (AIRS) is a high spectral resolution IR spectrometer. AIRS, together with the Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), is designed to meet the operational weather prediction requirements of the National Oceanic and Atmospheric Administration (NOAA) and the global change research objectives of the National Aeronautics and Space Administration (NASA). The three instruments will be launched in the year 2000 on the EOS-PM spacecraft. Testing of the AIRS engineering model will start in 1996.

  16. Spitzer and near-infrared observations of the young supernova remnant 3C397

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Jarrett, Tom

    2016-06-01

    We present Spitzer IRS, IRAC and MIPS observations and near-infrared imaging and spectroscopy of the young supernova remnant 3C397 (G41.1-0.2). Near-infrared observations were made using the Palomar 200 inch telescope. Both mid- and near-infrared spectra are dominated by Fe lines and near-infrared imaging shows bright Fe emission with a shell-like morphology. There is no molecular hydrogen line belong to the SNR and some are in background. The Ni, Ar, S and Si lines are detected using IRS and hydrogen recombination lines are detected in near-infrared. Two nickel lines at 18.24 and 10.69 micron are detected. 3C397 is ejecta-dominated, and our observations support 3C397 to be a Type Ia supernova.

  17. Inference of Ice Cloud Properties from High-spectral Resolution Infrared Observations. Appendix 4

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Yang, Ping; Wei, Heli; Baum, Bryan A.; Hu, Yongxiang; Antonelli, Paolo; Ackerman, Steven A.

    2005-01-01

    The theoretical basis is explored for inferring the microphysical properties of ice crystal from high-spectral resolution infrared observations. A radiative transfer model is employed to simulate spectral radiances to address relevant issues. The extinction and absorption efficiencies of individual ice crystals, assumed as hexagonal columns for large particles and droxtals for small particles, are computed from a combination of the finite- difference time-domain (FDTD) technique and a composite method. The corresponding phase functions are computed from a combination of FDTD and an improved geometric optics method (IGOM). Bulk scattering properties are derived by averaging the single- scattering properties of individual particles for 30 particle size distributions developed from in situ measurements and for additional four analytical Gamma size distributions for small particles. The non-sphericity of ice crystals is shown to have a significant impact on the radiative signatures in the infrared (IR) spectrum; the spherical particle approximation for inferring ice cloud properties may result in an overest&ation of the optical thickness and an inaccurate retrieval of effective particle size. Furthermore, we show that the error associated with the use of the Henyey-Greenstein phase function can be as larger as 1 K in terms of brightness temperature for larger particle effective size at some strong scattering wavenumbers. For small particles, the difference between the two phase functions is much less, with brightness temperatures generally differing by less than 0.4 K. The simulations undertaken in this study show that the slope of the IR brightness temperature spectrum between 790-960/cm is sensitive to the effective particle size. Furthermore, a strong sensitivity of IR brightness temperature to cloud optical thickness is noted within the l050-1250/cm region. Based on this spectral feature, a technique is presented for the simultaneous retrieval of the visible

  18. Preface to Special Section: Validation of Atmospheric Infrared Sounder Observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.

    2006-01-01

    The papers described below demonstrate that the AIRS calibrated radiances and retrieved geophysical products generally meet or exceed the prelaunch specifications. The retrieved quantities show little variation in uncertainty as a function of cloud amount. However, AIRS retrieval yield is a rapidly decreasing function of cloud amount; at about 80% cloudiness essentially no infrared radiances are used in the retrieval processes. Also, AIRS performance has not been demonstrated for all conditions and products. Calibrated and forward calculated radiances meet performance specifications for conditions varying from the cold poles to warm tropics. The retrieval system performs well over extrapolar land in the free troposphere (2-15 km above the surface) and over extrapolar oceans at all tropospheric altitudes. The AIRS retrieval algorithms have not been optimized for polar winter conditions, so no such results are presented in these papers.

  19. Observing temperature fluctuations in humans using infrared imaging

    PubMed Central

    Liu, Wei-Min; Meyer, Joseph; Scully, Christopher G.; Elster, Eric; Gorbach, Alexander M.

    2013-01-01

    In this work we demonstrate that functional infrared imaging is capable of detecting low frequency temperature fluctuations in intact human skin and revealing spatial, temporal, spectral, and time-frequency based differences among three tissue classes: microvasculature, large sub-cutaneous veins, and the remaining surrounding tissue of the forearm. We found that large veins have stronger contractility in the range of 0.005-0.06 Hz compared to the other two tissue classes. Wavelet phase coherence and power spectrum correlation analysis show that microvasculature and skin areas without vessels visible by IR have high phase coherence in the lowest three frequency ranges (0.005-0.0095 Hz, 0.0095-0.02 Hz, and 0.02-0.06 Hz), whereas large veins oscillate independently. PMID:23538682

  20. Hydration of lysozyme as observed by infrared spectrometry.

    PubMed

    Liltorp, K; Maréchal, Y

    2005-11-01

    Infrared spectra of a film of lysozyme 3 mum thick, immersed in an atmosphere displaying a relative humidity, or hygrometry, which spans the whole range from 0 to 1 at room temperature, are recorded. The evolution of the spectra with this relative humidity is quantitatively analyzed on the basis of a newly proposed method. It allows the precise measurement of the quantity of water that remains embedded inside the dried sample at each stage of hydration, and the definition, in terms of chemical reactions of the three hydration mechanisms that correspond to the three hydration spectra on which all experimental spectra can be decomposed. With respect to preceding similar studies, some refinements are introduced that allow improvement of the interpretation, but that also raise some new questions, which mainly concern the structure of the hydrogen-bond network around the carbonyl peptide groups. PMID:15986502

  1. Compact infrared camera (CIRC) for earth observation adapting athermal optics

    NASA Astrophysics Data System (ADS)

    Kato, Eri; Katayama, Haruyoshi; Naitoh, Masataka; Harada, Masatomo; Nakamura, Ryoko; Nakau, Koji; Sato, Ryota

    2013-09-01

    We have developed the compact infrared camera (CIRC) with an uncooled infrared array detector (microbolometer) for space application. The main mission of the CIRC is the technology demonstration of the wildfire detection using a large format (640×480) microbolometer. Wildfires are major and chronic disasters affecting numerous countries, especially in the Asia-Pacific region, and may get worse with global warming and climate change. Microbolometers have an advantage of not requiring cooling systems such an a mechanical cooler, and is suitable for resource-limited sensor systems or small satellites. Main characteristic of the CIRC is also an athermal optics. The thermal optics compensates the defocus due to the temperature change by using Germanium and Chalcogenide glass which have different coefficient of thermal expansion and temperature dependence of refractive index. The CIRC achieves a small size, light weight, and low electrical power by employing the athermal optics and a shutter-less system. Two CIRCs will be carried as a technology demonstration payload of ALOS-2 and JEM-CALET, which will be launched in JFY 2013 and 2014, respectively. We have finished the ground calibration test of the CIRC Proto Flight Model (PFM). Athermal optical performance of the CIRC have been confirmed by measuring modulation transfer function (MTF) in a vacuum environment and at environmental temperature from -15 to 50 °C. As a result, MTF was found to be effective at capturing clear images across the entire range of operating temperatures. We also provide an overview of the CIRC and radiometric test results in this presentation.

  2. Limb-atmospheric infrared spectrum observed on the satellite Ohzora

    NASA Technical Reports Server (NTRS)

    Matsuzaki, A.; Nakamura, Y.; Itoh, T.

    1985-01-01

    The Institute of Space and Astronautical Science (ISAS) launched the 9th scientific satellite Ohzora at 17:00 JST on February 14, 1984. This satellite bears the spectrometer, which measures the infrared spectrum of the solar radiation passing the limb atmosphere in the wavelength region of 2 to 10 m. The spectrometer is based on multichannel spectroscopy by using image sensors. Since the wavelength is scanned electronically, it can measure the spectrum unaffected by the satellite motion. A definite axis, i.e., the Z-axis of the satellite, which coincides to the optical axis of the spectrometer, is controlled to the direction of the Sun, and the finer control to introduce the solar light into the spectrometer is made with a 2-axes-controlled mirror. This solar tracking equipment is derived fast enough to measure the spectra in a moment after sunrise. The solar light introduced into the spectrometer is focused on the slits of the monochromators (f=100mm). For better altitude resolution, the horizontal slit is also used with the vertical slit, which is used for the separation of the dispersion. The dispersion light is detected with the pyroelectric array sensors. To obtain maximum dynamic range and spectral resolution, the three-stage polychromator is used.

  3. Remote Observing at the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Tokunaga, A. T.; Bus, S. J.; Denault, T.; Hawarden-Ogata, M.

    2003-05-01

    Although remote observations are widely practiced at observatories, the IRTF has recently implemented an approach that allows greater freedom in meeting user needs. Observations at the IRTF can now be supported from sites on the Big Island of Hawaii (Hilo or the mid-level facility) as well as sites anywhere in the world virtually without restriction. Observations are supported throughout the US and even to Paris, France. User requirements are modest: a unix workstation for controlling the instrument and a laptop for communications. For solar system observations, remote observing has been successfully used for synoptic observations (as short as one hour) and programs requiring a number of short observations spread over a semester. In some cases the option to work at sea level rather than the summit of Mauna Kea is essential for health reasons. Further information can be found at: http://irtfweb.ifa.hawaii.edu/userSupport/remote_obs/. We believe this the most flexible remote observing available at any observatory. We acknowledge the support of NASA Cooperative Agreement NCC 5-538.

  4. A fault detection observer design for LPV systems in finite frequency domain

    NASA Astrophysics Data System (ADS)

    Chen, Jianliang; Cao, Yong-Yan; Zhang, Weidong

    2015-03-01

    This paper addresses the fault detection observer design problem for linear parameter-varying systems. Two finite frequency performance indexes are introduced to measure the fault sensitivity and the disturbance robustness. First, the H- index fault sensitivity condition in finite frequency domain is obtained by generalised Kalman-Yakubovich-Popov lemma and new linearisation techniques. Then, with the aid of Kalman-Yakubovich-Popov lemma and projection lemma, the stability and robustness conditions are derived. It turns out that the non-convexity problem which is caused by dealing with the above three conditions can be translated into a bilinear matrix inequality optimisation problem by increasing the dimensions of slack variable matrix. An iterative linear matrix inequality algorithm is proposed to get the solution. The effectiveness of the filter is shown via three numerical examples.

  5. HERSCHEL OBSERVATIONS OF FAR-INFRARED COOLING LINES IN INTERMEDIATE REDSHIFT (ULTRA)-LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rigopoulou, D.; Magdis, G. E.; Thatte, N.; Hopwood, R.; Clements, D.; Swinyard, B. M.; Pearson, C.; Farrah, D.; Huang, J.-S.; Alonso-Herrero, A.; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Smith, A.; Wang, L.; Riechers, D.; Scott, D.; Vaccari, M.; Valtchanov, I.

    2014-01-20

    We report the first results from a spectroscopic survey of the [C II] 158 μm line from a sample of intermediate redshift (0.2 infrared galaxies, (U)LIRGs (L {sub IR} > 10{sup 11.5} L {sub ☉}), using the Spectral and Photometric Imaging REceiver-Fourier Transform Spectrometer on board the Herschel Space Observatory. This is the first survey of [C II] emission, an important tracer of star formation, at a redshift range where the star formation rate density of the universe increases rapidly. We detect strong [C II] 158 μm line emission from over 80% of the sample. We find that the [C II] line is luminous, in the range (0.8-4) × 10{sup –3} of the far-infrared continuum luminosity of our sources, and appears to arise from photodissociation regions on the surface of molecular clouds. The L{sub [C} {sub II]}/L {sub IR} ratio in our intermediate redshift (U)LIRGs is on average ∼10 times larger than that of local ULIRGs. Furthermore, we find that the L{sub [C} {sub II]}/L {sub IR} and L{sub [CII]}/L{sub CO(1-0)} ratios in our sample are similar to those of local normal galaxies and high-z star-forming galaxies. ULIRGs at z ∼ 0.5 show many similarities to the properties of local normal and high-z star-forming galaxies. Our findings strongly suggest that rapid evolution in the properties of the star-forming regions of (U)LIRGs is likely to have occurred in the last 5 billion years.

  6. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  7. First light observations with TIFR Near Infrared Imaging Camera (TIRCAM-II)

    NASA Astrophysics Data System (ADS)

    Ojha, D. K.; Ghosh, S. K.; D'Costa, S. L. A.; Naik, M. B.; Sandimani, P. R.; Poojary, S. S.; Bhagat, S. B.; Jadhav, R. B.; Meshram, G. S.; Bakalkar, C. B.; Ramaprakash, A. N.; Mohan, V.; Joshi, J.

    TIFR near infrared imaging camera (TIRCAM-II) is based on the Aladdin III Quadrant InSb focal plane array (512×512 pixels; 27.6 μm pixel size; sensitive between 1 - 5.5 μm). TIRCAM-II had its first engineering run with the 2 m IUCAA telescope at Girawali during February - March 2011. The first light observations with TIRCAM-II were quite successful. Several infrared standard with TIRCAM-II were quite successful. Several infrared standard stars, the Trapezium Cluster in Orion region, McNeil's nebula, etc., were observed in the J, K and in a narrow-band at 3.6 μm (nbL). In the nbL band, some bright stars could be detected from the Girawali site. The performance of TIRCAM-II is discussed in the light of preliminary observations in near infrared bands.

  8. Saturn's Atmospheric Composition from Observations by the Cassini/Composite Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Young, M.; LeClair, A. C.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.

    2010-01-01

    Thermal emission infrared observation of Saturn s atmosphere are being made by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft since its insertion in Saturn s orbit on July 2nd, 2004. The measurements made in both limb and nadir modes of observations consist of infrared spectra in the 10-1400/cm region with a variable spectral resolution of 0.53/cm and 2.8/cm, and exhibit rotational and vibrational spectral features that may be analyzed for retrieval of the thermal structure and constituent distribution of Saturn s atmosphere. In this paper, we present a comprehensive analysis of the CIRS infrared observed spectra for retrieval of Saturn s atmospheric composition focusing on the distributions of some selected hydrocarbons, phosphine, ammonia, and possible determination of the isotopic ratios of some species with sufficiently strong isolated spectral features. A comparison of the retrieved constituent distributions with the available data in the literature will be made.

  9. Postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared

    NASA Technical Reports Server (NTRS)

    Wiedermann, Guenter; Jennings, D. E.; Hanel, R. H.; Kunde, V. G.; Moseley, S. H.

    1989-01-01

    A postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared has been developed which improves the sensitivity of radiation noise limited observations by reducing the spectral range incident on the detector. Special attention is given to the first-generation blocked impurity band detector. Planetary, solar, and stellar observations are reported.

  10. Observational Studies of Protoplanetary Disks at Mid-Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Li, Dan; Telesco, Charles; Wright, Christopher; Packham, Christopher; Marinas, Naibi

    2013-07-01

    We have used mid-infrared cameras on 8-to-10 m class telescopes to study the properties of young circumstellar disks. During the initial phases of this program we examined a large sample of mid-IR images of standard stars delivered by T-ReCS at Gemini South to evaluate its on-sky performance as characterized by, for example the angular resolution, the PSF shape, and the PSF temporal stability, properties that are most relevant to our high-angular resolution study of disks. With this information we developed an Interactive Data Language (IDL) package of routines optimized for reducing the data and correcting for image defects commonly seen in ground-based mid-IR data. We obtained, reduced, and analyzed mid-IR images and spectra of several Herbig Ae/Be disks (including HD 259431, MWC 1080, VV Ser) and the debris disk (β Pic), and derived their physical properties by means of radiative transfer modeling or spectroscopic decomposition and analyses. These results are highlighted here. During this study, we also helped commission CanariCam, a new mid-IR facility instrument built by the University of Florida for the 10.4 m Gran Telescopio Canarias (GTC) on La Palma, Canary Islands, Spain. CanariCam is an imager with spectroscopic, polarimetric, and coronagraphic capabilities, with the dual-beam polarimetry being a unique mode introduced with CanariCam for the first time to a 10 m telescope at mid-IR wavelengths. It is well known that measurements of polarization, originating from aligned dust grains in the disks and their environments, have the potential to shed light on the morphologies of the magnetic fields in these regions, information that is critical to understanding how stars and planets form. We have obtained polarimetric data of several Herbig Ae/Be disks and YSOs, and the data reduction and analyses are in process. We present preliminary results here. This poster is based upon work supported by the NSF under grant AST-0903672 and AST-0908624 awarded to C.M.T.

  11. Calculation of Intensity Ratios of Observed Infrared [Fe II] Lines

    NASA Astrophysics Data System (ADS)

    Deb, Narayan C.; Hibbert, Alan

    2010-03-01

    Two recent observational studies of the [Fe II] λ12567/λ16435 line ratio by Smith & Hartigan and Rodriguez-Ardila et al. have suggested that the available theoretical A-values could be incorrect to 10%-40%. We have carried out an extensive configuration interaction calculation of [Fe II] lines to investigate this claim, as well as the variability in observed line ratios for λ8617/λ9052 and λ8892/λ9227 of Dennefeld. For these transitions, we are generally in good agreement with the results of Nussbaumer & Storey, less so with those of Quinet et al. In comparison, the ratios derived from observations appear either to be less secure, or other factors influence those results.

  12. Far-infrared observations of Sagittarius B2: Reconsideration of source structure

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr.; Harper, D. A.

    1985-01-01

    New moderate-angular-resolution far-infrared observations of the Sagittarius B2 star-forming region are presented, discussed, and compared with recent radio molecular and continuum observations of this source. In contrast to previous analyses, its far-infrared spectrum is interpreted as the result of a massive frigid cloud overlying a more-or-less normal infrared source, a natural explanation for the object's previously-noted pecularities. The characteristics derived for the obscuring cloud are similar to those found for the W51 MAIN object. Both sources have high sub-millimeter surface brightness, a high ratio of sub-millimeter to far-infrared flux, and numerous regions of molecular maser emission.

  13. Ultraviolet, optical, infrared, and microwave observations of HR 5110

    NASA Technical Reports Server (NTRS)

    Little-Marenin, I. R.; Simon, T.; Ayres, T. R.; Cohen, N. L.; Feldman, P. A.

    1986-01-01

    Near-IR JHKLM photometric data and VLBI and IUE radio burst data collected on the short-period spectroscopic binary HR 5110 are analyzed to classify the object. The observed broadband colors were indicative of an F2 IV primary and a spotted K0 IV secondary. The system is being viewed pole-on, so is observable in the UV since the K companion has filled its Roche lobe. In comparisons of such features of Algol and RS VCn stars as the mass ratio, orbital inclination, presence or absence of evidence for mass streams, accretion disks, and active regions, spectral signatures, etc., sufficient similarities are found to classify HR 5110 as an Algol system.

  14. Nighttime reactive nitrogen measurements from stratospheric infrared thermal emission observations

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Kunde, Virgil G.; Brasunas, J. C.; Herman, J. R.; Massie, Steven T.

    1991-01-01

    IR thermal emission spectra of the earth's atmosphere in the 700-2000/cm region were obtained with a cryogenically cooled high-resolution interferometer spectrometer on a balloon flight from Palestine, Texas, on September 15-16, 1986. The observations exhibit spectral features of a number of stratospheric constituents, including important species of the reactive nitrogen family. An analysis of the observed data for simultaneously measured vertical distributions of O3, H2O, N2O, NO2, N2O5, HNO3, and ClONO2 is presented. These measurements permit the first direct determination of the nighttime total reactive nitrogen concentrations, and the partitioning of the important elements of the NO(x) family. Comparisons of the total reactive nitrogen budget are made with the measurements by the ATMOS experiment and with the predictions of one-dimensional and two-dimensional photochemical models.

  15. Estimating interevent time distributions from finite observation periods in communication networks

    NASA Astrophysics Data System (ADS)

    Kivelä, Mikko; Porter, Mason A.

    2015-11-01

    A diverse variety of processes—including recurrent disease episodes, neuron firing, and communication patterns among humans—can be described using interevent time (IET) distributions. Many such processes are ongoing, although event sequences are only available during a finite observation window. Because the observation time window is more likely to begin or end during long IETs than during short ones, the analysis of such data is susceptible to a bias induced by the finite observation period. In this paper, we illustrate how this length bias is born and how it can be corrected without assuming any particular shape for the IET distribution. To do this, we model event sequences using stationary renewal processes, and we formulate simple heuristics for determining the severity of the bias. To illustrate our results, we focus on the example of empirical communication networks, which are temporal networks that are constructed from communication events. The IET distributions of such systems guide efforts to build models of human behavior, and the variance of IETs is very important for estimating the spreading rate of information in networks of temporal interactions. We analyze several well-known data sets from the literature, and we find that the resulting bias can lead to systematic underestimates of the variance in the IET distributions and that correcting for the bias can lead to qualitatively different results for the tails of the IET distributions.

  16. Observation of enhanced visible and infrared emissions in photonic crystal thin-film light-emitting diodes

    SciTech Connect

    Cheung, Y. F.; Li, K. H.; Hui, R. S. Y.; Choi, H. W.

    2014-08-18

    Photonic crystals, in the form of closed-packed nano-pillar arrays patterned by nanosphere lithography, have been formed on the n-faces of InGaN thin-film vertical light-emitting diodes (LEDs). Through laser lift-off of the sapphire substrate, the thin-film LEDs conduct vertically with reduced dynamic resistances, as well as reduced thermal resistances. The photonic crystal plays a role in enhancing light extraction, not only at visible wavelengths but also at infrared wavelengths boosting heat radiation at high currents, so that heat-induced effects on internal quantum efficiencies are minimized. The observations are consistent with predictions from finite-difference time-domain simulations.

  17. Infrared sky noise survey. [over observing sites in the U.S., Mexico, and Chile

    NASA Technical Reports Server (NTRS)

    Westphal, J. A.

    1974-01-01

    A 10 micron infrared sky noise survey, which was conducted during the period from June 1, 1970 to June 30, 1974, is reported along with associated electronics and recording equipment which was developed and deployed for periods up to 18 months at various potential or existing infrared observing sites in the U.S., Mexico, and Chile. The results of the data activity are given, and variables are defined which influence the intensity and duration of the sky noise.

  18. Observation of Aubry-type transition in finite atom chains via friction.

    PubMed

    Bylinskii, Alexei; Gangloff, Dorian; Counts, Ian; Vuletić, Vladan

    2016-07-01

    The highly nonlinear many-body physics of a chain of mutually interacting atoms in contact with a periodic substrate gives rise to complex static and dynamical phenomena, such as structural phase transitions and friction. In the limit of an infinite chain incommensurate with the substrate, Aubry predicted a transition with increasing substrate potential, from the chain's intrinsic arrangement free to slide on the substrate, to a pinned arrangement favouring the substrate pattern. So far, the Aubry transition has not been observed. Here, using spatially resolved position and friction measurements of cold trapped ions in an optical lattice, we observed a finite version of the Aubry transition and the onset of its hallmark fractal atomic arrangement. Notably, the observed critical lattice depth for few-ion chains agrees well with the infinite-chain prediction. Our results elucidate the connection between competing ordering patterns and superlubricity in nanocontacts-the elementary building blocks of friction. PMID:26998915

  19. How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.

  20. Infrared observations of circumstellar ammonia in OH/IR supergiants

    NASA Technical Reports Server (NTRS)

    Mclaren, R. A.; Betz, A. L.

    1980-01-01

    Ammonia has been detected in the circumstellar envelopes of VY Canis Majoris, VX Sagittarii, and IRC +10420 by means of several absorption lines in the nu-2 vibration-rotation band near 950 kaysers. The line profiles are well resolved (0.2 km/sec resolution) and show the gas being accelerated to terminal expansion velocities near 30 km/sec. The observations reveal a method for determining the position of the central star on VLBI maps of OH maser emission to an accuracy of approximately 0.2 arcsec. A firm lower limit of 2 x 10 to the 15th/sq cm is obtained for the NH3 column density in VY Canis Majoris.

  1. Probing turbulence with infrared observations in OMC1

    NASA Astrophysics Data System (ADS)

    Gustafsson, M.; Field, D.; Lemaire, J. L.; Pijpers, F. P.

    2006-01-01

    A statistical analysis is presented of the turbulent velocity structure in the Orion Molecular Cloud at scales ranging from 70 AU to 3×104 AU. Results are based on IR Fabry-Perot interferometric observations of shock and photon-excited H2 in the K-band S(1) v=1{-}0 line at 2.121 μm and refer to the dynamical characteristics of warm perturbed gas. Data consist of a spatially resolved image with a measured velocity for each resolution limited region (70 AU× 70 AU) in the image. The effect of removal of apparent large scale velocity gradients is discussed and the conclusion drawn that these apparent gradients represent part of the turbulent cascade and should remain within the data. Using our full data set, observations establish that the Larson size-linewidth relation is obeyed to the smallest scales studied here extending the range of validity of this relationship by nearly 2 orders of magnitude. The velocity probability distribution function (PDF) is constructed showing extended exponential wings, providing evidence of intermittency, further supported by the skewness (third moment) and kurtosis (fourth moment) of the velocity distribution. Variance and kurtosis of the PDF of velocity differences are constructed as a function of lag. The variance shows an approximate power law dependence on lag, with exponent significantly lower than the Kolmogorov value, and with deviations below 2000 AU which are attributed to outflows and possibly disk structures associated with low mass star formation within OMC1. The kurtosis shows strong deviation from a Gaussian velocity field, providing evidence of velocity correlations at small lags. Results agree accurately with semi-empirical simulations in Eggers & Wang (1998). In addition, 170 individual H2 emitting clumps have been analysed with sizes between 500 and 2200 AU. These show considerable diversity with regard to PDFs and variance functions (related to second order structure functions) displaying a variety of shapes of

  2. OSSE observations of the ultraluminous infrared galaxies ARP 220 and MRK 273

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Shier, L. M.; Sturner, S. J.; McNaron-Brown, K.; Bland-Hawthorn, J.

    1997-01-01

    The results of oriented scintillation spectrometer experiment (OSSE) observations of the ultraluminous infrared galaxies Arp 220 and Mrk 273 are reported. The pointings of Arp 220 and Mrk 273 concentrated on their upper limits. The gamma ray luminosities from these sources were found to be between one and two orders of magnitude smaller than the infrared luminosities. Multiwavelength luminosity spectra are produced from the radio to the gamma ray regime, and are compared with the typical multiwavelength spectra of active galactic nuclei. The lack of measured gamma ray emission provides no evidence for the existence of buried active galactic nuclei in these ultraluminous infrared galaxies, but is consistent with an origin of the infrared luminosity from starburst activity.

  3. Solution of nonlinear finite difference ocean models by optimization methods with sensitivity and observational strategy analysis

    NASA Technical Reports Server (NTRS)

    Schroeter, Jens; Wunsch, Carl

    1986-01-01

    The paper studies with finite difference nonlinear circulation models the uncertainties in interesting flow properties, such as western boundary current transport, potential and kinetic energy, owing to the uncertainty in the driving surface boundary condition. The procedure is based upon nonlinear optimization methods. The same calculations permit quantitative study of the importance of new information as a function of type, region of measurement and accuracy, providing a method to study various observing strategies. Uncertainty in a model parameter, the bottom friction coefficient, is studied in conjunction with uncertain measurements. The model is free to adjust the bottom friction coefficient such that an objective function is minimized while fitting a set of data to within prescribed bounds. The relative importance of the accuracy of the knowledge about the friction coefficient with respect to various kinds of observations is then quantified, and the possible range of the friction coefficients is calculated.

  4. THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WISE/NEOWISE: COMPARISON WITH INFRARED ASTRONOMICAL SATELLITE

    SciTech Connect

    Mainzer, A.; Masiero, J.; Bauer, J.; Grav, T.; Wright, E.; Cutri, R. M.; Walker, R.; McMillan, R. S.

    2011-08-10

    With thermal infrared observations detected by the NEOWISE project, we have measured diameters for 1742 minor planets that were also observed by the Infrared Astronomical Satellite (IRAS). We have compared the diameters and albedo derived by applying a spherical thermal model to the objects detected by NEOWISE and find that they are generally in good agreement with the IRAS values. We have shown that diameters computed from NEOWISE data are often less systematically biased than those found with IRAS. This demonstrates that the NEOWISE data set can provide accurate physical parameters for the >157,000 minor planets that were detected by NEOWISE.

  5. Infrared Spectra of (CO2)2-OCS Complex: Infrared Observation of Two Distinct Barrel-Shaped Isomers

    NASA Astrophysics Data System (ADS)

    Norooz Oliaee, J.; Dehghany, M.; Mivehvar, F.; Moazzen-Ahmadi, N.; McKellar, A. R. W.

    2010-06-01

    Spectra of (CO2)2-OCS complex in the region of the OCS ν 1 fundamental (˜ 2062 cm-1) are observed using a tunable diode laser to probe a pulsed supersonic slit jet expansion. A previous microwave study of the complex by Peebles and Kuczkowskia gave a distorted triangular cylinder. The geometerical disposition of the three dimer faces of this trimer are quite similar to the slipped CO2 dimer, the lowest energy form of OCS-CO2 (isomer a), also observed and analyzed in the microwave region, and the higher energy form of OCS-CO2 (isomer b), first observed by our group in the infrared region. Here we report the observation and analysis of two infrared bands, corresponding to two distinct isomers of the (CO2)2-OCS complex. A band around 2058.8 cm-1 was assigned to isomer I, which is the same as that studied previously by microwave spectroscopy. A second band around 2051.7 cm-1 was assigned to a higher energy isomer of the complex, isomer II, has not been observed previously, but expected on the basis of ab initio calculations. Approximate structural parameters for this new isomer were obtained by means of isotopic substitution. In contrast to isomer I, the geometerical disposition of the faces containing OCS and CO2 in isomer II are similar to isomer b of the OCS-CO2 complex. S. A. Peebles and R. L. Kuczkowski, J. Chem. Phys. 109, 5277 (1998). S. E. Novick, R. D. Suenram, and F. J. Lovas, J. Chem. Phys. 88, 687 (1988). M. Dehghany, J. Nooroz Oliaee, M. Afshari, N. Moazzen-Ahmadi, and A. R. W. McKellar, J. Chem. Phys. 130, 224310 (2009). H. Valdés and J. A. Sordo, Int. J. Comput. Chem. 23, 444 (2002).

  6. High speed Infrared imaging method for observation of the fast varying temperature phenomena

    NASA Astrophysics Data System (ADS)

    Moghadam, Reza; Alavi, Kambiz; Yuan, Baohong

    With new improvements in high-end commercial R&D camera technologies many challenges have been overcome for exploring the high-speed IR camera imaging. The core benefits of this technology is the ability to capture fast varying phenomena without image blur, acquire enough data to properly characterize dynamic energy, and increase the dynamic range without compromising the number of frames per second. This study presents a noninvasive method for determining the intensity field of a High Intensity Focused Ultrasound Device (HIFU) beam using Infrared imaging. High speed Infrared camera was placed above the tissue-mimicking material that was heated by HIFU with no other sensors present in the HIFU axial beam. A MATLAB simulation code used to perform a finite-element solution to the pressure wave propagation and heat equations within the phantom and temperature rise to the phantom was computed. Three different power levels of HIFU transducers were tested and the predicted temperature increase values were within about 25% of IR measurements. The fundamental theory and methods developed in this research can be used to detect fast varying temperature phenomena in combination with the infrared filters.

  7. Far-infrared line observations of planetary nebulae. 1: The O 3 spectrum

    NASA Technical Reports Server (NTRS)

    Dinerstein, H. L.; Lester, D. F.; Werner, M. W.

    1985-01-01

    Observations of the far-infrared fine structure lines of O III have been obtained for six planetary nebulae. The infrared measurements are combined with optical O III line fluxes to probe physical conditions in the gas. From the observed line intensity ratios, a simultaneous solution was obtained for electron temperature and density, as well as means of evaluating the importance of inhomogeneities. Densities determined from the far-infrared O III lines agree well density diagnostics from other ions, indicating a fairly homogeneous density in the emitting gas. Temperatures are determined separately from the O III 4363/5007 A and 5007 A/52 micron intensity ratios and compared. Systematically higher values are derived from the former ratio, which is expected from a nebula which is not isothermal. Allowance for the presence of temperature variations within these nebulae raises their derived oxygen abundances, determinations to be reconciled with the solar value.

  8. Far-infrared line observations of planetary nebulae. I - The forbidden O III spectrum

    NASA Astrophysics Data System (ADS)

    Dinerstein, H. L.; Lester, D. F.; Werner, M. W.

    1985-04-01

    Observations of the far-infrared fine structure lines of O III have been obtained for six planetary nebulae. The infrared measurements are combined with optical O III line fluxes to probe physical conditions in the gas. From the observed line intensity ratios, a simultaneous solution was obtained for electron temperature and density, as well as means of evaluating the importance of inhomogeneities. Densities determined from the far-infrared O III lines agree well with density diagnostics from other ions, indicating a fairly homogeneous density in the emitting gas. Temperatures are determined separately from the O III 4363/5007 A and 5007 A/52 micron intensity ratios and compared. Systematically higher values are derived from the former ratio, which is expected from a nebula which is not isothermal. Allowance for the presence of temperature variations within these nebulae raises their derived oxygen abundances, determinations to be reconciled with the solar value.

  9. The nature of AFGL 2591 and its associated molecular outflow: Infrared and millimeter-wave observations

    NASA Technical Reports Server (NTRS)

    Lada, C. J.; Thronson, H. A., Jr.; Smith, H. A.; Schwartz, P. R.; Glaccum, W.

    1984-01-01

    The results of infrared photometry from 2 to 160 microns of AFGL and CO(12) observations of its associated molecular cloud and high velocity molecular outflow are presented and discussed. The observed solar luminosity is 6.7 x 10(4) at a distance of 2 kpc. The spectrum of AFGL 2591 is interpreted in the context of a model in which a single embedded object is the dominant source of the infrared luminosity. This object is determined to be surrounded by a compact, optically thick dust shell with a temperature in excess of several hundred degrees kelvin. The extinction to this source is estimated to be between 26 and 50 visual magnitudes. The absolute position of the infrared sources at 10 microns was determined to an accuracy of + or in. This indicates for the first time that the IR source and H2O source are not coincident. The CO(12) observations show the high-velocity molecular flow near AFGL 2591 to be extended, bipolar and roughly centered on the infrared emission. The observations suggest that the red-shifted flow component extends beyond the boundary of the ambient cloud within which AFGL 2591 is embedded. The CO(12) observations also show that AFGL 2591 is embedded in a molecular cloud with an LSR velocity of -5 km/s.

  10. High Resolution Observations of Magnetic Elements in the Visible and the Infrared

    NASA Astrophysics Data System (ADS)

    Rimmele, T.; Lin, H.

    1997-05-01

    High resolution observations of magnetic elements in the visible and infrared. We report on multi-wavelength observations of plage regions obtained at the Vacuum Tower Telescope at NSO/Sac-Peak . The data set includes high resolution images in the G-band (0.43 mu ), the visible (0.69 mu ) continuum and the infrared (1.6 mu ) continuum. In addition, deep integration full Stokes vector measurements in the FeI 1.56 mu lines, as well as, Ca-K slit jaw images were obtained. G-band bright points, which are observed mostly in supergranular lanes, are also visible as bright points in the visible continuum. Although the infrared observations are limited in spatial resolution to about 0."4 (the diffraction limit of the VTT/SP), the data indicates that G-band bright points are also bright in the infrared (1.6 mu ). We also discuss and compare properties of magnetic knots and small pores. Magnetic knots, which recently also have been referred to as azimuth centers (Lites et al. 1994), by definition show no darkening in individual continuum images. However, in the time-averaged imaging data, and in particular in the infrared, azimuth centers appear as dark features, which are clearly distinguishable from the quiet sun background. In the infrared most azimuth centers are visible as dark features even in individual snapshots. Many azimuth centers as well as some small pores are surrounded by a highly structured bright ring, which becomes more apparent with increasing height of formation. Results of the polarization analysis in the FeI 1.56 mu lines, including measurements of weak fields, are presented as well.

  11. Comments on a peak of AlxGa1-xN observed by infrared reflectance

    NASA Astrophysics Data System (ADS)

    Marx, G.; Engelbrecht, J. A. A.; Lee, M. E.; Wagener, M. C.; Henry, A.

    2016-05-01

    AlxGa1-xN epilayers, grown on c-plane oriented sapphire substrates by metal organic chemical vapour deposition (MOCVD), were evaluated using FTIR infrared reflectance spectroscopy. A peak at ∼850 cm-1 in the reflectance spectra, not reported before, was observed. Possible origins for this peak are considered and discussed.

  12. Galileo Infrared Observations of the Shoemaker-Levy 9 G Impact Fireball: A Preliminary Report

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Weissman, P. R.; Segura, M.; Hui, J.; Smythe, W. D.; Johnson, T.; Baines, K. H.; Drossart, P.; Encrenaz, T.; Leader, F. E.; Team, NIMS Science

    1995-01-01

    The Galileo spacecraft was fortuitously situated for a direct view of the impacts of the fragments of comet Shoemaker-Levy 9 in Jupiter's atmosphere. The Galileo Near Infrared Mapping Spectrometer instrument observed several of the impact events in several discrete bands and with a temporal resolution of roughly five seconds. This report provides a preliminary description of the fireball phase.

  13. Amplitude of the diurnal temperature cycle as observed by thermal infrared and microwave radiometers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) is a key input to physically-based retrieval algorithms of hydrological states and fluxes, and global measurements of LST are provided by many satellite platforms. Passive microwave (MW) observations offer an alternative to conventional thermal infrared (TIR) LST retri...

  14. Probing the interstellar medium in early-type galaxies with Infrared Space Oberservatory observations

    NASA Technical Reports Server (NTRS)

    Malhotra, S.; Hollenbach, D.; Helou, D.; Silbermann, N.; Valjavec, E.; Rubin, R.; Dale, D.; Hunter, D.; Lu, N.; Lord, S.; Dinerstein, H.; Thronson, H.

    2000-01-01

    Four IRAS-detected early-type galaxies were observed with the Infrared Space Observatory (ISO). With the exception of the 15 mu m image of NGC 1052, the mid-IR images of NGC 1052, NGC 1155, NGC 5866, and NGC 6958 at 4.5, 7, and 15 mu m show extended emission.

  15. Near- and far-infrared observations of interplanetary dust bands from the COBE diffuse infrared background experiment

    NASA Technical Reports Server (NTRS)

    Spiesman, William J.; Hauser, Michael G.; Kelsall, Thomas; Lisse, Carey M.; Moseley, S. Harvey, Jr.; Reach, William T.; Silverberg, Robert F.; Stemwedel, Sally W.; Weiland, Janet L.

    1995-01-01

    Data from the Diffuse Infrared Background Experiment (DIRBE) instrument aboard the Cosmic Background Explorer Satellite (COBE) spacecraft have been used to examine the near and far infrared signatures of the interplanetary dust (IPD) bands. Images of the dust band pairs at ecliptic latitudes of +/- 1.4 deg and +/- 10 deg have been produced at DIRBE wavelengths from 1.25 to 100 micrometers. The observations at the shorter wavelengths provide the first evidence of scattered sunlight from particles responsible for the dust bands. It is found that the grains in the bands and those in the smooth IPD cloud have similar spectral energy distributions, suggesting similar compositions and possibly a common origin. The scattering albedos from 1.25 to 3.5 micrometers for the grains in the dust bands and those in the IPD cloud are 0.22 and 0.29, respectively. The 10 deg band pair is cooler (185 +/- 10 K) than the smooth interplanetary dust cloud (259 +/- 10 K). From both parallactic and thermal analyses, the implied location of the grains responsible for the peak brightness of the 10 deg band pair is 2.1 +/- 0.1 AU the Sun A parallactic distance of 1.4 +/- 0.2 AU is found for the peak of the 1.4 deg band pair.

  16. DISTRIBUTION OF CO{sub 2} IN SATURN'S ATMOSPHERE FROM CASSINI/CIRS INFRARED OBSERVATIONS

    SciTech Connect

    Abbas, M. M.; LeClair, A.; Woodard, E.; Young, M.; Stanbro, M.; Flasar, F. M.; Achterberg, R. K.; Bjoraker, G.; Brasunas, J.; Jennings, D. E.; Kunde, V. G. E-mail: Andre.C.LeClair@nasa.gov E-mail: mcs0001@uah.edu E-mail: f.m.flasar@nasa.gov; Collaboration: and the Cassini /CIRS team

    2013-10-20

    This paper focuses on the CO{sub 2} distribution in Saturn's atmosphere based on analysis of infrared spectral observations of Saturn made by the Composite Infrared Spectrometer aboard the Cassini spacecraft. The Cassini spacecraft was launched in 1997 October, inserted in Saturn's orbit in 2004 July, and has been successfully making infrared observations of Saturn, its rings, Titan, and other icy satellites during well-planned orbital tours. The infrared observations, made with a dual Fourier transform spectrometer in both nadir- and limb-viewing modes, cover spectral regions of 10-1400 cm{sup –1}, with the option of variable apodized spectral resolutions from 0.53 to 15 cm{sup –1}. An analysis of the observed spectra with well-developed radiative transfer models and spectral inversion techniques has the potential to provide knowledge of Saturn's thermal structure and composition with global distributions of a series of gases. In this paper, we present an analysis of a large observational data set for retrieval of Saturn's CO{sub 2} distribution utilizing spectral features of CO{sub 2} in the Q-branch of the ν{sub 2} band, and discuss its possible relationship to the influx of interstellar dust grains. With limited spectral regions available for analysis, due to low densities of CO{sub 2} and interference from other gases, the retrieved CO{sub 2} profile is obtained as a function of a model photochemical profile, with the retrieved values at atmospheric pressures in the region of ∼1-10 mbar levels. The retrieved CO{sub 2} profile is found to be in good agreement with the model profile based on Infrared Space Observatory measurements with mixing ratios of ∼4.9 × 10{sup –10} at atmospheric pressures of ∼1 mbar.

  17. Spectral and Imaging Observations of a White-light Solar Flare in the Mid-infrared

    NASA Astrophysics Data System (ADS)

    Penn, Matt; Krucker, Säm; Hudson, Hugh; Jhabvala, Murzy; Jennings, Don; Lunsford, Allen; Kaufmann, Pierre

    2016-03-01

    We report high-resolution observations at mid-infrared wavelengths of a minor solar flare, SOL2014-09-24T17:50 (C7.0), using Quantum Well Infrared Photodetector cameras at an auxiliary of the McMath-Pierce telescope. The flare emissions, the first simultaneous observations in two mid-infrared bands at 5.2 and 8.2 μ {{m}} with white-light and hard X-ray coverage, revealed impulsive time variability with increases on timescales of ˜4 s followed by exponential decay at ˜10 s in two bright regions separated by about 13\\prime\\prime . The brightest source is compact, unresolved spatially at the diffraction limit (1\\_\\_AMP\\_\\_farcs;72 at 5.2 μ {{m}}). We identify the IR sources as flare ribbons also seen in white-light emission at 6173 Å observed by SDO/HMI, with twin hard X-ray sources observed by Reuven Ramaty High Energy Solar Spectroscopic Imager, and with EUV sources (e.g., 94 Å) observed by SDO/AIA. The two infrared points have nearly the same flux density (fν, W m-2 Hz) and extrapolate to a level of about an order of magnitude below that observed in the visible band by HMI, but with a flux of more than two orders of magnitude above the free-free continuum from the hot (˜15 MK) coronal flare loop observed in the X-ray range. The observations suggest that the IR emission is optically thin; this constraint and others suggest major contributions from a density less than about 4× {10}13 cm-3. We tentatively interpret this emission mechanism as predominantly free-free emission in a highly ionized but cool and rather dense chromospheric region.

  18. Variations in Near-Infrared Emissivity of Venus Surface Observed by the Galileo Near-Infrared Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.

    2004-11-01

    We evaluate the spatial variation of venusian surface emissivity at a near-infrared wavelength using multispectral images obtained by the Near-Infrared Mapping Spectrometer (NIMS) on board the Galileo spacecraft. The Galileo made a close flyby to Venus in February 1990. During this flyby, NIMS observed the nightside of Venus with 17 spectral channels, which includes the well-known spectral windows at 1.18, 1.74, and 2.3 μ m. The surface emissivity is evaluated at 1.18 μ m, at which thermal radiation emitted from the planetary surface could be detected. To analyze the NIMS observations, synthetic spectra have been generated by means of a line-by-line radiative transfer program which includes both scattering and absorption. We used the discrete ordinate method to calculate the spectra of vertically inhomogeneous plane-parallel atmosphere. Gas opacity is calculated based on the method of Pollack et al. (1993), though binary absorption coefficients for continuum opacity are adjusted to achieve an acceptable fit to the NIMS data. We used Mie scattering theory and a cloud model developed by Pollack et al. (1993) to determine the single scattering albedo and scattering phase function of the cloud particles. The vertical temperature profile of Venus International Reference Atmosphere (VIRA) is used in all our calculations. The procedure of the analysis is the followings. We first made a correction for emission angle. Then, a modulation of emission by the cloud opacities is removed using simultaneously measured 1.74 and 2.3 μ m radiances. The resulting images are correlated with the topographic map of Magellan. To search for variations in surface emissivity, this cloud corrected images are divided by synthetic radiance maps that were created from the Magellan data. This work has been supported by The 21st Century COE Program of Origin and Evolution of Planetary Systems of Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  19. Comparison of quarter-wave retarders over finite spectral and angular bandwidths for infrared polarimetric-imaging applications.

    PubMed

    Wadsworth, Samuel L; Boreman, Glenn D

    2011-12-20

    We compare three technological approaches for quarter-wave retarders within the context of polarimetric-imaging applications in the long-wave infrared (LWIR) spectrum. Performance of a commercial cadmium sulfide (CdS) crystalline waveplate, a multilayer meanderline structure, and a silicon (Si) form-birefringent retarder are evaluated under conditions of 8-12 μm broadband radiation emerging from an F/1 focusing objective. Metrics used for this comparison are the spectrally dependent axial ratio, retardance, and polarization-averaged power transmittance, which are averaged over the angular range of interest. These parameters correspond to the characteristics that would be observed at the focal-plane array (FPA) detector of an LWIR imaging polarimeter. PMID:22193200

  20. ISO Mid-Infrared Observations of Giant HII Regions in M33

    NASA Technical Reports Server (NTRS)

    Skelton, B. P.; Waller, W. H.; Hodge, P. W.; Boulanger, F.; Cornett, R. H.; Fanelli, M. N.; Lequeux, J.; Stecher, T. P.; Viallefond, F.; Hui, Y.

    1999-01-01

    We present Infrared Space Observatory Camera (ISOCAM) Circular Variable Filter scans of three giant HII regions in M33. IC 133, NGC 595, and CC 93 span a wide range of metallicity, luminosity, nebular excitation, and infrared excess; three other emission regions (CC 43, CC 99, and a region to the northeast of the core of NGC 595) are luminous enough in the mid-infrared to be detected in the observed fields. ISOCAM CVF observations provide spatially resolved observations (5'') of 151 wavelengths between 5.1 and 16.5 microns with a spectral resolution R = 35 to 50. We observe atomic emission lines ([Ne II], [Ne III], and [S IV]), several "unidentified infrared bands" (UIBs; 6.2, 7.7, 8.6, 11.3, 12.0, and 12.7 microns), and in some cases a continuum which rises steeply at longer wavelengths. We conclude that the spectra of these three GHRs are well explained by combinations of ionized gas, PAHs, and very small grains in various proportions and with different spatial distributions. Comparisons between observed ratios of the various UIBs with model ratios indicate that the PAHs in all three of the GHRs are dehydrogenated and that the small PAHs have been destroyed in IC 133 but have survived in NGC 595 and CC 93. The [Ne III]/[Ne II] ratios observed in IC 133 and NGC 595 are consistent with their ages of 5 and 4.5 Myr, respectively; the deduced ionization parameter is higher in IC 133, consistent with its more compact region of emission.

  1. Exploration of the Saturn System by the Cassini Mission: Observations with the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.

    2014-01-01

    The Cassini mission is a joint NASA-ESA international mission, launched on October 17, 1997 with 12 instruments on board, for exploration of the Saturn system. A composite Infrared Spectrometers is one of the major instruments. Successful insertion of the spacecraft in Saturn's orbit for an extended orbital tour occurred on July 1, 2004. The French Huygens-Probe on board, with six instruments was programmed for a soft landing on Titan's surface occurred in January 2005. The broad range scientific objectives of the mission are: Exploration of the Saturn system for investigations of the origin, formation, & evolution of the solar system, with an extensive range of measurements and the analysis of the data for scientific interpretations. The focus of research dealing with the Cassini mission at NASA/MSFC in collaboration with the NASA/Goddard Space Flight Center, JPL, as well as the research teams at Oxford/UK and Meudon Observatory/France, involves the Infrared observations of Saturn and its satellites, for measurements of the thermal structure and global distributions of the atmospheric constituents. A brief description of the Cassini spacecraft, the instruments, the objectives, in particular with the infrared observations of the Saturn system will be given. The analytical techniques for infrared radiative transfer and spectral inversion programs, with some selected results for gas constituent distributions will be presented.

  2. AKARI Observation of the Sub-degree Scale Fluctuation of the Near-infrared Background

    NASA Astrophysics Data System (ADS)

    Seo, H. J.; Lee, Hyung Mok; Matsumoto, T.; Jeong, W.-S.; Lee, Myung Gyoon; Pyo, J.

    2015-07-01

    We report spatial fluctuation analysis of the sky brightness in the near-infrared from observations toward the north ecliptic pole (NEP) by the AKARI at 2.4 and 3.2 μm. As a follow-up study of our previous work on the Monitor field of AKARI, we used NEP deep survey data, which covered a circular area of about 0.4 square degrees, in order to extend fluctuation analysis at angular scales up to 1000″. We found residual fluctuation over the estimated shot noise at larger angles than the angular scale of the Monitor field. The excess fluctuation of the NEP deep field smoothly connects with that of the Monitor field at angular scales of a few hundred arcseconds and extends without any significant variation to larger angular scales up to 1000″. By comparing excess fluctuations at two wavelengths, we confirm a blue spectral feature similar to the result of the Monitor field. We find that the result of this study is consistent with Spitzer Space Telescope observations at 3.6 μm. The origin of the excess fluctuation in the near-infrared background remains to be determined, but we could exclude zodiacal light, diffuse Galactic light, and unresolved faint galaxies at low redshift based on the comparison with mid- and far-infrared brightness, ground-based near-infrared images.

  3. A Compact Infrared Space Telescope MIRIS and its Preliminary Observational Results

    NASA Astrophysics Data System (ADS)

    Han, Wonyong; Pyo, Jeonghyun; Kim, Il-Joong; Lee, Dae-Hee; Jeong, Woong-Seob; Moon, Bongkon; Park, Youngsik; Park, Sung-Joon; Lee, Dukhang; Park, Won-Kee; Ko, Kyeongyeon; Kim, Min Gyu; Nam, Uk-Won; Park, Hong-Young; Lee, Hyung Mok; Matsumoto, Toshio

    2015-08-01

    The first Korean infrared space telescope MIRIS (Milti-purpose InfraRed Imaging System) was successfully launched in November 2013, as the main payload of Korean STSAT-3 (Science and Technology Satellite-3). After the initial on-orbit operation for verification, the observations are made with MIRIS for the fluctuation of Cosmic Infrared Background (CIB) and the Galactic Plane survey. For the study of near-infrared background, MIRIS surveyed large areas (> 10° x 10°) around the pole regions: the north ecliptic pole (NEP), the north and south Galactic poles (NGP, SGP), while the NEP region is continually monitored for the instrumental calibration and the zodiacal light study. In addition, the Paschen-α Galactic plane survey has been made with two narrow-band filters (at 1.88 μm and 1.84+1.92 μm) for the study of warm interstellar medium. We plan to continue surveying the entire galactic plane with the latitude of ±3°, and expect to be completed by 2015. The data are still under the stage of reduction and analysis, and guest observations are on-going. We present some of the preliminary results.

  4. Validation of Carbon Monoxide and Methane Vertical Column Densities Retrieved from SCIAMACHY Infrared Nadir Observations

    NASA Astrophysics Data System (ADS)

    Hochstaffl, Philipp; Hamidouche, Mourad; Schreier, Franz; Gimeno Garcia, Sebastian; Lichtenberg, Günter

    2016-04-01

    Carbon monoxide and methane are key species of Earth's atmosphere, highly relevant for climate and air quality. Accordingly, a large number of spaceborne sensors are observing these species in the microwave, thermal and near infrared. For the analysis of short wave infrared spectra measured by SCIAMACHY aboard the ENVISAT satellite and similar instrument(s) we had developed the Beer InfraRed Retrieval Algorithm: BIRRA is a separable least squares fit of the measured radiance with respect to molecular column densities and auxiliary parameters (optional: surface albedo, baseline, slit function width, and wavenumber shift). BIRRA has been implemented in the operational SCIAMACHY L1 to 2 processor for the retrieval of CO and CH4 from channel 8 (2.3 mue) and 6 (1.6 mue), respectively. Our tests are based on separate comparisons with existing space or ground-based measurements of carbon monoxide and methane column densities. In this poster intercomparisons of CO and CH4 columns estimated from SCIAMACHY with coincident and co-located retrievals provided by ground-based Fourier transform infrared spectroscopy are provided. More specifically, we have used data from several NDACC (Network for the Detection of Atmospheric Composition Change) and TCCON (Total Carbon Column Observing Network) stations. Our strategy for quality check of these products and the selection of specific geographical areas will be discussed.

  5. InSAR Observations and Finite Element Modeling of Crustal Deformation Around a Surging Glacier, Iceland

    NASA Astrophysics Data System (ADS)

    Spaans, K.; Auriac, A.; Sigmundsson, F.; Hooper, A. J.; Bjornsson, H.; Pálsson, F.; Pinel, V.; Feigl, K. L.

    2014-12-01

    Icelandic ice caps, covering ~11% of the country, are known to be surging glaciers. Such process implies an important local crustal subsidence due to the large ice mass being transported to the ice edge during the surge in a few months only. In 1993-1995, a glacial surge occurred at four neighboring outlet glaciers in the southwestern part of Vatnajökull ice cap, the largest ice cap in Iceland. We estimated that ~16±1 km3 of ice have been moved during this event while the fronts of some of the outlet glaciers advanced by ~1 km.Surface deformation associated with this surge has been surveyed using Interferometric Synthetic Aperture Radar (InSAR) acquisitions from 1992-2002, providing high resolution ground observations of the study area. The data show about 75 mm subsidence at the ice edge of the outlet glaciers following the transport of the large volume of ice during the surge (Fig. 1). The long time span covered by the InSAR images enabled us to remove ~12 mm/yr of uplift occurring in this area due to glacial isostatic adjustment from the retreat of Vatnajökull ice cap since the end of the Little Ice Age in Iceland. We then used finite element modeling to investigate the elastic Earth response to the surge, as well as confirm that no significant viscoelastic deformation occurred as a consequence of the surge. A statistical approach based on Bayes' rule was used to compare the models to the observations and obtain an estimate of the Young's modulus (E) and Poisson's ratio (v) in Iceland. The best-fitting models are those using a one-kilometer thick top layer with v=0.17 and E between 12.9-15.3 GPa underlain by a layer with v=0.25 and E from 67.3 to 81.9 GPa. Results demonstrate that InSAR data and finite element models can be used successfully to reproduce crustal deformation induced by ice mass variations at Icelandic ice caps.Fig. 1: Interferograms spanning 1993 July 31 to 1995 June 19, showing the surge at Tungnaárjökull (Tu.), Skaftárjökull (Sk.) and S

  6. Infrared Telescope Facility's Spectrograph Observations of Human-Made Space Objects

    NASA Technical Reports Server (NTRS)

    Abercromby, K.; Buckalew, B.; Abell, P.; Cowardin, H.

    2015-01-01

    Presented here are the results of the Infrared Telescope Facility (IRTF) spectral observations of human-made space objects taken from 2006 to 2008. The data collected using the SpeX infrared spectrograph cover the wavelength range 0.7-2.5 micrometers. Overall, data were collected on 20 different orbiting objects at or near the geosynchronous (GEO) regime. Four of the objects were controlled spacecraft, seven were non-controlled spacecraft, five were rocket bodies, and the final four were cataloged as debris pieces. The remotely collected data are compared to the laboratory-collected reflectance data on typical spacecraft materials, thereby general materials are identified but not specific types. These results highlight the usefulness of observations in the infrared by focusing on features from hydrocarbons, silicon, and thermal emission. The spacecraft, both the controlled and non-controlled, show distinct features due to the presence of solar panels, whereas the rocket bodies do not. Signature variations between rocket bodies, due to the presence of various metals and paints on their surfaces, show a clear distinction from those objects with solar panels, demonstrating that one can distinguish most spacecraft from rocket bodies through infrared spectrum analysis. Finally, the debris pieces tend to show featureless, dark spectra. These results show that the laboratory data in its current state give excellent indications as to the nature of the surface materials on the objects. Further telescopic data collection and model updates to include noise, surface roughness, and material degradation are necessary to make better assessments of orbital object material types. However, based on the current state of the comparison between the observations and the laboratory data, infrared spectroscopic data are adequate to classify objects in GEO as spacecraft, rocket bodies, or debris.

  7. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  8. Observations of CO isotopic emission and the far-infrared continuum of Centaurus A

    NASA Technical Reports Server (NTRS)

    Eckart, A.; Cameron, M.; Rothermel, H.; Wild, W.; Zinnecker, H.; Olberg, M.; Rydbeck, G.; Wiklind, T.

    1990-01-01

    Researchers present maps of the CO-12(1=0) line and the 100 micron and 50 micron far-infrared emission of Centaurus A, as well as measurements of the CO-12(2-1), CO-13(1-0), and the C-18O(1-0) lines at selected positions. The observations were taken with the Swedish-ESO Submillimeter Telescope (SEST) and the CPC instrument on board the Infrared Astronomy Satellite (IRAS). The millimeter data show that the bulk molecular material is closely associated with the dust lane and contained in a disk of about 180 seconds diameter and a total molecular mass of about 2 x 10 to the 8th power solar mass. The total molecular mass of the disk and bulge is of the order of 3 x 10 to the 8th power solar mass. The molecular gas in the nucleus is warm with a kinetic temperature of the order of 15 K and a number density of 10 to the 3rd power to 3 x 10 to the 4th power cm(-3). Absorption features in the CO-12 and CO-13 lines against the nuclear continuum emission indicate that the properties of giant molecular clouds are comparable to those of the Galaxy. The far-infrared data show that to a good approximation the dust temperature is constant across the dust lane at a value of about 42 K. The ratio between the far-infrared luminosity and the total molecular mass is 18 solar luminosity/solar mass and close to the mean value obtained for isolated galaxies. A comparison of the CO-12(1-0) and the far-infrared data indicates that a considerable amount of the far-infrared emission is not intimately associated with massive star formation.

  9. 9500 Nights of Mid-Infrared Observations of SN 1987A: the birth of the remnant

    NASA Astrophysics Data System (ADS)

    Bouchet, Patrice; Danziger, John

    2014-01-01

    The one-in-a-life-time event Supernova SN 1987A, the brightest supernova seen since Kepler's in 1604, has given us a unique opportunity to study the mechanics of a supernova explosion and now to witness the birth of a supernova remnant. A violent encounter is underway between the fastest-moving debris and the circumstellar ring: shocks excite ``hotspots''. ATCA/ANTF, Gemini, VLT, HST, Spitzer, Chandra, and recently ALMA observations have been so far organized to help understanding the several emission mechanisms at work. In the mid-infrared SN 1987A has transformed from a SN with the bulk of its radiation from the ejecta to a SNR whose emission is dominated by the interaction of the blast wave with the surrounding interstellar medium, a process in which kinetic energy is converted into radiative energy. Currently this remnant emission is dominated by material in or near the inner equatorial ring (ER). We give here a brief history of our mid-infrared observations, and present our last data obtained with the SPITZER infrared satellite and the ESO VLT and Gemini telescopes: we show how together with Chandra observations, they contribute to the understanding of this fascinating object. We argue also that our imaging observations suggest that warm dust is still present in the ejecta, and we dispute the presence of huge amount of very cold dust in it, as it has been claimed on the basis of data obtained with the HERSCHELl satellite.

  10. THE EXTRAORDINARY FAR-INFRARED VARIATION OF A PROTOSTAR: HERSCHEL/PACS OBSERVATIONS OF LRLL54361

    SciTech Connect

    Balog, Zoltan; Detre, Örs H.; Bouwmann, Jeroen; Nielbock, Markus; Klaas, Ulrich; Krause, Oliver; Henning, Thomas; Muzerolle, James; Flaherty, Kevin; Furlan, Elise; Gutermuth, Rob; Juhasz, Attila; Bally, John; Marton, Gabor

    2014-07-10

    We report Herschel/Photodetector Array Camera and Spectrometer (PACS) photometric observations at 70 μm and 160 μm of LRLL54361—a suspected binary protostar that exhibits periodic (P = 25.34 days) flux variations at shorter wavelengths (3.6 μm and 4.5 μm) thought to be due to pulsed accretion caused by binary motion. The PACS observations show unprecedented flux variation at these far-infrared wavelengths that are well correlated with the variations at shorter wavelengths. At 70 μm the object increases its flux by a factor of six while at 160 μm the change is about a factor of two, consistent with the wavelength dependence seen in the far-infrared spectra. The source is marginally resolved at 70 μm with varying FWHM. Deconvolved images of the sources show elongations exactly matching the outflow cavities traced by the scattered light observations. The spatial variations are anti-correlated with the flux variation, indicating that a light echo is responsible for the changes in FWHM. The observed far-infrared flux variability indicates that the disk and envelope of this source is periodically heated by the accretion pulses of the central source, and suggests that such long wavelength variability in general may provide a reasonable proxy for accretion variations in protostars.

  11. Experimental observations and finite element analysis of the initiation of fiber microbuckling in notched composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1989-01-01

    An understanding was developed of the factors that determine the semi-circular edge-notched compressive strength and the associated failure mode(s) were identified of thermoplastic composite laminates with multidirectional stacking sequences. The experimental observations and the detailed literature review suggest at least four factors that affected the determination of the strain levels at which fiber microbuckling initiates and thus, partially control the composite's compression strength. The dependent variables studied are the compressive strength of a reduced gage section compression specimen and the compression strength of a compression specimen with two semi-circular edge notches (no opposite free edges) centered along the gage section. In this research, specimens containing two semi-circular edge notches (no opposite free edges) were loaded in compression at a relatively slow rate to provide more stable development of fiber microbuckling damage. The results indicate that the local constraints (free surfaces, supporting ply orientation, and resin-rich regions) significantly affect the strain level for the initiation of in-plane fiber microbuckling. Preliminary results at an elevated temperature, 77 C, showed the shear stress yield strength of the resin was reduced and consequently, the resistance to fiber microbuckling was also reduced. The finite element analysis of the perfectly straight fiber problem indicates that the free surface effect causes a 10 percent reduction in the critical buckling strain. However, the experimentally measured reduction for fibers with an initial fiber curvature, was 35 percent.

  12. Near infrared observations of galaxies in the Coma supercluster and in the Cancer cluster. II

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Trinchieri, G.; Boselli, A.

    1990-11-01

    New near infrared observations of 110 galaxies in the Coma/A1367 supercluster region, and 40 galaxies in the Cancer cluster are presented. These observations are part of an ongoing investigation of the properties of normal galaxies and of their near-IR emission, which aims at obtaining homogeneous, multifrequency data for a large sample of galaxies in different density environments. The addition of these observations to the sample presented in Gavazzi and Trinchieri (1989) raises the number of Coma/A1367 galaxies with near-IR data to 275. The measurements, together with data published by Bothun et al. (1985), give a sample of 45 spirals in the Cancer cluster.

  13. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  14. CENTAURS AND SCATTERED DISK OBJECTS IN THE THERMAL INFRARED: ANALYSIS OF WISE/NEOWISE OBSERVATIONS

    SciTech Connect

    Bauer, James M.; Grav, Tommy; Blauvelt, Erin; Collaboration: WISE Team; PTF Team; and others

    2013-08-10

    The Wide-field Infrared Survey Explorer (WISE) observed 52 Centaurs and scattered disk objects (SDOs) in the thermal infrared, including 15 new discoveries. We present analyses of these observations to estimate sizes and mean optical albedos. We find mean albedos of 0.08 {+-} 0.04 for the entire data set. Thermal fits yield average beaming parameters of 0.9 {+-} 0.2 that are similar for both SDO and Centaur sub-classes. Biased cumulative size distributions yield size-frequency distribution power law indices of {approx}-1.7 {+-} 0.3. The data also reveal a relation between albedo and color at the 3{sigma} level. No significant relation between diameter and albedos is found.

  15. The Convection of Close Red Supergiant Stars Observed With Near-Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Montargès, M.; Kervella, P.; Perrin, G.; Chiavassa, A.; Aurière, M.

    2015-12-01

    Our team has obtained observations of the photosphere of the two closest red supergiant stars Betelgeuse (α Ori) and Antares (α Sco) using near infrared interferometry. We have been monitoring the photosphere of Betelgeuse with the VLTI/PIONIER instrument for three years. On Antares, we obtained an unprecedented sampling of the visibility function. These data allow us to probe the convective photosphere of massive evolved stars.

  16. The Near-Earth Encounter of 2005 YU55: Thermal Infrared Observations from Gemini North

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.; Granvik, Mikael

    2012-01-01

    As part of a multi-observatory campaign to observe 2005 YU55 during its November 2011 encounter with the Earth, thermal infrared photometry and spectroscopy (7.9- 14 and 18-22 micron) were conducted using the Michelle instrument at Gemini North. Reduction of the 8.8 flm photometry and the spectroscopy from UT Nov-IO as well as of all the Gemini data from UT Nov-9 is in progress. Results will be discussed.

  17. Statistical Retrieval of Thin Liquid Cloud Microphysical Properties Using Ground-Based Infrared and Microwave Observations

    NASA Astrophysics Data System (ADS)

    Marke, Tobias; Löhnert, Ulrich; Ebell, Kerstin; Turner, David D.

    2016-04-01

    In this study, liquid water cloud microphysical properties are retrieved by exploiting passive remote sensing techniques in the microwave and infrared spectral regime. Liquid water clouds are highly frequent in various climate regimes and play a significant role in terms of interaction with radiation. Small perturbations in the amount of liquid water contained in the cloud can cause large variations in the radiative fluxes. This effect enhances for thin clouds with a low liquid water path (LWP), which requires accurate retrieval information on the cloud properties. Retrieving low LWP values using the microwave spectral regime reveals large relative errors, whereas the potential for infrared methods is high. Therefore robust and computationally low demanding synergistic retrievals based on a multivariate regression and a neural network are derived to estimate LWP and cloud effective radius. While the regression-type synergy retrievals are strongly influenced by the nonlinearities of saturating signals in the infrared regime for higher LWP, the neural network retrieval is able to retrieve LWP and cloud effective radius with a higher accuracy than the single instrument retrievals. This is achieved by examining synthetic observations in the low LWP range. Furthermore, the performance of the retrievals is assessed in a radiative closure study for the downwelling shortwave flux, using measurements of a microwave radiometer, a broadband infrared radiometer and a spectrally highly resolved Atmospheric Emitted Radiance Interferometer (AERI).

  18. X-Ray and Infrared Observations of Embedded Young Stars in NGC 2264

    NASA Technical Reports Server (NTRS)

    Simon, Theordore; Dahm, S. E.

    2005-01-01

    Images of the NGC 2264 star-forming region, which we have acquired with the XMM-Newton spacecraft, reveal strong X-ray emission from three deeply embedded (Av > 10 mag) young stellar objects in the vicinity of Allen's infrared source (AFGL 989 = IRS 1) and Castelaz & Grasdalen s infrared source (RNO-EW = IRS 2). Thermal plasma models for the brightest source in X-rays, located 11 southwest of Allen's star, yield a quasi-steady luminosity of Lx = 10 ergs s-1 and an extraordinarily high X-ray temperature of 100 MK. The high temperature is consistent with the presence of emission lines of Fe xxv and Fe xxvi at photon energies of 6.7 and 6.9 keV, respectively. An even higher temperature of nearly 140 MK was observed during the rise phase of a powerful impulsive X-ray flare of another young star in the IRS 2 region. Moderate-resolution near-infrared (1-4 um) spectra of the embedded objects, obtained at the NASA Infrared Telescope Facility, exhibit deep water ice absorption bands, as well as a variety of emission and absorption features of H I, CO, and both neutral and ionized metals.

  19. Far-infrared observations of optical emission-line stars - Evidence for extensive cool dust clouds

    NASA Technical Reports Server (NTRS)

    Harvey, P. M.; Thronson, H. A., Jr.; Gatley, I.

    1979-01-01

    Far-infrared observations (40-160 microns) of eight optical emission-line stars are presented. Six of these stars, LkH-alpha 198, T Tau, LkH-alpha 101, V380 Ori, R Mon, and MWC 1080, show substantially more far-infrared emission than would be expected on the basis of a blackbody extrapolation of their 10-20-micron fluxes. Additionally, in three cases, the far-infrared emission is shown to be spatially extended (greater than 40 arcsec). A simple model of the thermal emission from cool circumstellar dust (30-70 K) shows that these stars are surrounded by material left over from the star formation process; this result confirms the extreme youth of these stars. MWC 349 was detected at a level consistent with the expected free-free flux from its surrounding H II region, and RY Tau was not detected in the far-infrared; there is little circumstellar dust with temperatures of 20-100 K in these objects.

  20. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    NASA Astrophysics Data System (ADS)

    Amato, U.; Lavanant, L.; Liuzzi, G.; Masiello, G.; Serio, C.; Stuhlmann, R.; Tjemkes, S. A.

    2014-06-01

    We introduce a classification method (Cumulative Discriminant Analysis) of the Discriminant Analysis type to discriminate between cloudy and clear sky satellite observations in the thermal infrared. The tool is intended for the high spectral resolution infrared sounder (IRS) planned for the geostationary METEOSAT (Meteorological Satellite) Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer) data as a proxy. The Cumulative Discriminant Analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A Principal Component Analysis prior step is also introduced which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) imagers. The agreement with these independent cloud masks is generally well above 80%, except at high latitudes in their winter seasons.

  1. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    NASA Astrophysics Data System (ADS)

    Amato, U.; Lavanant, L.; Liuzzi, G.; Masiello, G.; Serio, C.; Stuhlmann, R.; Tjemkes, S. A.

    2014-10-01

    We introduce a classification method (cumulative discriminant analysis) of the discriminant analysis type to discriminate between cloudy and clear-sky satellite observations in the thermal infrared. The tool is intended for the high-spectral-resolution infrared sounder (IRS) planned for the geostationary METEOSAT (Meteorological Satellite) Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer) data as a proxy. The cumulative discriminant analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A principal component analysis prior step is also introduced, which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) imagers. The agreement with these independent cloud masks is generally well above 80 %, except at high latitudes in the winter seasons.

  2. Atmosphere and climate studies of Mars using the Mars Observer pressure modulator infrared radiometer

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Haskins, R. D.; Schofield, J. T.; Zurek, R. W.; Leovy, C. B.; Paige, D. A.; Taylor, F. W.

    1992-01-01

    Studies of the climate and atmosphere of Mars are limited at present by a lack of meteorological data having systematic global coverage with good horizontal and vertical resolution. The Mars Observer spacecraft in a low, nearly circular, polar orbit will provide an excellent platform for acquiring the data needed to advance significantly our understanding of the Martian atmosphere and its remarkable variability. The Mars Observer pressure modulator infrared radiometer (PMIRR) is a nine-channel limb and nadir scanning atmospheric sounder which will observe the atmosphere of Mars globally from 0 to 80 km for a full Martian year. PMIRR employs narrow-band radiometric channels and two pressure modulation cells to measure atmospheric and surface emission in the thermal infrared. PMIRR infrared and visible measurements will be combined to determine the radiative balance of the polar regions, where a sizeable fraction of the global atmospheric mass annually condenses onto and sublimes from the surface. Derived meteorological fields, including diabatic heating and cooling and the vertical variation of horizontal winds, are computed from the globally mapped fields retrieved from PMIRR data.

  3. Impact of Spectroscopic Line Parameters on Carbon Monoxide Column Density Retrievals from Shortwave Infrared Nadir Observations

    NASA Astrophysics Data System (ADS)

    Schmidt, Denise; Gimeno Garcia, Sebastian; Schreier, Franz; Lichtenberg, Gunter

    2015-06-01

    Among the various input data required for the retrieval of atmospheric state parameters from infrared remote sensing observations molecular spectroscopy line data have a central role, because their quality is critical for the quality of the final product. Here we discuss the impact of the line parameters on vertical column densities (VCD) estimated from short wave infrared nadir observations. Using BIRRA (the Beer InfraRed Retrieval Algorithm) comprising a line-by-line radiative transfer code (forward model) and a separable nonlinear least squares solver for inversion we retrieve carbon monoxide from observations of SCIAMACHY aboard Envisat. Retrievals using recent versions of HITRAN und GEISA have been performed and the results are compared in terms of residual norms, molecular density scaling factors, their corresponding errors, and the final VCD product. The retrievals turn out to be quite similar for all three databases, so a definite recommendation in favor of one of these databases is difficult for the considered spectral range around 2:3 μm . Nevertheless, HITRAN 2012 appears to be advantageous when evaluating the different quality criteria.

  4. Near-Infrared and CO (J=1-0) Observations of Photodissociation Regions in M17

    NASA Astrophysics Data System (ADS)

    Ando, Minoru; Nagata, Tetsuya; Sato, Shuji; Mizuno, Norikazu; Mizuno, Akira; Kawai, Toshihide; Nakaya, Hidehiko; Glass, Ian S.

    2002-07-01

    We have carried out near-infrared mapping observations of photodissociation regions in M17 with the Wide Field Cryogenic Telescope and CO (J=1-0) observations in three isotope lines with the ``NANTEN'' telescope. The observations covered an area of 20'×20' with a spatial resolution of 5.6" for near-infrared wavelengths and with a half-power beamwidth of 2.7‧ for millimeter wavelengths. We detected 38 sources brighter than 7 mag at 3.67 μm (Ln band), five of which show signs of young stellar objects. We have detected two emission bars (the N bar and the S bar) in all four near-infrared bands (J, K, Ln, and 3.3 μm). Their spatial distributions differ considerably from band to band, and we have compared them with the radio continuum, the mid-infrared data, and the CO molecular line emission. The different brightness and spectral energy distributions at near-infrared wavelengths can be well explained by emission from hot dust and ionized gas together with obscuration by local cold dust with a steep gradient from north to south. In the N bar, the free-free emission from ionized gas dominates at shorter wavelengths (J and K) and there is little extinction, whereas in the S bar, the free-free emission is attenuated at shorter wavelengths by the heavy local extinction. In both the N and S bars, the thermal emission from hot dust at around 1000 K dominates in the Ln band. The 3.3 μm unidentified infrared (UIR) emission delineates photodissociation regions between the H II regions and the surrounding molecular clouds. The UIR intensity decreases exponentially from the UIR peak toward the molecular clouds, with scale lengths of 88" and 100", or 0.9 and 1.0 pc, at the N and the S bars, respectively. Far-ultraviolet photons, which excite UIR emission, penetrate into the molecular clouds for ~1 pc, in the nearly edge-on geometry. The 12CO contours are elongated in the direction northwest-southeast, while the C18O contours are round. Far-ultraviolet photons erode the

  5. Mid-Infrared Observations of Class I/Flat-Spectrum Systems in Six Nearby Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Haisch, K.; Barsony, M.; Greene, T.; Ressler, M.

    2005-12-01

    We present the results of new mid-infrared observations of 64 Class I/flat-spectrum objects in the Perseus, Taurus, Chamaeleon I and II, Rho Ophiuchi, and Serpens dark clouds. These objects represent a subset of the young stellar objects (YSOs) from our previous near-infrared multiplicity surveys. We detected 45/48 (94%) of the single sources, 16/16 (100%) of the primary components, and 12/16 (75%) of the secondary/triple components of the binary/multiple objects surveyed. While the composite spectral energy distributions for all of our sample YSOs are either Class I or flat-spectrum, the individual source components typically display Class II, or in one case Class III, spectral indices, and frequently display mixed pairings; Class I objects paired with a flat-spectrum source, or a flat-spectrum source paired with a Class II YSO. Such behavior is not consistent with what one typically finds for T Tauri stars (TTS), where the companion of a classical TTS also tends to be a classical TTS, although other mixed pairings have been previously observed among Class II YSOs. In general, the individual binary/multiple components suffer very similar extinctions, Av, suggesting that most of the line-of-sight material is either in the foreground of the molecular cloud or circumbinary. ISO-Cha I 97 was previously detected as a single star in our near-infrared imaging survey of binary/multiple Class I and flat-spectrum YSOs, however our mid-infrared observations have revealed that this source is in fact binary. With a spectral index of α > 3.9, ISO-Cha I 97 is a member of a rare class of very steep spectral index YSOs, those with α > 3.

  6. Physical properties (particle size, rock abundance) from thermal infrared remote observations: Implications for Mars landing sites

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Edgett, Kenneth S.

    1994-01-01

    Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.

  7. Inference of Surface Chemical and Physical Properties Using Mid-Infrared (MIR) Spectral Observations

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    2016-01-01

    Reflected or emitted energy from solid surfaces in the solar system can provide insight into thermo-physical and chemical properties of the surface materials. Measurements have been obtained from instruments located on Earth-based telescopes and carried on several space missions. The characteristic spectral features commonly observed in Mid-Infrared (MIR) spectra of minerals will be reviewed, along with methods used for compositional interpretations of MIR emission spectra. The influence of surface grain size, and space weathering processes on MIR emissivity spectra will also be discussed. Methods used for estimating surface temperature, emissivity, and thermal inertias from MIR spectral observations will be reviewed.

  8. Adding Emission Line Diagnostics To The Infrared Database of Extragalactic Observables from Spitzer (IDEOS)

    NASA Astrophysics Data System (ADS)

    Spoon, Henrik

    During the cryogenic phase of the successful Spitzer mission the Infrared Spectrograph (IRS) made observations of about 15,000 objects. Among these are low-resolution (highresolution) spectra of more than 4200 (1800) galaxies beyond the Local Group. Results have been published in a great number of papers, led not only by hardcore infrared observers but increasingly also by non-native infrared astronomers. As the PI team of the IRS instrument, we are especially proud of the achievements of the IRS spectrograph, and we feel a special obligation to enhance the legacy value of its many observations. In 2011 we completed the Cornell Atlas of Spitzer-IRS Sources (CASSIS), containing homogeneously, expert-reduced low-resolution IRS spectra for over 13,000 observations. Earlier this year we added more than 7,000 spectra obtained with the high-resolution modules. All of these spectra benefit from the availability of our empirically derived super-sampled point-spread functions, which reduce the effects of bad and low-level rogue pixels in all IRS modules. All spectra are available for download from our CASSIS web portal. Building on this legacy, in 2013 we also started working on the soon to be completed Infrared Database of Extragalactic Observables from Spitzer (IDEOS), which contains mid-IR observables extracted from the low-resolution spectra in CASSIS. IDEOS provides astronomers with widely varying scientific interests access to diagnostics that were previously available only for limited samples, or available on the-fly only to expert users. Here we propose to continue these efforts by measuring the emission line fluxes for 3,000-4,500 galaxies in the CASSIS atlas to add powerful emission line diagnostics to our existing suite of mid-IR observables in IDEOS. IDEOS will be a great asset for future users of NASA's James Webb Space Telescope to select their samples and estimate required integration times. The completion of IDEOS will further coincide with the completion of

  9. Far-infrared observations of the evolved H II region M16

    NASA Technical Reports Server (NTRS)

    Mcbreen, B.; Fazio, G. G.; Jaffe, D. T.

    1982-01-01

    The results of far infrared (FIR) observations of the larger H II region M16, associated with the young open star cluster NGC 6611, are discussed. Three FIR sources detected on an extended ridge of FIR emission within the scanned region are described. The observations confirm that M16 is an H II region in a late stage of evolution. The H II region has expanded and is now extremely density bounded, consisting of an extended region of ionized gas and a series of ionization fronts located at the surrounding molecular cloud boundaries nearest to the exciting OB star cluster. The FIR radiation arises from heated dust at these boundaries.

  10. The infrared database of extragalactic observables from Spitzer - I. The redshift catalogue

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio; Spoon, Henrik W. W.; Lebouteiller, Vianney; Rupke, David S. N.; Barry, Donald P.

    2016-01-01

    This is the first of a series of papers on the Infrared Database of Extragalactic Observables from Spitzer (IDEOS). In this work, we describe the identification of optical counterparts of the infrared sources detected in Spitzer Infrared Spectrograph (IRS) observations, and the acquisition and validation of redshifts. The IDEOS sample includes all the spectra from the Cornell Atlas of Spitzer/IRS Sources (CASSIS) of galaxies beyond the Local Group. Optical counterparts were identified from correlation of the extraction coordinates with the NASA Extragalactic Database (NED). To confirm the optical association and validate NED redshifts, we measure redshifts with unprecedented accuracy on the IRS spectra (σ(Δz/(1+z)) ˜ 0.0011) by using an improved version of the maximum combined pseudo-likelihood method (MCPL). We perform a multistage verification of redshifts that considers alternate NED redshifts, the MCPL redshift, and visual inspection of the IRS spectrum. The statistics is as follows: the IDEOS sample contains 3361 galaxies at redshift 0 < z < 6.42 (mean: 0.48, median: 0.14). We confirm the default NED redshift for 2429 sources and identify 124 with incorrect NED redshifts. We obtain IRS-based redshifts for 568 IDEOS sources without optical spectroscopic redshifts, including 228 with no previous redshift measurements. We provide the entire IDEOS redshift catalogue in machine-readable formats. The catalogue condenses our compilation and verification effort, and includes our final evaluation on the most likely redshift for each source, its origin, and reliability estimates.

  11. Measurements of C02 Distribution in Saturn's Atmosphere by Cassini-Infrared Observations

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Woodard, E.; Young, M.; Stanbro, M.; Flasar, M.

    2013-01-01

    The Fourier transform infrared spectrometer aboard the Cassini spacecraft, inserted in Saturn s orbit in July 2004, has been providing high resolution/high sensitivity infrared (IR) spectra of the Saturnian system. The measurements cover the spectral range of 10-1400/cm with variable spectral resolutions of 0.53 to 15/cm, exhibiting spectral features of a series of trace gases including CO2 and H2O. The observed spectra may be analyzed for retrieval of global P/T and gas density profiles of Saturn. The infrared measurements of Saturn by ISO(SWS) have indicated unexpected large abundances of CO2 in Saturn's atmosphere. The rigorous photochemical models of Saturn's atmosphere that have been developed indicate exogenic oxygen influx of icy dust grains that lead to the production of CO2. The distribution of CO2 in Saturn's atmosphere needs to be confirmed, and the nature of exogenic sources remains to be investigated. This paper presents comprehensive measurements of the CO2 distribution in Saturn's atmosphere by Cassini IR observations.

  12. Titan Aerosol Analogs from Aromatic Precursors: Comparisons to Cassini CIRS Observations in the Thermal Infrared

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Sebree, Joshua A.; Anderson, Carrie M.; Loeffler, Mark J.

    2012-01-01

    Since Cassini's arrival at Titan, ppm levels of benzene (C6H6) as well as large positive ions, which may be polycyclic aromatic hydrocarbons (PAHs). have been detected in the atmosphere. Aromatic molecules. photolytically active in the ultraviolet, may be important in the formation of the organic aerosol comprising the Titan haze layer even when present at low mixing ratios. Yet there have not been laboratory simulations exploring the impact of these molecules as precursors to Titan's organic aerosol. Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) in the far-infrared (far-IR) between 560 and 20/cm (approx. 18 to 500 microns) and in the mid-infrared (mid-IR) between 1500 and 600/cm (approx. 7 to 17 microns) have been used to infer the vertical variations of Titan's aerosol from the surface to an altitude of 300 km in the far-IR and between 150 and 350 km in the mid-IR. Titan's aerosol has several observed emission features which cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs, including a broad far-IR feature centered approximately at 140/cm (71 microns).

  13. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  14. Radio continuum and far-infrared observations of low surface brightness galaxies

    NASA Technical Reports Server (NTRS)

    Hoeppe, G.; Brinks, E.; Klein, U.; Giovanardi, C.; Altschuler, D. R.; Price, R. M.; Deeg, H. -J.

    1994-01-01

    We present Very Large Array (VLA) radio continuum and Infrared Astronomy Satellite (IRAS) far-infrared (FIR) observations of 16 low luminosity galaxies of mostly low surface brightness. All galaxies had previously claimed single dish radio continuum detections. However, at the frequencies of our observations (1.49 and 8.48 GHz), we find significant radio emission for two objects only. We show that the other previously claimed detections are due to confusion with physically unrelated background sources. This implies a low radio continuum detection rate for these galaxies. Re-reduced IRAS scans yield significant far-infrared flux densities in at least one IRAS band for 6 of the 16 galaxies. These, together with the FIR and radio continuum upper limits, are consistent with the well established radio/FIR relation, where most of our galaxies populate the low-luminosity end. From the radio continuum and FIR flux densities and their upper limits we estimate the current star formation rates and demonstrate that the galaxies are currently passive in forming stars, in agreement with previous optical investigations. There is an indication that the galaxies were forming stars more intensively averaged over their lifetime than they are presently.

  15. First observation for a cuprate superconductor of fluctuation-induced diamagnetism well inside the finite-magnetic-field regime

    PubMed

    Carballeira; Mosqueira; Revcolevschi; Vidal

    2000-04-01

    For the first time for a cuprate superconductor, measurements performed above T(c) in high quality grain aligned La1.9Sr0.1CuO4 samples have allowed the observation of the thermal fluctuation induced diamagnetism well inside the finite-magnetic-field fluctuation regime. These results may be explained in terms of the Gaussian Ginzburg-Landau approach for layered superconductors, but only if the finite field contributions are estimated by taking off the short-wavelength fluctuations. PMID:11019036

  16. Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals

    PubMed Central

    Johns, Robert W.; Bechtel, Hans A.; Runnerstrom, Evan L.; Agrawal, Ankit; Lounis, Sebastien D.; Milliron, Delia J.

    2016-01-01

    Infrared-responsive doped metal oxide nanocrystals are an emerging class of plasmonic materials whose localized surface plasmon resonances (LSPR) can be resonant with molecular vibrations. This presents a distinctive opportunity to manipulate light–matter interactions to redirect chemical or spectroscopic outcomes through the strong local electric fields they generate. Here we report a technique for measuring single nanocrystal absorption spectra of doped metal oxide nanocrystals, revealing significant spectral inhomogeneity in their mid-infrared LSPRs. Our analysis suggests dopant incorporation is heterogeneous beyond expectation based on a statistical distribution of dopants. The broad ensemble linewidths typically observed in these materials result primarily from sample heterogeneity and not from strong electronic damping associated with lossy plasmonic materials. In fact, single nanocrystal spectra reveal linewidths as narrow as 600 cm−1 in aluminium-doped zinc oxide, a value less than half the ensemble linewidth and markedly less than homogeneous linewidths of gold nanospheres. PMID:27174681

  17. Observations of Resolved Stellar Populations with the JWST Near Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Beck, Tracy L.; Karakla, Diane M.

    2015-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) will provide a multi-object spectroscopy mode through the four Micro-Shutter Arrays (MSAs). Each MSA is a grid of contiguous shutters that can be configured to form slits on more than 100 astronomical targets simultaneously. The combination of JWST's sensitivity and superb resolution in the infrared and NIRSpec's full wavelength coverage over 1 to 5 micrometers will open new parameter space for studies of galaxies and resolved stellar populations alike. We present a NIRSpec MSA observing scenario for obtaining spectroscopy of individual stars in external galaxies. We examine the multiplexing capability of the MSA as a function of the possible MSA configuration design choices, and investigate the primary sources of error in velocity measurements and the prospects for minimizing them. We discuss how this and other use cases are being used to guide development of the NIRSpec user interfaces, including proposal planning and pipeline calibrations.

  18. Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals.

    PubMed

    Johns, Robert W; Bechtel, Hans A; Runnerstrom, Evan L; Agrawal, Ankit; Lounis, Sebastien D; Milliron, Delia J

    2016-01-01

    Infrared-responsive doped metal oxide nanocrystals are an emerging class of plasmonic materials whose localized surface plasmon resonances (LSPR) can be resonant with molecular vibrations. This presents a distinctive opportunity to manipulate light-matter interactions to redirect chemical or spectroscopic outcomes through the strong local electric fields they generate. Here we report a technique for measuring single nanocrystal absorption spectra of doped metal oxide nanocrystals, revealing significant spectral inhomogeneity in their mid-infrared LSPRs. Our analysis suggests dopant incorporation is heterogeneous beyond expectation based on a statistical distribution of dopants. The broad ensemble linewidths typically observed in these materials result primarily from sample heterogeneity and not from strong electronic damping associated with lossy plasmonic materials. In fact, single nanocrystal spectra reveal linewidths as narrow as 600 cm(-1) in aluminium-doped zinc oxide, a value less than half the ensemble linewidth and markedly less than homogeneous linewidths of gold nanospheres. PMID:27174681

  19. Analysis of far-infrared spectral radiance observations of the water vapor continuum in the Arctic

    NASA Astrophysics Data System (ADS)

    Fox, Cathryn; Green, Paul D.; Pickering, Juliet C.; Humpage, Neil

    2015-04-01

    The Radiative Heating in Underexplored Bands Campaign (RHUBC) took place in Barrow, Alaska, in February and March 2007. During RHUBC, high resolution far-infrared spectra were measured simultaneously and independently by two different spectrometers - the Imperial College Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) and the Atmospheric Radiation Measurement program (ARM) Atmospheric Emitted Radiance Interferometer - Extended Range (AERI-ER). Co-incidental far-infrared downwelling radiance measurements from the two instruments show good agreement within their overlapping wavenumber measurement range (400-550 cm-1). Radiance measurements taken using the TAFTS instrument are compared to the current Mlawer-Tobin-Clough-Kneizys-Davies (MT-CKD) version 2.5 water vapor continuum parameterization for the spectral range 350-500 cm-1 (20-29 μm). Simulated values agree with the TAFTS observations within uncertainties, enhancing confidence that MT-CKD 2.5 accurately represents the foreign-broadened water vapor continuum in this crucial spectral region.

  20. Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Johns, Robert W.; Bechtel, Hans A.; Runnerstrom, Evan L.; Agrawal, Ankit; Lounis, Sebastien D.; Milliron, Delia J.

    2016-05-01

    Infrared-responsive doped metal oxide nanocrystals are an emerging class of plasmonic materials whose localized surface plasmon resonances (LSPR) can be resonant with molecular vibrations. This presents a distinctive opportunity to manipulate light-matter interactions to redirect chemical or spectroscopic outcomes through the strong local electric fields they generate. Here we report a technique for measuring single nanocrystal absorption spectra of doped metal oxide nanocrystals, revealing significant spectral inhomogeneity in their mid-infrared LSPRs. Our analysis suggests dopant incorporation is heterogeneous beyond expectation based on a statistical distribution of dopants. The broad ensemble linewidths typically observed in these materials result primarily from sample heterogeneity and not from strong electronic damping associated with lossy plasmonic materials. In fact, single nanocrystal spectra reveal linewidths as narrow as 600 cm-1 in aluminium-doped zinc oxide, a value less than half the ensemble linewidth and markedly less than homogeneous linewidths of gold nanospheres.

  1. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to

  2. Mid-infrared observations of sungrazing comet C/2012 S1 (ISON) with the Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Ootsubo, T.; Usui, F.; Takita, S.; Watanabe, J.; Yanamandra-Fisher, P.; Honda, M.; Kawakita, H.; Furusho, R.

    2014-07-01

    Comets are the frozen reservoirs of the early solar nebula and are made of ice and dust. The determination of the properties for cometary dust provides us insight into both the early-solar-nebula environment and the formation process of the planetary system. A silicate feature is often observed in comet spectra in the mid-infrared region and may be used for probing the early history of the solar system. In most cases, the feature shows the existence of crystalline silicate (for example, 11.3 microns) together with amorphous silicate [1,2]. Since the crystallization of silicates from amorphous ones generally requires high-temperature annealing above 800 K (e.g., [3,4]), it is believed that the crystalline silicate grains produced at the inner part of the disk were transported to the outer cold regions where the comet nuclei formed. Comet C/2012 S1 (ISON) is a long-period Oort Cloud comet, discovered in September 2012. In particular, comet ISON is a sungrazing comet, which was predicted to pass close by the Sun and the Earth and becoming a bright object. Mid-infrared observations of this new comet and investigation of the 10-micron silicate feature help us understand the formation of crystalline silicate grains in the early solar nebula. We conducted observations of comet ISON in the mid-infrared wavelength region with the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the Subaru Telescope on Mauna Kea, Hawaii [5,6,7]. The observation of comet ISON was carried out on 2013 October 19 and 21 UT. Since the weather conditions were not so good when we observed, we carried out N-band imaging observations (8.8 and 12.4 microns) and N-band low-resolution spectroscopy. The spectrum of comet ISON can be fit with the 260--265-K blackbody spectrum when we use the regions of 7.8--8.2 and 12.4--13.0 microns as the continuum. The spectrum has only a weak silicate excess feature, which may be able to attribute to small amorphous olivine grains. We could not detect a clear

  3. Melt Distribution in the Ethiopian Rift System: Constraints From Seismic Observations and Finite-Frequency Modelling

    NASA Astrophysics Data System (ADS)

    Angus, D.; Hammond, J. O.; Kendall, J.; Wookey, J.

    2008-12-01

    As part of the Ethiopian Afar Geoscientific Lithospheric Experiment (EAGLE) 79 seismic stations were deployed, for up to 18 months, in the Main Ethiopian Rift (MER). Many indicators of melt were observed leading to the idea that magma was driving the rifting process in this region. Some of the best evidence for melt came from observations of anisotropy in studies of surface waves and shear-wave splitting. The shear- wave splitting shows fast directions which change abruptly from being rift parallel on the rift flanks to magmatic-segment parallel in the rift valley. This was interpreted in terms of melt-induced anisotropy. The abrupt change in splitting parameters over small lateral distances suggests that the source of anisotropy is shallow. To further constrain the location of the anisotropy and study the ability of shear-wave splitting to identify sharp lateral changes in anisotropy, we model finite-frequency waveforms for a suite of model representations of the rift zone. This allows us to determine the lateral and vertical extent of the melt-induced anisotropy. The results show how a simple model with two regimes of anisotropy can explain the variability across the rift, in both delay time and shear-wave polarization, over short length scales of the order 20- 40 km. Our models have enabled us to constrain the anisotropic characteristics beneath the MER. Our best model has a 9% anisotropy on the western rift margin, with fast directions of 30°, a 100 km wide rift zone with fast direction of 20° inside the rift zone and with 9% anisotropy close to the western margin, 7% elsewhere, and 7% anisotropy on the eastern margin with fast directions of 30°. In all regions of the model we constrain anisotropy to begin at a depth of 90 km. The depth of anisotropy co-incides with the proposed depth of melt initiation beneath the region, based on geochemistry. Also the elevated splitting beneath the western margin supports evidence of low velocities and highly conductive

  4. Characteriizing Hydration in Asteroids from Observations in the Stratosphere with the BOPPS Infrared Camera

    NASA Astrophysics Data System (ADS)

    Hibbitts, C.; Cheng, A. F.; Young, E. F.

    2014-12-01

    The Balloon Observation Platform for Planetary Science (BOPPS) mission is planning to observe several asteroids during its one-day mission in mid to late September, 2014. The observations of asteroids are secondary objectives designed to demonstrate the ability of the BIRC (BOPPS InfraRed Camera) to detect and characterize the extent of hydration on airless bodies. Hydrated asteroids are in part described by the presence of an infrared absorption band near 3-microns, due to the presence of OH complexed onto materials in their surfaces. This band is expected to begin near 2.6 microns, with a minimum between 2.7 and 2.8 microns based on laboratory measurements of vacuum desiccated carbonaceous meteorites materials [1]. Although this measurement is obscured in ground-based observations by the presence of water vapor in our atmosphere, the BOPPS mission will fly sufficiently high (~ 120K') that telluric water absorptions will not be present potentially enabling precise identification of hydration features on airless bodies like asteroids. The BIRC measurements will be obtained with a cryogenic infrared camera equipped with a 9-position filter wheel with each infrared filter having a FWHM of ~ 3% of the center wavelength [2]. Six of these bands are selected to characterize the OH and H2O absorption feature, and are centered at 2.45 microns, 2.73 microns, 2.85 microns, 3.05 microns, 3.2 microns, and 4 microns. The other three bands are at 0.67 microns (astronomical R-band), 4.27 microns, and 4.6 microns (these last two are to characterize CO2 emissions from comets). The BOPPS mission plans to observe both 1Ceres and 4Vesta. Ceres has a strong water/hydroxyl band [3] whose position would be well characterized by this mission and has been reported to be a variable source of water vapor emission [4] . We will report initial results of BOPPS asteroid observations. References: [1] Takir et al., (2013), Meteor. & Planet. Sci., 48, 9, 1618-1637; [2] Cheng et al., (2014), Fall

  5. D/H RATIO OF TITAN FROM OBSERVATIONS OF THE CASSINI/COMPOSITE INFRARED SPECTROMETER

    SciTech Connect

    Abbas, M. M.; LeClair, A.; Kandadi, H. E-mail: andre.c.leClair@nasa.go

    2010-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft, launched in 1997 October and inserted into Saturn's orbit in 2004 July for exploration of the Saturnian system, has been making observations of Titan during its close flybys. The infrared spectra of Titan observed over a wide range of latitudes cover the 10-1400 cm{sup -1} spectral region with variable apodized resolutions from 0.53 to 15 cm{sup -1}. The spectra exhibit features of the nu{sub 4} band of methane (CH{sub 4}) in the 1300 cm{sup -1} region, and the deuterated isotope of methane (CH{sub 3}D) centered around 1156 cm{sup -1}, along with features of many trace constituents in other spectral regions, comprising hydrocarbons and nitriles in Titan's atmosphere. An analysis of the observed infrared spectra in the 1300 cm{sup -1} and 1156 cm{sup -1} regions, respectively, permits retrieval of the thermal structure and the CH{sub 3}D distributions of Titan's atmosphere. In this paper, we present a comprehensive analysis of the CIRS infrared spectra for retrieval of the CH{sub 3}D abundance and the corresponding D/H ratio in Titan's atmosphere. The analysis is based on the 0.53 cm{sup -1} resolution infrared spectra obtained during the Titan flybys from 2004 July 3 to 2008 May 28 over a range of latitudes extending from 74.{sup 0}4 N to 84.{sup 0}9 S. Using the CH{sub 4} mixing ratio of 1.4 x 10{sup -2} as measured by the Gas Chromatograph and Mass Spectrometer on the Huygens probe on the Cassini mission, we determine the D/H ratio of Titan as (1.58 +- 0.16) x 10{sup -4}, where the 1sigma uncertainty includes the standard deviation due to spectral noise and the estimated errors arising from uncertainties in the temperature retrieval, the mixing ratio of CH{sub 4}, and the spectral line parameters. Comparison of this value with the previously measured values for Titan as well as in other astrophysical sources, and its possible implications are discussed.

  6. Mid-Infrared Observations of Class I/Flat-Spectrum Systems in Six Nearby Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Haisch, Karl E., Jr.; Barsony, Mary; Ressler, Michael E.; Greene, Thomas P.

    2006-12-01

    We have obtained new mid-infrared observations of 65 Class I/flat-spectrum (FS) objects in the Perseus, Taurus, Chamaeleon I and II, ρ Ophiuchi, and Serpens dark clouds. These objects represent a subset of the young stellar objects (YSOs) from our previous near-infrared multiplicity surveys. We detected 45 out of 48 (94%) of the single sources, 16 out of 16 (100%) of the primary components, and 12 out of 16 (75%) of the secondary/triple components of the binary/multiple objects surveyed. One target, IRS 34, a 0.31" separation FS binary, remains unresolved at near-infrared wavelengths. The composite spectral energy distributions for all of our sample YSOs are either Class I or FS, and in 15 out of 16 multiple systems at least one of the individual components displays a Class I or FS spectral index. However, the occurrence of mixed pairings, such as FS with Class I, FS with Class II, and, in one case, an FS with a Class III (Cha I T33B), is suprisingly frequent. Such behavior is not consistent with that of multiple systems among T Tauri stars (TTSs), where the companion of a classical TTS also tends to be a classical TTS, although other mixed pairings have been previously observed among Class II YSOs. Based on an analysis of the spectral indices of the individual binary components, there appears to be a higher proportion of mixed Class I/FS systems (65%-80%) than that of mixed classical and weak-lined TTSs (25%-40%), demonstrating that the envelopes of Class I/FS systems are rapidly evolving during this evolutionary phase. In general, the individual binary/multiple components suffer very similar extinctions, Av, suggesting that most of the line-of-sight material is either in the foreground of the molecular cloud or circumbinary. We report the discovery of a steep spectral index secondary companion to ISO-Cha I 97, detected for the first time via our mid-infrared observations. In our previous near-infrared imaging survey of binary/multiple Class I and FS YSOs, ISO

  7. Mid-infrared Observation of C/2012 S1 (ISON) with Subaru+COMCIS

    NASA Astrophysics Data System (ADS)

    Ootsubo, T.; Watanabe, J.; Honda, M.; Yanamandra-Fisher, P. A.; Usui, F.; Takita, S.; Kasuga, T.; Furusho, R.; Fuse, T.; Nagashima, M.; Kawakita, H.; Fujiyoshi, T.

    2013-12-01

    Dust grains in comets have been used to investigate the formation conditions of the solar system. A silicate feature is often observed in comets as a 10-micron resonant feature. In most cases the feature shows the existence of crystalline silicate together with amorphous silicate. Since the crystalline silicate grains are generally made through high-temperature annealing above 800K from amorphous ones, it is believed that the crystalline silicate grains produced at the inner part of the disk were transported to the outer cold regions where comet nuclei formed. Comet C/2012 S1 (ISON) is a long-period Oort cloud comet, discovered in September 2012. Mid-IR observations of this new comet and investigation of the 10-micron silicate feature help us to understand the formation of crystalline silicate grains in the early solar nebula. In particular, comet ISON is a sungrazing comet, which is predicted to pass close by the Sun and Earth and becoming a bright object. We might expect possible splitting and exposing of pristine materials inside the nucleus after its perihelion passage. If it splits, we can also investigate the homogeneity of the comet nucleus, and can compare the results with ecliptic comets, such as 9P/Temple and 73P/SW. Even if it does not split, we can fully investigate the evolution of crystalline grains described above. Thus, observations both at pre- and post-pelihelion are indespensable. We have a plan to observe the comet ISON with COMICS (Cooled Mid-Infrared Camera and Spectrometer) mounted on the 8.2m Subaru Telescope on late October 2013 and mid-January 2014. Subaru+COMICS in mid-infrared is a powerful tool for spectroscopic observations of cometary silicate grains. COMICS observations occupy an important place among organized many facilities and science of comet observations. We will conduct imaging and low-dispersion spectroscopic observations in mid-infrared region for the comet. We will show the preliminary result of the observations on October

  8. The deepest Herschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations

    NASA Astrophysics Data System (ADS)

    Magnelli, B.; Popesso, P.; Berta, S.; Pozzi, F.; Elbaz, D.; Lutz, D.; Dickinson, M.; Altieri, B.; Andreani, P.; Aussel, H.; Béthermin, M.; Bongiovanni, A.; Cepa, J.; Charmandaris, V.; Chary, R.-R.; Cimatti, A.; Daddi, E.; Förster Schreiber, N. M.; Genzel, R.; Gruppioni, C.; Harwit, M.; Hwang, H. S.; Ivison, R. J.; Magdis, G.; Maiolino, R.; Murphy, E.; Nordon, R.; Pannella, M.; Pérez García, A.; Poglitsch, A.; Rosario, D.; Sanchez-Portal, M.; Santini, P.; Scott, D.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.

    2013-05-01

    We present results from the deepest Herschel-Photodetector Array Camera and Spectrometer (PACS) far-infrared blank field extragalactic survey, obtained by combining observations of the Great Observatories Origins Deep Survey (GOODS) fields from the PACS Evolutionary Probe (PEP) and GOODS-Herschel key programmes. We describe data reduction and theconstruction of images and catalogues. In the deepest parts of the GOODS-S field, the catalogues reach 3σ depths of 0.9, 0.6 and 1.3 mJy at 70, 100 and 160 μm, respectively, and resolve ~75% of the cosmic infrared background at 100 μm and 160 μm into individually detected sources. We use these data to estimate the PACS confusion noise, to derive the PACS number counts down to unprecedented depths, and to determine the infrared luminosity function of galaxies down to LIR = 1011 L⊙ at z ~ 1 and LIR = 1012 L⊙ at z ~ 2, respectively. For the infrared luminosity function of galaxies, our deep Herschel far-infrared observations are fundamental because they provide more accurate infrared luminosity estimates than those previously obtained from mid-infrared observations. Maps and source catalogues (>3σ) are now publicly released. Combined with the large wealth of multi-wavelength data available for the GOODS fields, these data provide a powerful new tool for studying galaxy evolution over a broad range of redshifts. Based on observations carried out by the Herschel Space Observatory. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.org

  9. Observations of Leonid Meteors Using a Mid-Wave Infrared Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Rossano, George S.; Russell, Ray W.; Lynch, David K.; Tessensohn, Ted K.; Warren, David; Jenniskens, Peter

    We report broadband 3-5.5 µm detections of two Leonid meteors observed during the 1998 Leonid Multi-Instrument Aircraft Campaign. Each meteor was detected at only one position along their trajectory just prior to the point of maximum light emission. We describe the particular aspects of the Aerospace Corp. Mid-wave Infra-Red Imaging Spectrograph (MIRIS) developed for the observation of short duration transient events that impact its ability to detect Leonid meteors. This instrument had its first deployment during the 1998 Leonid MAC. We infer from our observations that the mid-wave IR light curves of two Leonid meteors differed from the visible light curve. At the points of detection, the infrared emission in the MIRIS passband was 25 +/- 4 times that at optical wavelengths for both meteors. In addition, we find an upper limit of 800 K for the solid body temperature of the brighter meteor we observed, at the point in the trajectory where we made our mid-wave IR detection.

  10. AKARI OBSERVATION OF THE FLUCTUATION OF THE NEAR-INFRARED BACKGROUND

    SciTech Connect

    Matsumoto, T.; Seo, H. J.; Lee, H. M.; Jeong, W.-S.; Pyo, J.; Matsuura, S.; Matsuhara, H.; Oyabu, S.; Wada, T.

    2011-12-01

    We report a search for fluctuations of the sky brightness toward the north ecliptic pole with the Japanese infrared astronomical satellite AKARI, at 2.4, 3.2, and 4.1 {mu}m. We obtained circular maps with 10' diameter fields of view, which clearly show a spatial structure on the scale of a few hundred arcseconds. A power spectrum analysis shows that there is a significant excess fluctuation at angular scales larger than 100'' that cannot be explained by zodiacal light, diffuse Galactic light, shot noise of faint galaxies, or clustering of low-redshift galaxies. These results are consistent with observations at 3.6 and 4.5 {mu}m by NASA's Spitzer Space Telescope. The fluctuating component observed at large angular scales has a blue stellar spectrum which is similar to that of the spectrum of the excess isotropic emission observed with the Infrared Telescope in Space. A significant spatial correlation between wavelength bands was found, and the slopes of the linear correlations are consistent with the spectrum of the excess fluctuation. These findings indicate that the detected fluctuation could be attributed to the first stars of the universe, i.e., Population III stars. The observed fluctuation provides an important constraint on the era of the first stars.

  11. Spinning particles in Saturn's C ring from mid-infrared observations: Pre-Cassini mission results

    NASA Astrophysics Data System (ADS)

    Leyrat, Cédric; Ferrari, Cécile; Charnoz, Sébastien; Decriem, Judicael; Spilker, Linda J.; Pilorz, Stuart

    2008-08-01

    Saturn's C ring thermal emission has been observed in mid-infrared wavelengths, at three different epochs and solar phase angles, using ground based instruments (CFHT in 1999 and VLT/ESO in 2005) and the Infrared Radiometer Instrument Spectrometer (IRIS) onboard the Voyager 1 spacecraft in 1980. Azimuthal variations of temperature in the C ring's inner region, observed at several phase angles, have been analyzed using our new standard thermal model [Ferrari, C., Leyrat, C., 2006. Astron. Astrophys. 447, 745-760]. This model provides predicted ring temperatures for a monolayer ring composed of spinning icy spherical particles. We confirm the very low thermal inertia (on the order of 10 JmKs) found previously by Ferrari et al. [Ferrari, C., Galdemard, P., Lagage, P.O., Pantin E., Quoirin, C., 2005. Astron. Astrophys. 441, 379-389] that reveals the very porous regolith at the surface of ring particles. We are able to explain both azimuthal variations of temperature and the strong asymmetry of the emission function between low and high phase angles. We show that large particles spinning almost synchronously might be present in the C ring to explain differences of temperature observed between low and high phase angle. Their cross section might represent about 45% of the total cross section. However, their numerical fraction is estimated to only ˜0.1% of all particles. Thermal behavior of other particles can be modeled as isothermal behavior. This work provides an indirect estimation of the particle's rotation rate in Saturn's rings from observations.

  12. OBSERVATIONS OF THE NEAR-INFRARED SPECTRUM OF THE ZODIACAL LIGHT WITH CIBER

    SciTech Connect

    Tsumura, K.; Matsumoto, T.; Matsuura, S.; Wada, T.; Battle, J.; Bock, J.; Zemcov, M.; Cooray, A.; Hristov, V.; Levenson, L. R.; Mason, P.; Sullivan, I.; Keating, B.; Renbarger, T.; Lee, D. H.; Nam, U. W.; Suzuki, K.

    2010-08-10

    Interplanetary dust (IPD) scatters solar radiation which results in the zodiacal light that dominates the celestial diffuse brightness at optical and near-infrared wavelengths. Both asteroid collisions and cometary ejections produce the IPD, but the relative contribution from these two sources is still unknown. The low resolution spectrometer (LRS) onboard the Cosmic Infrared Background ExpeRiment (CIBER) observed the astrophysical sky spectrum between 0.75 and 2.1 {mu}m over a wide range of ecliptic latitude. The resulting zodiacal light spectrum is redder than the solar spectrum, and shows a broad absorption feature, previously unreported, at approximately 0.9 {mu}m, suggesting the existence of silicates in the IPD material. The spectral shape of the zodiacal light is isotropic at all ecliptic latitudes within the measurement error. The zodiacal light spectrum, including the extended wavelength range to 2.5 {mu}m using Infrared Telescope in Space (IRTS) data, is qualitatively similar to the reflectance of S-type asteroids. This result can be explained by the proximity of S-type asteroidal dust to Earth's orbit, and the relatively high albedo of asteroidal dust compared with cometary dust.

  13. Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  14. Near-infrared and Brγ observations of post-AGB stars

    NASA Astrophysics Data System (ADS)

    Van de Steene, G. C.; van Hoof, P. A. M.; Wood, P. R.

    2000-10-01

    In this article we report further investigations of the IRAS selected sample of Planetary Nebula (PN) candidates that was presented in Van de Steene & Pottasch (\\cite{VdSteene93}). About 20% of the candidates in that sample have been detected in the radio and/or Hα and later confirmed as PNe. Here we investigate the infrared properties of the IRAS sources not confirmed as PNe. We observed 28 objects in the N-band of which 20 were detected and 5 were resolved, despite adverse weather conditions. We obtained medium resolution Brgamma spectra and we took high resolution J H K L images of these 20 objects. We critically assessed the identification of the IRAS counterpart in the images and compared our identification with others in the literature. High spatial resolution and a telescope with very accurate pointing are crucial for correct identification of the IRAS counterparts in these crowded fields. Of sixteen positively identified objects, seven show Brgamma in absorption. The absorption lines are very narrow in six objects, indicating a low surface gravity. Another six objects show Brgamma in emission. Two of these also show photospheric absorption lines. All emission line sources have a strong underlying continuum, unlike normal PNe. In another three objects, no clear Brgamma absorption or emission was visible. The fact that our objects were mostly selected from the region in the IRAS color-color diagram where typically PNe are found, may explain our higher detection rate of emission line objects compared to previous studies, which selected their candidates from a region between AGB and PNe. The objects showing Brgamma in emission were re-observed in the radio continuum with the Australia Telescope Compact Array. None of them were detected above a detection limit of 0.55 mJy/beam at 6 cm and 0.7 mJy/beam at 3 cm, while they should have been easily detected if the radio flux was optically thin and Case B recombination was applicable. It is suggested that the

  15. Upcoming and Future Missions in the Area of Infrared Astronomy: Spacecraft and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.

    2004-01-01

    The IRIS instrument on the Voyager spacecrafts made major discoveries with regard to the giant planets, their moons and rings and paved the way for future infrared observations for planetary missions within our solar system. The CIRS instrument of Cassini with much greater spectral-spatial resolution and sensitivity than that provided by IRIS is now rapidly approaching the Saturnian system with orbit insertion on July 1, 2004, for which CIRS is expected to provide an order of magnitude advance beyond that provided by IRIS. The Mars program is also presently dominated by infrared observations in the near to mid-infrared spectral bands for missions such as Mars Global Surveyor and its TES instrument and Odyssey with its THEMIS instrument. In the case of Earth science we have such missions as TIMED, which makes infrared observations of the thermosphere using the SABER instrument. With the newly formed New Frontiers Program we have the opportunity for $650M missions such as Kuiper Belt-Pluto Explorer and Jupiter Polar Orbiter with Probes. Under the Flagship line, once per decade, we have the opportunity for $1B missions for which Europa is presently being considered; for this mission infrared measurements could look for hot spots within the maze of cracks and faults on Europa s surface. On Kuiper Belt- Pluto there is an imaging near-IR spectrometer called LEISA. Another mission on the horizon is Titan Orbiter Aerorover Mission (TOAM) for which there is planned a state-of-art version of CIRS called TIRS on the orbiter that will map out the atmospheric composition with unprecedented wavelength coverage and spectral-spatial resolution. This instrument will also provide temperature maps of the surface of Titan to look for hot spots where life may form. On the same mission there will be a descent imager on the Aerorover (i.e., balloon) similar to that provided by LEISA on the Pluto mission to provide compositional-topographical maps of Titan s surface. Other future mission

  16. Far-infrared investigations of a methanol clathrate hydrate - Implications for astronomical observations

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Moore, Marla H.

    1993-01-01

    Observations of nonterrestrial clathrate hydrates are still lacking despite the fact that clathrates first were suggested to exist in cometary and interstellar ices over 40 years ago. Spectroscopy, the most direct method of astronomical detection, has been hampered by the similarity of clathrate hydrate spectra to those of unenclathrated guest molecules and solid H2O. We have prepared a methanol (CH3OH) clathrate hydrate, using a recently published procedure, and have investigated its far-infrared spectrum. The spectrum is quite different from that of either unenclathrated CH3OH or solid H2O and so should be of value in astronomical searches for this clathrate.

  17. Infrared observations of IGR J17497-2821: 3 candidate counterparts

    NASA Astrophysics Data System (ADS)

    Chaty, S.; Matsuoka, Y.; Nagata, T.; Ueda, Y.

    2006-09-01

    We have obtained infrared (IR) observations in J, H and Ks bands of the field of IGR J17497-2821 (atel #885) at 1.4m IRSF at South African Astronomical Observatory on 3 consecutive nights, respectively starting at 2006-09-22 (UTC 17:47, 18:39 and 20:17), 2006-09-23 (UTC 18:49) and 2006-09-24 (UTC 17:33). The 3-band images were obtained simultaneously with the IR camera SIRIUS, from 5s x 10 dither integrations.

  18. The Atmospheric Infrared Sounder on the Earth Observing System - In-orbit spectral calibration

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1991-01-01

    The Atmospheric Infrared Sounder (AIRS) is a facility instrument on the Earth Observing System (EOS). The ability of AIRS to provide accurate temperature and moisture soundings with high vertical resolution depends critically on a very accurate spectral calibration. The routine in-orbit spectral calibration is accomplished with a Fabry-Perot plate with a fixed spacing of 360 microns. This paper discusses design, Signal-to-Noise, and temperature and alignment stability constraints which have to be met to achieve the required spectral calibration accuracy.

  19. Near-infrared observations of RR Lyrae variables in omega Centauri .

    NASA Astrophysics Data System (ADS)

    Del Principe, M.; Piersimoni, A. M.; Storm, J.; Bono, G.; Caputo, F.; Cassisi, S.; Freyhammer, L. M.; Marconi, M.; Stetson, P. B.

    We present Near-Infrared (NIR) J and K_s-band observations for 181 RR Lyrae stars in the Galactic Globular Cluster omega Cen. The comparison between predicted and empirical slopes of NIR Period-Luminosity (PL) relations indicates a very good agreement. Cluster distance estimates based on NIR PL relations agree quite well with recent determinations based on different standard candles, giving a true mean distance modulus mu = 13.71±0.05, and d=5.52±0.13 kpc.

  20. X-RAY, OPTICAL, AND INFRARED OBSERVATIONS OF GX 339-4 DURING ITS 2011 DECAY

    SciTech Connect

    Dincer, Tolga; Kalemci, Emrah; Buxton, Michelle M.; Bailyn, Charles D.; Tomsick, John A.; Corbel, Stephane

    2012-07-01

    We report multiwavelength observations of the black hole transient GX 339-4 during its outburst decay in 2011 using the data from RXTE, Swift, and SMARTS. Based on the X-ray spectral, temporal, and optical and infrared (OIR) properties, the source evolved from the soft intermediate to the hard state. Twelve days after the start of the transition toward the hard state, a rebrightening was observed simultaneously in the optical and the infrared bands. Spectral energy distributions (SEDs) were created from observations at the start, and close to the peak of the rebrightening. The excess OIR emission above the smooth exponential decay yields flat spectral slopes for these SEDs. Assuming that the excess is from a compact jet, we discuss the possible locations of the spectral break that mark the transition from optically thick to optically thin synchrotron components. Only during the rising part of the rebrightening, we detected fluctuations with the binary period of the system. We discuss a scenario that includes irradiation of the disk in the intermediate state, irradiation of the secondary star during OIR rise, and jet emission dominating during the peak to explain the entire evolution of the OIR light curve.

  1. Far-infrared observations of main sequence stars surrounded by dust shells

    NASA Technical Reports Server (NTRS)

    Harvey, Paul M.; Smith, Beverly J.; Difrancesco, J.

    1995-01-01

    We have used a 20-channel bolometer array on NASA's Kuiper Airborne Observatory to obtain photometry and size information for several main sequence stars surrounded by dust shells. The observations were made at 50 and/or 100 micrometers on flights based in Christchurch, New Zealand, in 1992, 1993. The stars include the 'Vega-like' star, Beta Pic, as well as two stars, HD 135344 and HD 139614, suggested by subsequent studies to belong possibly to the same class. The results of our observations are best interpreted as upper limits to the far-infrared sizes of the dust clouds around these stars. In addition to the basic size and flux measurements, we have fit simple, optically thin models to the Beta Pic data to explore the range of shell parameters consistent with our limits and with previous observations.

  2. Infrared observations of the dark matter lens candidate Q2345+007

    NASA Technical Reports Server (NTRS)

    Mcleod, Brian; Rieke, Marcia; Weedman, Daniel

    1994-01-01

    Deep K-band observations are presented of the double image quasar Q2345+007. This has the largest separation (7.1 sec) of any quasar image pair considered as gravitationally lensed, so the required lens is massive (10(exp 13) solar masses). No lens has been detected in previous deep images at visible wavelengths, and we find no lens to limiting K magnitude 20.0 in the infrared image. This constrains any lens to being much less luminous than brightest cluster galaxies, while the lens must be much more massive than such galaxies to produce the observed separation. Because spectral data indicate exceptional intrinsic similarity in the quasar image components, this pair remains as the most intriguing example of an observed configuration requiring the presence of massive, concentrated dark matter acting as a gravitational lens.

  3. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    this combination image, the AIRS infrared data reveals the temperature of the atmosphere around the storm, but doesn't tell us about the wind direction or relative intensity. The directional vectors of the SeaWinds data set show how the air is circulating around the storm.

    Scatterometers measure surface wind speed and direction by bouncing microwave pulses off the ocean's surface. The SeaWinds instruments measure the backscattered radar energy from wind-generated ocean waves. By making multiple measurements from different looks at the same location, we can infer the vector wind averaged over each 25 km resolution cell. The primary mission objective of the SeaWinds and QuikSCAT scatterometers is to obtain long-term, global coverage of the ocean vector winds for oceanographic and climate research. While not specifically designed for detailed mapping and tracking of hurricanes, both instruments have been found to be useful resources for operational forecasters.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  4. Initial Pancam Visible/Near-infrared Observations of Materials near Endeavour Crater's Western Rim

    NASA Astrophysics Data System (ADS)

    Johnson, J. R.; Bell, J. F.; Farrand, W. H.; Wang, A.; MER Athena Science Team

    2011-12-01

    The Pancam multispectral stereo camera on the Opportunity Mars Exploration Rover began acquiring visible/near-infrared (443-1009 nm) images of materials along the western edge of Endeavour Crater in August, 2011. Preliminary observations documented changes in the color and textures of rocks and soils during the transition from typical Meridiani plains to the Endeavour rim area. As the rover approached Cape York and Spirit Point, Pancam observations (along with those from the Microscopic Imager) documented changes in size distributions of the ubiquitous hematite-rich spherules. For example, preliminary observations near the outcrop "Gibraltar" (north of the sand-filled 35 m diameter crater "Pathfinder") showed spherules embedded in the outcrop to be <1.5 mm, whereas those scattered about the surface were bimodal in distribution with size ranges typically <1.5 mm and >5 mm (Figure 1). At the time of this writing, not all Pancam images of the Gibraltar area had been transmitted to the ground, but reflectance spectra from these observations will be presented at the meeting. Comparison of Pancam reflectance spectra to CRISM observations of the region also demonstrate the utility of orbital imaging spectroscopy as a means to guide rover traverses around Spirit Point during investigations of phyllosilicates-bearing materials. While Fe-bearing oxides and oxyhydroxides can exhibit distinctive spectral features in the visible/near-infrared, most diagnostic spectral features of phyllosilicate minerals are outside the spectral range of Pancam. Nonetheless, the potential exists for using Pancam for phyllosilicate-bearing rock detections, although they will be non-unique. For example, different classes of phyllosilicates (e.g., nontronite, montmorillonite) can be grouped to first order based on spectral parameters such as 900 nm band depth or reflectance maximum position vs. 535 nm band depth. Pancam observations relevant to these detections will be presented at the meeting.

  5. Near-infrared interferometric observation of the Herbig Ae star HD 144432 with VLTI/AMBER

    NASA Astrophysics Data System (ADS)

    Chen, L.; Kreplin, A.; Wang, Y.; Weigelt, G.; Hofmann, K.-H.; Kraus, S.; Schertl, D.; Lagarde, S.; Natta, A.; Petrov, R.; Robbe-Dubois, S.; Tatulli, E.

    2012-05-01

    Aims: We study the sub-AU-scale circumstellar environment of the Herbig Ae star HD 144432 with near-infrared VLTI/AMBER observations to investigate the structure of its inner dust disk. Methods: The interferometric observations were carried out with the AMBER instrument in the H and K band. We interpret the measured H- and K-band visibilities, the near- and mid-infrared visibilities from the literature, and the spectral energy distribution (SED) of HD 144432 by using geometric ring models and ring-shaped temperature-gradient disk models with power-law temperature distributions. Results: We derive a K-band ring-fit radius of 0.17 ± 0.01 AU and an H-band radius of 0.18 ± 0.01 AU (for a distance of 145 pc). This measured K-band radius of ~0.17 AU lies in the range between the dust sublimation radius of ~0.13 AU (predicted for a dust sublimation temperature of 1500 K and gray dust) and the prediction of models including backwarming (~0.27 AU). We find that an additional extended halo component is required in both the geometric and temperature-gradient modeling. In the best-fit temperature-gradient model, the disk consists of two components. The inner part of the disk is a thin ring with an inner radius of ~0.21 AU, a temperature of ~1600 K, and a ring thickness ~0.02 AU. The outer part extends from ~1 AU to ~10 AU with an inner temperature of ~400 K. We find that the disk is nearly face-on with an inclination angle of <28°. Conclusions: Our temperature-gradient modeling suggests that the near-infrared excess is dominated by emission from a narrow, bright rim located at the dust sublimation radius, while an extended halo component contributes ~6% to the total flux at 2 μm. The mid-infrared model emission has a two-component structure with ~20% of the flux originating from the inner ring and the rest from the outer parts. This two-component structure is indicative of a disk gap, which is possibly caused by the shadow of a puffed-up inner rim. Based on observations

  6. Observations of downwelling far-infrared emission at Table Mountain California made by the FIRST instrument

    NASA Astrophysics Data System (ADS)

    Mlynczak, Martin G.; Cageao, Richard P.; Mast, Jeffrey C.; Kratz, David P.; Latvakoski, Harri; Johnson, David G.

    2016-02-01

    The Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument measured downwelling far-infrared (far-IR) and mid-infrared (mid-IR) atmospheric spectra from 200 to 800 cm-1 at Table Mountain, California (elevation 2285 m). Spectra were recorded during a field campaign conducted in early autumn 2012, subsequent to a detailed laboratory calibration of the instrument. Radiosondes launched coincident with the FIRST observations provide temperature and water vapor profiles for model simulation of the measured spectra. Results from the driest day of the campaign (October 19, with less than 3 mm precipitable water) are presented here. Considerable spectral development is observed between 400 and 600 cm-1. Over 90% of the measured radiance in this interval originates within 2.8 km of the surface. The existence of temperature inversions close to the surface necessitates atmospheric layer thicknesses as fine as 10 m in the radiative transfer model calculations. A detailed assessment of the uncertainties in the FIRST measurements and in the model calculations shows that the measured radiances agree with the model radiance calculations to within their combined uncertainties. The uncertainties in modeled radiance are shown to be larger than the measurement uncertainties. Overall, the largest source of uncertainty is in the water vapor concentration used in the radiative transfer calculations. Proposed new instruments with markedly higher measurement accuracy than FIRST will be able to measure the far-IR spectrum to much greater accuracy than it can be computed. As such, accurate direct measurements of the far-IR, and not solely calculations, are essential to the assessment of climate change.

  7. Observations of Disks around Brown Dwarfs in the TW Hydra Association with the Spitzer Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Morrow, A. L.; Luhman, K. L.; Espaillat, C.; D'Alessio, P.; Adame, L.; Calvet, N.; Forrest, W. J.; Sargent, B.; Hartmann, L.; Watson, D. M.; Bohac, C. J.

    2008-04-01

    Using SpeX at the NASA Infrared Telescope Facility and the Spitzer Infrared Spectrograph, we have obtained infrared spectra from 0.7 to 40 μm for three young brown dwarfs in the TW Hydra association (τ ~ 10 Myr), 2MASSW J1207334-393254, 2MASSW J1139511-315921, and SSSPM J1102-3431. The spectral energy distribution for 2MASSW J1139511-315921 is consistent with a stellar photosphere for the entire wavelength range of our data, whereas the other two objects exhibit significant excess emission at λ > 5μm. We are able to reproduce the excess emission from each brown dwarf using our models of irradiated accretion disks. According to our model fits, both disks have experienced a high degree of dust settling. We also find that silicate emission at 10 and 20 μm is absent from the spectra of these disks, indicating that grains in the upper disk layers have grown to sizes larger than ~5 μm. Both of these characteristics are consistent with previous observations of decreasing silicate emission with lower stellar masses and older ages. These trends suggest that either (1) the growth of dust grains, and perhaps planetesimal formation, occurs faster in disks around brown dwarfs than in disks around stars or (2) the radii of the mid-IR-emitting regions of disks are smaller for brown dwarfs than for stars, and grains grow faster at smaller disk radii. Finally, we note the possible detection of an unexplained emission feature near 14 μm in the spectra of both of the disk-bearing brown dwarfs. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory at the California Institute of Technology under NASA contract 1407.

  8. Some Observations on the Current Status of Performing Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Knight, Norman F., Jr; Shivakumar, Kunigal N.

    2015-01-01

    Aerospace structures are complex high-performance structures. Advances in reliable and efficient computing and modeling tools are enabling analysts to consider complex configurations, build complex finite element models, and perform analysis rapidly. Many of the early career engineers of today are very proficient in the usage of modern computers, computing engines, complex software systems, and visualization tools. These young engineers are becoming increasingly efficient in building complex 3D models of complicated aerospace components. However, the current trends demonstrate blind acceptance of the results of the finite element analysis results. This paper is aimed at raising an awareness of this situation. Examples of the common encounters are presented. To overcome the current trends, some guidelines and suggestions for analysts, senior engineers, and educators are offered.

  9. Far-infrared Spectral Radiance Observations and Modeling of Arctic Cirrus: Preliminary Results From RHUBC

    NASA Astrophysics Data System (ADS)

    Humpage, Neil; Green, Paul D.; Harries, John E.

    2009-03-01

    Recent studies have highlighted the important contribution of the far-infrared (electromagnetic radiation with wavelengths greater than 12 μm) to the Earth's radiative energy budget. In a cloud-free atmosphere, a significant fraction of the Earth's cooling to space from the mid- and upper troposphere takes place via the water vapor pure rotational band between 17 and 33 μm. Cirrus clouds also play an important role in the Earth's outgoing longwave radiation. The effect of cirrus on far-infrared radiation is of particular interest, since the refractive index of ice depends strongly on wavelength in this spectral region. The scattering properties of ice crystals are directly related to the refractive index, so consequently the spectral signature of cirrus measured in the FIR is sensitive to the cloud microphysical properties [1, 2]. By examining radiances measured at wavelengths between the strong water vapor absorption lines in the FIR, the understanding of the relationship between cirrus microphysics and the radiative transfer of thermal energy through cirrus may be improved. Until recently, very few observations of FIR spectral radiances had been made. The Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) was developed by Imperial College to address this lack of observational data. TAFTS observes both zenith and nadir radiances at 0.1 cm-1 resolution, between 80 and 600 cm-1. During February and March 2007, TAFTS was involved in RHUBC (the Radiative Heating in Under-explored Bands Campaign), an ARM funded field campaign based at the ACRF-North Slope of Alaska site near Barrow, situated at 71° latitude. Infrared zenith spectral observations were taken by both TAFTS and the AERI-ER (spectral range 400-3300 cm-1) from the ground during both cloud-free and cirrus conditions. A wide range of other instrumentation was also available at the site, including a micropulse lidar, 35 GHz radar and the University of Colorado/NOAA Ground-based Scanning Radiometer

  10. Microwave and infrared simulations of an intense convective system and comparison with aircraft observations

    NASA Technical Reports Server (NTRS)

    Prasad, N.; Yeh, Hwa-Young M.; Adler, Robert F.; Tao, Wei-Kuo

    1995-01-01

    A three-dimensional cloud model, radiative transfer model-based simulation system is tested and validated against the aircraft-based radiance observations of an intense convective system in southeastern Virginia on 29 June 1986 during the Cooperative Huntsville Meteorological Experiment. NASA's ER-2, a high-altitude research aircraft with a complement of radiometers operating at 11-micrometer infrared channel and 18-, 37-, 92-, and 183-GHz microwave channels provided data for this study. The cloud model successfully simulated the cloud system with regard to aircraft- and radar-observed cloud-top heights and diameters and with regard to radar-observed reflectivity structure. For the simulation time found to correspond best with the aircraft- and radar-observed structure, brightness temperatures T(sub b) are simulated and compared with observations for all the microwave frequencies along with the 11-micrometer infrared channel. Radiance calculations at the various frequencies correspond well with the aircraft observations in the areas of deep convection. The clustering of 37-147-GHz T(sub b) observations and the isolation of the 18-GHz values over the convective cores are well simulated by the model. The radiative transfer model, in general, is able to simulate the observations reasonably well from 18 GHz through 174 GHz within all convective areas of the cloud system. When the aircraft-observed 18- and 37-GHz, and 90- and 174-GHz T(sub b) are plotted against each other, the relationships have a gradual difference in the slope due to the differences in the ice particle size in the convective and more stratiform areas of the cloud. The model is able to capture these differences observed by the aircraft. Brightness temperature-rain rate relationships compare reasonably well with the aircraft observations in terms of the slope of the relationship. The model calculations are also extended to select high-frequency channels at 220, 340, and 400 GHz to simulate the

  11. Characterizing ultraviolet and infrared observational properties for galaxies. II. Features of attenuation law

    SciTech Connect

    Mao, Ye-Wei; Kong, Xu; Lin, Lin E-mail: xkong@ustc.edu.cn

    2014-07-01

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.

  12. Sea Ice and Ice Temperature Variability as Observed by Microwave and Infrared Satellite Data

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Recent reports of a retreating and thinning sea ice cover in the Arctic have pointed to a strong suggestion of significant warming in the polar regions. It is especially important to understand what these reports mean in light of the observed global warning and because the polar regions are expected to be most sensitive to changes in climate. To gain insight into this phenomenon, co-registered ice concentrations and surface temperatures derived from two decades of satellite microwave and infrared data have been processed and analyzed. While observations from meteorological stations indicate consistent surface warming in both regions during the last fifty years, the last 20 years of the same data set show warming in the Arctic but a slight cooling in the Antarctic. These results are consistent with the retreat in the Arctic ice cover and the advance in the Antarctic ice cover as revealed by historical satellite passive microwave data. Surface temperatures derived from satellite infrared data are shown to be consistent within 3 K with surface temperature data from the limited number of stations. While not as accurate, the former provides spatially detailed changes over the twenty year period. In the Arctic, for example, much of the warming occurred in the Beaufort Sea and the North American region in 1998 while slight cooling actually happened in parts of the Laptev Sea and Northern Siberia during the same time period. Big warming anomalies are also observed during the last five years but a periodic cycle of about ten years is apparent suggesting a possible influence of the North Atlantic Oscillation. In the Antarctic, large interannual and seasonal changes are also observed in the circumpolar ice cover with regional changes showing good coherence with surface temperature anomalies. However, a mode 3 is observed to be more dominant than the mode 2 wave reported in the literature. Some of these spatial and temporal changes appear to be influenced by the Antarctic

  13. A comprehensive observational filter for satellite infrared limb sounding of gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Q. T.; Kalisch, S.; Preusse, P.; Chun, H.-Y.; Eckermann, S. D.; Ern, M.; Riese, M.

    2014-10-01

    This paper describes a comprehensive observational filter for satellite infrared limb sounding of gravity waves. The filter considers instrument visibility and observation geometry with a high level of accuracy. It contains four main processes: visibility filter, projection of the wavelength on the tangent-point track, aliasing effect, and calculation of the observed vertical wavelength. The observation geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are mimicked. Gravity waves (GWs) simulated by coupling a convective GW source (CGWS) scheme and the gravity wave regional or global ray tracer (GROGRAT) are used as an example for applying the observational filter. Simulated spectra in terms of horizontal and vertical wave numbers (wavelengths) of gravity wave momentum flux (GWMF) are analyzed under the influence of the filter. We find that the most important processes, which have significant influence on the spectrum are: visibility filter (for both SABER and HIRDLS observation geometries), aliasing for SABER and projection on tangent-point track for HIRDLS. The vertical wavelength distribution is mainly affected by the retrieval as part of the "visibility filter" process. In addition, the short-horizontal-scale spectrum may be projected for some cases into a longer horizontal wavelength interval which originally was not populated. The filter largely reduces GWMF values of very short horizontal wavelength waves. The implications for interpreting observed data are discussed.

  14. A comprehensive observational filter for satellite infrared limb sounding of gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Q. T.; Kalisch, S.; Preusse, P.; Chun, H.-Y.; Eckermann, S. D.; Ern, M.; Riese, M.

    2015-03-01

    This paper describes a comprehensive observational filter for satellite infrared limb sounding of gravity waves. The filter considers instrument visibility and observation geometry with a high level of accuracy. It contains four main processes: visibility filter, projection of the wavelength on the tangent-point track, aliasing effect, and calculation of the observed vertical wavelength. The observation geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are mimicked. Gravity waves (GWs) simulated by coupling a convective GW source (CGWS) scheme and the gravity wave regional or global ray tracer (GROGRAT) are used as an example for applying the observational filter. Simulated spectra in terms of horizontal and vertical wave numbers (wavelengths) of gravity wave momentum flux (GWMF) are analyzed under the influence of the filter. We find that the most important processes, which have significant influence on the spectrum are the visibility filter (for both SABER and HIRDLS observation geometries) and aliasing for SABER and projection on tangent-point track for HIRDLS. The vertical wavelength distribution is mainly affected by the retrieval as part of the "visibility filter" process. In addition, the short-horizontal-scale spectrum may be projected for some cases into a longer horizontal wavelength interval which originally was not populated. The filter largely reduces GWMF values of very short horizontal wavelength waves. The implications for interpreting observed data are discussed.

  15. Space-based infrared scanning sensor LOS determination and calibration using star observation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Zhan; An, Wei; Deng, Xin-Pu; Yang, Jun-Gang

    2015-10-01

    This paper provides a novel methodology for removing sensor bias from a space based infrared (IR) system (SBIRS) through the use of stars detected in the background field of the sensor. Space based IR system uses the LOS (line of sight) of target for target location. LOS determination and calibration is the key precondition of accurate location and tracking of targets in Space based IR system and the LOS calibration of scanning sensor is one of the difficulties. The subsequent changes of sensor bias are not been taking into account in the conventional LOS determination and calibration process. Based on the analysis of the imaging process of scanning sensor, a theoretical model based on the estimation of bias angles using star observation is proposed. By establishing the process model of the bias angles and the observation model of stars, using an extended Kalman filter (EKF) to estimate the bias angles, and then calibrating the sensor LOS. Time domain simulations results indicate that the proposed method has a high precision and smooth performance for sensor LOS determination and calibration. The timeliness and precision of target tracking process in the space based infrared (IR) tracking system could be met with the proposed algorithm.

  16. Near-Infrared Spectroscopic Study of AA Tau: Water and OH Observations

    NASA Astrophysics Data System (ADS)

    Brown, Logan Ryan; Gibb, Erika

    2014-06-01

    To understand our own solar origins, we must investigate the composition of the protoplanetary disk from which the solar system formed. To infer this, we study analogs to the early solar system called T Tauri stars. These objects are low-mass, pre-main sequence stars surrounded by circumstellar disks of material from which planets are believed to form. We present high-resolution (λ/Δλ˜25,000), near-infrared spectroscopic data from the T Tauri star AA Tau using NIRSPEC at the Keck II telescope, located on Mauna Kea, HI, taken in 2009 and 2010. AA Tau has a close to edge-on geometry, with an inclination of 70° ± 10° (Donati et al. 2010). Objects must have a nearly edge-on inclination for the disk to be sampled via absorption line spectroscopy. We observed strong absorption lines of both water and OH to which a spectroscopic model was fit in order for us to determine column density and rotational temperature. These near-infrared observations complement the work being done with ALMA, allowing us to probe the inner most disk regions and the chemistry contained within while ALMA primarily samples and is most sensitive to the outer disk.

  17. Near-infrared Observations of SiO Maser-emitting Asymptotic Giant Branch (AGB) Stars

    NASA Astrophysics Data System (ADS)

    Chibueze, James O.; Miyahara, Takeshi; Omodaka, Toshihiro; Ohta, Takashi; Fujii, Takahiro; Tanaka, Masuo; Motohara, Kentaro; Makoto, Miyoshi

    2016-02-01

    Near-infrared (NIR) monitoring observations of asymptotic giant branch stars exciting bright SiO masers have been made with the 1 m telescope of Kagoshima University. In order to investigate the properties of these stars and their envelopes, we combined our NIR photometric data with mid- and far-infrared flux data obtained by the IRAS satellite, SiO maser flux data provided by the Nobeyama Radio Observatory, visual magnitude data provided by the AAVSO, and the reported data on the expansion velocities of the circumstellar envelopes. The absolute magnitudes at the K-band and the distances are estimated using the period-luminosity relation of Mira variables determined by Feast et al. Then, mass-loss rates and isotropic luminosities of an SiO maser are estimated. The mass-loss rates range from approximately 10-8 {M}⊙ \\{{yr}}-1 to over 10-5 {M}⊙ {{yr}}-1. We found that the NIR pulsation amplitudes are correlated with the pulsation periods and the observed wavelengths. We also found correlations of the isotropic luminosities of SiO masers with the mass-loss rates and absolute magnitudes at the K-band. These results will help us to understand the pumping mechanism of SiO masers. We measured, for the first time, the periods and/or NIR magnitudes of TX Cam, BW Cam, IRAS 06297+4045, IRAS 18387-0423, and RT Cep.

  18. Testing Models of Low-Excitation Photodissociation Regions with Far-Infrared Observations of Reflection Nebulae

    NASA Astrophysics Data System (ADS)

    Young Owl, Rolaine C.; Meixner, Margaret M.; Fong, David; Haas, Michael R.; Rudolph, Alexander L.; Tielens, A. G. G. M.

    2002-10-01

    This paper presents Kuiper Airborne Observatory observations of the photodissociation regions (PDRs) in nine reflection nebulae. These observations include the far-infrared atomic fine-structure lines of [O I] 63 and 145 μm, [C II] 158 μm, and [Si II] 35 μm and the adjacent far-infrared continuum to these lines. Our analysis of these far-infrared observations provides estimates of the physical conditions in each reflection nebula. In our sample of reflection nebulae, the stellar effective temperatures are 10,000-30,000 K, the gas densities are 4×102-2×104 cm-3, the gas temperatures are 200-690 K, and the incident far-ultraviolet intensities are 300-8100 times the ambient interstellar radiation field strength (1.2×10-4 ergs cm-2 s-1 sr-1). Our observations are compared with current theory for low-excitation PDRs. The [C II] 158 μm to [O I] 63 μm line ratio decreases with increasing incident far-ultraviolet intensity. This trend is due in part to a positive correlation of gas density with incident far-ultraviolet intensity. We show that this correlation arises from a balance of pressure between the H II region and the surrounding PDR. The [O I] 145 to 63 μm line ratio is higher (greater than 0.1) than predicted and is insensitive to variations in incident far-ultraviolet intensity and gas density. The stellar temperature has little effect on the heating efficiency that primarily had the value 3×10-3, within a factor of 2. This result agrees with a model that modifies the photoelectric heating theory to account for color temperature effects and predicts that the heating efficiencies would vary by less than a factor of 3 with the color temperature of the illuminating field. In addition to the single-pointing observations, an [O I] 63 μm scan was done across the molecular ridge of one of our sample reflection nebulae, NGC 1977. The result appears to support previous suggestions that the ionization front of this well-studied PDR is not purely edge-on.

  19. A comprehensive observational filter for satellite infrared limb sounding of gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Thai; Kalisch, Silvio; Preusse, Peter; Chun, Hye Yeong; Eckermann, Stephen D.; Ern, Manfred; Riese, Martin

    2015-04-01

    Infrared limb sounding provides valuable observations for understanding the dynamics of the middle atmosphere. For the interpretation of gravity wave (GW) observations, the observational filter plays a crucial role. We describe a comprehensive observational filter for this technique. Both instrument visibility and observation geometry are considered in this filter with a high level of accuracy. Four main aspects that influence the GW spectrum are discussed thoroughly. They are: (1) visibility filter, (2) projection of the horizontal wavelength on the tangent-point track, (3) aliasing effect, and (4) calculation of the observed vertical wavelength. Gravity waves simulated by coupling a convective GW source (CGWS) scheme with the gravity wave regional or global ray tracer (GROGRAT) are used as an example for applying the observational filter. The observation geometries of the satellite instruments SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are considered. The visibility filter is found to be the most important aspect: it strongly influences the GWMF spectrum for both instruments. The second important aspect is aliasing for SABER, and projection on tangent-point track for HIRDLS. It is shown that the retrieval (a part of the "visibility filter" process) significantly affects the vertical wavelength distribution. For some cases, the short-horizontal-scale spectrum might be projected towards longer horizontal wavelengths where the original spectrum was not located. Also, GWMF values at very short horizontal wavelengths were significantly decreased due to the observational filter. In addition, we discuss the interpretation of observed data using this observational filter, as well as its applicability to other types of instruments.

  20. Relating satellite multiangular thermal infrared observations to soil and foliage temperature

    NASA Astrophysics Data System (ADS)

    Djepa, V.; Menenti, M.; Vaughan, R.

    The anisotropy of thermal infrared (TIR) radiance emitted by terrestrial targets comprising a mixture of soil and foliage is well documented by both ground and space — based radiometric data. Since TIR radiance depends on surface temperature and surface emissivity, observed anisotropy can be interpreted in terms of either anisotropy in emissivity or, for heterogeneous terrestrial targets, of differences in component temperatures. This paper focuses on the latter. A simple linear mixing model is proposed to relate the component temperatures of soil and foliage to the radiance emitted by a soil — foliage mixture. The underlying assumptions are briefly reviewed. It is finally shown that the simple linear model can be used to retrieve soil and foliage component temperatures from radiometric observations at different view angles. This is illustrated with a case — study based on TIR radiometric data collected by the Along Track Scanning Radiometer (ATSR-2) on board the ERS- 2 during the SGP'97 and HEIFE experiments.

  1. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen S.; Dallilar, Yigit; Garner, Alan; Deno Stelter, R.; Gandhi, Poshak; Dhillon, Vik; Littlefair, Stuart; Marsh, Thomas; Fender, Rob P.; Mooley, Kunal

    2016-04-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  2. Ultraviolet, optical, and infrared observations of the intermediate polar TV Columbae

    NASA Technical Reports Server (NTRS)

    Mateo, M.; Szkody, P.; Hutchings, J.

    1985-01-01

    Forty-three IUE spectra of the X-ray discovered, triply periodic cataclysmic variable, TV Col are examined. The results show that the UV flux varies with the four-day period discovered by Motch in 1981. By fitting continuum models to the UV and optical fluxes, it is inferred that this modulation corresponds to the periodic heating of a normally 9000 K source within the binary system due to reprocessing of beamed X-ray and (possibly) EUV radiation from the vicinity of the degenerate star. The observed flux from this heated source is consistent with its origin at either the disk hot spot or the secondary star. Phasing arguments, however, favor the identification of the latter as the primary reprocessing site in the system. The infrared observations are not consistent with the model proposed by Watts et al. in 1982 and imply that the four-day period does not correspond to the orbital period of the binary.

  3. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Dallilar, Yigit; Casella, Piergiorgio; Marsh, Tom; Gandhi, Poshak; Fender, Rob; Littlefair, Stuart; Eikenberry, Steve; Garner, Alan; Stelter, Deno; Dhillon, Vik; Mooley, Kunal

    2016-07-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  4. High-Resolution Observations of the Infrared Spectrum of Neutral Neon

    PubMed Central

    Sansonetti, Craig J.; Blackwell, Marion M.; Saloman, E. B.

    2004-01-01

    We have observed the spectrum of neutral neon (Ne I) emitted by a microwave-excited electrodeless discharge lamp with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. The spectra cover the regions 6929 Å to 11 000 Å with a resolution of 0.01 cm−1 and 11 000 Å to 47 589 Å with a resolution of 0.007 cm−1. We present a line list that includes more than 650 classified lines and provides an accurate and comprehensive description of the infrared spectrum. The response of the Fourier transform spectrometer was determined by using a radiometrically calibrated tungsten strip lamp, providing relative intensities that for moderate to strong lines are accurate to approximately 10 % over the entire range of the observations. The identities of many lines that were previously multiply classified are unambiguously resolved. PMID:27366619

  5. Ultraviolet, X-ray, and infrared observations of HDE 226868 equals Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Treves, A.; Chiappetti, L.; Tanzi, E. G.; Tarenghi, M.; Gursky, H.; Dupree, A. K.; Hartmann, L. W.; Raymond, J.; Davis, R. J.; Black, J.

    1980-01-01

    During April, May, and July of 1978, HDE 226868, the optical counterpart of Cygnus X-1, was repeatedly observed in the ultraviolet with the IUE satellite. Some X-ray and infrared observations have been made during the same period. The general shape of the spectrum is that expected from a late O supergiant. Strong absorption features are apparent in the ultraviolet, some of which have been identified. The equivalent widths of the most prominent lines appear to be modulated with the orbital phase. This modulation is discussed in terms of the ionization contours calculated by Hatchett and McCray, for a binary X-ray source in the stellar wind of the companion.

  6. Red / Infrared Observations of WOLF:424AB - are the Components Substellar

    NASA Astrophysics Data System (ADS)

    Henry, T. J.; Johnson, D. S.; McCarthy, D. W., Jr.; Kirkpatrick, J. D.

    1992-02-01

    The binary system Wolf 424 AB has been reported by Heintz (1989) to be a possible brown dwarf pair. The component masses, 0.06 and 0.05 Msun, were determined dynamically using an orbit defined by elongated photographic images and visual observations spanning three orbital periods. We present infrared speckle interferometric, photometric, and spectroscopic data on the Wolf 424 system - specifically, the position angles measured from the speckle observations are consistently ahead of the predicted positions, indicating that the orbital parameters require revision. Because the determination that the masses are substellar depends upon the orbit, which appears to be in error, and since all other data suggests stellar masses, it is quite probable that Wolf 424 A and B are stars, not brown dwarfs.

  7. Reanalysis of the Near-infrared Extragalactic Background Light Based on the IRTS Observations

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Kim, M. G.; Pyo, J.; Tsumura, K.

    2015-07-01

    We reanalyze data of the near-infrared background taken by IRTS using up-to-date observational results of zodiacal light (ZL), integrated star light, and diffuse Galactic light. We confirm the existence of residual isotropic emission, which is slightly lower but almost the same as previously reported. At wavelengths longer than 2 μm, the result is fairly consistent with the recent observation with AKARI. We also perform the same analysis using a different ZL model by Wright and detect residual isotropic emission that is slightly lower than that based on the original Kelsall model. Both models show residual isotropic emission that is significantly brighter than the integrated light of galaxies.

  8. Comparison of human observer and algorithmic target detection in nonurban forward-looking infrared imagery

    NASA Astrophysics Data System (ADS)

    Weber, Bruce A.

    2005-07-01

    We have performed an experiment that compares the performance of human observers with that of a robust algorithm for the detection of targets in difficult, nonurban forward-looking infrared imagery. Our purpose was to benchmark the comparison and document performance differences for future algorithm improvement. The scale-insensitive detection algorithm, used as a benchmark by the Night Vision Electronic Sensors Directorate for algorithm evaluation, employed a combination of contrastlike features to locate targets. Detection receiver operating characteristic curves and observer-confidence analyses were used to compare human and algorithmic responses and to gain insight into differences. The test database contained ground targets, in natural clutter, whose detectability, as judged by human observers, ranged from easy to very difficult. In general, as compared with human observers, the algorithm detected most of the same targets, but correlated confidence with correct detections poorly and produced many more false alarms at any useful level of performance. Though characterizing human performance was not the intent of this study, results suggest that previous observational experience was not a strong predictor of human performance, and that combining individual human observations by majority vote significantly reduced false-alarm rates.

  9. COMET 22P/KOPFF: DUST ENVIRONMENT AND GRAIN EJECTION ANISOTROPY FROM VISIBLE AND INFRARED OBSERVATIONS

    SciTech Connect

    Moreno, Fernando; Pozuelos, Francisco; Aceituno, Francisco; Casanova, Victor; Sota, Alfredo

    2012-06-20

    We present optical observations and Monte Carlo models of the dust coma, tail, and trail structures of the comet 22P/Kopff during the 2002 and 2009 apparitions. Dust loss rates, ejection velocities, and power-law size distribution functions are derived as functions of the heliocentric distance using pre- and post-perihelion imaging observations during both apparitions. The 2009 post-perihelion images can be accurately fitted by an isotropic ejection model. On the other hand, strong dust ejection anisotropies are required to fit the near-coma regions at large heliocentric distances (both inbound at r{sub h} = 2.5 AU and outbound at r{sub h} = 2.6 AU) for the 2002 apparition. These asymmetries are compatible with a scenario where dust ejection is mostly seasonally driven, coming mainly from regions near subsolar latitudes at far heliocentric distances inbound and outbound. At intermediate to near-perihelion heliocentric distances, the outgassing would affect much more extended latitude regions, the emission becoming almost isotropic near perihelion. We derived a maximum dust production rate of 260 kg s{sup -1} at perihelion, and an averaged production rate over one orbit of 40 kg s{sup -1}. An enhanced emission rate, also accompanied by a large ejection velocity, is predicted at r{sub h} > 2.5 pre-perihelion. The model has also been extended to the thermal infrared in order to be applied to available trail observations of this comet taken with IRAS and Infrared Space Observatory spacecrafts. The modeled trail intensities are in good agreement with those observations, which is remarkable taking into account that those data are sensitive to dust ejection patterns corresponding to several orbits before the 2002 and 2009 apparitions.

  10. Multi-Wavelength Near Infrared Observations of Marum and Yasur Volcanoes, Vanuatu

    NASA Astrophysics Data System (ADS)

    Howell, Robert R.; Radebaugh, Jani; Lopes, Rosaly M.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2014-11-01

    To help understand and test models of thermal emission from planetary volcanoes, we obtained in May 2014 a variety of near-infrared observations of the very active Marum lava lake on Ambrym, Vanuatu, as well as the Strombolian activity at Yasur on Tanna. Our observations include high resolution images and movies made with standard and modified cameras and camcorders. In addition, to test the planetary emission models, which typically rely on multi-wavelength observations, we developed a small inexpensive prototype imager named "Kerby", which consists of three simultaneously active near-infrared cameras operating at 0.860, 0.775, and 0.675 microns, as well as a fourth visible wavelength RGB camera. This prototype is based on the Raspberry Pi and Pi-NoIR cameras. It can record full high definition video, and is light enough to be carried by backpack and run from batteries. To date we have concentrated on the analysis of the Marum data. During our observations of the 40 m diameter lava lake, convection was so vigorous that areas of thin crust formed only intermittently and persisted for tens of seconds to a few minutes at most. The convection pattern primarily consisted of two upwelling centers located about 8 m in from the margins on opposite sides of the lake. Horizontal velocities away from the upwelling centers were approximately 4 m/s. A hot bright margin roughly 0.4 m wide frequently formed around parts of the lake perimeter. We are in the process of establishing the absolute photometry calibration to obtain temperatures, temperature distributions, and magma cooling rates.

  11. MASSIVE YOUNG STELLAR OBJECTS IN THE GALACTIC CENTER. I. SPECTROSCOPIC IDENTIFICATION FROM SPITZER INFRARED SPECTROGRAPH OBSERVATIONS

    SciTech Connect

    An, Deokkeun; RamIrez, Solange V.; Boogert, A. C. Adwin; Sellgren, Kris; Arendt, Richard G.; Schultheis, Mathias; Cotera, Angela S.; Stolovy, Susan R.

    2011-08-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic center (GC). Our sample of 107 YSO candidates was selected based on Infrared Array Camera (IRAC) colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone, which spans the central {approx}300 pc region of the Milky Way. We obtained IRS spectra over 5-35 {mu}m using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 {mu}m shoulder on the absorption profile of 15 {mu}m CO{sub 2} ice, suggestive of CO{sub 2} ice mixed with CH{sub 3}OH ice on grains. This 15.4 {mu}m shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that nine massive YSOs also reveal molecular gas-phase absorption from CO{sub 2}, C{sub 2}H{sub 2}, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8-23 M{sub sun}, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of {approx}0.07 M{sub sun} yr{sup -1} at the GC.

  12. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  13. OISTER Optical and Near-Infrared Observations of Type Iax Supernova 2012Z

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masayuki; Maeda, Keiichi; Kawabata, Koji S.; Tanaka, Masaomi; Tominaga, Nozomu; Akitaya, Hiroshi; Nagayama, Takahiro; Kuroda, Daisuke; Takahashi, Jun; Saito, Yoshihiko; Yanagisawa, Kenshi; Fukui, Akihiko; Miyanoshita, Ryo; Watanabe, Makoto; Arai, Akira; Isogai, Mizuki; Hattori, Takashi; Hanayama, Hidekazu; Itoh, Ryosuke; Ui, Takahiro; Takaki, Katsutoshi; Ueno, Issei; Yoshida, Michitoshi; Ali, Gamal B.; Essam, Ahmed; Ozaki, Akihito; Nakao, Hikaru; Hamamoto, Ko; Nogami, Daisaku; Morokuma, Tomoki; Oasa, Yumiko; Izumiura, Hideyuki; Sekiguchi, Kazuhiro

    2015-06-01

    We report observations of the Type Iax supernova (SN Iax) 2012Z at optical and near-infrared (NIR) wavelengths from immediately after the explosion until ˜260 days after the maximum luminosity using the Optical and Infrared Synergetic Telescopes for Education and Research Target-of-Opportunity program and the Subaru Telescope. We found that the NIR light curve evolutions and color evolutions are similar to those of SNe Iax 2005hk and 2008ha. The NIR absolute magnitudes ({M}J˜ -18.1 mag and {M}H˜ -18.3 mag) and the rate of decline of the light curve (Δ m15(B) =\\1.6+/- 0.1 mag) are very similar to those of SN 2005hk ({M}J˜ -17.7 mag, {M}H˜ -18.0 mag, and Δ m15(B) ˜ 1.6 mag), yet differ significantly from SNe 2008ha and 2010ae (MJ ˜ -14 to -15 mag and Δ m15(B) ˜ 2.4-2.7 mag). The estimated rise time is 12.0 ± 3.0 days, which is significantly shorter than that of SN 2005hk or any other SNe Ia. The rapid rise indicates that the 56Ni distribution may extend into the outer layer or that the effective opacity may be lower than that in normal SNe Ia. The late-phase spectrum exhibits broader emission lines than those of SN 2005hk by a factor of six to eight. Such high velocities of the emission lines indicate that the density profile of the inner ejecta extends more than that of SN 2005hk. We argue that the most favored explosion scenario is a “failed deflagration” model, although the pulsational delayed detonations is not excluded. Based on data collected with the Optical and Infrared Synergetic Telescopes for Education and Research (OISTER) and with the Subaru Telescope operated by the National Astronomical Observatory of Japan.

  14. Deep Near-Infrared Observations of the W3 Main Star-forming Region

    NASA Astrophysics Data System (ADS)

    Ojha, D. K.; Tamura, M.; Nakajima, Y.; Fukagawa, M.; Sugitani, K.; Nagashima, C.; Nagayama, T.; Nagata, T.; Sato, S.; Pickles, A. J.; Ogura, K.

    2004-06-01

    We present a deep JHKs-band imaging survey of the W3 Main star-forming region, using the near-infrared camera SIRIUS mounted on the University of Hawaii 2.2 m telescope. The near-infrared survey covers an area of ~24 arcmin2 with 10 σ limiting magnitudes of ~19.0, 18.1, and 17.3 in the J, H, and Ks bands, respectively. We construct JHK color-color and J versus J-H and K versus H-K color-magnitude diagrams to identify young stellar objects and estimate their masses. Based on these color-color and color-magnitude diagrams, a rich population of young stellar objects is identified that is associated with the W3 Main region. A large number of previously unreported red sources (H-K>2) have also been detected around W3 Main. We argue that these red stars are most probably pre-main-sequence stars with intrinsic color excesses. We find that the slope of the Ks-band luminosity function (KLF) of W3 Main is lower than the typical values reported for young embedded clusters. The derived slope of the KLF is the same as that found in 1996 by Megeath and coworkers, from which analysis indicated that the W3 Main region has an age in the range of 0.3-1 Myr. Based on the comparison between models of pre-main-sequence stars and the observed color-magnitude diagram, we find that the stellar population in W3 Main is primarily composed of low-mass pre-main-sequence stars. We also report the detection of isolated young stars with large infrared excesses that are most probably in their earliest evolutionary phases.

  15. Thermal infrared observations of Mars (7.5-12.8 microns) during the 1990 opposition

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Witteborn, F.; Lucy, P. G.; Graps, A.; Pollack, J. B.

    1991-01-01

    Thirteen spectra of Mars, in the 7.5 to 12.8 micron wavelength were obtained on 7 Dec. 1990 from the Infrared Telescope Facility (IRTF). For these observations, a grating with an ultimate resolving power of 120 to 250 was used and wavelengths were calibrated for each grating setting by comparison with the absorption spectrum of polystyrene measured prior to each set of observations. By sampling the Nyquist limit at the shortest wavelengths, an effective resolving power of about 120 over the entire wavelength range was achieved. A total of four grating settings were required to cover the entire wavelength region. A typical observing sequence consisted of: (1) positioning the grating in one of the intervals; (2) calibrating the wavelength of positions; and (3) obtaining spectra for a number of spots on Mars. Several observations of the nearby stellar standard star, alpha Tauri, were also acquired throughout the night. Each Mars spectrum represents an average of 4 to 6 measurements of the individual Mars spots. As a result of this observing sequence, the viewing geometry for a given location or spot on Mars does not change, but the actual location of the spot on Mars's surface varies somewhat between the different grating settings. Other aspects of the study are presented.

  16. Snow Clouds on Mars and Ice on the Moon: Thermal Infrared Observations and Models

    NASA Astrophysics Data System (ADS)

    Hayne, Paul Ottinger

    The polar regions of planets have been historically difficult to observe due to unfavorable viewing geometry and low illumination. Thermal infrared remote sensing from orbit surmounts both challenges. In this thesis I use multispectral infrared measurements at Mars and the Moon to shed light on the nature of volatiles in the coldest, darkest regions of these two planetary bodies. Process during polar winter on Mars play a critical role in the global CO2 cycle by altering the polar energy balance, yet the driving mechanisms are poorly understood. Temperatures drop so low that the atmosphere itself freezes out, producing clouds and forming the seasonal ice caps. However, it is unknown whether deposition occurs directly at the surface of the ice cap or in the atmosphere as CO2 snowfall. In this thesis, I use Mars Climate Sounder radiometric measurements to show that deposition is directly linked to atmospheric precipitation. I present maps of deposition activity, derive snowfall rates, and show that the majority of deposition must occur deep in the troposphere, within ˜5 km of the surface. Maps of wintertime effective emissivity in the south polar region will be useful constraints on models of the CO2 cycle and Martian climate. Near the poles of the Moon, topography perennially shields some areas from direct sunlight, allowing them to drop to extremely low average temperatures < 100 K. At these temperatures, volatiles such as water ice can be cold-trapped and kept stable over the age of the solar system. In the second major part of this thesis, I present Diviner Lunar Radiometer observations of the October 9, 2009 LCROSS mission's impact into one of these potentially volatile-rich sites. Measurements, along with modeling, suggest the thermal behavior is consistent with the presence of volatiles, and Diviner's observations place important independent constraints on the impact process.

  17. A global climatology of stratospheric gravity waves from Atmospheric Infrared Sounder observations

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Xue, Xianghui; Alexander, M. Joan

    2014-05-01

    We present the results of a new study that aims on the detection and classification of `hotspots' of stratospheric gravity waves on a global scale. The analysis is based on a nine-year record (2003 to 2011) of radiance measurements by the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. We detect the presence of stratospheric gravity waves based on 4.3 micron brightness temperature variances. Our method is optimized for peak events, i.e., strong gravity wave events for which the local variance considerably exceeds background levels. We estimated the occurrence frequencies of these peak events for different seasons and time of day and used the results to find local maxima of gravity wave activity. In addition, we use AIRS radiances at 8.1 micron to simultaneously detect convective events, including deep convection in the tropics and mesoscale convective systems at mid latitudes. We classified the gravity waves according to their sources, based on seasonal occurrence frequencies for convection and by means of topographic data. Our study reproduces well-known hotspots of gravity waves, e.g., the mountain wave hotspots at the Andes and the Antarctic Peninsula or the convective hotspot during the thunderstorm season over the North American Great Plains. However, the high horizontal resolution of the AIRS observations also helped us to locate several smaller hotspots, which were partly unknown or poorly studied so far. Most of these smaller hotspots are found near orographic features like small mountain ranges, in coastal regions, in desert areas, or near isolated islands. This new study will help to select the most promising regions and seasons for future observational studies of gravity waves. Reference: Hoffmann, L., X. Xue, and M. J. Alexander, A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416-434, doi:10.1029/2012JD018658, 2013.

  18. Daytime Observations with ELTs in the Thermal Infrared Using Laser Guide Star Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Beckers, J. M.

    2011-09-01

    Using Magneto-Optical Filters (MOFs; also called FADOFs = Faraday Anomalous Dispersion Optical Filters) it is possible to clearly see Sodium Laser Guide Stars in the daytime sky. This makes it possible to use ELT Adaptive Optics systems for diffraction limited observations 24 hours/day. Because of the bright daytime sky this LGS AO application is only of astronomical interest in the mid-infrared wavelength region (4 - 25 microns wavelengths) where the thermal radiation of the atmosphere-telescope system dominates the scattering of sunlight thus making the day- and night- sky background comparable. Incorporating MOFs in the LGS wavefront sensor thus would more than double the ELT observing time for mid-infrared astronomy and would make sources in almost the entire sky available for observation at any time of the year. Even though the AO would increase the brightness of point-sources, it would not compete with the James Webb Space Telescope in terms of detectability. The gain with respect to the JWST lies in the 5 to 6 times better linear angular resolution. The contrast gain in brightness at near-IR wavelengths is sufficient to give sufficient natural guide stars there for tip-tilt control. MOFs have been shown to function with Na lasers in LIDAR applications (see Beckers and Cacciani, Experimental Astronomy 11, 133, 2001). The main complication associated with incorporating MOFs in ELT AO system is likely the requirement to make the telescope and its enclosure robust in the daytime environment. I refer to SPIE Proceedings 6986 (2008) for a recent reference on this topic.

  19. Far-infrared detector development for space-based Earth observation

    NASA Astrophysics Data System (ADS)

    Hogue, H. H.; Mlynczak, M. G.; Abedin, M. N.; Masterjohn, S. A.; Huffman, J. E.

    2008-08-01

    DRS Sensors & Targeting Systems with silicon materials partner Lawrence Semiconductor Research Laboratory and development partner NASA Langley Research Center Earth Science Directorate are developing improved far-infrared detectors for Earth energy balance observations from orbit. Our team has succeeded in demonstrating the feasibility of extending the wavelength range of conventional arsenic-doped-silicon Blocked Impurity Band (BIB) detectors (cut-off ~28 μm) into the far infrared. The new far-IR member of the BIB detector family operates at temperatures accessible to existing space-qualified cryocoolers, while retaining the very high values of sensitivity, stability, linearity, and bandwidth typical of the broader class of silicon BIB detectors. The new detector should merit serious consideration for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission defined by the recent National Research Council's Decadal Survey for Earth Science. Proposed further development of this detector technology includes wavelength extension to a goal of at least 100 μm, improvements in detector design, and implementation of light-trapping packaging. These are developments that will enable increased radiometric accuracy, reduced spatial smearing, and simpler calibration approaches for CLARREO.

  20. Ultraviolet, visual, and infrared observations of the WC7 variable HD 193793

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, E. L.; Savage, B. D.; Sitko, M. L.

    1982-01-01

    Low-resolution IUE data are used to explore the ultraviolet extinction toward the Wolf-Rayet star HD 193793 and to search for ultraviolet variability that might relate to the infrared variability. High-dispersion IUE observations are used to investigate the nature of the stellar wind of the star and to search for anomalies in the interstellar line spectrum that might be expected to be found toward a star that has recently formed a dust shell. Finally, the ultraviolet and new visual and infrared data are combined to investigate the full energy distribution of this unusual source. The energy distribution is found to extend from 0.12 to 12.5 microns, and the ultraviolet data suggest a normal WC-7 type star. A wind terminal speed of about 3000 km/s is implied by the data, as well as an E(B-V) value of 0.85. The dereddened ultraviolet to visual energy distribution is consistent with a star having effective temperature of about 43,000 K.

  1. Thermal Infrared Observations of Lava Flows During the 1984 Mauna Loa Eruption

    NASA Technical Reports Server (NTRS)

    Pieri, D. C.; Gillespie, R.; Kahle, A. B.; Kahle, J.; Baloga, S. M.

    1985-01-01

    Thermal infrared videotape images of the flowing lava streams and the vent areas at 10.6 microns were made, as well as some broadband images in the 8 to 12 micron range (for gas plume detection). These data were calibrated with on-site hand-held radiometer measurements, in-flow thermocouple measurements, and with later laboratory kiln measurements. Infrared video data are useful in quantitatively assessing the pattern and mode of flow thermal losses, particularly with regard to radiative losses from established/incipient floating crust. The general cooling of the flows downstream was readily apparent. Upper reaches of the active flow exhibited nearly crust-free main channels, radiating at about 700 to 800 degrees C. Below about the 7500 foot level (about 8 km from the vent) the flows formed nearly continuous crust and tended to spread, become less well-defined and founder due to a reduction in slope. Nevertheless, in thermal IR observations, the surface trace of the active subsurface channel was visible, radiating at about 500 to 700 degrees C. At the active flow front, most solid crust radiated at temperatures less than 500 to 600 degrees C, however bright high temperature interiors (approximately 900 to 1000 degrees C) were clearly visible though evolving fissures.

  2. Thermal infrared observations of lava flows during the 1984 Mauna Loa eruption

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Gillespie, R.; Kahle, A. B.; Kahle, J.; Baloga, S. M.

    1985-04-01

    Thermal infrared videotape images of the flowing lava streams and the vent areas at 10.6 microns were made, as well as some broadband images in the 8 to 12 micron range (for gas plume detection). These data were calibrated with on-site hand-held radiometer measurements, in-flow thermocouple measurements, and with later laboratory kiln measurements. Infrared video data are useful in quantitatively assessing the pattern and mode of flow thermal losses, particularly with regard to radiative losses from established/incipient floating crust. The general cooling of the flows downstream was readily apparent. Upper reaches of the active flow exhibited nearly crust-free main channels, radiating at about 700 to 800 degrees C. Below about the 7500 foot level (about 8 km from the vent) the flows formed nearly continuous crust and tended to spread, become less well-defined and founder due to a reduction in slope. Nevertheless, in thermal IR observations, the surface trace of the active subsurface channel was visible, radiating at about 500 to 700 degrees C. At the active flow front, most solid crust radiated at temperatures less than 500 to 600 degrees C, however bright high temperature interiors (approximately 900 to 1000 degrees C) were clearly visible though evolving fissures.

  3. KOSMA 12CO(2-1) and (3-2) observations toward Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Li, Dalei; Esimbek, Jarken; Zhou, Jianjun; Baan, Willem; Wu, Gang; Tang, Xindi; Ji, Weiguang; Yuan, Ye; He, Yuxin; Komesh, Toktarkhan

    2016-07-01

    Infrared Dark Clouds (IRDCs) are a valuable sample to study the initial conditions and the very early stages of the evolution of massive stars. Using the KOSMA telescope, we performed simultaneous single point 12CO(2-1) and (3-2) observations toward 117 IRDCs with a detection rate of 74 % for 12CO(2-1) and 58 % for 12CO(3-2). The non-detected sources are found not to represent real dark clouds. The distances of the IRDCs have been calculated using a Bayesian distance estimator indicating that the sources are mainly concentrated in the Outer, Perseus, Local, Sagittarius and Scutum arms. The excitation temperature and the filling factor have been solved simultaneously for the two emission lines. The average excitation temperature is about 10 K. The filling factors are used to correct the integrated intensity ratio of 12CO(3-2) to (2-1) resulting in a typical value of the ratio of 0.69±0.47 for the majority of sources. A small number of sources exhibit enhanced values for the ratio because of the presence of a nearby HII region. The ratios do not show significant differences for sources with embedded far-infrared sources.

  4. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  5. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2011-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars.We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks.We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  6. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L.; Rebull, L. M.

    2012-01-10

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  7. Infrared observations of eight X-ray sources from Galactic plane surveys

    NASA Astrophysics Data System (ADS)

    Revnivtsev, M. G.; Kniazev, A.; Karasev, D. I.; Berdnikov, L.; Barway, S.

    2013-08-01

    Increasing the identification completeness of sources from new X-ray sky surveys is a necessary condition for further works on analyzing the formation and long-term evolution of star systems in our Galaxy. Infrared observations of several sources selected from Galactic plane surveys as candidates for low-mass X-ray binaries with the IRSF telescope at the South African Astronomical Observatory are presented. The infrared fluxes have been reliably measured from five of the eight sources (4U 1556-60, 4U 1708-40, AX J165901-4208, IGR J16287-5021, IGR J17350-2045, AX J171922-3703, SAX J1712.6-3739, 4U 1705-32). One of the objects (AX J165901-4208) may be a candidate for symbiotic X-ray binaries, i.e., binaries in which the companion of a relativistic object is a giant star. The distances have been estimated for three sources and the orbital periods have been estimated for two.

  8. No evidence of a circumsolar dust ring from infrared observations of the 1991 solar eclipse.

    PubMed

    Lamy, P; Kuhn, J R; Lin, H; Koutchmy, S; Smartt, R N

    1992-09-01

    During the past 25 years there have been many attempts to detect a possible dust ring around the sun, with contradictory results. Before the 1991 eclipse, infrared eclipse experiments used single-element detectors to scan the corona along the ecliptic for excess surface brightness peaks. The availability of relatively large-format infrared array detectors now provides a considerable observational advantage: two-dimensional mapping of the brightness and polarization of the corona with high photometric precision. The 1991 eclipse path included the high-altitude Mauna Kea Observatory, a further advantage to measure the corona out to large angular distances from the sun. Results are reported from an experiment conducted on Mauna Kea with a HgCdTe-array detector sensitive to wavelengths between 1 and 2.5 micrometers, using broad-band J, H, and K filters. Although the sky conditions were not ideal, the H- and K-band surface brightnesses clearly show the inhomogeneous structure in the K-corona and the elliptical flattening of the F-corona, but no evidence of a circumsolar, local dust component out to 15 solar radii. PMID:17738279

  9. High-dispersion infrared spectroscopic observations of comet 8P/Tuttle with VLT/CRIRES

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Bockelée-Morvan, D.; Kawakita, H.; Dello Russo, N.; Jehin, E.; Manfroid, J.; Smette, A.; Hutsemékers, D.; Stüwe, J.; Weiler, M.; Arpigny, C.; Biver, N.; Cochran, A.; Crovisier, J.; Magain, P.; Sana, H.; Schulz, R.; Vervack, R. J.; Weaver, H.; Zucconi, J.-M.

    2010-01-01

    We report on the composition of the Halley-family comet (HFC) 8P/Tuttle investigated with high-dispersion near-infrared spectroscopic observations. The observations were carried out at the ESO VLT (Very Large Telescope) with the CRIRES instrument as part of a multi-wavelength observation campaign of 8P/Tuttle performed in late January and early February 2008. Radar observations suggested that 8P/Tuttle is a contact binary, and it was proposed that these components might be heterogeneous in chemistry. We determined mixing ratios of organic volatiles with respect to H2O and found that mixing ratios were consistent with previous near infrared spectroscopic observations obtained in late December 2007 and in late January 2008. It has been suggested that because 8P/Tuttle is a contact binary, it might be chemically heterogeneous. However, we find no evidence for chemical heterogeneity within the nucleus of 8P/Tuttle. We also compared the mixing ratios of organic molecules in 8P/Tuttle with those of both other HFCs and long period comets (LPCs) and found that HCN, C2H2, and C2H6 are depleted whereas CH4 and CH3OH have normal abundances. This may indicate that 8P/Tuttle was formed in a different region of the early solar nebula than other HFCs and LPCs. We estimated the conversion efficiency from C2H2 to C2H6 by hydrogen addition reactions on cold grains by employing the C2H6/(C2H6+C2H2) ratio. The C2H6/(C2H6+C2H2) ratio in 8P/Tuttle is consistent with the ratios found in other HFCs and LPCs within the error bars. We also discuss the source of C2 and CN based on our observations and conclude that the abundances of C2H2 and C2H6 are insufficient to explain the C2 abundances in comet 8P/Tuttle and that the abundance of HCN is insufficient to explain the CN abundances in the comet, so at least one additional parent is needed for each species, as pointed out in previous study. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Prog. 080.C

  10. CASSIS: The Cornell Atlas of Spitzer/Infrared Spectrograph Sources. II. High-resolution Observations

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Barry, D. J.; Goes, C.; Sloan, G. C.; Spoon, H. W. W.; Weedman, D. W.; Bernard-Salas, J.; Houck, J. R.

    2015-06-01

    The Infrared Spectrograph (IRS) on board the Spitzer Space Telescope observed about 15,000 objects during the cryogenic mission lifetime. Observations provided low-resolution (R=λ /{Δ }λ ≈ 60-127) spectra over ≈ 5-38 μm and high-resolution (R≈ 600) spectra over 10-37 μm. The Cornell Atlas of Spitzer/IRS Sources (CASSIS) was created to provide publishable quality spectra to the community. Low-resolution spectra have been available in CASSIS since 2011, and here we present the addition of the high-resolution spectra. The high-resolution observations represent approximately one-third of all staring observations performed with the IRS instrument. While low-resolution observations are adapted to faint objects and/or broad spectral features (e.g., dust continuum, molecular bands), high-resolution observations allow more accurate measurements of narrow features (e.g., ionic emission lines) as well as a better sampling of the spectral profile of various features. Given the narrow aperture of the two high-resolution modules, cosmic ray hits and spurious features usually plague the spectra. Our pipeline is designed to minimize these effects through various improvements. A super-sampled point-spread function was created in order to enable the optimal extraction in addition to the full aperture extraction. The pipeline selects the best extraction method based on the spatial extent of the object. For unresolved sources, the optimal extraction provides a significant improvement in signal-to-noise ratio over a full aperture extraction. We have developed several techniques for optimal extraction, including a differential method that eliminates low-level rogue pixels (even when no dedicated background observation was performed). The updated CASSIS repository now includes all the spectra ever taken by the IRS, with the exception of mapping observations.

  11. THE NON-UNIFORM, DYNAMIC ATMOSPHERE OF BETELGEUSE OBSERVED AT MID-INFRARED WAVELENGTHS

    SciTech Connect

    Ravi, V.; Wishnow, E. H.; Townes, C. H.; Lockwood, S.; Mistry, H.; Tatebe, K.

    2011-10-10

    We present an interferometric study of the continuum surface of the red supergiant star Betelgeuse at 11.15 {mu}m wavelength, using data obtained with the Berkeley Infrared Spatial Interferometer each year between 2006 and 2010. These data allow an investigation of an optically thick layer within 1.4 stellar radii of the photosphere. The layer has an optical depth of {approx}1 at 11.15 {mu}m, and varies in temperature between 1900 K and 2800 K and in outer radius between 1.16 and 1.36 stellar radii. Electron-hydrogen-atom collisions contribute significantly to the opacity of the layer. The layer has a non-uniform intensity distribution that changes between observing epochs. These results indicate that large-scale surface convective activity strongly influences the dynamics of the inner atmosphere of Betelgeuse and mass-loss processes.

  12. The formation of a T Tauri star: Observations of the infrared source in L 1551

    NASA Technical Reports Server (NTRS)

    Harris, S.; Beichman, C.

    1980-01-01

    The 5 to 25 micron observations show that an object previously discovered at 2.2 microns (IRS 5) within the densest part of the L1551 dark cloud is a strong source of radiation from grains as cool as 230 K. The energy distribution resembles that of infrared objects embedded within other molecular cloud cores, but implies a total solar luminosity of only 30. The luminosity of the source and its proximity to other T Tauri stars suggests that it is a 1 to 2 solar mass pre-main sequence star still swaddled within the L1551 cloud. The radio and optical evidence for mass motions around IRS 5 may mean that IRS 5 has been flaring in FU Ori-type eruptions within the last 1000 years.

  13. Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Das, T. D.; Dhar, S.; de la Mare, M.; Krier, A.

    2012-01-01

    We report the first observation of photoluminescence (PL) from the dilute bismide alloy GaSbBi. Epitaxial layers are grown by liquid phase epitaxy technique onto GaSb (1 0 0) substrates and PL is obtained in the near infrared spectral range ( λ ˜ 1.6 μm). Incorporation of 0.2, 0.3 and 0.4 at% Bi to the layer results in a decrease of band gap energy up to 40 meV as well as an increase of luminescence from the sample. Structural analysis confirms the successful incorporation of Bi consistent with an increase in lattice parameter. Raman spectroscopy measurements indicate vibrational modes due to GaBi as well as to free Bi atoms residing at interstitial spaces.

  14. Application of an automatic cloud tracking technique to Meteosat water vapor and infrared observations

    NASA Technical Reports Server (NTRS)

    Endlich, R. M.; Wolf, D. E.

    1980-01-01

    The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).

  15. Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields.

    PubMed

    Schütte, B; Arbeiter, M; Fennel, T; Jabbari, G; Kuleff, A I; Vrakking, M J J; Rouzée, A

    2015-01-01

    When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997

  16. IR (infrared radiation) observations of the ETA (Experimental Test Accelerator) beam channel. Technical report

    SciTech Connect

    McKenzie, D.L.; Ditteon, R.P.; Frazier, E.N.; Giguere, R.P.; Rice, C.J.

    1985-09-30

    Aerospace Corporation scientists observed infrared radiation from the ETA beam channel in the wavelength range 0.65 -14.4 micrometer on September 12-16, 1983. The data consisted of time profiles of radiation pulses from the beam channel, measured with a limiting time resolution of 100 nanoseconds. Isolation of spectral bands was achieved through the use of broadband filters and circular variable filters (CVF). The latter had resolution lambda/delta lambda = 50 - 100, where lambda is wavelength. A total of 1076 radiation pulses were recorded. The beam propagation tube was filled with either ambient laboratory air or synthetic (dry) air at pressures ranging from 0.05 Torr to 500 Torr.

  17. Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields

    PubMed Central

    Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A.I.; Vrakking, M.J.J.; Rouzée, A.

    2015-01-01

    When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997

  18. Infrared observation of thermally activated oxide reduction within Al/SiOx/Si tunnel diodes

    NASA Astrophysics Data System (ADS)

    Brendel, R.; Hezel, R.

    1992-05-01

    Electron-beam-evaporated aluminum/silicon oxide/silicon tunnel diodes with an initial oxide thickness of 1.3 nm have been annealed for up to 1 h at temperatures from 213 to 369 °C. They have been investigated by infrared grazing internal reflection (GIR) spectroscopy and current-voltage measurements. The measured IR spectra were analyzed by computer modeling. All spectral features could be explained self-consistently within a Al/AlOy/SiOx/Si layer model. In the as-deposited state less than 0.6 monolayers of Al—O bonds are formed at the Al/SiOx interface. A thermally activated reduction of the ultrathin oxide film by Al was observed. The changes in the current-voltage curves induced by slight annealing (1 min at 213 °C) are accompanied by changes in the insulator-bonding structure, which GIR is sensitive enough to detect.

  19. Mid-Infrared Observational and Theoretical Studies of Star Formation and Early Solar Systems

    NASA Technical Reports Server (NTRS)

    Jones, Barbara

    1997-01-01

    The first 2 years of this program were used to make mid-IR observations of regions of star formation in the Orion nebula with the UCSD mid-IR camera at the UCSD/University of Minnesota telescope at Mt. Lemmon. These observations attempted to make the first systematic study of an extended region, known to have newly forming stars, and expected to have complex mid-IR emission. We discovered, to our surprise, that most of the thermal emission originated from extended sources rather than from point sources. This interesting observation made the analysis of the data much more complex, since the chop/nod procedures used at these wavelengths produce a differential measurement of the emission in one region compared to that in the adjacent region. Disentangling complex extended emission in such a situation is very difficult. In parallel with this work we were also observing comets in the thermal infrared, the other component of the original proposal. Some spectacular data on the comet Swift-Tuttle was acquired and published. A changing jet structure observed over a 2 week period is described. The rotation period of the comet can be measured at 66 hours. The size of the nucleus can also be estimated (at 30 km) from the observed excess flux from the nucleus. These data have lead to the development of models describing the action of dust particles of differing sizes and composition leaving the nucleus. The spatial distribution of the predicted IR emission has been compared to the observed jet structures, leading to estimates of both particles sizes, relative amounts of silicate vs organic grains, and the amounts of dust emitted in the jets vs isotopic emission.

  20. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) - Total Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning.

    This movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms.

    This movie shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft

  1. Advanced fire observation by the Intelligent Infrared Sensor prototype FOCUS on the International Space Station

    NASA Astrophysics Data System (ADS)

    Oertel, D.; Haschberger, P.; Tank, V.; Lanzl, F.; Zhukov, B.; Jahn, H.; Briess, K.; Lorenz, E.; Roeser, H.-P.; Ginati, A.; Tobehn, C.; Schulte in den Bäumen, J.; Christmann, U.

    1999-01-01

    Current and planned operational space-borne Earth observation systems provide spatially, radiometrically or temporally crude data for the detection and monitoring of high temperature phenomena on the surface of our planet. High Temperature Events (HTE) very often cause environmental disasters. Such HTE are forest and savannah fires, fires of open coal mines, volcanic activities and others (e.g. fires of oil wells, pipelines etc.). A simultaneous co-registration of a combination of infrared (IR) and visible (VIS) channels is the key for a reliable autonomous on-board detection of High Temperature Events (HTE) on Earth surface, such as vegetation fires and volcano eruptions. This is the main feature of the FOCUS experiment. Furthermore there are ecology-oriented objectives of the FOCUS experiment mainly related to spectrometric/imaging remote inspection and parameter extraction of selected HTEs, and to the assessment of some ecological consequences of HTEs, such as aerosol and gas emission. Based on own experimental work and supported by Co-Investigators from Italy, Greece, France, Spain, Russia and Germany, DLR proposed in 1997 to use the International Space Station (ISS) in its early utilization phase as a platform and test-bed for an Intelligent Infrared Sensor prototype FOCUS of a future Environmental Disaster Recognition Satellite System. FOCUS is considered by ESA as an important mission combining a number of proven technologies and observation techniques to provide the scientific and operational user community with key data for the classification and monitoring of forest fires. FOCUS was selected as one of five European ``Groupings'' to be flown as an externally mounted payload during the early utilisation phase of the ISS. The FOCUS Phase A Study will be performed by OHB-System, DLR and Zeiss from September 1998 until May 1999.

  2. Infrared Observations of the Quintuplet Proper Members using SOFIA/FORCAST and Gemini/TReCS

    NASA Astrophysics Data System (ADS)

    Hankins, M. J.; Lau, R. M.; Morris, M. R.; Sanchez-Bermudez, J.; Pott, J. U.; Adams, J. D.; Herter, T. L.

    2016-08-01

    Since their discovery, the Quintuplet proper members (QPMs) have been somewhat mysterious in nature. Originally dubbed the “cocoon stars” due to their cool featureless spectra, high-resolution near-infrared imaging observations have shown that at least two of the objects exhibit “pinwheel” nebulae consistent with binary systems with a carbon-rich Wolf–Rayet star and O/B companion. In this paper, we present 19.7, 25.2, 31.5, and 37.1 μm observations of the QPMs (with an angular resolution of 3.2″–3.8″) taken with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) in conjunction with high-resolution (˜0.1″–0.2″) images at 8.8 and 11.7 μm from the Thermal-Region Camera Spectrograph (TReCS). DUSTY models of the thermal dust emission of two of the four detected QPMs, Q2 and Q3, are fitted by radial density profiles that are consistent with constant mass-loss rates ({ρ }d\\propto {r}-2). For the two remaining sources, Q1 and Q9, extended structures (˜1″) are detected around these objects in high-resolution imaging data. Based on the fitted dust masses, Q9 has an unusually large dust reservoir ({M}{{d}}={1.3}-0.4+0.8× {10}-3{M}ȯ ) compared to typical dusty Wolf–Rayet stars, which suggests that it may have recently undergone an episode of enhanced mass loss.

  3. Infrared Observations of the Quintuplet Proper Members using SOFIA/FORCAST and Gemini/TReCS

    NASA Astrophysics Data System (ADS)

    Hankins, M. J.; Lau, R. M.; Morris, M. R.; Sanchez-Bermudez, J.; Pott, J. U.; Adams, J. D.; Herter, T. L.

    2016-08-01

    Since their discovery, the Quintuplet proper members (QPMs) have been somewhat mysterious in nature. Originally dubbed the “cocoon stars” due to their cool featureless spectra, high-resolution near-infrared imaging observations have shown that at least two of the objects exhibit “pinwheel” nebulae consistent with binary systems with a carbon-rich Wolf–Rayet star and O/B companion. In this paper, we present 19.7, 25.2, 31.5, and 37.1 μm observations of the QPMs (with an angular resolution of 3.2″–3.8″) taken with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) in conjunction with high-resolution (∼0.1″–0.2″) images at 8.8 and 11.7 μm from the Thermal-Region Camera Spectrograph (TReCS). DUSTY models of the thermal dust emission of two of the four detected QPMs, Q2 and Q3, are fitted by radial density profiles that are consistent with constant mass-loss rates ({ρ }d\\propto {r}-2). For the two remaining sources, Q1 and Q9, extended structures (∼1″) are detected around these objects in high-resolution imaging data. Based on the fitted dust masses, Q9 has an unusually large dust reservoir ({M}{{d}}={1.3}-0.4+0.8× {10}-3{M}ȯ ) compared to typical dusty Wolf–Rayet stars, which suggests that it may have recently undergone an episode of enhanced mass loss.

  4. Titan's lakes and Mare observed by the Visual and Infrared Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Brown, R. H.; Soderblom, L. A.; Sotin, C.; Barnes, J. W.; Hayes, A. G.; Lawrence, K. J.; Le Mouelic, S.; Rodriguez, S.; Soderblom, J. M.; Baines, K. H.; Buratti, B. J.; Clark, R. N.; Jaumann, R.; Nicholson, P. D.; Stephan, K.

    2012-04-01

    Titan is the only place, besides Earth, that holds stable liquid bodies at its surface. The large Kraken Mare, first seen by ISS [1], was then observed by the radar instrument that discovered a large number of small lakes as well as two other Mare [2]. The liquid nature of these radar-dark features was later confirmed by the specular reflection observed by the Visual and Infrared Mapping Spectrometer (VIMS) over Kraken Mare [3] and by the very low albedo at 5-micron over Ontario Lacus [4]. The three largest lakes are called Mare and are all located in the North Pole area. It is remarkable that most of these lakes have been observed on the North Pole with only one large lake, Ontario lacus, located in the South Pole area. This observation suggests the influence of orbital parameters on the meteorology and the occurrence of rainfalls to refill the depressions [5]. Ethane was detected by the VIMS instrument as one component of Ontario lacus [4]. These lakes and Mare play a key role in Titan's meteorology as demonstrated by recent global circulation models [6]. Determining the composition and the evolution of those lakes has become a primary science objective of the Cassini extended mission. Since Titan entered northern spring in August 2009, the North Pole has been illuminated allowing observations at optical wavelengths. On June 5, 2010 the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed the northern pole area with a pixel size from 3 to 7 km. These observations demonstrate that little of the solar flux at 5-micron is scattered by the atmosphere, which allowed us to build a mosaic covering an area of more than 500,000 km2 that overlaps and complements observations made by the Synthetic Aperture Radar (SAR) in 2007. We find that there is an excellent correlation between the shape of the radar dark area, known as Ligeia Mare and the VIMS 5-micron dark unit. Matching most of the radar shoreline, the 2010 VIMS observations suggest

  5. Mid-infrared Monitoring Observations of Circumstellar Disks with TAO/MIMIZUKU

    NASA Astrophysics Data System (ADS)

    Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Nakamura, Tomohiko; Asano, Kentaro; Uchiyama, Mizuho; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Yoshii, Yuzuru

    2013-07-01

    Mid-infrared variabilities of dust continuum and features in time scale of days to years have been found in circumstellar disks around YSOs and debris disks by multi-epoch studies with recent space missions such as AKARI, WISE, Spitzer, and Herschel (e.g., Dahm+09, Espaillat+11, Flaherty+12, Melis+12). However, physical mechanisms leading to the rapid MIR variabilities are still unclear because of sparse data sampling. More frequent and long-term observations with ground-based MIR instruments are required. Meanwhile, fast fluctuation of atmospheric water vapor affects photometric accuracy in the MIR observations from the ground. In order to monitor the variabilities of a few percent level as detected by the space telescopes, improvements of observation methods are needed. We have been developing a new MIR instrument MIMIZUKU (Kamizuka+12, Miyata+10) mounted on 6.5-m TAO telescope (Yoshii+10), which will be constructed at a 5,640-m altitude site in Atacama, Chile, and 8.2-m Subaru telescope in Hawaii. The MIMIZUKU has unique equipment called Field Stacker which enables simultaneous observations of target and reference objects owing to focusing two separated field-of-views on a same detector. The simultaneity improves the photometric accuracy and realizes stable long-term monitoring. We will carry out MIR monitoring observations of dust emission from the circumstellar disks and the debris disks with the imaging and low-resolution spectroscopic modes of the MIMIZUKU. The time-variable emissions from the YSOs could allow us to reveal formation and destruction mechanism of dust grains in the inner disk region. In observations of debris disks, fresh dust formed by large collisions in a planetary disk is expected to be detected.

  6. Value-added Impact from Future Geostationary Hyperspectral Infrared Sounder Observations on Hurricane Forecasts

    NASA Astrophysics Data System (ADS)

    Li, J.; Schmit, T. J.; Li, Z.; Zhu, F.; Lim, A.; Atlas, R. M.; John, P.

    2015-12-01

    Future geostationary (Geo) advanced InfraRed (IR) sounders have finer spatial, spectral, and temporal resolutions compared with the existing GOES sounders, providing much improved resolving power of atmospheric thermodynamic information. When quantitatively assessing the value-added impact from such instruments over the current sounding systems onboard the Low Earth Orbit (Leo) satellites, the real question is what is the optimal impact using the current assimilation/forecast systems. More specifically, will assimilation of more observations from Geo IR sounders with the current assimilation/forecast systems yield improved forecast as expected? And if so, how to assimilate the high temporal resolution Geo sounding information and what is the impact on forecasts? Taken tropical cyclone (TC) forecasting as an example, this study tries to address these questions through a quick regional Observing System Simulation Experiments (r-OSSE) study. The synthetic observations are simulated from the sample ECMWF T1279 nature run (NR) for Hurricane Sandy (2012), including RAOB, the Leo AIRS, and Geo AIRS. Various experiments were carried out using WRF 3.6.1 and GSI 3.3 to study the impact on Sandy track forecast. And the study shows that a) it is critical to assign an appropriate observational error (observation error covariance matrix - O matrix) in order to show improved positive impacts from Geo AIRS over Leo AIRS; b) cycling of 3/6-hourly shows improved positive impacts over none cycling, but hourly cycling does not show further improvement on forecasts among all experiments, and c) with thinning (120 ~ 240 km), the impacts have the following order: hourly > 3-hourly > 6-hourly > none cycling. These experiments indicate that while more observations may improve forecasts, much more observations are difficult to show further improvement with the current assimilation/forecast system configurations. There exists a tradeoff between the number of observations to be assimilated

  7. Apache Point Observatory's All-Sky Camera: Observing Clouds in the Thermal Infrared

    NASA Astrophysics Data System (ADS)

    Anderson, K. S. J.; Brinkmann, J.; Carr, M.; Woods, D.; Finkbeiner, D. P.; Gunn, J. E.; Loomis, C. L.; Schlegel, D.; Snedden, S.

    2002-12-01

    Cloud cover at Apache Point Observatory is monitored by an all-sky camera system which images clouds in the thermal infrared. Even thin clouds, illuminated by thermal emission from the ground, can be detected. These same clouds are almost invisible at visual wavelengths, especially on moonless nights at this dark-sky observatory site. Our camera system uses an aluminum hyperboloidal mirror to provide a wide-angle view covering most of the sky; it is sensitive to radiation in the 8 to 12 micron wavelength interval. A cloud free atmosphere is fairly transparent in this window; clouds appear as bright structures against the darker sky background. Images are recorded at video rates, then summed and averaged in software to increase system sensitivity. Current all-sky images are available to on-site observers or through the Apache Point Observatory web pages. Cloud information is used to plan observing, make real-time observing decisions, and can provide useful estimates of atmospheric extinction and sky brightness at other wavelengths.

  8. Measurement of evapotranspiration with combined reflective and thermal infrared radiance observations

    NASA Technical Reports Server (NTRS)

    Hope, Allen S.

    1993-01-01

    The broad goal of the research summarized in this report was 'To facilitate the evaluation of regional evapotranspiration (ET) through the combined use of solar reflective and thermal infrared radiance observations.' The specific objectives stated by Goward and Hope (1986) were to: (1) investigate the nature of the relationship between surface temperature (T(sub S)) and the normalized difference vegetation index (NDVI) and develop an understanding of this relationship in terms of energy exchange processes, particularly latent flux heat (LE); (2) develop procedures to estimate large area LE using combined T(sub S) and NDVI observations obtained from AVHRR data; and (3) determine whether measurements derived from satellite observations relate directly to measurements made at the surface or from aircraft platforms. Both empirical and modeling studies were used to develop an understanding of the T(sub S)-NDVI relationship. Most of the modeling was based on the Tergra model as originally proposed by Goward. This model, and modified versions developed in this project, simulates the flows of water and energy in the soil-plant-atmosphere system using meteorological, soil and vegetation inputs. Model outputs are the diurnal course of soil moisture, T(sub S), LE and the other individual components of the surface energy balance.

  9. Observer-based robust finite time H∞ sliding mode control for Markovian switching systems with mode-dependent time-varying delay and incomplete transition rate.

    PubMed

    Gao, Lijun; Jiang, Xiaoxiao; Wang, Dandan

    2016-03-01

    This paper investigates the problem of robust finite time H∞ sliding mode control for a class of Markovian switching systems. The system is subjected to the mode-dependent time-varying delay, partly unknown transition rate and unmeasurable state. The main difficulty is that, a sliding mode surface cannot be designed based on the unknown transition rate and unmeasurable state directly. To overcome this obstacle, the set of modes is firstly divided into two subsets standing for known transition rate subset and unknown one, based on which a state observer is established. A component robust finite-time sliding mode controller is also designed to cope with the effect of partially unknown transition rate. It is illustrated that the reachability, finite-time stability, finite-time boundedness, finite-time H∞ state feedback stabilization of sliding mode dynamics can be ensured despite the unknown transition rate. Finally, the simulation results verify the effectiveness of robust finite time control problem. PMID:26777336

  10. Finite temperature effect in infrared-improved AdS/QCD model with back reaction of bulk vacuum

    NASA Astrophysics Data System (ADS)

    Cui, Ling-Xiao; Fang, Zhen; Wu, Yue-Liang

    2016-06-01

    Based on an IR-improved soft-wall AdS/QCD model for mesons, which provides a consistent prediction for the mass spectra of resonance scalar, pseudoscalar, vector and axial-vector mesons, we investigate its finite temperature effect. By analyzing the spectral function of mesons and fitting it with a Breit-Wigner form, we perform an analysis for the critical temperature of mesons. The back-reaction effects of bulk vacuum are considered and the thermal mass spectral function of resonance mesons is calculated based on the back-reaction improved action. A reasonable melting temperature is found to be T c ≈ 150 ± 7 MeV, which is consistent with the recent results from lattice QCD simulations. Supported by National Nature Science Foundation of China (NSFC)(10975170, 10905084, 10821504), and Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Science

  11. Infrared Radiative Forcing and Atmospheric Lifetimes of Trace Species Based on Observations from UARS

    NASA Technical Reports Server (NTRS)

    Minschwaner, K.; Carver, R. W.; Briegleb, B. P.

    1997-01-01

    Observations from instruments on the Upper Atmosphere Research Satellite (UARS) have been used to constrain calculations of infrared radiative forcing by CH4, CCl2F2 and N2O, and to determine lifetimes Of CCl2F2 and N2O- Radiative forcing is calculated as a change in net infrared flux at the tropopause that results from an increase in trace gas amount from pre-industrial (1750) to contemporary (1992) times. Latitudinal and seasonal variations are considered explicitly, using distributions of trace gases and temperature in the stratosphere from UARS measurements and seasonally averaged cloud statistics from the International Satellite Cloud Climatology Project. Top-of-atmosphere fluxes calculated for the contemporary period are in good agreement with satellite measurements from the Earth Radiation Budget Experiment. Globally averaged values of the radiative forcing are 0.536, 0.125, and 0.108 W m-2 for CH4, CCl2F2, and N2O, respectively. The largest forcing occurs near subtropical latitudes during summer, predominantly as a result of the combination of cloud-free skies and a high, cold tropopause. Clouds are found to play a significant role in regulating infrared forcing, reducing the magnitude of the forcing by 30-40% compared to the case of clear skies. The vertical profile of CCl2F2 is important in determining its radiative forcing; use of a height-independent mixing ratio in the stratosphere leads to an over prediction of the forcing by 10%. The impact of stratospheric profiles on radiative forcing by CH4 and N2O is less than 2%. UARS-based distributions of CCl2F2 and N2O are used also to determine global destruction rates and instantaneous lifetimes of these gases. Rates of photolytic destruction in the stratosphere are calculated using solar ultraviolet irradiances measured on UARS and a line-by-line model of absorption in the oxygen Schumann-Runge bands. Lifetimes are 114 +/- 22 and 118 +/- 25 years for CCl2F2 and N2O, respectively.

  12. High resolution infrared astronomy satellite observations of a selected spiral galaxy

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.

    1991-01-01

    The H I, infrared, CO, H alpha and H beta band observations of M51, the prototypical grand-design spiral galaxy, are used to study the consequences of star formation for the distribution of H I and dust. Using the new Very Large Array (VLA) map of 21 cm emission, the Owens Valley Radio Observatory CO mosaic map, and an H alpha imate, new tests were performed with the idea of Tilanus and Allen that the H I is largely a photodissociation product in star-forming regions. It is confirmed that the H I spiral arms are generally coincident with the H II region arms, and offset downstream from the CO arms. The radial distributions of total gas, H alpha and H I surface density have a simple explanation in the dissociation picture. The distributions also demonstrate how the surface density of H I might be related to the star formation efficiency in molecule-rich galaxies. The large width of the H I regions along the arms compared to that of the giant H II regions can be understood in terms of a simple calculation of the expected size of an H I region associated with a typical giant H II region. The longer lifetime of the stars producing dissociating radiation vs. those producing ionizing radiation and the relatively long molecular formation timescale will also contribute to the greater width of the H I arms if stars are continuously forming on the arms. The lack of detailed coincidence of the H I and H II regions along the inner arms has a variety of possible explanations. Two simple tests were performed to probe the origins of the IRAS emission in M51. First, it was found that the infrared excess (IFE) of M51 is 24, suggesting that a substantial fraction of the infrared emission arises from dust heated by photons which do not originate in massive star-formaing regions. Second, radial cuts through the IRAS bands show that at 12, 25, and 60 microns, the arm-interarm contrast of the IRAS emission is substantially less than that of the H alpha emission, providing further

  13. GEMINI near-infrared spectroscopic observations of young massive stars embedded in molecular clouds

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Abraham, Z.; Ortiz, R.; Rodriguez-Ardila, A.

    2009-03-01

    K-band spectra of young stellar candidates in four Southern hemisphere clusters have been obtained with the Gemini Near-Infrared Spectrograph in Gemini South. The clusters are associated with IRAS sources that have colours characteristic of ultracompact HII regions. Spectral types were obtained by comparison of the observed spectra with those of a near-infrared (NIR) library; the results include the spectral classification of nine massive stars and seven objects confirmed as background late-type stars. Two of the studied sources have K-band spectra compatible with those characteristic of very hot stars, as inferred from the presence of CIV, NIII and NV emission lines at 2.078, 2.116 and 2.100 μm, respectively. One of them, I16177_IRS1, has a K-band spectrum similar to that of Cyg OB2 7, an O3If* supergiant star. The nebular K-band spectrum of the associated Ultra-Compact (UC) HII region shows the s-process [KrIII] and [SeIV] high excitation emission lines, previously identified only in planetary nebula. One young stellar object was found in each cluster, associated with either the main IRAS source or a nearby resolved Midecourse Space eXperiment (MSX) component, confirming the results obtained from previous NIR photometric surveys. The distances to the stars were derived from their spectral types and previously determined JHK magnitudes; they agree well with the values obtained from the kinematic method, except in the case of IRAS 15408-5356, for which the spectroscopic distance is about a factor of 2 smaller than the kinematic value.

  14. Seven Years of Observations of Mid-Tropospheric CO2 from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Olsen, Edward T.

    2010-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 um spectral region with spectral resolution of better than 1200. The AIRS was designed to measure temperature and water vapor profiles and cloud properties for improvement in weather forecast and improved parameterization of climate processes. Currently the AIRS Level 1B Radiance Products are assimilated by NWP centers and have shown considerable forecast improvement. Scientists have also demonstrated accurate retrievals of minor gases from AIRS including Carbon Monoxide, Methane, and Ozone. The excellent sensitivity and stability of the AIRS instrument has recently allowed the AIRS team to successfully retrieve Carbon Dioxide (CO2) concentrations in the mid-troposphere (8-10 km) with a horizontal resolution of 100 km and accuracy of 1-2 ppm. The AIRS retrieves over 15,000 measurements per day and can achieve full global coverage in 30 days. The AIRS CO2 accuracy has been validated against a variety of aircraft measurements in the mid-troposphere and upward looking interferometers. Findings from the AIRS data include higher than expected variability in the mid-troposphere, the presence of a belt of CO2 in the southern hemisphere, and numerous observations of atmospheric circulation including the effects of El Nino/La Nina on the CO2 concentrations in the mid-troposphere. The full mid-tropospheric AIRS CO2 data set is now available at the NASA GES/DISC for almost eight years since AIRS has been operational.

  15. Determination of physical properties of the Asteroid (41) Daphne from interferometric observations in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Matter, Alexis; Delbo, Marco; Ligori, Sebastiano; Crouzet, Nicolas; Tanga, Paolo

    2011-09-01

    We describe interferometric observations of the Asteroid (41) Daphne in the thermal infrared obtained with the Mid-Infrared Interferometric Instrument (MIDI) and the Auxiliary Telescopes (ATs) of the European Southern Observatory (ESO) Very Large Telescope Interferometer (VLTI). We derived the size and the surface thermal properties of (41) Daphne by means of a thermophysical model (TPM), which is used for the interpretation of interferometric data for the first time. From our TPM analysis, we derived a volume equivalent diameter for (41) Daphne of 189 km, using a non-convex 3-D shape model derived from optical lightcurves and adaptive optics images (B. Carry, private communication). On the other hand, when using the convex shape of Kaasalainen et al. (Kaasalainen, M., Mottola, S., Fulchignoni, M. [2002]. Icarus 159, 369-395) in our TPM analysis, the resulting volume equivalent diameter of (41) Daphne is between 194 and 209 km, depending on the surface roughness. The shape of the asteroid is used as an a priori information in our TPM analysis. No attempt is made to adjust the shape to the data. Only the size of the asteroid and its thermal parameters such as, albedo, thermal inertia and roughness are adjusted to the data. We estimated our model systematic uncertainty to be of 4% and of 7% on the determination of the asteroid volume equivalent diameter depending on whether the non-convex or the convex shape is used, respectively. In terms of thermal properties, we derived a value of the surface thermal inertia smaller than 50 J m -2 s -0.5 K -1 and preferably in the range between 0 and ˜30 J m -2 s -0.5 K -1. Our TPM analysis also shows that Daphne has a moderate macroscopic surface roughness.

  16. Finite difference method for solving the Schroedinger equation with band nonparabolicity in mid-infrared quantum cascade lasers

    SciTech Connect

    Cooper, J. D.; Valavanis, A.; Ikonic, Z.; Harrison, P.; Cunningham, J. E.

    2010-12-01

    The nonparabolic Schroedinger equation for electrons in quantum cascade lasers (QCLs) is a cubic eigenvalue problem (EVP) which cannot be solved directly. While a method for linearizing this cubic EVP has been proposed in principle for quantum dots [Hwang et al., Math. Comput. Modell., 40, 519 (2004)] it was deemed too computationally expensive because of the three-dimensional geometry under consideration. We adapt this linearization approach to the one-dimensional geometry of QCLs, and arrive at a direct and exact solution to the cubic EVP. The method is then compared with the well established shooting method, and it is shown to be more accurate and reliable for calculating the bandstructure of mid-infrared QCLs.

  17. X-ray, radio, and infrared observations of the 'rapid burster' /MXB 1730-335/ during 1979 and 1980

    NASA Technical Reports Server (NTRS)

    Lawrence, A.; Cominsky, L.; Lewin, W. H. G.; Oda, M.; Ogawara, Y.; Inoue, H.; Koyama, K.; Makishima, K.; Matsuoka, M.; Murakami, T.

    1983-01-01

    The paper reports partially simultaneous observations of the 'rapid burster' (MXB 1730-335) at X-ray, infrared, and radio wavelengths, covering several hundred hours during 1979 and 1980. None of the authors of this report saw any infrared or radio bursts. On several occasions an absence of infrared bursting was observed during X-ray bursting. On one occasion an absence of X-ray bursting was observed during a radio burst (4.1 GHz) reported by Calla et al. (1979). To date, radio bursts (a total of at least a dozen) have been reported only by Calla et al. (1980). Considering these and other observations summarized here, the reported radio bursts are either unreal or do not bear a simple relation to the X-ray bursts from the 'rapid burster'. The status of the reported infrared bursts also remain ambiguous. Limits to the brightness of any persistent radio source at the position of MXB 1730-335, limits to persistent X-ray emission during an extended X-ray quiet phase, and a measurement of the infrared polarization in the direction of the X-ray source are also reported.

  18. Revised calibration for near- and mid-infrared images from ˜4000 pointed observations with AKARI/IRC

    NASA Astrophysics Data System (ADS)

    Egusa, Fumi; Usui, Fumihiko; Murata, Kazumi; Yamashita, Takuji; Yamamura, Issei; Onaka, Takashi

    2016-04-01

    The Japanese infrared astronomical satellite AKARI performed ˜4000 pointed observations for 16 months until the end of August 2007, when the telescope and instruments were cooled by liquid helium. Observation targets include solar system objects, Galactic objects, local galaxies, and galaxies at cosmological distances. We describe recent updates on calibration processes of near- and mid-infrared images taken by the Infrared Camera (IRC), which has nine photometric filters covering 2-27 μm continuously. Using the latest data reduction toolkit, we created calibrated and stacked images from each pointed observation. About 90% of the stacked images have a position accuracy better than 1{^''.}5. Uncertainties in aperture photometry estimated from a typical standard sky deviation of stacked images are a factor of ˜2-4 smaller than those of AllWISE at similar wavelengths. The processed images, together with documents such as process logs, as well as the latest toolkit are available online.

  19. Optical and infrared observations of the Crab Pulsar and its nearby knot

    NASA Astrophysics Data System (ADS)

    Sandberg, A.; Sollerman, J.

    2009-09-01

    Aims: We study the spectral energy distribution (SED) of the Crab Pulsar and its nearby knot in the optical and in the infrared (IR) regime. We want to investigate how the contribution from the knot affects the pulsar SED in that regime, and examine the evidence for synchrotron self-absorption in the IR. We also draw the attention to the predicted secular decrease in luminosity of the Crab Pulsar, and attempt to investigate this with CCD observations. Methods: We present high-quality UBVRIz, as well as adaptive optics JHK_sL' photometry, achieved under excellent conditions with the FORS1 and NAOS/CONICA instruments at the VLT. We combine these data with re-analyzed archival Spitzer Space Telescope data to construct a SED for the pulsar, and quantify the contamination from the knot. We have also gathered optical imaging data from 1988 to 2008 from several telescopes in order to examine the predicted secular decrease in luminosity. Results: For the Crab Pulsar SED we find a spectral slope of α_ν = 0.27 ± 0.03 in the optical/near-IR regime, when we exclude the contribution from the knot. For the knot itself, we find a much redder slope of α_ν = -1.3 ± 0.1. Our best estimate of the average decrease in luminosity for the pulsar is 2.9 ± 1.6 mmag per year. Conclusions: We have demonstrated the importance of the nearby knot in precision measurements of the Crab Pulsar SED, in particular in the near-IR. We have scrutinized the evidence for the traditional view of a synchrotron self-absorption roll-over in the infrared, and find that these claims are unfounded. We also find evidence for a secular decrease in the optical light for the Crab Pulsar, in agreement with current pulsar spin-down models. However, although our measurements of the decrease significantly improve on previous investigations, the detection is still tentative. We finally point to future observations that can improve the situation significantly. Based on observations made with ESO Telescopes under

  20. Lunar crater ejecta: Physical properties revealed by radar and thermal infrared observations

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Carter, L. M.; Bandfield, J. L.; Tai Udovicic, C. J.; Campbell, B. A.

    2016-07-01

    We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar-detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for >3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages >3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale.

  1. Properties of Small Dark Features Observed in the Pure Near-Infrared and Visible Continua

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Cao, Wenda; Ma, Jun; Hartkorn, Klaus; Jing, Ju; Denker, Carsten; Wang, Haimin

    2005-08-01

    High-resolution images in the visible and near-infrared (NIR) continua at around 1560 nm were obtained of solar active regions NOAA AR 10707 and AR 10486 with the Dunn Solar Telescope (DST) at the National Solar Observatory/Sacramento Peak (NSO/SP) on 2004 December 1 and 2 and 2003 October 29. The images were taken with the high-order adaptive optics (HOAO) system, and the spatial resolution was close to the diffraction limit of the 76 cm aperture DST in both wavelengths. For the 2004 December run, the NIR observations were made with a newly developed Lyot filter system, which was designed at the Center for Solar-Terrestrial Research (CSTR)/New Jersey Institute of Technology (NJIT). The filter has a bandpass of 2.5 Å that allows us to observe the pure NIR continuum at the opacity minimum. Our data show that all dark features in the NIR are also dark in the visible light. There is no evidence showing the existence of so-called dark faculae, i.e., faculae that have negative contrasts in the NIR but positive contrasts in the visible. The negative peak contrasts of these small pores are about 50% in the visible and 25% in the NIR, and their dimensions are in the range of 1"-4".

  2. GLIMPSE Proper: Mid-Infrared Observations of Proper Motion and Variability Towards Galactic Center

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert; Babler, Brian; Churchwell, Ed; Clarkson, Will; Kirkpatrick, Davy; Meade, Marilyn; Whitney, Barbara

    2015-10-01

    We propose to re-image 43.4 square degrees of the Galactic center to measure the proper motions of over fifteen million sources within 5 degrees of Galactic center over the last decade. This stellar sample will be over 20 times larger than the previous optical ground-based measurements and will allow us to constrain the anisotropic stellar velocity dispersion as a function of direction and distance as well as test previous claims of streaming motions associated with the near/far side of the Galactic bar, the X-shaped bar, and the vertically thin extended Long Bar. Not only will this be the largest Galactic bulge proper motion survey to date, it will also be the most uniform as mid-infrared observations are minimally affected by extinction over most of the region. We also expect to find at least 150 high proper motion stars (>100 mas/yr) which could be substellar objects and possible microlensing candidates against the crowded Galactic bulge. We will put constraints on the current production rate of hyper-velocity stars thought to be formed in binary interactions with the supermassive black hole of the Galaxy. Finally, we will be able to identify many new variable stars, particularly in the central 2x1.5 degree region of the Galaxy which has only been observed in a single epoch with Spitzer; we expect to find 1000 new sources with variability amplitudes greater than 0.2 mag.

  3. TOWARD UNDERSTANDING THE ENVIRONMENT OF R MONOCEROTIS FROM HIGH-RESOLUTION NEAR-INFRARED POLARIMETRIC OBSERVATIONS

    SciTech Connect

    Jolin, M.-A.; Bastien, P.; Denni, F.; Lafreniere, D.; Doyon, R.; Voyer, P.

    2010-10-01

    High-resolution H-band imaging polarimetric observations of R Mon obtained at the Canada-France-Hawaii telescope are presented. These data show a centrosymmetric pattern with elongated intensity contours mostly due to the presence of the companion R Mon B. We also consider published R-band data, which show an extended right-angle conical reflection nebula with an offset in the optical peak. We study the circumstellar environment of R Mon with a radiative transfer Monte Carlo code. The best-fitting model obtained succeeds in reproducing the characteristics seen in the data in the two bands simultaneously. The model indicates the presence of relatively small astronomical silicate grains ranging from 0.04 {mu}m to 0.15 {mu}m distributed into three structures: a small disk, an inner envelope, and an outer envelope. The cavity is modeled by a conical structure with a constant low density and we include a 'throat' to produce the offset of the optical peak. Our model predicts a polarization reversal by 90{sup 0} between the R and H bands. Observations show that position angles parallel, perpendicular, and also at other angles to the disk can occur over time in the near-infrared.

  4. Far infrared observations of pre-protostellar sources in Lynds 183

    NASA Astrophysics Data System (ADS)

    Lehtinen, K.; Mattila, K.; Lemke, D.; Juvela, M.; Prusti, T.; Laureijs, R.

    2003-02-01

    Using ISOPHOT maps at 100 and 200 mu m and raster scans at 100, 120, 150 and 200 mu m we have detected four unresolved far-infrared sources in the high latitude molecular cloud L 183. Two of the sources are identified with 1.3 mm continuum sources found by Ward-Thompson et al. (\\cite{wthompson94}, \\cite{wthompson00}) and are located near the temperature minimum and the coincident column density maximum of dust distribution. For these two sources, the ISO observations have enabled us to derive temperatures ( ~ 8.3 K) and masses ( ~ 1.4 and 2.4 Msun). They are found to have masses greater than or comparable to their virial masses and are thus expected to undergo gravitational collapse. We classify them as pre-protostellar sources. The two new sources are good candidates for pre-protostellar sources or protostars within L 183. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  5. Time Variation Observations of Mid-Infrared Spectra of Mira Variables in NEP and LMC

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Miyata, Takashi; Okada, Yoko; Sakon, Itsuki; Tanabe, Toshihiko; Yamamura, Issei

    2004-09-01

    We propose to derive the optical properties of their circumstellar dust grains and dust formation process based on variability observations of mid-infrared (MIR) spectra of oxygen-rich Mira variables with the IRS SL and LL modules. Mass-loss of stars in the asymptotic-giant branch is an important process for the evolution of matter in the Galaxy. However, there are still large uncertainties in the optical properties of silicate grains and the dust formation process in their circumstellar envelopes. Based on variability observations with the ISO of MIR spectra of a Mira variable we were able to derive the dust optical properties and the inner dust shell temperature independently, which have clearly demonstrated the effectiveness of variability observations of MIR spectra. However, they also indicate that the variability and dust properties in Mira variables have diversity and it is quite important to apply the same method to other targets and extend the investigation. We selected 3 target stars in the north ecliptic polar (NEP) region and 2 in the Large Magellanic Cloud (LMC). Both regions are located in the constant viewing zones and all the target stars can be observed for more than 11 months in a year. We propose to make observations in the intervals of 1/5 of the period over a variability cycle. Three targets in the NEP have periods less than 300 days and they can be observed over a variability cycle in Cycle-1. Two target stars in the LMC have periods longer than 500 days and we request multi-cycle observations to cover a variability cycle of the LMC targets. We allow +/-15 days for the NEP stars and +/-30 days for the LMC stars for each observation epoch and thus the timing constraint is not severe. The IRS on board the SST provides a unique opportunity to carry out this study, which enables us to investigate the diversity of properties and formation process of silicate grains in Mira variables and extend our understanding to those in the nearby galaxy LMC.

  6. Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation

    NASA Astrophysics Data System (ADS)

    Sakanoi, Takeshi; Kasaba, Yasumasa; Kagitani, Masato; Nakagawa, Hiromu; Kuhn, Jeff; Okano, Shoichi

    2014-08-01

    We report the development of infrared Echelle spectrograph covering 1 - 4 micron and mid-infrared heterodyne spectrometer around 10 micron installed on the 60-cm telescope at the summit of Haleakala, Hawaii (alt.=3000m). It is essential to carry out continuous measurement of planetary atmosphere, such as the Jovian infrared aurora and the volcanoes on Jovian satellite Io, to understand its time and spatial variations. A compact and easy-to-use high resolution infrared spectrometer provide the good opportunity to investigate these objects continuously. We are developing an Echelle spectrograph called ESPRIT: Echelle Spectrograph for Planetary Research In Tohoku university. The main target of ESPRIT is to measure the Jovian H3+ fundamental line at 3.9 micron, and H2 nu=1 at 2.1 micron. The 256x256 pixel CRC463 InSb array is used. An appropriate Echelle grating is selected to optimize at 3.9 micron and 2.1 micron for the Jovian infrared auroral observations. The pixel scale corresponds to the atmospheric seeing (0.3 arcsec/pixel). This spectrograph is characterized by a long slit field-of-view of ~ 50 arcsec with a spectral resolution is over 20,000. In addition, we recently developed a heterodyne spectrometer called MILAHI on the 60 cm telescope. MILAHI is characterized by super high-resolving power (more than 1,500,000) covering from 7 - 13 microns. Its sensitivity is 2400 K at 9.6 micron with a MCT photo diode detector of which bandwidth of 3000 MHz. ESPRIT and MILAHI is planned to be installed on 60 cm telescope is planned in 2014.

  7. Feeding versus feedback in AGN from near-infrared IFU observations: the case of Mrk 766

    NASA Astrophysics Data System (ADS)

    Schönell, Astor J.; Riffel, Rogemar A.; Storchi-Bergmann, Thaisa; Winge, Claudia

    2014-11-01

    We have mapped the emission-line flux distributions and ratios as well as the gaseous kinematics of the inner 450 pc radius of the type 1 Seyfert galaxy Mrk 766 using integral field near-infrared J- and Kl-band spectra obtained with the Gemini Near Infrared Integral Field Spectrograph at a spatial resolution of 60 pc and velocity resolution of 40 km s-1. Emission-line flux distributions in ionized and molecular gas extend up to ≈ 300 pc from the nucleus. Coronal [S IX] λ1.2523 μm line emission is resolved, being extended up to 150 pc from the nucleus. At the highest flux levels, the [Fe II] λ1.257 μm line emission is most extended to the south-east, where a radio jet has been observed. The emission-line ratios [Fe II] λ1.2570 μm/Paβ and H2λ2.1218 μm/Brγ show a mixture of Starburst and Seyfert excitation; the Seyfert excitation dominates at the nucleus, to the north-west and in an arc-shaped region between 0.2 and 0.6 arcsec to the south-east at the location of the radio jet. A contribution from shocks at this location is supported by enhanced [Fe II]/[P II] line ratios and increased [Fe II] velocity dispersion. The gas velocity field is dominated by rotation that is more compact for H2 than for Paβ, indicating that the molecular gas has a colder kinematics and is located in the galaxy plane. There is about 103 M⊙ of hot H2, implying ≈109 M⊙ of cold molecular gas. At the location of the radio jet, we observe an increase in the [Fe II] velocity dispersion (150 km s-1), as well as both blueshift and redshifts in the channel maps, supporting the presence of an outflow there. The ionized gas mass outflow rate is estimated to be ≈10 M⊙ yr-1, and the power of the outflow ≈0.08 Lbol.

  8. Mars Infrared Spectroscopy: From Theory and the Laboratory To Field Observations

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel (Editor); Mustard, John (Editor); McAfee, John (Editor); Hapke, Bruce (Editor); Ramsey, Michael (Editor)

    2002-01-01

    The continuity and timely implementation of the Mars exploration strategy relies heavily on the ability of the planetary community to interpret infrared spectral data. However, the increasing mission rate, data volume, and data variety, combined with the small number of spectroscopists within the planetary community, will require a coordinated community effort for effective and timely interpretation of the newly acquired and planned data sets. Relevant spectroscopic instruments include the 1996 TES, 2001 THEMIS, 2003 Pancam, 2003 Mini-TES, 2003 Mars Express OMEGA, 2003 Mars Express PFS, and 2005 CFUSM. In light of that, leaders of the Mars spectral community met June 4-6 to address the question: What terrestrial theoretical, laboratory, and field studies are most needed to best support timely interpretations of current and planned visible infrared spectrometer data sets, in light of the Mars Program goals? A primary goal of the spectral community is to provide a reservoir of information to enhance and expand the exploration of Mars. Spectroscopy has a long history of providing the fundamental compositional discoveries in the solar system, from atmospheric constituents to surface mineralogy, from earth-based to spacecraft-based observations. However, such spectroscopic compositional discoveries, especially surface mineralogies, have usually come after long periods of detailed integration of remote observations, laboratory analyses, and field measurements. Spectroscopic information of surfaces is particularly complex and often is confounded by interference of broad, overlapping absorption features as well as confusing issues of mixtures, coatings, and grain size effects. Thus some spectroscopic compositional discoveries have come only after many years of research. However, we are entering an era of Mars exploration with missions carrying sophisticated spectrometers launching about every 2 years. It is critical that each mission provide answers to relevant questions

  9. Feeding versus feedback in AGN from near-infrared IFU observations XI: NGC 2110

    NASA Astrophysics Data System (ADS)

    Diniz, Marlon R.; Riffel, Rogemar A.; Storchi-Bergmann, Thaisa; Winge, Claudia

    2015-10-01

    We present a two-dimensional mapping of the gas flux distributions, as well as of the gas and stellar kinematics in the inner 220 pc of the Seyfert galaxy NGC 2110, using K-band integral field spectroscopy obtained with the Gemini Near-infrared Integral Field Spectrograph at a spatial resolution of ≈24 pc and spectral resolution of ≈40 km s- 1. The H2 λ2.1218 μm emission extends over the whole field of view and is attributed to heating by X-rays from the AGN and/or by shocks, while the Brγ emission is restricted to a bipolar region extending along the south-east-north-west direction. The masses of the warm molecular gas and of the ionized gas are M_H_2≈ 1.4× 10^3 {M_{{⊙}}} and M_{H II}≈ 1.8× 10^6 {M_{{⊙}}}, respectively. The stellar kinematics present velocity dispersions reaching 250 km s-1 and a rotation pattern reaching an amplitude of 200 km s-1. The gas velocity fields present a similar rotation pattern but also additional components that we attribute to inflows and outflows most clearly observed in the molecular gas emission. The inflows are observed beyond the inner 70 pc and are associated with a spiral arm seen in blueshift to the north-east and another in redshift to the south-west. We have estimated a mass inflow rate in warm molecular gas of ≈4.6 × 10-4 M⊙ yr-1. Within the inner 70 pc, another kinematic component is observed in the H2 emission that can be interpreted as due to a bipolar nuclear outflow oriented along the east-west direction, with a mass outflow rate of ≈4.3 × 10-4 M⊙ yr-1 in warm H2.

  10. A spectral analysis of HDE 269445 from optical and infrared observations.

    NASA Astrophysics Data System (ADS)

    Pasquali, A.; Schmutz, W.; Nota, A.; Origlia, L.

    1997-11-01

    We present new, near-IR spectroscopic observations of HDE 269445, which we combine with published HST and IUE ultraviolet data and optical high resolution spectra. We discuss the spectral morphology of the star from UV to near-IR wavelengths, concentrating on profile variations in the UV and optical H and He lines. From a spectroscopic analysis with non-LTE model atmospheres, we derive for HDE 269445: T_*_=34000K, R_*_=43Rsun_, log˙(M)(Msun_/yr)=-4.5 and He/H=0.4/0.6 by number. These parameters are in good agreement with those previously derived by Pasquali et al. (1997ApJ...478..340P) who used only ultraviolet and optical lines. Therefore, our analysis confirms that a combination of optical and infrared lines can be fruitfully used to determine stellar and wind properties when ultraviolet data are not available. Our model calculations only fit the broad component underneath a strong core emission. We interpret the discrepancy between the observed and the model line profiles as the effect of a non-spherical wind which has a hot, fast polar component and a cold, slow equatorial component. The time-variability detected in some H and He lines indicates that the wind geometry may be variable and the star has undergone changes in T_eff_ and ˙(M). These properties are similar to those observed for the galactic LBV AG Carinae by Leitherer et al. (1994ApJ...428..292L) and we may suspect that HDE 269445 is also a Luminous Blue Variable. This could explain why HDE 269445 has defied easy spectral classification, and, although originally classified as a Ofpe/WN9, it has always represented a peculiarity for this spectral type.

  11. Joint Cassini, Galileo and Ground-Based Infrared Observations of Jupiter's Atmosphere

    NASA Astrophysics Data System (ADS)

    Orton, G.; Fisher, B.; Barnard, L.; Edberg, S.; Martin, T.; Spilker, L.; Tamppari, L.; Ustinov, E.; Harrington, J.; Conrath, B.; Gierasch, P.; Deming, D.; Flasar, F. M.; Kunde, V.; Achterberg, R.; Bjoraker, G.; Brasunas, J.; Carlson, R.; Jennings, D.; Nixon, C.; Pearl, J.; Romani, P.; Samuelson, R.; Simon-Miller, A.; Smith, M.; Abbas, M.; Ade, P.; Barucci, A.; Bezard, B.; Courtin, R.; Coustenis, A.; Gautier, D.; Lellouch, E.; Marten, A.; Calcutt, S.; Irwin, P.; Read, P.; Taylor, F.; Owen, T.; Cesarsky, C.; Ferrari, C.; Meyer, J. P.; Travis, L.; Coradini, A.; Prangee, R.; Grossman, K.; Spencer, J.

    2001-11-01

    During the simultanous Galileo and Cassini encounter with Jupiter in December, 2000, and January, 2001, data on its atmosphere were obtained simultaneously by (1) Galileo's Photopolarimeter-Radiometer (PPR) at 27 microns, (2) Cassini's Composite Infrared Spectrometer (CIRS) between 7 and 16 microns, and (3) ground-based imaging from the NASA IRTF between 5 and 24 microns. These data sets mapped temperature structure, minor and trace constituent abundances and the NH3 condensate cloud field. Features observed by the three sets of data included the Great Red Spot (GRS), the merged white oval ``BA'', and 5-micron hot spots. In addition, the IRTF data provided (a) contextual information for planetary-scale and regional phenomena, such as thermal waves and polar airmasses, as well as (b) a study of the evolution of various phenomena. The GRS remains the coldest feature in Jupiter's upper troposphere at temperate or equatorial latitudes, and it is consistent with an upwelling cyclonic vortex. A warm region remains semi-permanently associated with it to the south. Little thermal variability is detectable that can be associated with the 5-micron hot spots. Jupiter exhibits seasonal variability in its stratosphere, and the ``quasiquadrennial oscillation'' of the last 12 years dominates the time variability of the stratosphere. Greater than normal abundances of NH3 gas are associated with regions of substantial cloudiness. The meridional variability of zonally averaged para-H2 abundances is similar to that observed by Voyager IRIS at Jupiter; it is more abundant in the Great Red Spot than in surrouding regions. Implications of these and other observations will be discussed. This work was supported by NASA grants to JPL, GSFC and Cornell, as well as the Galileo and Cassini projects.

  12. THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WIDE-FIELD INFRARED SURVEY EXPLORER/NEOWISE

    SciTech Connect

    Mainzer, A.; Masiero, J.; Bauer, J.; Ressler, M.; Eisenhardt, P.; Grav, T.; Wright, E.; Cutri, R. M.; McMillan, R. S.; Cohen, M.

    2011-08-01

    With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of {approx}10% and {approx}20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 {mu}m and 4.6 {mu}m, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical

  13. Thermal Model Calibration for Minor Planets Observed with Wide-field Infrared Survey Explorer/NEOWISE

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Grav, T.; Masiero, J.; Bauer, J.; Wright, E.; Cutri, R. M.; McMillan, R. S.; Cohen, M.; Ressler, M.; Eisenhardt, P.

    2011-08-01

    With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of ~10% and ~20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 μm and 4.6 μm, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical NEATM model.

  14. Mid-J CO Shock Tracing Observations of Infrared Dark Clouds. III. SLED Fitting

    NASA Astrophysics Data System (ADS)

    Pon, A.; Kaufman, M. J.; Johnstone, D.; Caselli, P.; Fontani, F.; Butler, M. J.; Jiménez-Serra, I.; Palau, A.; Tan, J. C.

    2016-08-01

    Giant molecular clouds contain supersonic turbulence that can locally heat small fractions of gas to over 100 K. We run shock models for low-velocity, C-type shocks propagating into gas with densities between 103 and 105 cm‑3 and find that CO lines are the most important cooling lines. Comparison to photodissociation region (PDR) models indicates that mid-J CO lines (J = 8 \\to 7 and higher) should be dominated by emission from shocked gas. In Papers I and II we presented CO J = 3 \\to 2, 8 \\to 7, and 9 \\to 8 observations toward four primarily quiescent clumps within infrared dark clouds. Here we fit PDR models to the combined spectral line energy distributions and show that the PDR models that best fit the low-J CO emission underpredict the mid-J CO emission by orders of magnitude, strongly hinting at a hot gas component within these clumps. The low-J CO data clearly show that the integrated intensities of both the CO J = 8 \\to 7 and 9 \\to 8 lines are anomalously high, such that the line ratio can be used to characterize the hot gas component. Shock models are reasonably consistent with the observed mid-J CO emission, with models with densities near {10}4.5 cm‑3 providing the best agreement. Where this mid-J CO is detected, the mean volume filling factor of the hot gas is 0.1%. Much of the observed mid-J CO emission, however, is also associated with known protostars and may be due to protostellar feedback.

  15. Toward the Direct Measurement of Coronal Magnetic Fields: An Airborne Infrared Spectrometer for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, J.; DeLuca, E. E.; Golub, L.; Cheimets, P.

    2014-12-01

    The solar magnetic field enables the heating of the corona and provides its underlying structure. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections (CME) and provides the ultimate source of energy for space weather. Therefore, direct measurements of the coronal magnetic field have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of coronal field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind. While current instruments routinely observe only the photospheric and chromospheric magnetic fields, a proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are four forbidden magnetic dipole transitions between 2 and 4 μm. The airborne system will consist of a telescope, grating spectrometer, and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the August 2017 total solar eclipse. The project incorporates several optical engineering challenges, centered around maintaining adequate spectral and spatial resolution in a compact and inexpensive package and on a moving platform. Design studies are currently underway to examine the tradeoffs between various optical geometries and control strategies for the pointing/stabilization system. The results will be presented and interpreted in terms of the consequences for the scientific questions. In addition, results from a laboratory prototype and simulations of the final system will be presented.

  16. Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Emery, J. P.; Fernández, Y. R.; Kelley, M. S. P.; Warden (nèe Crane), K. T.; Hergenrother, C.; Lauretta, D. S.; Drake, M. J.; Campins, H.; Ziffer, J.

    2014-05-01

    Near-Earth Asteroids (NEAs) have garnered ever increasing attention over the past few years due to the insights they offer into Solar System formation and evolution, the potential hazard they pose, and their accessibility for both robotic and human spaceflight missions. Among the NEAs, carbonaceous asteroids hold particular interest because they may contain clues to how the Earth got its supplies of water and organic materials, and because none has yet been studied in detail by spacecraft. (101955) Bennu is special among NEAs in that it will not only be visited by a spacecraft, but the OSIRIS-REx mission will also return a sample of Bennu’s regolith to Earth for detailed laboratory study. This paper presents analysis of thermal infrared photometry and spectroscopy that test the hypotheses that Bennu is carbonaceous and that its surface is covered in fine-grained (sub-cm) regolith. The Spitzer Space Telescope observed Bennu in 2007, using the Infrared Spectrograph (IRS) to obtain spectra over the wavelength range 5.2-38 μm and images at 16 and 22 μm at 10 different longitudes, as well as the Infrared Array Camera (IRAC) to image Bennu at 3.6, 4.5, 5.8, and 8.0 μm, also at 10 different longitudes. Thermophysical analysis, assuming a spherical body with the known rotation period and spin-pole orientation, returns an effective diameter of 484 ± 10 m, in agreement with the effective diameter calculated from the radar shape model at the orientation of the Spitzer observations (492 ± 20 m, Nolan, M.C., Magri, C., Howell, E.S., Benner, L.A.M., Giorgini, J.D., Hergenrother, C.W., Hudson, R.S., Lauretta, D.S., Margo, J.-L., Ostro, S.J., Scheeres, D.J. [2013]. Icarus 226, 629-640) and a visible geometric albedo of 0.046 ± 0.005 (using Hv = 20.51, Hergenrother, C.W. et al. [2013]. Icarus 226, 663-670). Including the radar shape model in the thermal analysis, and taking surface roughness into account, yields a disk-averaged thermal inertia of 310 ± 70 J m-2 K-1 s-1

  17. Finite Element Modeling of Ground Deformation and Gravity Data Observed at Mt Etna During the 1993-1997 Inflation Phase

    NASA Astrophysics Data System (ADS)

    Ganci, G.; Currenti, G.; Del Negro, C.

    2006-12-01

    Elastic finite element models are applied to investigate the effects of topography and medium heterogeneities on the surface deformation and the gravity field produced by volcanic pressure sources. Changes in the gravity field cannot be interpreted only in terms of gain of mass disregarding the deformations of the rocks surrounding the source. Contributions to gravity variations depend also on surface and subsurface mass redistribution driven by dilation of the volcanic source. Both ground deformation and gravity changes were firstly evaluated by solving a coupled axial symmetric problem to estimate the effects of topography and medium heterogeneities. Numerical results show significant discrepancies in the ground deformation and gravity field compared to those predicted by analytical solutions, which disregard topography, elastic heterogeneities and density subsurface structures. With this in mind, we reviewed the expected gravity changes accompanying the 1993- 1997 inflation phase on Mt Etna by setting up a fully 3D finite element model in which we used the real topography of Etna volcano to include the geometry and seismic tomography data to infer crustal heterogeneities. The inflation phase was clearly detected by different geodetic techniques (EDM, GPS, SAR and leveling data) that showed a uniform expansion of the overall volcano edifice. When the gravity data are integrated with ground deformation data and a coupled modeling is solved, a mass intrusion is expected at depth to justify both ground deformation and gravity observation. Our findings highlighted two main points. Firstly, geodetic and gravity data, which independently reflect the state of volcano, need to be jointly modeled in order to obtain a reliable estimate of the depth and density of the intrusion. Secondly, the application of finite element methods allows for a more accurate modeling procedure, which might provide sensible insight into volcanic source definition.

  18. Infrared observations and laboratory simulations of interstellar CH_4_ and SO_2_.

    NASA Astrophysics Data System (ADS)

    Boogert, A. C. A.; Schutte, W. A.; Helmich, F. P.; Tielens, A. G. G. M.; Wooden, D. H.

    1997-02-01

    Interstellar CH_4_ may consume a fair amount of the carbon budget in dense molecular clouds, but probably less than CO, CH_3_OH, and CO_2_. However, it can only be observed at wavelength regions in the infrared that are heavily affected by the earth atmosphere. With new space and airborne missions (e.g. ISO, SOFIA) in mind we have studied the near infrared absorption spectra of solid and gaseous CH_4_. We obtained laboratory spectra of the ν_4_ deformation mode (1302cm^-1^, 7.68μm) of solid CH_4_ in astrophysically relevant mixtures. We found that the peak position and width of this absorption band vary strongly as a function of molecular environment, compared to temperature and particle shape effects. Hence, observations of this feature will provide a powerful probe of the molecular composition of interstellar ices. Also the gas phase CH_4_ ro-vibrational spectrum of the same band has been calculated. Using observed physical conditions around the protostar W 33A, we show that unresolved gaseous CH_4_ lines are detectable (at the 2-5% level) at a resolution R>1000, when the column density N>=10^16^ cm^-2^. An astrophysically relevant molecule with a very strong transition in the same wavelength regime, is SO_2_. We studied the ν _3_ asymmetric stretching mode (1319 cm^-1^, 7.58 μm) of solid SO_2_ in several mixtures, revealing that the peak position, width and detailed profile of this band are very sensitive to the molecular environment. Besides probing the composition of ice mantles, observations of solid SO_2_ will provide important information on the sulfur budget locked up in grain mantles, which is currently poorly known. We compare the laboratory and calculated spectra of CH_4_ and SO_2_ with previously published ground based spectra and new airborne observations of young stellar objects in the 7-8μm region. W 33A, NGC 7538 : IRS1 and IRS9 show a feature near 7.68μm that is consistent with absorption by solid CH_4_ or the Q-branch of gaseous CH_4_. The

  19. Evolution of Titan's Lakes and Seas: Insights from Recent Infrared Observations

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Seignovert, B.; Lawrence, K.; Barnes, J. W.; Brown, R. H.; Hayes, A.; Le Mouelic, S.; Baines, K. H.; Buratti, B. J.; Clark, R. N.; Nicholson, P. D.

    2013-12-01

    Titan's North Pole has been illuminated since the spring equinox in August 2009, allowing optical remote sensing instruments to acquire images of the lakes and seas that were discovered by the radar instrument earlier in the Cassini mission [1]. The illumination geometry continually improves with the incidence angle decreasing to its minimum at the summer solstice in 2017. Combined with highly inclined flybys that allow for small values of the emission angle, the 2013 observations are much less affected by the haze scattering because the optical path through the atmosphere is much shorter. The Visual and Infrared Mapping Spectrometer (VIMS) can observe Titan's surface in seven infrared atmospheric windows between 0.96- and 5-μm. This study describes observations acquired during the recent T93 flyby on July 26, 2013. The footprint ranges from 10 km/pixel to 3 km/pixel. Maps of the three large seas (Ligeia Mare, Punga Mare, and Kraken Mare) at seven different wavelengths are being constructed and a mosaic of the lake area is being assembled. Ligeia Mare was previously imaged by the VIMS in June 2010 [2]. A preliminary analysis of the 2-μm map suggests that the shoreline has not evolved since 2010. The shape of the 2- μm atmospheric window will be compared between the two images and between the mare and the shore to investigate whether liquid ethane is present as is the case on Ontario lacus [3]. The lake area located between 0 and 90W was imaged with a resolution that allows comparison with the radar images. A preliminary comparison between the two data sets shows a very strong correlation. One part of Punga mare and a lake known as Kivu lacus were acquired on the same image. The northeastern part of Punga Mare seems entailed by a river network. No connections between Punga mare and Kivu lacus are observed on the VIMS image. Kivu lacus seems to lie in the center of a circular depression whose limit is bright at 2-μm. Equipotential maps are built from the

  20. Theory and observations of Alfvén solitons in the finite beta magnetospheric plasma

    NASA Astrophysics Data System (ADS)

    Patel, V. L.; Dasgupta, Brahmananda

    1987-08-01

    A nonlinear Schrödinger equation which governs the nonlinear evolution of Alfvén wave in a hot, two-fluid plasma, is derived by using a modified version of reductive perturbation theory. The effect of coupling with the density fluctuation is taken into account in the calculation of nonlinear frequency shift. The theory is applied to explain recent observations of the solitary Alfvén waves in space plasma. For the observational analysis, an extensive search was conducted by analyzing magnetic field data from geostationary satellites GOES 2, 3, and 5 in the earth's magnetosphere at 6.6 earth radii. In data covering a period of August 1979-January 1984, we have found occurrence of 292 solitary wave events. Out of these events, 108 events are classified as Alfvénic solitons (perturbations perpendicular to the ambient field) and 184 mixed mode solitons (perturbations perpendicular and parallel to the ambient field.) No event for compressional mode soliton was found. We believe, this is the first time, such analysis and observations of solitary waves in space plasma have been performed. A statistical analysis has been carried out to compare the results of theory and observations. A range of unstable wave numbers has been determined for the Alfvénic soliton in the magnetosphere. Permanent address: Saha Institute of Nuclear Physics, 92 Acharya P.C. Road, Calcutta, 700009 India.

  1. Stellar radial velocities using a laser frequency comb: Application and observations in the near infrared

    NASA Astrophysics Data System (ADS)

    Osterman, Steve

    2011-04-01

    The laser frequency comb presents the potential for a revolutionary increase in radial velocity precision by providing a calibration reference of unprecedented quality in terms of wavelength knowledge, repeatability, number, density, and regularity of lines. However, implementation has proven challenging, particularly in the near infrared. Nevertheless, with the right combination of comb and instrument, promising first steps have been taken, allowing for the derivation of stellar radial velocities in a wavelength range which is well suited to the observation of M dwarfs. These stars, with low mass and low luminosity, are the most prevalent class of stars within 10 parsecs and can be expected to yield a higher reflex velocity for a terrestrial mass planet in the liquid water habitable zone than would be the case with a more massive star such as our own. We present the design and both laboratory and on-sky performance of an H-band laser frequency comb used in conjunction with the Penn State Pathfinder testbed spectrograph and discuss lessons learned and plans for follow on testing with both the Pathfinder and the CSHELL instruments.

  2. Thermal infrared and visual observations of a water ice lag in the Mars southern summer

    USGS Publications Warehouse

    Titus, T.N.

    2005-01-01

    We present thermal infrared and visual evidence for the existence of water ice lags in the early southern summer. The observed H2O-ice lags lay in and near a chasma and appears to survive between 6-8 sols past the sublimation of the CO2. Possible sources of the H2O that compose the lag are (1) atmospheric H2O that is incorporated into the seasonal cap during condensation, (2) cold trapping of atmospheric water vapor onto the surface of the cap in the spring, or (3) a combination of the 2 processes where water is released from the sublimating cap only to be transported back over the cap edge and cold trapped. We refer to this later process as the "Houben" effect which may enrich the amount of water contained in the seasonal cap at 85??S by as much as a factor of 15. This phenomenon, which has already been identified for the northern retreating cap, may present an important water transport mechanism in the Southern Hemisphere.

  3. Far-infrared observations of a star-forming region in the Corona Australis dark cloud

    NASA Technical Reports Server (NTRS)

    Cruz-Gonzalez, I.; Mcbreen, B.; Fazio, G. G.

    1984-01-01

    A high-resolution far-IR (40-250-micron) survey of a 0.9-sq-deg section of the core region of the Corona Australis dark cloud (containing very young stellar objects such as T Tauri stars, Herbig Ae and Be stars, Herbig-Haro objects, and compact H II regions) is presented. Two extended far-IR sources were found, one associated with the Herbig emission-line star R CrA and the other with the irregular emission-line variable star TY CrA. The two sources have substantially more far-IR radiation than could be expected from a blackbody extrapolation of their near-IR fluxes. The total luminosities of these sources are 145 and 58 solar luminosity, respectively, implying that the embedded objects are of intermediate or low mass. The infrared observations of the sources associated with R CrA and TY CrA are consistent with models of the evolution of protostellar envelopes of intermediate mass. However, the TY CrA source appears to have passed the evolutionary stage of expelling most of the hot dust near the central source, yielding an age of about 1 Myr.

  4. High resolution far-infrared observations of the evolved H II region M16

    SciTech Connect

    McBreen, B.; Fazio, G.G.; Jaffe, D.T.

    1982-03-01

    M16 is an evolved, extremely density bounded H II region, which now consists only of a series of ionization fronts at molecular cloud boundaries. The source of ionization is the OB star cluster (NGC 6611) which is about 5 x 10/sup 6/ years old. We used the CFA/UA 102 cm balloon-borne telescope to map this region and detected three far-infrared (far-IR) sources embedded in an extended ridge of emission. Source I is an unresolved far-IR source embedded in a molecular cloud near a sharp ionization front. An H/sub 2/O maser is associated with this source, but no radio continuum emission has been observed. The other two far-IR sources (II and III) are associated with ionized gas-molecular cloud interfaces, with the far-IR radiation arising from dust at the boundary heated by the OB cluster. Source II is located at the southern prominent neutral intrusion with its associated bright rims and dark ''elephant trunk'' globules that delineate the current progress of the ionization front into the neutral material, and Source III arises at the interface of the northern molecular cloud fragment.

  5. NEAR-INFRARED OBSERVATIONS OF COMET-LIKE ASTEROID (596) SCHEILA

    SciTech Connect

    Yang Bin; Hsieh, Henry E-mail: hsieh@ifa.hawaii.edu

    2011-08-20

    Asteroid (596) Scheila was reported to exhibit a cometary appearance and an increase in brightness on UT 2010 December 10.4. We used the IRCS spectrograph on the 8 m Subaru telescope to obtain medium-resolution spectra of Scheila in the HK band (1.4-2.5 {mu}m) and low-resolution spectra in the KL band (2.0-4.0 {mu}m) on UT 2010 December 13 and 14. In addition, we obtained low-resolution spectroscopy using the SpeX spectrograph on the 3 m NASA Infrared Telescope Facility on UT 2011 January 4 and 5. The spectrum of Scheila shows a consistent red slope from 0.8 to 4.0 {mu}m with no apparent absorption features, resembling spectra of D-type asteroids. An intimate mixing model suggests that the amount of water ice that might be present on the surface of Scheila is no more than a few percent. The spectrum of the Tagish Lake chondrite matches the asteroid's spectrum at shorter wavelengths ({lambda} < 2.5 {mu}m), but no hydration features are observed at longer wavelengths on Scheila. Our analysis corroborates other studies suggesting that the comet-like activity of Scheila is likely not caused by the sublimation of water ice. The dust coma and tail may be results of a recent impact event.

  6. Mid-J CO shock tracing observations of infrared dark clouds. I.

    NASA Astrophysics Data System (ADS)

    Pon, A.; Caselli, P.; Johnstone, D.; Kaufman, M.; Butler, M. J.; Fontani, F.; Jiménez-Serra, I.; Tan, J. C.

    2015-05-01

    Infrared dark clouds (IRDCs) are dense, molecular structures in the interstellar medium that can harbour sites of high-mass star formation. IRDCs contain supersonic turbulence, which is expected to generate shocks that locally heat pockets of gas within the clouds. We present observations of the CO J = 8-7, 9-8, and 10-9 transitions, taken with the Herschel Space Observatory, towards four dense, starless clumps within IRDCs (C1 in G028.37+00.07, F1 and F2 in G034.43+0007, and G2 in G034.77-0.55). We detect the CO J = 8-7 and 9-8 transitions towards three of the clumps (C1, F1, and F2) at intensity levels greater than expected from photodissociation region (PDR) models. The average ratio of the 8-7 to 9-8 lines is also found to be between 1.6 and 2.6 in the three clumps with detections, significantly smaller than expected from PDR models. These low line ratios and large line intensities strongly suggest that the C1, F1, and F2 clumps contain a hot gas component not accounted for by standard PDR models. Such a hot gas component could be generated by turbulence dissipating in low velocity shocks. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. Observation of electric-dipole-forbidden infrared transitions in cold molecular ions

    NASA Astrophysics Data System (ADS)

    Germann, Matthias; Tong, Xin; Willitsch, Stefan

    2014-11-01

    Spectroscopic transitions in atoms and molecules that are not allowed within the electric-dipole approximation, but occur because of higher-order terms in the interaction between matter and radiation, are termed dipole-forbidden. These transitions are extremely weak and therefore exhibit very small natural linewidths. Dipole-forbidden optical transitions in atoms form the basis of next-generation atomic clocks and of high-fidelity qubits used in quantum information processors and quantum simulators. In molecules, however, such transitions are much less characterized, reflecting the considerable challenges to address them. Here, we report direct observation of dipole-forbidden, electric-quadrupole-allowed infrared (IR) transitions in a molecular ion. Their detection was enabled by the very long interrogation times of several minutes afforded by the sympathetic cooling of individual quantum-state-selected molecular ions into the nearly perturbation-free environment of a Coulomb crystal. The present work paves the way for new mid-IR frequency standards and precision spectroscopic measurements on single molecules in the IR domain.

  8. SMARTS Optical and Near-Infrared Observations of Fermi LAT Blazars

    NASA Astrophysics Data System (ADS)

    Buxton, Michelle; Isler, J.; Urry, C. M.; Hasan, I.; MacPherson, E.; Bailyn, C. D.; Coppi, P. S.; Gamma-ray Space Telescope, Fermi

    2014-01-01

    Since 2008, we have been monitoring southern-hemisphere blazars at optical and near-infrared (OIR) wavelengths using the SMARTS 1.3m+ANDICAM instrument. Our targets are observed simultaneously with the Fermi Gamma-ray telescope providing us with an opportunity to probe the relative contribution of the thermal and non-thermal emission to the broad-band spectral energy distribution. In this poster we present our results which include OIR light curves that, in some cases, show ‘orphan’ flares in OIR fluxes that are not present in gamma-rays. In addition we see evidence for intra-night variability in some blazars. Discrete correlation functions of simultaneous gamma-ray and OIR fluxes suggest there is no lag or lead time between OIR and gamma-ray fluxes during some flares. Finally, color-magnitude diagrams of some blazars show clear changes in color over flares allowing us to study the evolution of accretion disk vs. jet emission during flaring events.

  9. Observation of Water-Protein Interaction Dynamics with Broadband Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    De Marco, Luigi; Haky, Andrew; Tokmakoff, Andrei

    Two-dimensional infrared (2D IR) spectroscopy has proven itself an indispensable tool for studying molecular dynamics and intermolecular interactions on ultrafast timescales. Using a novel source of broadband mid-IR pulses, we have collected 2D IR spectra of protein films at varying levels of hydration. With 2D IR, we can directly observe coupling between water's motions and the protein's. Protein films provide us with the ability to discriminate hydration waters from bulk water and thus give us access to studying water dynamics along the protein backbone, fluctuations in the protein structure, and the interplay between the molecular dynamics of the two. We present two representative protein films: poly-L-proline (PLP) and hen egg-white lysozyme (HEWL). Having no N-H groups, PLP allows us to look at water dynamics without interference from resonant energy transfer between the protein N-H stretch and the water O-H stretch. We conclude that at low hydration levels water-protein interactions dominate, and the water's dynamics are tied to those of the protein. In HEWL films, we take advantage of the robust secondary structure to partially deuterate the film, allowing us to spectrally distinguish the protein core from the exterior. From this, we show that resonant energy transfer to water provides an effective means of dissipating excess energy within the protein, while maintaining the structure. These methods are general and can easily be extended to studying specific protein-water interactions.

  10. Joint US-Japan Observations with the Infrared Space Observatory (ISO): Deep Surveys and Observations of High-Z Objects

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    1997-01-01

    Several important milestones were passed during the past year of our ISO observing program: (1) Our first ISO data were successfully obtained. ISOCAM data were taken for our primary deep field target in the 'Lockman Hole'. Thirteen hours of integration (taken over 4 contiguous orbits) were obtained in the LW2 filter of a 3 ft x 3 ft region centered on the position of minimum HI column density in the Lockman Hole. The data were obtained in microscanning mode. This is the deepest integration attempted to date (by almost a factor of 4 in time) with ISOCAM. (2) The deep survey data obtained for the Lockman Hole were received by the Japanese P.I. (Yoshi Taniguchi) in early December, 1996 (following release of the improved pipeline formatted data from Vilspa), and a copy was forwarded to Hawaii shortly thereafter. These data were processed independently by the Japan and Hawaii groups during the latter part of December 1996, and early January, 1997. The Hawaii group made use of the U.S. ISO data center at IPAC/Caltech in Pasadena to carry out their data reduction, while the Japanese group used a copy of the ISOCAM data analysis package made available to them through an agreement with the head of the ISOCAM team, Catherine Cesarsky. (3) Results of our LW2 Deep Survey in the Lockman Hole were first reported at the ISO Workshop "Taking ISO to the Limits: Exploring the Faintest Sources in the Infrared" held at the ISO Science Operations Center in Villafranca, Spain (VILSPA) on 3-4 February, 1997. Yoshi Taniguchi gave an invited presentation summarizing the results of the U.S.-Japan team, and Dave Sanders gave an invited talk summarizing the results of the Workshop at the conclusion of the two day meeting. The text of the talks by Taniguchi and Sanders are included in the printed Workshop Proceedings, and are published in full on the Web. By several independent accounts, the U.S.-Japan Deep Survey results were one of the highlights of the Workshop; these data showed

  11. Observing Infrared Emission Lines of Neutron-Capture Species in Planetary Nebulae: New Detections with IGRINS

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet L.; Sterling, N. C.; Kaplan, Kyle F.; Bautista, Manuel A.

    2015-08-01

    As the former envelopes of evolved stars, planetary nebulae (PNe) present an opportunity to study slow neutron-capture reactions (the “s-process”) during the AGB. Such studies differ from those of AGB stars in two ways. First, PNe represent the end point of self-enrichment and dredge-up in the star and most of its mass return to the ISM, enabling us to infer the nucleosynthetic yield of a specific element. Second, some s-process products are observable in PNe but difficult or impossible to observe in cool stars. These include some species with nuclear charge Z in the 30’s for which the major synthesis sites are uncertain. Optical emission lines of trans-iron species have been observed in some PNe, but are faint and can suffer from blending with lines of more abundant elements (Péquignot & Baluteau 1994, A&A, 283, 593; Sharpee et al. 2007, ApJ, 659, 1265). Observing infrared transitions from low energy states has proven to be a fruitful alternate approach. We used K-band lines of Se (Z=34) and Kr (Z=36) to study the demographics of their abundances in a large sample of Milky Way PNe (Dinerstein 2001, ApJ, 550, L223; Sterling & Dinerstein 2008, ApJ, 174, 158; Sterling, Porter, & Dinerstein 2015, submitted). An L-band emission line of Zn identified by Dinerstein & Geballe (2001, ApJ, 562, 515) and further observed by Smith, Zijlstra, & Dinerstein 2014 (MNRAS, 441, 3161), can be used as a tracer of the Fe-group, enabling determinations of the key stellar population diagnostic ratio [alpha/Fe] in PNe (see poster by Dinerstein et al., Focus Meeting 4). Using IGRINS, a high spectral resolution H and K band spectrometer (Park & Jaffe et al. 2014, Proc SPIE, 9147), we have discovered several new lines not previously reported in any astronomical object. Our detection of an H-band line of Rb (Z=37) confirms previous claims of optical Rb detections and indicates enrichment by a factor of ~4 in the PN NGC 7027 (Sterling, Dinerstein, Kaplan, & Bautista, in preparation

  12. Far-infrared observations of a luminous dust-shrouded source in the nucleus of NGC 4945

    NASA Technical Reports Server (NTRS)

    Brock, David; Joy, Marshall; Lester, Daniel F.; Harvey, Paul M.; Ellis, H. Benton, Jr.

    1988-01-01

    High-resolution far-infrared observations of the galaxy NGC 4945 have been obtained from the Kuiper Airborne Observatory. Using new observational techniques and nonlinear deconvolution routines, it is found that virtually all of the far-infrared luminosity originates from a nuclear source no larger than 12 arcsec x 9 arcsec (225 pc x 170 pc) in extent. This size constraint, coupled with the far-infrared dust temperature, indicates that the source is deeply embedded in dust: the lower limit for the 100 micron optical depth is 0.35, which is by far the largest yet measured in an external galaxy. Published optical spectra of NGC 4945 reveal a heavily obscured nonthermal source which exhibits broad line profiles typical of a Seyfert 2 active nucleus; it is concluded that the far-infrared emission is probably due to thermal radiation from dust grains surrounding the nonthermal nuclear source. A compact cluster of massive young stars may also contribute to the infrared luminosity, but the evidence for such star-forming activity is weak.

  13. In-situ stressing of rock: Observation of infrared emission prior to failure

    NASA Astrophysics Data System (ADS)

    Dahlgren, R.; Freund, F. T.; Momayez, M.; Bleier, T. E.; Dunson, C.; Joggerst, P.; Jones, K.; Wang, S.

    2009-12-01

    Blocks of igneous rocks such as anorthosite and granite subjected at one end to uniaxial stress have been shown to emit a small but distinct excess amount of infrared (IR) light (Freund, F. T., et al, JASTP, 71, 2009). This anomalous IR emission arises from the radiative de-excitation of electron vacancy defects, which, upon stress-activation, flow into the unstressed portion and recombine at the surface. This non-thermal IR emission occurs in the 8 μm to 14 μm wavelength region. Field experiments are performed by slowly stressing large boulders and monitoring the IR emission in situ with a Bruker EM27 Fourier Transform Infrared (FTIR) spectrometer. The boulders are prepared by drilling four blind holes into the rock, 50-100 cm deep, in an array roughly parallel to, and behind, the surface from where the IR emission is monitored. Any debris and water is blown out of the boreholes with compressed air, and the rock is given time to dry and relax from drilling-induced stresses. The holes are then filled with grout that expands upon curing, creating an increasing radial pressure of up to 5 × 103 t/m2. The experiments were carried out with two large granite boulders, one of about 30 t of hard (over 150 MPa) granite at the University of Arizona’s Henry "Hank" Grunstedt San Xavier Mining Laboratory, located in the copper mining district near Tucson, AZ and the other of about 7 t of weathered granite in the Sierra Nevada foothills near Oakhurst, CA. The Bruker EM27 FTIR spectrometer equipped with a 20 cm reflective telescope collects the IR emission from a safe distance at a rate of a full 4-16 µm spectrum every 30 sec. After recording baseline data, the grout was mixed with water and poured into the holes as IR emission was monitored continuously until the experiment was terminated after rock failure. The time of failure is noted whenever the first acoustic or visual cues are sensed from the boulder. The IR data shows that after a period of quiescence, pronounced

  14. Observational studies on the near-infrared unidentified emission bands in galactic H II regions

    SciTech Connect

    Mori, Tamami I.; Onaka, Takashi; Sakon, Itsuki; Ohsawa, Ryou; Bell, Aaron C.; Ishihara, Daisuke; Shimonishi, Takashi

    2014-03-20

    Using a large collection of near-infrared spectra (2.5-5.4 μm) of Galactic H II regions and H II region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 μm features, most spectra show a relatively weak emission feature at 5.22 μm with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 μm band (previously reported). By careful analysis, we find good correlations between the 5.25 μm band and both the aromatic hydrocarbon feature at 3.3 μm and the aliphatic hydrocarbon features at around 3.4-3.6 μm. The present results give us convincing evidence that the astronomical 5.25 μm band is associated with C-H vibrations, as suggested by previous studies, and show its potential to probe the PAH size distribution. The analysis also shows that the aliphatic-to-aromatic ratio of I {sub 3.4-3.6} {sub μm}/I {sub 3.3} {sub μm} decreases against the ratio of the 3.7 μm continuum intensity to the 3.3 μm band, I {sub cont,} {sub 3.7} {sub μm}/I {sub 3.3} {sub μm}, which is an indicator of the ionization fraction of PAHs. The midinfrared color of I {sub 9} {sub μm}/I {sub 18} {sub μm} also declines steeply against the ratio of the hydrogen recombination line Brα at 4.05 μm to the 3.3 μm band, I {sub Brα}/I {sub 3.3} {sub μm}. These facts indicate possible dust processing inside or at the boundary of ionized gas.

  15. Variation in sunspot properties between 1999 and 2011 as observed with the Tenerife Infrared Polarimeter

    NASA Astrophysics Data System (ADS)

    Rezaei, R.; Beck, C.; Schmidt, W.

    2012-05-01

    Aims: We study the variation in the magnetic field strength and the umbral intensity of sunspots during the declining phase of the solar cycle No. 23 and in the beginning of cycle No. 24. Methods: We analyze a sample of 183 sunspots observed from 1999 until 2011 with the Tenerife Infrared Polarimeter (TIP) at the German Vacuum Tower Telescope (VTT). The magnetic field strength is derived from the Zeeman splitting of the Stokes-V signal in one near-infrared spectral line, either Fe i 1564.8 nm, Fe i 1089.6 nm, or Si i 1082.7 nm. This avoids the effects of the unpolarized stray light from the field-free quiet Sun surroundings that can affect the splitting seen in Stokes-I in the umbra. The minimum umbral continuum intensity and umbral area are also measured. Results: We find that there is a systematic trend for sunspots in the late stage of the solar cycle No. 23 to be weaker, i.e., to have a smaller maximum magnetic field strength than those at the start of the cycle. The decrease in the field strength with time of about 94 Gyr-1 is well beyond the statistical fluctuations that would be expected because of the larger number of sunspots close to cycle maximum (14 Gyr-1). In the same time interval, the continuum intensity of the umbra increases with a rate of 1.3 (±0.4)% of Ic yr-1, while the umbral area does not show any trend above the statistical variance. Sunspots in the new cycle No. 24 show higher field strengths and lower continuum intensities than those at the end of cycle No. 23, interrupting the trend. Conclusions: Sunspots have an intrinsically weaker field strength and brighter umbrae at the late stages of solar cycles compared to their initial stages, without any significant change in their area. The abrupt increase in field strength in sunspots of the new cycle suggests that the cyclic variations are dominating over any long-term trend that continues across cycles. We find a slight decrease in field strength and an increase in intensity as a long

  16. Observational Studies on the Near-infrared Unidentified Emission Bands in Galactic H II Regions

    NASA Astrophysics Data System (ADS)

    Mori, Tamami I.; Onaka, Takashi; Sakon, Itsuki; Ishihara, Daisuke; Shimonishi, Takashi; Ohsawa, Ryou; Bell, Aaron C.

    2014-03-01

    Using a large collection of near-infrared spectra (2.5-5.4 μm) of Galactic H II regions and H II region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 μm features, most spectra show a relatively weak emission feature at 5.22 μm with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 μm band (previously reported). By careful analysis, we find good correlations between the 5.25 μm band and both the aromatic hydrocarbon feature at 3.3 μm and the aliphatic hydrocarbon features at around 3.4-3.6 μm. The present results give us convincing evidence that the astronomical 5.25 μm band is associated with C-H vibrations, as suggested by previous studies, and show its potential to probe the PAH size distribution. The analysis also shows that the aliphatic-to-aromatic ratio of I 3.4-3.6 μm/I 3.3 μm decreases against the ratio of the 3.7 μm continuum intensity to the 3.3 μm band, I cont, 3.7 μm/I 3.3 μm, which is an indicator of the ionization fraction of PAHs. The midinfrared color of I 9 μm/I 18 μm also declines steeply against the ratio of the hydrogen recombination line Brα at 4.05 μm to the 3.3 μm band, I Brα/I 3.3 μm. These facts indicate possible dust processing inside or at the boundary of ionized gas.

  17. Constraints on the Compositions of Phobos and Deimos from Visible/Near Infrared Observations

    NASA Astrophysics Data System (ADS)

    Fraeman, Abigail; Murchie, S.; Clark, R.; Morris, R.; Arvidson, R.; Rivkin, A.; Vilas, F.

    2013-10-01

    Mapping of mineral absorptions on Phobos and Deimos using recently acquired visible and near infrared observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows that Fe2+ electronic absorptions diagnostic of olivine and pyroxene are absent, indicating the moons' surfaces are inconsistent with a composition like that of bulk Mars or Mars crustal material. There is a broad absorption centered around 0.65 µm within the redder spectral unit on Phobos and ubiquitously present on Deimos, and the occurrence of this feature is independently confirmed by telescopic spectra of Phobos collected from the Mayall 4-m telescope. A comparable 0.65 µm feature is also found to be present among numerous other low-albedo solar system bodies. Thermally corrected CRISM spectra additionally show a 2.7 μm feature present in spectra collected across all of Phobos and Deimos, and this feature is generally stronger in red unit material. The shape and position of the 2.7 μm band are consistent with an OH related feature. The origin of the 0.65 um feature is uncertain, and we will discuss evidence for or against it being one of several candidate phases including a mixture of microphase and nanophase metallic iron that may have formed on the moons' surfaces through space weathering, as has been proposed for dark material on Iapetus, or an Fe-bearing phyllosilicate, a common mineral in the moons' closest spectral analogs CM chrondrites. Overall, the CRISM observations indicate Phobos and Deimos most likely have a composition consistent with a primitive, hydroxyl-bearing material everywhere, with a variation in the phase that is responsible for the 0.65 µm band. Spectral data with a greater spectral range, including into the vacuum ultraviolet, could help further constrain the 0.65 µm phase, although in situ investigation will be necessary for definitive identification off the responsible material.

  18. Near-Infrared Photon-Counting Camera for High-Sensitivity Observations

    NASA Technical Reports Server (NTRS)

    Jurkovic, Michael

    2012-01-01

    The dark current of a transferred-electron photocathode with an InGaAs absorber, responsive over the 0.9-to-1.7- micron range, must be reduced to an ultralow level suitable for low signal spectral astrophysical measurements by lowering the temperature of the sensor incorporating the cathode. However, photocathode quantum efficiency (QE) is known to reduce to zero at such low temperatures. Moreover, it has not been demonstrated that the target dark current can be reached at any temperature using existing photocathodes. Changes in the transferred-electron photocathode epistructure (with an In- GaAs absorber lattice-matched to InP and exhibiting responsivity over the 0.9- to-1.7- m range) and fabrication processes were developed and implemented that resulted in a demonstrated >13x reduction in dark current at -40 C while retaining >95% of the approximately equal to 25% saturated room-temperature QE. Further testing at lower temperature is needed to confirm a >25 C predicted reduction in cooling required to achieve an ultralow dark-current target suitable for faint spectral astronomical observations that are not otherwise possible. This reduction in dark current makes it possible to increase the integration time of the imaging sensor, thus enabling a much higher near-infrared (NIR) sensitivity than is possible with current technology. As a result, extremely faint phenomena and NIR signals emitted from distant celestial objects can be now observed and imaged (such as the dynamics of redshifting galaxies, and spectral measurements on extra-solar planets in search of water and bio-markers) that were not previously possible. In addition, the enhanced NIR sensitivity also directly benefits other NIR imaging applications, including drug and bomb detection, stand-off detection of improvised explosive devices (IED's), Raman spectroscopy and microscopy for life/physical science applications, and semiconductor product defect detection.

  19. Global Infrared Observations of Roughness Induced Transition on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Zalameda, Joseph N.; Wood, William A.; Berry, Scott A.; Schwartz, Richard J.; Dantowitz, Ronald F.; Spisz, Thomas S.; Taylor, Jeff C.

    2012-01-01

    High resolution infrared observations made from a mobile ground based optical system captured the laminar-to-turbulent boundary layer transition process as it occurred during Space Shuttle Endeavour's return to earth following its final mission in 2011. The STS-134 imagery was part of a larger effort to demonstrate an emerging and reliable non-intrusive global thermal measurement capability and to complement a series of boundary layer transition flight experiments that were flown on the Shuttle. The STS-134 observations are believed to be the first time that the development and movement of a hypersonic boundary layer transition front has been witnessed in flight over the entire vehicle surface and in particular, at unprecedented spatial resolution. Additionally, benchmark surface temperature maps of the Orbiter lower surface collected over multiple flights and spanning a Mach range of 18 to 6 are now available and represent an opportunity for collaborative comparison with computational techniques focused on hypersonic transition and turbulence modeling. The synergy of the global temperature maps with the companion in-situ thermocouple measurements serve as an example of the effective leveraging of resources to achieve a common goal of advancing our understanding of the complex nature of high Mach number transition. It is shown that quantitative imaging can open the door to a multitude of national and international opportunities for partnership associated with flight-testing and subsequent validation of numerical simulation techniques. The quantitative imaging applications highlighted in this paper offer unique and complementary flight measurement alternatives and suggest collaborative instrumentation opportunities to advance the state of the art in transition prediction and maximize the return on investment in terms of developmental flight tests for future vehicle designs.

  20. Visible/near-infrared spectrogoniometric observations and modeling of dust-coated rocks

    USGS Publications Warehouse

    Johnson, J. R.; Grundy, W.M.; Shepard, M.K.

    2004-01-01

    Interpretations of visible/near-infrared reflectance spectra of Mars are often complicated by the effects of dust coatings that obscure the underlying materials of interest. The ability to separate the spectral reflectance signatures of coatings and substrates requires an understanding of how their individual and combined reflectance properties vary with phase angle. Toward this end, laboratory multispectral observations of rocks coated with different amounts of Mars analog dust were acquired under variable illumination and viewing geometries using the Bloomsburg University Goniometer (BUG). These bidirectional reflectance distribution function (BRDF) data were fit with a two-layer radiative transfer model, which replicated BUG observations of dust-coated basaltic andesite substrates relatively well. Derived single scattering albedo and phase function parameters for the dust were useful in testing the model's ability to derive the spectrum of a "blind" substrate (unknown to the modeler) coated with dust. Subsequent tests were run using subsets of the BUG data restricted by goniometric or coating thickness coverage. Using the entire data set provided the best constraints on model parameters, although some reductions in goniometric coverage could be tolerated without substantial degradation. Predictably, the most thinly coated samples provided the best information on the substrate, whereas the thickest coatings best replicated the dust. Dust zenith optical thickness values ???0.6-0.8 best constrain the substrate and coating simultaneously, particularly for large ranges of incidence or emission angles. The lack of sufficient angles can be offset by having a greater number and range of coatings thicknesses. Given few angles and thicknesses, few constraints can be placed concurrently on the spectral properties of the coating and substrate. ?? 2004 Elsevier Inc. All rights reserved.

  1. Lunar Impact ejecta: The View from Radar and Thermal Infrared Observations

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Carter, L. M.; Tai Udovicic, C. J.; Bandfield, J. L.; Campbell, B. A.

    2014-12-01

    The lunar regolith is derived from impact ejecta, and so understanding ejecta characteristics is a key element of regolith studies. Here we report on the physical properties of impact ejecta from Earth-based and orbital radar (Arecibo / Green Bank telescopes at 12.6- and 70-cm wavelengths, and the Lunar Reconnaissance Orbiter Mini-RF) and LRO Diviner thermal infrared observations. Diviner thermal IR data provide estimates of surface rock abundance, and the radar datasets reveal rocks buried beneath up to several meters of regolith. These four datasets represent a spectrum of observational wavelengths, and their intercomparison provides a means of constraining both ejecta block content and depth extent. We examine all craters on the lunar nearside that show evidence for blocky ejecta, whether buried or on the surface, in order to investigate spatial, crater size-, and time-dependent variations in ejecta block size distribution and spatial extent. Previous work has shown that it is possible to quantify the relationship between surface ejecta rock content and crater age for craters younger than ~1 Gyr; we will now present the results of our effort to extend the age range over which this relationship can be applied by investigating buried ejecta as well. Further, we report on the thermophysical characteristics of distal fine-grained ejecta that have previously been shown to exhibit unique radar characteristics (low radar return and circular polarization ratio). Our results constrain the physical properties of ejecta, and variations in those properties with time and depth, to an extent not possible from examination of visible-wavelength images and multispectral data alone.

  2. The dusty AGB star RS CrB: first mid-infrared interferometric observations with the Keck telescopes

    NASA Technical Reports Server (NTRS)

    Mennesson, B.; Koresko, C.; Creech-Eakman, M. J.; Serabyn, E.; Colavita, M. M; Akeson, R.; Appleby, E.; Bell, J.; Booth, A.; Crawford, S.; Dahl, W.; Fanson, J.; Felizardo, C.; Garcia, J.; Gathright, J.; Herstein, J.; Hovland, E.; Hrynevych, M.; Johansson, E.; Le Mignant, D.; Ligon, R.; Millan-Gabet, R.; Moore, J.; Neyman, C.; Palmer, D.

    2005-01-01

    We report interferometric observations of the semiregular variable star RS CrB, a red giant with strong silicate emission features. The data were among the first long-baseline mid-infrared stellar fringes obtained between the Keck telescopes, using parts of the new nulling beam combiner.

  3. Observation of finite-wavelength screening in high-energy-density matter.

    PubMed

    Chapman, D A; Vorberger, J; Fletcher, L B; Baggott, R A; Divol, L; Döppner, T; Falcone, R W; Glenzer, S H; Gregori, G; Guymer, T M; Kritcher, A L; Landen, O L; Ma, T; Pak, A E; Gericke, D O

    2015-01-01

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye-Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye-Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressed plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach. PMID:25904218

  4. Observation of finite-wavelength screening in high-energy-density matter

    DOE PAGESBeta

    Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; Baggott, R. A.; Divol, L.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Gregori, G.; Guymer, T. M.; et al

    2015-04-23

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressedmore » plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.« less

  5. Observation of finite-wavelength screening in high-energy-density matter

    SciTech Connect

    Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; Baggott, R. A.; Divol, L.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Gregori, G.; Guymer, T. M.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Pak, A. E.; Gericke, D. O.

    2015-04-23

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressed plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.

  6. Observation of finite-wavelength screening in high-energy-density matter

    PubMed Central

    Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; Baggott, R. A.; Divol, L.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Gregori, G.; Guymer, T. M.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Pak, A. E.; Gericke, D. O.

    2015-01-01

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressed plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach. PMID:25904218

  7. Support for joint infrared and Copernicus X-Ray observations of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Simultaneous X-ray and infrared measurements were carried out of the flares from Cygnus X-3 from the Copernicus spacecraft observatory. The detectors, InSb, were arranged so that 1.65 and 2.2 micrometer broadbend photometry was performed through a common diaphragm. The measurements were used to determine the energy distribution during a flare and thus learn about the infrared spectrum and its changes during the flare.

  8. INSTRUMENTS AND METHODS OF INVESTIGATION: Water surface structures observed using infrared imaging

    NASA Astrophysics Data System (ADS)

    Ivanitskii, Genrikh R.; Deev, Aleksandr A.; Khizhnyak, Evgenii P.

    2005-11-01

    Modern infrared focal plant array cameras with thermal sensitivities up to 0.01 - 0.02 °C have made it possible to form a novel view of various physical, chemical, and biological processes that involve both the heat production and mobility of fluids affected by local thermal gradients. The mobility of water is important, especially in studying the formation mechanisms of water structures due to Rayleigh -Bénard convection. Various water structures can successfully be studied using infrared imaging.

  9. Physical and chemical structure of the IC 63 nebula. 1: Millimeter and far-infrared observations

    NASA Technical Reports Server (NTRS)

    Jansen, David J.; Van Dishoeck, Ewine F.; Black, John H.

    1994-01-01

    We present results of a (sub)millimeter and far-infrared study of the reflection/emission nebula IC 63, located close to the BO.5p star gamma Cas. The source has been mapped in the (12)CO 2 - 1 and 3 - 2, (13)CO 2 - 1, and CS 2 - 1 lines and shows a small molecular cloud less than 1'x 2' in extent, which coincides with the brightest optical nebulosity and IRAS 100 micrometer emission. IC 63 is therefore an excellent example of a nearby (d approximately = 230 pc), edge-on photon-dominated region (PDR). Various other molecules have been observed at the peak position through their rotational transitions, in order to probe the physical parameters and to derive abundances. The measured CO, HCO(+) HCN, CS and H2CO line ratios suggest that the cloud is warm, T approximately = 50 K, and dense, n (H2) approximately = 5 x 10(exp 4)/cu cm. Excitation of molecules by electrons may play a significant role in this PDR. On the basis of these physical conditions, column densities have been determined from the observed line strengths. Several different methods are discussed to constrain the H2 column density, including the use of measured submillimeter continuum fluxes. The resulting abundances of species such as CN and CS are similar to those found in cold, dark clouds like TMC-1 and L134N. However, the abundances of other simple molecules such as HNC, HCO(+) and possibly C2H are lower by factors of at least three, probably because of the enhanced photodissociation rates at a distance of 1.3 pc from a B star. Surprisingly, only the abundance of the H2S molecule appears enhanced. More complex, volatile molecules such as CH3OH CH3CN and HNCO, and the sulfur-oxides SO and SO2 have not been found in this cloud. Limited observations of molecules in the reflection nebulea NGC 2023 are presented as well, and the resulting molecular abundances are compared with those found for IC 63.

  10. CORSAIR-Calibrated Observations of Radiance Spectra from the Atmosphere in the Far- Infrared

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Johnson, D.; Abedin, N.; Liu, X.; Kratz, D.; Jordan, D.; Wang, J.; Bingham, G.; Latvakoski, H.; Bowman, K.; Kaplan, S.

    2008-12-01

    The CORSAIR project is a new NASA Instrument Incubator Project (IIP) whose primary goal is to develop and demonstrate the necessary technologies to achieve SI-traceable, on-orbit measurements of Earth's spectral radiance in the far-infrared (far-IR). The far-IR plays a vital role in the energy balance of the Earth yet its spectrum has not been comprehensively observed from space for the purposes of climate sensing. The specific technologies being developed under CORSAIR include: passively cooled, antenna-coupled terahertz detectors for the far-IR (by Raytheon Vision Systems); accurately calibrated, SI-traceable blackbody sources for the far-IR (by Space Dynamics Laboratory); and high-performance broad bandpass beamsplitters (by ITT). These technologies complement those already developed under past Langley IIP projects (FIRST; INFLAME) in the areas of Fourier Transform Spectrometers and dedicated far-IR beamsplitters. The antenna-coupled far-IR detectors will be validated in the FIRST instrument at Langley. The SI-traceable far-IR blackbodies will be developed in conjunction with the National Institute of Standards and Technology (NIST). An overview of the CORSAIR technologies will be presented as well as their larger role in the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Upon successful completion of CORSAIR these IIP efforts will provide the necessary technologies to achieve the first comprehensive, accurate, high-resolution measurements from a satellite of the far-IR spectrum of the Earth and its atmosphere, enabling major advances in our understanding of Earth's climate.

  11. Experimental Fault Diagnosis in Systems Containing Finite Elements of Plate of Kirchoff by Using State Observers Methodology

    NASA Astrophysics Data System (ADS)

    Alegre, D. M.; Koroishi, E. H.; Melo, G. P.

    2015-07-01

    This paper presents a methodology for detection and localization of faults by using state observers. State Observers can rebuild the states not measured or values from points of difficult access in the system. So faults can be detected in these points without the knowledge of its measures, and can be track by the reconstructions of their states. In this paper this methodology will be applied in a system which represents a simplified model of a vehicle. In this model the chassis of the car was represented by a flat plate, which was divided in finite elements of plate (plate of Kirchoff), in addition, was considered the car suspension (springs and dampers). A test rig was built and the developed methodology was used to detect and locate faults on this system. In analyses done, the idea is to use a system with a specific fault, and then use the state observers to locate it, checking on a quantitative variation of the parameter of the system which caused this crash. For the computational simulations the software MATLAB was used.

  12. Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology

    NASA Astrophysics Data System (ADS)

    Barone-Nugent, R. L.; Lidman, C.; Wyithe, J. S. B.; Mould, J.; Howell, D. A.; Hook, I. M.; Sullivan, M.; Nugent, P. E.; Arcavi, I.; Cenko, S. B.; Cooke, J.; Gal-Yam, A.; Hsiao, E. Y.; Kasliwal, M. M.; Maguire, K.; Ofek, E.; Poznanski, D.; Xu, D.

    2012-09-01

    We present an analysis of the Hubble diagram for 12 normal Type Ia supernovae (SNe Ia) observed in the near-infrared (NIR) J and H bands. We select SNe exclusively from the redshift range 0.03 < z < 0.09 to reduce uncertainties coming from peculiar velocities while remaining in a cosmologically well-understood region. All of the SNe in our sample exhibit no spectral or B-band light-curve peculiarities and lie in the B-band stretch range of 0.8-1.15. Our results suggest that SNe Ia observed in the NIR are the best known standard candles. We fit previously determined NIR light-curve templates to new high-precision data to derive peak magnitudes and to determine the scatter about the Hubble line. Photometry of the 12 SNe is presented in the natural system. Using a standard cosmology of (H0, Ωm, ΩΛ) = (70, 0.27, 0.73), we find a median J-band absolute magnitude of MJ = -18.39 with a scatter of σJ = 0.116 and a median H-band absolute magnitude of MH = -18.36 with a scatter of σH = 0.085. The scatter in the H band is the smallest yet measured. We search for correlations between residuals in the J- and H-band Hubble diagrams and SN properties, such as SN colour, B-band stretch and the projected distance from the centre of the host galaxy. The only significant correlation is between the J-band Hubble residual and the J - H pseudo-colour. We also examine how the scatter changes when fewer points in the NIR are used to constrain the light curve. With a single point in the H band taken anywhere from 10 d before to 15 d after B-band maximum light and a prior on the date of H-band maximum set from the date of B-band maximum, we find that we can measure distances to an accuracy of 6 per cent. The precision of SNe Ia in the NIR provides new opportunities for precision measurements of both the expansion history of the universe and peculiar velocities of nearby galaxies.

  13. Hubble Space Telescope WFC3 Early Release Science: Emission-line Galaxies from Infrared Grism Observations

    NASA Astrophysics Data System (ADS)

    Straughn, Amber N.; Kuntschner, Harald; Kümmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Gardner, Jonathan P.; Windhorst, Rogier A.; O'Connell, Robert W.; Pirzkal, Norbert; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Malhotra, Sangeeta; Rhoads, James; Balick, Bruce; Bond, Howard E.; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; Mutchler, Max; Paresce, Francesco; Saha, Abhijit; Silk, Joseph I.; Trauger, John T.; Walker, Alistair R.; Whitmore, Bradley C.; Young, Erick T.; Xu, Chun

    2011-01-01

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 μm from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 μm grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the Hα, [O III], and [O II] emission lines detected in the redshift ranges 0.2 <~ z <~ 1.4, 1.2 <~ z <~ 2.2, and 2.0 <~ z <~ 3.3, respectively, in the G102 (0.8-1.1 μm R ~= 210) and G141 (1.1-1.6 μm R ~= 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 48 ELGs to m AB(F098M) ~= 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Δz ~= 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m AB(F098M)= 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z >~ 2.

  14. HUBBLE SPACE TELESCOPE WFC3 EARLY RELEASE SCIENCE: EMISSION-LINE GALAXIES FROM INFRARED GRISM OBSERVATIONS

    SciTech Connect

    Straughn, Amber N.; Gardner, Jonathan P.; Kuntschner, Harald; Kuemmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; O'Connell, Robert W.; Pirzkal, Norbert; Bond, Howard E.; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Balick, Bruce; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.

    2011-01-15

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 {mu}m from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 {mu}m grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the H{alpha}, [O III], and [O II] emission lines detected in the redshift ranges 0.2 {approx}< z {approx}< 1.4, 1.2 {approx}< z {approx}< 2.2, and 2.0 {approx}< z {approx}< 3.3, respectively, in the G102 (0.8-1.1 {mu}m; R {approx_equal} 210) and G141 (1.1-1.6 {mu}m; R {approx_equal} 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 48 ELGs to m A{sub B(F098M)} {approx_equal} 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts ({Delta}z {approx_equal} 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m{sub AB(F098M)}= 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the

  15. Late-time Near-infrared Observations of SN 2005df

    NASA Astrophysics Data System (ADS)

    Diamond, Tiara R.; Hoeflich, Peter; Gerardy, Christopher L.

    2015-06-01

    We present late-time near-infrared (NIR) spectral evolution, at 200-400 days, for the Type Ia supernova SN 2005df. The spectra show numerous strong emission features of [Co ii], [Co iii], and [Fe ii] throughout the 0.8-1.8 μm region. As the spectrum ages, the cobalt features fade as would be expected from the decay of 56Co to 56Fe. We show that the strong and isolated [Fe ii] emission line at 1.644 μ {m} provides a unique tool to analyze NIR spectra of SNe Ia. Normalization of spectra to this line allows the separation of features produced by stable versus unstable isotopes of iron group elements. We develop a new method of determining the initial central density, {ρ }c, and the magnetic field, B, of the white dwarf (WD) using the width of the 1.644 μ {m} line. The line width (LW) is sensitive because of electron capture in the early stages of burning, which increases as a function of density. The sensitivity of the LW to B increases with time, and the effects of the magnetic field shift toward later times with decreasing {ρ }c. Through comparison with spherical models, the initial central density for SN 2005df is measured as {ρ }c=0.9(+/- 0.2)× {10}9 {g} {{cm}}-3, which corresponds to a WD close to the Chandrasekhar mass, with {M}{WD}=1.31(+/- 0.03) {M}⊙ and systematic error less than 0.04 {M}⊙. This error estimate is based on spherical models. We discuss the potential uncertainties due to multi-dimensional effects, mixing, and rotation. The latter two effects would increase the estimate of the WD mass. Within {M}{Ch} explosions, however, the central density found for SN 2005df is very low for a H-accretor, possibly suggesting a helium star companion or a tidally disrupted WD companion. As an alternative, we suggest mixing of the central region. We find some support for high initial magnetic fields of strength {10}6 {G} for SN 2005df, however, 0 {G} cannot be ruled out because of noise in the spectra combined with low {ρ }c. We discuss our findings in

  16. Observation of angular effects on thermal infrared emissivity derived with the MODTES algorithm and MODIS data

    NASA Astrophysics Data System (ADS)

    García-Santos, Vicente; Niclòs, Raquel; Coll, César; Valor, Enric; Caselles, Vicente

    2015-04-01

    The MOD21 Land Surface Temperature and Emissivity (LST&E) product will be included in forthcoming MODIS Collection 6. Surface temperature and emissivities for thermal infrared (TIR) bands 29 (8.55 μm), 31 (11 μm) and 32 (12 μm) will be retrieved using the ASTER TES method adapted to MODIS at-sensor spectral radiances, previously corrected with the Water Vapor Scaling method (MODTES algorithm). LSE of most natural surfaces changes with soil moisture content, type of surface cover, surface roughness or sensor viewing geometry. The present study addresses the observation of anisotropy effects on LSE of bare soils using MODIS data and a processor simulator of the MOD21 product, since it is not available yet. Two highly homogeneous and quasi-invariant desert sites were selected to carry out the present study. The first one is the White Sands National Monument, located in Tularosa Valley (South-central New Mexico, USA), which is a dune system desert at 1216 m above sea level, with an area of 704 km2 and a maximum dune height of 10 m. The grain size is considered fine sand and the major mineralogy component is gypsum. The second site selected was the Great Sands National Park, located in the San Luis Valley (Colorado, USA). Great Sands is also a sand dune system desert, created from quartz and volcanic fragments derived from Santa Fe and Alamosa formations. The major mineral is quartz, with minor traces of potassium and feldspar. The grain size of the sand is medium to coarse according to the X-Ray Diffraction measurements. Great Sands covers an area of 104 km2 at 2560 m above sea level and the maximum dune height is 230 m. The obtained LSEs and their dependence on azimuth and zenith viewing angles were analyzed, based on series of MODIS scenes from 2010 to 2013. MODTES nadir and off-nadir LSEs showed a good agreement with laboratory emissivity measurements. Results show that band 29 LSE decreases with the zenithal angle up to 0.041 from its nadir value, while LSEs for

  17. The Intermediate-Mass Embedded Cluster GM 24 Revisited: New Infrared and Radio Observations

    NASA Astrophysics Data System (ADS)

    Tapia, Mauricio; Rodríguez, Luis F.; Persi, Paolo; Roth, Miguel; Gómez, Mercedes

    2009-05-01

    New and archived high-resolution infrared (IR; 1-20 μm) and radio-continuum images of the isolated embedded cluster and associated compact H II region, GM 24, are presented and measured photometrically. The nucleus of the complex is Irs 3, or IRAS 17136-3617, located at the densest part of the molecular cloud. This object is composed of at least three compact near-IR sources (A, B, and C) that are the most luminous and massive young stellar components and provide most of the ionizing energy to the cometary-shaped radio H II region. The 3.6 cm radio map shows a complex structure with an extended emission peak and two very compact components very close to Irs 3A. Large inhomogeneities in the dust density within the nebula cause considerably different morphologies in the observed emission of hydrogen recombination lines, namely Paβ, Brγ, and Brα. No H2 line emission at 2.12 μm was detected. The embedded IR cluster is found to contain more than 100 members within a radius of around 40'', which corresponds to 0.39 pc. The total stellar mass is estimated to be >=250 M sun. The extinction to the nearby edge of the cluster is determined to be AV = 13, though a number of sources, including Irs 3, are reddened by AV > 50. A fraction of near-IR sources, mainly in the periphery of the cluster, are main-sequence A-B-type stars, while a large fraction (~50%) of the detected members show significant IR excesses, including several Class I young stellar objects with luminosities ranging from a few solar luminosities near our sensitivity limit, to 1.5 × 105 L sun, the derived luminosity of Irs 3. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and with the 2.1 m telescope at the Observatorio Astronómico Nacional at San Pedro Mártir.

  18. VERY LARGE ARRAY OBSERVATIONS OF THE INFRARED DARK CLOUD G19.30+0.07

    SciTech Connect

    Devine, K. E.; Churchwell, E.; Chandler, C. J.; Borg, K. J.; Brogan, C.; Indebetouw, R.; Shirley, Y.

    2011-05-20

    We present Very Large Array observations of ammonia (NH{sub 3}) (1,1), (2,2), and dicarbon sulfide (CCS) (2{sub 1}-1{sub 0}) emission toward the infrared dark cloud (IRDC) G19.30+0.07 at {approx}22 GHz. The NH{sub 3} emission closely follows the 8 {mu}m extinction. The NH{sub 3} (1,1) and (2,2) lines provide diagnostics of the temperature and density structure within the IRDC, with typical rotation temperatures of {approx}10-20 K and NH{sub 3} column densities of {approx}10{sup 15} cm{sup -2}. The estimated total mass of G19.30+0.07 is {approx}1130 M{sub sun}. The cloud comprises four compact NH{sub 3} clumps of mass {approx}30-160 M{sub sun}. Two coincide with 24 {mu}m emission, indicating heating by protostars, and show evidence of outflow in the NH{sub 3} emission. We report a water maser associated with a third clump; the fourth clump is apparently starless. A non-detection of 8.4 GHz emission suggests that the IRDC contains no bright H II regions and places a limit on the spectral type of an embedded zero-age main-sequence star to early-B or later. From the NH{sub 3} emission, we find that G19.30+0.07 is composed of three distinct velocity components or 'subclouds'. One velocity component contains the two 24 {mu}m sources and the starless clump, another contains the clump with the water maser, while the third velocity component is diffuse, with no significant high-density peaks. The spatial distribution of NH{sub 3} and CCS emission from G19.30+0.07 is highly anti-correlated, with the NH{sub 3} predominantly in the high-density clumps and the CCS tracing lower-density envelopes around those clumps. This spatial distribution is consistent with theories of evolution for chemically young low-mass cores, in which CCS has not yet been processed to other species and/or depleted in high-density regions.

  19. Optical and Near-infrared Observations of SN 2013dx Associated with GRB 130702A

    NASA Astrophysics Data System (ADS)

    Toy, V. L.; Cenko, S. B.; Silverman, J. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Bersier, D.; Perley, D. A.; Margutti, R.; Bellm, E.; Bloom, J. S.; Cao, Y.; Capone, J. I.; Clubb, K.; Corsi, A.; De Cia, A.; de Diego, J. A.; Filippenko, A. V.; Fox, O. D.; Gal-Yam, A.; Gehrels, N.; Georgiev, L.; González, J. J.; Kasliwal, M. M.; Kelly, P. L.; Kulkarni, S. R.; Kutyrev, A. S.; Lee, W. H.; Prochaska, J. X.; Ramirez-Ruiz, E.; Richer, M. G.; Román-Zúñiga, C.; Singer, L.; Stern, D.; Troja, E.; Veilleux, S.

    2016-02-01

    We present optical and near-infrared (NIR) light curves and optical spectra of SN 2013dx, associated with the nearby (redshift 0.145) gamma-ray burst GRB 130702A. The prompt isotropic gamma-ray energy released from GRB 130702A is measured to be {E}γ ,{iso}={6.4}-1.0+1.3× {10}50 erg (1 keV to 10 MeV in the rest frame), placing it intermediate between low-luminosity GRBs like GRB 980425/SN 1998bw and the broader cosmological population. We compare the observed {g}\\prime {r}\\prime {i}\\prime {z}\\prime light curves of SN 2013dx to a SN 1998bw template, finding that SN 2013dx evolves ˜20% faster (steeper rise time), with a comparable peak luminosity. Spectroscopically, SN 2013dx resembles other broad-lined SNe Ic, both associated with (SN 2006aj and SN 1998bw) and lacking (SN 1997ef, SN 2007I, and SN 2010ah) gamma-ray emission, with photospheric velocities around peak of ˜ 21,000 km s-1. We construct a quasi-bolometric ({g}\\prime {r}\\prime {i}\\prime {z}\\prime {yJ}) light curve for SN 2013dx, only the fifth GRB-associated SN with extensive NIR coverage and the third with a bolometric light curve extending beyond {{Δ }}t\\gt 40 {{days}}. Together with the measured photospheric velocity, we derive basic explosion parameters using simple analytic models. We infer a 56Ni mass of {M}{Ni}=0.37+/- 0.01 {M}⊙ , an ejecta mass of {M}{ej}=3.1+/- 0.1 {M}⊙ , and a kinetic energy of {E}{{K}}=(8.2+/- 0.43)× {10}51 erg (statistical uncertainties only), consistent with previous GRB-associated supernovae. When considering the ensemble population of GRB-associated supernovae, we find no correlation between the mass of synthesized 56Ni and high-energy properties, despite clear predictions from numerical simulations that {M}{Ni} should correlate with the degree of asymmetry. On the other hand, {M}{Ni} clearly correlates with the kinetic energy of the supernova ejecta across a wide range of core-collapse events.

  20. Clouds across the Arctic: A spatial perspective uniting surface observations of downwelling infrared radiation, reanalyses and education

    NASA Astrophysics Data System (ADS)

    Cox, Christopher J.

    The polar regions serve an important role in the Earth's energy balance by acting as a heat sink for the global climate system. In the Arctic, a complex distribution of continental and oceanic features support large spatial variability in environmental parameters important for climate. Additionally, feedbacks that are unique to the cryosphere cause the region to be very sensitive to climate perturbations. Environmental changes are being observed, including increasing temperatures, reductions in sea ice extent and thickness, melting permafrost, changing atmospheric circulation patterns and changing cloud properties, which may be signaling a shift in climate. Despite these changes, the Arctic remains an understudied region, including with respect to the atmosphere and clouds. A better understanding of cloud properties and their geographical variability is needed to better understand observed changes and to forecast the future state of the system, to support adaptation and mitigation strategies, and understand how Arctic change impacts other regions of the globe. Surface-based observations of the atmosphere are critical measurements in this effort because they are high quality and have high temporal resolution, but there are few atmospheric observatories in the Arctic and the period of record is short. Reanalyses combine assimilated observations with models to fill in spatial and temporal data gaps, and also provide additional model-derived parameters. Reanalyses are spatially comprehensive, but are limited by large uncertainties and biases, in particular with respect to derived parameters. Infrared radiation is a large component of the surface energy budget. Infrared emission from clouds is closely tied to cloud properties, so measurements of the infrared spectrum can be used to retrieve information about clouds and can also be used to investigate the influence clouds have on the surface radiation balance. In this dissertation, spectral infrared radiances and other

  1. BRIGHTNESS AND FLUCTUATION OF THE MID-INFRARED SKY FROM AKARI OBSERVATIONS TOWARD THE NORTH ECLIPTIC POLE

    SciTech Connect

    Pyo, Jeonghyun; Jeong, Woong-Seob; Matsumoto, Toshio; Matsuura, Shuji

    2012-12-01

    We present the smoothness of the mid-infrared sky from observations by the Japanese infrared astronomical satellite AKARI. AKARI monitored the north ecliptic pole (NEP) during its cold phase with nine wave bands covering from 2.4 to 24 {mu}m, out of which six mid-infrared bands were used in this study. We applied power-spectrum analysis to the images in order to search for the fluctuation of the sky brightness. Observed fluctuation is explained by fluctuation of photon noise, shot noise of faint sources, and Galactic cirrus. The fluctuations at a few arcminutes scales at short mid-infrared wavelengths (7, 9, and 11 {mu}m) are largely caused by the diffuse Galactic light of the interstellar dust cirrus. At long mid-infrared wavelengths (15, 18, and 24 {mu}m), photon noise is the dominant source of fluctuation over the scale from arcseconds to a few arcminutes. The residual fluctuation amplitude at 200'' after removing these contributions is at most 1.04 {+-} 0.23 nW m{sup -2} sr{sup -1} or 0.05% of the brightness at 24 {mu}m and at least 0.47 {+-} 0.14 nW m{sup -2} sr{sup -1} or 0.02% at 18 {mu}m. We conclude that the upper limit of the fluctuation in the zodiacal light toward the NEP is 0.03% of the sky brightness, taking 2{sigma} error into account.

  2. Demonstration of random projections applied to the retrieval problem of geophysical parameters from hyper-spectral infrared observations.

    PubMed

    Serio, Carmine; Masiello, Guido; Liuzzi, Giuliano

    2016-08-20

    The random projections statistical technique has been used to reduce the dimensionality of the radiance data space generated from high spectral resolution infrared observations. The mathematical inversion of the physical radiative transfer equation for geophysical parameters has been solved in this space of reduced dimensionality. The great advantage of using random projections is that they provide an unified treatment of instrument noise and forward model error, which can be comprehensively modeled with a single variance term. The result is a novel retrieval approach, which combines computational efficiency to possibly improved accuracy of the retrieval products. The novel approach has been demonstrated through application to the Infrared Atmospheric Sounding Interferometer. We have found that state-of-the-art spectroscopy and related line-mixing treatment for the ν2CO2 absorption band, i.e., the fundamental band for temperature retrieval, show an excellent consistency with satellite observations. PMID:27556974

  3. Infrared Space Observatory Observations of Far-Infrared Rotational Emission Lines of Water Vapor Toward the Supergiant Star VY Canis Majoris

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.

    1999-01-01

    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 micron grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power lambda/delat.lambda of approximately 2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of approximately 25 solar luminosity . In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the (sup 2)product(sub 1/2) (J = 5/2) left arrow (sup 2)product(sub 3/2) (J = 3/2) OH feature near 34.6 micron in absorption. Additional SWS observations of VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 7(sub 25)-6(sub 16) line at 29.8367 micron, the 4(sub 41)-3(sub 12) line at 31.7721 micron, and the 4(sub 32)-3(sub 03) line at 40.6909 micron. The higher spectral resolving power lambda/delta.lambda of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the "P Cygni" profiles that are characteristic of emission from an outflowing envelope.

  4. A Road Map for the Generation of a Near-Infrared Guide Star Catalog for Thirty Meter Telescope Observations

    NASA Astrophysics Data System (ADS)

    Subramanian, Smitha; Subramaniam, Annapurni; Sivarani, T.; Simard, Luc; Anupama, G. C.; Gillies, Kim; Ramaprakash, A. N.; Reddy, B. Eswar

    2016-09-01

    The near-infrared instruments in the upcoming Thirty Meter Telescope (TMT) will be assisted by a multi conjugate Adaptive Optics (AO) system. For the efficient operation of the AO system, during observations, a near-infrared guide star catalog which goes as faint as 22 mag in JVega band is essential and such a catalog does not exist. A methodology, based on stellar atmospheric models, to compute the expected near-infrared magnitudes of stellar sources from their optical magnitudes is developed. The method is applied and validated in JHKs bands for a magnitude range of JVega 16-22 mag. The methodology is also applied and validated using the reference catalog of PAN STARRS. We verified that the properties of the final PAN STARRS optical catalog will satisfy the requirements of TMT IRGSC and will be one of the potential sources for the generation of the final catalog. In a broader context, this methodology is applicable for the generation of a guide star catalog for any existing/upcoming near-infrared telescopes.

  5. Infrared observations of oxidized carbon in comet C/2002 t7 (LINEAR)

    NASA Astrophysics Data System (ADS)

    Anderson, William Michael, Jr.

    2010-11-01

    Cometary nuclei are generally recognized as the most primitive remnants of the early Solar System. Their physical and chemical attributes allow a glimpse into the conditions under which icy bodies formed. Parent volatiles in comets are now routinely studied, and a significant diversity in composition among the comets sampled to date has been demonstrated. This forms the foundation of an emerging cometary taxonomy based on chemical composition. In spring 2004, comet C/2002 T7 (LINEAR) was observed using the facility echelle spectrometer (CSHELL) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. CSHELL offers seeing-limited spatial resolution and sufficiently high spectral resolving power (R = lambda/Deltalambda ˜ 2.5 x 10 4) to permit line-by-line intensities to be measured along its 30 arc-second slit. Its small pixels favor measurement of molecules released from ices housed in cometary nuclei ("native" ices) over those released from spatially extended sources in the coma. Emission lines from multiple molecular species were targeted in the 3 to 5 mum wavelength region. The observations revealed an extremely rich volatile chemistry in C/2002 T7. I present the chemical composition of oxidized carbon in C/2002 T7 (LINEAR). Carbon monoxide (CO), formaldehyde (H2CO), and methyl alcohol (CH 3OH) were detected simultaneously or nearly simultaneously with H 2O on multiple UT dates spanning 2004 May 3-9 (heliocentric distance Rh = 0.66 -- 0.71 AU) and May 30 - June 2 (R h = 0.99 -- 1.03 AU). I will discuss native production rates, rotational temperatures, and mixing ratios (abundances relative to H2O) for oxidized carbon. My results illustrate that C/2002 T7 (LINEAR) is enriched in CH3OH, while CO is borderline depleted compared to other Oort cloud comets that have been measured. I tested for chemical heterogeneity in C/2002 T7 (LINEAR), both diurnal, presumably associated with rotation of the nucleus, and serial (i.e., over a range in Rh). However, no evidence

  6. Optical and near-infrared observations of the GRB020405 afterglow

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Palazzi, E.; Pian, E.; Simoncelli, A.; Hunt, L. K.; Maiorano, E.; Levan, A.; Christensen, L.; Rol, E.; Savaglio, S.; Falomo, R.; Castro-Tirado, A. J.; Hjorth, J.; Delsanti, A.; Pannella, M.; Mohan, V.; Pandey, S. B.; Sagar, R.; Amati, L.; Burud, I.; Castro Cerón, J. M.; Frontera, F.; Fruchter, A. S.; Fynbo, J. P. U.; Gorosabel, J.; Kaper, L.; Klose, S.; Kouveliotou, C.; Nicastro, L.; Pedersen, H.; Rhoads, J.; Salamanca, I.; Tanvir, N.; Vreeswijk, P. M.; Wijers, R. A. M. J.; van den Heuvel, E. P. J.

    2003-06-01

    We report on photometric, spectroscopic and polarimetric monitoring of the optical and near-infrared (NIR) afterglow of GRB020405. Ground-based optical observations, performed with 8 different telescopes, started about 1 day after the high-energy prompt event and spanned a period of ~ 10 days; the addition of archival HST data extended the coverage up to ~ 150 days after the GRB. We report the first detection of the afterglow in NIR bands. The detection of Balmer and oxygen emission lines in the optical spectrum of the host galaxy indicates that the GRB is located at redshift z =0.691. Fe II and Mg II absorption systems are detected at z= 0.691 and at z = 0.472 in the afterglow optical spectrum. The latter system is likely caused by absorbing clouds in the galaxy complex located ~ 2'' southwest of the GRB020405 host. Hence, for the first time, the galaxy responsible for an intervening absorption line system in the spectrum of a GRB afterglow is spectroscopically identified. Optical and NIR photometry of the afterglow indicates that, between 1 and 10 days after the GRB, the decay in all bands is consistent with a single power law of index alpha = 1.54+/- 0.06. The late-epoch VLT J-band and HST optical points lie above the extrapolation of this power law, so that a plateau (or ``bump") is apparent in the VRIJ light curves at 10-20 days after the GRB. The light curves at epochs later than day ~ 20 after the GRB are consistent with a power-law decay with index alpha ' = 1.85+/- 0.15. While other authors have proposed to reproduce the bump with the template of the supernova (SN) 1998bw, considered the prototypical ``hypernova'', we suggest that it can also be modeled with a SN having the same temporal profile as the other proposed hypernova SN2002ap, but 1.3 mag brighter at peak, and located at the GRB redshift. Alternatively, a shock re-energization may be responsible for the rebrightening. A single polarimetric R-band measurement shows that the afterglow is polarized

  7. Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy.

    PubMed

    Barcelos, Ingrid D; Cadore, Alisson R; Campos, Leonardo C; Malachias, Angelo; Watanabe, K; Taniguchi, T; Maia, Francisco C B; Freitas, Raul; Deneke, Christoph

    2015-07-21

    We observed the coupling of graphene Dirac plasmons with different surfaces using scattering-type scanning near-field optical microscopy integrated into a mid-infrared synchrotron-based beamline. A systematic investigation of a graphene/hexagonal boron nitride (h-BN) heterostructure is carried out and compared with the well-known graphene/SiO2 heterostructure. Broadband infrared scanning near-field optical microscopy imaging is able to distinguish between the graphene/h-BN and the graphene/SiO2 heterostructure as well as differentiate between graphene stacks with different numbers of layers. Based on synchrotron infrared nanospectroscopy experiments, we observe a coupling of surface plasmons of graphene and phonon polaritons of h-BN (SPPP). An enhancement of the optical band at 817 cm(-1) is observed at graphene/h-BN heterostructures as a result of hybridization between graphene plasmons and longitudinal optical phonons of h-BN. Furthermore, longitudinal optical h-BN modes are preserved on suspended graphene regions (bubbles) where the graphene sheet is tens of nanometers away from the surface while the amplitude of transverse optical h-BN modes decrease. PMID:26091534

  8. Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy

    NASA Astrophysics Data System (ADS)

    Barcelos, Ingrid D.; Cadore, Alisson R.; Campos, Leonardo C.; Malachias, Angelo; Watanabe, K.; Taniguchi, T.; Maia, Francisco C. B.; Freitas, Raul; Deneke, Christoph

    2015-07-01

    We observed the coupling of graphene Dirac plasmons with different surfaces using scattering-type scanning near-field optical microscopy integrated into a mid-infrared synchrotron-based beamline. A systematic investigation of a graphene/hexagonal boron nitride (h-BN) heterostructure is carried out and compared with the well-known graphene/SiO2 heterostructure. Broadband infrared scanning near-field optical microscopy imaging is able to distinguish between the graphene/h-BN and the graphene/SiO2 heterostructure as well as differentiate between graphene stacks with different numbers of layers. Based on synchrotron infrared nanospectroscopy experiments, we observe a coupling of surface plasmons of graphene and phonon polaritons of h-BN (SPPP). An enhancement of the optical band at 817 cm-1 is observed at graphene/h-BN heterostructures as a result of hybridization between graphene plasmons and longitudinal optical phonons of h-BN. Furthermore, longitudinal optical h-BN modes are preserved on suspended graphene regions (bubbles) where the graphene sheet is tens of nanometers away from the surface while the amplitude of transverse optical h-BN modes decrease.

  9. Near-infrared observations of young stellar objects in the Rho Ophiuchi dark cloud

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.; Young, Erick T.

    1992-01-01

    We have conducted an imaging survey of 1.4 sq pc of the Rho Ophiuchi dark cloud in the J, H, and K near-infrared photometric bands. Approximately 337 of our 481 detected sources are associated with the cloud, and we estimate that 48 percent of these have near-infrared excesses, indicative of disks or circumstellar material surrounding these young stellar objects (YSOs). The K-band luminosity function is significantly different in different regions of our survey area, suggesting that YSOs in these regions have different ages or mass functions. We estimate that the entire survey area has a high star-formation efficiency, at roughly 23 percent. Finally, our many newly detected sources provide a relatively large, uniformly sensitive sample of objects for study at longer wavelengths to better determine true source luminosities and evolutionary lifetimes.

  10. Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer

    NASA Astrophysics Data System (ADS)

    Magnelli, B.; Elbaz, D.; Chary, R. R.; Dickinson, M.; Le Borgne, D.; Frayer, D. T.; Willmer, C. N. A.

    2011-04-01

    Aims: We derive the evolution of the infrared luminosity function (LF) over the last 4/5ths of cosmic time using deep 24 and 70 μm imaging of the GOODS North and South fields. Methods: We use an extraction technique based on prior source positions at shorter wavelengths to build the 24 and 70 μm source catalogs. The majority (93%) of the sources have a spectroscopic (39%) or a photometric redshift (54%) and, in our redshift range of interest (i.e., 1.3 < z < 2.3) s20% of the sources have a spectroscopic redshift. To extend our study to lower 70 μm luminosities we perform a stacking analysis and we characterize the observed L24/(1 + z) vs. L70/(1 + z) correlation. Using spectral energy distribution (SED) templates which best fit this correlation, we derive the infrared luminosity of individual sources from their 24 and 70 μm luminosities. We then compute the infrared LF at zs1.55 ± 0.25 and zs2.05 ± 0.25. Results: We observe the break in the infrared LF up to zs2.3. The redshift evolution of the infrared LF from z = 1.3 to z = 2.3 is consistent with a luminosity evolution proportional to (1 + z)1.0 ± 0.9 combined with a density evolution proportional to (1 + z)-1.1 ± 1.5. At zs2, luminous infrared galaxies (LIRGs: 1011L⊙ < LIR < 1012 L⊙) are still the main contributors to the total comoving infrared luminosity density of the Universe. At zs2, LIRGs and ultra-luminous infrared galaxies (ULIRGs: 1012L⊙ < LIR) account for s49% and s17% respectively of the total comoving infrared luminosity density of the Universe. Combined with previous results using the same strategy for galaxies at z < 1.3 and assuming a constant conversion between the infrared luminosity and star-formation rate (SFR) of a galaxy, we study the evolution of the SFR density of the Universe from z = 0 to z = 2.3. We find that the SFR density of the Universe strongly increased with redshift from z = 0 to z = 1.3, but is nearly constant at higher redshift out to z = 2.3. As part of the

  11. VVV near-infrared observations of the Swift J174540.2-290037 field

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Saito, R. K.; Rojas, A. F.; Minniti, D.; Contreras, R.

    2016-06-01

    We explored the archival images of the near-infrared (NIR) VVV survey (vvvsurvey.org; Minniti et al. 2010, New Astron., 15, 433) of the Galactic Bulge and inner disk, obtained with the 4.1m VISTA telescope at Cerro Paranal (Chile), containing the soft X-ray error box the transient Swift J174540.2-290037 (ATel #9109) that was recently detected with Swift (see also GCN Circs.

  12. A rocket-borne observation of the far-infrared sky at high Galactic latitude

    NASA Technical Reports Server (NTRS)

    Kawada, M.; Bock, J. J.; Hristov, V. V.; Lange, A. E.; Matsuhara, H.; Matsumoto, T.; Matsuura, S.; Mauskopf, P. D.; Richards, P. L.; Tanaka, M.

    1994-01-01

    We have measured the surface brightness of the far-infrared sky at lambda = 134, 154, and 186 micrometers at high Galactic latitude using a liquid-He-cooled, rocket-borne telescope. The telescope scanned over a 5 deg x 20 deg region which includes infrared cirrus, high-latitude molecular clouds, the starburst galaxy M82, and the H I Hole in Ursa Major, a region with uniquely low H I column density. The measured brightness at 134, 154, and 186 micrometers is well correlated with the 100 micrometers brightness measured by IRAS and, in regions excluding molecular clouds, with H I column density. The spectrum of the component correlated with H I is well fitted by a gray-body spectrum with a temperature of 16.4 (+2.3/-1.8) K, assuming an emissivity proportional to lambda(exp -2). Assuming a constant far-infrared dust emissivity per hydrogen nucleus, the ratio of the H2 column density to the velocity-integrated CO intensity in the high-latitude molecular cloud is NH2/W(sub co) = (1.6 +/- 0.3) x 10(exp 20)/sq cm/(K km/s). The residual brightness after subtracting the emission correlated with H I column density is lambda I(sub lambda)(154 micrometers) = (1.4 +/- 0.6) x 10(exp -12) W/sq cm/sr, yielding an upper limit to the far-infrared extragalactic background radiation of lambda I(sub lambda)(154 micrometers) is less than 2.6 x 10(exp -12) W/sq cm/sr.

  13. An inverse problem for a wave equation with arbitrary initial values and a finite time of observations

    NASA Astrophysics Data System (ADS)

    Cipolatti, Rolci; Yamamoto, Masahiro

    2011-09-01

    We consider a solution u(p, g, a, b) to an initial value-boundary value problem for a wave equation: \\fl \\partial _t^2 u(x,t) = \\Delta u(x,t) + p(x)u(x,t), \\qquad x \\in \\Omega,\\qquad \\thinspace 0 < t < T\\\\ \\fl u(x,0) = a(x), \\qquad \\partial _tu(x,0) = b(x), \\qquad x \\in \\Omega,\\\\ \\fl u(x,t) = g(x,t), \\qquad x \\in \\partial \\Omega,\\qquad 0 < t < T, and we discuss an inverse problem of determining a coefficient p(x) and a, b by observations of u(p, g, a, b)(x, t) in a neighbourhood ω of ∂Ω over a time interval (0, T) and ∂itu(p, g, a, b)(x, T0), x in Ω, i = 0, 1, with T0 < T. We prove that if T - T0 and T0 are larger than the diameter of Ω, then we can choose a finite number of Dirichlet boundary inputs g1, ..., gN, so that the mapping \\fl \\lbrace u(p,g_j,a_j,b_j)\\vert _{\\omega \\times (0,T)}, \\partial _t^iu(p,g_j,a_j,b_j)(\\cdot,T_0)\\rbrace _{i=0,1, 1\\le j\\le N}\

  14. Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Microwave 89Ghz imageFigure 2: Visible/near infrared sensor

    Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday.

    These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama.

    This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple

  15. Finite-time observer-based output-feedback control for the global stabilisation of the PVTOL aircraft with bounded inputs

    NASA Astrophysics Data System (ADS)

    Zavala-Río, A.; Fantoni, I.; Sanahuja, G.

    2016-05-01

    In this work, an output-feedback scheme for the global stabilisation of the planar vertical take-off and landing aircraft with bounded inputs is developed taking into account the positive nature of the thrust. The global stabilisation objective is proven to be achieved avoiding input saturation and by exclusively considering the system positions in the feedback. To cope with the lack of velocity measurements, the proposed algorithm involves a finite-time observer. The generalised versions of the involved finite-time stabilisers have not only permitted to solve the output-feedback stabilisation problem avoiding input saturation, but also provide additional flexibility in the control design that may be used in aid of performance improvements. With respect to previous approaches, the developed finite-time observer-based scheme guarantees the global stabilisation objective disregarding velocity measurements in a bounded input context. Simulation tests corroborate the analytical developments. The study includes further experimental results on an actual flying device.

  16. Spitzer And Near-infrared Observations Of A Bi-polar Outflow In The Rosette Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Ybarra, Jason E.; Lada, E. A.; Balog, Z.; Fleming, S. W.; Phelps, R. L.

    2010-01-01

    We present and discuss Spitzer and near-infrared H2 observations of a bi-polar protostellar outflow in the Rosette Molecular Cloud. The outflow is seen in all four IRAC bands and partially in the MIP 24 micron band. A dark cloud seen in absorption in the 8 micron image bisects the outflow and contains an embedded Class 0 object that appears to be the outflow source. Near-infrared narrow-band H2 observations were obtained using the Infrared Side Port Imager (ISPI) on the CTIO 4 meter telescope. Spitzer IRAC color analysis of the shocked emission was performed from which thermal and density maps of the outflow were constructed. We use these data and maps to probe the physical conditions and structure of the flow. This work is based in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by an award issued by JPL/Caltech, NASA LTSA Grant NNG05GD66G, and the Florida Space Grant Consortium

  17. The instrumentation and the contamination control activity of thermal and near-infrared sensor for carbon observation (TANSO) on GOSAT

    NASA Astrophysics Data System (ADS)

    Urabe, Tomoyuki; Kuze, Akihiko; Hamazaki, Takashi; Baba, Naoko; Minami, Shintaro; Saruwatari, Hideki

    2006-08-01

    The Greenhouse Gases Observing SATellite (GOSAT) is a satellite to monitor the carbon dioxide (CO II) and the methane (CH 4) globally from orbit. Two instruments are accommodated on GOSAT. Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) detects the Short wave infrared (SWIR) reflected on the earth's surface as well as the thermal infrared (TIR) radiated from the ground and the atmosphere. TANSO-FTS is capable of detecting wide spectral coverage, specifically, three narrow bands (0.76, 1.6, and 2 micron) and a wide band (5.5-14.3 micron) with 0.24 wavenumber spectral resolution. TANSO Cloud and Aerosol Imager (TANSO-CAI) is a radiometer of ultraviolet (UV), visible, and SWIR to correct cloud and aerosol interference. The contaminant deposition on the sensors significantly affects the sensing capability. So the spectroscopic contamination control over wide spectral range is required from the process of GOSAT development to on-orbit operation. The paper presents the instrument design of TANSO-FTS and TANSO-CAI, overview of GOSAT contamination control plan, results from spectral analysis of deposited outgas, test result of hydrazine (rocket and satellite thruster propellant) injection to an optical surface, as well as test result from contamination environment monitoring using a vacuum chamber and contamination witness plates.

  18. Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.

    PubMed

    Wang, Likun; Chen, Yong; Han, Yong

    2016-09-01

    Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation. PMID:27607289

  19. High Angular Resolution Observations of Episodic Dust Emission from Long Period Variable Stars Twenty Years of Observations with the Berkeley Infrared Spatial Interferometer

    NASA Technical Reports Server (NTRS)

    Danchi, William

    2010-01-01

    Over the past twenty years the U. C. Berkeley Infrared Spatial Interferometer has observed a number of Long Period Variable stars in the mid-infrared, obtaining information on the spatial distribution of dust around these stars with resolutions of the order of a few tens of milliarcseconds. The ISI is a heterodyne interferometer operating mostly at 11.15 microns, initially with two telescopes. In the last decade, it has been taking data regularly with three telescopes, thus obtaining visibility data on three baselines and also a closure phase. Over the course of the years, the ISI has been able to measure the physical properties of the dust shells surrounding these stars, in particular the inner radii of the dust shells, as well as the temperature and density distribution. For some stars, the ISI has also made precision measurements of their diameters in the mid-infrared. Closure phase measurements have revealed asymmetries in the dust distributions around many stars. Most surprisingly the ISI data has shown evidence for substantial changes in the amount of dust on time scales of 5-10 years, rather than being directly correlated with the stellar pulsation periods, which are of the order of one year. We discuss past results and new results from the ISI that highlight the dynamic environment around these stars.

  20. Far-infrared observations of an unbiased sample of gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Kohn, S. A.; Michałowski, M. J.; Bourne, N.; Baes, M.; Fritz, J.; Cooray, A.; De Looze, I.; De Zotti, G.; Dannerbauer, H.; Dunne, L.; Dye, S.; Eales, S.; Furlanetto, C.; Gonzalez-Nuevo, J.; Ibar, E.; Ivison, R. J.; Maddox, S. J.; Scott, D.; Smith, D. J. B.; Smith, M. W. L.; Symeonidis, M.; Valiante, E.

    2015-04-01

    Gamma-ray bursts (GRBs) are the most energetic phenomena in the Universe; believed to result from the collapse and subsequent explosion of massive stars. Even though it has profound consequences for our understanding of their nature and selection biases, little is known about the dust properties of the galaxies hosting GRBs. We present analysis of the far-infrared properties of an unbiased sample of 20 BeppoSAX and Swift GRB host galaxies (at an average redshift of z = 3.1) located in the Herschel Astrophysical Terahertz Large Area Survey, the Herschel Virgo Cluster Survey, the Herschel Fornax Cluster Survey, the Herschel Stripe 82 Survey and the Herschel Multi-tiered Extragalactic Survey, totalling 880 deg2, or ˜3 per cent of the sky in total. Our sample selection is serendipitous, based only on whether the X-ray position of a GRB lies within a large-scale Herschel survey - therefore our sample can be considered completely unbiased. Using deep data at wavelengths of 100-500 μm, we tentatively detected 1 out of 20 GRB hosts located in these fields. We constrain their dust masses and star formation rates (SFRs), and discuss these in the context of recent measurements of submillimetre galaxies and ultraluminous infrared galaxies. The average far-infrared flux of our sample gives an upper limit on SFR of <114 M⊙ yr-1. The detection rate of GRB hosts is consistent with that predicted assuming that GRBs trace the cosmic SFR density in an unbiased way, i.e. that the fraction of GRB hosts with SFR > 500 M⊙ yr-1 is consistent with the contribution of such luminous galaxies to the cosmic star formation density.

  1. Galileo Infrared Observations of the Shoemaker Levy 9 G and R Fireballs and Splash

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Weissman, P. R.; Hui, J.; Segura, M.; Baines, K. H.; Johnson, T. V.; Dossart, P.; Encrenaz, T.; Leader, F.; Mehlman, R.

    1995-01-01

    The Galileo spacecraft was fortuitously situated for a direct view of the impacts of comet Shoemaker(ka)evy 9 in Jupiter's atmosphere and measurements were recorded by the Near Infrared Mapping Spectrometer (NIMS) instrument for several of the impact events. Seventeen discrete wavelength channels were used between 0.7 to 5.0 microns, obtained with a time resolution of 5 seconds. Two phases of the impact phenomena are found in the data: the initial fireball, which was evident for one minute, and subsequent fallback of impact ejecta onto the atmosphere, starting six minutes after fireball initiation.

  2. Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) Spacecraft: Independent Technical Assessment

    NASA Technical Reports Server (NTRS)

    Gilbrech, Richard J.; McManamen, John P.; Wilson, Timmy R.; Robinson, Frank; Schoren, William R.

    2004-01-01

    CALIPSO is a joint science mission between the CNES, LaRC and GSFC. It was selected as an Earth System Science Pathfinder satellite mission in December 1998 to address the role of clouds and aerosols in the Earth's radiation budget. The spacecraft includes a NASA light detecting and ranging (LIDAR) instrument, a NASA wide-field camera and a CNES imaging infrared radiometer. The scope of this effort was a review of the Proteus propulsion bus design and an assessment of the potential for personnel exposure to hydrazine propellant.

  3. Aircraft observations of Venus' near-infrared reflection spectrum - Implications for cloud composition

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Erickson, E. F.; Witteborn, F. C.; Chackerian, C., Jr.; Summers, A. L.; Van Camp, W.; Baldwin, B. J.; Augason, G. C.; Caroff, L. J.

    1974-01-01

    A comparison of aircraft-based measurement data on Venus' near-infrared (1.2- to 4.1-micron) reflection spectrum with computer generated spectra of a number of cloud candidates shows a 75-% or more concentrated water solution of sulfuric acid to give the only acceptable match to the profile of Venus' strong 3-micron absorption feature. However, the measurement data obtained also show a modest decline in reflectivity from 2.3-micron to 1.2-micron wavelength, which is inconsistent with the flat spectrum of sulfuric acid in this spectral region. It is hypothesized that this decline is due to impurities in the sulfuric acid droplets.

  4. VVV near-infrared observations of the GRS 1736-297 field

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Saito, R. K.; Rojas, A. F.; Minniti, D.

    2016-02-01

    After the announcement of the arcsec-sized soft X-ray error box (ATel #8704) of the X-ray source GRS 1736-297 which recently underwent an active phase at high energies (ATel #8698), we searched the archival frames of the near-infrared (NIR) VVV survey (vvvsurvey.org; Minniti et al. 2010, New Astron., 15, 433) of the Galactic Bulge and inner disk, obtained with the 4.1m VISTA telescope at Cerro Paranal (Chile), to look for the presence of NIR objects within the Swift/XRT error circle reported in ATel #8704.

  5. Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) Spacecraft: Independent Technical Assessment

    NASA Technical Reports Server (NTRS)

    Gilbrech, Richard J.; McManamen, John P.; Wilson, Timmy R.; Robinson, Frank; Schoren, William R.

    2005-01-01

    CALIPSO is a joint science mission between the CNES, LaRC and GSFC. It was selected as an Earth System Science Pathfinder satellite mission in December 1998 to address the role of clouds and aerosols in the Earth's radiation budget. The spacecraft includes a NASA light detecting and ranging (LIDAR) instrument, a NASA wide-field camera and a CNES imaging infrared radiometer. The scope of this effort was a review of the Proteus propulsion bus design and an assessment of the potential for personnel exposure to hydrazine propellant.

  6. Physical characterization of the potentially hazardous high-albedo Asteroid (33342) 1998 WT 24 from thermal-infrared observations

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Mueller, Michael; Delbó, Marco; Bus, Schelte J.

    2007-06-01

    The potentially hazardous Asteroid (33342) 1998 WT 24 approached the Earth within 0.0125 AU on 2001 December 16 and was the target of a number of optical, infrared, and radar observing campaigns. Interest in 1998 WT 24 stems from its having an orbit with an unusually low perihelion distance, which causes it to cross the orbits of the Earth, Venus, and Mercury, and its possibly being a member of the E spectral class, which is rare amongst near-Earth asteroids (NEAs). We present the results of extensive thermal-infrared observations of 1998 WT 24 obtained in December 2001 with the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii and the ESO 3.6-m telescope in Chile. A number of thermal models have been applied to the data, including thermophysical models that give best-fit values of 0.35±0.04 km for the effective diameter, 0.56±0.2 for the geometric albedo, p, and 100-300 J m -2 s -0.5 K -1 for the thermal inertia. Our values for the diameter and albedo are consistent with results derived from radar and polarimetric observations. The albedo is one of the highest values obtained for any asteroid and, since no other taxonomic type is associated with albedos above 0.5, supports the suggested rare E-type classification for 1998 WT 24. The thermal inertia is an order of magnitude higher than values derived for large main-belt asteroids but consistent with the relatively high values found for other near-Earth asteroids. A crude pole solution inferred from a combination of our observations and published radar results is β=-52°, λ=355° (J2000), but we caution that this is uncertain by several tens of degrees.

  7. Potentially Hazardous Asteroid (85989) 1999 JD6: Radar, Infrared, and Lightcurve Observations and a Preliminary Shape Model

    NASA Astrophysics Data System (ADS)

    Marshall, Sean E.; Howell, Ellen S.; Brozović, Marina; Taylor, Patrick A.; Campbell, Donald B.; Benner, Lance A. M.; Naidu, Shantanu P.; Giorgini, Jon D.; Jao, Joseph S.; Lee, Clement G.; Richardson, James E.; Rodriguez-Ford, Linda A.; Rivera-Valentin, Edgard G.; Ghigo, Frank; Kobelski, Adam; Busch, Michael W.; Pravec, Petr; Warner, Brian D.; Reddy, Vishnu; Hicks, Michael D.; Crowell, Jenna L.; Fernandez, Yanga R.; Vervack, Ronald J.; Nolan, Michael C.; Magri, Christopher; Sharkey, Benjamin; Bozek, Brandon

    2015-11-01

    We report observations of potentially hazardous asteroid (85989) 1999 JD6, which passed 0.048 AU from Earth (19 lunar distances) during its close approach on July 25, 2015. During eleven days between July 15 and August 4, 2015, we observed 1999 JD6 with the Goldstone Solar System Radar and with Arecibo Observatory's planetary radar, including bistatic reception of some Goldstone echoes at Green Bank. We obtained delay-Doppler radar images at a wide range of latitudes, with range resolutions varying from 7.5 to 150 meters per pixel, depending on the observing conditions. We acquired near-infrared spectra from the NASA InfraRed Telescope Facility (IRTF) on two nights in July 2015, at wavelengths from 0.75 to 5.0 microns, showing JD6's thermal emission. We also obtained optical lightcurves from Ondrejov Observatory (in 1999), Table Mountain Observatory (in 2000), and Palmer Divide Station (in 2015). Previous observers had suggested that 1999 JD6 was most likely an elongated object, based on its large lightcurve amplitude of 1.2 magnitudes (Szabo et al. 2001; Polishook and Brosch 2008; Warner 2014). The radar images reveal an elongated peanut-shaped object, with two lobes separated by a sharp concavity. JD6's maximum diameter is about two kilometers, and its larger lobe is approximately 50% longer than its smaller lobe. The larger lobe has a concavity on its end. We will present more details on the shape and rotation state of 1999 JD6, as well as its surface properties from optical and infrared data and thermal modeling.

  8. NGC 4102: HIGH-RESOLUTION INFRARED OBSERVATIONS OF A NUCLEAR STARBURST RING

    SciTech Connect

    Beck, Sara C.; Lacy, John H.; Turner, Jean L.

    2010-10-20

    The composite galaxy NGC 4102 hosts a LINER nucleus and a starburst. We mapped NGC 4102 in the 12.8 {mu}m line of [Ne II], using the echelon spectrometer TEXES on the NASA IRTF, to obtain a data cube with 1.''5 spatial, and 25 km s{sup -1} spectral, resolution. Combining near-infrared, radio, and the [Ne II] data shows that the extinction to the starburst is substantial, more than 2 mag at the K band, and that the neon abundance is less than half solar. We find that the star formation in the nuclear region is confined to a rotating ring or disk of 4.''3 ({approx}300 pc) diameter, inside the inner Lindblad resonance. This region is an intense concentration of mass, with a dynamical mass {approx}3 x 10{sup 9} M{sub sun}, and of star formation. The young stars in the ring produce the [Ne II] flux reported by Spitzer for the entire galaxy. The mysterious blue component of line emission detected in the near-infrared is also seen in [Ne II]; it is not a normal active galactic nucleus outflow.

  9. Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry

    NASA Technical Reports Server (NTRS)

    Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.

    2010-01-01

    High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next

  10. Herschel far-infrared observations of the Carina Nebula complex. I. Introduction and global cloud structure

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Roccatagliata, V.; Gaczkowski, B.; Ratzka, T.

    2012-05-01

    Context. The Carina Nebula represents one of the most massive star forming regions known in our Galaxy and displays a high level of feedback from the large number of very massive stars. While the stellar content is now well known from recent deep X-ray and near-infrared surveys, the properties of the clouds remained rather poorly studied until today. Aims: By mapping the Carina Nebula complex in the far-infrared, we aim at a comprehensive and detailed characterization of the dust and gas clouds in the complex. Methods: We used SPIRE and PACS onboard of Herschel to map the full spatial extent (≈5.3 square-degrees) of the clouds in the Carina Nebula complex at wavelengths between 70 μm and 500 μm. We used here the 70 μm and 160 μm far-infrared maps to determine color temperatures and column densities, and to investigate the global properties of the gas and dust clouds in the complex. Results: Our Herschel maps show the far-infrared morphology of the clouds at unprecedented high angular resolution. The clouds show a very complex and filamentary structure that is dominated by the radiation and wind feedback from the massive stars. In most locations, the column density of the clouds is NH ≲ 2 × 1022 cm-2 (corresponding to visual extinctions of AV ≲ 10 mag); denser cloud structures are restricted to the massive cloud west of Tr 14 and the innermost parts of large pillars. Our temperature map shows a clear large-scale gradient from ≈35-40 K in the central region to ≲20 K at the periphery and in the densest parts of individual pillars. The total mass of the clouds seen by Herschel in the central (1 degree radius) region is ≈656 000 M⊙. We also derive the global spectral energy distribution in the mid-infrared to mm wavelength range. A simple radiative transfer model suggests that the total mass of all the gas (including a warmer component that is not well traced by Herschel) in the central 1 degree radius region is ≤890 000 M⊙. Conclusions: Despite

  11. Constraining the Lyα escape fraction with far-infrared observations of Lyα emitters

    SciTech Connect

    Wardlow, Julie L.; Calanog, J.; Cooray, A.; Malhotra, S.; Zheng, Z.; Rhoads, J.; Finkelstein, S.; Bock, J.; Bridge, C.; Ciardullo, R.; Gronwall, C.; Conley, A.; Farrah, D.; Gawiser, E.; Heinis, S.; Ibar, E.; Ivison, R. J.; Marsden, G.; Oliver, S. J.; Riechers, D.; and others

    2014-05-20

    We study the far-infrared properties of 498 Lyα emitters (LAEs) at z = 2.8, 3.1, and 4.5 in the Extended Chandra Deep Field-South, using 250, 350, and 500 μm data from the Herschel Multi-tiered Extragalactic Survey and 870 μm data from the LABOCA ECDFS Submillimeter Survey. None of the 126, 280, or 92 LAEs at z = 2.8, 3.1, and 4.5, respectively, are individually detected in the far-infrared data. We use stacking to probe the average emission to deeper flux limits, reaching 1σ depths of ∼0.1 to 0.4 mJy. The LAEs are also undetected at ≥3σ in the stacks, although a 2.5σ signal is observed at 870 μm for the z = 2.8 sources. We consider a wide range of far-infrared spectral energy distributions (SEDs), including an M82 and an Sd galaxy template, to determine upper limits on the far-infrared luminosities and far-infrared-derived star formation rates of the LAEs. These star formation rates are then combined with those inferred from the Lyα and UV emission to determine lower limits on the LAEs' Lyα escape fraction (f {sub esc}(Lyα)). For the Sd SED template, the inferred LAEs f {sub esc}(Lyα) are ≳ 30% (1σ) at z = 2.8, 3.1, and 4.5, which are all significantly higher than the global f {sub esc}(Lyα) at these redshifts. Thus, if the LAEs f {sub esc}(Lyα) follows the global evolution, then they have warmer far-infrared SEDs than the Sd galaxy template. The average and M82 SEDs produce lower limits on the LAE f {sub esc}(Lyα) of ∼10%-20% (1σ), all of which are slightly higher than the global evolution of f {sub esc}(Lyα), but consistent with it at the 2σ-3σ level.

  12. SPITZER AND NEAR-INFRARED OBSERVATIONS OF A NEW BIPOLAR PROTOSTELLAR OUTFLOW IN THE ROSETTE MOLECULAR CLOUD

    SciTech Connect

    Ybarra, Jason E.; Lada, Elizabeth A.; Fleming, Scott W.; Balog, Zoltan; Phelps, Randy L.

    2010-05-01

    We present and discuss Spitzer and near-infrared H{sub 2} observations of a new bipolar protostellar outflow in the Rosette Molecular Cloud. The outflow is seen in all four InfraRed Array Camera (IRAC) bands and partially as diffuse emission in the MIPS 24 {mu}m band. An embedded MIPS 24 {mu}m source bisects the outflow and appears to be the driving source. This source is coincident with a dark patch seen in absorption in the 8 {mu}m IRAC image. Spitzer IRAC color analysis of the shocked emission was performed from which thermal and column density maps of the outflow were constructed. Narrowband near-infrared (NIR) images of the flow reveal H{sub 2} emission features coincident with the high temperature regions of the outflow. This outflow has now been given the designation MHO 1321 due to the detection of NIR H{sub 2} features. We use these data and maps to probe the physical conditions and structure of the flow.

  13. Cosmological observables, infrared growth of fluctuations, and scale-dependent anisotropies

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.; Sloth, Martin S.

    2011-09-01

    We simplify and extend semiclassical methods in inflationary cosmology that capture leading IR corrections to correlators. Such IR effects can be absorbed into a coordinate change when examining sufficiently local observables, but not when comparing observations at large separation in scales, such as seen by a late-time observer. The analysis is facilitated by definition of a scale-dependent metric and physical momentum. These assist definition of “IR-safe” observables seen by a postinflationary observer, which are contrasted to those based on the local geometry of the reheating surface. For the former observables, the observer’s horizon provides an effective IR cutoff. IR growth of fluctuations contributes to enhanced statistical inhomogeneities/anisotropies at short scales, observation of which by a present-day observer might be sought in 21 cm measurements. Such IR corrections are argued to become large for a very late-time observer.

  14. All-weather estimates of the land surface skin temperatures from combined analyses of microwave and infrared satellite observations

    NASA Astrophysics Data System (ADS)

    Jimenez, C.; Aires, F.; Prigent, C.; Catherinot, J.; Rossow, W. B.

    2011-12-01

    The surface skin temperature (Ts) is a key parameter at the land-atmosphere interface. Global datasets of Ts are traditionally estimated from satellite infrared radiance observations, under clear sky conditions. First, the inter-comparison of different IR land surface temperature satellite datasets (ISCCP, MODIS, and AIRS) is presented, along with an evaluation with in situ measurements at selected stations archived during CEOP (Coordinated Enhanced Observing Period). The objective is to assess the accuracy of the Ts estimates, and to evidence the major error sources in the retrieval. Results show that the major sources of differences between the different satellite products come from instrument calibration differences, especially for high Ts, followed by the impact of the water vapor treatment in the algorithm, and the differences in surface emissivities. The main limitation of satellite infrared measurements of Ts is their inability to penetrate clouds, limiting them to clear conditions. Microwave wavelengths, being much less affected by clouds than the infrared, are an attractive alternative in cloudy regions as they can be used to derive an all-sky skin Ts product. A neural network inversion scheme has been developed to retrieve surface Ts along with atmospheric water vapor, cloud liquid water, and surface emissivities over land from a combined analysis of Special Sensor Microwave /Imager (SSM/I) and International Satellite Cloud Climatology Project (ISCCP) data. In the absence of routine in situ Ts measurements, retrieved all-weather Ts values are first evaluated globally by comparison to the surface air temperature (Tair) measured by the meteorological station network. The Ts-Tair difference from the global comparisons showed all the expected variations with solar flux, soil characteristics, and cloudiness. This evaluation has been recently extended locally at a few sites by using the Ts in-situ measurements from several CEOP stations representing different

  15. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 2. Retrieval evaluation

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Wind, Gala; Yang, Ping

    2016-05-01

    An infrared-based optimal estimation (OE-IR) algorithm for retrieving ice cloud properties is evaluated. Specifically, the implementation of the algorithm with MODerate resolution Imaging Spectroradiometer (MODIS) observations is assessed in comparison with the operational retrieval products from MODIS on the Aqua satellite (MYD06), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and the Imaging Infrared Radiometer (IIR); the latter two instruments fly on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the Afternoon Constellation (A-Train) with Aqua. The results show that OE-IR cloud optical thickness (τ) and effective radius (reff) retrievals perform best for ice clouds having 0.5 < τ < 7 and reff < 50 µm. For global ice clouds, the averaged retrieval uncertainties of τ and reff are 19% and 33%, respectively. For optically thick ice clouds with τ larger than 10, however, the τ and reff retrieval uncertainties can exceed 30% and 50%, respectively. For ice cloud top height (h), the averaged global uncertainty is 0.48 km. Relatively large h uncertainty (e.g., > 1 km) occurs for τ < 0.5. Analysis of 1 month of the OE-IR retrievals shows large τ and reff uncertainties in storm track regions and the southern oceans where convective clouds are frequently observed, as well as in high-latitude regions where temperature differences between the surface and cloud top are more ambiguous. Generally, comparisons between the OE-IR and the operational products show consistent τ and h retrievals. However, obvious differences between the OE-IR and the MODIS Collection 6 reff are found.

  16. SUBMILLIMETER OBSERVATIONS OF DENSE CLUMPS IN THE INFRARED DARK CLOUD G049.40-00.01

    SciTech Connect

    Kang, Miju; Choi, Minho; Bieging, John H.; Rho, Jeonghee; Tsai, Chao-Wei

    2011-12-20

    We obtained 350 and 850 {mu}m continuum maps of the infrared dark cloud G049.40-00.01. Twenty-one dense clumps were identified within G049.40-00.01 based on the 350 {mu}m continuum map with an angular resolution of about 9.''6. We present submillimeter continuum maps and report physical properties of the clumps. The masses of clumps range from 50 to 600 M{sub Sun }. About 70% of the clumps are associated with bright 24 {mu}m emission sources, and they may contain protostars. The two most massive clumps show extended, enhanced 4.5 {mu}m emission indicating vigorous star-forming activity. The clump-size-mass distribution suggests that many of them are forming high-mass stars. G049.40-00.01 contains numerous objects in various evolutionary stages of star formation, from pre-protostellar clumps to H II regions.

  17. Optical system of borescope for flame observation in visible (VIS) and infrared (NIR) part of light

    NASA Astrophysics Data System (ADS)

    Keprt, Jirí; Pospíšil, Ladislav; Hrabovský, Miroslav; Bartonek, Ludek

    2014-12-01

    To show flames in the visible and low infrared regions of radiation in the wavelength range from 400 nm to 2000 nm a design of optical systems technical borescope is presented. The proposed glass and technical parameters of the optical system correspond to the diameters of the lens elements and their distance of the borescope for VIS only. The correction lengths and distances of images are approximately the same and also correspond to the mechanical construction of the existing borescope for visible light. To record images in the wavelength range from 800 nm to 1000 nm it is possible to use the classic black-and-white cameras, e.g. OSCAR OS-458. Recording wavelengths in the range of 900 nm to 1700 nm allows, for example, InGaAs camera Bobcat 1.7-320.

  18. High-J CO Sleds in Nearby Infrared Bright Galaxies Observed By Herschel/PACS

    NASA Astrophysics Data System (ADS)

    Mashian, N.; Sturm, E.; Sternberg, A.; Janssen, A.; Hailey-Dunsheath, S.; Fischer, J.; Contursi, A.; González-Alfonso, E.; Graciá-Carpio, J.; Poglitsch, A.; Veilleux, S.; Davies, R.; Genzel, R.; Lutz, D.; Tacconi, L.; Verma, A.; Weiß, A.; Polisensky, E.; Nikola, T.

    2015-04-01

    We report the detection of far-infrared (FIR) CO rotational emission from nearby active galactic nuclei (AGNs) and starburst galaxies, as well as several merging systems and Ultra-Luminous Infrared Galaxies (ULIRGs). Using the Herschel Photodetector Array Camera and Spectrometer (PACS), we have detected transitions in the Jupp = 14-30 range. The PACS CO data obtained here provide the first reference of well-sampled FIR extragalactic CO spectral line energy distributions (SLEDs) for this range. We find a large range in the overall SLED shape, even among galaxies of similar type, demonstrating the uncertainties in relying solely on high-J CO diagnostics to characterize the excitation source of a galaxy. Combining our data with low-J line intensities taken from the literature, we present a CO ratio-ratio diagram and discuss its value in distinguishing excitation sources and physical properties of the molecular gas. The position of a galaxy on such a diagram is less a signature of its excitation mechanism, than an indicator of the presence of warm, dense molecular gas. We then quantitatively analyze the CO emission from a subset of the detected sources with single-component and two-component large velocity gradient (LVG) radiative transfer models to fit the CO SLEDs. From these fits we derive the molecular gas mass and the corresponding CO-to-H2 conversion factor, {{α }CO}, for each respective source. For the ULIRGs we find α values in the canonical range 0.4- 5M⊙ (K km s-1 pc2)-1, while for the other objects, α varies between 0.2 and 14. Finally, we compare our best-fit LVG model results with previous studies of the same galaxies and comment on any differences. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  19. Infrared absorption change in single-walled carbon nanotubes observed by combination spectroscopy of synchrotron radiation and laser.

    PubMed

    Azuma, Junpei; Itoh, Minoru; Koike, Masahiro; Kamada, Masao; Endo, Morinobu

    2006-11-01

    The Drude tail due to photo-excited carriers in single-walled carbon nanotubes (SWNTs) has been observed in the mid-infrared region by using combination spectroscopy of synchrotron radiation and Ti:sapphire laser. It is found that the density of photo-excited carriers increases as the sample temperature is raised from 12 to 300 K, and their lifetime is of the order of minutes at 300 K. These facts suggest that the movement of photo-excited carriers is largely affected by some extrinsic defect, thus resulting in the long-lasting Drude reflection in SWNTs. PMID:17057323

  20. Ground-based infrared observations of variable IRAS sources as candidates for late asymptotic giant branch stars

    NASA Technical Reports Server (NTRS)

    Kwok, Sun; Boreiko, R. T.; Hrivnak, Bruce J.

    1987-01-01

    Analysis of the color distribution of OH/IR stars and IRAS low-resolution spectra class 30 objects suggests the presence of a well-defined evolutionary sequence which is populated by late asymptotic giant branch (LAGB) stars. The paper reports ground-based identification and infrared photometry of 10 candidates of news LAGB stars. None of the selected sources are found to have optical counterparts, and eight of the 10 show a strong 10-micron silicate absorption feature. It is suggested that these stars represent an invisible extension of extreme Mira variables and are some of the most evolved stars observed to date.

  1. A development of cloud top height retrieval using thermal infrared spectra observed with GOSAT and comparison with CALIPSO data

    NASA Astrophysics Data System (ADS)

    Someya, Yu; Imasu, Ryoichi; Saitoh, Naoko; Ota, Yoshifumi; Shiomi, Kei

    2016-05-01

    An algorithm based on CO2 slicing, which has been used for cirrus cloud detection using thermal infrared data, was developed for high-resolution radiance spectra from satellites. The channels were reconstructed based on sensitivity height information of the original spectral channels to reduce the effects of measurement errors. Selection of the reconstructed channel pairs was optimized for several atmospheric profile patterns using simultaneous studies assuming a cloudy sky. That algorithm was applied to data by the Greenhouse gases Observing SATellite (GOSAT). Results were compared with those obtained from the space-borne lidar instrument on-board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Monthly mean cloud amounts from the slicing generally agreed with those from CALIPSO observations despite some differences caused by surface temperature biases, optically very thin cirrus, multilayer structures of clouds, extremely low cloud tops, and specific atmospheric conditions. Comparison of coincident data showed good agreement, except for some cases, and revealed that the improved slicing method is more accurate than the traditional slicing method. Results also imply that improved slicing can detect low-level clouds with cloud top heights as low as approximately 1.5 km.

  2. Nitrogen Isotopic Ratio in Jupiter's Atmosphere from Observations by Composite Infrared Spectrometer (CIRS) on the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Owen, T.; Conrath, B. J.; Flasar, F. M.; Kunde, V. G.; Nixon, C. A..; Achterberg, R. K.; Bjoraker, G.; Jennings, D. J.

    2003-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft made infrared observations of Jupiter's atmosphere during the flyby in December 2000 to January 2001. The unique database in the 600-1400/cm region with 0.53 and 2.8/cm spectral resolutions obtained from the observations permits retrieval of global maps of the thermal structure and composition of Jupiter's atmosphere including the distributions of (14)NH3 and (15)NH3. Analysis of Jupiter's ammonia distributions from three isolated (15)NH3 spectral lines in eight latitudes is presented for evaluation of the nitrogen isotopic ratio. The nitrogen isotopic ratio (14)N/(15)N (or (15)N/(14)N) in Jupiter's atmosphere in this analysis is calculated to be: 448 +/- 62 ((2.23 +/- 0.31) x 10(exp -3)). This value of the ratio determined from CIRS data is found to be in very close agreement with the value previously obtained from the measurements by the Galileo Probe Mass Spectrometer. Some possible mechanisms to account for the variation of Jupiter's observed isotopic ratio relative to various astrophysical environments are discussed.

  3. Observation of Fano line shapes in infrared vibrational spectra of CO2 adsorbed on Cu(997) and Cu(111).

    PubMed

    Koitaya, Takanori; Shiozawa, Yuichiro; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2016-02-01

    Adsorption states of carbon dioxide on the Cu(997) and Cu(111) surfaces were investigated by infrared reflection absorption spectroscopy, temperature programmed desorption, and X-ray photoelectron spectroscopy. CO2 molecules are physisorbed on the Cu(997) surface at temperatures below 70 K; neither chemisorption nor dissociation of CO2 occurs on the Cu(997) surface at this low temperature. However, the vibrational spectra of adsorbed CO2 depend significantly on the substrate temperature and coverage. IR spectra of CO2 vibrational modes at 70 K show asymmetric Fano line shapes, while only normal absorption bands are observed when CO2 is adsorbed at 20 K. Fano line shapes are also observed for CO2 on Cu(111) at 85 K. The observation of Fano effect indicates the coupling between the electronic continuum states of the Cu surface and the internal vibrational modes of CO2 even in such physisorbed system. PMID:26851930

  4. Observation of Fano line shapes in infrared vibrational spectra of CO2 adsorbed on Cu(997) and Cu(111)

    NASA Astrophysics Data System (ADS)

    Koitaya, Takanori; Shiozawa, Yuichiro; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2016-02-01

    Adsorption states of carbon dioxide on the Cu(997) and Cu(111) surfaces were investigated by infrared reflection absorption spectroscopy, temperature programmed desorption, and X-ray photoelectron spectroscopy. CO2 molecules are physisorbed on the Cu(997) surface at temperatures below 70 K; neither chemisorption nor dissociation of CO2 occurs on the Cu(997) surface at this low temperature. However, the vibrational spectra of adsorbed CO2 depend significantly on the substrate temperature and coverage. IR spectra of CO2 vibrational modes at 70 K show asymmetric Fano line shapes, while only normal absorption bands are observed when CO2 is adsorbed at 20 K. Fano line shapes are also observed for CO2 on Cu(111) at 85 K. The observation of Fano effect indicates the coupling between the electronic continuum states of the Cu surface and the internal vibrational modes of CO2 even in such physisorbed system.

  5. Near-Infrared and Optical colors of Trans-Neptunian Objects and Centaurs from Ground-Based Observations in Support of Spitzer Observations

    NASA Astrophysics Data System (ADS)

    Lejoly, Cassandra; Mommert, Michael; Trilling, David; Pinilla-Alonso, Noemi; Emery, Josh; Melton, Chad; McCarthy, Don; Kulesa, Craig

    2015-11-01

    Trans-Neptunian objects and Centaurs are small icy bodies located beyond the orbit of Neptune and between the orbits of Neptune and Jupiter, respectively. These objects are composed of organic material, of silicate minerals and of different ices, including H2O, CH4, N2 and CH3OH. Determining the composition of such object usually requires spectroscopic measurements on large telescopes. However, we can constrain the compositions of these objects by measuring their near-infrared colors that -- in combination with existing data from the Spitzer Space Telescope -- can indicate surface composition.. We will present near-infrared magnitudes and colors of at least 24 trans-Neptunian objects and 3 Centaurs obtained in ground-based observations. We observed with Gemini, UKIRT, and the 90" Bok Telescope on Kitt Peak between 2011 and 2015. The combination of our data with existing Spitzer Space Telescope data enables us to identify spectral slope up to 4.5 μm and provides rough information on spectral bands, which are important clues on the surface composition of our targets. We will present preliminary results on the compositional analysis for select targets. This work was supported by the Spitzer Science Center and NASA's Planetary Astronomy program.

  6. Observations of Infrared Radiative Cooling in the Thermosphere on Daily to Multiyear Timescales from the TIMED/SABER Instrument

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Hunt, Linda A.; Marshall, B. Thomas; Martin-Torres, F. Javier; Mertens, Christopher J.; Russell, James M., III; Remsberg, Ellis E.; Lopez-Puertas, Manuel; Picard, Richard; Winick, Jeremy; Wintersteiner, Peter; Thompson, R. Earl; Gordley, Larry L.

    2009-01-01

    We present observations of the infrared radiative cooling by carbon dioxide (CO2) and nitric oxide (NO) in Earth s thermosphere. These data have been taken over a period of 7 years by the SABER instrument on the NASA TIMED satellite and are the dominant radiative cooling mechanisms for the thermosphere. From the SABER observations we derive vertical profiles of radiative cooling rates (W/cu m), radiative fluxes (W/sq m), and radiated power (W). In the period from January 2002 through January 2009 we observe a large decrease in the cooling rates, fluxes, and power consistent with the declining phase of solar cycle. The power radiated by NO during 2008 when the Sun exhibited few sunspots was nearly one order of magnitude smaller than the peak power observed shortly after the mission began. Substantial short-term variability in the infrared emissions is also observed throughout the entire mission duration. Radiative cooling rates and radiative fluxes from NO exhibit fundamentally different latitude dependence than do those from CO2, with the NO fluxes and cooling rates being largest at high latitudes and polar regions. The cooling rates are shown to be derived relatively independent of the collisional and radiative processes that drive the departure from local thermodynamic equilibrium (LTE) in the CO2 15 m and the NO 5.3 m vibration-rotation bands. The observed NO and CO2 cooling rates have been compiled into a separate dataset and represent a climate data record that is available for use in assessments of radiative cooling in upper atmosphere general circulation models.

  7. Algorithms for Planning Multi-Object Spectroscopy Observations with the JWST Near-Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Karakla, Diane M.; Pontoppidan, K.; Shyrokov, A.; Beck, T. L.; Valenti, J. A.; Soderblom, D. R.; Tumlinson, J.; Muzerolle, J.

    2014-01-01

    Planning observations for the JWST NIRSpec Multi-Object Spectroscopy will be complex because of the fixed-grid nature of the Micro-Shutter Arrays (MSAs) used for this instrument mode. Two algorithms have been incorporated into the 'MSA Planning Tool' (MPT) in the Astronomers Proposal Tools (APT) for this NIRSpec observation planning process. The 'Basic Algorithm' and the 'Constrained Algorithm' both determine a set of on-sky pointing positions which yield an optimal number of science sources observed per MSA shutter configuration, but these algorithms have different strategies for generating their observing plans. The Basic algorithm uses a defined set of fixed dithers specified by the observer, while the Constrained algorithm can more flexibly define dithers by merely constraining offsets from one pointing position to the next. Each algorithm offers advantages for different observing cases. This poster describes the two algorithms and their products, and clarifies observing cases where clear planning advantages are offered by each.

  8. Remote sensing of greenhouse gases (CO2 and CH4) using hyperspectral observations in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Crevoisier, Cyril; Chedin, Alain; Nobileau, Delphine; Armante, Raymond; Thonat, Thibaud; Scott, Noelle A.

    Densely sampling the atmosphere in time and space, satellite measurements of the distribution of global atmospheric CO2 concentration could in principle provide a way to constrain atmo-spheric inversions of CO2 surface fluxes. Until the recent launch of the first dedicated CO2 observing instrument JAXA/GOSAT in January 2009, information on CO2 and other green-house gas atmospheric distribution have been obtained for several years from thermal infrared sounders, such as the Atmospheric Infrared Sounder (AIRS) launched onboard the NASA/Aqua satellite in May 2002 or the Infrared Atmospheric Sounding Interferometer (IASI) launched on-board the European MetOp platform in October 2006. We use coupled observations in the thermal infrared from IASI, and in the microwave from the Advanced Microwave Sounding Unit (AMSU), also launched onboard MetOp, to retrieve mid-to-upper tropospheric contents of carbon dioxide (CO2) and methane (CH4) in clear-sky conditions, in the tropics. Thermal observations, sensitive to both temperature and either CO2 or CH4, are used in conjunction with microwave observations, only sensitive to temperature, to decorrelate both signals through a non-linear inference scheme based on neural networks. A key point of this approach is that no use is made of prior information in terms of gas seasonality, trend, or geographical patterns. The precision of the IASI retrieval is estimated to be about 2 ppmv (less than 1 Features of the retrieved CO2-CH4 space-time distributions include: (1) a CO2 trend of 2.1 ppmv.yr-1 in average, and a CH4 trend of 10 ppbv.yr-1 in the last couple of years, which confirms the recent increase of methane detected at surface stations; (2) a strong seasonal cycle in the northern tropics, and a lower seasonal cycle in the southern tropics, in agreement with in-situ measurements; in particular, comparison between AIRS and IASI retrievals highlights the time-lag of CO2 cycle while transported from the surface to the upper troposphere

  9. Detection of supercooled liquid water-topped mixed-phase clouds >from shortwave-infrared satellite observations

    NASA Astrophysics Data System (ADS)

    NOH, Y. J.; Miller, S. D.; Heidinger, A. K.

    2015-12-01

    Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising

  10. Properties of Newly Formed Dust by SN 2006JC Based on Near- to Mid-Infrared Observation With AKARI

    NASA Astrophysics Data System (ADS)

    Sakon, I.; Onaka, T.; Wada, T.; Ohyama, Y.; Kaneda, H.; Ishihara, D.; Tanabé, T.; Minezaki, T.; Yoshii, Y.; Tominaga, N.; Nomoto, K.; Nozawa, T.; Kozasa, T.; Tanaka, M.; Suzuki, T.; Umeda, H.; Ohyabu, S.; Usui, F.; Matsuhara, H.; Nakagawa, T.; Murakami, H.

    2009-02-01

    We present our latest results on near- to mid-infrared (MIR) observation of supernova (SN) 2006jc at 200 days after the discovery using the Infrared Camera (IRC) on board AKARI. The near-infrared (2-5 μm) spectrum of SN 2006jc is obtained for the first time and is found to be well interpreted in terms of the thermal emission from amorphous carbon of 800 ± 10 K with the mass of 6.9 ± 0.5 × 10-5 M sun that was formed in the SN ejecta. This dust mass newly formed in the ejecta of SN 2006jc is in a range similar to those obtained for other several dust-forming core-collapse supernovae based on recent observations (i.e., 10-3-10-5 M sun). MIR photometric data with AKARI/IRC MIR-S/S7, S9W, and S11 bands have shown excess emission over the thermal emission by hot amorphous carbon of 800 K. This MIR excess emission is likely to be accounted for by the emission from warm amorphous carbon dust of 320 ± 10 K with the mass of 2.7+0.7 -0.5 × 10-3 M sun rather than by the band emission of astronomical silicate and/or silica grains. This warm amorphous carbon dust is expected to have been formed in the mass-loss wind associated with the Wolf-Rayet stellar activity before the SN explosion. Our result suggests that a significant amount of dust is condensed in the mass-loss wind prior to the SN explosion.

  11. Ground-based near-infrared observations of water vapour in the Venus troposphere

    NASA Astrophysics Data System (ADS)

    Chamberlain, Sarah; Bailey, Jeremy; Crisp, David; Meadows, Vikki

    2013-01-01

    We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 μm window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 μm window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R ˜ 2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (-6 +9 ppmv), which is in agreement with recent results by Bézard et al. (Bézard, B., Fedorova, A., Bertaux, J.-L., Rodin, A., Korablev, O. [2011]. Icarus, 216, 173-183) using VEX/SPICAV (R ˜ 1700) and contrary to prior results by Bézard et al. (Bézard, B., de Bergh, C., Crisp, D., Maillard, J.P. [1990]. Nature, 345, 508-511) of 44 ppmv (±9 ppmv) using VEX/VIRTIS-M (R ˜ 200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 μm window and abundances determined from different water vapour absorption features within the near infrared window. We find that water vapour abundances determined over the peak of the 1. 18 μm window results in plots with less scatter than those of the individual water vapour features and that analyses conducted over some individual water vapour features are more sensitive to variation in water vapour than those over the peak of the 1. 18 μm window. No evidence for horizontal spatial variations across the night side of the disk are found within the limits of our data with the exception of a possible small decrease in water vapour from the equator to the north pole. We present spectral ratios that show water vapour absorption from within the lowest 4 km of the Venus atmosphere only, and discuss the possible existence of a decreasing water vapour concentration towards the surface.

  12. Infrared Observations of the Candidate LBV 1806-20 and Nearby Cluster Stars1,

    NASA Astrophysics Data System (ADS)

    Eikenberry, S. S.; Matthews, K.; LaVine, J. L.; Garske, M. A.; Hu, D.; Jackson, M. A.; Patel, S. G.; Barry, D. J.; Colonno, M. R.; Houck, J. R.; Wilson, J. C.; Corbel, S.; Smith, J. D.

    2004-11-01

    We report near-infrared photometry, spectroscopy, and speckle imaging of the hot, luminous star we identify as candidate LBV 1806-20. We also present photometry and spectroscopy of three nearby stars, which are members of the same star cluster containing LBV 1806-20 and SGR 1806-20. The spectroscopy and photometry show that LBV 1806-20 is similar in many respects to the luminous ``Pistol star,'' albeit with some important differences. They also provide estimates of the effective temperature and reddening of LBV 1806-20 and confirm distance estimates, leading to a best estimate for the luminosity of this star of greater than 5×106Lsolar. The nearby cluster stars have spectral types and inferred absolute magnitudes that confirm the distance (and thus luminosity) estimate for LBV 1806-20. If we drop kinematic measurements of the distance (15.1+1.8-1.3 kpc), we have a lower limit on the distance of greater than 9.5 kpc and on the luminosity of greater than 2×106Lsolar, based on the cluster stars. If we drop both the kinematic and cluster star indicators for distance, an ammonia absorption feature sets yet another lower limit to the distance of greater than 5.7 kpc, with a corresponding luminosity estimate of greater than 7×105 Lsolar for the candidate LBV 1806-20. Furthermore, on the absis of very high angular resolution speckle images, we determine that LBV 1806-20 is not a cluster of stars but is rather a single star or binary system. Simple arguments based on the Eddington luminosity lead to an estimate of the total mass of LBV 1806-20 (single or binary) exceeding 190Msolar. We discuss the possible uncertainties in these results and their implications for the star formation history of this cluster. Based on data obtained at the Palomar Observatory 200 inch telescope, which is operated by the California Institute of Technology, the Jet Propulsion Laboratory, and Cornell University. This publication makes use of data products from the Two Micron All Sky Survey

  13. Infrared observations of the solar system in support of Large-Aperture Infrared Telescope (LARITS): Calibration. Final technical report, 1 July 1985-28 February 1989

    SciTech Connect

    Shorthill, R.W.

    1990-05-02

    The Purpose of this project was to improve the infrared calibration base for infrared detectors. Groundbased infrared measurements of solid-surfaced planetary bodies, such as asteroids, are being used for the calibration of spacecraft detectors. A limitation has been the relatively poor theoretical understanding of thermal emission from these objects. The goal was to: (1) develop a database of sources and, (2) improve or modify the thermal models for these sources to provide a calibration data base for spacecraft infrared detector systems. The technique consisted of five phases: (1) design and construct infrared detector system to be used with and without collecting optics, (2) acquire whole-disk infrared lunar data relative to a laboratory blackbody and tie them to Mars (Venus or Mercury) and Vega, (3) compare with thermophysical model of the mood and modify, (4) acquire infrared asteroid photometry, (5) compare the lunar disk photometry the asteroid calibrators using photometry and thermophysical models. The Si bolometer is calibrated without optics, attached to the portable telescope drive and Lunar disk measurement made. Next the bolometer is attached to the 90 inch telescope, Lunar scans are made and the remaining objects (planets, stars, asteroids) are measured.

  14. Cassini Visual and Infrared Mapping Spectrometer observations of Iapetus: Detection of CO2

    USGS Publications Warehouse

    Buratti, B.J.; Cruikshank, D.P.; Brown, R.H.; Clark, R.N.; Bauer, J.M.; Jaumann, R.; McCord, T.B.; Simonelli, D.P.; Hibbitts, C.A.; Hansen, G.B.; Owen, T.C.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, C.; Roush, T.L.; Soderlund, K.; Muradyan, A.

    2005-01-01

    The Visual and Infrared Mapping Spectrometer (VIMS) instrument aboard the Cassini spacecraft obtained its first spectral map of the satellite lapetus in which new absorption bands are seen in the spectra of both the low-albedo hemisphere and the H2O ice-rich hemisphere. Carbon dioxide is identified in the low-albedo material, probably as a photochemically produced molecule that is trapped in H2O ice or in some mineral or complex organic solid. Other absorption bands are unidentified. The spectrum of the low-albedo hemisphere is satisfactorily modeled with a combination of organic tholin, poly-HCN, and small amounts of H2O ice and Fe 2O3. The high-albedo hemisphere is modeled with H 2O ice slightly darkened with tholin. The detection of CO2 in the low-albedo material on the leading hemisphere supports the contention that it is carbon-bearing material from an external source that has been swept up by the satellite's orbital motion. ?? 2005. The American Astronomical Society. All rights reserved.

  15. Understanding the Star Formation Process in the Filamentary Dark Cloud GF 9: Near-Infrared Observations

    NASA Technical Reports Server (NTRS)

    Ciardi, David R.; Woodward, Charles E.; Clemens, Dan P.; Harker, David E.; Rudy, Richard J.

    1998-01-01

    We have performed a near-infrared JHK survey of a dense core and a diffuse filament region within the filamentary dark cloud GF 9 (LDN 1082). The core region is associated with the IRAS point source PSC 20503+6006 and is suspected of being a site of star formation. The diffuse filament region has no associated IRAS point sources and is likely quiescent. We find that neither the core nor the filament region appears to contain a Class I or Class II young stellar object. As traced by the dust extinction, the core and filament regions contain 26 and 22 solar mass, respectively, with an average H2 volume density for both regions of approximately 2500/cu cm. The core region contains a centrally condensed extinction maximum with a peak extinction of A(sub v) greater than or approximately equal to 10 mag that appears to be associated with the IRAS point source. The average H2 volume density of the extinction core is approximately 8000/cu cm. The dust within the filament, however, shows no sign of a central condensation and is consistent with a uniform-density cylindrical distribution.

  16. Contrail microphysical properties and radiative forcing over the Northern Hemisphere derived using MODIS infrared observations

    NASA Astrophysics Data System (ADS)

    Bedka, S. T.; Minnis, P.; Duda, D. P.; Spangenberg, D.; Chee, T.; Khlopenkov, K. V.

    2015-12-01

    One of the primary ways that air traffic affects the Earth's radiation budget is through the formation of contrails. In order to quantify the radiative impact of contrails, one must assess their macro and microphysical properties (e.g. contrail temperature, optical depth and effective particle size) as well as the characteristics of the environment in which they occur (e.g. background radiation field and cloud properties). In-situ measurements of contrail microphysical properties are limited, and hence the retrieval of such properties from remotely sensed satellite data is useful. This paper details the ongoing progress being made to retrieve contrail properties and calculate the contrail radiative forcing from 2 years of MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra data. Contrail microphysical properties from the seasonal months (January, April, July, October) of 2006 and 2012 are derived using an infrared-only heritage algorithm developed at NASA Langley for the Clouds and the Earth's Radiant Energy System (CERES) program. Results are subset by day/night, although the same retrieval algorithm will be used for all granules. Contrail properties and background cloud properties are then used as input into the Fu-Liou radiative transfer model to compute the overall contrail radiative forcing.

  17. Infrared Observations of LBV 1806-20 and Nearby Cluster Stars

    NASA Astrophysics Data System (ADS)

    Eikenberry, S.; Matthews, K.; LaVine, J. L.; Garske, M.; Hu, D.; Jackson, M. A.; Patel, S. G.; Barry, D. J.; Colonno, M. R.; Houck, J. R.; Wilson, J. C.; Corbel, S.; Smith, J. D.

    2003-12-01

    We report near-infrared photometry, spectroscopy, and speckle imaging of the hot, luminous star we identify as LBV 1806-20. We also present photometry and spectroscopy of 3 nearby stars, which are members of the same star cluster containing LBV 1806-20 and SGR 1806-20. The spectroscopy and photometry show that LBV 1806-20 is similar in many respects to the luminous ``Pistol Star'', albeit with some important differences. They also provide estimates of the effective temperature and reddening of LBV 1806-20, and confirm distance estimates, leading to an estimate for the luminosity of this star of > 5 × 106 \\ L⊙. The nearby cluster stars have spectral types and inferred absolute magnitudes which confirm the distance (and thus luminosity) estimate for LBV 1806-20. Furthermore, based on very high angular-resolution speckle images, we determine that LBV 1806-20 is not a cluster of stars, but is rather a single star or binary system. Simple arguments based on the Eddington luminosity lead to an estimate of the total mass of LBV 1806-20 (single or binary) exceeding 200 \\ M⊙. We discuss the possible uncertainties in these results, and their implications for the star formation history of this cluster.

  18. Impact-induced friction ignition of an explosive: Infrared observations and modeling

    NASA Astrophysics Data System (ADS)

    Perry, W. Lee; Gunderson, Jake A.; Balkey, Matthew M.; Dickson, Peter M.

    2010-10-01

    A contaminant (grit) trapped between an explosive and an impacted surface can significantly reduce the impact energy required to initiate a secondary high explosive. Several severe accidents have occurred when an explosive charge was dropped from a height insufficient to cause ignition by heating due only to plastic deformation; the frictional heating from embedded grit has been implicated. Here, we describe an idealization of this situation where a small sample of a polymer-bonded cyclotetramethylenetetranitramine explosive (HMX-PBX 9501), with a 400 μm diameter sphere of silica embedded in the surface, was impacted between instrumented transparent anvils and infrared images were recorded. The instrumentation provided temperature and the work done by the friction between the grit and the anvil surface for the impact process, up to ignition. All experiments were conducted under impact conditions insufficient to cause ignition without grit. Ignition occurred at approximately 500 μs, a grit temperature of 1000 K, and an impact load of 12 kN. A high-fidelity numerical heat transport model, using four-step reversible decomposition kinetics for HMX, clarified the physical mechanism of ignition in the experiment. The model suggested that only a very small part of the silica sphere was heated by the friction process and residual heat in the impacted surface behind the moving grit caused ignition. The model agreed well with the experiment in terms of time and temperature, and we have good confidence in the mechanistic picture provided by the model.

  19. Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Wright, Colin; Lewis-Clark, Eric; Shaheen, G.; Geier, Roman; Chaiken, J.

    2010-02-01

    Human transdermal in vivo spectroscopic applications for tissue analysis involving near infrared (NIR) light often must contend with broadband NIR fluorescence that, depending on what kind of spectroscopy is being employed, can degrade signal to noise ratios and dynamic range. Such NIR fluorescence, i.e. "autofluorescence" is well known to originate in blood tissues and various other endogenous materials associated with the static tissues. Results of recent experiments on human volar side fingertips in vivo are beginning to provide a relative ordering of the contributions from various sources. Preliminary results involving the variation in the bleaching effect across different individuals suggest that for 830 nm excitation well over half of the total fluorescence comes from the static tissues and remainder originates with the blood tissues, i.e. the plasma and the hematocrit. Of the NIR fluorescence associated with the static tissue, over half originates with products of well-known post-enzymatic glycation reactions, i.e. Maillard chemistry, in the skin involving glucose and other carbohydrates and skin proteins like collagen and cytosol proteins.

  20. The origin of the Galactic center diffuse X-ray emission investigated by near-infrared imaging and polarimetric observations

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo; Yasui, Kazuki; Nagata, Tetsuya; Yoshikawa, Tatsuhito; Uchiyama, Hideki; Tamura, Motohide

    2014-05-01

    The origin of the Galactic center diffuse X-ray emission (GCDX) is still under intense investigation. We have found a clear excess in a longitudinal GCDX profile over a stellar number density profile in the nuclear bulge region, suggesting a significant contribution of diffuse, interstellar hot plasma to the GCDX. We have estimated that contributions of an old stellar population to the GCDX are ˜50% and ˜20% in the nuclear stellar disk and nuclear star cluster, respectively. Our near-infrared polarimetric observations show that the GCDX region is permeated by a large scale, toroidal magnetic field. Together with observed magnetic field strengths in nearly energy equipartition, the interstellar hot plasma could be confined by the toroidal magnetic field.

  1. Near Infrared photometric and spectroscopic observations of the bright optical transient J212444.87+321738.3

    NASA Astrophysics Data System (ADS)

    Mondal, Soumen; Das, Ramkrishna; Ashok, N. M.; Banerjee, D. P. K.; Dutta, Somnath; Ghosh, Supriyo; Mondal, Anindita

    2013-04-01

    We report near infrared JHK-band photometry and spectroscopic observations of the recently reported bright optical transient J212444.87+321738.3 using the Near-IR Imager cum spectrograph (NICMOS-3) installed on the Mount Abu 1.2-m telescope of the Physical Research Laboratory, India following the outburst announcement by Tiurina et al. in ATel #4888. The photometric observations were carried out on 2013 March 21.020 UT and 23.010 UT yielding magnitudes of J = 5.85 +/- 0.06, H = 4.47 +/- 0.06, K = 3.77 +/- 0.05; and J= 5.64 +/- 0.04, H= 4.48 +/- 0.04, K = 3.77 +/- 0.03 respectively.

  2. Asymmetric and symmetric absorption peaks observed in infrared spectra of CO2 adsorbed on TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Sato, Yoshinori; Fukutani, Katsuyuki

    2016-04-01

    Infrared spectra of CO2 physisorbed on titania nanotubes (TiNTs), predominantly in the anatase polymorph, were measured at 81 K. Asymmetric and symmetric absorption peaks due to the antisymmetric stretch vibration (ν3) of CO2 were observed at 2340 cm-1 and 2350 cm-1, respectively. On the basis of the exposure- and time-dependence of the spectrum, the 2340 cm-1 peak was attributed to CO2 at the defective sites related to subsurface O vacancies (Vos) while the 2350 cm-1 peak was assigned to that at the fivefold coordinated Ti4+ sites. It was found that the generalized Fano line shape was well fitted to the 2340 cm-1 peak. We also observed an absorption peak at 2372 cm-1, which was attributed to the combination band of ν3 and the external mode of CO2 at Ti4+.

  3. Mars Infrared Spectroscopy: From Theory and the Laboratory to Field Observations

    NASA Astrophysics Data System (ADS)

    Kirkland, L.; Mustard, J.; McAfee, J.; Hapke, B.; Ramsey, M.

    2002-12-01

    Visible-infrared spectroscopy has a long history of providing compositional discoveries in the solar system. A primary goal of the Mars visible-infrared spectral community is to provide information to enhance the exploration of Mars. We are entering an era of Mars exploration with missions every ~2 years. It is critical that each mission provide information to optimize the success of the next mission. That will not occur effectively unless the data can be analyzed on a ~2-year rate. Our current knowledge of spectral properties of materials and effects of the natural environment are not sufficient for the accurate interpretations needed for such time critical objectives. Relevant instruments include the 1996 TES, 2001 THEMIS, 2003 Mars Express OMEGA and PFS, 2003 MER Pancam and Mini-TES, and the 2005 CRISM. Two critical gaps that cannot be filled by individual researchers alone exist in moving toward the goal of rapid and accurate analysis. These are in coordinated "end-to-end" field testing and public spectral libraries. Three related gaps are in data from terrestrial sites to aid interpretations of the orbited spectrometers, lack of high quality development data to support landers, and delays in funding non-flight team members owing to lack of coordination between research and analysis proposal dues dates and mission data releases. A detailed discussion of the each of these areas is in a workshop report through the web site below. The two critical gaps are summarized below. Field Testing. Field/rover, airborne/satellite, and telescopic measurements are sensitive to very different effects, and these differ from those present in the lab. Thus a convincing determination of uncertainties requires demonstration through coordinated "end-to-end" field testing, using: (1) Data sets of appropriate terrestrial analog sites that are measured with both geometric and spectral fidelity as close as possible to flight instruments; (2) Interpretation as applied to data of Mars; (3

  4. Infrared and Optical Observations of GRB 030115 and its Extremely Red Host Galaxy: Implications for Dark Bursts

    NASA Technical Reports Server (NTRS)

    Levan, Andrew; Fruchter, Andrew; Rhoads, James; Mobasher, Bahram; Tanvir, Nial; Gorosabel, Javier; Rol, Evert; Kouveliotou, Chryssa; DellAntonio, Ian; Merrill, Javier

    2004-01-01

    We present near-infrared (a) and optical observations of the afterglow of GRB 030115. Discovered in an infrared search at Kitt Peak 5 hours after the burst trigger, this afterglow is the faintest ever observed in the R-band at such an early epoch, and exhibits very red colors, with R-K approximately equal to 6. The magnitude of the optical afterglow of GRB 030115 is fainter than many upper limits for other bursts, suggesting that without early nIR observations it would have been classified as a "dark" burst. Both the color and optical magnitude of the afterglow are likely due to dust extinction and indicate that at least some optical afterglows are observations were also taken of the host galaxy and the surrounding field. Photometric redshifts imply that the host, and a substantial number of faint galaxies in the field are at z approximately 2.5. The overdensity of galaxies is sufficiently great that GRB 030115 may have occurred in a rich high-redshift cluster. The host galaxy shows extremely red colors (R-K=5) and is the first GRB host to be classified as an Extreme Red Object (ERO). Some of the galaxies surrounding the host also show very red colors, while the majority of the cluster are much bluer, indicating ongoing unobscured star formation. As it is thought that much of high redshift star formation occurs in highly obscured environments it may well be that GRB 030115 represents a transition object, between the relatively unobscured afterglows seen to date and a population which are very heavily extinguished, even in the nIR.

  5. COMPARATIVE STUDY OF ASYMMETRY ORIGIN OF GALAXIES IN DIFFERENT ENVIRONMENTS. II. NEAR-INFRARED OBSERVATIONS

    SciTech Connect

    Plauchu-Frayn, I.; Coziol, R. E-mail: rcoziol@astro.ugto.m

    2010-08-15

    In this second paper of two analyses, we present near-infrared (NIR) morphological and asymmetry studies performed in a sample of 92 galaxies found in different density environments: galaxies in compact groups (CGs; HCGs in the Hickson Catalog of Compact Groups of Galaxies), isolated pairs of galaxies (KPGs in Karachentsev's list of isolated pairs of galaxies), and isolated galaxies (KIGs in Karachentseva's Catalog of Isolated Galaxies). Both studies have proved useful for identifying the effect of interactions on galaxies. In the NIR, the properties of the galaxies in HCGs, KPGs, and KIGs are more similar than they are in the optical. This is because the NIR band traces the older stellar populations, which formed earlier and are more relaxed than the younger populations. However, we found asymmetries related to interactions in both KPG and HCG samples. In HCGs, the fraction of asymmetric galaxies is even higher than what we found in the optical. In the KPGs the interactions look like very recent events, while in the HCGs galaxies are more morphologically evolved and show properties suggesting they suffered more frequent interactions. The key difference seems to be the absence of star formation in the HCGs; while interactions produce intense star formation in the KPGs, we do not see this effect in the HCGs. This is consistent with the dry merger hypothesis; the interaction between galaxies in CGs is happening without the presence of gas. If the gas was spent in stellar formation (to build the bulge of the numerous early-type galaxies), then the HCGs possibly started interacting sometime before the KPGs. On the other hand, the dry interaction condition in CGs suggests that the galaxies are on merging orbits, and consequently such system cannot be that much older either. Cosmologically speaking, the difference in formation time between pairs of galaxies and CGs may be relatively small. The two phenomena are typical of the formation of structures in low

  6. CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE

    SciTech Connect

    Mao Yewei; Kong Xu; Kennicutt, Robert C. Jr.; Hao, Cai-Na; Zhou Xu E-mail: xkong@ustc.edu.cn

    2012-09-20

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-{beta}) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter

  7. PROBING THE INTERSTELLAR MEDIUM OF z {approx} 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND SPITZER MID-INFRARED SPECTROSCOPY

    SciTech Connect

    Pope, Alexandra; Kirkpatrick, Allison; Wagg, Jeff; Frayer, David; Armus, Lee; Chary, Ranga-Ram; Desai, Vandana; Daddi, Emanuele; Elbaz, David; Gabor, Jared

    2013-08-01

    We explore the relationship between gas, dust, and star formation in a sample of 12 ultraluminous infrared galaxies (ULIRGs) at high-redshift compared to a similar sample of local galaxies. We present new CO observations and/or Spitzer mid-IR spectroscopy for six 70 {mu}m selected galaxies at z {approx} 1 in order to quantify the properties of the molecular gas reservoir, the contribution of an active galactic nucleus (AGN) to the mid-IR luminosity, and the star formation efficiency (SFE = L{sub IR}/L{sup '}{sub CO}). The mid-IR spectra show strong polycyclic aromatic hydrocarbon (PAH) emission, and our spectral decomposition suggests that the AGN makes a minimal contribution (<25%) to the mid-IR luminosity. The 70 {mu}m selected ULIRGs, which we find to be spectroscopic close pairs, are observed to have high SFE, similar to local ULIRGs and high-redshift submillimeter galaxies, consistent with enhanced IR luminosity due to an ongoing major merger. Combined with existing observations of local and high-redshift ULIRGs, we further compare the PAH, IR, and CO luminosities. We show that the ratio L{sub PAH,6.2}/L{sub IR} decreases with increasing IR luminosity for both local and high-redshift galaxies, but the trend for high-redshift galaxies is shifted to higher IR luminosities; the average L{sub PAH,6.2}/L{sub IR} ratio at a given L{sub IR} is {approx}3 times higher at high-redshift. When we normalize by the molecular gas, we find this trend to be uniform for galaxies at all redshifts and that the molecular gas is correlated with the PAH dust emission. The similar trends seen in the [C II] to molecular gas ratios in other studies suggests that PAH emission, like [C II], continues to be a good tracer of photodissociation regions even at high-redshift. Together the CO, PAH, and far-IR fine structure lines should be useful for constraining the interstellar medium conditions in high-redshift galaxies.

  8. High resolution Michelson interferometer for airborne infrared astronomical observations. 2: System design.

    PubMed

    Langlet, A; Delage, C; Stefanovitch, D; Talureau, B; Tualy, J; Verveer, J; Fischer, W P; Gilles, J M; Scheper, R; Leblanc, J; Dambier, G

    1977-07-01

    A Michelson interferometer for high resolution (lambda/Deltalambda approximately 10(4)) spectroscopic observations of astronomical ir ionic line emission has been built and flown on the NASA 91-cm airborne ir telescope facility (G. P. Kuiper Airborne Observatory). In Part 1 of this paper the requirements for such a system were outlined, and the scientific basis for the choice of instrumental parameters and the rapid scan mode of operation were discussed. In this paper design details of the instrument are presented. These include the optics, control He-Ne laser interferometer, helium-cooled bolometer detector, and cooled passband filters. In addition, the on-line computer software which enables the operator to interact rapidly with the system to produce inflight spectra and control accordingly the observational parameters is described, as are elements of the electronics hardware developed specially for airborne observations. PMID:20168820

  9. Thermal structure of Venus' nightside mesosphere as observed by infrared heterodyne spectroscopy at 10 μm

    NASA Astrophysics Data System (ADS)

    Stangier, Tobias; Hewagama, Tilak; Sornig, Manuela; Sonnabend, Guido; Kostiuk, Theodor; Herrmann, Maren; Livengood, Timothy

    2015-08-01

    Ground-based heterodyne spectroscopy is used to observe the night side of Venus by probing single pressure broadened CO2 absorption lines. From the pressure induced line broadening, the predominant temperature at different altitude layers can be deduced. It is found, that heterodyne spectroscopy is sensitive to probe the mesosphere between ~ 60 km and 90 km with an altitude resolution of ~ 4.5 km. During two observing campaigns in March and May 2012, four different locations on the planet were investigated. Herein, we report on the retrieval of vertical temperature profiles in the nightside atmosphere of Venus. Retrieval of atmospheric parameters is based on a Levenberg-Marquard χ2 optimization that iteratively compares observed data to telluric transmittance corrected Venus' top-of-atmosphere spectra calculated using a radiative transfer algorithm. The deduced profiles are compared to the Venus International Reference Atmosphere and some found to be in satisfactory agreement. Sub-Doppler resolution Infrared heterodyne observations can provide temperature measurements that complement existing sub-mm and space based observations.

  10. Commercial applications and scientific research requirements for thermal-infrared observations of terrestrial surfaces

    NASA Technical Reports Server (NTRS)

    Goward, Samuel N.; Taranik, James V.; Laporte, Daniel; Putnam, Evelyn S. (Editor)

    1986-01-01

    In the spring of 1986 the EOSAT Company and NASA Headquarters organized a workshop to consider: (1) the potential value of space-acquired multiband thermal remote sensing in terrestrial research and commercial applications, and (2) the scientific and technological requirements for conducting such observations from the LANDSAT platform. The workshop defined the instrument characteristics of three types of sensors that would be needed to expand the use of thermal information for Earth observation and new commercial opportunities. The panels from two disciplines, geology and evapotranspiration/botany, along with the instrument panel, presented their recommendations to the workshop. The findings of these meetings are presented.

  11. Visible and near infrared observation on the Global Aerosol Backscatter Experiment (GLOBE)

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Cavanaugh, John F.; Chudamani, S.; Bufton, Jack L.; Sullivan, Robert J.

    1991-01-01

    The Global Aerosol Backscatter Experiment (GLOBE) was intended to provide data on prevailing values of atmospheric backscatter cross-section. The primary intent was predicting the performance of spaceborne lidar systems, most notably the Laser Atmospheric Wind Sounder (LAWS) for the Earth Observing System (EOS). The second and related goal was to understand the source and characteristics of atmospheric aerosol particles. From the GLOBE flights, extensive data was obtained on the structure of clouds and the marine planetary boundary layer. A notable result for all observations is the consistency of the large increases in the aerosol scattering ratio for the marine boundary layer. Other results are noted.

  12. Direct observation of surface plasmons in YBCO by attenuated total reflection of light in the infrared

    NASA Astrophysics Data System (ADS)

    Walmsley, D. G.; Smyth, C. C.; Sellai, A.; McCafferty, P. G.; Dawson, P.; Morrow, T.; Graham, W. G.

    1994-02-01

    Surface plasmons have been observed directly in YBCO films in an Otto-geometry attenuated total reflection measurement at a wavelength of 3.392 μm. The laser deposited films are c-axis oriented on an MgO substrate. This observation confirms theoretical deductions from complex dielectric function data. Measured data have been fitted to a theoretical model and are compared with the optical constants determined by Bozovic [1]. The investigations have been extended to films with other orientations to investigate whether material anisotropy is reflected in the results and non-metallic behaviour is found.

  13. SOFIA Mid-infrared Imaging1 and CSO Submillimeter Polarimetry Observations of G034.43+00.24 MM1

    NASA Astrophysics Data System (ADS)

    Jones, T. J.; Gordon, Michael; Shenoy, Dinesh; Gehrz, R. D.; Vaillancourt, John E.; Krejny, M.

    2016-06-01

    We present 11.1 to 37.1 μm imaging observations of the very dense molecular cloud core MM1 in G034.43+00.24 using FORCAST on SOFIA and submillimeter (submm) polarimetry using SHARP on the Caltech Submillimeter Observatory. We find that at the spatial resolution of SOFIA, the point-spread function (PSF) of MM1 is consistent with being a single source, as expected based on millimeter (mm) and submm observations. The spectral energy distributions (SEDs) of MM1 and MM2 have a warm component at the shorter wavelengths not seen in mm and submm SEDs. Examination of H(1.65 μm) stellar polarimetry from the Galactic Plane Infrared Polarization Survey shows that G034 is embedded in an external magnetic field aligned with the Galactic Plane. The SHARP polarimetry at 450 μm shows a magnetic field geometry in the vicinity of MM1 that does not line up with either the Galactic Plane or the mean field direction inferred from the CARMA interferometric polarization map of the central cloud core, but is perpendicular to the long filament in which G034 is embedded. The CARMA polarimetry does show evidence for grain alignment in the central region of the cloud core, and thus does trace the magnetic field geometry near the embedded Class 0 YSO. Based in part on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart.

  14. Infrared and Radio Observations of a Small Group of Protostellar Objects in the Molecular Core, L1251-C

    NASA Astrophysics Data System (ADS)

    Kim, Jungha; Lee, Jeong-Eun; Choi, Minho; Bourke, Tyler L.; Evans, Neal J., II; Di Francesco, James; Cieza, Lucas A.; Dunham, Michael M.; Kang, Miju

    2015-05-01

    We present a multi-wavelength observational study of a low-mass star-forming region, L1251-C, with observational results at wavelengths from the near-infrared to the millimeter. Spitzer Space Telescope observations confirmed that IRAS 22343+7501 is a small group of protostellar objects. The extended emission in the east-west direction with its intensity peak at the center of L1251A has been detected at 350 and 850 μm with the Caltech Submillimeter Observatory and James Clerk Maxwell telescopes, tracing dense envelope material around L1251A. The single-dish data from the Korean VLBI Network and TRAO telescopes show inconsistencies between the intensity peaks of several molecular emission lines and that of the continuum emission, suggesting complex distributions of molecular abundances around L1251A. The Submillimeter Array interferometer data, however, show intensity peaks of CO 2-1 and 13CO 2-1 located at the position of IRS 1, which is both the brightest source in the Infrared Array Camera image and the weakest source in the 1.3 mm dust-continuum map. IRS 1 is the strongest candidate for the driving source of the newly detected compact CO 2-1 outflow. Over the entire region (14‧ × 14‧) of L125l-C, 3 Class I and 16 Class II sources have been detected, including three young stellar objects (YSOs) in L1251A. A comparison between the average projected distance among the 19 YSOs in L1251-C and that among the 3 YSOs in L1251A suggests that L1251-C is an example of low-mass cluster formation where protostellar objects form in a small group.

  15. Simultaneous Observation of an Intraband Transition and Distinct Transient Species in the Infrared Region for Perovskite Solar Cells.

    PubMed

    Narra, Sudhakar; Chung, Chih-Chun; Diau, Eric Wei-Guang; Shigeto, Shinsuke

    2016-07-01

    Solar cells based on organometal-halide perovskites such as CH3NH3PbI3 have emerged as a promising next-generation photovoltaic system, but the underlying photophysics and photochemistry remain to be established because of the limited availability of methods to implement the simultaneous and direct measurement of various charge carriers and ions that play a crucial role in the operating device. We used nanosecond time-resolved infrared (IR) spectroscopy to investigate, with high molecular specificity, distinct transient species that are formed in perovskite solar cells after photoexcitation. In CH3NH3PbI3 planar-heterojuction solar cells, we simultaneously observed infrared spectral signatures that are associated with an intraband transition of conduction-band electrons, Fano resonance, and the spiro-OMeTAD cation having an exceptionally short lifetime of 1.0 μs (at ∼1485 cm(-1)). The present results show that the time-resolved IR method offers a unique capability to elucidate these important transients in perovskite solar cells and their dynamic interplay in a comprehensive manner. PMID:27302315

  16. Experimental observation of multiple dispersive waves emitted by multiple mid-infrared solitons in a birefringence tellurite microstuctured optical fiber.

    PubMed

    Cheng, Tonglei; Tuan, Tong Hoang; Xue, Xiaojei; Liu, Lai; Deng, Dinghuan; Suzuki, Takenobu; Ohishi, Yasutake

    2015-08-10

    We experimentally demonstrate multiple dispersive waves (DWs) emitted by multiple mid-infrared solitons in a birefringence tellurite microstuctured optical fiber (BTMOF). To the best of our knowledge, this is the first demonstration of multiple DWs in the non-silica fibers. By using a pulse of ~80 MHz and ~200 fs emitted from an optical parametric oscillator (OPO) as the pump source, DWs and solitons are investigated on the fast and slow axes of the BTMOF at the pump wavelength of ~1800 nm. With the average pump power increasing from ~200 to 450 mW, the center wavelength of the 1st DW decreases from ~956 to 890 nm, the 2nd DW from ~1039 to 997 nm, the 3rd DW from ~1101 to 1080 nm, and the 4th DW from ~1160 to 1150 nm. Meanwhile, obvious multiple soliton self-frequency shifts (SSFSs) are observed in the mid-infrared region. Furthermore, DWs and solitons at the pump wavelength of ~1400 and 2000 nm are investigated at the average pump power of ~350 mW. PMID:26367917

  17. Vibrational microspectroscopic identification of powdered traditional medicines: Chemical micromorphology of Poria observed by infrared and Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jian-bo; Sun, Su-qin; Ma, Fang; Zhou, Qun

    2014-07-01

    Microscopic identification using optical microscopes is a simple and effective method to identify powdered traditional medicines made from plants, animals and fungi. Sometimes, the criteria based on physical properties of the microscopic characteristics of drug powder may be ambiguous, which makes the microscopic identification method subjective and empirical to some extent. In this research, the vibrational microspectroscopic identification method is proposed for more explicit discrimination of powdered traditional medicines. The chemical micromorphology, i.e., chemical compositions and related physical morphologies, of the drug powder can be profiled objectively and quantitatively by infrared and Raman microspectroscopy, leading to better understanding about the formation mechanisms of microscopic characteristics and more accurate identification criteria. As an example, the powder of Poria, which is one of the most used traditional Chinese medicines, is studied in this research. Three types of hyphae are classified according to their infrared spectral features in the region from 1200 to 900 cm-1. Different kinds of polysaccharides indicate that these hyphae may be in different stages of the growth. The granular and branched clumps observed by the optical microscope may be formed from the aggregation of the mature hyphae with β-D-glucan reserves. The newfound spherical particles may originate from the exuded droplets in the fresh Poria because they are both composed of α-D-glucan. The results are helpful to understand the development of the hyphae and the formation of active polysaccharides in Poria and to establish accurate microspectroscopic identification criteria.

  18. Multi-Object Spectroscopy with the James Webb Space Telescope’s Near Infrared Spectrograph: Observing Resolved Stellar Populations

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Karakla, Diane M.; Beck, Tracy

    2015-08-01

    The James Webb Space Telescope’s (JWST) Near Infrared Spectrograph (NIRSpec) will provide a multi-object spectroscopy mode through the four Micro-Shutter Arrays (MSAs). Each MSA is a grid of contiguous shutters that can be configured to form slits on more than 100 astronomical targets simultaneously. The combination of JWST’s sensitivity and superb resolution in the infrared and NIRSpec’s full wavelength coverage from 0.6 to 5 μm will open new parameter space for studies of galaxies and resolved stellar populations alike. We describe a NIRSpec MSA observing scenario for obtaining spectroscopy of individual stars in an external galaxy, and investigate the technical challenges posed by this scenario. We examine the multiplexing capability of the MSA as a function of the possible MSA configuration design choices, and investigate the primary sources of error in velocity measurements and the prospects for minimizing them. We give examples of how this and other use cases are guiding development of the NIRSpec user interfaces, including proposal planning and pipeline calibrations.

  19. Satellite infrared observations of Kuroshio warm-core rings and their application to study of Pacific saury migration

    NASA Astrophysics Data System (ADS)

    Saitoh, Sei-ichi; Kosaka, Sunao; Iisaka, Joji

    1986-11-01

    Satellite infrared observations of Kuroshio warm-core rings (KWCRs), made in the Tohoku area west of 150°E from February 1980 to June 1981, were used to study the effect of ring distributions on the migration routes of the epi-pelagic and migratory fish Pacific saury. Cololabis saira (Brevoort). The movement and mean speed of three KWCRs and a Tsugaru warm current gyre were determined in the study area. KWCRs tended to drift to the north or to the east at a mean speed of 5 cm s -1. This drift speed is similar to that of Gulf Stream warm-core rings, but the drift direction is quite different from the westward drift in the Gulf Stream system. A comparison between distribution of KWCRs and distribution of fish schools suggests that the KWCRs control southward migration routes of Pacific saury through interaction with the surrounding cold waters such as the First and Second Oyashio Intrusions. Satellite infrared monitoring of KWCRs and the surrounding cold waters have proved to be useful for the short period prediction of Pacific saury fishing ground formation.

  20. A UNIFIED EMPIRICAL MODEL FOR INFRARED GALAXY COUNTS BASED ON THE OBSERVED PHYSICAL EVOLUTION OF DISTANT GALAXIES

    SciTech Connect

    Bethermin, Matthieu; Daddi, Emanuele; Sargent, Mark T.; Elbaz, David; Mullaney, James; Pannella, Maurilio; Hezaveh, Yashar; Le Borgne, Damien; Buat, Veronique; Charmandaris, Vassilis; Lagache, Guilaine; Scott, Douglas

    2012-10-01

    We reproduce the mid-infrared to radio galaxy counts with a new empirical model based on our current understanding of the evolution of main-sequence (MS) and starburst (SB) galaxies. We rely on a simple spectral energy distribution (SED) library based on Herschel observations: a single SED for the MS and another one for SB, getting warmer with redshift. Our model is able to reproduce recent measurements of galaxy counts performed with Herschel, including counts per redshift slice. This agreement demonstrates the power of our 2-Star-Formation Modes (2SFM) decomposition in describing the statistical properties of infrared sources and their evolution with cosmic time. We discuss the relative contribution of MS and SB galaxies to the number counts at various wavelengths and flux densities. We also show that MS galaxies are responsible for a bump in the 1.4 GHz radio counts around 50 {mu}Jy. Material of the model (predictions, SED library, mock catalogs, etc.) is available online.

  1. ATel 7495: Near Infrared flaring of the blazar FSRQ PKS 1510-089: MIRO Observations

    NASA Astrophysics Data System (ADS)

    Sameer; Kaur, Navpreet; Ganesh, S.; Kumar, V.; Baliyan, K. S.

    2015-05-01

    FSRQ PKS1510-089 (quasar BZQJ1512-0905, cross identified with the gamma-ray source 2FGLJ1512.8-0906) was detected as VHE source (E > 100MeV) at 5-sigma level by AGILE (Bulgarelli et al Atel # 6366) during the observations integrated over July 13-Aug 2, 2014. ...

  2. The Atmospheric Infrared Sounder (AIRS) on Aqua: instrument stability and data products for climate observations

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, M.; Aumann, H.; Strow, L.; Broberg, S.; Gaiser, S.

    2003-01-01

    30th International Symposium on Remote Sensing of the Environment (ISRSE) NASA Honolulu, Hawaii, USAThis paper discusses the stability of the AIRS instrument as measured pre-flight and in-orbit. In order differentiate instrument related changes with true changes in climate observations, the instrument stability must be demonstrated.

  3. ISO continuum observations of quasars at z=1-4. I. Spectral energy distributions of quasars from the UV to far-infrared

    NASA Astrophysics Data System (ADS)

    Oyabu, S.; Kawara, K.; Tsuzuki, Y.; Sofue, Y.; Sato, Y.; Okuda, H.; Taniguchi, Y.; Shibai, H.; Gabriel, C.; Hasegawa, T.; Nishihara, E.

    2001-01-01

    Eight luminous quasars with -30 < MB < -27 at z = 1.4-3.7 have been observed in the mid- and far-infrared using ISO. All the quasars have been detected in the mid-infrared bands of ISOCAM, while no far-infrared detections have been made with ISOPHOT. SEDs (Spectral Energy Distributions) from the UV to far-infrared have been obtained while supplementing ISO observations with photometry in the optical and near-infrared made from the ground within 17 months. The SEDs are compared with the MED (Mean spectral Energy Distributions) of low-redshift quasars with -27 < MB < -22. It is shown that our far-infrared observations were limited by confusion noise due to crowded sources. The observations reported here were made with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, The Netherlands, and the UK) and with the participation of ISAS and NASA, and with the facilities at the Cerro Tololo Inter-american Observatory (CTIO), NOAO, which is operated by AURA, Inc., under contract with NSF, at the Kiso Observatory, which is operated by Institute of Astronomy, the University of Tokyo, and at the Okayama Astrophysical Observatory, the National Astronomical Observatory of Japan.

  4. Near-Infrared Observations of Recurrent Nova T Pyx In Outburst

    NASA Astrophysics Data System (ADS)

    Banerjee, D. P. K.; Ashok, N. M.

    2011-04-01

    We report photometric and spectroscopic near-IR observations (1.08 to 2.3 micron) of the recent 2011 outburst of the recurrent nova T Pyx using the 1.2m Mount Abu telescope and the NICMOS3 imager-cum-spectrograph. Photometric observations were centered around mean times of 2011 April 14.6, 15.6 and 16.6 UT respectively and followed immediately by spectroscopy. In its present avatar, T Pyx quickly brightened from J, H, K magnitudes of (9.88, 9.70, 9.70) on 2011 April 14.6 UT to (7.45, 7.30, 6.94) and (6.81, 6.70, 6.37) on the subsequent two nights (typical error 0.03 mag., note: sky not photometric on 2011 April 14 UT ).

  5. The nature of the embedded population in the Rho Ophiuchi dark cloud - Mid-infrared observations

    NASA Technical Reports Server (NTRS)

    Lada, C. J.; Wilking, B. A.

    1984-01-01

    In combination with previous IR and optical data, the present 10-20 micron observations of previously identified members of the embedded population of the Rho Ophiuchi dark cloud allow determinations to be made of the broadband energy distributions for 32 of the 44 sources. The majority of the sources are found to emit the bulk of their luminosity in the 1-20 micron range, and to be surrounded by dust shells. Because they are, in light of these characteristics, probably premain-sequence in nature, relatively accurate bolometric luminosities for these objects can be obtained through integration of their energy distributions. It is found that 44 percent of the sources are less luminous than the sun, and are among the lowest luminosity premain-sequence/protostellar objects observed to date.

  6. Infrared Observations of Comets Ikeya-seki (1965f) and Bennett (1969i)

    NASA Technical Reports Server (NTRS)

    Westphal, J. A.

    1972-01-01

    Measurements of Comet Bennett (1969i) from 1.2 microns to 10 microns indicate the presence of material at a temperature of 590 K on 6 April 1970. The excellence of the fit of the flux values to a 590 K blackbody severely restricts the possible range of materials present. Specifically it precludes simple isolated small particle models to explain the excess temperature observed.

  7. Far-infrared photometric observations of the outer planets and satellites with Herschel-PACS

    NASA Astrophysics Data System (ADS)

    Müller, T. G.; Balog, Z.; Nielbock, M.; Moreno, R.; Klaas, U.; Moór, A.; Linz, H.; Feuchtgruber, H.

    2016-04-01

    We present all Herschel-PACS photometer observations of Mars, Saturn, Uranus, Neptune, Callisto, Ganymede, and Titan. All measurements were carefully inspected for quality problems, were reduced in a (semi-)standard way, and were calibrated. The derived flux densities are tied to the standard PACS photometer response calibration, which is based on repeated measurements of five fiducial stars. The overall absolute flux uncertainty is dominated by the estimated 5% model uncertainty of the stellar models in the PACS wavelength range between 60 and 210 μm. A comparison with the corresponding planet and satellite models shows excellent agreement for Uranus, Neptune, and Titan, well within the specified 5%. Callisto is brighter than our model predictions by about 4-8%, Ganymede by about 14-21%. We discuss possible reasons for the model offsets. The measurements of these very bright point-like sources, together with observations of stars and asteroids, demonstrate the high reliability of the PACS photometer observations and the linear behavior of the PACS bolometer source fluxes over more than four orders of magnitude (from mJy levels up to more than 1000 Jy). Our results show the great potential of using the observed solar system targets for cross-calibration purposes with other ground-based, airborne, and space-based instruments and projects. At the same time, the PACS results will lead to improved model solutions for future calibration applications. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. The ionization structure of the Orion Nebula - Infrared line observations and models

    NASA Technical Reports Server (NTRS)

    Simpson, J. P.; Rubin, R. H.; Erickson, E. F.; Haas, M. R.

    1986-01-01

    Observations of the forbidden O III 52 and 88 microns lines and the forbidden N III 57 microns line have been made at six positions and the forbidden Ne III 36 microns line at four positions in the Orion Nebula to probe its ionization structure. The wavelength of the forbidden Ne III line was measured to be 36.009-36.017 microns. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one-component and two-component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37,000-40,000 K and log g = 4.0 and 4.5. Both the new IR observations and the visible line measurements of oxygen and nitrogen require Teff of no more than 37,000 K. However, the doubly ionized neon requires a model with Teff of at least 39,000 K, which is more consistent with that inferred from the radio flux or spectral type. These differences in Teff are not due to effects of dust on the stellar radiation field but are probably due to inaccuracies in the assumed stellar spectrum. Neon and nitrogen are approximately solar, but oxygen is half-solar in abundance. From the IR O(++) lines, it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement.

  9. Ionization structure of the Orion Nebula - infrared line observations and models

    SciTech Connect

    Simpson, J.P.; Rubin, R.H.; Erickson, E.F.; Haas, M.R.

    1986-12-01

    Observations of the forbidden O III 52 and 88 microns lines and the forbidden N III 57 microns line have been made at six positions and the forbidden Ne III 36 microns line at four positions in the Orion Nebula to probe its ionization structure. The wavelength of the forbidden Ne III line was measured to be 36.009-36.017 microns. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one-component and two-component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37,000-40,000 K and log g = 4.0 and 4.5. Both the new IR observations and the visible line measurements of oxygen and nitrogen require Teff of no more than 37,000 K. However, the doubly ionized neon requires a model with Teff of at least 39,000 K, which is more consistent with that inferred from the radio flux or spectral type. These differences in Teff are not due to effects of dust on the stellar radiation field but are probably due to inaccuracies in the assumed stellar spectrum. Neon and nitrogen are approximately solar, but oxygen is half-solar in abundance. From the IR O(++) lines, it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement. 54 references.

  10. Models for Temperature and Composition in Uranus from Spitzer, Herschel and Ground-Based Infrared through Millimeter Observations

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.; Fletcher, Leigh N.; Feuchtgruber, Helmut; Lellouch, Emmanuel; Moreno, Raphel; Encrenaz, Therese; Hartogh, Paul; Jarchow, Christopher; Swinyard, Bruce; Cavalie, Thibault; Moses, Julianne; Burgdorf, Martin; Hammel, Heidi; Line, Michael; Mainzer, Amy K.; Hofstadter, Mark; Sandell, Goran H.; Dowell, C. Darren; Pantin, Eric; Fujiyoshi, Takuya

    2014-11-01

    Photometric and spectroscopic observations of Uranus in the thermal infrared were combined to create self-consistent models of its global-mean temperature profile and vertical distribution of gases. These were derived from a suite of observations from Spitzer and Herschel, together with ground-based observations from UKIRT, CSO, Gemini, VLT and Subaru. Observations of the collision-induced absorption and quadrupoles of H2 have constrained the temperature structure for pressures of nearly 2 bars down to 0.1 millibars. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in such a way to be consistent with the mixing ratios of hydrocarbons. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. The Spitzer IRS data, in concert with photochemical models, show that the homopause is at much higher atmospheric pressures than for the other outer planets, with the predominant trace constituents for pressures lower than 30 µbar being H2O and CO2. The ratio of the oxygen-bearing molecules is consistent with exogenic origins in KBOs or comets. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. This model is of ‘programmatic’ interest because it serves as a standard calibration source; the cross-comparison of its spectrum with model spectra for Mars and Neptune shows consistency to within 3%. Near equinox, the IRS spectra at different longitudes showed rotationally variable stratospheric emission that is consistent with a temperature anomaly ≤10 K near ~0.1-0.2 mbar. Spatial variability of tropospheric temperatures observed in ground-based observations from 2006 to 2011 is generally consistent with Voyager infrared (IRIS) results.

  11. Mid-infrared observations of the circumstellar disks around PDS 66 and CRBR 2422.8-3423

    NASA Astrophysics Data System (ADS)

    Gräfe, C.; Wolf, S.

    2013-04-01

    Aims: We present mid-infrared observations and photometry of the circumstellar disks around PDS 66 and CRBR 2422.8-3423, obtained with VISIR/VLT in the N band and for the latter also in the Q band. Our aim is to resolve the inner regions of these protoplanetary disks, which carry potential signatures of intermediate or later stages of disk evolution and ongoing planet formation. Methods: We determined the radial brightness profiles of our target objects and the corresponding PSF reference that were observed before and after our target objects. Background standard deviations, the standard errors, and the seeing variations during the observations were considered. Adopting a simple radiative transfer model based on parameters taken from previous studies, we derived constraints on the inner-disk hole radius of the dust disk. Results: Neither of the circumstellar disks around our science targets are spatially resolved in our observations. However, we are able to constrain the inner-disk hole radius to <15.0-0.5+0.5 AU and <10.5-1.0+0.5 AU for PDS 66 and CRBR 2422.8-3423, respectively. The photometry we performed yields N-band flux densities of 599 ± 8 mJy for PDS 66 and 130 ± 14 mJy for CRBR 2422.8-3423, as well as a Q-band flux density of 858 ± 109 mJy for CRBR 2422.8-3423.

  12. Wide-field infrared survey explorer observations of young stellar objects in the Lynds 1509 dark cloud in Auriga

    SciTech Connect

    Liu, Wilson M.; McCollum, Bruce; Fajardo-Acosta, Sergio; Padgett, Deborah L.; Terebey, Susan; Angione, John; Rebull, Luisa M.; Leisawitz, David

    2014-06-01

    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4 μm, 4.6 μm, 12 μm, and 22 μm, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.

  13. Characterization of dust aerosols in the infrared from IASI and comparison with PARASOL, MODIS, MISR, CALIOP, and AERONET observations

    NASA Astrophysics Data System (ADS)

    Peyridieu, S.; Chédin, A.; Capelle, V.; Tsamalis, C.; Pierangelo, C.; Armante, R.; Crevoisier, C.; Crépeau, L.; Siméon, M.; Ducos, F.; Scott, N. A.

    2012-09-01

    Infrared Atmospheric Sounder Interferometer (IASI) observations covering the period from July 2007 to December 2011 are interpreted in terms of monthly mean, 1°×1°, 10 μm dust Aerosol Optical Depth (AOD), mean altitude and coarse mode effective radius. The geographical study area includes the northern tropical Atlantic and the north-west Arabian Sea, both characterized by strong, regular dust events. The method developed relies on the construction of Look-Up-Tables computed for a large selection of atmospheric situations and observing conditions. At regional scale, a good agreement is found between IASI-retrieved 10 μm AOD and total visible optical depth at 550 nm from either the Moderate resolution Imaging Spectroradiometer (MODIS/Aqua or Terra), or the Multi-angle Imaging SpectroRadiometer (MISR), or the Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar (PARASOL). Taking into account the ratio existing between infrared and visible AODs, the diversity between the different 550 nm AODs is similar to the difference between these and the IASI AODs. The infrared AOD to visible AOD ratio, partly reflecting the varying distribution of the dust layer between the dust coarse mode particles seen by IASI, and the fine mode seen by the other instruments, is found to vary with the region observed with values close to already published values. Comparisons between the climatologies of the 10 μm IASI AOD and of the PARASOL non-spherical coarse mode AOD at 865 nm, both expected to be representative of the dust coarse mode, lead to conclusions differing according to the region considered. These differences are discussed in the light of the MODIS Angström exponent (865-550 nm). At local scale, around six Aerosol Robotic Network (AERONET) sites, close or far from the dust sources, a similar satisfactory agreement is found between IASI and the visible AODs and the differences between these products are shown and analysed

  14. Characterisation of dust aerosols in the infrared from IASI and comparison with PARASOL, MODIS, MISR, CALIOP, and AERONET observations

    NASA Astrophysics Data System (ADS)

    Peyridieu, S.; Chédin, A.; Capelle, V.; Tsamalis, C.; Pierangelo, C.; Armante, R.; Crevoisier, C.; Crépeau, L.; Siméon, M.; Ducos, F.; Scott, N. A.

    2013-06-01

    Infrared Atmospheric Sounder Interferometer (IASI) observations covering the period from July 2007 to December 2011 are interpreted in terms of monthly mean, 1°×1°, 10 μm dust Aerosol Optical Depth (AOD), mean altitude and coarse mode effective radius. The geographical study area includes the northern tropical Atlantic and the northwest Arabian Sea, both characterised by strong, regular dust events. The method developed relies on the construction of Look-Up-Tables computed for a large selection of atmospheric situations and observing conditions. At a regional scale, a good agreement is found between IASI-retrieved 10 μm AOD and total visible optical depth at 550 nm from either the Moderate resolution Imaging Spectroradiometer (MODIS/Aqua or Terra), or the Multi-angle Imaging SpectroRadiometer (MISR), or the Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar (PARASOL). Taking into account the ratio existing between infrared and visible AODs, the diversity between the different 550 nm AODs is similar to the difference between these and the IASI AODs. The infrared AOD to visible AOD ratio, partly reflecting the varying distribution of the dust layer between the dust coarse mode particles seen by IASI, and the fine mode seen by the other instruments, is found to vary with the region observed with values close to already published values. Comparisons between the climatologies of the 10 μm IASI AOD and of the PARASOL non-spherical coarse mode AOD at 865 nm, both expected to be representative of the dust coarse mode, lead to conclusions differing according to the region considered. These differences are discussed in the light of the MODIS Angström exponent (865-550 nm). At local scale, around six Aerosol Robotic Network (AERONET) sites, close or far from the dust sources, a similar satisfactory agreement is found between IASI and the visible AODs and the differences between these products are shown and

  15. Chemical Composition of Comet C/2007 N3 (Lulin) Observed in the Near-infrared Wavelength Region

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Kobayashi, H.; Kawakita, H.; Dello Russo, N.; Vervack, R. J., Jr.; Weaver, H. A.; Biver, N.; Bockelée-Morvan, D.; Crovisier, J.

    2011-10-01

    Oort-cloud comet C/2007 N3 (Lulin) was observed in both L-band and M-band by three different telescopes/instruments atop Mauna Kea; IRTF with CSHELL (R~25,000), Subaru telescope with IRCS (R~15,000), and Keck II telescope with NIRSPEC (R~25,000) during its 2009 apparition. We detected H2O, HCN, C2H2, CH3OH, CH4, C2H6, and CO and determined mixing ratios of these organic volatiles relative to H2O. We investigate will chemical variability in the coma of comet Lulin. We also compare our results with the CO mixing ratios determined by the Japanese infrared satellite AKARI.

  16. Experimental observation of mid-infrared higher-order soliton fission in a tapered tellurite microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Tonglei; Xue, Xiaojie; Liu, Lai; Suzuki, Takenobu; Ohishi, Yasutake

    2016-06-01

    The evolution of mid-infrared (MIR) higher-order soliton fission in a tapered tellurite microstructured optical fiber (TMOF) is experimentally investigated. From ∼30 to 80 mW, the redshift of the first fundamental soliton is obvious. From ∼80 to 120 mW, two fundamental solitons are obtained by the fission of higher-order solitons. The redshift of the first fundamental soliton almost stops because the increased pump power is preferentially distributed to the second fundamental soliton. From ∼120 to 180 mW, an obvious redshift of the first fundamental soliton is observed again, and a third fundamental soliton is obtained at ∼180 mW. The evolution of each soliton is determined by the power distribution, which is, to the best of our knowledge, reported for the first time.

  17. Wide-Field Infrared Survey Explorer Observations of Young Stellar Objects in the Lynds 1509 Dark Cloud in Auriga

    NASA Technical Reports Server (NTRS)

    Liu, Wilson M.; Padgett, Deborah L.; Terebey, Susan; Angione, John; Rebull, Luisa M.; McCollum, Bruce; Fajardo-Acosta, Sergio; Leisawitz, David

    2015-01-01

    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4, 4.6, 12, and 22 microns, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.

  18. Wisps in the Galactic center: Near-infrared triggered observations of the radio source Sgr A* at 43 GHz

    NASA Astrophysics Data System (ADS)

    Rauch, C.; Ros, E.; Krichbaum, T. P.; Eckart, A.; Zensus, J. A.; Shahzamanian, B.; Mužić, K.

    2016-03-01

    Context. The compact radio and near-infrared (NIR) source Sagittarius A* (Sgr A*) associated with the supermassive black hole in the Galactic center was observed at 7 mm in the context of a NIR triggered global Very Long Baseline Array (VLBA) campaign. Aims: Sgr A* shows variable flux densities ranging from radio through X-rays. These variations sometimes appear in spontaneous outbursts that are referred to as flares. Multi-frequency observations of Sgr A* provide access to easily observable parameters that can test the currently accepted models that try to explain these intensity outbursts. Methods: On May 16-18, 2012 Sgr A* has been observed with the VLBA at 7 mm (43 GHz) for 6 h each day during a global multi-wavelength campaign. These observations were triggered by a NIR flare observed at the Very Large Telescope (VLT). Accurate flux densities and source morphologies were acquired. Results: The total 7 mm flux of Sgr A* shows only minor variations during its quiescent states on a daily basis of 0.06 Jy. An observed NIR flare on May 17 was followed ~4.5 h later by an increase in flux density of 0.22 Jy at 43 GHz. This agrees well with the expected time delay of events that are casually connected by adiabatic expansion. Shortly before the peak of the radio flare, Sgr A* developed a secondary radio off-core feature at 1.5 mas toward the southeast. Even though the closure phases are too noisy to place actual constraints on this feature, a component at this scale together with a time delay of 4.5 ± 0.5 h between the NIR and radio flare provide evidence for an adiabatically expanding jet feature.

  19. Near-infrared polarimetric adaptive optics observations of NGC 1068: a torus created by a hydromagnetic outflow wind

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.; Packham, C.; Jones, T. J.; Nikutta, R.; McMaster, L.; Mason, R. E.; Elvis, M.; Shenoy, D.; Alonso-Herrero, A.; Ramírez, E.; González Martín, O.; Hönig, S. F.; Levenson, N. A.; Ramos Almeida, C.; Perlman, E.

    2015-09-01

    We present J' and K' imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5 arcsec (30 pc) aperture at K', we find that polarization arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarization mechanism, with an intrinsic polarization of 7.0 ± 2.2 per cent. This result yields a torus magnetic field strength in the range of 4-82 mG through paramagnetic alignment, and 139^{+11}_{-20} mG through the Chandrasekhar-Fermi method. The measured position angle (P.A.) of polarization at K' is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis on to the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate ≤0.17 M⊙ yr-1 at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a time-scale of ≥105 yr with a rotational velocity of ≤1228 km s-1 at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.

  20. SPITZER OBSERVATIONS OF BLACK HOLE LOW-MASS X-RAY BINARIES: ASSESSING THE NON-STELLAR INFRARED COMPONENT

    SciTech Connect

    Gelino, Dawn M.; Gelino, Christopher R.; Harrison, Thomas E.

    2010-07-20

    We have combined ground-based optical and near-infrared data with Spitzer Space Telescope mid-infrared data for five black hole (BH) soft X-ray transients (SXTs) in order to determine the levels of near- and mid-infrared emission from sources other than the secondary star. Mid-infrared emission from an accretion disk, circumbinary dust, and/or a jet could act as sources of near-infrared contamination, thereby diluting ellipsoidal variations of the secondary star and affecting determined BH mass estimates. Based on optical to mid-infrared spectral energy distribution modeling of the five SXTs along with the prototype, V616 Mon, we detected mid-infrared excesses in half of the systems, and suggest that the excesses detected from these systems arise from non-thermal synchrotron jets rather than circumbinary dust disks.

  1. Evidence for magmatic evolution and diversity on Mars from infrared observations

    USGS Publications Warehouse

    Christensen, P.R.; McSween, H.Y., Jr.; Bandfield, J.L.; Ruff, S.W.; Rogers, A.D.; Hamilton, V.E.; Gorelick, N.; Wyatt, M.B.; Jakosky, B.M.; Kieffer, H.H.; Malin, M.C.; Moersch, J.E.

    2005-01-01

    Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5 km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth.

  2. Evidence for magmatic evolution and diversity on Mars from infrared observations.

    PubMed

    Christensen, P R; McSween, H Y; Bandfield, J L; Ruff, S W; Rogers, A D; Hamilton, V E; Gorelick, N; Wyatt, M B; Jakosky, B M; Kieffer, H H; Malin, M C; Moersch, J E

    2005-07-28

    Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5 km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth. PMID:16007077

  3. Infrared-excess Source DSO/G2 Near the Galactic Center: Theory vs. Observations

    NASA Astrophysics Data System (ADS)

    Zajacek, Michal; Eckart, Andreas; Peissker, Florian; Karssen, Grischa D.; Karas, Vladimir

    2015-12-01

    Based on the monitoring of the Dusty S-cluster Object (DSO/G2) during its closest approach to the Galactic Center supermassive black hole in 2014 and 2015 with ESO VLT/SINFONI, we further explore the model of a young, accreting star to explain observed spectral and morphological features. The stellar scenario is supported by our findings, i.e., ionized-hydrogen emission from the DSO that remains spatially compact before and after the peribothron passage. The detection of DSO/G2 object as a compact single-peak emission-line source is not consistent with the original hypothesis of a core-less cloud that is necessarily tidally stretched, hence producing a double-peak emission line profile around the pericentre passage. This strengthens the evidence that the DSO/G2 source is a dust-enshrouded young star that appears to be in an accretion phase. The infall of material from the circumstellar disc onto the stellar surface can contribute significantly to the emission of Brγ line as well as the observed large line width of the order of 10 angstrom.

  4. Direct observations of ligand dynamics in hemoglobin by subpicosecond infrared spectroscopy.

    PubMed Central

    Anfinrud, P A; Han, C; Hochstrasser, R M

    1989-01-01

    The photodissociation of CO from HbCO at ambient temperature is studied by means of a femtosecond IR technique. The bleaching of the FeCO absorption and the appearance of a new IR absorption near that of free CO are both observed at 300 fs after optical excitation. The bleach does not recover on the time scale of a few picoseconds but does recover by approximately 4% within 1 ns, which suggests that a barrier to recombination is formed within a few picoseconds. The CO spectrum does not change significantly between 300 fs and 1 ns, suggesting that the CO quickly finds some locations in the heme pocket that are not more than a few angstroms from the iron. The de-ligated CO appears in its ground vibrational level. There is evidence that 85 +/- 10% of this CO remains in the heme pocket at 1 ns; it probably resides there for 50 ns. The flow of excess vibrational energy from the heme to the solvent was directly observed in the IR experiments. The heme cools within 1-2 ps while thermal disruption of the surrounding solvent structure requires approximately 30 ps. PMID:2554314

  5. Direct observations of ligand dynamics in hemoglobin by subpicosecond infrared spectroscopy.

    PubMed

    Anfinrud, P A; Han, C; Hochstrasser, R M

    1989-11-01

    The photodissociation of CO from HbCO at ambient temperature is studied by means of a femtosecond IR technique. The bleaching of the FeCO absorption and the appearance of a new IR absorption near that of free CO are both observed at 300 fs after optical excitation. The bleach does not recover on the time scale of a few picoseconds but does recover by approximately 4% within 1 ns, which suggests that a barrier to recombination is formed within a few picoseconds. The CO spectrum does not change significantly between 300 fs and 1 ns, suggesting that the CO quickly finds some locations in the heme pocket that are not more than a few angstroms from the iron. The de-ligated CO appears in its ground vibrational level. There is evidence that 85 +/- 10% of this CO remains in the heme pocket at 1 ns; it probably resides there for 50 ns. The flow of excess vibrational energy from the heme to the solvent was directly observed in the IR experiments. The heme cools within 1-2 ps while thermal disruption of the surrounding solvent structure requires approximately 30 ps. PMID:2554314

  6. The Observation of Fault Finiteness and Rapid Velocity Variation in Pnl Waveforms for the Mw 6.5, San Simeon, California Earthquake

    NASA Astrophysics Data System (ADS)

    Konca, A. O.; Ji, C.; Helmberger, D. V.

    2004-12-01

    We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the

  7. Herschel far-infrared observations of the Carina Nebula complex. II. The embedded young stellar and protostellar population

    NASA Astrophysics Data System (ADS)

    Gaczkowski, B.; Preibisch, T.; Ratzka, T.; Roccatagliata, V.; Ohlendorf, H.; Zinnecker, H.

    2013-01-01

    Context. The Carina Nebula represents one of the largest and most active star forming regions known in our Galaxy. It contains numerous very massive (M ≳ 40 M⊙) stars that strongly affect the surrounding clouds by their ionizing radiation and stellar winds. Aims: Our recently obtained Herschel PACS and SPIRE far-infrared maps cover the full area (≈8.7 deg2) of the Carina Nebula complex (CNC) and reveal the population of deeply embedded young stellar objects (YSOs), most of which are not yet visible in the mid- or near-infrared. Methods: We study the properties of the 642 objects that are independently detected as point-like sources in at least two of the five Herschel bands. For those objects that can be identified with apparently single Spitzer counterparts, we use radiative transfer models to derive information about the basic stellar and circumstellar parameters. Results: We find that about 75% of the Herschel-detected YSOs are Class 0 protostars. The luminosities of the Herschel-detected YSOs with SED fits are restricted to values of ≤5400 L⊙, their masses (estimated from the radiative transfer modeling) range from ≈1 M⊙ to ≈10 M⊙. Taking the observational limits into account and extrapolating the observed number of Herschel-detected protostars over the stellar initial mass function suggest that the star formation rate of the CNC is ~0.017 M⊙/year. The spatial distribution of the Herschel YSO candidates is highly inhomogeneous and does not follow the distribution of cloud mass. Rather, most Herschel YSO candidates are found at the irradiated edges of clouds and pillars. The far-infrared fluxes of the famous object η Car are about a factor of two lower than expected from observations with the Infrared Space Observatory obtained 15 years ago; this difference may be a consequence of dynamical changes in the circumstellar dust in the Homunculus Nebula around η Car. Conclusions: The currently ongoing star formation process forms only low

  8. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-01-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  9. 3D Coronal Magnetic Field Reconstruction Based on Infrared Polarimetric Observations

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2014-12-01

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. A significant progress has been recently achieved here with deployment of the Coronal Multichannel Polarimeter (CoMP) of the High Altitude Observatory (HAO). The instrument provides polarization measurements of Fe xiii 10747 A forbidden line emission. The observed polarization are the result of a line-of-sight (LOS) integration through a nonuniform temperature, density and magnetic field distribution. In order resolve the LOS problem and utilize this type of data, the vector tomography method has been developed for 3D reconstruction of the coronal magnetic field. The 3D electron density and temperature, needed as additional input, have been reconstructed by tomography method based on STEREO/EUVI data. We will present the 3D coronal magnetic field and associated 3D curl B, density, and temperature resulted from these inversions.

  10. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations