Science.gov

Sample records for infrared interferometric telescope

  1. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer/Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  2. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer / Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.

  3. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  4. System Engineering the Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Hyde, Tristram T.; Leisawitz, David T.; Rinehart, Stephen

    2007-01-01

    The Space Infrared Interferometric Telescope (SPIRIT) was designed to accomplish three scientific objectives: (1) learn how planetary systems form from protostellar disks and how they acquire their inhomogeneous chemical composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. SPIRIT will accomplish these objectives through infrared observations with a two aperture interferometric instrument. This paper gives an overview of SPIRIT design and operation, and how the three design cycle concept study was completed. The error budget for several key performance values allocates tolerances to all contributing factors, and a performance model of the spacecraft plus instrument system demonstrates meeting those allocations with margin.

  5. Far-Infrared Interferometric Telescope Experiment : I. Interferometer Optics

    NASA Astrophysics Data System (ADS)

    Kato, Eri; Shibai, Hiroshi; Kawada, Mitsunobu; Narita, Masanao; Matsuo, Taro; Ohkubo, Atsushi; Suzuki, Miki; Kanoh, Tetsuo; Yamamoto, Koudai; Fite Team

    We have developed a far-infrared interferometer (Far-Infrared Interferometric Telescope Experiment: FITE). It will be the first astronomical infrared interferometer working in space. FITE is a balloon-borne telescope, and operated in the stratosphere (the altitude of 35 km). The aim of the FITE project is to achieve a high spatial resolution of 1 arcsecond at the wavelength of 100 micrometers. FITE is a Michelson stellar interferometer, and is able to realize a long base line beyond the size of the collecting mirror by using four plane mirrors. The first flight is scheduled for November 2008 in Brazil, and the aim is to measure the interference fringes with a spatial resolution of 2.5 arcseconds. In order to achieve this, the two beams must be focused within 2.5 arcsecond accuracy in the imaging quality, within 10 arcsecond accuracy in the beam alignment and within 30 micrometers accuracy in the optical path length between the two beams. In order to archive these accuracies, the structural parts of the telescope were made of carbon-fiber reinforced plastics, which have very low thermal expansion coefficient and large Young's modulus. During observation of a target, the optical alignment is actively adjusted and the orientation of the telescope is stabilized by the three-axis control.

  6. The Space Infrared Interferometric Telescope (SPIRIT): A Unique Mission for Exploring the Universe

    NASA Astrophysics Data System (ADS)

    Rinehart, S. A.; SPIRIT Origins Probe Mission Study Team

    2005-12-01

    The Space Infrared Interferometric Telescope (SPIRIT) was selected for study by NASA as a candidate Origins Probe mission. SPIRIT is a two-telescope Michelson interferometer operating over a nominal wavelength range 25 to 400 μ m, and offering a powerful combination of spectroscopy (λ / Δ λ ˜ 3000) and sub-arcsecond angular resolution imaging in a single instrument. With angular resolution two orders of magnitude better than that of the Spitzer Space Telescope, and with comparable sensitivity, SPIRIT will enable us to learn how planetary systems form in protostellar disks, how they acquire their chemical structure, and how they evolve. Further, SPIRIT will be a powerful tool for understanding how the present-day population of galaxies formed and evolved. SPIRIT could be ready to launch as early as 2015.

  7. The dusty AGB star RS CrB: first mid-infrared interferometric observations with the Keck telescopes

    NASA Technical Reports Server (NTRS)

    Mennesson, B.; Koresko, C.; Creech-Eakman, M. J.; Serabyn, E.; Colavita, M. M; Akeson, R.; Appleby, E.; Bell, J.; Booth, A.; Crawford, S.; Dahl, W.; Fanson, J.; Felizardo, C.; Garcia, J.; Gathright, J.; Herstein, J.; Hovland, E.; Hrynevych, M.; Johansson, E.; Le Mignant, D.; Ligon, R.; Millan-Gabet, R.; Moore, J.; Neyman, C.; Palmer, D.

    2005-01-01

    We report interferometric observations of the semiregular variable star RS CrB, a red giant with strong silicate emission features. The data were among the first long-baseline mid-infrared stellar fringes obtained between the Keck telescopes, using parts of the new nulling beam combiner.

  8. The Space Infrared Interferometric Telescope (SPIRIT): The Mission Design Solution Space and the Art of the Possible

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Hyde, T. Tupper; Rinehart, Stephen A.; Weiss, Michael

    2008-01-01

    Although the Space Infrared Interferometric Telescope (SPIRIT) was studied as a candidate NASA Origins Probe mission, the real world presents a broader set of options, pressures, and constraints. Fundamentally, SPIRIT is a far-IR observatory for high-resolution imaging and spectroscopy designed to address a variety of compelling scientific questions. How do planetary systems form from protostellar disks, dousing some planets in water while leaving others dry? Where do planets form, and why are some ice giants while others are rocky? How did high-redshift galaxies form and merge to form the present-day population of galaxies? This paper takes a pragmatic look at the mission design solution space for SPIRIT, presents Probe-class and facility-class mission scenarios, and describes optional design changes. The costs and benefits of various mission design alternatives are roughly evaluated, giving a basis for further study and to serve as guidance to policy makers.

  9. The Space Infrared Interferometric Telescope (SPIRIT) and its Complementarity to ALMA

    NASA Technical Reports Server (NTRS)

    Leisawitz, Dave

    2007-01-01

    We report results of a pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. In each of these science domains, SPIRIT will yield information complementary to that obtainable with the James Webb Space Telescope (JWST)and the Atacama Large Millimeter Array (ALMA), and all three observatories could operate contemporaneously. Here we shall emphasize the SPIRIT science goals (1) and (2) and the mission's complementarity with ALMA.

  10. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  11. Note: Near infrared interferometric silicon wafer metrology

    NASA Astrophysics Data System (ADS)

    Choi, M. S.; Park, H. M.; Joo, K. N.

    2016-04-01

    In this investigation, two near infrared (NIR) interferometric techniques for silicon wafer metrology are described and verified with experimental results. Based on the transparent characteristic of NIR light to a silicon wafer, the fiber based spectrally resolved interferometry can measure the optical thickness of the wafer and stitching low coherence scanning interferometry can reconstruct entire surfaces of the wafer.

  12. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    PubMed

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS. PMID:25322240

  13. Interferometric near-infrared spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-03-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts the optical and dynamic properties of turbid media from the analysis of the spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency swept narrow bandwidth light source such that the temporal intensity autocorrelations can be determined for all photon path lengths. This approach enables time-of-flight (TOF) resolved measurement of scatterer motion, which is a feature inaccessible in well-established diffuse correlation spectroscopy techniques. We prove this by analyzing intensity correlations of the light transmitted through diffusive fluid phantoms with photon random walks of up to 55 (approximately 110 scattering events) using laser sweep rates on the order of 100kHz. Thus, the results we present here advance diffuse optical methods by enabling simultaneous determination of depth-resolved optical properties and dynamics in highly scattering samples.

  14. Optical design of interferometric telescopes with wide fields of view.

    PubMed

    Sabatke, Erin E; Burge, James H; Hinz, Philip

    2006-11-01

    The performance of wide-field multiple-aperture imaging systems is dominated by easily understood, low-order errors. Each aperture produces an individual image, each pair of apertures produces a set of fringes under a diffraction envelope, and the system bandwidth produces a coherence envelope. For wide-field imaging, each of these elements must be coincident in the image plane as the field angle changes. We explore the causes of image degradation, derive first-order rules for preserving image quality across field, and give an example design that enforces some of the rules to achieve a relatively wide-field interferometric imaging telescope. PMID:17068543

  15. AKARI: space infrared cooled telescope

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Salama, Alberto

    2009-12-01

    AKARI, formerly known as ASTRO-F, is the second Japanese space mission to perform infrared astronomical observations. AKARI was launched on 21 February 2006 (UT) and brought into a sun-synchronous polar orbit at an altitude of 700 km by a JAXA M-V rocket. AKARI has a telescope with a primary-mirror aperture size of 685 mm together with two focal-plane instruments on board: the Infrared Camera (IRC), which covers the spectral range 2-26 μm and the Far-Infrared Surveyor (FIS), which operates in the range 50-180 μm. The telescope mirrors are made of sandwich-type silicon carbide, specially developed for AKARI. The focal-plane instruments and the telescope are cooled by a unique cryogenic system that kept the telescope at 6K for 550 days with 180 l super-fluid liquid Helium (LHe) with the help of mechanical coolers on board. Despite the small telescope size, the cold environment and the state-of-the-art detectors enable very sensitive observations at infrared wavelengths. To take advantage of the characteristics of the sun-synchronous polar orbit, AKARI performed an all-sky survey during the LHe holding period in four far-infrared bands with FIS and two mid-infrared bands with IRC, which surpasses the IRAS survey made in 1983 in sensitivity, spatial resolution, and spectral coverage. AKARI also made over 5,000 pointing observations at given targets in the sky for approximately 10 min each, for deep imaging and spectroscopy from 2 to 180 μm during the LHe holding period. The LHe ran out on 26 August 2007, since which date the telescope and instrument are still kept around 40K by the mechanical cooler on board, and near-infrared imaging and spectroscopic observations with IRC are now being continued in pointing mode.

  16. Construction of a Novel Interferometric Array of Small Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Engelhardt, Dalit; Timbie, P.

    2006-12-01

    Interferometric arrays of large numbers of antennas are under study for a variety of programs, such as the Square Kilometer Array and instruments optimized for observing the cosmic microwave background radiation. The Wisconsin Small Telescope Array for Radio-waves (WSTAR) will serve as a test of a simple and inexpensive method for building an adding interferometer with a large number of antennas. The approach creates a simple analog correlator from an ordinary receiver. Signals from each radio antenna are phase-modulated between 0 and 180 degrees at unique frequencies. The signals are added together and then enter a receiver/spectrometer. The visibilities from each baseline are decoded by phase-sensitive detection of the receiver output at the appropriate modulation frequencies. The scheme can be extended to an arbitrary number of antennas and has minimal computational requirements. WSTAR will consist of three small radio telescopes of 2.5 meter diameter which closely follow the Small Radio Telescope (SRT) design developed at the MIT Haystack Observatory. WSTAR will operate as a three-dish adding interferometer of variable spacing. The initial configuration is an equilateral triangle with 10 m spacing. At this stage, one telescope has been successfully constructed and is undergoing initial testing. Completion of the array is expected in 2007. This poster will present the adding algorithm and its significance as well as the construction details of WSTAR. This work was supported by the National Science Foundation's REU program and the Department of Defense's ASSURE program through NSF Award AST-0453442.

  17. Infrared telescope on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Koch, D.

    1979-01-01

    The infrared telescope (IRT) on Spacelab 2 which will be the first cryogenically cooled telescope operated from the Orbiter is discussed. Its objectives are to measure the induced environment about the Orbiter and to demonstrate the ability to manage a large volume of superfluid helium in space. The prime astrophysical objectives are to map extended sources of low surface brightness infrared emission, including the zodiacal light, the galactic plane, and extragalactic regions. The IRT design is described, including the f/4 15.2 cm highly baffled Herschelian telescope cooled to 8 K which may scan to within 35 deg of the sun. The focal plane cooled to 3 K consists of nine discrete photoconductors covering the wavelength of 4.5-120 microns in five bands, with a single stellar detector used for aspect determination. Overlapping scans, contiguous orbits, and a six degree per second scan rate permit rapid redundant coverage of 60 % of the sky.

  18. Space infrared telescope facility project

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    1988-01-01

    The functions undertaken during this reporting period were: to inform the planetary science community of the progress and status of the Space Infrared Telescope Facility (SIRTF) Project; to solicit input from the planetary science community on needs and requirements of planetary science in the use of SIRTF at such time that it becomes an operational facility; and a white paper was prepared on the use of the SIRTF for solar system studies.

  19. LOITA: Lunar Optical/Infrared Telescope Array

    NASA Technical Reports Server (NTRS)

    1993-01-01

    LOITA (Lunar Optical/Infrared Telescope Array) is a lunar-based interferometer composed of 18 alt-azimuth telescopes arranged in a circular geometry. This geometry results in excellent uv coverage and allows baselines up to 5 km long. The angular resolution will be 25 micro-arcsec at 500 nm and the main spectral range of the array will be 200 to 1100 nm. For infrared planet detection, the spectral range may be extended to nearly 10 mu m. The telescope mirrors have a Cassegrain configuration using a 1.75 m diameter primary mirror and a 0.24 m diameter secondary mirror. A three-stage (coarse, intermediate, and fine) optical delay system, controlled by laser metrology, is used to equalize path lengths from different telescopes to within a few wavelengths. All instruments and the fine delay system are located within the instrument room. Upon exiting the fine delay system, all beams enter the beam combiner and are then directed to the various scientific instruments and detectors. The array instrumentation will consist of CCD detectors optimized for both the visible and infrared as well as specially designed cameras and spectrographs. For direct planet detection, a beam combiner employing achromatic nulling interferometry will be used to reduce star light (by several orders of magnitude) while passing the planet light. A single telescope will be capable of autonomous operation. This telescope will be equipped with four instruments: wide field and planetary camera, faint object camera, high resolution spectrograph, and faint object spectrograph. These instruments will be housed beneath the telescope. The array pointing and control system is designed to meet the fine pointing requirement of one micro-arcsec stability and to allow precise tracking of celestial objects for up to 12 days. During the lunar night, the optics and the detectors will be passively cooled to 70-80 K temperature. To maintain a continuous communication with the earth a relay satellite placed at the L4

  20. SIRTF - The Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Werner, Michael W.; Eisenhardt, Peter

    1988-01-01

    The complexity and variety of objects in the infrared universe have been revealed by the Infrared Astronomical Satellite (IRAS). Further exploration of this universe will be possible with the Space Infrared Telescope Facility (SIRTF), which offers vast improvements in sensitivity and resolution over IRAS. SIRTF's planned capabilities and current status are briefly reviewed.

  1. Determination of physical properties of the Asteroid (41) Daphne from interferometric observations in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Matter, Alexis; Delbo, Marco; Ligori, Sebastiano; Crouzet, Nicolas; Tanga, Paolo

    2011-09-01

    We describe interferometric observations of the Asteroid (41) Daphne in the thermal infrared obtained with the Mid-Infrared Interferometric Instrument (MIDI) and the Auxiliary Telescopes (ATs) of the European Southern Observatory (ESO) Very Large Telescope Interferometer (VLTI). We derived the size and the surface thermal properties of (41) Daphne by means of a thermophysical model (TPM), which is used for the interpretation of interferometric data for the first time. From our TPM analysis, we derived a volume equivalent diameter for (41) Daphne of 189 km, using a non-convex 3-D shape model derived from optical lightcurves and adaptive optics images (B. Carry, private communication). On the other hand, when using the convex shape of Kaasalainen et al. (Kaasalainen, M., Mottola, S., Fulchignoni, M. [2002]. Icarus 159, 369-395) in our TPM analysis, the resulting volume equivalent diameter of (41) Daphne is between 194 and 209 km, depending on the surface roughness. The shape of the asteroid is used as an a priori information in our TPM analysis. No attempt is made to adjust the shape to the data. Only the size of the asteroid and its thermal parameters such as, albedo, thermal inertia and roughness are adjusted to the data. We estimated our model systematic uncertainty to be of 4% and of 7% on the determination of the asteroid volume equivalent diameter depending on whether the non-convex or the convex shape is used, respectively. In terms of thermal properties, we derived a value of the surface thermal inertia smaller than 50 J m -2 s -0.5 K -1 and preferably in the range between 0 and ˜30 J m -2 s -0.5 K -1. Our TPM analysis also shows that Daphne has a moderate macroscopic surface roughness.

  2. Common-Path Interferometric Wavefront Sensing for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Wallace, James Kent

    2011-01-01

    This paper presents an optical configuration for a common-path phase-shifting interferometric wavefront sensor.1 2 This sensor has a host of attractive features which make it well suited for space-based adaptive optics. First, it is strictly reflective and therefore operates broadband, second it is common mode and therefore does not suffer from systematic errors (like vibration) that are typical in other interferometers, third it is a phase-shifting interferometer and therefore benefits from both the sensitivity of interferometric sensors as well as the noise rejection afforded by synchronous detection. Unlike the Shack-Hartman wavefront sensor, it has nearly uniform sensitivity to all pupil modes. Optical configuration, theory and simulations for such a system will be discussed along with predicted performance.

  3. Interferometric coupling of the Keck telescopes with single-mode fibers.

    PubMed

    Perrin, G; Woillez, J; Lai, O; Guérin, J; Kotani, T; Wizinowich, P L; Le Mignant, D; Hrynevych, M; Gathright, J; Léna, P; Chaffee, F; Vergnole, S; Delage, L; Reynaud, F; Adamson, A J; Berthod, C; Brient, B; Collin, C; Crétenet, J; Dauny, F; Deléglise, C; Fédou, P; Goeltzenlichter, T; Guyon, O; Hulin, R; Marlot, C; Marteaud, M; Melse, B-T; Nishikawa, J; Reess, J-M; Ridgway, S T; Rigaut, F; Roth, K; Tokunaga, A T; Ziegler, D

    2006-01-13

    Here we report successful interferometric coupling of two large telescopes with single-mode fibers. Interference fringes were obtained in the 2- to 2.3-micrometer wavelength range on the star 107 Herculis by using the two Keck 10-meter telescopes, each feeding their common interferometric focus with 300 meters of single-mode fibers. This experiment demonstrates the potential of fibers for future kilometric arrays of telescopes and is the first step toward the 'OHANA (Optical Hawaiian Array for Nanoradian Astronomy) interferometer at the Mauna Kea observatory in Hawaii. It opens the way to sensitive optical imagers with resolutions below 1 milli-arc second. Our experimental setup can be directly extended to large telescopes separated by many hundreds of meters. PMID:16410516

  4. 1-meter near-infrared solar telescope

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Xu, J.

    In order to observe the fine structure of solar dynamical field and magnetic field, a 1-meter near-infrared solar telescope was developed by Yunnan Astronomical Observatory, Chinese Academy of Sciences. The telescope is located by the Fuxian Lake in southwest China. In this paper, we will introduce some details of the telescope such as scientific goals, structures, instruments and the parameters of the site. First light observation of high resolution photosphere is introduced too.

  5. A cooled telescope for infrared balloon astronomy

    NASA Technical Reports Server (NTRS)

    Frederick, C.; Jacobson, M. R.; Harwit, M. O.

    1974-01-01

    The characteristics of a 16 inch liquid helium cooled Cassegrain telescope with vibrating secondary mirror are discussed. The telescope is used in making far infrared astronomical observations. The system houses several different detectors for multicolor photometry. The cooled telescope has a ten to one increase in signal-to-noise ratio over a similar warm version and is installed in a high altitude balloon gondola to obtain data on the H2 region of the galaxy.

  6. Science with the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2003-01-01

    The Space Infrared Telescope Facility (SIRTF), the fourth and final member of NASA's series of Great Observatories, is scheduled to launch on April 15,2003. Together with the Hubbie Space Telescope, the Compton Gamma ray Telescope, and the Chandra X-Ray Telescope this series of observatories offers observational capabilities across the electromagnetic spectrum from the infrared to high-energy gamma rays. SIRTF is based on three focal plane instruments - an infrared spectrograph and two infrared imagers - coupled to a superfluid-helium cooled telescope to achieve unprecedented sensitivity from 3 to 180 microns. Although SIRTF is a powerful general-purpose infrared observatory, its design was based on the capability to address four broad science themes: (1) understanding the structure and composition of the early universe, (2) understanding the nature of brown dwarfs and super-planets, (3) probing protostellar, protoplanetary, and planetary debris disk systems, and (4) understanding the origin and structure of ultraluminous infrared galaxies and active galactic nuclei. This talk will address the design and capabilities of the SIRTF observatory, provide an overview of some of the initial science investigations planned by the SIRTF Guaranteed Time Observers, and give a brief overview of the General Observer proposal process.

  7. Cooled baffle system for spaceborne infrared telescopes.

    PubMed

    Bock, J J; Lange, A E; Matsuhara, H; Matsumoto, T; Onaka, T; Sato, S

    1995-05-01

    We report the design and testing of a compact system of baffles for cooled infrared telescopes. The baffle system consists of a reflecting forebaffle and a black aftbaffle and provides a high level of rejection of emission from off-axis sources. The forebaffle reflects radiation incident at angles greater than 40° off axis out of the telescope, thereby reducing the aperture heat load. The black aftbaffle absorbs radiation scattered or diffracted by the forebaffle, as well as radiation from sources within 40° off axis. We describe ground-based measurements at λ = 0.9 µm of the baffle system at ambient temperature and rocketborne measurements at far-infrared wavelengths of the baffle system at ~3 K. The effective emissivity of the cooled forebaffle was measured to be 7 × 10(-3). The system has been successfully used in rocketborne measurements of the diffuse infrared background and will be used in the Infrared Telescope in Space. PMID:21037777

  8. The Infrared Telescope in Space (IRTS)

    NASA Technical Reports Server (NTRS)

    Murakami, H.; Bock, J.; Freund, M. M.; Guo, H.; Hirao, T.; Lange, A. E.; Matsuhara, H.; Matsumoto, T.; Matsuura, S.; Mcmahon, T. J.

    1994-01-01

    The Infrared Telescope in Space (IRTS) is a cryogenically cooled small infrared telescope that will fly aboard the small space platform Space Flyer Unit. It will survey approximately 10% of the sky with a relatively wide beam during its 20 day emission. Four focal-plane instruments will make simultaneous observations of the sky at wavelengths ranging from 1 to 1000 microns. The IRTS will provide significant information on cosmology, interstellar matter, late-type stars, and interplanetary dust. This paper describes the instrumentation and mission.

  9. Support structures for large infrared telescopes

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1984-01-01

    An infrared telescope requires an accuracy of its reflecting surfaces of less than a micrometer. Future missions may require such accuracy from telescopes that are 20 meters or larger in diameter. The structure for supporting such a telescope will most probably take the form of a deep truss. Various approaches for constructing the primary mirror in space are illustrated. One that employs automated deployment of interconnected reflector-structure modules was described in detail. Estimates were made of the precision obtainable with properly configured truss structures and the required ability of active control systems for achieving the desired accuracy.

  10. The Spatial Infrared Imaging Telescope III.

    NASA Astrophysics Data System (ADS)

    Bartschi, B. Y.; Morse, D. E.; Woolston, T. L.

    1996-06-01

    The Spatial Infrared Imaging Telescope III (SPIRIT III) is a mid- through long-wave infrared instrumentation package built and managed by the Space Dynamics Laboratory at Utah State University for the Midcourse Space Experiment. SPIRIT III contains a radiometer and an auto-aligning interferometer-spectrometer that share a telescope designed for high off-axis rejection. A solid-hydrogen cryostat, the first of its kind to be used in a space/satellite application, cools the entire sensor system to cryogenic operating temperatures. This hardware will measure the spectral, spatial, temporal, and intensity characteristics of Earth-limb backgrounds, celestial objects, and other upper atmospheric phenomena. Collected data will provide answers to fundamental questions about Department of Defense surveillance systems and supply invaluable information for system planners and designers of future threat detection systems.

  11. The Infrared Telescope in Space Mission

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The NASA/Japanese Space Agency Infrared Telescope in Space (IRTS) mission was one of seven experiments on the first Space Flyer Unit (SFU-1). This satellite was launched on a Japanese H-2 expendable launch vehicle from Tanegashima Space Center on March 18, 1995 and was retrieved by the NASA space shuttle the following January for refurbishment and reuse. The IRTS itself consisted of a super-fluid liquid helium-cooled telescope with four infrared focal plane science instruments that operated simultaneously. During its one-month lifetime before the liquid helium was exhausted the IRTS mapped 7% of the sky. These data are now being released to the general astronomical community through IPAC at the California Institute of Technology.

  12. Cryogenic infrared imaging beryllium telescope for Infrared Astronomical Satellite (IRAS)

    NASA Technical Reports Server (NTRS)

    Devereux, W. P.

    1983-01-01

    The IRAS mission is the result of an international project involving the cooperation of the U.S., the United Kingdom, and the Netherlands. The Infrared Astronmical Satellite was placed into orbit on January 25, 1983. Its main function is to provide a survey of the entire sky as viewed in four octaves of infrared radiation in the wavelenth region from 8 to 120 microns. The cylindrical structure of the satellite contains a large dewar vessel with 70 liters of superfluid helium. The helium has the function to maintain the contents of the vessel at 2.5 K for the duration of the mission. The IRAS optics is a Ritchey-Chretien telescope of 24 inches aperture. Because of the operational requirements of the mission, it had been specified that all optical components should be beryllium. Attention is given to the cold performance test conducted with IRAS, plans for future infrared telescopes, and reflectance limits.

  13. Cryogenic system for the interferometric cryogenic gravitationalwave telescope, KAGRA - design, fabrication, and performance test -

    NASA Astrophysics Data System (ADS)

    Tokoku, C.; Kimura, N.; Koike, S.; Kume, T.; Sakakibara, Y.; Suzuki, T.; Yamamoto, K.; Chen, D.; Goto, S.; Tanaka, M.; Ioka, S.; Nakamoto, K.; Nezuka, H.; Uchiyama, T.; Ohashi, M.; Kuroda, K.

    2014-01-01

    KAGRA is the cryogenic interferometric gravitational wave telescope designed for the direct detection of gravitational waves from the astronomical sources. To achieve the best sensitivity, one of the most difficult challenges is cooling the mirrors to 20K to reduce the thermal noise. We developed four cryostats and sixteen very-low-vibration cryocooler units to accomplish our purpose. In this paper, we describe the outline of the cryogenic design and fabrication, and the results of the cryogenic performance test of the cryostats and cryocooler units.

  14. Telescope protection algorithm for the Space Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Class, B. F.; Welch, R. V.; Wiltsee, C.

    1988-01-01

    This paper presents a proposed on-board Telescope Protection Algorithm (TPA) for the Space Infrared Telescope Facility (SIRTF). This TPA consists of hardware and software capable of performing both fail-operational and fail-safe modes of operation. In the fail-operational mode, each ephemeris load and slew/dwell command sequence is checked on-board before use. The slew command monitor detects unallowable slew/dwell commands and transfers control to an algorithm which slews to and maintains a safe telescope orientation while preserving precise attitude determination and control. This fail-operational mode is also given the authority to autonomously restart the slew/dwell sequence at a point beyond the faulty command. The fail-safe system consists of software and hardware which detects impending earth, moon, or sun avoidance zone violations and activates a backup hardware safe hold mode. The subject TPA and relevant sensor complement were designed for the SIRTF mission; however, this system can easily be used as a basis for failure detection and correction in a wide range of other missions.

  15. Catadioptric Afocal Telescopes For Scanning Infrared Systems

    NASA Astrophysics Data System (ADS)

    Norrie, David G.

    1986-02-01

    Reflecting and catadioptric lenses have been used in astronomical telescopes for many years. More recently, among other applications, they have been widely used in large-aperture and man-portable image-intensified night vision equipment. The afocal telescope used with a scanning infrared system operating in the 8 to 12µm wave-band is required to match the large field of view and small aperture of the scanner with the small field of view and large entrance aperture required for long-range observation. The telescope construction used is usually a refracting telephoto. This can be configured either as a single field of view lens, as part of a dual or multiple field of view switchable system, or as the basis for a mechanically or optically compensated zoom system. However, for large, high magnification telescopes, catadioptric systems can offer advantages over refractors. Two types of catadioptric lens are described. The first has a "low" magnification (7.5 x ) and utilizes a full aperture germanium lens to correct spherical aberration. The second has a "high" magnification (30 x ) and uses a subaperture germanium element to correct the same aberration.

  16. Spica: the next generation infrared space telescope

    NASA Astrophysics Data System (ADS)

    Goicoechea, J. R.; Nakagawa, T.

    2011-11-01

    We present an overview of SPICA, the Space Infrared Telescope for Cosmology and Astrophysics, a world-class space observatory optimized for mid- and far-IR astronomy (from 5 to ~210 μm) with a cryogenically cooled ~3.2 m telescope (<6 K). Its high spatial resolution and unprecedented sensitivity in both photometry and spectroscopy modes will enable us to address a number of key problems in astronomy. SPICA's large, cold aperture will provide a two order of magnitude sensitivity advantage over current far-IR facilities (λ > 30μm wavelength). In the present design, SPICA will carry mid-IR camera, spectrometers and coronagraph (by JAXA institutes) and a far-IR imager FTS-spectrometer, SAFARI (~34-210 μm, provided by an European/Canadian consortium lead by SRON). Complementary instruments such as a far-IR/submm spectrometer (proposed by NASA) are also being discussed. SPICA will be the only space observatory of its era to bridge the far-IR wavelength gap between JWST and ALMA, and carry out unique science not achievable at visible or submm wavelengths. In this contribution we summarize some of the scientific advances that will be made possible by the large increase in sensitivity compared to previous infrared space missions.

  17. SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes Artwork. Concepts: Based on 18 Years of Experience of Kuiper Airborne Observatory (KAO) Operation, Characteristics, Operations and Science

  18. Very long baseline interferometric observations made with an orbiting radio telescope

    NASA Technical Reports Server (NTRS)

    Levy, G. S.; Linfield, R. P.; Ulvestad, J. S.; Edwards, C. D.; Jordan, J. F., Jr.; Di Nardo, J.; Christensen, C. S.; Preston, R. A.; Skjerve, L. J.; Blaney, K. B.

    1986-01-01

    An orbiting spacecraft and ground observatories have been used to obtain interferometric observations of cosmic radio sources. The Tracking and Data Relay Satellite System (TDRSS) was used as the orbiting observatory in conjunction with two 64-meter radio telescopes at ground observatories, one in Australia and one in Japan. The quasars 1730-130 (NRAO 530), 1510-089, and 1741-038 were observed at a frequency of 2.3 gigahertz, and a maximum projected baseline of 1.4 earth diameters was achieved. All quasar observations for which valid data were acquired resulted in detected fringes. Many of the techniques proposed for a dedicated very long baseline interferometry observatory in space were used successfully in this experiment.

  19. Control system designs for the shuttle infrared telescope facility

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Parsons, E. K.; Lorell, K. R.

    1979-01-01

    The stringent pointing and stability requirements of the Shuttle Infrared and Telescope Facility (STIRF) are stressed as well as the demands that infrared astronomy and the STIRF in particular place on the design of the pointing system.

  20. Near-infrared interferometric observation of the Herbig Ae star HD 144432 with VLTI/AMBER

    NASA Astrophysics Data System (ADS)

    Chen, L.; Kreplin, A.; Wang, Y.; Weigelt, G.; Hofmann, K.-H.; Kraus, S.; Schertl, D.; Lagarde, S.; Natta, A.; Petrov, R.; Robbe-Dubois, S.; Tatulli, E.

    2012-05-01

    Aims: We study the sub-AU-scale circumstellar environment of the Herbig Ae star HD 144432 with near-infrared VLTI/AMBER observations to investigate the structure of its inner dust disk. Methods: The interferometric observations were carried out with the AMBER instrument in the H and K band. We interpret the measured H- and K-band visibilities, the near- and mid-infrared visibilities from the literature, and the spectral energy distribution (SED) of HD 144432 by using geometric ring models and ring-shaped temperature-gradient disk models with power-law temperature distributions. Results: We derive a K-band ring-fit radius of 0.17 ± 0.01 AU and an H-band radius of 0.18 ± 0.01 AU (for a distance of 145 pc). This measured K-band radius of ~0.17 AU lies in the range between the dust sublimation radius of ~0.13 AU (predicted for a dust sublimation temperature of 1500 K and gray dust) and the prediction of models including backwarming (~0.27 AU). We find that an additional extended halo component is required in both the geometric and temperature-gradient modeling. In the best-fit temperature-gradient model, the disk consists of two components. The inner part of the disk is a thin ring with an inner radius of ~0.21 AU, a temperature of ~1600 K, and a ring thickness ~0.02 AU. The outer part extends from ~1 AU to ~10 AU with an inner temperature of ~400 K. We find that the disk is nearly face-on with an inclination angle of <28°. Conclusions: Our temperature-gradient modeling suggests that the near-infrared excess is dominated by emission from a narrow, bright rim located at the dust sublimation radius, while an extended halo component contributes ~6% to the total flux at 2 μm. The mid-infrared model emission has a two-component structure with ~20% of the flux originating from the inner ring and the rest from the outer parts. This two-component structure is indicative of a disk gap, which is possibly caused by the shadow of a puffed-up inner rim. Based on observations

  1. Infrared detector performance in the Shuttle Infrared Telescope Facility /SIRTF/

    NASA Technical Reports Server (NTRS)

    Mccarthy, S. G.; Autio, G. W.

    1978-01-01

    The limitations imposed on infrared detectors for SIRTF are quite different from those imposed on ground-based, balloon-borne, or aircraft-borne systems. The paper examines the limitations and provides performance predictions corresponding to SIRTF conditions. Detector parameters typical of an infrared camera are used. The detector size is taken to be of the order of the diffraction-limited spot, frequency response is taken to correspond to a fraction of a second or less time constant, and spectral definition is provided by multilayer dielectric filters, inductive or capacitive grids, intrinsic absorption, or a combination of these. A nominal 10-micron bandwidth is assumed. The discussion covers atmospheric absorption and emission, zodiacal dust radiance, Shuttle contaminants, telescope self-emission, charged particle radiation, clear environment detector performance, and trapped radiation effects. It is concluded that the SIRTF design and operating conditions will allow current and near-term state-of-the-art detectors to reach their performance limits with SIRTF at a temperature of 10-12 K.

  2. Space infrared telescope pointing control system. Automated star pattern recognition

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Vanbezooijen, R. W. H.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a free flying spacecraft carrying a 1 meter class cryogenically cooled infrared telescope nearly three oders of magnitude most sensitive than the current generation of infrared telescopes. Three automatic target acquisition methods will be presented that are based on the use of an imaging star tracker. The methods are distinguished by the number of guidestars that are required per target, the amount of computational capability necessary, and the time required for the complete acquisition process. Each method is described in detail.

  3. GIRL: German Infrared Laboratory. Telescope study, phase B

    NASA Technical Reports Server (NTRS)

    Schlegelmilch, R.; Zeiss, C.

    1981-01-01

    The construction and mounting of mirrors for an infrared telescope are described. Tests conducted to determine the thermal and stress characteristics of various types of mounting for main and collection mirrors are also discussed.

  4. Perspective of imaging in the mid-infrared at the Very Large Telescope Interferometer

    NASA Astrophysics Data System (ADS)

    Lopez, B.; Lagarde, S.; Antonelli, P.; Jaffe, W.; Petrov, R.; Venema, L.; Robbe-Dubois, Sylvie; Bettonvil, F.; Berio, P.; Navarro, R.; Graser, U.; Beckman, U.; Weigelt, G.; Vakili, F.; Henning, T.; Gonzales, J.-C.; Wolf, S.; Bailet, C.; Behrend, J.; Bresson, Y.; Chesneau, O.; Clausse, J. M.; Connot, C.; Dugué, M.; Fantei, Y.; Elswijk, E.; Hanenburg, H.; Hofmann, K. H.; Heininger, M.; ter Horst, R.; Hron, J.; Kragt, J.; Tromp, N.; Agocs, T.; Kroes, G.; Laun, W.; Leinert, Ch.; Lehmitz, M.; Matter, A.; Menut, J. L.; Millour, F.; Neumann, U.; Nussbaum, E.; Ottogalli, S.; Pott, J.-U.; Rigal, F.; Roussel, A.; Schertl, D.; Vannier, M.; Wagner, K.; Mellein, M.; Kroener, T.; Mauclert, N.; Girard, P.; Lagarde, G. M.; Mosoni, L.; Jasko, A.; Glindemann, A.; Phan Duc, T.; Finger, G.; Ives, D.; Jakob, G.; Percheron, I.; Avila, G.; Palsa, R.; Pozna, E.; Lizon, J. L.; Lucuix, Ch.; Menardi, S.; Haguenauer, P.; Gitton, P.; Morel, S.; Gonté, F.; Jolley, P.; Rupprecht, G.; Bourget, P.; Delplancke, F.; Mehrgan, L.; Stegmeier, J.; van Belle, G.; Richichi, A.; Moorwood, A.

    2012-07-01

    MATISSE is a mid-infrared spectro-interferometer combining the beams of up to four Unit Telescopes or Auxiliary Telescopes of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory. MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI. New characteristics present in MATISSE will give access to the mapping and the distribution of the material, the gas and essentially the dust, in the circumstellar environments by using the mid-infrared band coverage extended to L, M and N spectral bands. The four beam combination of MATISSE provides an efficient uv-coverage: 6 visibility points are measured in one set and 4 closure phase relations which can provide aperture synthesis images in the mid-infrared spectral regime. We give an overview of the instrument including the expected performances and a view of the Science Case. We present how the instrument would be operated. The project involves the collaborations of several agencies and institutes: the Observatoire de la Côte d’Azur of Nice and the INSU-CNRS in Paris, the Max Planck Institut für Astronomie of Heidelberg; the University of Leiden and the NOVA-ASTRON Institute of Dwingeloo, the Max Planck Institut für Radioastronomie of Bonn, the Institut für Theoretische Physik und Astrophysik of Kiel, the Vienna University and the Konkoly Observatory.

  5. Mirror seeing control of large infrared solar telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying; Li, Xinnan; Meng, Xiaohui; Ni, Houkun

    2010-07-01

    To obtain high resolution infrared image, both low photon efficiency and long wavelength of infrared light requires enough large aperture telescope, but large aperture vacuum windows can hardly achieve high optical quality, so open structure becomes the only viable choice for large infrared solar telescope. In addition to the effects of atmospheric turbulence, open solar telescopes suffer from the heating of the optics by sunlight, especially primary mirror heating. These factors cause the image to shiver and become blurred, and increase infrared observing noise. Since blowing air across the front surface of the primary mirror doesn't have the necessary heat transfer coefficient to remove the absorbed heat load, it must be cooled down to maintained at a temperature between 0K and 2K below ambient air temperature to reduce the effects of turbulence. This paper will introduce some cooling methods and simulation results of primary mirror in large infrared solar telescope. On the other hand, mirror material with nice thermal conductivity can reduce the temperature difference between mirror surface and air, and mirror surface polishing at infrared wavelength can be comparatively easier than at visible wavelength, so it is possible to select low cost metal mirror as primary mirror of infrared solar telescope. To analyze the technical feasibility of metal mirror serving as primary mirror, this paper also give some polishing results of aluminum mirror with electroless nickel coating.

  6. Wavefront measurement of space infrared telescopes at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Kaneda, Hidehiro; Onaka, Takashi; Nakagawa, Takao; Enya, Keigo; Murakami, Hiroshi; Yamashiro, Ryoji; Ezaki, Tatsuhiko; Numao, Yasuyuki; Sugiyama, Yoshikazu

    2005-10-01

    In this paper, we describe our recent activities on wave-front measurement of space infrared telescopes. Optical performance of the 685-mm lightweight telescope on board the Japanese infrared astronomical satellite, ASTRO-F, has been evaluated at cryogenic temperatures. The mirrors of the ASTRO-F telescope are made of sandwich-type silicon carbide (SiC) material, comprising porous core and CVD coat of SiC on the surface. The total wavefront errors of the telescope were measured with an interferometer from outside a liquid-helium chamber; a 75-cm reflecting flat mirror was used for auto-collimating the light from the interferometer. The cryogenic deformation of the flat mirror was derived independently by shifting it in the chamber and its contribution to the wavefront error was removed. In addition to the ASTRO-F telescope, we are currently developing a 3.5-m telescope system for SPICA, the next Japanese infrared astronomical satellite project. Details of our methodology for the ASTRO-F telescope, together with our optical test plan for the SPICA telescope, are reported.

  7. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  8. MegaMIR: The Megapixel Mid-Infrared Instrument for the Large Binocular Telescope Interferometer

    NASA Technical Reports Server (NTRS)

    Mainzer, Amanda K.; Young, Erick; Hong, John; Werner, Mike; Hinz, Phil; Gorjan, Varoujan; Ressler, Michael E.

    2006-01-01

    The Megapixel Mid-infrared Instrument (MegaMIR) is a proposed Fizeau-mode camera for the Large Binocular Telescope operating at wavelengths between 5 and 28 micrometers. The camera will be used in conjunction with the Large Binocular Telescope Interferometer (LBTI), a cryogenic optical system that combines the beams from twin 8.4-m telescopes in a phase coherent manner. Unlike other interferometric systems, the co-mounted telescopes on the LBT satisfy the sine condition, providing diffraction-limited resolution over the 40" field of view of the camera. With a 22.8-m baseline, MegaMIR will yield 0.1" angular resolution, making it the highest resolution wide field imager in the thermal infrared for at least the next decade. MegaMIR will utilize a newly developed 1024 x 1024 pixel Si:As detector array that has been optimized for use at high backgrounds. This new detector is a derivative of the Wide-field Infrared Survey Explorer (WISE) low-background detector. The combination of high angular resolution and wide field imaging will be a unique scientific capability for astronomy. Key benefits will be realized in planetary science, galactic, and extra-galactic astronomy. High angular resolution is essential to disentangle highly complex sources, particularly in star formation regions and external galaxies, and MegaMIR provides this performance over a full field of view. Because of the great impact being made by space observatories like the Spitzer Space Telescope, the number of available targets for study has greatly increased in recent years, and MegaMIR will allow efficient follow up science.

  9. Mexican infrared optical new technology telescope (TIM) project

    NASA Astrophysics Data System (ADS)

    Salas, Luis; Ruiz, Elfego; Cruz-Gonzales, Irene; Luna, Esteban; Cuevas, Salvador; Pedrayes, Maria H.; Sierra, Gerardo; Sohn, Erika; Koenigsberger, G.; Valdez, Jorge; Harris, Oswaldo N.; Cobos Duenas, Francisco J.; Tejada, Carlos; Gutierrez, L.; Iriarte, Arturo

    1998-08-01

    We present the Mexican Infrared-Optical New Technology Telescope Project (TIM). The design and construction of a 7.8 m telescope, which will operate at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), are described. The site has been selected based on seeing and sky condition measurements taken for several years. The f/1.5 primary mirror consists of 19 hexagonal off-axis parabolic Zerodur segments. The telescope structure will be alt-az, lightweight, low cost, and high stiffness. It will be supported by hydrostatic bearings. The single secondary will complement a Ritchey-Chretien f/15 design, delivering to Cassegrain focus instrumentation. The telescope will be infrared optimized to allow observations ranging from 0.3 to 20 microns. The TIM mirror cell provides an independent and full active support system for each segment, in order to achieve both, phasing capability and very high quality imaging (0.25 arcsec).

  10. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline provides subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  11. Performance of HST as an infrared telescope

    NASA Astrophysics Data System (ADS)

    Robberto, Massimo; Sivaramakrishnan, Anand; Bacinski, John J.; Calzetti, Daniela; Krist, John E.; MacKenty, John W.; Piquero, J.; Stiavelli, Massimo

    2000-07-01

    On the basis of the measured NICMOS performance in HST-Cycle 7 and Cycle 7N programs, we analyze the behavior of the HST optical assembly at IR wavelengths. An accurate analysis of the telescope thermal status allows us to estimate the background flux observed by NICMOS, and compare it with the flux actually measured in different filters. The very close match between expected and measured fluxes confirms the validity of our model. A good understanding of the HST emissivity, which turns out to be lower than previous estimates, allows to predict with higher accuracy the performance of the future IR instruments on HST like NICMOS+cooling system and to specify critical design parameters for WFC3. Also, issues related to the long term stability of the system can be addressed more properly, providing useful quantitative insight on future missions such as the Next Generation Space Telescope.

  12. The NASA Infrared Telescope Facility: A Dedicated Telescope for Planetary Astronomy

    NASA Astrophysics Data System (ADS)

    Tokunaga, A. T.; Bus, S. J.; Connelley, M. S.; Rayner, J. T.

    2011-10-01

    The NASA Infrared Telescope Facility (IRTF) is a dedicated 3.0-m infrared telescope for planetary science. It is located at the summit of Mauna Kea on the island of Hawaii. Important capabilities of the IRTF include: (1) Remote observing from any location, including Europe; (2) Instrument changes during the night can be accommodated; (3) Observing periods as short as one hour can be scheduled; (4) Daytime observing is supported; and (5) Unique instrumentation for planetary science are available. Providing groundbased support of planetary missions is the main objective of this facility.

  13. Design of infrared diffractive telescope imaging optical systems

    NASA Astrophysics Data System (ADS)

    Zhang, ZhouFeng; Hu, BingLiang; Yin, QinYe; Xie, YongJun; Kang, FuZeng; Wang, YanJun

    2015-10-01

    Diffractive telescope is an updated imaging technology, it differs from conventional refractive and reflective imaging system, which is based on the principle of diffraction image. It has great potential for developing the larger aperture and lightweight telescope. However, one of the great challenges of design this optical system is that the diffractive optical element focuses on different wavelengths of light at different point in space, thereby distorting the color characteristics of image. In this paper, we designs a long-wavelength infrared diffractive telescope imaging system with flat surface Fresnel lens and cancels the infrared optical system chromatic aberration by another flat surface Fresnel lens, achieving broadband light(from 8μm-12μm) to a common focus with 4.6° field of view. At last, the diffuse spot size and MTF function provide diffractive-limited performance.

  14. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  15. BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2011-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII),8oeight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks io young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  16. Progress on the cryogenic system for the KAGRA cryogenic interferometric gravitational wave telescope

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yusuke; Akutsu, Tomotada; Chen, Dan; Khalaidovski, Aleksandr; Kimura, Nobuhiro; Koike, Shigeaki; Kume, Tatsuya; Kuroda, Kazuaki; Suzuki, Toshikazu; Tokoku, Chihiro; Yamamoto, Kazuhiro

    2014-11-01

    KAGRA is a project to construct a cryogenic interferometric gravitational wave detector in Japan. Its mirrors and the lower parts of the suspension systems will be cooled to 20 K in order to reduce thermal noise, one of the fundamental noise sources. One of the key features of KAGRA's cooling system is that it will keep the mirrors cooled without introducing vibration. This paper describes the current status of the design, manufacture and testing of the KAGRA cooling system.

  17. Active control of a 30 m ring interferometric telescope primary mirror.

    PubMed

    Dai, Yichun; Liu, Zhong; Jin, Zhenyu; Xu, Jun; Lin, Jing

    2009-02-01

    The active control of a primary mirror for a ring aperture segmented telescope is different from that of a full aperture segmented telescope. Two active maintenance proposals for the ring telescope designed from the segmented patterns are outlined. We present a preliminary calculation of noise propagation and analysis of primary mirror mode characteristics for each proposal. The modulation transfer functions (MTFs) of the primary mirror corresponding to each maintenance method at several typical working wavelengths are also simulated. PMID:19183591

  18. The EXIST Infra-Red Telescope System: Design and Performance

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.

    2010-01-01

    The Infra-Red Telescope is a critical element of the EXIST (Energetic X-Ray Imaging Survey Telescope) observatory. It is a passively cooled 1.lm visible/infrared telescope. The primary goal of the IRT is to obtain photometric and spectroscopic measurements of high redshift (>6) gamma ray burst afterglows to study the nature of these enigmatic events and their environments, and to use them as probes of the composition and ionization state of the intergalactic medium of the young universe. The IRT will provide a prompt follow up (within three minutes) of the transient discovered by the EXIST with exceptional NIR sensitivity (AB=24 in 100s) surpassing HST in the infrared due to its passively cooled (- 30 C) mirror. Its optical design and spectral coverage is tailored to the high redshift transient events that require prompt pointing, identification, accurate photometry and both low and high resolution spectroscopy. Here we describe the telescope, its instrument complement, and the cooling systems which provide its remarkable sensitivity

  19. NIFTE: The Near Infrared Faint-Object Telescope Experiment

    NASA Technical Reports Server (NTRS)

    Bock, James J.; Lange, Andrew E.; Matsumoto, T.; Eisenhardt, Peter B.; Hacking, Perry B.; Schember, Helene R.

    1994-01-01

    The high sensitivity of large format InSb arrays can be used to obtain deep images of the sky at 3-5 micrometers. In this spectral range cool or highly redshifted objects (e.g. brown dwarfs and protogalaxies) which are not visible at shorter wavelengths may be observed. Sensitivity at these wavelengths in ground-based observations is severly limited by the thermal flux from the telescope and from the earth's atmosphere. The Near Infrared Faint-Object Telescope Experiment (NIFTE), a 50 cm cooled rocket-borne telescope combined with large format, high performance InSb arrays, can reach a limiting flux less than 1 micro-Jy(1-sigma) over a large field-of-view in a single flight. In comparison, the Infrared Space Observatory (ISO) will require days of observation to reach a sensitivity more than one order of magnitude worse over a similar area of the sky. The deep 3-5 micrometer images obtained by the rocket-borne telescope will assist in determining the nature of faint red objects detected by ground-based telescopes at 2 micrometers, and by ISO at wavelengths longer than 5 micrometers.

  20. Viewing the Universe with Infrared Eyes: The Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.; Spitzer Science Center

    2016-01-01

    The Spitzer Space Telescope, launched on 2003 August 25, continues to produce new and exciting views of the Universe as seen in infrared light. Spitzer is the fourth and final space telescope in NASA's Great Observatory series. Originally it consisted of a liquid-helium-cooled 85-cm telescope and three imaging and spectroscopic instruments capable of observing infrared light (3-160 micron wavelength) from regions of space invisible to optical telescopes. In mid-2009 Spitzer's cryogen was exhausted, leaving the observatory with two operating imaging arrays at 3.6 and 4.5 micron wavelength. "Warm" Spitzer, as it is now called, continues to match the sensitivity achieved at these wavelengths during the cryogenic mission and remains very much in demand. The Spitzer Space Telescope has changed our view of the Universe. Spitzer's scientific results include the study of the formation and evolution of galaxies in the early Universe, star formation and evolution, exoplanets, the structure and evolution of planetary disks around nearby stars, the cosmic distance scale, clusters of galaxies, near-Earth asteroids, and comets. After a brief description of the Spitzer mission, achievements of Spitzer's extragalactic and galactic observational programs will be presented, including many of Spitzer's very spectacular images.

  1. Infrared Photometry for Automated Telescopes: Passband Selection

    NASA Astrophysics Data System (ADS)

    Milone, Gene; Young, Andrew T.

    2011-03-01

    The high precision that photometry in the near and intermediate infrared region can provide has not been achieved, partly because of technical challenges (including cryogenics, which most IR detectors require), and partly because the filters in common use are not optimized to avoid water-vapor absorptions, which are the principal impediment to precise ground-based IR photometry. We review the IRWG filters that achieve this goal, and the trials that were undertaken to demonstrate their superiority. We focus especially on the near IR set and, for high elevation sites, the passbands in the N window. We also discuss the price to be paid for the improved precision, in the form of lower throughput, and why it should be paid: to achieve not only higher precision (i.e., improved signal-to-noise ratio), but also lower extinction, thus producing higher accuracy in extra-atmospheric magnitudes. The edges of the IRWG passbands are not defined by the edges of the atmospheric windows: therefore, they admit no flux from these (constantly varying) edges. The throughput cost and the lack of a large body of data already obtained in these passbands are principal reasons why the IRWG filters are not in wide use at observatories around the world that currently do IR work. Yet a measure of the signal-to-noise ratio varies inversely with both extinction and with a measure of the Forbes effect. So, the small loss of raw throughput is recouped in signal-to-noise gain. We illustrate these points with passbands of both near and intermediate IR passbands. There is also the matter of cost for small production runs of these filters; reduced costs can be realized through bulk orders with uniform filter specifications. As a consequence, the near-IR IRWG passbands offer the prospect of being able to do photometry in those passbands at both high and low elevation sites that are capable of supporting precise photometry, thereby freeing infrared photometry from the need to access exclusively high and

  2. The next-generation infrared space telescope SPICA

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takao; Matsuhara, Hideo; Kawakatsu, Yasuhiro

    2012-09-01

    We present the overview and the current status of SPICA (Space Infrared Telescope for Cosmology and Astrophysics), which is a mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3.2 m telescope. SPICA has high spatial resolution and unprecedented sensitivity in the mid- and far-infrared, which will enable us to address a number of key problems in present-day astronomy, ranging from the star-formation history of the universe to the formation of planets. To reduce the mass of the whole mission, SPICA will be launched at ambient temperature and cooled down on orbit by mechanical coolers on board with an efficient radiative cooling system, a combination of which allows us to have a 3-m class cooled (6 K) telescope in space with moderate total weight (3.7t). SPICA is proposed as a Japanese-led mission together with extensive international collaboration. ESA's contribution to SPICA has been studied under the framework of the ESA Cosmic Vision. The consortium led by SRON is in charge of a key focal plane instrument SAFARI (SPICA Far-Infrared Instrument). Korea and Taiwan are also important partners for SPICA. US participation to SPICA is under discussion. The SPICA project is now in the "risk mitigation phase". The target launch year of SPICA is 2022.

  3. Designing the Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2011-01-01

    While infrared astronomy has revolutionized our understanding of galaxies, stars, and planets, further progress on major questions is stymied by the inescapable fact that the spatial resolution of single-aperture telescopes degrades at long wavelengths. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter boom interferometer to operate in the FIR (30-90 micron) on a high altitude balloon. The long baseline will provide unprecedented angular resolution (approx. 5") in this band. In order for BETTII to be successful, the gondola must be designed carefully to provide a high level of stability with optics designed to send a collimated beam into the cryogenic instrument. We present results from the first 5 months of design effort for BETTII. Over this short period of time, we have made significant progress and are on track to complete the design of BETTII during this year.

  4. Infrared Observations from the New Solar Telescope at Big Bear

    NASA Astrophysics Data System (ADS)

    Goode, Philip R.; Cao, Wenda

    2013-10-01

    The 1.6 m clear aperture solar telescope in Big Bear is operational and with its adaptive optics (AO) system it provides diffraction limited solar imaging and polarimetry in the near-infrared (NIR). While the AO system is being upgraded to provide diffraction limited imaging at bluer wavelengths, the instrumentation and observations are concentrated in the NIR. The New Solar Telescope (NST) operates in campaigns, making it the ideal ground-based telescope to provide complementary/supplementary data to SDO and Hinode. The NST makes photometric observations in Hα (656.3 nm) and TiO (705.6 nm) among other lines. As well, the NST collects vector magnetograms in the 1565 nm lines and is beginning such observations in 1083.0 nm. Here we discuss the relevant NST instruments, including AO, and present some results that are germane to NASA solar missions.

  5. Thermal performance evaluation of the infrared telescope dewar subsystem

    NASA Technical Reports Server (NTRS)

    Urban, E. W.

    1986-01-01

    Thermal performance evaluations (TPE) were conducted with the superfluid helium dewar of the Infrared Telescope (IRT) experiment from November 1981 to August 1982. Test included measuring key operating parameters, simulating operations with an attached instrument cryostat and validating servicing, operating and safety procedures. Test activities and results are summarized. All objectives are satisfied except for those involving transfer of low pressure liquid helium (LHe) from a supply dewar into the dewar subsystem.

  6. The Mexican Infrared-Optical New Technology Telescope: TIM Project

    NASA Astrophysics Data System (ADS)

    Cruz-Gonzalez, I.; Salas, L.; Ruiz, E.; Luna, E.; Pedrayes, M.; Sohn, E.; Si Erra, G.; Sanchez, B.; Valdez, J.; Gutierrez, L.; Hiriart, D.; Iriarte, A.

    2001-07-01

    We present the Mexican Infrared-Optical New Technology Telescope Project (TIM). The design and construction of a 7.8 m telescope, which will operate at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), are described. The site has been selected based on seeing and sky condition measurements taken for several years. The f/1.5 primary mirror consists of 19 hexagonal off-axis hyperbolic segments of 1.8 m in diameter. The telescope structure will be alt-az, lightweight, low cost, and high stiffness. It will be supported by hydrostatic bearings. The single secondary will complement a Ritchey-Chretien f/15 design, delivering to Cassegrain focus instrumentation. The telescope will be infrared optimized to allow observations ranging from 0.3 to 20 microns. The TIM mirror cell provides an independent and full active support system for each segment, in order to achieve both, phasing capability and very high quality imaging (0.25 arcsec). The TIM project is one of the most advanced technological UNAM projects. The participation of technical and scientific professionals of other national institutions is crucial for its success. The project is seeking partners and financing.

  7. Prototype Secondary Mirror Assembly For The Space Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Stier, M.; Duffy, M.; Gullapalli, S.; Rockwell, R.; Sileo, F.; Krim, M.

    1988-04-01

    We describe our concept for a liquid helium temperature prototype secondary mirror assembly (PSMA) for the Space Infrared Telescope Facility. SIRTF, a NASA "Great Observatory" to be launched in the 1990's, is a superfluid heliumcooled 1-meter class telescope with much more stringent performance requirements than its precursor the Infrared Astronomical Satellite (IRAS). The SIRTF secondary mirror assembly must operate near 4 K and provide the functions of 2-axis dynamic tilting ("chopping") in addition to the conventional functions of focus and centering. The PSMA must be able to withstand random vibration testing and provide all of the functions needed by the SIRTF observatory. Our PSMA concept employs a fused quartz mirror kinematically attached at its center to an aluminum cruciform. The mirror/cruciform assembly is driven in tilt about its combined center of mass using a unique flexure pivot and a four-actuator control system with feed-back provided by pairs of eddy current position sensors. The actuators are mounted on a second flexure-pivoted mass providing angular momentum compensation and isolating the telescope from vibration-induced disturbances. The mirror/cruciform and the reaction mass are attached to opposite sides of an aluminum mounting plate whose AL/L characteristics are nominally identical to that of the aluminum flexure pivot material. The mounting plate is connected to the outer housing by a focus and centering mechanism based upon the six degree of freedom secondary mirror assembly developed for the Hubble Space Telescope.

  8. LINC-NIRVANA for the large binocular telescope: setting up the world's largest near infrared binoculars for astronomy

    NASA Astrophysics Data System (ADS)

    Hofferbert, Ralph; Baumeister, Harald; Bertram, Thomas; Berwein, Jürgen; Bizenberger, Peter; Böhm, Armin; Böhm, Michael; Borelli, José Luis; Brangier, Matthieu; Briegel, Florian; Conrad, Albert; De Bonis, Fulvio; Follert, Roman; Herbst, Tom; Huber, Armin; Kittmann, Frank; Kürster, Martin; Laun, Werner; Mall, Ulrich; Meschke, Daniel; Mohr, Lars; Naranjo, Vianak; Pavlov, Aleksei; Pott, Jörg-Uwe; Rix, Hans-Walter; Rohloff, Ralf-Rainer; Schinnerer, Eva; Storz, Clemens; Trowitzsch, Jan; Yan, Zhaojun; Zhang, Xianyu; Eckart, Andreas; Horrobin, Matthew; Rost, Steffen; Straubmeier, Christian; Wank, Imke; Zuther, Jens; Beckmann, Udo; Connot, Claus; Heininger, Matthias; Hofmann, Karl-Heinz; Kröner, Tim; Nussbaum, Eddy; Schertl, Dieter; Weigelt, Gerd; Bergomi, Maria; Brunelli, Alessandro; Dima, Marco; Farinato, Jacopo; Magrin, Demetrio; Marafatto, Luca; Ragazzoni, Roberto; Viotto, Valentina; Arcidiacono, Carmelo; Bregoli, Giovanni; Ciliegi, Paolo; Cosentino, Guiseppe; Diolaiti, Emiliano; Foppiani, Italo; Lombini, Matteo; Schreiber, Laura; D'Alessio, Francesco; Li Causi, Gianluca; Lorenzetti, Dario; Vitali, Fabrizio; Bertero, Mario; Boccacci, Patrizia; La Camera, Andrea

    2013-08-01

    LINC-NIRVANA (LN) is the near-infrared, Fizeau-type imaging interferometer for the large binocular telescope (LBT) on Mt. Graham, Arizona (elevation of 3267 m). The instrument is currently being built by a consortium of German and Italian institutes under the leadership of the Max Planck Institute for Astronomy in Heidelberg, Germany. It will combine the radiation from both 8.4 m primary mirrors of LBT in such a way that the sensitivity of a 11.9 m telescope and the spatial resolution of a 22.8 m telescope will be obtained within a 10.5×10.5 arcsec scientific field of view. Interferometric fringes of the combined beams are tracked in an oval field with diameters of 1 and 1.5 arcmin. In addition, both incoming beams are individually corrected by LN's multiconjugate adaptive optics system to reduce atmospheric image distortion over a circular field of up to 6 arcmin in diameter. A comprehensive technical overview of the instrument is presented, comprising the detailed design of LN's four major systems for interferometric imaging and fringe tracking, both in the near infrared range of 1 to 2.4 μm, as well as atmospheric turbulence correction at two altitudes, both in the visible range of 0.6 to 0.9 μm. The resulting performance capabilities and a short outlook of some of the major science goals will be presented. In addition, the roadmap for the related assembly, integration, and verification process are discussed. To avoid late interface-related risks, strategies for early hardware as well as software interactions with the telescope have been elaborated. The goal is to ship LN to the LBT in 2014.

  9. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  10. A near-infrared spectrograph for the Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Roe, H. G.; Dunham, E. W.; Bida, T. A.; Hall, J. C.; Degroff, W.

    2011-10-01

    Lowell Observatory is constructing the Discovery Channel Telescope (DCT) at Happy Jack, Arizona, approximately an hour from Lowell's main campus in Flagstaff, Arizona. The DCT is a 4.3-m optical/ infrared telescope. Construction of the telescope is complete and First Light of the DCT is planned for 2012Q2. In its initial configuration instruments will be co-mounted on a rotatable/selectable cube at the Cassegrain focus. Motorized deployable fold mirrors enable rapid switching amongst instruments. In the future the Nasmyth foci will be available for larger instruments as well. The first generation of instruments on DCT include: the Large Monolithic Imager (LMI), the Near-Infrared High-Throughput Spectrograph (NIHTS, pronounced "nights"), and the DeVeny optical spectrograph. The LMI contains a single large 6.1x6.1 K detector with a 12.5 arcmin2 FOV. NIHTS is a low resolution efficient near-infrared spectrograph and is the subject of this presentation. The DeVeny is Lowell's existing optical spectrograph with resolutions available between 500 and 4000. NIHTS is a low-resolution high-throughput infrared spectrograph covering 0.9-2.4 μm in a single fixed spectral setting at a resolution of »100. For simplicity and replicability NIHTS contains no moving parts. The science detector is a 10242 HAWAII-1 array. The fixed slit plate features an 80" long slit with several different slit widths (2,3,4 and 12 pixels) available along its length. The widest slit width is designed to allow accurate flux calibration, while the 3 and 4-pixel slits are closely matched to typical seeing at the DCT site (0.86" mean). Different resolutions will be rapidly selectable by dithering the telescope, and a typical observation is anticipated to involve a sequence of dithers both at the desired resolution and at SED resolution for calibration purposes. Offset guiding and wavefront sensing to control the active optics of the primary mirror are provided by the facility via deployable probes in

  11. Thermal modeling of the Shuttle Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Gier, H. L.; Taylor, W. D.

    1983-01-01

    The Shuttle Infrared Telescope Facility (SIRTF) is a cryogenically cooled telescope in the one-meter aperture class designed for sensing in the infrared from 2-200 microns. This facility is currently planned for multiple missions onboard the Space Shuttle with varying instrument complements. All components of the SIRTF within the field of view of the optics are cryogenically cooled. The baseline primary coolant is supercritical helium which is stored in an external tank and routed through the telescope-cooling the instruments, the optical components and the baffles. For detector cooling below 6 K, small reservoirs of superfluid helium (HeII) are provided. The SIRTF was thermally modeled on the SINDA computer program both for steady state and transient solutions. The analysis shows that the baseline configuration has a large capacity for growth in cryogen requirements. A proportional controller model was developed for transient operations. The control system maintained the optics within all prescribed temperature limits except for certain combinations of transients involving a large step change in the power dissipation in the secondary mirror assembly and/or when the primary mirror was assumed to be constructed of quartz. The baseline SIRTF will perform the mission for which it was designed.

  12. NASA Infrared Telescope Facility- The Next 5 Years

    NASA Astrophysics Data System (ADS)

    Tokunaga, A. T.; Bus, S. J.; Tollestrup, E. V.; Rayner, J. T.

    2005-08-01

    The NASA Infrared Telescope Facility (IRTF) is a 3-meter optical/IR telescope dedicated to NASA-related programs of mission support and basic solar system research. All of the funding for IRTF operations comes from the Planetary Astronomy Program. We are preparing the Cooperative Agreement with NASA for the next 5 years (Feb. 2006 -- Jan. 2011). We will strive to refurbish the telescope in order to provide mission support and to allow the IRTF to provide fundamental data for future missions to Mars, comets, satellites, Near-Earth Objects, and asteroids. A major component of our activities will be to improve the image quality of the telescope and to provide high dynamic imaging on the IRTF. Details of our plans can be obtained at: http://irtfweb.ifa.hawaii.edu/Documents/pdf/1_plan_mar04C.pdf We acknowledge the support of NASA Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Planetary Astronomy Program.

  13. Infrared Doppler instrument for the Subaru Telescope (IRD)

    NASA Astrophysics Data System (ADS)

    Tamura, M.; Suto, H.; Nishikawa, J.; Kotani, T.; Sato, B.; Aoki, W.; Usuda, T.; Kurokawa, T.; Kashiwagi, K.; Nishiyama, S.; Ikeda, Y.; Hall, D.; Hodapp, K.; Hashimoto, J.; Morino, J.; Inoue, S.; Mizuno, Y.; Washizaki, Y.; Tanaka, Y.; Suzuki, S.; Kwon, J.; Suenaga, T.; Oh, D.; Narita, N.; Kokubo, E.; Hayano, Y.; Izumiura, H.; Kambe, E.; Kudo, T.; Kusakabe, N.; Ikoma, M.; Hori, Ya.; Omiya, M.; Genda, H.; Fukui, A.; Fujii, Y.; Guyon, O.; Harakawa, H.; Hayashi, M.; Hidai, M.; Hirano, T.; Kuzuhara, M.; Machida, M.; Matsuo, T.; Nagata, T.; Ohnuki, H.; Ogihara, M.; Oshino, S.; Suzuki, R.; Takami, H.; Takato, N.; Takahashi, Y.; Tachinami, C.; Terada, H.

    2012-09-01

    IRD is the near-infrared high-precision radial velocity instrument for the Subaru 8.2-m telescope. It is a relatively compact (~1m size) spectrometer with a new echelle-grating and Volume-Phase Holographic gratings covering 1-2 micron wavelengths combined with an original frequency comb using optical pulse synthesizer. The spectrometer will employ a 4096x4096-pixel HgCdTe array under testing at IfA, University of Hawaii. Both the telescope/Adaptive Optics and comb beams are fed to the spectrometer via optical fibers, while the instrument is placed at the Nasmyth platform of the Subaru telescope. Expected accuracy of the Doppler-shifted velocity measurements is about 1 m s-1. Helped with the large collecting area and high image quality of the Subaru telescope, IRD can conduct systematic radial velocity surveys of nearby middle-to-late M stars aiming for down to one Earth-mass planet. Systematic observational and theoretical studies of M stars and their planets for the IRD science are also ongoing. We will report the design and preliminary development progresses of the whole and each component of IRD.

  14. Sensitive observations with the Spacelab 2 infrared telescope

    NASA Astrophysics Data System (ADS)

    Young, E. T.; Rieke, G. H.; Gautier, T. N.; Hoffmann, W. F.; Low, F. J.; Poteet, W.; Fazio, G. G.; Koch, D.; Traub, W. A.; Urban, E. W.

    The small helium-cooled infrared telescope (Spacelab IRT) is a multiband instrument capable of highly sensitive observations from space. The experiment consists of a cryogenically cooled, very well baffled telescope with a ten channel focal plane array. During the Spacelab 2 flight of the Space Shuttle, this instrument will make observations between 5 and 120 micron wavelength that will be background limited by the expected zodiacal emission. Design considerations necessitated by this level of performance are discussed in this paper. In particular, the operation of a very sensitive focal plane array in the space environment is described. The Spacelab IRT will be used to map the extended, low-surface brightness celestial emission. During the seven day length of the mission better than 70 percent sky coverage is expected. The instrument will also be used to measure the infrared contamination environment of the Space Shuttle. This information will be important in the development of the next generation of infrared astronomical instruments. The performance of the Spacelab IRT, in particular its sensitivity to the contamination environment is detailed.

  15. MIRIS: A Compact Wide-field Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Han, Wonyong; Lee, Dae-Hee; Jeong, Woong-Seob; Park, Youngsik; Moon, Bongkon; Park, Sung-Joon; Pyo, Jeonghyun; Kim, Il-Joong; Park, Won-Kee; Lee, Dukhang; Seon, Kwang-Il; Nam, Uk-Won; Cha, Sang-Mok; Park, Kwijong; Park, Jang-Hyun; Yuk, In-Soo; Ree, Chang Hee; Jin, Ho; Choel Yang, Sun; Park, Hong-Young; Shin, Goo-Hwan; Seo, Joung-Ki; Rhee, Seung-Wu; Park, Jong-Oh; Lee, Hyung Mok; Murakami, Hiroshi; Matsumoto, Toshio

    2014-09-01

    A compact infrared space telescope called MIRIS (Multi-purpose Infra-Red Imaging System) was developed by the Korea Astronomy and Space Science Institute (KASI), and launched onboard the Science and Technology Satellite-3 of Korea (STSAT-3) in 2013 November. The main mission of MIRIS is the Paschen-α emission line survey along the Galactic plane and the cosmic infrared background (CIB) observation, particularly around the north ecliptic pole region. For these missions, a wide field of view (3.67 × 3.67°) with an angular resolution of 51.6'' and wavelength coverage from 0.9 ~ 2.0 μm have been adopted for MIRIS, having optical components consisting of a 80 mm main lens and four other lenses with F/2 focal ratio optics. The opto-mechanical system was carefully designed to minimize any effects from shock during the launch process and thermal variation. Also, the telescope was designed to use a passive cooling technique to maintain the temperature around 200 K in order to reduce thermal noise. A micro Stirling cooler was used to cool down the Teledyne PICNIC infrared array to 90 K, which was equipped in a dewar with four filters for infrared passbands of I, H, and Paschen-α and a dual-band continuum line filter. MIRIS system was integrated into the STSAT-3 as its primary payload and successfully passed required tests in the laboratory, such as thermal-vacuum, vibration, and shock tests. MIRIS is now operating in sun synchronous orbits for initial tests and has observed its first images successfully.

  16. Hubble Space Telescope Fine Guidance Sensor Interferometric Parallaxes; How, Why, and What

    NASA Astrophysics Data System (ADS)

    Benedict, George Frederick; McArthur, Barbara E.

    2015-08-01

    Over the past sixteen years the Fine Guidance Sensors on Hubble Space Telescope have produced astrometric measures with which to derive over 60 high-precision absolute parallaxes. Targets included the usual suspects (Cepheids and RR Lyr stars) as well as planetary nebulae central stars, dwarf novae, members of the Pleiades and Hyades clusters, M dwarf binaries, and exoplanet host stars. We briefly outline our techniques and summarize our results with four graphs: a Cepheid Leavitt Law, an RR Lyr K-band Period-Luminosity relation, an M dwarf Mass-Luminosity relation, and an MK vs (J-K)0 HR diagram constructed entirely with Hubble Space Telescope parallaxes. The median parallax error for 64 objects was 0.2 milliseconds of arc, or 2.6%.The future of Hubble Space Telescope astrometry likely lies with WFC spatial scanning. The far future of space astrometry lies with Gaia.FGS astrometry succeeded thanks to contributions over the years from L. Abramowicz-Reed, A. Bradley, R. Duncombe, O. Franz, L. Fredrick, P. Hemenway, T. Harrison, T. Henry, W. Jefferys, E. Nelan, P. Shelus, D. Story, W. van Altena, L. Wasserman, and A. Whipple.

  17. Precision Attitude Determination for an Infrared Space Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2008-01-01

    We have developed performance simulations for a precision attitude determination system using a focal plane star tracker on an infrared space telescope. The telescope is being designed for the Destiny mission to measure cosmologically distant supernovae as one of the candidate implementations for the Joint Dark Energy Mission. Repeat observations of the supernovae require attitude control at the level of 0.010 arcseconds (0.05 microradians) during integrations and at repeat intervals up to and over a year. While absolute accuracy is not required, the repoint precision is challenging. We have simulated the performance of a focal plane star tracker in a multidimensional parameter space, including pixel size, read noise, and readout rate. Systematic errors such as proper motion, velocity aberration, and parallax can be measured and compensated out. Our prediction is that a relative attitude determination accuracy of 0.001 to 0.002 arcseconds (0.005 to 0.010 microradians) will be achievable.

  18. Long-range Plans for the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Tokunaga, A. T.; Bus, S. J.; Rayner, J.; Tollestrup, E. V.

    2004-11-01

    The NASA Infrared Telescope Facility (IRTF) is a 3-meter optical/IR telescope dedicated to NASA-related programs of mission support and basic solar system research. All of the funding for IRTF operations comes from the Planetary Astronomy Program. The IRTF is unique in providing NASA with a dedicated telescope for mission support. Its aperture is sufficient for many kinds of solar system observations. While large telescopes like the Keck allow astronomers to push the limits of sensitivity, the IRTF provides the ability to carry out complementary studies on brighter objects. In addition, the IRTF provides the planetary community with access to one of the world's best observing sites, the summit of Mauna Kea. The user base of the telescope has been expanding in recent years due to new instrumentation, visible imaging capability, and remote observing. The IRTF also provides opportunities for instrument development and training of students and post-docs, thus helping ensure a solid foundation for the next generation of planetary scientists. A long-range plan is being developed that will position the IRTF to be a powerful facility for mission support well beyond the Cassini mission. A refurbished IRTF would have: (1) Optimized instruments for planetary science that provide high-spectral resolution, wide wavelength coverage, and diffraction-limited imaging capabilities. (2) An adaptive optics system that produces extremely high Strehl ratio images, and includes an extended object wave-front sensor. (3) Focused programs on mission support, NEOs, asteroids, and comets. (4) Remote observing. (5) Rapid response to needs of the planetary community. (6) Flexible scheduling. (7) Daytime observing close to the Sun. We acknowledge the support of NASA Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Planetary Astronomy Program.

  19. Contamination control of the SABER cryogenic infrared telescope

    NASA Astrophysics Data System (ADS)

    Dyer, James S.; Brown, Steven; Esplin, Roy W.; Hansen, Galen; Jensen, Scott M.; Stauder, John L.; Zollinger, Lorin

    2002-09-01

    The SABER instrument (Sounding of the Atmosphere using Broadband Emission Spectroscopy) is a cryogenic infrared sensor on the TIMED spacecraft with stringent molecular and particulate contamination control requirements. The sensor measures infrared emissions from atmospheric constituents in the earth limb at altitudes ranging from 60 to 180 km using radiatively-cooled 240 K optics and a mechanically-refrigerated 75 K detector. The stray light performance requirements necessitate nearly pristine foreoptics. The cold detector in a warm sensor presents challenges in controlling the cryodeposition of water and other condensable vapors. Accordingly, SABER incorporates several unique design features and test strategies to control and measure the particulate and molecular contamination environment. These include internal witness mirrors, dedicated purge/depressurization manifolds, labyrinths, cold stops, and validated procedures for bakeout, cooldown, and warmup. The pre-launch and on-orbit contamination control performance for the SABER telescope will be reviewed.

  20. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Rinehart, S. A.; BETTII Team

    2010-10-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and Herschel and SOFIA will continue to provide exciting new discoveries. However, the relatively low angular resolution of these missions limits our ability to answer key science questions. Interferometry enables high angular resolution at long wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), and eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII, using a double-Fourier technique, will simultaneously obtain spatial and spectral information. Further, BETTII will serve as a technological pathfinder for future space-based interferometers such as FKSI, TPF-I, and Darwin.

  1. Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets coronagraphic operations: lessons learned from the Hubble Space Telescope and the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Debes, John H.; Ygouf, Marie; Choquet, Elodie; Hines, Dean C.; Perrin, Marshall D.; Golimowski, David A.; Lajoie, Charles-Phillipe; Mazoyer, Johan; Pueyo, Laurent; Soummer, Rémi; van der Marel, Roeland

    2016-01-01

    The coronagraphic instrument (CGI) currently proposed for the Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of their host star. While the design of this instrument is still in progress, this early stage of development is a particularly beneficial time to consider the operation of such an instrument. We review current or planned operations on the Hubble Space Telescope and the James Webb Space Telescope with a focus on which operational aspects will have relevance to the planned WFIRST-AFTA CGI. We identify five key aspects of operations that will require attention: (1) detector health and evolution, (2) wavefront control, (3) observing strategies/postprocessing, (4) astrometric precision/target acquisition, and (5) polarimetry. We make suggestions on a path forward for each of these items.

  2. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Silverburg, Robert

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  3. Shuttle infrared telescope facility pointing and control system

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Barrows, W. F.; Matsumoto, Y. T.

    1981-01-01

    The Shuttle Infrared Telescope Facility (SIRTF) is being designed as a 0.85 m cryogenically cooled telescope capable of a three order of magnitude improvement over currently available infrared instruments. The SIRTF requires that the image at the focal plane be stabilized to better than 0.25 arcsec with an absolute accuracy of 1.0 arcsec. Current pointing-mount performance simulations indicate that neither of these requirements can be met without additional stabilization. The SIRTF pointing and control system will utilize gyro outputs, star field position measurements from a focal plane fine guidance sensor, and a steerable secondary mirror to provide the necessary stabilization and pointing control. The charge coupled device fine guidance sensor tracks multiple stars simultaneously and, through the use of multistar processing algorithms in a high performance microcomputer, generates three-axis attitude errors and gyro-drift estimates to correct the pointing-mount gyros. A high-bandwidth feedforward loop, driven directly from the pointing-mount gyro package, controls the steering mirror in order to correct disturbances not compensated for by the pointing-mount control system. A prototype design for the SIRTF pointing and control system is described in detail. Performance analyses made using a digital simulation of the pointing and control system as well as experimental data obtained in laboratory and field test measurements are presented.

  4. Cryogenic infrared spectrometers and telescopes for the atmosphere: new frontiers

    NASA Astrophysics Data System (ADS)

    Kullmann, Andreas; Riese, Martin; Olschewski, Friedhelm; Stroh, Fred; Grossmann, Klaus-Ulrich

    2004-11-01

    The new airborne CRyogenic Infrared Spectrometers and Telescope for the Atmosphere experiment (CRISTA-New Frontiers) succeeds the CRISTA satellite instrument operated twice during NASA space shuttle flights in November 1994 (STS 66) and August 1997 (STS 85). The first mission of the instrument will take place aboard the high altitude research aircraft M55-Geophysica in a campaign in the tropics in 2005/06. CRISTA-NF is a limb-scanning instrument measuring thermal emissions of various atmospheric trace gases (e.g. water vapor, ozone, chlorofluorocarbons), clouds and aerosols in the mid-infrared spectral region. The incoming radiation entering the optics through a Herschel telescope is analyzed by two Ebert-Fastie grating spectrometers with moderate spectral resolution and finally registered by cryogenic semiconductor-detectors. The optical system is integrated into a compact cryostat which reaches temperatures down to 10K by cooling with supercritical helium. This allows fast measurements and provides good signal-to-noise ratio. A narrow vertical field of view (200m) results in high vertical resolution which is neccessary for the analysis of small scale dynamic processes especially in the upper troposphere and lower stratosphere. This paper gives a scientific motivation, some remarks on the measurement technique and an overview of instrument design and technology.

  5. An Unbiased Near-infrared Interferometric Survey for Hot Exozodiacal Dust

    NASA Astrophysics Data System (ADS)

    Ertel, S.; Augereau, J.-C.; Absil, O.; Defrère, D.; Le Bouquin, J.-B.; Marion, L.; Bonsor, A.; Lebreton, J.

    2015-03-01

    Exozodiacal dust is warm or hot dust found in the inner regions of planetary systems orbiting main sequence stars, in or around their habitable zones. The dust can be the most luminous component of extrasolar planetary systems, but predominantly emits in the near- to mid-infrared where it is outshone by the host star. Interferometry provides a unique method of separating this dusty emission from the stellar emission. The visitor instrument PIONIER at the Very Large Telescope Interferometer (VLTI) has been used to search for hot exozodiacal dust around a large sample of nearby main sequence stars. The results of this survey are summarised: 9 out of 85 stars show excess exo- zodiacal emission over the stellar photospheric emission.

  6. The NASA Infrared Telescope Facility (IRTF): New Observational Capabilities

    NASA Astrophysics Data System (ADS)

    Tokunaga, Alan T.; Bus, S. J.; Connelley, Michael S.; Rayner, John T.

    2015-11-01

    The NASA Infrared Telescope Facility (IRTF) is a 3.0-m infrared telescope located at an altitude of 4.2 km near the summit of Mauna Kea on the island of Hawaii. The IRTF was established by NASA to support planetary science missions. Current instruments include: (1) SpeX, a 0.7-5.3 μm moderate resolution spectrograph with a slit-viewing camera that is also an imager, (2) MORIS, a high-speed CCD imager attached to SpeX for simultaneous visible and near-infrared observations, and (3) CSHELL, a 1-5 μm high-resolution spectrograph. MORIS can also be used as a visible wavelength guider for SpeX. Detector upgrades have recently been made to SpeX. We discuss new observational capabilities resulting from completion of a new echelle spectrograph for 1-5 μm with resolving power of 70,000 with a 0.375 arcsec slit. This instrument will be commissioned starting in the spring of 2016. We also plan to restore to service our 8-25 μm camera, MIRSI. It will be upgraded with a closed-cycle cooler that will eliminate the need for liquid helium and allow continuous use of MIRSI on the telescope. This will enable thermal observations of NEOs on short notice. We also plan to upgrade MIRSI to have a simultaneous visible imager for guiding and for photometry. The IRTF supports remote observing from any site. This eliminates the need for travel to the observatory and short observing time slots can be supported. We also welcome onsite visiting astronomers. In the near future we plan to implement a low-order wave-front sensor to allow real-time focus and collimation of the telescope. This will greatly improve observational efficiency. For further information on the IRTF and its instruments including visitor instruments, see: http://irtfweb.ifa.hawaii.edu/. We gratefully acknowledge the support of NASA contract NNH14CK55B, NASA Science Mission Directorate.

  7. Wide-Field InfraRed Survey Telescope WFIRST

    NASA Technical Reports Server (NTRS)

    Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.; Brown, R.; Conselice, C.; Donahue, M.; Fan, X.; Rauscher, B.; Rhodes, J.; Roellig, T.; Stern, D.; Gehrels, N.; Sambruna, R.; Traub, W.; Barry, R. K.; Content, D.; Goullioud, R.; Grady, K.; Kruk, J.; Melton, M.; Peddie, C.; Rioux, N.; Seiffert, M.

    2012-01-01

    In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with the WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. Part of the original charge was to produce an interim design reference mission by mid-2011. That document was delivered to NASA and widely circulated within the astronomical community. In late 2011 the Astrophysics Division augmented its original charge, asking for two design reference missions. The first of these, DRM1, was to be a finalized version of the interim DRM, reducing overall mission costs where possible. The second of these, DRM2, was to identify and eliminate capabilities that overlapped with those of NASA's James Webb Space Telescope (henceforth JWST), ESA's Euclid mission, and the NSF's ground-based Large Synoptic Survey Telescope (henceforth LSST), and again to reduce overall mission cost, while staying faithful to NWNH. This report presents both DRM1 and DRM2.

  8. An Infrared Telescope for Planet Detection and General Astrophysics

    NASA Technical Reports Server (NTRS)

    Lillie, C. F.; Atkinson, C. B.; Casement, L. S.; Flannery, M. R.; Kroening, K. V.; Moses, S. L.

    2004-01-01

    NASA plans to launch a Terrestrial Planet Finder (TPF) mission in 2014 to detect and characterize Earth-like planets around nearby stars, perform comparative planetology studies, and obtain general astrophysics observations. During our recently completed a TPF Mission Architecture study for NASA/JPL we developed the conceptual design for a 28-meter telescope with an IR Coronagraph that meets these mission objectives. This telescope and the technology it embodies are directly applicable to future Far-IR and Submillimeter space missions. The detection of a 30th magnitude planet located within 50 milli-arc-seconds of a 5th (Visual) magnitude star is an exceptionally challenging objective. Observations in the thermal infrared (7-17 microns) are somewhat easier since the planet is "only" 15(sup m) fainter than the star at these wavelengths, but many severe challenges must still be overcome. These challenges include: 1. Designing a coronagraph for star:planet separations less than or equal to lambda/D. 2. Developing the deployment scheme for a 28m space telescope that can fit in an existing launch vehicle payload fairing. 3. Generating configuration layouts for the IR telescope, coronagraph, spacecraft bus, sunshade, solar array, and high-gain antenna. 4. Providing: Structural stability to within 10 microns to support the optics. Thermal control to achieve the necessary structural stability, as well as providing a stable (approx. 30K) thermal environment for the optics. Dynamics isolation from potential jitter sources. 5. Minimizing launch mass to provide the maximum payload for the science mission Interfacing to an EELV Heavy launch vehicle, including acoustic and stress loads for the launch environment. 6. Identifying the key technologies (which can be developed by 2009) that will enable TPF mission to be performed. 7. Generating a manufacturing plan that will permit TPF to be developed at a reasonable cost and schedule. Many of these design challenges result in

  9. Wide-Field Infrared Survey Telescope (WFIRST) Interim Report

    NASA Technical Reports Server (NTRS)

    Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.; Brown, R.; Conselice, C.; Donahue, M.; Gaudi, S.; Lauer, T.; Perlmutter, S.; Rauscher, B.; Rhodes, J.; Roellig, T.; Stern, D.; Sumi, T.; Gerhels, N.; Sambruna, R.; Barry, R. K.; Content, D.; Grady, K; Jackson, C.; Kruk, J.; Melton, M.; Rioux, N.

    2011-01-01

    The New Worlds, New Horizons (NWNH) in Astronomy and Astrophysics 2010 Decadal Survey prioritized the community consensus for ground-based and space-based observatories. Recognizing that many of the community s key questions could be answered with a wide-field infrared survey telescope in space, and that the decade would be one of budget austerity, WFIRST was top ranked in the large space mission category. In addition to the powerful new science that could be accomplished with a wide-field infrared telescope, the WFIRST mission was determined to be both technologically ready and only a small fraction of the cost of previous flagship missions, such as HST or JWST. In response to the top ranking by the community, NASA formed the WFIRST Science Definition Team (SDT) and Project Office. The SDT was charged with fleshing out the NWNH scientific requirements to a greater level of detail. NWNH evaluated the risk and cost of the JDEM-Omega mission design, as submitted by NASA, and stated that it should serve as the basis for the WFIRST mission. The SDT and Project Office were charged with developing a mission optimized for achieving the science goals laid out by the NWNH re-port. The SDT and Project Office opted to use the JDEM-Omega hardware configuration as an initial start-ing point for the hardware implementation. JDEM-Omega and WFIRST both have an infrared imager with a filter wheel, as well as counter-dispersed moderate resolution spectrometers. The primary advantage of space observations is being above the Earth's atmosphere, which absorbs, scatters, warps and emits light. Observing from above the atmosphere enables WFIRST to obtain precision infrared measurements of the shapes of galaxies for weak lensing, infrared light-curves of supernovae and exoplanet microlensing events with low systematic errors, and infrared measurements of the H hydrogen line to be cleanly detected in the 1

  10. The NASA Infrared Telescope Facility (IRTF): Future Instrumentation and Upgrades

    NASA Astrophysics Data System (ADS)

    Tokunaga, Alan T.; Bus, S. J.; Connelley, Michael S.; Rayner, John T.

    2014-11-01

    The NASA Infrared Telescope Facility (IRTF) is a 3.0-m infrared telescope located at an altitude of 4.2 km near the summit of Mauna Kea on the island of Hawaii. The IRTF was established by NASA to obtain solar system observations of interest to NASA. The funding for IRTF operations was renewed in May 2014 for another 5 years. We discuss new instrumentation and upgrades during this time period. Current instruments include: (1) SpeX, a 0.7-5 μm moderate-resolution spectrograph and camera, (2) MORIS, a high-speed CCD imager attached to SpeX for simultaneous visible and near-infrared observations, and (3) CSHELL, a 1-5 μm high-resolution spectrograph. Detector upgrades have recently been made to SpeX. We are also designing and constructing a new echelle spectrograph for 1-5 μm. This instrument will be commissioned starting in early 2016. We also plan to restore to service our 8-25 μm camera, MIRSI. Our 1-5 μm camera, NSFCAM, was lost due to a failure of the liquid nitrogen can that was caused by an ice plug. We can restore this instrument to service but no plans have been made yet. The IRTF supports remote observing from any site. This eliminates the need for travel to the observatory and short observing time slots can be supported. We also welcome onsite visiting astronomers. In the near future we plan to implement a low-order wave-front sensor to allow real-time focus and collimation of the telescope. This will greatly improve observational efficiency. In the longer term, we envision the construction of an adaptive optics system that is optimized for solar system observations. This instrument would use the restored NSFCAM, which has a circular variable filter allowing selection of any wavelength from 1-5 μm. We welcome input for planetary science cases needing diffraction-limited imaging at 1-5 μm. For further information on the IRTF and its instruments including visitor instruments, see: http://irtfweb.ifa.hawaii.edu/. We gratefully acknowledge the support of

  11. Space infrared telescope pointing control system. Infrared telescope tracking in the presence of target motion

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schneider, J. B.

    1986-01-01

    The use of charge-coupled-devices, or CCD's, has been documented by a number of sources as an effective means of providing a measurement of spacecraft attitude with respect to the stars. A method exists of defocussing and interpolation of the resulting shape of a star image over a small subsection of a large CCD array. This yields an increase in the accuracy of the device by better than an order of magnitude over the case when the star image is focussed upon a single CCD pixel. This research examines the effect that image motion has upon the overall precision of this star sensor when applied to an orbiting infrared observatory. While CCD's collect energy within the visible spectrum of light, the targets of scientific interest may well have no appreciable visible emissions. Image motion has the effect of smearing the image of the star in the direction of motion during a particular sampling interval. The presence of image motion is incorporated into a Kalman filter for the system, and it is shown that the addition of a gyro command term is adequate to compensate for the effect of image motion in the measurement. The updated gyro model is included in this analysis, but has natural frequencies faster than the projected star tracker sample rate for dim stars. The system state equations are reduced by modelling gyro drift as a white noise process. There exists a tradeoff in selected star tracker sample time between the CCD, which has improved noise characteristics as sample time increases, and the gyro, which will potentially drift further between long attitude updates. A sample time which minimizes pointing estimation error exists for the random drift gyro model as well as for a random walk gyro model.

  12. Lightweighted secondary mirror for the United Kingdom Infrared Telescope

    NASA Astrophysics Data System (ADS)

    Rohloff, Ralf-Rainer; Pitz, Eckhart; Hawarden, Timothy G.; Rees, Nicholas P.; Atad-Ettedgui, Eli; Kaufmann, Horst W.; Schmadel, Lutz

    1999-10-01

    The paper describes the manufacture and testing of a lightweighted Zerodur secondary mirror for the United Kingdom Infrared Telescope on Mauna Kea, Hawaii. The 313 mm diameter mirror is mounted on a Piezo platform for fast tip/tilt corrections. Therefore, the mirror mass has to be minimized to achieve high dynamic properties of the adaptive tip/tilt platform. The goal was to test the convex secondary without large auxiliary optics (Hindle sphere). We measured the mirror through the back surface using a small null lens system. A special transparent and highly homogeneous Zerodur was used for this purpose. We demonstrate that grinding a honeycomb structure and acid-etching of the back side of the mirror does not affect the figure of the polished convex surface.

  13. Long life feasibility study for the shuttle infrared telescope facility

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A study was conducted to assess the feasibility of designing an Infrared Telescope of the 1 meter class which would operate effectively as a Shuttleborne, 14-day Spacelab payload and then be adapted with little modification to work as a 6 month Space station or free flyer payload. The optics configuration and requirements from a previous study were used without modification. In addition, an enhancement to 2 year mission lengths was studied. The cryogenic system selected was a hybrid design with an internal solid Hydrogen tank at 8 Kelvin and an internal superfluid tank at 2K. In addition to the cryogenic design, a detailed look at secondary mirror actuators for chopping, focus and decenter was conducted and analysis and cryo test reported.

  14. Emergency relief venting of the infrared telescope liquid helium dewar

    NASA Technical Reports Server (NTRS)

    Urban, E. W.

    1980-01-01

    An analysis is made of the emergency relief venting of the liquid helium dewar of the Spacelab 2 infrared telescope experiment in the event of a massive failure of the dewar guard vacuum. Such a failure, resulting from a major accident, could cause rapid heating and pressurization of the liquid helium in the dewar and lead to relief venting through the emergency relief system. The heat input from an accident is estimated for various fluid conditions in the dewar and the relief process as it takes place through one or both of the emergency relief paths is considered. It is shown that under all reasonable circumstances the dewar will safely relieve itself, and the pressure will not exceed 85 percent of the proof pressure or 63 percent of the burst pressure.

  15. The Infrared-Optical Telescope (IRT) of the Exist Observatory

    NASA Technical Reports Server (NTRS)

    Kutyrev, Alexander; Bloom, Joshua; Gehrels, Neil; Golisano, Craig; Gong, Quan; Grindlay, Jonathan; Moseley, Samuel; Woodgate, Bruce

    2010-01-01

    The IRT is a 1.1m visible and infrared passively cooled telescope, which can locate, identify and obtain spectra of GRB afterglows at redshifts up to z 20. It will also acquire optical-IR, imaging and spectroscopy of AGN and transients discovered by the EXIST (The Energetic X-ray Imaging Survey Telescope). The IRT imaging and spectroscopic capabilities cover a broad spectral range from 0.32.2m in four bands. The identical fields of view in the four instrument bands are each split in three subfields: imaging, objective prism slitless for the field and objective prism single object slit low resolution spectroscopy, and high resolution long slit on single object. This allows the instrument, to do simultaneous broadband photometry or spectroscopy of the same object over the full spectral range, thus greatly improving the efficiency of the observatory and its detection limits. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events, which is particularly valuable at wavelengths unavailable to the ground based observatories.

  16. Infrared telescope design - Implications from cryogenic tests of fused-silica mirrors

    NASA Technical Reports Server (NTRS)

    Melugin, R. K.; Miller, J. H.

    1983-01-01

    A brief review of results from recent cryogenic tests of fused-silica mirrors is given with consideration of the implications for the design of cooled infrared telescopes. Implications include optical performance with a discusion of the top-down optical error budgeting for the Shuttle Infrared Telescope Facility (SIRTF), thermal properties of the mirrors, and mirror mounting.

  17. THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

    SciTech Connect

    Rayner, John T.; Cushing, Michael C.; Vacca, William D. E-mail: michael.cushing@gmail.com

    2009-12-01

    We present a 0.8-5 {mu}m spectral library of 210 cool stars observed at a resolving power of R {identical_to} {lambda}/{delta}{lambda} {approx} 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  18. Cryogenic telescope on the Infrared Astronomical Satellite (IRAS)

    NASA Astrophysics Data System (ADS)

    Low, F. J.; Beichman, C. A.; Gillett, F. C.; Houck, J. R.; Neugebauer, G.; Langford, D. E.; Walker, R. G.; White, R. H.

    1984-04-01

    The Infrared Astronomical Satellite (IRAS) has completed an unbiased all-sky survey at wavelengths from 10 to 100 microns. The design and performance of the focal plane array is described with emphasis on in-orbit measurements of the sensitivity and stability. In the four broad spectral bands centered at 12, 25, 60, and 100 microns, the system noise equivalent flux density (NEFD) values are in Jy/(Square root of Hz), 0.03, 0.025, 0.046, and 0.21, respectively (Jansky = 10 to the -26th W/sq m/Hz). For point sources, a single scan at the survey rate of 3.8 arcmin/s yields limiting flux densities at the 3-sigma confidence level of 0.36, 0.30, 0.39, and 1.2 Jy. The dc stability of the junction field effect transistor (JFET) amplifiers and the excellent off-axis rejection of the telescope permit total flux measurements of extended infrared emission at levels below 6,000,000 Jy/sr. Response of the extrinsic silicon and germanium photo-detectors to ionizing radiation is described.

  19. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    NASA Astrophysics Data System (ADS)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-12-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  20. Cryogenic silicon carbide mirrors for infrared astronomical telescopes: lessons learnt from AKARI for SPICA

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Kaneda, Hidehiro; Kawada, Mitsunobu; Enya, Keigo; Nakagawa, Takao

    2013-09-01

    Silicon carbide (SiC) has good thermal conductivity, high stiffness, and a relatively low specific density, all of which are advantageous to the application to telescopes operating at cryogenic temperatures. The first Japanese astronomical infrared space mission AKARI, which was launched in 2006 February and completed the second generation all-sky survey at 6 bands from mid- to far-infrared, employed a 700mm cryogenic telescope made of specially developed SiC. It was a sandwich-type of SiC composed of a lightweight porous core and a dense chemical vapor deposition (CVD) coat to decrease the specific density and facilitate machining for achieving the required surface figure accuracy. Measurements with an interferometer of 160-mm sample mirrors demonstrated that the AKARI mirror SiC had good thermal stability down to cryogenic temperatures (~6K), while the mirror support of the compact design became the primary source of the wave-front errors of the AKARI telescope. Taking the advantage of the heritage of the AKARI telescope development as well as ESA's Herschel telescope, we are planning the next infrared space mission SPICA (Space Infrared Telescope for Cosmology and Astrophysics) of a 3.2m cooled telescope in participation of ESA using SiC-based materials. In this presentation, we summarize the development of AKARI SiC telescope and present the development activities of the SPICA telescope from the point of view of SiC being as the mirror material for cryogenic space infrared telescopes.

  1. The NASA Infrared Telescope Facility: Instrument Upgrades and Plans

    NASA Astrophysics Data System (ADS)

    Tokunaga, Alan T.; Bus, S. J.; Connelley, M. S.; Rayner, J. T.

    2013-10-01

    The NASA Infrared Telescope Facility (IRTF) is a dedicated planetary 3-m telescope located at the summit of Mauna Kea. We discuss detector upgrades for our facility instruments, new instrument capabilities, and image quality upgrades. Detector upgrades are planned for SpeX during semester 2014A. We are also designing and constructing a new echelle spectrograph for 1-5 μm, to be commissioned starting in 2015. In terms of future capabilities, we would like input for planetary science cases needing diffraction-limited imaging at 1-5 μm and fast follow up of discoveries from sky surveys. Current instruments include: (1) SpeX, a 1-5 μm moderate-resolution spectrograph and camera, (2) MORIS, a high-speed CCD imager attached to SpeX for simultaneous visible and near-IR observations, (3) CSHELL, a 1-5 μm high-resolution spectrograph, and (4) NSFCAM, a 1-5 micron camera. MIRSI, an 8-25 μm camera, will be available after an upgrade to the array control electronics. Information on these instruments and also visitor instruments are given at: http://irtfweb.ifa.hawaii.edu/Facility/. The IRTF supports remote observing from any site. This eliminates the need for travel to the observatory, and therefore short observing time slots can be supported. We also welcome on-site visiting astronomers. For further information see: http://irtfweb.ifa.hawaii.edu/. We gratefully acknowledge the support of Cooperative Agreement no. NNX13AG88A with the NASA Science Mission Directorate, Planetary Astronomy Program.

  2. James Webb Telescope's Near Infrared Camera: Making Models, Building Understanding

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; McCarthy, D. W.; Higgins, M. L.; Lebofsky, N. R.

    2010-10-01

    The Astronomy Camp for Girl Scout Leaders is a science education program sponsored by NASA's next large space telescope: The James Webb Space Telescope (JWST). The E/PO team for JWST's Near Infrared Camera (NIRCam), in collaboration with the Sahuaro Girl Scout Council, has developed a long-term relationship with adult leaders from all GSUSA Councils that directly benefits troops of all ages, not only in general science education but also specifically in the astronomical and technology concepts relating to JWST. We have been training and equipping these leaders so they can in turn teach young women essential concepts in astronomy, i.e., the night sky environment. We model what astronomers do by engaging trainers in the process of scientific inquiry, and we equip them to host troop-level astronomy-related activities. It is GSUSA's goal to foster girls’ interest and creativity in Science, Technology, Engineering, and Math, creating an environment that encourages their interests early in their lives while creating a safe place for girls to try and fail, and then try again and succeed. To date, we have trained over 158 leaders in 13 camps. These leaders have come from 24 states, DC, Guam, and Japan. While many of the camp activities are related to the "First Light” theme, many of the background activities relate to two of the other JWST and NIRCam themes: "Birth of Stars and Protoplanetary Systems” and "Planetary Systems and the Origin of Life.” The latter includes our own Solar System. Our poster will highlight the Planetary Systems theme: 1. Earth and Moon: Day and Night; Rotation and Revolution. 2. Earth/Moon Comparisons. 3. Size Model: The Diameters of the Planets. 4. Macramé Planetary (Solar) Distance Model. 5.What is a Planet? 6. Planet Sorting Cards. 7. Human Orrery 8. Lookback Time in Our Daily Lives NIRCam E/PO website: http://zeus.as.arizona.edu/ dmccarthy/GSUSA

  3. Development of Infrared Phase Closure Capability in the Infrared-Optical Telescope Array (IOTA)

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2002-01-01

    We completed all major fabrication and testing for the third telescope and phase-closure operation at the Infrared-Optical Telescope Array (IOTA) during this period. In particular we successfully tested the phase-closure operation, using a laboratory light source illuminating the full delay-line optical paths, and using an integrated-optic beam combiner coupled to our Picnic-detector camera. This demonstration is an important and near-final milestone achievement. As of this writing, however, several tasks yet remain, owing to development snags and weather, so the final proof of success, phase-closure observation of a star, is now expected to occur in early 2002, soon after this report has been submitted.

  4. Large-area cryocooling for far-infrared telescopes

    NASA Astrophysics Data System (ADS)

    Hoang, Triem T.; O'Connell, Tamara A.; Ku, Jentung; Butler, C. D.; Swanson, Theodore D.

    2003-10-01

    Requirements for cryocooling of large-area heat sources begin to appear in studies of future space missions. Examples are the cooling of (i) the entire structure/mirror of large Far Infrared space telescopes to 4-40K and (ii) cryogenic thermal bus to maintain High Temperature Superconductor electronics to below 75K. The cryocooling system must provide robust/reliable operation and not cause significant vibration to the optical components. But perhaps the most challenging aspect of the system design is the removal of waste heat over a very large area. A cryogenic Loop Heat Pipe (C-LHP)/ cryocooler cooling system was developed with the ultimate goal of meeting the aforementioned requirements. In the proposed cooling concept, the C-LHP collected waste heat from a large-area heat source and then transported it to the cryocooler coldfinger for rejection. A proof-of-concept C-LHP test loop was constructed and performance tested in a vacuum chamber to demonstrate the feasibility of the proposed C-LHP to distribute the cryocooler cooling power over a large area. The test loop was designed to operate with any cryogenic working fluid such as Oxygen/Nitrogen (60-120K), Neon (28-40K), Hydrogen (18-30K), and Helium (2.5-4.5K). Preliminary test results indicated that the test loop had a cooling capacity of 4.2W in the 30-40K temperature range with Neon as the working fluid.

  5. Mexican Infrared-Optical New Technology Telescope: The TIM project

    NASA Astrophysics Data System (ADS)

    Salas, L.

    1998-11-01

    The scientific goals for TIM are an image quality of 0.25", consistent with the seeing at our site, optimization for the infrared as many scientific programs are going in that region of the spectrum, a M1 diameter in excess of 6.5 meters and a field of view limited to 10 arc minutes. Practical reasons, such as the limited funding available and the requirement of mexican financial agencies that the telescope should be built and installed in Mexico, lead us to decide for a segmented telescope, with a single secondary mirror, a single cassegrain focus and a light high stifness tubular structure. ALthough we are still working on the conceptual design of the telescope, there are some concepts that we are pursuing. The optical desing (M1+M2) is Ritchey-Cretien type with an hyperbolic primary 7.8 m od F/1.5 and a 0.9 m diameter f/15 secondary mirror. This will give a plate scale of 1.7 "/mm. This is 0.03 "/pix in direct mode, enough for AO goals. As for direct imaging, a factor of 5 reduction with 20 cm diam optical components would be able to produce 5' fields on a 2048, 20 microns type detector with 0.17"/pix. This implies that, with the use of auxiliary optics which is a common need for each particular instrument anyway, a wide variety of needs can be accomodated with a single secondary mirror. Choping for infrared observations would however introduce a additional cost in the secondary mirror. Alternatively the use of cold tertiary choping mirror is currently under study. The M1+M2 design currently aquires d80 of 0.17" in a 5' field without correction and 1" in a 10' field, that would require a field correcting lens. The M1 mirror will be segmented into 19 1.8 m diameter segments. There are 4 kinds of segments, the central, which we have kept to provide a reference for phasing, 6 more segments for the first ring and 12 in the outer ring, of two different kinds. The spacing between the segments is 5 mm, enough to reduce the inter-segment thermal background to half a

  6. Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings

    NASA Astrophysics Data System (ADS)

    Shang, Yuanfang; Ye, Xiongying; Cao, Liangcai; Song, Pengfei; Feng, Jinyang

    2016-05-01

    Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency.

  7. Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings

    PubMed Central

    Shang, Yuanfang; Ye, Xiongying; Cao, Liangcai; Song, Pengfei; Feng, Jinyang

    2016-01-01

    Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency. PMID:27193803

  8. Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings.

    PubMed

    Shang, Yuanfang; Ye, Xiongying; Cao, Liangcai; Song, Pengfei; Feng, Jinyang

    2016-01-01

    Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency. PMID:27193803

  9. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media.

    PubMed

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J

    2016-01-11

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264

  10. The (new) Mid-Infrared Spectrometer and Imager (MIRSI) for the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Hora, Joseph L.; Trilling, David; Mommert, Michael; Smith, Howard A.; Moskovitz, Nicholas; Marscher, Alan P.; Tokunaga, Alan; Bergknut, Lars; Bonnet, Morgan; Bus, Schelte J.; Connelly, Michael; Rayner, John; Watanabe, Darryl

    2015-11-01

    The Mid-Infrared Spectrometer and Imager (MIRSI) was developed at Boston University and has been in use since 2002 on the Infrared Telescope Facility (IRTF), making observations of asteroids, planets, and comets in the 2 - 25 μm wavelength range. Recently the instrument has been unavailable due to electronics issues and the high cost of supplying liquid helium on Maunakea. We have begun a project to upgrade MIRSI to a cryocooler-based system with new array readout electronics and a dichroic and optical camera to simultaneously image the science field for image acquisition and optical photometry. The mechanical cryocooler will enable MIRSI to be continuously mounted on the IRTF multiple instrument mount (MIM) along with the other facility instruments, making it available to the entire community for multi-wavelength imaging and spectral observations. We will propose to use the refurbished MIRSI to measure the 10 μm flux from Near Earth Objects (NEOs) and determine their diameters and albedos through the use of a thermal model. We plan to observe up to 750 NEOs over the course of a three year survey, most of whose diameters will be under 300 meters. Here we present an overview of the MIRSI upgrade and give the current status of the project.This work is funded by the NASA Solar System Observations/NEOO program.

  11. Shuttle infrared telescope facility (SIRTF) preliminary design study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An overall picture of the SIRTF system is first presented, including the telescope, focal plane instruments, cryogen supply, shuttle and spacelab support subsystems, mechanical and data interfaces with the vehicles, ground support equipment, and system requirements. The optical, mechanical, and thermal characteristics of the telescope are then evaluated, followed by a description of the SIRTF internal stabilization subsystem and its interface with the IPS. Expected performance in the shuttle environment is considered. Tradeoff studies are described, including the Gregorian versus the Cassegrain telescope, aperture diameter tradeoff, a CCD versus an image dissector for the star tracker, the large ambient telescope versus the SIRTF, and a dedicated gimbal versus the IPS. Operations from integration through launch and recovery are also discussed and cost estimates for the program are presented.

  12. The Development and Mission of the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Gallagher, David B.; Irace, William R.; Werner, Michael W.

    2004-01-01

    This paper provides an overview of the SIRTF mission, telescope, cryostat, instruments, spacecraft, orbit, operations and project management approach; and this paper serves as an introduction to the accompanying set of detailed papers about specific aspects of SIRTF.

  13. System design parameter study for Shuttle Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Mord, A. J.; Bottema, M.; Devereux, W. P.; Poley, R. L.; Strecker, D. W.; Tai, F.

    1983-01-01

    SIRTF is a high-sensitivity, cooled astronomical telescope operating from 2 to 1000 microns. The techniques used in analyzing the sensitivity of the SIRTF system performance to several technical issues are presented. Lowering the telescope temperature to near 4K is found to produce margin in several areas. A refined observing requirements model relieves the hardware performance requirements, and identifies extended source size/observing strategy as an important system specification. Other major conclusions are presented.

  14. Telescope system of the infrared imaging surveyor (IRIS)

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Sugiyama, Yoshikazu; Miura, Shinji

    1998-08-01

    The telescope system of a Japanese IR Astronomical Space Mission, 'IR Imaging Surveyor (IRIS)', is described. The IRIS is a cryogenically-cooled telescope, being planned to be launched in 2003. It will make astronomical observations from near-IR to far-IR regions. The IRIS telescope system is a Ritchey-Chretien type, whose primary mirror size ins 700mm in diameter and whose system F ratio is 6. In order to share the focal plane with two scientific instruments and a focal- plane star sensor, it has a clear field of view of 38 arcminutes in radius. It is being designed to achieve the diffraction-limited performance at 5 micrometers for temperatures below 10K. The IRIS telescope will use light-weight silicon carbide (SiC) mirrors. The current estimate of the primary mirror weight is 9 kg and the goal of total weight of the telescope system is less than 27 kg. Preliminary tests of small size SiC mirrors at 4.2K suggest that slight distortion of the surface figure detected at low temperatures can be reduced by improved CVD processes. The telescope system is designed to meet the launch conditions of the M-V rocket and to have the fundamental frequencies above 100 Hz.

  15. Interferometry with the ESO Very Large Telescope

    NASA Astrophysics Data System (ADS)

    von der Luehe, Oskar; Derie, Frederic; Koehler, Bertrand; Leveque, Samuel A.; Paresce, Francesco; Verola, Massimo

    1997-03-01

    The interferometric mode of the ESO very large telescope (VLT) permits coherent combination of stellar light beams collected by four telescopes with 8 m diameter and by several auxiliary telescopes of the 2 m class. While the position of the 8 m telescopes is fixed, auxiliary telescopes can be moved on rails, and can operate from 30 stations distributed on the top of the observatory site for efficient UV coverage. Coherent beam combination can be achieved with the 8 m telescopes alone, with the auxiliary telescopes alone, or with any combination, up to eight telescopes in total. A distinct feature of the interferometric mode is the high sensitivity due to the 8 m pupil of the main telescopes, with the potential for adaptive optics compensation in the near- infrared spectral regime. The VLT interferometer is conceived as an evolutionary program where a significant fraction of the interferometer's functionality is initially funded, and more capability may be added later while experience is gained and further funding becomes available. The scientific program is now defined by a team which consists of a VLTI scientist at ESO and fifteen astronomers from the VLT community. ESO has recently decided to resume the construction of the VLTI which was delayed in December 1993, in order to achieve first interferometric fringes with two of the 8 m telescopes around the year 2000, and routine operation with 2 m auxiliary telescopes from 2003 onwards. This paper presents an overview of the recent evolution of the project and its future development.

  16. Future technologies for optical and infrared telescopes and instruments

    NASA Astrophysics Data System (ADS)

    Cunningham, Colin

    2009-08-01

    The theme of this conference is the evolution of telescopes over the last 400 years. I present my view on what the major leaps of technology have been, and attempt to predict what new technologies could come along in the next 50 years to change the way we do astronomy and help us make new discoveries. Are we approaching a peak of innovation and discovery, and will this be followed by a slow decline? Or are there prospects for even further technology leaps and consequent new discoveries? Will global resource and financial crises bring an end to our great ambitions, or will we continue with bigger telescopes and more ambitious space observatories?

  17. Image-plane incidence for a baffled infrared telescope

    NASA Astrophysics Data System (ADS)

    Scholl, Marija Strojnik; Padilla, Gonzalo Páez

    1997-03-01

    The on-axis image plane incidence of an extended object (sometimes also called irradiance), radiating as a Lambertian radiator is derived for an optical system with a central obscuration. It is then extended to off-axis image points to obtain a generalized form of image incidence for an extended source. A specific example is provided by the conceptual design proposed for the next generation US IR telescope facility, called SIRTF. An incidence error of 1% is obtained for a telescope with a large baffle around a small secondary mirror. The small error is attributed to the unusually small diameter of the secondary mirror.

  18. Infrared Astronomical Satellite /IRAS/ and Shuttle Infrared Telescope Facility /SIRTF/ - Implications of scientific objectives on focal plane sensitivity requirements

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Walker, R. G.; Witteborn, F. C.

    1978-01-01

    The full potential of infrared astronomy can be realized only through observations made with space-based telescopes cooled to cryogenic temperatures. The paper outlines the scientific mission, system description, and focal plane requirements for two cryogenic telescopes: the Infrared Astronomical Satellite (IRAS) and the Shuttle Infrared Telescope Facility (SIRTF). IRAS, a 60-cm superfluid-helium-cooled telescope system, will perform a one-year 8-120-micron IR sky survey; it will provide results of high reliability and sensitivity, produce the first complete survey data for the 30-120-micron region, and fill in missing portions (spectrally and spatially) of previous surveys short of 30 microns; its focal plane assembly is being designed to approach background-limited performance with an array of 62 discrete detectors. The SIRTF design will allow detailed follow-up studies in the 1-1000-micron range with a 116-160-cm observatory-class instrument. The Shuttle sortie capability introduces the unique SIRTF concept of an easily refurbishable or replaceable focal plane instrument complement in an orbiting cryogenic telescope.

  19. The Design and Capabilities of the EXIST Optical and Infra-Red Telescope (IRT)

    NASA Technical Reports Server (NTRS)

    Kutyrev, A S.; Moseley, S. H.; Golisano, C.; Gong, Q.; Allen, B. T.; Gehrels, N.; Grindlay, J. E.; Hong, J. S.; Woodgate, B. E.

    2010-01-01

    The Infra-Red Telescope is a critical element of the EXIST (Energetic X-Ray Imaging Survey Telescope) observatory. The primary goal of the IRT is to obtain photometric and spectroscopic measurements of high redshift (> or =6) gamma ray reaching to the epoque of reionization. The photometric and spectral capabilities of the IRT will allow to use GRB afterglow as probes of the composition and ionization state of the intergalactic medium of the young universe. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events in the infrared and optical wavelength, which is particularly valuable at wavelengths unavailable to the ground based observatories. We present the results of the mission study development on the IRT as part of the EXIST observatory. Keywords: infrared spectroscopy, space telescope, gamma ray bursts, early universe

  20. Step-zoom dual-field-of-view infrared telescope

    NASA Astrophysics Data System (ADS)

    Nadeem Akram, Muhammad; Hammad Asghar, Muhammad

    2003-05-01

    The design of a dual-field-of-view telescope for an 8 -12- μm imaging waveband is described. Preliminary calculations are made to determine the first-order parameters of the narrow- and the wide-field modes. To achieve a switchable dual-field-of-view system, one uses an optical configuration based on the axial motion of a single lens group along the optical axis. The same lens is also used for focusing at near objects and for athermalization by small axial movement. A total of six lenses with one conic surface are used in the design, making the telescope cost effective and lightweight. The final optical design is presented, along with the aberrations curves and modulation transfer function plots, showing excellent performance in both fields of view.

  1. Step-zoom dual-field-of-view infrared telescope

    NASA Astrophysics Data System (ADS)

    Akram, Muhammad Nadeem; Asghar, Muhammad Hammad

    2003-05-01

    The design of a dual-field-of-view telescope for an 8-12-μm imaging waveband is described. Preliminary calculations are made to determine the first-order parameters of the narrow- and the wide-field modes. To achieve a switchable dual-field-of-view system, one uses an optical configuration based on the axial motion of a single lens group along the optical axis. The same lens is also used for focusing at near objects and for athermalization by small axial movement. A total of six lenses with one conic surface are used in the design, making the telescope cost effective and lightweight. The final optical design is presented, along with the aberrations curves and modulation transfer function plots, showing excellent performance in both fields of view.

  2. Step-zoom dual-field-of-view infrared telescope.

    PubMed

    Akram, Muhammad Nadeem; Asghar, Muhammad Hammad

    2003-05-01

    The design of a dual-field-of-view telescope for an 8-12-microm imaging waveband is described. Preliminary calculations are made to determine the first-order parameters of the narrow- and the wide-field modes. To achieve a switchable dual-field-of-view system, one use an optical configuration based on the axial motion of a single lens group along the optical axis. The same lens is also used for focusing at near objects and for athermalization by small axial movement. A total of six lenses with one conic surface are used in the design, making the telescope cost effective and lightweight. The final optical design is presented, along with the aberrations curves and modulation transfer function plots, showing excellent performance in both fields of view. PMID:12737462

  3. Automated 1.3-m near-infrared telescope system triggered by gamma-ray burst

    NASA Astrophysics Data System (ADS)

    Murakami, Toshio; Yonetoku, Daisuke; Kinoshita, Shin; Masui, Hiroki; Okuno, Shinya; Yoshinari, Satoru; Kidamura, Takashi; Tanabe, Sachiko; Yokota, Satoshi; Kobayashi, Yukiyasu; Nakagawa, Takao; Nakamura, Takashi

    2006-06-01

    The design for robotic telescopes to observe Gamma-Ray Burst (GRB) afterglows and the results of observations are presented. Quickly fading bright GRB flashes and afterglows provide a good tool to study an extremely early universe. However, most large ground-based telescopes cannot afford to follow-up the afterglows and flashes quickly within a few hours since a GRB explosion. We re-modeled the existing middle-class 1.3 m ø telescope of the near infrared band at ISAS in Japan to match for the above requirement. We also set a small telescope of 30 cm diameter with a conventional CCD. These telescopes can monitor afterglows quickly within a few minutes in J, H, Ks and R band with a grism spectrometer.

  4. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  5. A cryogenically-cooled, balloon-borne far infrared survey telescope

    NASA Technical Reports Server (NTRS)

    Campbell, M. F.

    1979-01-01

    The design and performance of the Arizona cryogenically-cooled, balloon-borne, multiband far infrared survey telescope are described. The 40 cm Cassegrain telescope is completely contained in a liquid helium dewar. The focal plane array consists of Fabry optics and four detectors which each have a 12 arc minute field of view. Both photoconductive and bolometer detectors are utilized at effective wavelengths of 20, 80, 100 and 150 microns. In 1977 the telescope was used to make multicolor large scale maps of 70 square degrees in the Cygnus X region and the W3 region.

  6. Submillimeter astronomy at the NASA/University of Hawaii 3-meter infrared telescope facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Problems encountered in the design of a submillimeter photometer for the infrared telescope facility and some of the solutions already provided are described. Observations of Saturn's rings and the determination of the brightness temperature of Titan, Jupiter, Saturn, Neptune, and Uranus are summarized. Significant findings during solar, galactic, and extragalactic observations include the discovery of low luminosity star formation in the Bok Globule B335 and determination of the far infrared properties of dust in the reflection nebula NGC 7023.

  7. Characterization of exoplanet atmospheres using future space-based infrared telescopes: challenges in detecting biomarkers

    NASA Astrophysics Data System (ADS)

    Enya, Keigo

    2014-01-01

    Characterization of exoplanet atmospheres with space-based infrared telescopes is important to detect biomarkers. A promising method is temporary differential observation. For this method, designs of a wideband infrared spectral disperser are presented. A design using a CdTe prism simultaneously covers λ=1-30 μm. Designing binary pupil masks for segmented pupils to be used in spatially resolved observations are also shown for another observational method.

  8. High performance testbed for four-beam infrared interferometric nulling and exoplanet detection.

    PubMed

    Martin, Stefan; Booth, Andrew; Liewer, Kurt; Raouf, Nasrat; Loya, Frank; Tang, Hong

    2012-06-10

    Technology development for a space-based infrared nulling interferometer capable of earthlike exoplanet detection and characterization started in earnest in the last 10 years. At the Jet Propulsion Laboratory, the planet detection testbed was developed to demonstrate the principal components of the beam combiner train for a high performance four-beam nulling interferometer. Early in the development of the testbed, the importance of "instability noise" for nulling interferometer sensitivity was recognized, and the four-beam testbed would produce this noise, allowing investigation of methods for mitigating this noise source. The testbed contains the required features of a four-beam combiner for a space interferometer and performs at a level matching that needed for the space mission. This paper describes in detail the design, functions, and controls of the testbed. PMID:22695670

  9. RIN-suppressed ultralow noise interferometric fiber optic gyroscopes (IFOGs) for improving inertial stabilization of space telescopes

    NASA Astrophysics Data System (ADS)

    Hakimi, Farhad; Moores, John D.

    2013-03-01

    Pointing, acquisition, and tracking (PAT) systems in spaceborne optical communications terminals can exploit inertial sensors and actuators to counter platform vibrations and maintain steady beam pointing. Interferometric fiber optic gyroscopes (IFOGs) can provide sensitive angle rate measurements down to very low (sub-milliHertz) mechanical frequencies, potentially reducing the required beacon power and facilitating acquisition for a spaceborne optical communications terminals. Incoherent broadband light sources are used in IFOGs to alleviate detrimental effects of optical nonlinearities, backscattering, and polarization non-reciprocity. But incoherent broadband sources have excess noise or relative intensity noise (RIN), caused by the beating of different spectral components on the photodetector. Unless RIN noise is suppressed, IFOG performance cannot be improved once the light on the photodetector exceeds one photon per coherence time (~microWatts). We propose a simple method to dramatically suppress the RIN of an incoherent light source and thereby reduce the angle random walk (ARW) of an IFOG using such a source. We demonstrate 20 dB RIN suppression of a broadband EDFA source, which we predict could improve the angle random walk (ARW) of an IFOG using this source by 12 dB.

  10. Wide Field Infrared Survey Telescope [WFIRST]: Telescope Design and Simulated Performance

    NASA Technical Reports Server (NTRS)

    Goullioud, R.; Content, D. A.; Kuan, G. M.; Moore, J. D.; Chang, Z.; Sunada, E. T.; Villalvazo, J.; Hawk, J. P.; Armani, N. V.; Johnson, E. L.; Powell, C. A.

    2012-01-01

    The ASTRO2010 Decadal Survey proposed multiple missions with NIR focal planes and 3 mirror wide field telescopes in the 1.5m aperture range. None of them would have won as standalone missions WFIRST is a combination of these missions, created by Astro 2010 committee. WFIRST Science Definition Team (SDT) tasked to examine the design. Project team is a GSFC-JPL-Caltech collaboration. This interim mission design is a result of combined work by the project team with the SDT.

  11. Euro50: Proposal for a 50 m Optical and Infrared Telescope

    NASA Astrophysics Data System (ADS)

    Ardeberg, Arne; Andersen, Torben; Rodriguez Espinosa, Jose Miguel

    Staff from Instituto de Astrofisica de Canarias, Lund Observatory, Physics Department and Larmor Research Institute at Galway, and Tuorla Observatory is collaborating on studies for a 50 m optical and infrared telescope. The telescope concepts are based on the work on extremely large telescopes carried out during 1991-2000 at Lund Observatory, and on the experience from the 10.4 m segmented Grantecan telescope presently under construction. The proposed 50 m telescope is a fully adaptive Nasmyth telescope with a Ritchey Chretien configuration. It will have an aspherical, segmented primary mirror with 2 m large segments and a deformable secondary. Adaptive optics will be implemented in several steps. From the beginning, there will be single-conjugate adaptive optics for the K-band. Next, and within the first year of operation, the telescope will have single-conjugate adaptive optics for visible wavelengths. As a third step, and another year of operation, dual-conjugate adaptive optics will be made available for the K-band. The telescope will be housed in a co-rotating enclosure at the Roque de los Muchachos observatory on La Palma. Further studies are in progress aiming at preparation of a proposal during the first half of 2002.

  12. Design Evolution of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Peters, Carlton; Rodriguez, Juan; McDonald, Carson; Content, David A.; Jackson, Cliff

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  13. Design Evolution of the Wide Field Infrared Survey Telescope Using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Peabody, Hume L.; Peters, Carlton V.; Rodriguez-Ruiz, Juan E.; McDonald, Carson S.; Content, David A.; Jackson, Clifton E.

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  14. The Visible and Infrared Survey Telescope for Astronomy (VISTA): Design, technical overview, and performance

    NASA Astrophysics Data System (ADS)

    Sutherland, Will; Emerson, Jim; Dalton, Gavin; Atad-Ettedgui, Eli; Beard, Steven; Bennett, Richard; Bezawada, Naidu; Born, Andrew; Caldwell, Martin; Clark, Paul; Craig, Simon; Henry, David; Jeffers, Paul; Little, Bryan; McPherson, Alistair; Murray, John; Stewart, Malcolm; Stobie, Brian; Terrett, David; Ward, Kim; Whalley, Martin; Woodhouse, Guy

    2015-03-01

    The Visible and Infrared Survey Telescope for Astronomy (VISTA) is the 4-m wide-field survey telescope at ESO's Paranal Observatory, equipped with the world's largest near-infrared imaging camera (VISTA IR Camera, VIRCAM), with 1.65 degree diameter field of view, and 67 Mpixels giving 0.6 deg2 active pixel area, operating at wavelengths 0.8-2.3 μm. We provide a short history of the project, and an overview of the technical details of the full system including the optical design, mirrors, telescope structure, IR camera, active optics, enclosure and software. The system includes several innovative design features such as the f/1 primary mirror, thedichroic cold-baffle camera design and the sophisticated wavefront sensing system delivering closed-loop 5-axis alignment of the secondary mirror. We conclude with a summary of the delivered performance, and a short overview of the six ESO public surveys in progress on VISTA.

  15. Cryogenic testing of mirrors for infrared space telescopes

    NASA Technical Reports Server (NTRS)

    Miller, J. H.; Witteborn, F. C.; Garland, H. J.

    1982-01-01

    The Shuttle IR Telescope Facility (SIRTF) test apparatus can test candidate mirror materials as large as 66 cm in diameter, at temperatures as low as about 10 K, and is accurate enough to detect optical figure changes as small as a fraction of a wavelength from the room temperature figure. The fused silica mirrors currently undergoing testing in the SIRTF are sunk into a liquid He reservoir with copper straps, whose individual strands are soldered to small silver spots diffused throughout the unfigured side of the mirror to accomplish fast conductive cooling. Optical access to the cold mirror is by means of a small glass port in the vacuum chamber. An interferometer is used to examine the mirror figure throughout the cool-down. Interferograms are photographed, fringe patterns are digitized, and mirror figure contour plots are calculated by means of a computer.

  16. Small helium-cooled infrared telescope experiment for Spacelab-2 (IRT)

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1990-01-01

    The Infrared Telescope (IRT) experiment, flown on Spacelab-2, was used to make infrared measurements between 2 and 120 microns. The objectives were multidisciplinary in nature with astrophysical goals of mapping the diffuse cosmic emission and extended infrared sources and technical goals of measuring the induced Shuttle environment, studying properties of superfluid helium in space, and testing various infrared telescope system designs. Astrophysically, new data were obtained on the structure of the Galaxy at near-infrared wavelengths. A summary of the large scale diffuse near-infrared observations of the Galaxy by the IRT is presented, as well as a summary of the preliminary results obtained from this data on the structure of the galactic disk and bulge. The importance of combining CO and near-infrared maps of similar resolution to determine a 3-D model of galactic extinction is demonstrated. The IRT data are used, in conjunction with a proposed galactic model, to make preliminary measurements of the global scale parameters of the Galaxy. During the mission substantial amounts of data were obtained concerning the induced Shuttle environment. An experiment was also performed to measure spacecraft glow in the IR.

  17. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    NASA Technical Reports Server (NTRS)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; Kruk, J.; Kuan, G.; Melton, M.; Ruffa, J.; Underhill, M.; Buren, D. Van

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  18. Silicon immersion grating spectrograph design for the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Tokunaga, A. T.; Bond, T.; Jaffe, D. T.; Mumma, M. J.; Rayner, J. T.; Tollestrup, E. V.; Warren, D. W.

    2008-07-01

    We present a conceptual design for an innovative infrared cross-dispersed spectrograph for the NASA Infrared Telescope Facility (IRTF) at Mauna Kea. This facility-class instrument will provide a resolving power of up to 80,000 at 1.2-2.5 μm and 67,000 at 3-5 μm with a minimum slit width of 0.25". The instrument employs a silicon immersion grating in order to reduce the size of the instrument. The design incorporates a 2048×2048 infrared array for the spectrograph and an infrared slit viewer. The optical design is optimized for the thermal infrared (2.8-5.5 μm).

  19. Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    1998-08-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. With the addition of the partners from Ohio State and Germany in February 1997, the Large Binocular Telescope Corporation has the funding required to build the full telescope populated with both 8.4 meter optical trans. The first of two 8.4 meter borosilicate honeycomb primary mirrors for LBT was cast at the Steward Observatory Mirror Lab in 1997. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane. The interferometric focus combining the light from the two 8.4 meter primaries will reimage the two folded Gregorian focal planes to three central locations. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance were important drivers for the design of the telescope in order to provide the best possible images for interferometric observations. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure was completed in 1997 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). A series of contracts for the fabrication and machining of the telescope structure had been placed at the end of 1997. The final enclosure design was completed at M3 Engineering & Technology (Tucson), EIE and ADS Italia. During 1997, the telescope pier and the concrete ring wall for the rotating enclosure were completed along with the steel structure of the fixed portion of the enclosure. The erection of the steel structure for the rotating portion of the enclosure will begin in the Spring of 1998.

  20. Wavefront Sensing and Control Technology for Submillimeter and Far-Infrared Space Telescopes

    NASA Technical Reports Server (NTRS)

    Redding, Dave

    2004-01-01

    The NGST wavefront sensing and control system will be developed to TRL6 over the next few years, including testing in a cryogenic vacuum environment with traceable hardware. Doing this in the far-infrared and submillimeter is probably easier, as some aspects of the problem scale with wavelength, and the telescope is likely to have a more stable environment; however, detectors may present small complications. Since this is a new system approach, it warrants a new look. For instance, a large space telescope based on the DART membrane mirror design requires a new actuation approach. Other mirror and actuation technologies may prove useful as well.

  1. NASA-ARC 91.5-cm airborne infrared telescope. [tracking mechanism

    NASA Technical Reports Server (NTRS)

    Mobley, R. E.; Brown, T. M.

    1979-01-01

    A 91.5 cm aperture telescope installed aboard NASA-Lockheed C-141A aircraft for the performance of infrared astronomy is described. A unique feature of the telescope is that its entire structure is supported by a 41 cm spherical air bearing which effectively uncouples it from aircraft angular motion, and with inertial stabilization and star tracking, limits tracking errors to less than 1 arc second in most applications. A general description of the system, a summary of its performance, and a detailed description of an offset tracking mechanism is presented.

  2. The VLTI/PIONIER near-infrared interferometric survey of southern T Tauri stars. I. First results

    NASA Astrophysics Data System (ADS)

    Anthonioz, F.; Ménard, F.; Pinte, C.; Le Bouquin, J.-B.; Benisty, M.; Thi, W.-F.; Absil, O.; Duchêne, G.; Augereau, J.-C.; Berger, J.-P.; Casassus, S.; Duvert, G.; Lazareff, B.; Malbet, F.; Millan-Gabet, R.; Schreiber, M. R.; Traub, W.; Zins, G.

    2015-01-01

    Context. The properties of the inner disks of bright Herbig AeBe stars have been studied with near-infrared (NIR) interferometry and high resolution spectroscopy. The continuum (dust) and a few molecular gas species have been studied close to the central star; however, sensitivity problems limit direct information about the inner disks of the fainter T Tauri stars. Aims: Our aim is to measure some of the properties (inner radius, brightness profile, shape) of the inner regions of circumstellar disk surrounding southern T Tauri stars. Methods: We performed a survey with the VLTI/PIONIER recombiner instrument at H-band of 21 T Tauri stars. The baselines used ranged from 11 m to 129 m, corresponding to a maximum resolution of ~3 mas (~0.45 au at 150 pc). Results: Thirteen disks are resolved well and the visibility curves are fully sampled as a function of baseline in the range 45-130 m for these 13 objects. A simple qualitative examination of visibility profiles allows us to identify a rapid drop-off in the visibilities at short baselines(<10 Mλ) in 8 resolved disks. This is indicative of a significant contribution from an extended (R> 3 au, at 150 pc) contribution of light from the disk. We demonstrate that this component is compatible with scattered light, providing strong support to an earlier prediction. The amplitude of the drop-off and the amount of dust thermal emission changes from source to source suggesting that each disk is different. A by-product of the survey is the identification of a new milli-arcsec separation binary: WW Cha. Spectroscopic and interferometric data of AK Sco have also been fitted with a binary + disk model. Conclusions: The visibility data are reproduced well when thermal emission and scattering from dust are fully considered. The inner radii measured are consistent with the expected dust sublimation radii. The modelling of AK Sco suggests a likely coplanarity between the disk and the binary's orbital plane. Data obtained at the ESO

  3. Detectors for the James Webb Space Telescope near-infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Giorgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.; Brambora, Clifford; Connelly, Joe; Derro, Rebecca; DiPirro, Michael J.; Doria-Warner, Christina; Ericsson, Aprille; Glazer, Stuart D.; Greene, Charles; Hall, Donald N.; Jacobson, Shane; Jakobsen, Peter; Johnson, Eric; Johnson, Scott D.; Krebs, Carolyn; Krebs, Danny J.; Lambros, Scott D.; Likins, Blake; Manthripragada, Sridhar; Martineau, Robert J.; Morse, Ernie C.; Moseley, Samuel H.; Mott, D. Brent; Muench, Theo; Park, Hongwoo; Parker, Susan; Polidan, Elizabeth J.; Rashford, Robert; Shakoorzadeh, Kamdin; Sharma, Rajeev; Strada, Paolo; Waczynski, Augustyn; Wen, Yiting; Wong, Selmer; Yagelowich, John; Zuray, Monica

    2004-10-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope"s primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted λco ~ 5 μm Rockwell HAWAII-2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  4. Internal image motion compensation system for the Shuttle Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Parsons, E. K.; Powell, J. D.

    1980-01-01

    The Shuttle Infrared Telescope Facility (SIRTF) is being designed as a 1-m, cryogenically cooled telescope capable of a thirty-fold improvement over currently available infrared instruments. The SIRTF, mounted in the Orbiter bay on the Instrument Pointing System (IPS), requires that the image at the focal plane be stabilized to better than 0.1 arcsec with an absolute accuracy of 1 arcsec in order to attain this goal. Current estimates of IPS performance for both stability and accuracy indicate that additional stabilization will be necessary to meet the SIRTF requirements. An Image Motion Compensation (IMC) system, utilizing a Charge Coupled Device (CCD) star tracker located at the focal plane and a steerable mirror in the SIRTF optical path, has been designed to work in conjunction with the IPS.

  5. Optical Design Trade Study for the Wide Field Infrared Survey Telescope [WFIRST

    NASA Technical Reports Server (NTRS)

    Content, David A.; Goullioud, R.; Lehan, John P.; Mentzell, John E.

    2011-01-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics mission by the Astro2010 Decadal Survey incorporating the Joint Dark Energy Mission (JDEM)-Omega payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of NWNH, the WFIRST project has been working with the WFIRST science definition team (SDT) to refine mission and payload concepts. We present the driving requirements. The current interim reference mission point design, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slitless spectroscopy science channels, is consistent with the requirements, requires no technology development, and out performs the JDEM-Omega design.

  6. Large-Area Reflective Infrared Filters for Millimeter/Sub-mm Telescopes

    NASA Astrophysics Data System (ADS)

    Ahmed, Z.; Grayson, J. A.; Thompson, K. L.; Kuo, C.-L.; Brooks, G.; Pothoven, T.

    2014-09-01

    Ground-based millimeter and sub-millimeter telescopes are attempting to image the sky with ever-larger cryogenically-cooled bolometer arrays, but face challenges in mitigating the infrared loading accompanying large apertures. Absorptive infrared filters supported by mechanical coolers scale insufficiently with aperture size. Reflective metal-mesh filters placed behind the telescope window provide a scalable solution in principle, but have been limited by photolithography constraints to diameters under 300 mm. We present laser etching as an alternate technique to photolithography for fabrication of large-area reflective filters, and show results from lab tests of 500-mm-diameter filters. Filters with up to 700-mm diameter can be fabricated using laser etching with existing capability.

  7. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, G. G.

    1985-01-01

    Presented are scientific objectives, engineering analysis and design, and results of technology development for a Three-Meter Balloon-Borne Far-Infrared and Submillimeter Telescope. The scientific rationale is based on two crucial instrumental capabilities: high angular resolution which approaches eight arcseconds at one hundred micron wavelength, and high resolving power spectroscopy with good sensitivity throughout the telescope's 30-micron to 1-mm wavelength range. The high angular resolution will allow us to resolve and study in detail such objects as collapsing protostellar condensations in our own galaxy, clusters of protostars in the Magellanic clouds, giant molecular clouds in nearby galaxies, and spiral arms in distant galaxies. The large aperture of the telescope will permit sensitive spectral line measurements of molecules, atoms, and ions, which can be used to probe the physical, chemical, and dynamical conditions in a wide variety of objects.

  8. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.

  9. Pointing and control system design study for the space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J. N.; Sridhar, B.; Cochran, R. W.

    1984-01-01

    The design and performance of pointing and control systems for two space infrared telescope facility vehicles were examined. The need for active compensation of image jitter using the secondary mirror or other optical elements was determined. In addition, a control system to allow the telescope to perform small angle slews, and to accomplish large angle slews at the rate of 15 deg per minute was designed. Both the 98 deg and the 28 deg inclination orbits were examined, and spacecraft designs were developed for each. The results indicate that active optical compensation of line-of-sight errors is not necessary if the system is allowed to settle for roughly ten seconds after a slew maneuver. The results are contingent on the assumption of rigid body dynamics, and a single structural mode between spacecraft and telescope. Helium slosh for a half full 4000 liter tank was analyzed, and did not represent a major control problem.

  10. Infrared View of Comet Fragment G from W. M. Keck Telescope

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This view of Jupiter shows the plume from the impact of fragment G of Comet Shoemaker-Levy 9. The image was made at infrared wavelenths (2.2 microns) using the 10-meter W. M. Keck Telescope in Hawaii. Credit: Dr. Imke de Pater, Dr. James Graham, Michael Brown, and Michael Liu, University of California, and Dr. Marina Fomenkova, University of California at San Diego, W. M. Keck Observatory.

  11. A conceptual design study for the secondary mirror drive of the shuttle infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Sager, R. E.; Cox, D. W.

    1983-01-01

    Various conceptual designs for the secondary mirror actuator system to be used in the Shuttle Infrared Telescope Facility (SIRTF) were evaluated. In addition, a set of design concepts was developed to assist in the solution of problems crucial for optimum performance of the secondary mirror actuator system. A specific conceptual approach was presented along with a plan for developing that approach and identifying issues of critical importance in the developmental effort.

  12. An Infrared Optimized AO System for a 15 - 20m Class Telescope

    NASA Astrophysics Data System (ADS)

    Brandl, Bernhard R.; Eikenberry, Stephen S.; Herter, Terry L.; Kulkarni, Jayant

    2003-02-01

    Despite the relatively large number of proposed 'extremely large telescopes' very few of them concentrate on the thermal infrared as their main operating wavelengths. An IR-optimized large telescope located in the Atacama dessert at about 5500m altitude, where many atmospheric windows in the mid-IR open up, would be ideal to study astronomical targets that are either intrinsically red or heavily obscured by dust. A large aperture in the order of 15 - 20m requires adaptive optics correction out to λ<= 20 μm with the least possible thermal emission from the instrument itself. Here we discuss a specialized, integrated AO system that provides diffraction-limited performance in the thermal infrared (at λ>=2.5 μm). This approach is very different from the AO systems proposed for other 10m+ class telescopes. We present the basic concept of such an IR-optimized AO system, based on a 2m chopping adaptive secondary. We derive its technical specifications: configuration, bandwidth, and degrees of freedom show its predicted performance for typical seeing in terms of Strehl ratio as a function of limiting guide star magnitude, wavelength and corrected field-of-view. We also briefly address the science that this AO system/telescope would be ideal for.

  13. The Spitzer South Pole Telescope Deep Field: Survey Design and Infrared Array Camera Catalogs

    NASA Astrophysics Data System (ADS)

    Ashby, M. L. N.; Stanford, S. A.; Brodwin, M.; Gonzalez, A. H.; Martinez-Manso, J.; Bartlett, J. G.; Benson, B. A.; Bleem, L. E.; Crawford, T. M.; Dey, A.; Dressler, A.; Eisenhardt, P. R. M.; Galametz, A.; Jannuzi, B. T.; Marrone, D. P.; Mei, S.; Muzzin, A.; Pacaud, F.; Pierre, M.; Stern, D.; Vieira, J. D.

    2013-12-01

    The Spitzer South Pole Telescope Deep Field (SSDF) is a wide-area survey using Spitzer's Infrared Array Camera (IRAC) to cover 94 deg2 of extragalactic sky, making it the largest IRAC survey completed to date outside the Milky Way midplane. The SSDF is centered at (α, δ) = (23:30, -55:00), in a region that combines observations spanning a broad wavelength range from numerous facilities. These include millimeter imaging from the South Pole Telescope, far-infrared observations from Herschel/SPIRE, X-ray observations from the XMM XXL survey, near-infrared observations from the VISTA Hemisphere Survey, and radio-wavelength imaging from the Australia Telescope Compact Array, in a panchromatic project designed to address major outstanding questions surrounding galaxy clusters and the baryon budget. Here we describe the Spitzer/IRAC observations of the SSDF, including the survey design, observations, processing, source extraction, and publicly available data products. In particular, we present two band-merged catalogs, one for each of the two warm IRAC selection bands. They contain roughly 5.5 and 3.7 million distinct sources, the vast majority of which are galaxies, down to the SSDF 5σ sensitivity limits of 19.0 and 18.2 Vega mag (7.0 and 9.4 μJy) at 3.6 and 4.5 μm, respectively.

  14. The balloon experimental twin telescope for infrared interferometry (BETTII): optical design

    NASA Astrophysics Data System (ADS)

    Veach, Todd J.; Rinehart, Stephen A.; Mentzell, John E.; Silverberg, Robert F.; Fixsen, Dale J.; Rizzo, Maxime J.; Dhabal, Arnab; Gibbons, Caitlin E.; Benford, Dominic J.

    2014-07-01

    Here we present the optical and limited cryogenic design for The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an 8-meter far-infrared interferometer designed to fly on a high-altitude scientific balloon. The optical design is separated into warm and cold optics with the cold optics further separated into the far-infrared (FIR) (30-90 microns) and near-infrared (NIR) (1-3 microns). The warm optics are comprised of the twin siderostats, twin telescopes, K-mirror, and warm delay line. The cold optics are comprised of the cold delay line and the transfer optics to the FIR science detector array and the NIR steering array. The field of view of the interferometer is 2', with a wavelength range of 30-90 microns, 0.5" spectral resolution at 40 microns, R~200 spectral resolution, and 1.5" pointing stability. We also present the design of the cryogenic system necessary for operation of the NIR and FIR detectors. The cryogenic system consists of a `Buffered He-7' type cryogenic cooler providing a cold stage base temperature of < 280mK and 10 micro-Watts of heat lift and a custom in-house designed dewar that nominally provides sufficient hold time for the duration of the BETTII flight (24 hours).

  15. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  16. Cryogenic far-infrared laser absorptivity measurements of the Herschel Space Observatory telescope mirror coatings.

    PubMed

    Fischer, Jacqueline; Klaassen, Tjeerd; Hovenier, Niels; Jakob, Gerd; Poglitsch, Albrecht; Sternberg, Oren

    2004-07-01

    Far-infrared laser calorimetry was used to measure the absorptivity, and thus the emissivity, of aluminum-coated silicon carbide mirror samples produced during the coating qualification run of the Herschel Space Observatory telescope to be launched by the European Space Agency in 2007. The samples were measured at 77 K to simulate the operating temperature of the telescope in its planned orbit about the second Lagrangian point, L2, of the Earth-Sun system. Together, the telescope's equilibrium temperature in space and the emissivity of the mirror surfaces will determine the far-infrared-submillimeter background and thus the sensitivity of two of the three astronomical instruments aboard the observatory if stray-light levels can be kept low relative to the mirror emission. Absorptivities of both clean and dust-contaminated samples were measured at 70, 118, 184, and 496 microm. Theoretical fits to the data predict absorptivities of 0.2-0.4% for the clean sample and 0.2-0.8% for the dusty sample, over the spectral range of the Herschel Space Observatory instruments. PMID:15250543

  17. Aspects of mechanical design for an infrared robotic telescope in Antarctica: IRAIT

    NASA Astrophysics Data System (ADS)

    Di VArano, Igor

    2006-09-01

    The purpose of this thesis is to focus attention on the mechanical aspects in designing an infrared telescope, IRAIT (International Robotic Antarctic Infrared Telescope), with aperture size of 80 cm, f#=21, entirely robotic and remote controlled, which must operate at Dome C, on Antarctic Plateau, starting on Summer 2007. Before illustrating in detail the choice criteria of different mechanical components, in order to satisfy stress requirements and structural verification, and the final design solutions we have adopted,firstly a few tissues must be considered. They mainly concern the preference for Dome C as probably the best observing site in the world, the scientific targets, instruments and tools necessary to reach such goals. The mechanical structure of telescope has been analyzed, and results retrieved by the static and dynamic analysis through a finite element software are illustrated. They concern the behavior of single parts, subassemblies and overall structure to active loads applied. It is shown that, as a matter of fact, thermal stress can be reckoned as the most influent of all static loads. A dynamic analysis of some critical subassemblies was used,in order to determine the frequency response of the system aiming at its best insulation from vibrations.

  18. Infrared Telescope Facility's Spectrograph Observations of Human-Made Space Objects

    NASA Technical Reports Server (NTRS)

    Abercromby, K.; Buckalew, B.; Abell, P.; Cowardin, H.

    2015-01-01

    Presented here are the results of the Infrared Telescope Facility (IRTF) spectral observations of human-made space objects taken from 2006 to 2008. The data collected using the SpeX infrared spectrograph cover the wavelength range 0.7-2.5 micrometers. Overall, data were collected on 20 different orbiting objects at or near the geosynchronous (GEO) regime. Four of the objects were controlled spacecraft, seven were non-controlled spacecraft, five were rocket bodies, and the final four were cataloged as debris pieces. The remotely collected data are compared to the laboratory-collected reflectance data on typical spacecraft materials, thereby general materials are identified but not specific types. These results highlight the usefulness of observations in the infrared by focusing on features from hydrocarbons, silicon, and thermal emission. The spacecraft, both the controlled and non-controlled, show distinct features due to the presence of solar panels, whereas the rocket bodies do not. Signature variations between rocket bodies, due to the presence of various metals and paints on their surfaces, show a clear distinction from those objects with solar panels, demonstrating that one can distinguish most spacecraft from rocket bodies through infrared spectrum analysis. Finally, the debris pieces tend to show featureless, dark spectra. These results show that the laboratory data in its current state give excellent indications as to the nature of the surface materials on the objects. Further telescopic data collection and model updates to include noise, surface roughness, and material degradation are necessary to make better assessments of orbital object material types. However, based on the current state of the comparison between the observations and the laboratory data, infrared spectroscopic data are adequate to classify objects in GEO as spacecraft, rocket bodies, or debris.

  19. Configuration trade-offs for the Space Infrared Telescope Facility pointing control system

    NASA Technical Reports Server (NTRS)

    Pue, A. J.; Strohbehn, K.; Hunt, J. W.

    1985-01-01

    Conceptual pointing control system designs for the Space Infrared Telescope Facility (SIRTF) are examined in terms of fine guidance pointing and large-angle slewing accuracies. In particular, basic trade-offs between body pointing only and body pointing plus image motion compensation (IMC) are considered using a steady-state linear covariance analysis to compute rms pointing errors. It is shown that body pointing can provide good performance during nominal fine pointing but limits the telescope capability to rapidly slew and acquire targets. Overall, body pointing plus IMC would offer superior performance but must be judged against the difficulties posed by the attitude sensor noise and the higher cost and complexity of IMC. It is recommended that improved sensor designs be pursued while slewing performance be enhanced by a combination of an appropriate command profile and control compensation.

  20. The James Webb Space Telescope's Near-Infrared Camera (NIRCam): Making Models, Building Understanding

    NASA Astrophysics Data System (ADS)

    McCarthy, D. W., Jr.; Lebofsky, L. A.; Higgins, M. L.; Lebofsky, N. R.

    2011-09-01

    Since 2003, the Near Infrared Camear (NIRCam) science team for the James Webb Space Telescope (JWST) has conducted "Train the Trainer" workshops for adult leaders of the Girl Scout of the USA (GSUSA), engaging them in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. Training includes topics in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extra-solar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. Participants become part of our world-wide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking.

  1. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  2. Design of a new 1-5.5-um infrared camera for the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Rayner, John T.; Shure, Mark A.; Toomey, Douglas W.; Onaka, Peter M.; Denault, Anthony J.; Stahlberger, Werner E.; Watanabe, Darryl; Criez, K.; Robertson, L.; Cook, D.; Kidger, Michael J.

    1993-10-01

    The design of a multipurpose 1 - 5.5 micrometers infrared camera (NSFCAM) for the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, is described. The camera is built around the new 256 X 256 InSb array manufactured by Santa Barbara Research Center (SBRC) and incorporates a variety of observing modes to fulfill its role as a major facility instrument. These include three remotely-selectable image scales, a selection of fixed bandpass filters, R equals 50 - 100 spectral resolution circularly variable filters, a grism, coronographic masks, and a polarization imaging capability. Through the use of flexible array clocking schemes, driven by programmable digital signal processors (DSPs), we plan to implement several new operating modes, including real-time shift and add for image stabilization, and fast subarray readouts for occultations. Simultaneous optical and infrared imaging of the same field will be possible through the use of a cold dichroic beamsplitter. This feature is primarily intended for use with the IRTF tip-tilt image stabilization system currently being built. Given a suitable guide star, the camera should achieve near-diffraction limited imaging at 2 - 5 micrometers . In this paper we discuss the design of the optics, cryogenic, electronics and software needed to provide the camera with these capabilities.

  3. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  4. A balloon-borne 102-cm telescope for far-infrared astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1990-01-01

    In the early 1970's, the Smithsonian Astrophysical Observatory and the University of Arizona engaged in a cooperative program to develop a balloon-borne 102-cm telescope capable of carrying out far infrared (40 to 250 micron) observations of astronomical interest above the earth's atmosphere. Since 1972, the telescope has flown and successfully recovered a total of nineteen times. Thirteen of the flights produced high-quality astronomical data, resulting in more than 92.5 hours of photometric and spectroscopic observations of numerous objects, such as H 2 regions, dark clouds, molecular clouds, a planetary nebula, a galaxy, the galactic center, the planets, and an asteroid. From the launch site in Palestine, Texas, sources as far south as -50 degrees declination were observed. The balloon-borne telescope was one of the most sensitive instruments ever used for observation in the far infrared region of the spectrum. It was most productive in producing high resolution maps of large areas (typically square degrees) centered on known H 2 regions, molecular clouds, and dark cloud complexes. In many cases, these scans produced the first far infrared maps of these regions, and many new sources were discovered. The results have led to a better understanding of the distribution of gas and dust in these regions, the evolution of H 2 regions, and the processes of star formation in giant molecular clouds. The following topics are presented: (1) the focal plane instrumentation; (2) the history and flight record; (3) scientific results and publications; (4) eduational aspects; and (5) future planes.

  5. Estimating the Supernova Cosmological Constraints Possible With the Wide-Field Infrared Survey Telescope

    NASA Astrophysics Data System (ADS)

    Currie, Miles; Rubin, David; Aldering, Greg Scott; Baltay, Charles; Fagrelius, Parker; Law, David R.; Perlmutter, Saul; Pontoppidan, Klaus

    2016-01-01

    The proposed Wide-Field Infrared Survey Telescope (WFIRST) supernova survey will measure precision distances continuously in redshift to 1.7 with excellent systematics control. However, the Science Definition Team report presented a idealized version of the survey, and we now work to add realism. Using SNe from HST programs, we investigate the expected contamination from the host-galaxy light to estimate required exposure times. We also present estimates of purity and completeness, generated by degrading well-measured nearby SN spectra to WFIRST resolution and signal-to-noise. We conclude with a more accurate prediction of the cosmological constraints possible with WFIRST SNe.

  6. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.; Hoffmann, William F.; Harper, Doyal A.

    1988-01-01

    The scientific objectives, engineering analysis and design, results of technology development, and focal-plane instrumentation for a two-meter balloon-borne telescope for far-infrared and submillimeter astronomy are presented. The unique capabilities of balloon-borne observations are discussed. A program summary emphasizes the development of the two-meter design. The relationship of the Large Deployable Reflector (LDR) is also discussed. Detailed treatment is given to scientific objectives, gondola design, the mirror development program, experiment accommodations, ground support equipment requirements, NSBF design drivers and payload support requirements, the implementation phase summary development plan, and a comparison of three-meter and two-meter gondola concepts.

  7. A secondary wobbling mechanism for a balloon-borne infrared telescope

    NASA Astrophysics Data System (ADS)

    Matsuhara, Hideo; Hiromoto, Norihisa; Shibai, Hiroshi; Nakagawa, Takao; Okuda, Haruyuki; Maihara, Toshinori

    1991-11-01

    A wobbling mechanism for a secondary mirror has been developed for a balloon-borne infrared telescope. Friction of the wobbling mechanism is negligibly small, and hence the wobbling mechanism is very reliable for the use in a severe environment at balloon altitudes. Motion is controlled by servo electronics, whose transfer function includes the second-order differential term of the error signal in order to improve the waveform. Good performance of the drive mechanism has been confirmed in two balloon flights in 1988 at an altitude of 31 km.

  8. Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Henegar, Greg; Hill, robert J.; Johnson, Thomas; Lindler, Don J.; Manthripragada, Sridhar S.; Marshall, Ceryl; Mott, Brent; Parr, Thomas M.; Roher, Wayne D.; Shakoorzadeh, Kamdin B.; Smith, Miles; Waczynski, Augustyn; Wen, Yiting; Wilson, Donna; Xia-Serafino, Wei

    2007-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins.

  9. The Near Infrared Spectrograph on the James Webb Space Telescope: Instrument Overview and User Interface Development

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Beck, Tracy; Karakla, Diane M.; Kassin, Susan; Keyes, Tony; Muzerolle, James; Pavlovsky, Cheryl; Soderblom, David; Ubeda, Leonardo

    2015-08-01

    The Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope will provide astronomers the ability to observe through fixed slits, the integral field unit, or in multi-object mode with the micro-shutter array, at spectral resolutions of R ˜ 100, 1000, and 2700. The combination of JWST’s sensitivity and superb resolution in the infrared and NIRSpec’s full wavelength coverage from 0.6 to 5 μm will open new parameter space for studies of galaxies and resolved stellar populations alike. We will provide a general overview of the NIRSpec instrument and the user interface development, including proposal planning and the data calibration and reduction pipeline. We will discuss the capabilities of NIRSpec for survey science, and introduce the science use cases that are being used to drive development of the NIRSpec user interfaces.

  10. Detectors for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Georgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.

    2004-01-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope's primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted lambda (sub co) approximately 5 micrometer Rockwell HAWAII- 2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  11. A Compact Infrared Space Telescope MIRIS and its Preliminary Observational Results

    NASA Astrophysics Data System (ADS)

    Han, Wonyong; Pyo, Jeonghyun; Kim, Il-Joong; Lee, Dae-Hee; Jeong, Woong-Seob; Moon, Bongkon; Park, Youngsik; Park, Sung-Joon; Lee, Dukhang; Park, Won-Kee; Ko, Kyeongyeon; Kim, Min Gyu; Nam, Uk-Won; Park, Hong-Young; Lee, Hyung Mok; Matsumoto, Toshio

    2015-08-01

    The first Korean infrared space telescope MIRIS (Milti-purpose InfraRed Imaging System) was successfully launched in November 2013, as the main payload of Korean STSAT-3 (Science and Technology Satellite-3). After the initial on-orbit operation for verification, the observations are made with MIRIS for the fluctuation of Cosmic Infrared Background (CIB) and the Galactic Plane survey. For the study of near-infrared background, MIRIS surveyed large areas (> 10° x 10°) around the pole regions: the north ecliptic pole (NEP), the north and south Galactic poles (NGP, SGP), while the NEP region is continually monitored for the instrumental calibration and the zodiacal light study. In addition, the Paschen-α Galactic plane survey has been made with two narrow-band filters (at 1.88 μm and 1.84+1.92 μm) for the study of warm interstellar medium. We plan to continue surveying the entire galactic plane with the latitude of ±3°, and expect to be completed by 2015. The data are still under the stage of reduction and analysis, and guest observations are on-going. We present some of the preliminary results.

  12. Towards Background-Limited Kinetic Inductance Detectors for a Cryogenic Far-Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Fyhrie, A.; Glenn, J.; Wheeler, J.; Day, P.; Eom, B. H.; Leduc, H.; Skrutskie, M.

    2016-02-01

    Arrays of tens of thousands of sensitive far-infrared detectors coupled to a cryogenic 4-6 m class orbital telescope are needed to trace the assembly of galaxies over cosmic time. The sensitivity of a 4 Kelvin telescope observing in the far-infrared (30-300 \\upmu m) would be limited by zodiacal light and Galactic interstellar dust emission, and require broadband detector noise equivalent powers (NEPs) in the range of 3× 10^{-19} W/√{Hz} . We are fabricating and testing 96 element arrays of lumped-element kinetic inductance detectors (LEKIDs) designed to reach NEPs near this level in a low-background laboratory environment. The LEKIDs are fabricated with aluminum: the low normal-state resistivity of Al permits the use of very thin wire-grid absorber lines (150 nm) for efficient absorption of radiation, while the small volumes enable high sensitivities because quasiparticle densities are high. Such narrow absorption lines present a fabrication challenge, but we deposit TiN atop the Al to increase the robustness of the detectors and achieve a 95 % yield. We present the design of these Al/TiN bilayer LEKIDs and preliminary sensitivity measurements at 350 \\upmu m optically loaded by cold blackbody radiation.

  13. Another 5 Years of Operation for the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Tokunaga, Alan T.; Bus, S. J.; Rayner, J. T.; Tollestrup, E. V.

    2008-09-01

    The 3.0-m NASA Infrared Telescope Facility is funded by the Planetary Astronomy Program and is located near the summit of Mauna Kea. The IRTF was established to obtain solar system observations of interest to NASA. Proposals are accepted twice a year on 01 April and 01 October. A new Cooperative Agreement to operate the IRTF was approved for the time period Feb. 2008 to Jan. 2013. We currently offer a suite of facility instruments that cover the 1--25 μm spectral region, and details can be found at: http://irtfweb.ifa.hawaii.edu/. We offer flexible remote observing that allows convenient access to the telescope with observing blocks as short as one hour. In the coming year we plan to upgrade our moderate resolution spectrograph (SpeX) with a new infrared array as well as to begin work on a high spectral resolution (λ/Δ λ 70,000) cross-dispersed spectrograph for 1--5 μm.

  14. Towards Background-Limited Kinetic Inductance Detectors for a Cryogenic Far-Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Fyhrie, A.; Glenn, J.; Wheeler, J.; Day, P.; Eom, B. H.; Leduc, H.; Skrutskie, M.

    2016-08-01

    Arrays of tens of thousands of sensitive far-infrared detectors coupled to a cryogenic 4-6 m class orbital telescope are needed to trace the assembly of galaxies over cosmic time. The sensitivity of a 4 Kelvin telescope observing in the far-infrared (30-300 \\upmu m) would be limited by zodiacal light and Galactic interstellar dust emission, and require broadband detector noise equivalent powers (NEPs) in the range of 3× 10^{-19} W/√{Hz}. We are fabricating and testing 96 element arrays of lumped-element kinetic inductance detectors (LEKIDs) designed to reach NEPs near this level in a low-background laboratory environment. The LEKIDs are fabricated with aluminum: the low normal-state resistivity of Al permits the use of very thin wire-grid absorber lines (150 nm) for efficient absorption of radiation, while the small volumes enable high sensitivities because quasiparticle densities are high. Such narrow absorption lines present a fabrication challenge, but we deposit TiN atop the Al to increase the robustness of the detectors and achieve a 95 % yield. We present the design of these Al/TiN bilayer LEKIDs and preliminary sensitivity measurements at 350 \\upmu m optically loaded by cold blackbody radiation.

  15. Scientific and Mission Requirements of Next-generation Space Infrared Space Telescope SPICA

    NASA Astrophysics Data System (ADS)

    Matsuhara, Hideo; Nakagawa, Takao; Ichikawa, Takashi; Takami, Michihiro; Sakon, Itsuki

    SPICA (Space Infrared Telescope for Cosmology Astrophysics) is a next-generation space tele-scope for mid-and far-infrared astronomy, based on the heritage of AKARI, Spitzer, and Her-schel, Here we introduce Mission Requirement Document (MRD), where scientific and mission requirement of SPICA are described. The MRD clarifies the objectives of the SPICA mission. These objectives are more concretely expressed by various scientific targets, and based on these targets, the mission requirements, such as required specifications of the mission instrumenta-tions, scientific operations etc. are defined. Also the success criteria, by which the evaluation of the mission achievement will be addressed, are clearly described. The mission requirements described here will give the baseline of the study of the system requirements. In the future, The MRD will also be used to confirm the development status, system performance, and operational results on orbit etc. are well in-line with the mission requirements. To summarize, the most important mission requirement of SPICA is to realize a large, mono-lithic (not segmented) 3-m class or larger mirror cooled down below 6K, in order to perform extremely deep imaging and spectroscopy at 5-210µm.

  16. Aberration-corrected concave grating for the mid-infrared spectrometer aboard the Infrared Telescope in Space.

    PubMed

    Onaka, T

    1995-02-01

    A mechanically ruled aberration-corrected concave grating was developed for use in the low-resolution mid-infrared spectrometer aboard the cryogenically cooled Infrared Telescope in Space. The design and the performance testing of the grating are reported. The spectrometer requires a wide spectral range (4.5-11.7 µm) and a wide field of view (8 × 8 arcmin) with a low wavelength resolution (Δλ ≤ 0.3 µm). The aberration-corrected concave grating provides a flat focal plane with a small aberration in the spatial direction compared with those caused by the finite size of the entrance slit. It also permits a simple design for the spectrometer, which is advantageous for applications in space cryogenic instruments. The measurements of the wavelength resolution and the spatial resolution are shown to be in good agreement with the predicted performance. The diffraction efficiency of the grating is more than 80% at the blaze wavelength (6 µm) and fairly high (>30%) over the entire wavelength range in question. The grating produces polarization of less than 10% for λ < 6.4 µm and of 10-20% for 6.7 µm <λ 9.7 µm. These results indicate the potential applicability of this type of grating to the wide-field IR spectroscopic observations. PMID:20963166

  17. TALC: a new deployable concept for a 20m far-infrared space telescope

    NASA Astrophysics Data System (ADS)

    Durand, Gilles; Sauvage, Marc; Bonnet, Aymeric; Rodriguez, Louis; Ronayette, Samuel; Chanial, Pierre; Scola, Loris; Révéret, Vincent; Aussel, Hervé; Carty, Michael; Durand, Matthis; Durand, Lancelot; Tremblin, Pascal; Pantin, Eric; Berthe, Michel; Martignac, Jérôme; Motte, Frédérique; Talvard, Michel; Minier, Vincent; Bultel, Pascal

    2014-08-01

    TALC, Thin Aperture Light Collector is a 20 m space observatory project exploring some unconventional optical solutions (between the single dish and the interferometer) allowing the resolving power of a classical 27 m telescope. With TALC, the principle is to remove the central part of the prime mirror dish, cut the remaining ring into 24 sectors and store them on top of one-another. The aim of this far infrared telescope is to explore the 600 μm to 100 μm region. With this approach we have shown that we can store a ring-telescope of outer diameter 20m and ring thickness of 3m inside the fairing of Ariane 5 or Ariane 6. The general structure is the one of a bicycle wheel, whereas the inner sides of the segments are in compression to each other and play the rule of a rim. The segments are linked to each other using a pantograph scissor system that let the segments extend from a pile of dishes to a parabolic ring keeping high stiffness at all time during the deployment. The inner corners of the segments are linked to a central axis using spokes as in a bicycle wheel. The secondary mirror and the instrument box are built as a solid unit fixed at the extremity of the main axis. The tensegrity analysis of this structure shows a very high stiffness to mass ratio, resulting into 3 Hz Eigen frequency. The segments will consist of two composite skins and honeycomb CFRP structure build by replica process. Solid segments will be compared to deformable segments using the controlled shear of the rear surface. The adjustment of the length of the spikes and the relative position of the side of neighbor segments let control the phasing of the entire primary mirror. The telescope is cooled by natural radiation. It is protected from sun radiation by a large inflatable solar screen, loosely linked to the telescope. The orientation is performed by inertia-wheels. This telescope carries a wide field bolometer camera using cryocooler at 0.3K as one of the main instruments. This

  18. A near-infrared interferometric survey of debris disc stars. II. CHARA/FLUOR observations of six early-type dwarfs

    NASA Astrophysics Data System (ADS)

    Absil, O.; di Folco, E.; Mérand, A.; Augereau, J.-C.; Coudé du Foresto, V.; Defrère, D.; Kervella, P.; Aufdenberg, J. P.; Desort, M.; Ehrenreich, D.; Lagrange, A.-M.; Montagnier, G.; Olofsson, J.; ten Brummelaar, T. A.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Turner, N. H.

    2008-09-01

    Aims: We aim at directly detecting the presence of optically thin circumstellar dust emission within the terrestrial planetary zone around main sequence stars known to harbour cold debris discs. The present study focuses on a sample of six bright A- and early F-type stars. Methods: High-precision interferometric observations have been obtained in the near-infrared K band with the FLUOR instrument installed on the CHARA Array. The measured squared visibilities are compared to the expected visibility of the stellar photospheres based on theoretical photospheric models taking into account rotational distortion. We search for potential visibility reduction at short baselines, a direct piece of evidence for resolved circumstellar emission. Results: Our observations bring to light the presence of resolved circumstellar emission around one of the six target stars (ζ Aql) at the 5σ level. The morphology of the emission source cannot be directly constrained because of the sparse spatial frequency sampling of our interferometric data. Using complementary adaptive optics observations and radial velocity measurements, we find that the presence of a low-mass companion is a likely origin for the excess emission. The potential companion is characterised by a K-band contrast of four magnitudes. It has a most probable mass of about 0.6~M⊙ and is expected to orbit between about 5.5 AU and 8 AU from its host star assuming a purely circular orbit. Nevertheless, by adjusting a physical debris disc model to the observed Spectral Energy Distribution of the ζ Aql system, we also show that the presence of hot dust within 10 AU from ζ Aql, producing a total thermal emission equal to 1.69 ± 0.31% of the photospheric flux in the K band, is another viable explanation for the observed near-infrared excess. Our re-interpretation of archival near- to far-infrared photometric measurements shows however that cold dust is not present around ζ Aql at the sensitivity limit of the IRS and MIPS

  19. Near-infrared imaging of FSC 10214+4724 with the W. M. Keck Telescope

    NASA Technical Reports Server (NTRS)

    Matthews, K.; Soifer, B. T.; Nelson, J.; Boesgaard, H.; Graham, J. R.; Harrison, W.; Irace, W.; Jernigan, G.; Larkin, J. E.; Lewis, H.

    1994-01-01

    Near-infrared observations of the z = 2.286 IRAS source FSC 10214+4724, made with the near-infrared camera on the W. M. Keck Telescope, are reported. Deep broad-band images at 2.15 and 1.27 micrometers, and narrow-band images at 2.165 and 2.125 micrometers with 0.6 sec to 0.9 sec seeing show that FSC 10214+4724 consists of at least three distinct components in a compact group of galaxies. The source of the infrared luminosity appears to be in a strongly interacting galaxy that has a luminosity of approximately 100 times that of a present-day L* galaxy. The interaction suggests and 'age' of this galaxy of approximately equal to 10(exp 9) yr. The H-alpha emission is resolved as a source of diameter approximately equal to 5 kpc, suggesting that a starburst contributes to the observed H-alpha emission. There is an excess of objects in the FSC 10214+4724 field that could represent galaxies in an associated cluster.

  20. Far-infrared BRDFs and reflectance spectra of candidate SOFIA telescope, cavity, and focal-plane instrument surfaces

    NASA Astrophysics Data System (ADS)

    Meyer, Allan W.; Smith, Sheldon M.; Koerber, Christopher T.

    2000-06-01

    The far-infrared reflectance and scattering properties of telescope surfaces, surrounding cavity walls, and surfaces within focal-plane instruments can be significant contributors to background noise. Radiation from sources well off-axis, such as the earth, moon or aircraft engines may be multiply scattered by the cavity walls and/or surface facets of a complex telescope structure. The Non-Specular Reflectometer at NASA Ames Research Center was reactivated and upgraded, and used to measure reflectance and Bi- directional Reflectance Distribution Functions for samples of planned telescope system structural materials and associated surface treatments.

  1. The close environment of high-mass X-ray binaries at high angular resolution. I. VLTI/AMBER and VLTI/PIONIER near-infrared interferometric observations of Vela X-1

    NASA Astrophysics Data System (ADS)

    Choquet, É.; Kervella, P.; Le Bouquin, J.-B.; Mérand, A.; Berger, J.-P.; Haubois, X.; Perrin, G.; Petrucci, P.-O.; Lazareff, B.; Pott, J.-U.

    2014-01-01

    Context. Recent improvements in the sensitivity and spectral resolution of X-ray observations have led to a better understanding of the properties of matter in the near vicinity of high-mass X-ray binaries (HMXB) hosting a supergiant star and a compact object. However, the geometry and physical properties of their environments on larger scales (up to a few stellar radii) are currently only predicted by simulations but have never been directly observed. Aims: We aim to explore the environment of Vela X-1 at a few stellar radii (R⋆) of the supergiant using spatially resolved observations in the near-infrared, and to study its dynamical evolution along the nine-day orbital period of the system. Methods: We observed Vela X-1 in 2010 and 2012 using near-infrared long baseline interferometry at the Very Large Telescope Interferometer (VLTI), respectively with the AMBER instrument in the K band (medium spectral resolution), and the PIONIER instrument in the H band (low spectral resolution). The PIONIER observations span one orbital period to monitor possible evolutions in the geometry of the system. Results: We resolved a structure of 8 ± 3 R⋆ from the AMBER K-band observations, and 2.0-1.2+0.7R* from the PIONIER H-band data. From the closure phase observable, we found that the circumstellar environment of Vela X-1 is symmetrical in the near-infrared. We observed comparable interferometric measurements between the continuum and the spectral lines in the K band, meaning that both emissions originate from the same forming region. From the monitoring of the system over one period in the H band in 2012, we found the signal to be constant with the orbital phase within the error bars. Conclusions: We propose three possible scenarios for this discrepancy between the two measurements: 1) there is a strong temperature gradient in the supergiant wind, leading to a hot component that is much more compact than the cool part of the wind observed in the K band; 2) we observed a

  2. Robust determination of optical path difference: fringe tracking at the infrared optical telescope array interferometer.

    PubMed

    Pedretti, Ettore; Traub, Wesley A; Monnier, John D; Millan-Gabet, Rafael; Carleton, Nathaniel P; Schloerb, F Peter; Brewer, Michael K; Berger, Jean-Philippe; Lacasse, Marc G; Ragland, Sam

    2005-09-01

    We describe the fringe-packet tracking system used to equalize the optical path lengths at the Infrared Optical Telescope Array interferometer. The measurement of closure phases requires obtaining fringes on three baselines simultaneously. This is accomplished by use of an algorithm based on double Fourier interferometry for obtaining the wavelength-dependent phase of the fringes and a group-delay tracking algorithm for determining the position of the fringe packet. A comparison of data acquired with and without the fringe-packet tracker shows a factor of approximately 3 reduction of the error in the closure-phase measurement. The fringe-packet tracker has been able so far to track fringes with signal-to-noise ratios as low as 1.8 for stars as faint as mH = 7.0. PMID:16149339

  3. Science yield estimate with the Wide-Field Infrared Survey Telescope coronagraph

    NASA Astrophysics Data System (ADS)

    Traub, Wesley A.; Breckinridge, James; Greene, Thomas P.; Guyon, Olivier; Jeremy Kasdin, N.; Macintosh, Bruce

    2016-01-01

    The coronagraph instrument (CGI) on the Wide-Field Infrared Survey Telescope will directly image and spectrally characterize planets and circumstellar disks around nearby stars. Here we estimate the expected science yield of the CGI for known radial-velocity (RV) planets and potential circumstellar disks. The science return is estimated for three types of coronagraphs: the hybrid Lyot and shaped pupil are the currently planned designs, and the phase-induced amplitude apodizing complex mask coronagraph is the backup design. We compare the potential performance of each type for imaging as well as spectroscopy. We find that the RV targets can be imaged in sufficient numbers to produce substantial advances in the science of nearby exoplanets. To illustrate the potential for circumstellar disk detections, we estimate the brightness of zodiacal-type disks, which could be detected simultaneously during RV planet observations.

  4. Scattering characteristics of Martin Black at 118 microns. [from Infrared Astronomical Satellite telescope baffles

    NASA Technical Reports Server (NTRS)

    Brooks, L. D.; Hubbs, J. E.; Bartell, F. O.; Wolfe, W. L.

    1982-01-01

    BRDF (bidirectional reflectance distribution function) values for 0.000118 m radiation at different angles of incidence and different scattering angles from the Infrared Astronomical Satellite telescope baffle coated with Martin Black are presented. Data from scatterometer experiments are collected and the BRDF and beta - beta sub 0 (sin theta sub s - sin theta sub 0) values are calculated based on the geometry, the voltage readings, the attenuators in the beam, and the calculated reference levels. A composite curve of forward and backward scattering data for several angles of incidence shows a peak near the specular direction (beta - beta sub 0 = 0), which is the instrument profile reduced by the 20% specular reflection of the Martin Black. The nonspecular part of the reflectivity indicates the slightly specular but largely Lambertian character of the coating. Data for the specular reflectivity as a function of the incidence angle unexpectedly shows a decrease in the specular reflectance with increasing angle of incidence.

  5. IO:I, a near-infrared camera for the Liverpool Telescope

    NASA Astrophysics Data System (ADS)

    Barnsley, Robert M.; Jermak, Helen E.; Steele, Iain A.; Smith, Robert J.; Bates, Stuart D.; Mottram, Chris J.

    2016-01-01

    IO:I is a new instrument that has recently been commissioned for the Liverpool Telescope, extending current imaging capabilities beyond the optical and into the near-infrared. Cost has been minimized by the use of a previously decommissioned instrument's cryostat as the base for a prototype and retrofitting it with Teledyne's 1.7-μm cutoff Hawaii-2RG HgCdTe detector, SIDECAR ASIC controller, and JADE2 interface card. The mechanical, electronic, and cryogenic aspects of the cryostat retrofitting process will be reviewed together with a description of the software/hardware setup. This is followed by a discussion of the results derived from characterization tests, including measurements of read noise, conversion gain, full well depth, and linearity. The paper closes with a brief overview of the autonomous data reduction process and the presentation of results from photometric testing conducted on on-sky, pipeline processed data.

  6. A dc-coupled, high sensitivity bolometric detector system for the Infrared Telescope in Space

    NASA Technical Reports Server (NTRS)

    Devlin, M.; Lange, A. E.; Wilbanks, T.; Sato, S.

    1993-01-01

    We report the performance of an ac bridge readout system that has been developed for use on the Infrared Telescope in Space which is scheduled for launch in 1994. The ac bridge readout provides excellent dc stability enabling observing strategies well-suited to space-borne observations. The ability to modulate the optical signal slowly allows the use of new, highly sensitive, long time-constant bolometers. At 300 mK, the bolometers have an electrical noise equivalent power of 3 x 10 exp -17 W/sq rt Hz. The total noise of the differential signal, including amplifier noise, is less than 8 x 10 exp -17 W/sq rt Hz at frequencies as low as 35 mHz.

  7. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, G. G.

    1985-01-01

    This is the second Semiannual Report submitted under Grant NAGW-509 for the development of a Balloon-Borne Three-Meter Telescope for Far-Infrared and Submillimeter Astronomy. It covers the period 1 March 1984 through 31 August 1984. This grant covers work at the Smithsonian Astrophysical Observatory (SAO), University of Arizona (UA) and the University of Chicago (UC). SAO is responsible for program management, the gondola structure including the attitude control and aspect systems, mechanical systems, and telemetry and command systems; the UA is responsible for optics design and fabrication; the UC is responsible for determining provisions for focal-plane instrumentation. SAO and the UA share responsibility for the ground support data and control computer.

  8. Robust determination of optical path difference: fringe tracking at the Infrared Optical Telescope Array interferometer

    SciTech Connect

    Pedretti, Ettore; Traub, Wesley A.; Monnier, John D.; Millan-Gabet, Rafael; Carleton, Nathaniel P.; Schloerb, F. Peter; Brewer, Michael K.; Berger, Jean-Philippe; Lacasse, Marc G.; Ragland, Sam

    2005-09-01

    We describe the fringe-packet tracking system used to equalize the optical path lengths at the Infrared Optical Telescope Array interferometer. The measurement of closure phases requires obtaining fringes on three baselines simultaneously. This is accomplished by use of an algorithm based on double Fourier interferometry for obtaining the wavelength-dependent phase of the fringes and a group-delay tracking algorithm for determining the position of the fringe packet. A comparison of data acquired with and without the fringe-packet tracker shows a factor of {approx}3 reduction of the error in the closure-phase measurement. The fringe-packet tracker has been able so far to track fringes with signal-to-noise ratios as low as 1.8 for stars as faint as m{sub H}=7.0.

  9. Near-infrared detection of WD 0806-661 B with the Hubble space telescope

    SciTech Connect

    Luhman, K. L.; Esplin, T. L.; Morley, C. V.; Burgasser, A. J.; Bochanski, J. J.

    2014-10-10

    WD 0806-661 B is one of the coldest known brown dwarfs (T {sub eff} = 300-345 K) based on previous mid-infrared photometry from the Spitzer Space Telescope. In addition, it is a benchmark for testing theoretical models of brown dwarfs because its age and distance are well constrained via its primary star (2 ± 0.5 Gyr, 19.2 ± 0.6 pc). We present the first near-infrared detection of this object, which has been achieved through F110W imaging (∼Y + J) with the Wide Field Camera 3 on board the Hubble Space Telescope. We measure a Vega magnitude of m {sub 110} = 25.70 ± 0.08, which implies J ∼ 25.0. When combined with the Spitzer photometry, our estimate of J helps to better define the empirical sequence of the coldest brown dwarfs in M {sub 4.5} versus J – [4.5]. The positions of WD 0806-661 B and other Y dwarfs in that diagram are best matched by the cloudy models of Burrows et al. and the cloudless models of Saumon et al., both of which employ chemical equilibrium. The calculations by Morley et al. for 50% cloud coverage differ only modestly from the data. Spectroscopy would enable a more stringent test of the models, but based on our F110W measurement, such observations are currently possible only with Hubble, and would require at least ∼10 orbits to reach a signal-to-noise ratio of ∼5.

  10. A new multi-wavelength solar telescope: Optical and Near-infrared Solar Eruption Tracer (ONSET)

    NASA Astrophysics Data System (ADS)

    Fang, Cheng; Chen, Peng-Fei; Li, Zhen; Ding, Ming-De; Dai, Yu; Zhang, Xiao-Yu; Mao, Wei-Jun; Zhang, Jun-Ping; Li, Ting; Liang, Yong-Jun; Lu, Hai-Tian

    2013-12-01

    A new multi-wavelength solar telescope, the Optical and Near-infrared Solar Eruption Tracer (ONSET) of Nanjing University, has been constructed. It was fabricated at the Nanjing Institute of Astronomical Optics & Technology, and the operation is jointly administered with Yunnan Astronomical Observatory. ONSET is able to observe the Sun in three wavelength windows: He I 10830 Å, Hα and white-light at 3600 Å and 4250 Å, which are selected in order to simultaneously record the dynamics of the corona, chromosphere and photosphere respectively. Full-disk or partial-disk solar images with a field of 10' at three wavelengths can be obtained nearly simultaneously. It is designed to trace solar eruptions with high spatial and temporal resolutions. This telescope was installed at a new solar observing site near Fuxian Lake in Yunnan Province, southwest China. The site is located at E102N24, with an altitude of 1722 m. The seeing is stable and has high quality. We give a brief description of the scientific objectives and the basic structure of ONSET. Some preliminary results are also presented.

  11. New phase compensating secondary mirrors for the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Tollestrup, Eric V.; Tokunaga, Alan T.

    2010-07-01

    The NASA Infrared Telescope Facility is engaged in a long-term program to improve the image quality of the telescope. One element of the program is to minimize the static aberrations. The largest static aberration is spherical aberration, although aberrations caused by zonal polishing rings and support-pad print-through on the primary mirror are also significant. To correct these static wave front errors, a new secondary mirror is being fabricated with a custom, phase compensating surface. Since the as-built optical specifications for the IRTF mirrors have been lost, a configurable multimode instrument was fabricated for use at both the prime and Cassegrain foci to characterize the primary mirror and to measure the wave front errors at both foci. The instrument modes include a focal plane camera, a knife-edge tester, a pupil viewer, a Hartmann wave front sensor, a calibrator, and an on-axis guider. Test results from the prime focus show that the primary mirror has an incorrect conic surface and is poorly supported, which results in a fixed amount of spherical aberration and variable amounts of astigmatism, coma, and trefoil. Cassegrain focal plane results show that the original secondary mirror mount system also induces aberrations. Two new secondary mirrors have been made and at least one of the mirrors will have a custom surface, using ion beam polishing methods, to correct these static aberrations. An analysis is presently underway to determine the optimum compensating surface to be applied by ion beam polishing.

  12. Spectroscopic Capabilities and Possibilities of the Far Infrared and Submillimeter Telescope Mission

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.

    2000-01-01

    The Far Infrared and Submillimeter Telescope (FIRST) mission is the fourth European Space Agency corner stone mission. FIRST will be an observatory with a passively cooled (80 Kelvin) 3.5 meter class telescope and three cryogenic instruments covering the 670 to 80 mm spectral region. The mission is slated for a 4.5 year operational lifetime in an L2 orbit. It will share an Arian 5 launch with PLANCK in early 2007. The three payload instruments include the Spectral and Photometric Imaging Receiver (SPIRE), which is a bolometer array with Martin-Puplett FTS for 200-670 microns, the Photoconductor Array Camera and Spectrometer (PACS), which is a photoconductor array with a grating spectrometer for 80-210 microns and the Heterodyne Instrument for FIRST (HIFI), which is a series of seven heterodyne receivers covering 480-1250 GHz and portions of 1410-1910 GHz and 2400-2700 GHz. FIRST will make many detailed spectral surveys of a wide variety of objects previously obscured by the atmosphere and in regions of the spectrum seldom used for astronomical observations, With all of the spectroscopic capability on FIRST a great deal of laboratory spectroscopic support will be needed for accurate interpretation of the spectral data.

  13. Infrared observations of the solar system in support of Large-Aperture Infrared Telescope (LARITS): Calibration. Final technical report, 1 July 1985-28 February 1989

    SciTech Connect

    Shorthill, R.W.

    1990-05-02

    The Purpose of this project was to improve the infrared calibration base for infrared detectors. Groundbased infrared measurements of solid-surfaced planetary bodies, such as asteroids, are being used for the calibration of spacecraft detectors. A limitation has been the relatively poor theoretical understanding of thermal emission from these objects. The goal was to: (1) develop a database of sources and, (2) improve or modify the thermal models for these sources to provide a calibration data base for spacecraft infrared detector systems. The technique consisted of five phases: (1) design and construct infrared detector system to be used with and without collecting optics, (2) acquire whole-disk infrared lunar data relative to a laboratory blackbody and tie them to Mars (Venus or Mercury) and Vega, (3) compare with thermophysical model of the mood and modify, (4) acquire infrared asteroid photometry, (5) compare the lunar disk photometry the asteroid calibrators using photometry and thermophysical models. The Si bolometer is calibrated without optics, attached to the portable telescope drive and Lunar disk measurement made. Next the bolometer is attached to the 90 inch telescope, Lunar scans are made and the remaining objects (planets, stars, asteroids) are measured.

  14. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    NASA Technical Reports Server (NTRS)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  15. Study of advanced InSb arrays for SIRTF (Space Infrared Telescope Facility)

    NASA Technical Reports Server (NTRS)

    Hoffman, Alan; Feitt, Robert

    1989-01-01

    The Santa Barbara Research Center has completed a study leading to the development of advanced Indium Antimonide detector arrays for the Space Infrared Telescope Facility (SIRTF) Focal Plane Array Detector (FPAD) Subsystem of the Infrared Array Camera (IRAC) Band 1. The overall goal of the study was to perform design tradeoff studies, analysis and research to develop a Direct Readout Integrated Circuit to be hybridized to an advanced, high performance InSb detector array that would satisfy the technical requirements for Band 1 as specified in the IRAC Instrument Requirements Document (IRD), IRAC-202. The overall goal of the study was divided into both a near-term goal and a far-term goal. The near-term goal identifies current technology available that approaches, and in some cases meets the program technological goals as specified in IRAC-202. The far-term goal identifies technology development required to completely achieve SIRTF program goals. Analyses of potential detector materials indicates that InSb presently meets all Band 1 requirements and is considered to be the baseline approach due to technical maturity. The major issue with regard to photovoltaic detectors such as InSb and HgCdTe is to achieve a reduction in detector capacitance.

  16. Preliminary structural design and key technology demonstration of cryogenic assembly in the next-generation infrared space telescope SPICA

    NASA Astrophysics Data System (ADS)

    Mizutani, Tadahito; Yamawaki, Toshihiko; Komatsu, Keiji; Goto, Ken; Takeuchi, Shinsuke; Shinozaki, Keisuke; Matsuhara, Hideo; Nakagawa, Takao

    2015-04-01

    The infrared space telescope SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is a next-generation astronomical project of the Japan Aerospace Exploration Agency, which features a 3 m class and 6 K cryogenically cooled space telescope. This paper outlines the current status for the preliminary structural design of the SPICA payload module. Dedicated studies were conducted for key technologies to enhance the design accuracy of the SPICA cryogenic assembly and mitigate the development risk. One of the results is described for the concept of the on-orbit truss separation mechanisms, which aim to both reduce the heat load from the main truss assembly and isolate the microvibration by changing the natural frequency of the spacecraft.

  17. Preliminary structural design and key technology demonstration of cryogenic assembly in the next-generation infrared space telescope SPICA

    NASA Astrophysics Data System (ADS)

    Mizutani, Tadahito; Yamawaki, Toshihiko; Komatsu, Keiji; Goto, Ken; Takeuchi, Shinsuke; Shinozaki, Keisuke

    2014-08-01

    The infrared space telescope SPICA, Space Infrared Telescope for Cosmology and Astrophysics, is a next-generation astronomical project of the Japanese Aerospace Exploration Agency (JAXA), which features a 3m-class and 6K cryogenically- cooled space telescope. This paper outlines the current status for the preliminary structural design of the SPICA payload module. Dedicated studies were conducted for key technologies to enhance the design accuracy of the SPICA cryogenic assembly and mitigate the development risk. One of the results is described in this paper for the concept of the on-orbit truss separation mechanisms, which aim to both reduce the heat load from the main truss assembly and isolate the micro-vibration by changing the natural frequency of the spacecraft.

  18. Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.; Maher, S. F.; Mentzell, J. E.; Mundy, L. G.; Rizzo, M. J.; Silverberg, R. F.; Staguhn, J. G.

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  19. Near-Infrared photometry of BOs and Centaurs in support of Spitzer Space Telescope data

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, Noemi; Emery, Josh P.; Trilling, David; Mommert, Michael

    2014-08-01

    We propose to measure near-infrared broadband colors of Centaurs and Kuiper Belt objects (KBOs). The proposed ground-based observations will complement 3.6 and 4.5 microns photometry of these bodies obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. Extending reflectances past 2.5 micron with Spitzer enables sensitive searches for absorptions in the 3 to 5 micron region, where relevant species (e.g., complex organics, H2O, CO2, CH4, hydrated silicates) have their fundamental absorption bands. In order to assess the presence of absorptions, however, the Spitzer photometry must be tied to shorter wavelength near-infrared reflectances. Recently, Wright et al. (2012) combined IRAC/Spitzer and NIR colors for a sample of cold KBOs and showed how powerful this technique is detecting the presence of volatiles. In semester 2011B we obtained Gemini NIR data for 12 KBOs (results were presented in the DPS Meeting 2012 and part is included in the Master Dissertation of D. Wright, under the supervision of J.P. Emery). In semester 2011B and 2013A we obtained Gemini NIR data for 12 and 7 KBOs respectively (part of these results were presented in the DPS Meeting 2012 and part is included in the Master Dissertation of D. Wright, under the supervision of J.P. Emery). But our sample is not yet completed and we need more time to complete our study and cover a larger number of targets from our sample of Spitzer data. Approximately 54 objects in our sample that lack NIR colors are visible from GEMINI South in 2014B semester, we propose here to observe 16 of these objects.

  20. Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, John M.

    1997-03-01

    The large binocular telescope (LBT) project have evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 by 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson, Arizona. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train -- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in the fall of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1996 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson), EIE and ADS Italia

  1. AN INTERFEROMETRIC STUDY OF THE FOMALHAUT INNER DEBRIS DISK. I. NEAR-INFRARED DETECTION OF HOT DUST WITH VLTI/VINCI

    SciTech Connect

    Absil, Olivier; Mennesson, Bertrand; Le Bouquin, Jean-Baptiste; Di Folco, Emmanuel; Kervella, Pierre; Augereau, Jean-Charles

    2009-10-10

    The innermost parts of dusty debris disks around main-sequence stars are currently poorly known due to the high contrast and small angular separation with their parent stars. Using near-infrared interferometry, we aim to detect the signature of hot dust around the nearby A4 V star Fomalhaut, which has already been suggested to harbor a warm dust population in addition to a cold dust ring located at about 140 AU. Archival data obtained with the VINCI instrument at the VLTI are used to study the fringe visibility of the Fomalhaut system at projected baseline lengths ranging from 4 m to 140 m in the K band. A significant visibility deficit is observed at short baselines with respect to the expected visibility of the sole stellar photosphere. This is interpreted as the signature of resolved circumstellar emission, producing a relative flux of 0.88% +- 0.12% with respect to the stellar photosphere. While our interferometric data cannot directly constrain the morphology of the excess emission source, complementary data from the literature allow us to discard an off-axis point-like object as the source of circumstellar emission. We argue that the thermal emission from hot dusty grains located within 6 AU from Fomalhaut is the most plausible explanation for the detected excess. Our study also provides a revised limb-darkened diameter for Fomalhaut (theta{sub LD} = 2.223 +- 0.022 mas), taking into account the effect of the resolved circumstellar emission.

  2. Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA)

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Guerrero, Sergio; Hawk, John; Rodriguez, Juan; McDonald, Carson; Jackson, Cliff

    2016-01-01

    The Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) utilizes an existing 2.4 m diameter Hubble sized telescope donated from elsewhere in the federal government for near-infrared sky surveys and Exoplanet searches to answer crucial questions about the universe and dark energy. The WFIRST design continues to increase in maturity, detail, and complexity with each design cycle leading to a Mission Concept Review and entrance to the Mission Formulation Phase. Each cycle has required a Structural-Thermal-Optical-Performance (STOP) analysis to ensure the design can meet the stringent pointing and stability requirements. As such, the models have also grown in size and complexity leading to increased model run time. This paper addresses efforts to reduce the run time while still maintaining sufficient accuracy for STOP analyses. A technique was developed to identify slews between observing orientations that were sufficiently different to warrant recalculation of the environmental fluxes to reduce the total number of radiation calculation points. The inclusion of a cryocooler fluid loop in the model also forced smaller time-steps than desired, which greatly increases the overall run time. The analysis of this fluid model required mitigation to drive the run time down by solving portions of the model at different time scales. Lastly, investigations were made into the impact of the removal of small radiation couplings on run time and accuracy. Use of these techniques allowed the models to produce meaningful results within reasonable run times to meet project schedule deadlines.

  3. Direct and interferometric imaging approaches for detecting earth-like extrasolar planets

    NASA Technical Reports Server (NTRS)

    Diner, D. J.; Van Zyl, J.; Jones, D. L.; Tubbs, E.; Wright, V.

    1988-01-01

    This paper discusses functional requirements of space-based observational systems with sufficient sensitivity, resolution, and dynamic range to image earth-like extrasolar planets within a search radius of 10 parsecs from the sun. Both direct and interferometric systems operating at visible and infrared wavelengths are evaluated, and the methods used to establish the system tolerances are presented. Due to the more favorable star/planet contrast ratio in the infrared, optical tolerance requirements are less stringent than in the visible. However, reduction of thermal radiation from the telescope requires cooling of the primary optics. Other tradeoffs between various approaches are enumerated.

  4. Mid-infrared observations of sungrazing comet C/2012 S1 (ISON) with the Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Ootsubo, T.; Usui, F.; Takita, S.; Watanabe, J.; Yanamandra-Fisher, P.; Honda, M.; Kawakita, H.; Furusho, R.

    2014-07-01

    Comets are the frozen reservoirs of the early solar nebula and are made of ice and dust. The determination of the properties for cometary dust provides us insight into both the early-solar-nebula environment and the formation process of the planetary system. A silicate feature is often observed in comet spectra in the mid-infrared region and may be used for probing the early history of the solar system. In most cases, the feature shows the existence of crystalline silicate (for example, 11.3 microns) together with amorphous silicate [1,2]. Since the crystallization of silicates from amorphous ones generally requires high-temperature annealing above 800 K (e.g., [3,4]), it is believed that the crystalline silicate grains produced at the inner part of the disk were transported to the outer cold regions where the comet nuclei formed. Comet C/2012 S1 (ISON) is a long-period Oort Cloud comet, discovered in September 2012. In particular, comet ISON is a sungrazing comet, which was predicted to pass close by the Sun and the Earth and becoming a bright object. Mid-infrared observations of this new comet and investigation of the 10-micron silicate feature help us understand the formation of crystalline silicate grains in the early solar nebula. We conducted observations of comet ISON in the mid-infrared wavelength region with the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the Subaru Telescope on Mauna Kea, Hawaii [5,6,7]. The observation of comet ISON was carried out on 2013 October 19 and 21 UT. Since the weather conditions were not so good when we observed, we carried out N-band imaging observations (8.8 and 12.4 microns) and N-band low-resolution spectroscopy. The spectrum of comet ISON can be fit with the 260--265-K blackbody spectrum when we use the regions of 7.8--8.2 and 12.4--13.0 microns as the continuum. The spectrum has only a weak silicate excess feature, which may be able to attribute to small amorphous olivine grains. We could not detect a clear

  5. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Esplin, T. L.; Luhman, K. L.

    2016-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  6. Conceptual design of a cryogenic system for the next-generation infrared space telescope SPICA

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Sugita, H.; Shinozaki, K.; Okamoto, A.; Yamawaki, T.; Komatsu, K.; Nakagawa, T.; Murakami, H.; Matsuhara, H.; Murakami, M.; Takada, M.; Takai, S.; Okabayashi, A.; Kanao, K.; Tsunematsu, S.; Otsuka, K.; Narasaki, K.

    2010-07-01

    The conceptual design of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) has been studied as a pre-project of the Japan Aerospace Exploration Agency (JAXA) in collaboration with ESA to be launched in 2018. The SPICA is transferred into a halo orbit around the second Lagrangian point in the Sun-Earth system, where radiant cooling is available effectively. The SPICA has a large IR telescope 3 m in diameter, which is cooled without cryogen to below 6 K by the radiant and mechanical cooling system. Therefore, the SPICA mission will cover mid- and far-IR astronomy with high sensitivity and spatial resolution during a long period of over 5 years for goal. Most heat radiation from the sun and spacecraft is blocked by the Sun Shield and thermal radiation shields covered with Multi-Layer Insulator (MLI) to limit heat radiation to the Scientific Instrument Assembly (SIA). The SIA, which is composed of the primary mirrors and optical benches equipped with Focal Plane Instruments (FPIs), is refrigerated to below 6 K by two sets of 4K-class Joule-Thomson (JT) cooler with a cooling power of 40 mW at 4.5 K. The Far-IR detector is refrigerated to 1.7 K by two sets of 1K-class JT coolers with a cooling power of 10 mW at 1.7 K. Improvements for the higher reliability and sufficient cooling performance are required in the development of SPICA mechanical cryocoolers. Thermal analysis indicates that the SPICA cryogenic system works effectively to limit the total heat load on the SIA to 41.2 mW. This paper describes the conceptual design of the SPICA cryogenic system, which was established with thermal feasibility for nominal operation mode.

  7. Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Sugai, Hajime; Tamura, Naoyuki; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio Vital; Barkhouser, Robert H.; Bennett, Charles L.; Bickerton, Steve; Bozier, Alexandre; Braun, David F.; Bui, Khanh; Capocasale, Christopher M.; Carr, Michael A.; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C. Y.; Dawson, Olivia R.; Dekany, Richard G.; Ek, Eric M.; Ellis, Richard S.; English, Robin J.; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D.; Golebiowski, Mirek; Gunn, James E.; Hart, Murdock; Heckman, Timothy M.; Ho, Paul T. P.; Hope, Stephen; Hovland, Larry E.; Hsu, Shu-Fu; Hu, Yen-Shan; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E.; Kempenaar, Jason G.; King, Matthew E.; Fèvre, Olivier Le; Mignant, David Le; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H.; Madec, Fabrice; Mao, Peter; Marrara, Lucas Souza; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J.; de Oliveira, Antonio Cesar; de Oliveira, Claudia Mendes; de Oliveira, Ligia Souza; Orndorff, Joe D.; de Paiva Vilaça, Rodrigo; Partos, Eamon J.; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J.; Riddle, Reed; Santos, Leandro; dos Santos, Jesulino Bispo; Schwochert, Mark A.; Seiffert, Michael D.; Smee, Stephen A.; Smith, Roger M.; Steinkraus, Ronald E.; Sodré, Laerte; Spergel, David N.; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C.; Wyse, Rosie; Yan, Chi-Hung

    2015-07-01

    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 μm to 1.26 μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 μm to 0.89 μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase.

  8. GRAVITY: Microarcsecond Astrometry and Deep Interferometric Imaging with the VLT

    NASA Astrophysics Data System (ADS)

    Eisenhauer, F.; Perrin, G.; Brandner, W.; Straubmeier, C.; Böhm, A.; Baumeister, H.; Cassaing, F.; Clénet, Y.; Dodds-Eden, K.; Eckart, A.; Gendron, E.; Genzel, R.; Gillessen, S.; Gräter, A.; Gueriau, C.; Hamaus, N.; Haubois, X.; Haug, M.; Henning, T.; Hippler, S.; Hofmann, R.; Hormuth, F.; Houairi, K.; Kellner, S.; Kervella, P.; Klein, R.; Kolmeder, J.; Laun, W.; Léna, P.; Lenzen, R.; Marteaud, M.; Naranjo, V.; Neumann, U.; Paumard, T.; Rabien, S.; Ramos, J. R.; Reess, J. M.; Rohloff, R.-R.; Rouan, D.; Rousset, G.; Ruyet, B.; Sevin, A.; Thiel, M.; Ziegleder, J.; Ziegler, D.

    We present the AO assisted, near-infrared VLTI instrument GRAVITY for precision narrow-angle astrometry and interferometric phase referenced imaging of faint objects. With its two fibers per telescope beam, its internal wavefront sensors and fringe tracker, and a novel metrology concept, GRAVITY will not only push the sensitivity far beyond what is offered today, but will also advance the astrometric accuracy for UTs to 10 μas. GRAVITY is designed to work with four telescopes, thus providing phase referenced imaging and astrometry for 6 baselines simultaneously. Its unique capabilities and sensitivity will open a new window for the observation of a wide range of objects, and—amongst others—will allow the study of motions within a few times the event horizon size of the Galactic Center black hole.

  9. Space Telescope Imaging Spectrograph Ultraviolet/Optical Spectroscopy of ``Warm'' Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Farrah, D.; Surace, J. A.; Veilleux, S.; Sanders, D. B.; Vacca, W. D.

    2005-06-01

    We present high spatial resolution ultraviolet and optical spectroscopy, obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, of nuclear structures within four ``warm'' ultraluminous infrared galaxies (ULIRGs). We find an active galactic nucleus (AGN) in at least three and probably all four in our sample, hosted in a compact, optically luminous ``knot.'' In three cases these knots were previously identified as a putative AGN from multiband optical imaging. Three objects of the sample also harbor a starburst in one or more knots, suggesting that the optically luminous knots seen in local ULIRGs are the most likely sites of the dust-shrouded starburst and AGN activity that power the infrared emission. The four AGNs have a diverse range of properties: two are classical narrow-line AGNs, one shows both broad and narrow lines and evidence for lines of sight from the narrow- to the broad-line regions, and one is plausibly an FeLoBAL AGN. The probable presence in one object of an FeLoBAL AGN, which are extremely rare in the QSO population, supports the idea that LoBAL AGNs may be youthful systems shrouded in gas and dust rather than AGNs viewed along a certain line of sight. The three starbursts for which detailed constraints are possible show a smaller range in properties; all three bursts are young, with two having ages of ~4 Myr and the third having an age of 20 Myr, suggesting that ULIRGs undergo several bursts of star formation during their lifetimes. None of the starbursts show evidence for initial mass function slopes steeper than about 3.3. The metallicities of the knots for which metallicities can be derived are all at least 1.5 Zsolar. The properties of one further starburst knot are consistent with it being the forming core of an elliptical galaxy. Our results suggest that detailed studies of the knots seen in ULIRGs can give important insights into the most violent starburst and AGN activity at both low and high redshift.

  10. The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) in the New Framework

    NASA Astrophysics Data System (ADS)

    Bradford, Charles; SPICA Consortium, the SAFARI Consortium

    2016-01-01

    SPICA is a cryogenic space-borne observatory designed for optimal sensitivity in the mid-infrared through submillimeter range: 17-230 microns. The mission is an ESA / JAXA collaboration, now considered for the ESA Cosmic Visions M5 opportunity. SPICA will feature a 2.5-meter telescope cooled to below 8K, this offers the potential for 100-1000-fold advances in sensitivity beyond that obtained with Herschel and SOFIA in the far-IR. With a line sensitivity of ~5x10^-20 W/m^2 (1 h, 5 sigma), SPICA will be a complement to JWST and ALMA for deep spectroscopic observations. Integrated over cosmic history, star formation has occurred predominantly in dust-obscured regions which are inaccessible in the rest-frame UV and optical. Both the luminosity history and the detailed physics that govern it can only be directly measured in the mid-IR-submillimeter. Similarly, forming stars and planetary systems cool primarily through the far-IR. By taking advantage of the low-background platform, the SPICA instruments are designed for these topics. The SPICA mid-IR instrument (SMI) will provide R~50 imaging spectroscopy and R~1,000 full-band slit-fed spectroscopy from 17 to 36 microns, with a high-resolution (R=25,000) capability from 12-18 microns. The SPICA far-IR instrument (SAFARI) will cover 34 to at least 230 microns with multiple R~300 wide-band grating spectrometer modules coupling to high-sensitivity far-IR detectors. A R~3,000 scanned-etalon module will also be available for Galactic targets with bright continua and/or dense line spectra. SPICA has emerged with a new ESA-JAXA collaborative framework. In the current division of responsibilities, ESA will take the lead role, provide the telescope, the fine-attitude sensor, and the spacecraft bus. JAXA will provide the cryogenic system, the SMI instrument, integrate the telescope and instruments, and provide the launch vehicle. The SAFARI instrument will be provided by a consortium funded by the European national agencies led by

  11. Study of the ammonia ice cloud layer in the Equatorial Region of Jupiter from the infrared interferometric experiment on Voyager

    NASA Technical Reports Server (NTRS)

    Marten, A.; Rouan, D.; Baluteau, J. P.; Gautier, D.; Conrath, B. J.; Hanel, R. A.; Kunde, V.; Samuelson, R.; Chedin, A.; Scott, N.

    1981-01-01

    Spectra from the Voyager 1 infrared interferometer spectrometer (IRIS) obtained near the time of closest approach to Jupiter were analyzed for the purpose of inferring ammonia cloud properties associated with the Equatorial Region. Comparisons of observed spectra with synthetic spectra computed from a radiative transfer formulation, that includes multiple scattering, yielded the following conclusions: (1) very few NH3 ice particles with radii less than 3 microns contribute to the cloud opacity; (2) the major source of cloud opacity arises from particles with radii in excess of 30 microns; (3) column particle densities are between 1 and 2 orders of magnitude smaller than those derived from thermochemical considerations alone, implying the presence of important atmospheric motion; and (4) another cloud system is confirmed to exist deeper in the Jovian troposphere.

  12. Operation and performance of the mid-infrared camera, NOMIC, on the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Hoffmann, William F.; Hinz, Philip M.; Defrère, Denis; Leisenring, Jarron M.; Skemer, Andrew J.; Arbo, Paul A.; Montoya, Manny; Mennesson, Bertrand

    2014-07-01

    The mid-infrared (8-13 μm) camera, NOMIC, is a critical component of the Large Binocular Telescope Interferometer search for exozodiacal light around near-by stars. It is optimized for nulling interferometry but has general capability for direct imaging, low resolution spectrometry, and Fizeau interferometry. The camera uses a Raytheon 1024x1024 Si:As IBC Aquarius array with a 30 μm pitch which yields 0.018 arc-second pixels on the sky. This provides spatial resolution (λ/D) at a 10 μm wavelength of 0.27 arc-seconds for a single 8.4 meter LBT aperture and of 0.10 arcseconds for Fizeau interferometry with the dual apertures. The array is operated with a differential preamplifier and a version of the 16 channel array controller developed at Cornell University for the FORCAST instrument on the Sofia Observatory. With a 2.4 MHz pixel rate the camera can achieve integration times as short as 27 milliseconds full array and 3 milliseconds partial array. The large range of integration times and two array integration well sizes allow for a wide range of background flux on the array. We describe the design and operation of the camera and present the performance of this system in terms of linearity, noise, quantum efficiency, image quality, and photometric sensitivity.

  13. A contamination control cover for the Mid Infrared Instrument of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Glauser, Adrian M.; Langer, Ulrich; Zehnder, Alex; Güdel, Manuel

    2008-07-01

    During its cold mission phase at 7 Κ the Mid Infrared Instrument (MIRI) is the coldest spot on the James Webb Space Telescope (JWST) and will act consequently as a cryopump of the instrument's environment. Since the absorption of outgassing molecules from the spacecraft (mainly water and hydrocarbons) on optical surfaces would lead to a significant degradation of the optical performance of MIRI, a Contamination Control Cover (CCC) has been introduced. This cover is placed in the entrance optical path of MIRI right after the picko. mirror (POM) and will be closed during the instrument's cool down phase and at MIRI's operational temperature each time the POM is heated up for decontamination. The CCC will be used further as an optical shutter for dark sky calibration and for the protection against latency images which might emerge from coronagraphic filter changes. Therefore, the CCC has been designed to be multi operational with approximately 3000 life cycles. A contact-free labyrinth seal allows the required reduction of molecular flow towards the instrument and avoids the possibility of any freezing. The CCC is operational between 300 Κ and 7 Κ and is actuated by two redundant stepper motors. In this paper we describe the design of the CCC and the results of the qualification campaign. Further a dedicated measurement of its molecular conductance at various temperatures is presented.

  14. Spartan infrared camera: high-resolution imaging for the SOAR Telescope

    NASA Astrophysics Data System (ADS)

    Loh, Edwin D.; Biel, Jason D.; Chen, Jian-Jun; Davis, Michael; Laporte, Rene; Loh, Owen Y.

    2004-09-01

    The Spartan Infrared Camera provides tip-tilt corrected imaging for the SOAR Telescope in the 1-2.5μm spectral range with four 2048x2048 HAWAII2 detectors. The median image size is expected to be less than 0.25 arcsec (FWHM), and in the H and K bands a significant amount of the light is expected to be in a core having the diffraction-limited width. The camera has two plate scales: 0.04 arcsec/pixel (f/21) for diffraction-limited sampling in the H and K bands and 0.07 arcsec/pixel (f/12) to cover a 5×5 arcmin2 field, over which tip-tilt correction is substantial. Except for CaF2 field-flattening lenses, the optics is all reflective to achieve the large field size and achromaticity, and all aluminum to match thermally the aluminum cryogenic-optical box in which the optics mount. The Strehl ratio of the camera itself is 0.95-1.00 for the f/21 channel. The optics (including the off-axis aspherical mirrors) will be aligned with precise metrology rather than adjusted using interferometry.

  15. Wide-Field InfraRed Survey Telescope (WFIRST) Slitless Spectrometer: Design, Prototype, and Results

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Content, David; Dominguez, Margaret; Emmett, Thomas; Griesmann, Ulf; Hagopian, John; Kruk, Jeffrey; Marx, Catherine; Pasquale, Bert; Wallace, Thomas; Whipple, Arthur

    2016-01-01

    The slitless spectrometer plays an important role in the Wide-Field InfraRed Survey Telescope (WFIRST) mission for the survey of emission-line galaxies. This will be an unprecedented very wide field, HST quality 3D survey of emission line galaxies. The concept of the compound grism as a slitless spectrometer has been presented previously. The presentation briefly discusses the challenges and solutions of the optical design, and recent specification updates, as well as a brief comparison between the prototype and the latest design. However, the emphasis of this paper is the progress of the grism prototype: the fabrication and test of the complicated diffractive optical elements and powered prism, as well as grism assembly alignment and testing. Especially how to use different tools and methods, such as IR phase shift and wavelength shift interferometry, to complete the element and assembly tests. The paper also presents very encouraging results from recent element tests to assembly tests. Finally we briefly touch the path forward plan to test the spectral characteristic, such as spectral resolution and response.

  16. Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Chang, L. S.; Mansfield, J. A.; Howard, Steven D.

    1989-01-01

    Candidate technologies for a lightweight primary mirror for the SOFIA telescope are evaluated for both mirror blank fabrication and polishing. Two leading candidates for the type mirror blank are considered: the frit-bonded, structured form, and the thin meniscus form. The feasible mirror is required to be very lightweight with an areal density of approximately 100 kg/sq m, have an f/ratio near 1.0, and have surface quality that permits imaging in the visible as well as the infrared. Also considered are the results of a study conducted to assess the feasibility of designing a suitable mounting system for the primary mirror. The requirements for the mount design are given both in terms of the environmental conditions and the expected optical performance. PATRAN and NASTRAN programs are used to model mirror and mounting. The sandwich-type mirror made of ultra low expansion silica with square cells in the core, is modeled using equivalent solid elements for the core. The design study produces primary mirror surface deflections in 1g as a function of mirror elevation angles. The surface is analyzed using an optical analysis program, FRINGE, to give a prediction of the mirror optical performance. Results from this analysis are included.

  17. European agreement on James Webb Space Telescope's Mid-Infrared Instrument (MIRI) signed

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Artist's impression of the JWST hi-res Size hi-res: 1601 kb Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Artist's impression of the JWST Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Observing the first light, the James Webb Space Telescope (JWST) will help to solve outstanding questions about our place in the evolving Universe. MIRI, the Mid-Infrared Instrument, is one of the four instruments on board the JWST, the mission scheduled to follow on the heritage of Hubble in 2011. MIRI will be built in cooperation between Europe and the United States (NASA), both equally contributing to its funding. MIRI’s optics, core of the instrument, will be provided by a consortium of European institutes. According to this formal agreement, ESA will manage and co-ordinate the whole development of the European part of MIRI and act as the sole interface with NASA, which is leading the JWST project. This marks a difference with respect to the previous ESA scientific missions. In the past the funding and the development of the scientific instruments was agreed by the participating ESA Member States on the basis of purely informal arrangements with ESA. In this case, the Member States involved in MIRI have agreed on formally guaranteeing the required level of funding on the basis of a multi-lateral international agreement, which still keeps scientists in key roles. Over the past years, missions have become more complex and demanding, and more costly within an ever tighter budget. They also require a more and more specific expertise which is spread throughout the vast European scientific community. As a result, a new management procedure for co-ordination of payload development has become a necessity to

  18. Three-element stressed Ge:Ga photoconductor array for the infrared telescope in space.

    PubMed

    Hiromoto, N; Itabe, T; Shibai, H; Matsuhara, H; Nakagawa, T; Okuda, H

    1992-02-01

    A stressed Ge:Ga photoconductor array with three elements applied to the Infrared Telescope in Space satellite was fabricated and tested in experiments at 2.0 K in very low-photon-influx conditions (~ 10(5) photons/s). Stress was applied to three Ge:Ga detectors in a series by a stable and compact stressing apparatus by using cone-disk springs. The cutoff wavelength was ~ 180 microm. Responsivity was ~ 100 A/W, and the product of quantum efficiency and photoconductive gain, etaG, was ~ 1 with a chopping frequency of 2 Hz. The noise equivalent power was <5 x 10(-18) W/Hz((1/2)) when low-noise transimpedance amplifiers were used. A slow transient response and a nonlinear response that was dependent on the background photon influx were observed in the experiments. The latter showed that the etaG had a time constant tau(c) that was proportional to N(ph)(-(1/2)). PMID:20720636

  19. Emergency relief venting of the infrared telescope liquid helium dewar, second edition

    NASA Technical Reports Server (NTRS)

    Urban, E. W.

    1981-01-01

    An updated analysis is made of the emergency relief venting of the liquid helium dewar of the Spacelab 2 Infrared Telescope experiment in the event of a massive failure of the dewar guard vacuum. Such a failure, resulting from a major accident, could cause rapid heating and pressurization of the liquid helium in the dewar and lead to relief venting through the emergency relief system. The heat input from an accident is estimated for various fluid conditions in the dewar and the relief process considered as it takes place through one or both of the emergency relief paths. It was previously assumed that the burst diaphragms in the dewar relief paths would rupture at a pressure of 65 psi differential or 4.4 atmospheres. In fact, it has proved necessary to use burst diaphragms in the dewar which rupture at 115 psid or 7.8 atmospheres. An analysis of this case was carried out and shows that when the high pressure diaphragm rupture occurs, the dewar pressure falls within 8 s to below the 4.4 atmospheres for which the original analysis was performed, and thereafter it remains below that level.

  20. James Webb Space Telescope Mid Infra-Red Instrument Pulse-Tube Cryocooler Electronics

    NASA Technical Reports Server (NTRS)

    Harvey, D.; Flowers, T.; Liu, N.; Moore, K.; Tran, D.; Valenzuela, P.; Franklin, B.; Michaels, D.

    2013-01-01

    The latest generation of long life, space pulse-tube cryocoolers require electronics capable of controlling self-induced vibration down to a fraction of a newton and coldhead temperature with high accuracy down to a few kelvin. Other functions include engineering diagnostics, heater and valve control, telemetry and safety protection of the cryocooler subsystem against extreme environments and operational anomalies. The electronics are designed to survive the thermal, vibration, shock and radiation environment of launch and orbit, while providing a design life in excess of 10 years on-orbit. A number of our current generation high reliability radiation-hardened electronics units are in various stages of integration on several space flight payloads. This paper describes the features and performance of our latest flight electronics designed for the pulse-tube cryocooler that is the pre-cooler for a closed cycle Joule-Thomson cooler providing 6K cooling for the James Webb Space Telescope (JWST) Mid Infra-Red Instrument (MIRI). The electronics is capable of highly accurate temperature control over the temperature range from 4K to 15K. Self-induced vibration is controlled to low levels on all harmonics up to the 16th. A unique active power filter controls peak-to-peak reflected ripple current on the primary power bus to a very low level. The 9 kg unit is capable of delivering 360W continuous power to NGAS's 3-stage pulse-tube High-Capacity Cryocooler (HCC).

  1. The Adaptive Optics System for the New 6.5 Meter MMT Optical/Infrared Telescope

    NASA Astrophysics Data System (ADS)

    McGuire, Patrick C.; Lloyd-Hart, Michael; Angel, J. Roger P.; Angeli, George Z.; Johnson, Robert L.; Fitz-Patrick, Bruce C.; Davison, Warren B.; Sarlot, Roland J.; Bresloff, Cyndy J.; Hughes, John M.; Miller, Steve M.; Schaller, Phillip; Wildi, Francois P.; Kenworthy, Matthew A.; Cordova, Richard M.; Rademacher, Matthew L.; Rascon, Mario H.; Langlois, Maud; Roberts, Thomas; McCarthy, Don; Burge, James H.; Rhoadarmer, Troy A.; Shelton, J. Christopher; Jacobsen, Bruce; Salinari, Piero; Brusa, Guido; Del Vecchio, Ciro; Biasi, Roberto; Gallieni, Daniele; Sandler, David G.; Barrett, Todd K.

    1999-10-01

    The Multiple Mirror Telescope (MMT) is currently being upgraded to a single 6.5 meter diameter mirror and should see first light at prime focus in September 1999. We are constructing an F/15 adaptive optics (AO) system which will be an integral part of the new MMT with first light in early 2000, removing the effect of atmospheric turbulence so that images near the diffraction limit in the near-infrared can be achieved. The deformable element of this system is a 64 cm diameter secondary mirror composed of a 1.8 mm thick thin glass shell and 336 voice coil actuators operating at 1 kHz. This is the first system that uses the secondary mirror as the correcting element, which means thermal background is minimized. We will primarily present an overview of the adaptive optics technique, followed by select results which will include the laboratory testing of the AO system components with a solid secondary, data taken with the wavefront sensor camera at prime focus of the new MMT, and tests of the secondary mirror control system.

  2. Optimal Out-Of-Ecliptic Orbits for Short-Term Space-Borne Infrared Telescope Missions

    NASA Astrophysics Data System (ADS)

    Nir, Gali; Gurfil, Pini

    2011-01-01

    This paper presents a new approach for designing orbits for infrared (IR) space-borne observatories using multiple gravity assists. A large displacement normal to the ecliptic plane mitigates the noise generated by the local zodiacal dust, thereby reducing the size, weight, and complexity of the telescope. Although previous works focused on long-term missions, allowing very long transfer times to out-of-ecliptic orbits, this paper considers short-duration missions, for which the transfer times are tightly constrained. To reduce the transfer time, the flyby sequence includes the inner planets only: Venus, Earth, and Mars. Moreover, in order to reduce energy requirements, a fuel-optimal multiple gravity-assisted trajectory is designed. The problem is modeled using the patched-conic approximation and solved using a hybrid genetic algorithm coupled to a pattern search. Efficient trajectories requiring a minimum velocity addition, although providing a maximum observation time, are found and validated using an N-body simulation. The TPF-I mission is used as a benchmark in order to quantify the benefits of an out-of-ecliptic orbit. It is shown that the newly found orbits allow a reduction in the collector area compared to halo orbits.

  3. Optical/infrared views of the distant universe with ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Gallagher, J. S.; Tolstoy, E.

    1997-05-01

    Ground-based optical/IR observatories offer access to the rest frame ultraviolet and visible spectral regions of objects with high redshifts. Current observations of high redshift objects with natural seeing of 0.5-1 arcsec include optical/IR photometry and a variety of spectroscopic measurements. These take advantage of the large apertures and efficient instruments of ground-based observatories to obtain high spectral resolution and to reach low surface brightnesses, which is required to overcome cosmological effects. The success of natural guide star adaptive optics systems suggests that observations could become routine with image diameters <=0.25 arcsec (and often approaching 0.1 arcsec) over modest fields of view in the IJHK bands. The combination of adaptive optics on 8-10-m class telescopes, versatile arrays of powerful instruments (including multi-slit or integral field unit spectrographs), and airglow suppression schemes will support deeper and more intensive infrared investigations of faint galaxies, and will allow us to take advantage of increased brightness in strong emission lines. This work should lead to a better understanding of selection effects at high redshift, as well as the identification and measurement of internal properties for typical galaxies at early epochs.

  4. Simultaneous seeing measurement through the Subaru Telescope in the visible and near-infrared bands for the wavelength dependence evaluation

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Terada, Hiroshi; Hayano, Yutaka; Watanabe, Makoto; Hattori, Masayuki; Minowa, Yosuke

    2016-07-01

    Stellar images have been obtained under natural seeing at visible and near-infrared wavelengths simultaneously through the Subaru Telescope at Mauna Kea. The image quality is evaluated by the full-width at the half-maximum (FWHM) of the stellar images. The observed ratio of FWHM in the V-band to the K-band is 1.54 ± 0.17 on average. The ratio shows tendency to decrease toward bad seeing as expected from the outer scale influence, though the number of the samples is still limited. The ratio is important for simulations to evaluate the performance of a ground-layer adaptive optics system at near-infrared wavelengths based on optical seeing statistics. The observed optical seeing is also compared with outside seeing to estimate the dome seeing of the Subaru Telescope.

  5. Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation

    NASA Astrophysics Data System (ADS)

    Sakanoi, Takeshi; Kasaba, Yasumasa; Kagitani, Masato; Nakagawa, Hiromu; Kuhn, Jeff; Okano, Shoichi

    2014-08-01

    We report the development of infrared Echelle spectrograph covering 1 - 4 micron and mid-infrared heterodyne spectrometer around 10 micron installed on the 60-cm telescope at the summit of Haleakala, Hawaii (alt.=3000m). It is essential to carry out continuous measurement of planetary atmosphere, such as the Jovian infrared aurora and the volcanoes on Jovian satellite Io, to understand its time and spatial variations. A compact and easy-to-use high resolution infrared spectrometer provide the good opportunity to investigate these objects continuously. We are developing an Echelle spectrograph called ESPRIT: Echelle Spectrograph for Planetary Research In Tohoku university. The main target of ESPRIT is to measure the Jovian H3+ fundamental line at 3.9 micron, and H2 nu=1 at 2.1 micron. The 256x256 pixel CRC463 InSb array is used. An appropriate Echelle grating is selected to optimize at 3.9 micron and 2.1 micron for the Jovian infrared auroral observations. The pixel scale corresponds to the atmospheric seeing (0.3 arcsec/pixel). This spectrograph is characterized by a long slit field-of-view of ~ 50 arcsec with a spectral resolution is over 20,000. In addition, we recently developed a heterodyne spectrometer called MILAHI on the 60 cm telescope. MILAHI is characterized by super high-resolving power (more than 1,500,000) covering from 7 - 13 microns. Its sensitivity is 2400 K at 9.6 micron with a MCT photo diode detector of which bandwidth of 3000 MHz. ESPRIT and MILAHI is planned to be installed on 60 cm telescope is planned in 2014.

  6. INTERFEROGRAM-BASED INFRARED SEARCH SYSTEM

    EPA Science Inventory

    A computerized search routine for the identification of infrared spectra using interferometric data exclusively is described. Two forms of instrument-dependent information present in raw interferometric data are removed prior to the search process. Interferometric phase error is ...

  7. The Infrared Telescope Facility (IRTF) spectral library:. Spectral diagnostics for cool stars

    NASA Astrophysics Data System (ADS)

    Cesetti, M.; Pizzella, A.; Ivanov, V. D.; Morelli, L.; Corsini, E. M.; Dalla Bontà, E.

    2013-01-01

    Context. The near-infrared (NIR) wavelength range offers some unique spectral features, and it is less prone to the extinction than the optical one. Recently, the first flux calibrated NIR library of cool stars from the NASA Infrared Telescope Facility (IRTF) have become available, and it has not been fully exploited yet. Aims: We want to develop spectroscopic diagnostics for stellar physical parameters based on features in the wavelength range 1-5 μm. In this work we test the technique in the I and K bands. The study of the Y, J, H, and L bands will be presented in the following paper. Methods: An objective method for semi-empirical definition of spectral features sensitive to various physical parameters is applied to the spectra. It is based on sensitivity map - i.e., derivative of the flux in the spectra with respect to the stellar parameters at a fixed wavelength. New optimized indices are defined and their equivalent widths (EWs) are measured. Results: The method is applied in the I- and K-band windows of the IRTF stellar spectra to verify the new technique by comparing the results with the known behavior of well-studied spectral features. A number of sensitive features to the effective temperature and surface gravity are re-identified or newly identified clearly showing the reliability of the sensitivity map analysis. Conclusions: The sensitivity map allows to identify the best bandpass limits for the line and nearby continuum. It reliably predicts the trends of spectral features with respect to a given physical parameter but not their absolute strengths. Line blends are easy to recognize when blended features have different behavior with respect to some physical stellar parameter. The use of sensitivity map is therefore complementary to the use of indices. We give the EWs of the new indices measured for the IRTF star sample. This new and homogeneous set of EWs will be useful for stellar population synthesis models and can be used to get element

  8. A Road Map for the Generation of a Near-Infrared Guide Star Catalog for Thirty Meter Telescope Observations

    NASA Astrophysics Data System (ADS)

    Subramanian, Smitha; Subramaniam, Annapurni; Sivarani, T.; Simard, Luc; Anupama, G. C.; Gillies, Kim; Ramaprakash, A. N.; Reddy, B. Eswar

    2016-09-01

    The near-infrared instruments in the upcoming Thirty Meter Telescope (TMT) will be assisted by a multi conjugate Adaptive Optics (AO) system. For the efficient operation of the AO system, during observations, a near-infrared guide star catalog which goes as faint as 22 mag in JVega band is essential and such a catalog does not exist. A methodology, based on stellar atmospheric models, to compute the expected near-infrared magnitudes of stellar sources from their optical magnitudes is developed. The method is applied and validated in JHKs bands for a magnitude range of JVega 16-22 mag. The methodology is also applied and validated using the reference catalog of PAN STARRS. We verified that the properties of the final PAN STARRS optical catalog will satisfy the requirements of TMT IRGSC and will be one of the potential sources for the generation of the final catalog. In a broader context, this methodology is applicable for the generation of a guide star catalog for any existing/upcoming near-infrared telescopes.

  9. Space Infrared Astronomy in the 21st Century

    NASA Technical Reports Server (NTRS)

    Mather, John C.; Fisher, Richard (Technical Monitor)

    2000-01-01

    New technology and design approaches have enabled revolutionary improvements in astronomical observations from space. Worldwide plans and dreams include orders of magnitude growth in sensitivity and resolution for all wavelength ranges, and would give the ability to learn our history, from the Big Bang to the conditions for life on Earth. The Next Generation Space Telescope, for example, will be able to see the most distant galaxies as they were being assembled from tiny fragments. It will be 1/4 as massive as the Hubble, with a mirror 3 times as large, cooled to about 30 Kelvin to image infrared radiation. I will discuss plans for NGST and hopes for future large space telescopes, ranging from the Space UV Optical (SUVO) telescope to the Filled Aperture Infrared (FAIR) Telescope, the Space Infrared Interferometric Telescope (SPIRIT), and the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS).

  10. Cryogenic Optical Performance of the Cassini Composite InfraRed Spectrometer (CIRS) Flight Telescope

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Hagopian, John

    1998-01-01

    The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope,s image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the cold image performance requirement of 80% encircled energy within a 460 micron diameter circle.

  11. Infrared Doppler instrument (IRD) for the Subaru telescope to search for Earth-like planets around nearby M-dwarfs

    NASA Astrophysics Data System (ADS)

    Kotani, Takayuki; Tamura, Motohide; Suto, Hiroshi; Nishikawa, Jun; Sato, Bun'ei; Aoki, Wako; Usuda, Tomonori; Kurokawa, Takashi; Kashiwagi, Ken; Nishiyama, Shogo; Ikeda, Yuji; Hall, Donald B.; Hodapp, Klaus W.; Hashimoto, Jun; Morino, Jun-Ichi; Okuyama, Yasushi; Tanaka, Yosuke; Suzuki, Shota; Inoue, Sadahiro; Kwon, Jungmi; Suenaga, Takuya; Oh, Dehyun; Baba, Haruka; Narita, Norio; Kokubo, Eiichiro; Hayano, Yutaka; Izumiura, Hideyuki; Kambe, Eiji; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Ikoma, Masahiro; Hori, Yasunori; Omiya, Masashi; Genda, Hidenori; Fukui, Akihiko; Fujii, Yuka; Guyon, Olivier; Harakawa, Hiroki; Hayashi, Masahiko; Hidai, Masahide; Hirano, Teruyuki; Kuzuhara, Masayuki; Machida, Masahiro; Matsuo, Taro; Nagata, Tetsuya; Onuki, Hirohi; Ogihara, Masahiro; Takami, Hideki; Takato, Naruhisa; Takahashi, Yasuhiro H.; Tachinami, Chihiro; Terada, Hiroshi; Kawahara, Hajime; Yamamuro, Tomoyasu

    2014-07-01

    We report the current status of the Infrared Doppler (IRD) instrument for the Subaru telescope, which aims at detecting Earth-like planets around nearby M darwfs via the radial velocity (RV) measurements. IRD is a fiber-fed, near infrared spectrometer which enables us to obtain high-resolution spectrum (R~70000) from 0.97 to 1.75 μm. We have been developing new technologies to achieve 1m/s RV measurement precision, including an original laser frequency comb as an extremely stable wavelength standard in the near infrared. To achieve ultimate thermal stability, very low thermal expansion ceramic is used for most of the optical components including the optical bench.

  12. Infrared observations of the solar system in support of Large-Aperture Infrared Telescope (LARITS): Calibration. Appendices. Final technical report, 1 July 1985-28 February 1989

    SciTech Connect

    Shorthill, R.W.

    1990-04-01

    An infrared (I.R.) optics package designed for a I.R. detector calibration survey will be used in conjunction with the 90 inch telescope at the University of Wyoming, or as a portable, stand along unit. An important part of this instrument package is a mechanical light beam chopper which rotates with a fixed phase relation with respect to a wobbling secondary mirror in the telescope. A control circuit synchronizes the chopper to an external signal when used at the Wyoming site, or generates an internal reference frequency when used as a portable system. The portable system consists of a small equatorial telescope mount to support the same I.R. instrumentation package, which is used without additional optics. An automated positioning and tracking system encorporates a personal computer to control the environment of the telescope mount via stepper motors attached to the drive axis. The computer is also used to record all data on floppy disc for both fixed and portable systems.

  13. The potential for detecting gamma-ray burst afterglows from population III stars with the next generation of infrared telescopes

    SciTech Connect

    Macpherson, D.; Coward, D. M.; Zadnik, M. G.

    2013-12-10

    We investigate the detectability of a proposed population of gamma-ray bursts (GRBs) from the collapse of Population III (Pop III) stars. The James Webb Space Telescope (JWST) and Space Infrared Telescope for Cosmology and Astrophysics (SPICA) will be able to observe the late time infrared afterglows. We have developed a new method to calculate their detectability, which takes into account the fundamental initial mass function and formation rates of Pop III stars, from which we find the temporal variability of the afterglows and ultimately the length of time JWST and SPICA can detect them. In the range of plausible Pop III GRB parameters, the afterglows are always detectable by these instruments during the isotropic emission, for a minimum of 55 days and a maximum of 3.7 yr. The average number of detectable afterglows will be 2.96× 10{sup –5} per SPICA field of view (FOV) and 2.78× 10{sup –6} per JWST FOV. These are lower limits, using a pessimistic estimate of Pop III star formation. An optimal observing strategy with SPICA could identify a candidate orphan afterglow in ∼1.3 yr, with a 90% probability of confirmation with further detailed observations. A beamed GRB will align with the FOV of the planned GRB detector Energetic X-ray Imaging Survey Telescope once every 9 yr. Pop III GRBs will be more easily detected by their isotropic emissions (i.e., orphan afterglows) rather than by their prompt emissions.

  14. The Potential for Detecting Gamma-Ray Burst Afterglows from Population III Stars with the Next Generation of Infrared Telescopes

    NASA Astrophysics Data System (ADS)

    Macpherson, D.; Coward, D. M.; Zadnik, M. G.

    2013-12-01

    We investigate the detectability of a proposed population of gamma-ray bursts (GRBs) from the collapse of Population III (Pop III) stars. The James Webb Space Telescope (JWST) and Space Infrared Telescope for Cosmology and Astrophysics (SPICA) will be able to observe the late time infrared afterglows. We have developed a new method to calculate their detectability, which takes into account the fundamental initial mass function and formation rates of Pop III stars, from which we find the temporal variability of the afterglows and ultimately the length of time JWST and SPICA can detect them. In the range of plausible Pop III GRB parameters, the afterglows are always detectable by these instruments during the isotropic emission, for a minimum of 55 days and a maximum of 3.7 yr. The average number of detectable afterglows will be 2.96× 10-5 per SPICA field of view (FOV) and 2.78× 10-6 per JWST FOV. These are lower limits, using a pessimistic estimate of Pop III star formation. An optimal observing strategy with SPICA could identify a candidate orphan afterglow in ~1.3 yr, with a 90% probability of confirmation with further detailed observations. A beamed GRB will align with the FOV of the planned GRB detector Energetic X-ray Imaging Survey Telescope once every 9 yr. Pop III GRBs will be more easily detected by their isotropic emissions (i.e., orphan afterglows) rather than by their prompt emissions.

  15. PROBING THE INTERSTELLAR MEDIUM OF z {approx} 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND SPITZER MID-INFRARED SPECTROSCOPY

    SciTech Connect

    Pope, Alexandra; Kirkpatrick, Allison; Wagg, Jeff; Frayer, David; Armus, Lee; Chary, Ranga-Ram; Desai, Vandana; Daddi, Emanuele; Elbaz, David; Gabor, Jared

    2013-08-01

    We explore the relationship between gas, dust, and star formation in a sample of 12 ultraluminous infrared galaxies (ULIRGs) at high-redshift compared to a similar sample of local galaxies. We present new CO observations and/or Spitzer mid-IR spectroscopy for six 70 {mu}m selected galaxies at z {approx} 1 in order to quantify the properties of the molecular gas reservoir, the contribution of an active galactic nucleus (AGN) to the mid-IR luminosity, and the star formation efficiency (SFE = L{sub IR}/L{sup '}{sub CO}). The mid-IR spectra show strong polycyclic aromatic hydrocarbon (PAH) emission, and our spectral decomposition suggests that the AGN makes a minimal contribution (<25%) to the mid-IR luminosity. The 70 {mu}m selected ULIRGs, which we find to be spectroscopic close pairs, are observed to have high SFE, similar to local ULIRGs and high-redshift submillimeter galaxies, consistent with enhanced IR luminosity due to an ongoing major merger. Combined with existing observations of local and high-redshift ULIRGs, we further compare the PAH, IR, and CO luminosities. We show that the ratio L{sub PAH,6.2}/L{sub IR} decreases with increasing IR luminosity for both local and high-redshift galaxies, but the trend for high-redshift galaxies is shifted to higher IR luminosities; the average L{sub PAH,6.2}/L{sub IR} ratio at a given L{sub IR} is {approx}3 times higher at high-redshift. When we normalize by the molecular gas, we find this trend to be uniform for galaxies at all redshifts and that the molecular gas is correlated with the PAH dust emission. The similar trends seen in the [C II] to molecular gas ratios in other studies suggests that PAH emission, like [C II], continues to be a good tracer of photodissociation regions even at high-redshift. Together the CO, PAH, and far-IR fine structure lines should be useful for constraining the interstellar medium conditions in high-redshift galaxies.

  16. Infrared Spectroscopy of Comet 73P/Schwassmann-Wachmann 3 Using the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Lisse, Carey M.; Kelley, Michael S.; Polomski, Elisha F.; Lynch, David K.; Russell, Ray W.; Kimes, Robin L.; Whitney, Barbara A.; Wolff, Michael J.; Harker, David E.

    2011-09-01

    We have used the Spitzer Space Telescope Infrared Spectrograph (IRS) to observe the 5-37 μm thermal emission of comet 73P/Schwassmann-Wachmann 3 (SW3), components B and C. We obtained low spectral resolution (R ~ 100) data over the entire wavelength interval, along with images at 16 and 22 μm. These observations provided an unprecedented opportunity to study nearly pristine material from the surface and what was until recently the interior of an ecliptic comet—the cometary surface having experienced only two prior perihelion passages, and including material that was totally fresh. The spectra were modeled using a variety of mineral types including both amorphous and crystalline components. We find that the degree of silicate crystallinity, ~35%, is somewhat lower than most other comets with strong emission features, while its abundance of amorphous carbon is higher. Both suggest that SW3 is among the most chemically primitive solar system objects yet studied in detail, and that it formed earlier or farther from the Sun than the bulk of the comets studied so far. The similar dust compositions of the two fragments suggest that these are not mineralogically heterogeneous, but rather uniform throughout their volumes. The best-fit particle size distribution for SW3B has a form dn/da ~ a -3.5, close to that expected for dust in collisional equilibrium, while that for SW3C has dn/da ~ a -4.0, as seen mostly in active comets with strong directed jets, such as C/1995 O1 Hale-Bopp. The total mass of dust in the comae plus nearby tail, extrapolated from the field of view of the IRS peak-up image arrays, is (3-5) × 108 kg for B and (7-9) × 108 kg for C. Atomic abundances derived from the spectral models indicate a depletion of O compared to solar photospheric values, despite the inclusion of water ice and gas in the models. Atomic C may be solar or slightly sub-solar, but its abundance is complicated by the potential contribution of spectrally featureless mineral species

  17. Hubble Space Telescope WFC3 Early Release Science: Emission-line Galaxies from Infrared Grism Observations

    NASA Astrophysics Data System (ADS)

    Straughn, Amber N.; Kuntschner, Harald; Kümmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Gardner, Jonathan P.; Windhorst, Rogier A.; O'Connell, Robert W.; Pirzkal, Norbert; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Malhotra, Sangeeta; Rhoads, James; Balick, Bruce; Bond, Howard E.; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; Mutchler, Max; Paresce, Francesco; Saha, Abhijit; Silk, Joseph I.; Trauger, John T.; Walker, Alistair R.; Whitmore, Bradley C.; Young, Erick T.; Xu, Chun

    2011-01-01

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 μm from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 μm grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the Hα, [O III], and [O II] emission lines detected in the redshift ranges 0.2 <~ z <~ 1.4, 1.2 <~ z <~ 2.2, and 2.0 <~ z <~ 3.3, respectively, in the G102 (0.8-1.1 μm R ~= 210) and G141 (1.1-1.6 μm R ~= 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 48 ELGs to m AB(F098M) ~= 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Δz ~= 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m AB(F098M)= 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z >~ 2.

  18. HUBBLE SPACE TELESCOPE WFC3 EARLY RELEASE SCIENCE: EMISSION-LINE GALAXIES FROM INFRARED GRISM OBSERVATIONS

    SciTech Connect

    Straughn, Amber N.; Gardner, Jonathan P.; Kuntschner, Harald; Kuemmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; O'Connell, Robert W.; Pirzkal, Norbert; Bond, Howard E.; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Balick, Bruce; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.

    2011-01-15

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 {mu}m from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 {mu}m grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the H{alpha}, [O III], and [O II] emission lines detected in the redshift ranges 0.2 {approx}< z {approx}< 1.4, 1.2 {approx}< z {approx}< 2.2, and 2.0 {approx}< z {approx}< 3.3, respectively, in the G102 (0.8-1.1 {mu}m; R {approx_equal} 210) and G141 (1.1-1.6 {mu}m; R {approx_equal} 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 48 ELGs to m A{sub B(F098M)} {approx_equal} 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts ({Delta}z {approx_equal} 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m{sub AB(F098M)}= 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the

  19. Investigation Development Plan for Reflight of the Small Helium-cooled Infrared Telescope Experiment. Volume 1: Investigation and Technical/management

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Infrared Telescope (IRT) is designed to survey extended celestial sources of infrared radiation between 4 and 120 micrometers wavelength. It will provide data regarding Space Shuttle induced environmental contamination and the zodical light. And, it will provide experience in the management of large volumes of superfluid helium in the space environment.

  20. Cryogenic Optical Performance of the Cassini Composite Infrared Spectrometer (CIRS) Flight Telescope

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Hagopian, John

    1998-01-01

    The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope's image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the image performance requirement of 80% encircled energy within a 432 microns diameter circle.

  1. Lunar Interferometric Radio Array: LIRA

    NASA Astrophysics Data System (ADS)

    Abbott, J.; Pixton, S.; Roberts, C.; Reyhanoglu, M.

    2000-01-01

    The Lunar Interferometric Radio Array (LIRA) is a performance driven design, with emphasis on utilizing the unique attributes of the far-side of the moon as a platform for radio astronomy. LIRA consists of three independent Lunar Telescope Units (LTUs), autonomously landed on the moon, and a communications relay satellite orbiting at libration point two (L2). Each LTU deploys a large inflatable spheroid, whose underside has been impregnated with a reflective coating. The spheroid is then gradually hardened into a shell by the suns ultraviolet radiation. LIRA achieves broadband capabilities by operating each LTU independently (tuned to offset frequencies), or provides high resolution observations as a three-element interferometer. The interferometer is functional with as few as two elements, yet will achieve greater resolution with additional elements. Thus, LIRA delivers both redundancy and the possibility for future expansion. Data processing, including interferometric synthesis, occurs at an earth-based ground station, eliminating the need for complex onboard data manipulation.

  2. Quantitative Measurements of the Daytime Near Infrared Sky Brightness at the AEOS 3.6 m Telescope

    NASA Astrophysics Data System (ADS)

    Hart, M.; Jefferies, S.; Hope, D.; Nagy, J.; Williams, S.

    2014-09-01

    We report daytime sky brightness measurements recorded in the near infrared from the 3.6 m AEOS telescope. Measurements were made at various positions in the sky and separation angles from the sun. The detector was an InGaAs focal plane array in a FLIR SC6000 camera, with images taken through a 50 nm wide filter centered at 1250 nm as well as without any optical filter. The brightness measurements have been calibrated by reference to observations of a photometric standard star in the same bands. We discuss how these new results are motivated by the selection of optimal techniques for high-resolution imaging of satellites from the AEOS telescope.

  3. Physical Conditions of the Earliest Phases of Massive Star Formation: Single-dish and Interferometric Observations of Ammonia and CCS in Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Dirienzo, William J.; Brogan, Crystal; Indebetouw, Rémy; Chandler, Claire J.; Friesen, Rachel K.; Devine, Kathryn E.

    2015-11-01

    Infrared Dark Clouds (IRDCs) harbor the earliest phases of massive star formation, and many of the compact cores in IRDCs, traced by millimeter continuum or by molecular emission in high critical density lines, host massive young stellar objects (YSOs). We used the Robert C. Byrd Green Bank Telescope and the Karl G. Jansky Very Large Array (VLA) to map {NH}{}3 and CCS in nine IRDCs to reveal the temperature, density, and velocity structures and explore chemical evolution in the dense (\\gt {10}22 {cm}{}-2) gas. Ammonia is an excellent molecular tracer for these cold, dense environments. The internal structure and kinematics of the IRDCs include velocity gradients, filaments, and possibly colliding clumps that elucidate the formation process of these structures and their YSOs. We find a wide variety of substructure including filaments and globules at distinct velocities, sometimes overlapping at sites of ongoing star formation. It appears that these IRDCs are still being assembled from molecular gas clumps even as star formation has already begun, and at least three of them appear consistent with the morphology of “hub-filament structures” discussed in the literature. Furthermore, we find that these clumps are typically near equipartition between gravitational and kinetic energies, so these structures may survive for multiple free-fall times.

  4. Hydrous carbonates on Mars?: evidence from Mariner 6/7 infrared spectrometer and ground-based telescopic spectra

    USGS Publications Warehouse

    Calvin, W.M.; King, T.V.V.; Clark, R.N.

    1994-01-01

    Absorption features at 2.28 and 5.4 ??m identified in Mariner 6/7 infrared spectrometer and terrestrial telescopic spectra are consistent with the spectra of hydrous magnesium carbonates such as hydromagnesite and artinite. Spectral characteristics of these hydrous carbonates are different from those of the anhydrous carbonates, as the former do not have the strong spectral features typically associated with anhydrous carbonates such as calcite and siderite. Although the spectroscopic evidence for anhydrous carbonates is scant, the possible presence of hydrous carbonates provides an appealing mechanism for the existence of carbonates on Mars. -from Authors

  5. Optical performance assessment of a fluorescence detector for the telescope array low-energy extension experiment by using the interferometric simulation method

    NASA Astrophysics Data System (ADS)

    Jeong, In Seok; Lee, Jin Ho

    2016-07-01

    The fluorescence detector (FD) of the Telescope Array Low-Energy Extension (TALE) has been designed with different structures comprised of various materials. However, the cycle of expansion and contraction in these materials in response to thermal effects results in structural deformation. Furthermore, because the TALE-FD is exposed to high-temperature environments, significant light dispersion occurs as a result of the substantial deformation of the mirror (due to thermal expansion mismatch); this is considered to be an important issue that must be addressed in order to enhance the array performance and productivity. As the optical surface accuracy may be influenced by the structural deformation, an assessment of any significant structural deformations of the component materials is necessary to increase confidence in the array's operation. The primary purpose of this paper is to identify the relationship between temperature increases and changes in the surface accuracy of the TALE-FD large mirror. For this purpose, Cherenkov light emission and the fluorescence processes of ultra-high-energy cosmic rays (UHECRs) are emulated in order to assess the optical performance of the TALE-FD in practical situations. Additionally, the detection sensitivity of the TALE-FD large mirror is experimentally identified by measuring the distribution of the focused spot produced by incident light over the surface of a photomultiplier tube (PMT) sensor array.

  6. Building the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. JWST will make progress In almost every area of astronomy, from the first galaxies to form in the early universe to exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory Is confirmed for launch in 2018; the design is complete and it is in its construction phase. Innovations that make JWST possible include large-area low-noise infrared detectors, cryogenic ASICs, a MEMS micro-shutter array providing multi-object spectroscopy, a non-redundant mask for interferometric coronagraphy and diffraction-limited segmented beryllium mirrors with active wavefront sensing and control. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  7. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  8. Photometry of Galactic and Extragalactic Far-Infrared Sources using the 91.5 cm Airborne Infrared Telescope

    NASA Technical Reports Server (NTRS)

    Harper, D. A.

    1996-01-01

    The objective of this grant was to construct a series of far infrared photometers, cameras, and supporting systems for use in astronomical observations in the Kuiper Airborne Observatory. The observations have included studies of galaxies, star formation regions, and objects within the Solar System.

  9. Experiment requirements document for reflight of the small helium-cooled infrared telescope experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The four astronomical objectives addressed include: the measurement and mapping of extended low surface brightness infrared emission from the galaxy; the measurement of diffuse emission from intergalactic material and/or galaxies and quasi-stellar objects; the measurement of the zodiacal dust emission; and the measurement of a large number of discrete infrared sources.

  10. A multi-wavelength interferometric study of the massive young stellar object IRAS 13481-6124

    NASA Astrophysics Data System (ADS)

    Boley, Paul A.; Kraus, Stefan; de Wit, Willem-Jan; Linz, Hendrik; van Boekel, Roy; Henning, Thomas; Lacour, Sylvestre; Monnier, John D.; Stecklum, Bringfried; Tuthill, Peter G.

    2016-02-01

    We present new mid-infrared interferometric observations of the massive young stellar object IRAS 13481-6124, using VLTI/MIDI for spectrally-resolved, long-baseline measurements (projected baselines up to ~120 m) and GSO/T-ReCS for aperture-masking interferometry in five narrow-band filters (projected baselines of ~1.8-6.4 m) in the wavelength range of 7.5-13μm. We combine these measurements with previously-published interferometric observations in the K and N bands in order to assemble the largest collection of infrared interferometric observations for a massive YSO to date. Using a combination of geometric and radiative-transfer models, we confirm the detection at mid-infrared wavelengths of the disk previously inferred from near-infrared observations. We show that the outflow cavity is also detected at both near- and mid-infrared wavelengths, and in fact dominates the mid-infrared emission in terms of total flux. For the disk, we derive the inner radius (~1.8 mas or ~6.5 AU at 3.6 kpc), temperature at the inner rim (~1760 K), inclination (~48°) and position angle (~107°). We determine that the mass of the disk cannot be constrained without high-resolution observations in the (sub-)millimeter regime or observations of the disk kinematics, and could be anywhere from ~10-3 to 20M⊙. Finally, we discuss the prospects of interpreting the spectral energy distributions of deeply-embedded massive YSOs, and warn against attempting to infer disk properties from the spectral energy distribution. Based in part on observations with the Very Large Telescope Interferometer of the European Southern Observatory, under program IDs 384.C-0625, 086.C-0543, 091.C-0357.