Science.gov

Sample records for infrastructure interdependency modeling

  1. Reliable Communication Models in Interdependent Critical Infrastructure Networks

    SciTech Connect

    Lee, Sangkeun; Chinthavali, Supriya; Shankar, Mallikarjun

    2016-01-01

    Modern critical infrastructure networks are becoming increasingly interdependent where the failures in one network may cascade to other dependent networks, causing severe widespread national-scale failures. A number of previous efforts have been made to analyze the resiliency and robustness of interdependent networks based on different models. However, communication network, which plays an important role in today's infrastructures to detect and handle failures, has attracted little attention in the interdependency studies, and no previous models have captured enough practical features in the critical infrastructure networks. In this paper, we study the interdependencies between communication network and other kinds of critical infrastructure networks with an aim to identify vulnerable components and design resilient communication networks. We propose several interdependency models that systematically capture various features and dynamics of failures spreading in critical infrastructure networks. We also discuss several research challenges in building reliable communication solutions to handle failures in these models.

  2. CIMS: A FRAMEWORK FOR INFRASTRUCTURE INTERDEPENDENCY MODELING AND ANALYSIS

    SciTech Connect

    Donald D. Dudenhoeffer; May R. Permann; Milos Manic

    2006-12-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, utilities, telecommunication, and even financial networks. While modeling and simulation tools have provided insight into the behavior of individual infrastructure networks, a far less understood area is that of the interrelationships among multiple infrastructure networks including the potential cascading effects that may result due to these interdependencies. This paper first describes infrastructure interdependencies as well as presenting a formalization of interdependency types. Next the paper describes a modeling and simulation framework called CIMS© and the work that is being conducted at the Idaho National Laboratory (INL) to model and simulate infrastructure interdependencies and the complex behaviors that can result.

  3. Stochastic Coloured Petrinet Based Healthcare Infrastructure Interdependency Model

    NASA Astrophysics Data System (ADS)

    Nukavarapu, Nivedita; Durbha, Surya

    2016-06-01

    The Healthcare Critical Infrastructure (HCI) protects all sectors of the society from hazards such as terrorism, infectious disease outbreaks, and natural disasters. HCI plays a significant role in response and recovery across all other sectors in the event of a natural or manmade disaster. However, for its continuity of operations and service delivery HCI is dependent on other interdependent Critical Infrastructures (CI) such as Communications, Electric Supply, Emergency Services, Transportation Systems, and Water Supply System. During a mass casualty due to disasters such as floods, a major challenge that arises for the HCI is to respond to the crisis in a timely manner in an uncertain and variable environment. To address this issue the HCI should be disaster prepared, by fully understanding the complexities and interdependencies that exist in a hospital, emergency department or emergency response event. Modelling and simulation of a disaster scenario with these complexities would help in training and providing an opportunity for all the stakeholders to work together in a coordinated response to a disaster. The paper would present interdependencies related to HCI based on Stochastic Coloured Petri Nets (SCPN) modelling and simulation approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The entire model would be integrated with Geographic information based decision support system to visualize the dynamic behaviour of the interdependency of the Healthcare and related CI network in a geographically based environment.

  4. Toward modeling and simulation of critical national infrastructure interdependencies.

    SciTech Connect

    Jones, Albert T.; Son, Young-Jun; Beyeler, Walter Eugene; Min, Hyeung-Sik Jason; Brown, Theresa Jean

    2005-08-01

    Modern society's physical health depends vitally upon a number of real, interdependent, critical infrastructure networks that deliver power, petroleum, natural gas,water, and communications. Its economic health depends on a number of other infrastructure networks, some virtual and some real, that link residences, industries, commercial sectors, and transportation sectors. The continued prosperity and national security of the US depends on our ability to understand the vulnerabilities of and analyze the performance of both the individual infrastructures and the entire interconnected system of infrastructures. Only then can we respond to potential disruptions in a timely and effective manner. Collaborative efforts among Sandia, other government agencies, private industry, and academia have resulted in realistic models for many of the individual component infrastructures. In this paper, we propose an innovative modeling and analysis framework to study the entire system of physical and economic infrastructures. That framework uses the existing individual models together with system dynamics, functional models, and nonlinear optimization algorithms. We describe this framework and demonstrate its potential use to analyze, and propose a response for, a hypothetical disruption.

  5. A modeling framework for investment planning in interdependent infrastructures in multi-hazard environments.

    SciTech Connect

    Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.; Nozick, Linda Karen; Prince, Michael

    2013-09-01

    Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research&Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorist's actions based on assumptions regarding their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.

  6. The uncertainty recovery analysis for interdependent infrastructure systems using the dynamic inoperability input-output model

    NASA Astrophysics Data System (ADS)

    Xu, Wenping; Wang, Zongjun; Hong, Liu; He, Ligang; Chen, Xueguang

    2015-05-01

    In this paper, an innovatory modelling framework is proposed to conduct the uncertainty recovery analysis for the interdependent infrastructure sectors based on the dynamic inoperability input-output model (DIIM). The DIIM captures the inoperability of infrastructure systems, and therefore can easily analyse how perturbations propagate among interconnected infrastructures and how to implement effective mitigation efforts after a disaster. In this paper, based on the random recovery time distribution, we apply the Monte Carlo simulation to obtain the distributions of the economic losses for the critical interdependent infrastructure sectors after a disaster. The proposed method can provide the decision-makers the guidance in making suitable risk-management decisions as well as how the risks can be mitigated, if the disaster cannot be avoided to happen in the first place.

  7. Critical Infrastructure Interdependency Modeling: A Survey of U.S. and International Research

    SciTech Connect

    Not Available

    2006-08-01

    The Nation’s health, wealth, and security rely on the production and distribution of certain goods and services. The array of physical assets, processes, and organizations across which these goods and services move are called "critical infrastructures".1 This statement is as true in the U.S. as in any country in the world. Recent world events such as the 9-11 terrorist attacks, London bombings, and gulf coast hurricanes have highlighted the importance of stable electric, gas and oil, water, transportation, banking and finance, and control and communication infrastructure systems. Be it through direct connectivity, policies and procedures, or geospatial proximity, most critical infrastructure systems interact. These interactions often create complex relationships, dependencies, and interdependencies that cross infrastructure boundaries. The modeling and analysis of interdependencies between critical infrastructure elements is a relatively new and very important field of study. The U.S. Technical Support Working Group (TSWG) has sponsored this survey to identify and describe this current area of research including the current activities in this field being conducted both in the U.S. and internationally. The main objective of this study is to develop a single source reference of critical infrastructure interdependency modeling tools (CIIMT) that could be applied to allow users to objectively assess the capabilities of CIIMT. This information will provide guidance for directing research and development to address the gaps in development. The results will inform researchers of the TSWG Infrastructure Protection Subgroup of research and development efforts and allow a more focused approach to addressing the needs of CIIMT end-user needs. This report first presents the field of infrastructure interdependency analysis, describes the survey methodology, and presents the leading research efforts in both a cumulative table and through individual datasheets. Data was

  8. Multi-Model Framework for Investigating Potential Climate Change Impacts on Interdependent Critical Infrastructure

    NASA Astrophysics Data System (ADS)

    Sylvester, L.; Allen, M. R.; Wilbanks, T. J.

    2015-12-01

    Built infrastructure consists of a series of interconnected networks with many coupled interdependencies. Traditionally, risk and vulnerability assessments are conducted one infrastructure at a time, considering only direct impacts on built and planned assets. However, extreme events caused by climate change affect local communities in different respects and stress vital interconnected infrastructures in complex ways that cannot be captured with traditional risk assessment methodologies. We employ a combination of high-performance computing, geographical information science, and imaging methods to examine the impacts of climate change on infrastructure for cities in two different climate regions: Chicago, Illinois in the Midwest and Portland, Maine (and Casco Bay area) in the Northeast. In Illinois, we evaluate effects of changes in regional temperature and precipitation, informed by an extreme climate change projection, population growth and migration, water supply, and technological development, on electricity generation and consumption. In Maine, we determine the aggregate effects of sea level rise, changing precipitation patterns, and population shifts on the depth of the freshwater-saltwater interface in coastal aquifers and the implications of these changes for water supply in general. The purpose of these efforts is to develop a multi-model framework for investigating potential climate change impacts on interdependent critical infrastructure assessing both vulnerabilities and alternative adaptive measures.

  9. Identifying, understanding, and analyzing critical infrastructure interdependencies.

    SciTech Connect

    Rinaldi, S. M.; Peerenboom, J. P.; Kelly, T. K.; Decision and Information Sciences

    2001-12-01

    The notion that our nation's critical infrastructures are highly interconnected and mutually dependent in complex ways, both physically and through a host of information and communications technologies (so-called 'cyberbased systems'), is more than an abstract, theoretical concept. As shown by the 1998 failure of the Galaxy 4 telecommunications satellite, the prolonged power crisis in California, and many other recent infrastructure disruptions, what happens to one infrastructure can directly and indirectly affect other infrastructures, impact large geographic regions and send ripples throughout the national a global economy. This article presents a conceptual framework for addressing infrastructure interdependencies that could serve as the basis for further understanding and scholarship in this important area. We use this framework to explore the challenges and complexities of interdependency. We set the stage for this discussion by explicitly defining the terms infrastructure, infrastructure dependencies, and infrastructure interdependencies and introducing the fundamental concept of infrastructures as complex adaptive systems. We then focus on the interrelated factors and system conditions that collectively define the six dimensions. Finally, we discuss some of the research challenges involved in developing, applying, and validating modeling and simulation methodologies and tools for infrastructure interdependency analysis.

  10. Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis

    SciTech Connect

    May Permann

    2007-03-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.

  11. Cyber and physical infrastructure interdependencies.

    SciTech Connect

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  12. Post-disaster supply chain interdependent critical infrastructure system restoration: A review of data necessary and available for modeling

    USGS Publications Warehouse

    Ramachandran, Varun; Long, Suzanna K.; Shoberg, Thomas G.; Corns, Steven; Carlo, Hector J.

    2016-01-01

    The majority of restoration strategies in the wake of large-scale disasters have focused on short-term emergency response solutions. Few consider medium- to long-term restoration strategies to reconnect urban areas to national supply chain interdependent critical infrastructure systems (SCICI). These SCICI promote the effective flow of goods, services, and information vital to the economic vitality of an urban environment. To re-establish the connectivity that has been broken during a disaster between the different SCICI, relationships between these systems must be identified, formulated, and added to a common framework to form a system-level restoration plan. To accomplish this goal, a considerable collection of SCICI data is necessary. The aim of this paper is to review what data are required for model construction, the accessibility of these data, and their integration with each other. While a review of publically available data reveals a dearth of real-time data to assist modeling long-term recovery following an extreme event, a significant amount of static data does exist and these data can be used to model the complex interdependencies needed. For the sake of illustration, a particular SCICI (transportation) is used to highlight the challenges of determining the interdependencies and creating models capable of describing the complexity of an urban environment with the data publically available. Integration of such data as is derived from public domain sources is readily achieved in a geospatial environment, after all geospatial infrastructure data are the most abundant data source and while significant quantities of data can be acquired through public sources, a significant effort is still required to gather, develop, and integrate these data from multiple sources to build a complete model. Therefore, while continued availability of high quality, public information is essential for modeling efforts in academic as well as government communities, a more

  13. Critical Infrastructure Modeling: An Approach to Characterizing Interdependencies of Complex Networks & Control Systems

    SciTech Connect

    Stuart Walsh; Shane Cherry; Lyle Roybal

    2009-05-01

    Critical infrastructure control systems face many challenges entering the 21st century, including natural disasters, cyber attacks, and terrorist attacks. Revolutionary change is required to solve many existing issues, including gaining greater situational awareness and resiliency through embedding modeling and advanced control algorithms in smart sensors and control devices instead of in a central controller. To support design, testing, and component analysis, a flexible simulation and modeling capability is needed. Researchers at Idaho National Laboratory are developing and evaluating such a capability through their CIPRsim modeling and simulation framework.

  14. Analysis of Critical Infrastructure Dependencies and Interdependencies

    SciTech Connect

    Petit, Frederic; Verner, Duane; Brannegan, David; Buehring, William; Dickinson, David; Guziel, Karen; Haffenden, Rebecca; Phillips, Julia; Peerenboom, James

    2015-06-01

    The report begins by defining dependencies and interdependencies and exploring basic concepts of dependencies in order to facilitate a common understanding and consistent analytical approaches. Key concepts covered include; Characteristics of dependencies: upstream dependencies, internal dependencies, and downstream dependencies; Classes of dependencies: physical, cyber, geographic, and logical; and Dimensions of dependencies: operating environment, coupling and response behavior, type of failure, infrastructure characteristics, and state of operations From there, the report proposes a multi-phase roadmap to support dependency and interdependency assessment activities nationwide, identifying a range of data inputs, analysis activities, and potential products for each phase, as well as key steps needed to progress from one phase to the next. The report concludes by outlining a comprehensive, iterative, and scalable framework for analyzing dependencies and interdependencies that stakeholders can integrate into existing risk and resilience assessment efforts.

  15. Geospatial decision support framework for critical infrastructure interdependency assessment

    NASA Astrophysics Data System (ADS)

    Shih, Chung Yan

    Critical infrastructures, such as telecommunications, energy, banking and finance, transportation, water systems and emergency services are the foundations of modern society. There is a heavy dependence on critical infrastructures at multiple levels within the supply chain of any good or service. Any disruptions in the supply chain may cause profound cascading effect to other critical infrastructures. A 1997 report by the President's Commission on Critical Infrastructure Protection states that a serious interruption in freight rail service would bring the coal mining industry to a halt within approximately two weeks and the availability of electric power could be reduced in a matter of one to two months. Therefore, this research aimed at representing and assessing the interdependencies between coal supply, transportation and energy production. A proposed geospatial decision support framework was established and applied to analyze interdependency related disruption impact. By utilizing the data warehousing approach, geospatial and non-geospatial data were retrieved, integrated and analyzed based on the transportation model and geospatial disruption analysis developed in the research. The results showed that by utilizing this framework, disruption impacts can be estimated at various levels (e.g., power plant, county, state, etc.) for preventative or emergency response efforts. The information derived from the framework can be used for data mining analysis (e.g., assessing transportation mode usages; finding alternative coal suppliers, etc.).

  16. Vulnerability analysis of interdependent infrastructure systems: A methodological framework

    NASA Astrophysics Data System (ADS)

    Wang, Shuliang; Hong, Liu; Chen, Xueguang

    2012-06-01

    Infrastructure systems such as power and water supplies make up the cornerstone of modern society which is essential for the functioning of a society and its economy. They become more and more interconnected and interdependent with the development of scientific technology and social economy. Risk and vulnerability analysis of interdependent infrastructures for security considerations has become an important subject, and some achievements have been made in this area. Since different infrastructure systems have different structural and functional properties, there is no universal all-encompassing 'silver bullet solution' to the problem of analyzing the vulnerability associated with interdependent infrastructure systems. So a framework of analysis is required. This paper takes the power and water systems of a major city in China as an example and develops a framework for the analysis of the vulnerability of interdependent infrastructure systems. Four interface design strategies based on distance, betweenness, degree, and clustering coefficient are constructed. Then two types of vulnerability (long-term vulnerability and focused vulnerability) are illustrated and analyzed. Finally, a method for ranking critical components in interdependent infrastructures is given for protection purposes. It is concluded that the framework proposed here is useful for vulnerability analysis of interdependent systems and it will be helpful for the system owners to make better decisions on infrastructure design and protection.

  17. Inherent costs and interdependent impacts of infrastructure network resilience.

    PubMed

    Baroud, Hiba; Barker, Kash; Ramirez-Marquez, Jose E; Rocco, Claudio M

    2015-04-01

    Recent studies in system resilience have proposed metrics to understand the ability of systems to recover from a disruptive event, often offering a qualitative treatment of resilience. This work provides a quantitative treatment of resilience and focuses specifically on measuring resilience in infrastructure networks. Inherent cost metrics are introduced: loss of service cost and total network restoration cost. Further, "costs" of network resilience are often shared across multiple infrastructures and industries that rely upon those networks, particularly when such networks become inoperable in the face of disruptive events. As such, this work integrates the quantitative resilience approach with a model describing the regional, multi-industry impacts of a disruptive event to measure the interdependent impacts of network resilience. The approaches discussed in this article are deployed in a case study of an inland waterway transportation network, the Mississippi River Navigation System. PMID:24924523

  18. Agent-based modeling of complex infrastructures

    SciTech Connect

    North, M. J.

    2001-06-01

    Complex Adaptive Systems (CAS) can be applied to investigate complex infrastructures and infrastructure interdependencies. The CAS model agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) allow investigation of the electric power infrastructure, the natural gas infrastructure and their interdependencies.

  19. Critical Infrastructure Modeling System

    Energy Science and Technology Software Center (ESTSC)

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  20. Critical Infrastructure Modeling System

    SciTech Connect

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method of Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.

  1. The Interdependent Learning Model. Program Summary.

    ERIC Educational Resources Information Center

    Far West Lab. for Educational Research and Development, Berkeley, CA.

    This document is the sixth in a series of 12 early childhood program descriptions compiled by the Far West Laboratory for Educational Research and Development. The program described here is the Interdependent Learning Model located at the Institute for Developmental Studies at New York University in New York City. The Interdependent Learning Model…

  2. Interconnectedness and interdependencies of critical infrastructures in the US economy: Implications for resilience

    NASA Astrophysics Data System (ADS)

    Chopra, Shauhrat S.; Khanna, Vikas

    2015-10-01

    Natural disasters in 2011 yielded close to 55 billion in economic damages alone in the United States (US), which highlights the need to reduce impacts of such disasters or other deliberate attacks. The US Department of Homeland Security (DHS) identifies a list of 16 Critical Infrastructure Sectors (CIS) whose incapacity due to disruptions would have a debilitating impact on the nation's economy. The goal of this work is to understand the implications of interdependencies among CIS on the resilience of the US economic system as a whole. We develop a framework that combines the empirical economic input-output (EIO) model with graph theory based techniques for understanding interdependencies, interconnectedness and resilience in the US economic system. By representing the US economy as a network, we are able to analyze its topology by separately looking at its unweighted and weighted forms. Topological analysis of the US EIO network suggests that it exhibits small world properties for the unweighted case, and in the weighted case, the throughput of industry sectors follows a power-law with an exponential cutoff. Implications of these topological properties are discussed in the paper. We also simulate hypothetical disruptions on CIS in order to identify industrial sectors that experience the largest economic impacts, and to quantify systemic vulnerability in economic terms. In addition, insights from community detection and hypothetical disruption scenarios help assess vulnerability of individual industrial communities to disruptions on individual CIS. These methodologies also provide insights regarding the extent of coupling between each CIS in the US EIO network. Based on our analysis, we observe that excessive interconnectedness and interdependencies of CIS results in high systemic vulnerability. This information can guide policymakers to design policies that improve resilience of economic networks, and evaluate policies that might indirectly increase coupling

  3. Cascading of Fluctuations in Interdependent Energy Infrastructures. Gas-Grid Coupling

    SciTech Connect

    Chertkov, Michael; Lebedev, Vladimir; Backhaus, Scott N.

    2014-09-05

    The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring at the locations of flow reversals.

  4. A general model of resource production and exchange in systems of interdependent specialists.

    SciTech Connect

    Conrad, Stephen Hamilton; Finley, Patrick D.; Beyeler, Walter Eugene; Brown, Theresa Jean; Glass, Robert John, Jr.; Breen, Peter; Kuypers, Marshall; Norton, Matthew David; Quach, Tu-Thach; Antognoli, Matthew; Mitchell, Michael David

    2011-11-01

    Infrastructures are networks of dynamically interacting systems designed for the flow of information, energy, and materials. Under certain circumstances, disturbances from a targeted attack or natural disasters can cause cascading failures within and between infrastructures that result in significant service losses and long recovery times. Reliable interdependency models that can capture such multi-network cascading do not exist. The research reported here has extended Sandia's infrastructure modeling capabilities by: (1) addressing interdependencies among networks, (2) incorporating adaptive behavioral models into the network models, and (3) providing mechanisms for evaluating vulnerability to targeted attack and unforeseen disruptions. We have applied these capabilities to evaluate the robustness of various systems, and to identify factors that control the scale and duration of disruption. This capability lays the foundation for developing advanced system security solutions that encompass both external shocks and internal dynamics.

  5. Attachment, mastery, and interdependence: a model of parenting processes.

    PubMed

    Edwards, Martha E

    2002-01-01

    A democratic nation needs an interdependent citizenry who are not only competent but who also can live together cooperatively with an eye toward what will benefit the whole as well as the self. In this article, the concept of interdependence is adopted as the central goal of parenting. The Parenting Processes Model is then presented, specifying how caregivers help children develop this interdependence. This work draws upon and integrates the work of a number of theoreticians, researchers, and clinicians, with the central focus on the work of John Bowlby, Alfred Adler, and Lev Vygotsky. PMID:12395566

  6. Exploring the interdependencies between parameters in a material model.

    SciTech Connect

    Silling, Stewart Andrew; Fermen-Coker, Muge

    2014-01-01

    A method is investigated to reduce the number of numerical parameters in a material model for a solid. The basis of the method is to detect interdependencies between parameters within a class of materials of interest. The method is demonstrated for a set of material property data for iron and steel using the Johnson-Cook plasticity model.

  7. Attack robustness of cascading load model in interdependent networks

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Wu, Yuedan; Li, Yun

    2015-08-01

    Considering the weight of a node and the coupled strength of two interdependent nodes in the different networks, we propose a method to assign the initial load of a node and construct a new cascading load model in the interdependent networks. Assuming that a node in one network will fail if its degree is 0 or its dependent node in the other network is removed from the network or the load on it exceeds its capacity, we study the influences of the assortative link (AL) and the disassortative link (DL) patterns between two networks on the robustness of the interdependent networks against cascading failures. For better evaluating the network robustness, from the local perspective of a node we present a new measure to qualify the network resiliency after targeted attacks. We show that the AL patterns between two networks can improve the robust level of the entire interdependent networks. Moreover, we obtain how to efficiently allocate the initial load and select some nodes to be protected so as to maximize the network robustness against cascading failures. In addition, we find that some nodes with the lower load are more likely to trigger the cascading propagation when the distribution of the load is more even, and also give the reasonable explanation. Our findings can help to design the robust interdependent networks and give the reasonable suggestion to optimize the allocation of the protection resources.

  8. Simulation and analysis of infrastructure interdependencies using a Petri net simulator in a geographical information system

    NASA Astrophysics Data System (ADS)

    Ge, Yong; Xing, Xitao; Cheng, Qiuming

    2010-12-01

    Society relies greatly upon infrastructure networks that are highly interconnected and mutually dependent in complex ways. Simulation and modeling assist in dealing with the complexity of infrastructure networks, especially in the effective response and management of resources for rescue, recovery, and restoration. This paper introduces the Petri net into a geographical information system to develop the GeoPetri Net system, which can be used to simulate the complex geographical relationships among places and nodes. Unlike the ordinary Petri net, the GeoPetri Net deals with places and nodes with geographical locations and the geographical relationships between these nodes and records the statuses of nodes to produce simulated events. A case study involving an education layer with 15 nodes (schools) and a transportation layer with 25 node lines (streets) in a geographical information system is presented to substantiate the above conceptual arguments.

  9. Aging and Interdependence: A Theoretical Model for Close Relationships.

    ERIC Educational Resources Information Center

    Blieszner, Rosemary

    This paper demonstrates the utility of interdependence theory for understanding older persons' social relationships. Using friendship as an exemplary case, a model of expectations for and reactions to social exchanges is described. Exchanges which are perceived to be motivated by obligation are distinguished from those which are perceived to…

  10. Operational models of infrastructure resilience.

    PubMed

    Alderson, David L; Brown, Gerald G; Carlyle, W Matthew

    2015-04-01

    We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience. PMID:25808298

  11. An integrated model of human-wildlife interdependence

    USGS Publications Warehouse

    John, Kun H.; Walsh, Richard G.; Johnson, R. L.

    1994-01-01

    This paper attempts to integrate wildlife-related ecologic and economic variables into an econometric model. The model reveals empirical evidence of the presumed interdependence of human-wildlife and the holistic nature of humanity's relationship to the ecosystem. Human use of biologic resources varies not only with income, education, and population, but also with sustainability of humankind's action relative to the quality and quantity of the supporting ecological base.

  12. Modeling interdependent animal movement in continuous time.

    PubMed

    Niu, Mu; Blackwell, Paul G; Skarin, Anna

    2016-06-01

    This article presents a new approach to modeling group animal movement in continuous time. The movement of a group of animals is modeled as a multivariate Ornstein Uhlenbeck diffusion process in a high-dimensional space. Each individual of the group is attracted to a leading point which is generally unobserved, and the movement of the leading point is also an Ornstein Uhlenbeck process attracted to an unknown attractor. The Ornstein Uhlenbeck bridge is applied to reconstruct the location of the leading point. All movement parameters are estimated using Markov chain Monte Carlo sampling, specifically a Metropolis Hastings algorithm. We apply the method to a small group of simultaneously tracked reindeer, Rangifer tarandus tarandus, showing that the method detects dependency in movement between individuals. PMID:26812666

  13. A framework for linking cybersecurity metrics to the modeling of macroeconomic interdependencies.

    PubMed

    Santos, Joost R; Haimes, Yacov Y; Lian, Chenyang

    2007-10-01

    Hierarchical decision making is a multidimensional process involving management of multiple objectives (with associated metrics and tradeoffs in terms of costs, benefits, and risks), which span various levels of a large-scale system. The nation is a hierarchical system as it consists multiple classes of decisionmakers and stakeholders ranging from national policymakers to operators of specific critical infrastructure subsystems. Critical infrastructures (e.g., transportation, telecommunications, power, banking, etc.) are highly complex and interconnected. These interconnections take the form of flows of information, shared security, and physical flows of commodities, among others. In recent years, economic and infrastructure sectors have become increasingly dependent on networked information systems for efficient operations and timely delivery of products and services. In order to ensure the stability, sustainability, and operability of our critical economic and infrastructure sectors, it is imperative to understand their inherent physical and economic linkages, in addition to their cyber interdependencies. An interdependency model based on a transformation of the Leontief input-output (I-O) model can be used for modeling: (1) the steady-state economic effects triggered by a consumption shift in a given sector (or set of sectors); and (2) the resulting ripple effects to other sectors. The inoperability metric is calculated for each sector; this is achieved by converting the economic impact (typically in monetary units) into a percentage value relative to the size of the sector. Disruptive events such as terrorist attacks, natural disasters, and large-scale accidents have historically shown cascading effects on both consumption and production. Hence, a dynamic model extension is necessary to demonstrate the interplay between combined demand and supply effects. The result is a foundational framework for modeling cybersecurity scenarios for the oil and gas sector. A

  14. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    SciTech Connect

    Not Available

    2007-05-01

    Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.

  15. ELECTRICAL SUBSTATION RELIABILITY EVALUATION WITH EMPHASIS ON EVOLVING INTERDEPENDENCE ON COMMUNICATION INFRASTRUCTURE.

    SciTech Connect

    AZARM,M.A.; BARI,R.; YUE,M.; MUSICKI,Z.

    2004-09-12

    This study developed a probabilistic methodology for assessment of the reliability and security of electrical energy distribution networks. This included consideration of the future grid system, which will rely heavily on the existing digitally based communication infrastructure for monitoring and protection. Event tree and fault tree methods were utilized. The approach extensively modeled the types of faults that a grid could potentially experience, the response of the grid, and the specific design of the protection schemes. We demonstrated the methods by applying it to a small sub-section of a hypothetical grid based on an existing electrical grid system of a metropolitan area. The results showed that for a typical design that relies on communication network for protection, the communication network reliability could contribute significantly to the frequency of loss of electrical power. The reliability of the communication network could become a more important contributor to the electrical grid reliability as the utilization of the communication network significantly increases in the near future to support ''smart'' transmission and/or distributed generation.

  16. ELECTRICAL SUBSTATION RELIABILITY EVALUATION WITH EMPHASIS ON EVOLVING INTERDEPENDENCE ON COMMUNICATION INFRASTRUCTURE.

    SciTech Connect

    AZARM,M.A.BARI,R.A.MUSICKI,Z.

    2004-01-15

    The objective of this study is to develop a methodology for a probabilistic assessment of the reliability and security of electrical energy distribution networks. This includes consideration of the future grid system, which will rely heavily on the existing digitally based communication infrastructure for monitoring and protection. Another important objective of this study is to provide information and insights from this research to Consolidated Edison Company (Con Edison) that could be useful in the design of the new network segment to be installed in the area of the World Trade Center in lower Manhattan. Our method is microscopic in nature and relies heavily on the specific design of the portion of the grid being analyzed. It extensively models the types of faults that a grid could potentially experience, the response of the grid, and the specific design of the protection schemes. We demonstrate that the existing technology can be extended and applied to the electrical grid and to the supporting communication network. A small subsection of a hypothetical grid based on the existing New York City electrical grid system of Con Edison is used to demonstrate the methods. Sensitivity studies show that in the current design the frequency for the loss of the main station is sensitive to the communication network reliability. The reliability of the communication network could become a more important contributor to the electrical grid reliability as the utilization of the communication network significantly increases in the near future to support ''smart'' transmission and/or distributed generation. The identification of potential failure modes and their likelihood can support decisions on potential modifications to the network including hardware, monitoring instrumentation, and protection systems.

  17. Cascading failure analysis and restoration strategy in an interdependent network

    NASA Astrophysics Data System (ADS)

    Hong, Sheng; Lv, Chuan; Zhao, Tingdi; Wang, Baoqing; Wang, Jianghui; Zhu, Juxing

    2016-05-01

    In modern society, many infrastructures are interdependent owing to functional and logical relations among components in different systems. These networked infrastructures can be modeled as interdependent networks. In the real world, different networks carry different traffic loads whose values are dynamic and stem from the load redistribution in the same network and disturbance from the interdependent network. Interdependency makes interdependent networks so fragile that even a slight initial disturbance may lead to a cascading failure of the entire systems. In this paper, interdependencies among networks are modeled and a failure cascade process is studied considering their effects on failure propagation. Meanwhile, an in-process restoration strategy after the initial failure is investigated. The restoration effects depend strongly on the trigger timing, restoration probability and priority of the restoration actions along with the additional disturbances. Our findings highlight the necessity to decrease the large-scale cascading failure by structuring and managing an interdependent network reasonably.

  18. Interdependent regional lung emptying during forced expiration: a transistor model.

    PubMed

    Solway, J; Fredberg, J J; Ingram, R H; Pedersen, O F; Drazen, J M

    1987-05-01

    We recognized similarities between isovolume pressure-flow curves of the lung and emitter-collector voltage-current characteristics of bipolar transistors, and used this analogy to model expiratory flow limitation in a two-generation branching network with parallel nonhomogeneity. In this model, each of two bronchi empty parenchymal compliances through a common trachea, and each branch includes resistances upstream and downstream of a flow-limiting site. Properties of each airway are specified independently, allowing simulation of differences between the tracheal and bronchial generations and between the parallel bronchial paths. Simulations of four types of parallel asymmetry were performed: unilateral peripheral bronchoconstriction; unilateral central bronchoconstriction; asymmetric redistribution of parenchymal compliance; and unilateral alteration of the bronchial area-transmural pressure characteristic. Our results indicate that multiple axial choke points can exist simultaneously in a symmetric lung when large airway opening-pleural pressure gradients exist; despite severe nonhomogeneity of regional lung emptying, flow interdependence among parallel branches tends to maintain a near normal configuration of the overall maximal expiratory flow-volume (MEFV) curve throughout a large fraction of the vital capacity; and sudden changes of slope of the MEFV curve ("knees" or "bumps") may reflect choking in one branch in a nonuniform lung, but need not be obvious even when severe heterogeneity of lung emptying exists. PMID:3597273

  19. Reliability analysis of interdependent lattices

    NASA Astrophysics Data System (ADS)

    Limiao, Zhang; Daqing, Li; Pengju, Qin; Bowen, Fu; Yinan, Jiang; Zio, Enrico; Rui, Kang

    2016-06-01

    Network reliability analysis has drawn much attention recently due to the risks of catastrophic damage in networked infrastructures. These infrastructures are dependent on each other as a result of various interactions. However, most of the reliability analyses of these interdependent networks do not consider spatial constraints, which are found important for robustness of infrastructures including power grid and transport systems. Here we study the reliability properties of interdependent lattices with different ranges of spatial constraints. Our study shows that interdependent lattices with strong spatial constraints are more resilient than interdependent Erdös-Rényi networks. There exists an intermediate range of spatial constraints, at which the interdependent lattices have minimal resilience.

  20. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    . The maturity of individual scientific domains differs considerably. • Technologically and organisationally many different RI components have to be integrated. Individual systems are often complex and have a long-term history. Existing approaches are on different maturity levels, e.g. in relation to the standardisation of interfaces. • The concrete implementation process consists of independent and often parallel development activities. In many cases no detailed architectural blue-print for the envisioned system exists. • Most of the funding currently available for RI implementation is provided on a project basis. To increase the synergies in infrastructure development the authors propose a specific RI Maturity Model (RIMM) that is specifically qualified for open system-of-system environments. RIMM is based on the concepts of Capability Maturity Models for organisational development, concretely the Levels of Conceptual Interoperability Model (LCIM) specifying the technical, syntactical, semantic, pragmatic, dynamic, and conceptual layers of interoperation [1]. The model is complemented by the identification and integration of growth factors (according to the Nolan Stages Theory [2]). These factors include supply and demand factors. Supply factors comprise available resources, e.g., data, services and IT-management capabilities including organisations and IT-personal. Demand factors are the overall application portfolio for RIs but also the skills and requirements of scientists and communities using the infrastructure. RIMM thus enables a balanced development process of RI and RI components by evaluating the status of the supply and demand factors in relation to specific levels of interoperability. [1] Tolk, A., Diallo, A., Turnitsa, C. (2007): Applying the Levels of Conceptual Interoperability Model in Support of Integratability, Interoperability, and Composability for System-of-Systems Engineering. Systemics, Cybernetics and Informatics, Volume 5 - Number 5. [2

  1. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    . The maturity of individual scientific domains differs considerably. • Technologically and organisationally many different RI components have to be integrated. Individual systems are often complex and have a long-term history. Existing approaches are on different maturity levels, e.g. in relation to the standardisation of interfaces. • The concrete implementation process consists of independent and often parallel development activities. In many cases no detailed architectural blue-print for the envisioned system exists. • Most of the funding currently available for RI implementation is provided on a project basis. To increase the synergies in infrastructure development the authors propose a specific RI Maturity Model (RIMM) that is specifically qualified for open system-of-system environments. RIMM is based on the concepts of Capability Maturity Models for organisational development, concretely the Levels of Conceptual Interoperability Model (LCIM) specifying the technical, syntactical, semantic, pragmatic, dynamic, and conceptual layers of interoperation [1]. The model is complemented by the identification and integration of growth factors (according to the Nolan Stages Theory [2]). These factors include supply and demand factors. Supply factors comprise available resources, e.g., data, services and IT-management capabilities including organisations and IT-personal. Demand factors are the overall application portfolio for RIs but also the skills and requirements of scientists and communities using the infrastructure. RIMM thus enables a balanced development process of RI and RI components by evaluating the status of the supply and demand factors in relation to specific levels of interoperability. [1] Tolk, A., Diallo, A., Turnitsa, C. (2007): Applying the Levels of Conceptual Interoperability Model in Support of Integratability, Interoperability, and Composability for System-of-Systems Engineering. Systemics, Cybernetics and Informatics, Volume 5 - Number 5. [2

  2. Modeling Homophily over Time with an Actor-Partner Interdependence Model

    ERIC Educational Resources Information Center

    Popp, Danielle; Laursen, Brett; Kerr, Margaret; Stattin, Hakan; Burk, William J.

    2008-01-01

    Selection and socialization have been implicated in friendship homophily, but the relative contributions of each are difficult to measure simultaneously because of the nonindependent nature of the data. To address this problem, the authors applied a multiple-groups longitudinal actor-partner interdependence model (D. A. Kashy & D. A. Kenny, 2000)…

  3. Knowledge Interdependence with the Partner, Accuracy of Mutual Knowledge Model and Computer-Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Molinari, Gaelle; Sangin, Mirweis; Dillenbourg, Pierre; Nussli, Marc-Antoine

    2009-01-01

    The present study is part of a project aiming at empirically investigating the process of modeling the partner's knowledge (Mutual Knowledge Modeling or MKM) in Computer-Supported Collaborative Learning (CSCL) settings. In this study, a macro-collaborative script was used to produce knowledge interdependence (KI) among co-learners by providing…

  4. Assessing Mediation in Dyadic Data Using the Actor-Partner Interdependence Model

    ERIC Educational Resources Information Center

    Ledermann, Thomas; Macho, Siegfried; Kenny, David A.

    2011-01-01

    The assessment of mediation in dyadic data is an important issue if researchers are to test process models. Using an extended version of the actor-partner interdependence model the estimation and testing of mediation is complex, especially when dyad members are distinguishable (e.g., heterosexual couples). We show how the complexity of the model…

  5. Contextualizing Community Violence and Its Effects: An Ecological Model of Parent-Child Interdependent Coping

    ERIC Educational Resources Information Center

    Aisenberg, Eugene; Ell, Kathleen

    2005-01-01

    This article presents an integrated conceptual framework that contextualizes exposure to community violence and the interpersonal and interdependent processes of parent and child response to community violence. This model posits that parental distress, including post-traumatic stress disorder (PTSD) and depression, is a significant mediator of…

  6. Modeling and Managing Risk in Billing Infrastructures

    NASA Astrophysics Data System (ADS)

    Baiardi, Fabrizio; Telmon, Claudio; Sgandurra, Daniele

    This paper discusses risk modeling and risk management in information and communications technology (ICT) systems for which the attack impact distribution is heavy tailed (e.g., power law distribution) and the average risk is unbounded. Systems with these properties include billing infrastructures used to charge customers for services they access. Attacks against billing infrastructures can be classified as peripheral attacks and backbone attacks. The goal of a peripheral attack is to tamper with user bills; a backbone attack seeks to seize control of the billing infrastructure. The probability distribution of the overall impact of an attack on a billing infrastructure also has a heavy-tailed curve. This implies that the probability of a massive impact cannot be ignored and that the average impact may be unbounded - thus, even the most expensive countermeasures would be cost effective. Consequently, the only strategy for managing risk is to increase the resilience of the infrastructure by employing redundant components.

  7. Analyzing cross-sector interdependencies.

    SciTech Connect

    Peerenboom, J. P.; Fisher, R. E.; Decision and Information Sciences

    2007-01-01

    This paper discusses cross-sector infrastructure interdependencies and key risk considerations, analysis approaches, research and development needs, and the range of interdisciplinary skills required for comprehensive cross-sector analysis. Traditional analysis of interdependencies involves characterization of infrastructure-to-infrastructure linkages to identify the key infrastructure components that, if lost or degraded, could adversely affect the performance of other infrastructures. Such analysis is motivated by the recognition that a series of incidents could interact (cascade) across critical infrastructures to degrade the service upon which all depend. From a risk perspective, cross-sector analysis also must involve identifying and characterizing a wide range of threats (natural and accidental, systems related, and intentional), vulnerabilities (physical and cyber), and consequences of loss (e.g., health and safety, economic, national security, environmental, sociopolitical). Such information provides a foundation for making defensible, cost-effective infrastructure protection and operation decisions to ensure the security and reliability of our interdependent systems.

  8. Resilience of networks formed of interdependent modular networks

    NASA Astrophysics Data System (ADS)

    Shekhtman, Louis M.; Shai, Saray; Havlin, Shlomo

    2015-12-01

    Many infrastructure networks have a modular structure and are also interdependent with other infrastructures. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results through simulations. We focus, for simplicity, on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is particularly realistic for modeling infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent only within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has previously been shown that single networks are very susceptible to the failure of the interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on these nodes are even more crippling than attacks based on betweenness (da Cunha et al 2015 arXiv:1502.00353). In our example of cities these nodes have long range links which are more likely to fail. For both treelike and looplike interdependent modular networks we find distinct regimes depending on the number of modules, m. (i) In the case where there are fewer modules with strong intraconnections, the system first separates into modules in an abrupt first-order transition and then each module undergoes a second percolation transition. (ii) When there are more modules with many interconnections between them, the system undergoes a single transition. Overall, we find that modular structure can significantly influence the type of transitions observed in interdependent networks and should be

  9. Peering Strategic Game Models for Interdependent ISPs in Content Centric Internet

    PubMed Central

    Guan, Jianfeng; Xu, Changqiao; Su, Wei; Zhang, Hongke

    2013-01-01

    Emergent content-oriented networks prompt Internet service providers (ISPs) to evolve and take major responsibility for content delivery. Numerous content items and varying content popularities motivate interdependence between peering ISPs to elaborate their content caching and sharing strategies. In this paper, we propose the concept of peering for content exchange between interdependent ISPs in content centric Internet to minimize content delivery cost by a proper peering strategy. We model four peering strategic games to formulate four types of peering relationships between ISPs who are characterized by varying degrees of cooperative willingness from egoism to altruism and interconnected as profit-individuals or profit-coalition. Simulation results show the price of anarchy (PoA) and communication cost in the four games to validate that ISPs should decide their peering strategies by balancing intradomain content demand and interdomain peering relations for an optimal cost of content delivery. PMID:24381517

  10. Peering strategic game models for interdependent ISPs in content centric Internet.

    PubMed

    Zhao, Jia; Guan, Jianfeng; Xu, Changqiao; Su, Wei; Zhang, Hongke

    2013-01-01

    Emergent content-oriented networks prompt Internet service providers (ISPs) to evolve and take major responsibility for content delivery. Numerous content items and varying content popularities motivate interdependence between peering ISPs to elaborate their content caching and sharing strategies. In this paper, we propose the concept of peering for content exchange between interdependent ISPs in content centric Internet to minimize content delivery cost by a proper peering strategy. We model four peering strategic games to formulate four types of peering relationships between ISPs who are characterized by varying degrees of cooperative willingness from egoism to altruism and interconnected as profit-individuals or profit-coalition. Simulation results show the price of anarchy (PoA) and communication cost in the four games to validate that ISPs should decide their peering strategies by balancing intradomain content demand and interdomain peering relations for an optimal cost of content delivery. PMID:24381517

  11. Sharing, caring, and surveilling: an actor-partner interdependence model examination of Facebook relational maintenance strategies.

    PubMed

    McEwan, Bree

    2013-12-01

    Abstract Relational maintenance is connected to high quality friendships. Friendship maintenance behaviors may occur online via social networking sites. This study utilized an Actor-Partner Interdependence Model to examine how Facebook maintenance and surveillance affect friendship quality. Bryant and Marmo's (2012) Facebook maintenance scale was evaluated, revealing two factors: sharing and caring. Facebook surveillance was also measured. For friendship satisfaction and liking, significant positive actor and partner effects emerged for caring; significant negative actor, partner, and interaction effects emerged for sharing; and significant positive actor effects emerged for surveillance. For friendship closeness, significant positive actor effects emerged for caring and surveillance. PMID:23962125

  12. Interdependent Multi-Layer Networks: Modeling and Survivability Analysis with Applications to Space-Based Networks

    PubMed Central

    Castet, Jean-Francois; Saleh, Joseph H.

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the

  13. Assessment of Model Parameters Interdependency of a Conceptual Rainfall-Runoff Model

    NASA Astrophysics Data System (ADS)

    Das, T.; Bárdossy, A.; Zehe, E.

    2006-12-01

    performance. This is mainly due to the fact that changes in one parameter can be compensated by changes of one or more others. However, parameter vector revealed an internal structure. The interdependency of model parameters was then investigated through multi- linear regression and calculation of the entropy. These procedures indicated an existence of local internal structure among the selected model parameters. This internal model structure can be treated as a complimentary parameter vector during the model parameter optimization or while transferring the model parameters from a gauged catchment to an ungauged catchment. This is a consideration of further research and, therefore, beyond the scope of the paper.

  14. Perspective: The Climate-Population-Infrastructure Modeling and Simulation Fertile Area for New Research

    SciTech Connect

    Allen, Melissa R; Fernandez, Steven J; Walker, Kimberly A; Fu, Joshua S

    2014-01-01

    Managing the risks posed by climate change and extreme weather to energy production and delivery is a challenge to communities worldwide. As climate conditions change, populations will shift, and demand will re-locate; and networked infrastructures will evolve to accommodate new load centers, and, hopefully, minimize vulnerability to natural disaster. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. Displaced population creates new demand for built infrastructure that in turn generates new economic activity that attracts new workers and associated households to the new locations. Infrastructures and their interdependencies will change in reaction to climate drivers as the networks expand into new population areas and as portions of the networks are abandoned as people leave. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. By combining climate and weather data, engineering algorithms and social theory it has been only recently possible to examine electricity demand response to increased climactic temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. These emerging results suggest a research agenda of coupling these disparate modelling approaches to understand the implications of climate change for protecting the nation s critical infrastructure.

  15. Infrastructure Vulnerability Assessment Model (I-VAM).

    PubMed

    Ezell, Barry Charles

    2007-06-01

    Quantifying vulnerability to critical infrastructure has not been adequately addressed in the literature. Thus, the purpose of this article is to present a model that quantifies vulnerability. Vulnerability is defined as a measure of system susceptibility to threat scenarios. This article asserts that vulnerability is a condition of the system and it can be quantified using the Infrastructure Vulnerability Assessment Model (I-VAM). The model is presented and then applied to a medium-sized clean water system. The model requires subject matter experts (SMEs) to establish value functions and weights, and to assess protection measures of the system. Simulation is used to account for uncertainty in measurement, aggregate expert assessment, and to yield a vulnerability (Omega) density function. Results demonstrate that I-VAM is useful to decisionmakers who prefer quantification to qualitative treatment of vulnerability. I-VAM can be used to quantify vulnerability to other infrastructures, supervisory control and data acquisition systems (SCADA), and distributed control systems (DCS). PMID:17640208

  16. Testing crossover effects in an actor-partner interdependence model among Chinese dual-earner couples.

    PubMed

    Liu, Huimin; Cheung, Fanny M

    2015-03-01

    The purpose of the present study is to examine the crossover effects from one partner's work-family interface (work-family conflict [WFC] and work-family enrichment [WFE]) to the other partner's four outcomes (psychological strain, life satisfaction, marital satisfaction and job satisfaction) in a sample of Chinese dual-earner couples. Married couples (N = 361) completed a battery of questionnaires, including the work-family interface scale, the psychological strain scale, the life, marital, as well as job satisfaction scale. Results from the actor-partner interdependence model (APIM) analyses showed that wives' WFE was negatively associated with husbands' psychological strain, and positively associated with husbands' life, marital and job satisfaction. Furthermore, husbands' WFC was negatively related to wives' marital satisfaction, whereas husbands' WFE was positively related to wives' marital satisfaction. Theoretical and practical implications were discussed, and future research directions were provided. PMID:25721880

  17. The Component Model of Infrastructure: A Practical Approach to Understanding Public Health Program Infrastructure

    PubMed Central

    Snyder, Kimberly; Rieker, Patricia P.

    2014-01-01

    Functioning program infrastructure is necessary for achieving public health outcomes. It is what supports program capacity, implementation, and sustainability. The public health program infrastructure model presented in this article is grounded in data from a broader evaluation of 18 state tobacco control programs and previous work. The newly developed Component Model of Infrastructure (CMI) addresses the limitations of a previous model and contains 5 core components (multilevel leadership, managed resources, engaged data, responsive plans and planning, networked partnerships) and 3 supporting components (strategic understanding, operations, contextual influences). The CMI is a practical, implementation-focused model applicable across public health programs, enabling linkages to capacity, sustainability, and outcome measurement. PMID:24922125

  18. Parental Self-Efficacy and Positive Contributions Regarding Autism Spectrum Condition: An Actor-Partner Interdependence Model

    ERIC Educational Resources Information Center

    García-López, Cristina; Sarriá, Encarnación; Pozo, Pilar

    2016-01-01

    Couples affect each other cognitively, emotionally and behaviorally. The goal of this study is to test the benefits and potential use of the actor-partner interdependence model in examining how parental self-efficacy and positive contributions of fathers and mothers of children with Autism Spectrum Condition influence each other's psychological…

  19. Infrastructure for new models of care.

    PubMed

    Peak, Steve

    2015-03-01

    The NHS is costing the taxpayer 2.5 times more than it did 50 years ago. Now accounting for 8.2 per cent of the UK's GDP, this trend is set to continue, but funding is not in place to support it. The Government faces a struggle between what is needed and what is affordable, pointing to a complete re-think of the way care is delivered. So says Steve Peak, business development director for Vanguard Healthcare, As the 2015 General Election brings the issue into sharper focus, he examines how estates managers are responding to the pressures and the practicalities of delivering the infrastructure to support a new model of care. PMID:26268028

  20. Failure cascade in interdependent network with traffic loads

    NASA Astrophysics Data System (ADS)

    Hong, Sheng; Wang, Baoqing; Ma, Xiaomin; Wang, Jianghui; Zhao, Tingdi

    2015-12-01

    Complex networks have been widely studied recent years, but most researches focus on the single, non-interacting networks. With the development of modern systems, many infrastructure networks are coupled together and therefore should be modeled as interdependent networks. For interdependent networks, failure of nodes in one network may lead to failure of dependent nodes in the other networks. This may happen recursively and lead to a failure cascade. In the real world, different networks carry different traffic loads. Overload and load redistribution may lead to more nodes’ failure. Considering the dependency between the interdependent networks and the traffic load, a small fraction of fault nodes may lead to complete fragmentation of a system. Based on the robust analysis of interdependent networks, we propose a costless defense strategy to suppress the failure cascade. Our findings highlight the need to consider the load and coupling preference when designing robust interdependent networks. And it is necessary to take actions in the early stage of the failure cascade to decrease the losses caused by the large-scale breakdown of infrastructure networks.

  1. Point process models for localization and interdependence of punctate cellular structures.

    PubMed

    Li, Ying; Majarian, Timothy D; Naik, Armaghan W; Johnson, Gregory R; Murphy, Robert F

    2016-07-01

    Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures.

  2. Interdependent networks: vulnerability analysis and strategies to limit cascading failure

    NASA Astrophysics Data System (ADS)

    Fu, Gaihua; Dawson, Richard; Khoury, Mehdi; Bullock, Seth

    2014-07-01

    Network theory is increasingly employed to study the structure and behaviour of social, physical and technological systems — including civil infrastructure. Many of these systems are interconnected and the interdependencies between them allow disruptive events to propagate across networks, enabling damage to spread far beyond the immediate footprint of disturbance. In this research we experiment with a model to characterise the configuration of interdependencies in terms of direction, redundancy, and extent, and we analyse the performance of interdependent systems with a wide range of possible coupling modes. We demonstrate that networks with directed dependencies are less robust than those with undirected dependencies, and that the degree of redundancy in inter-network dependencies can have a differential effect on robustness depending on the directionality of the dependencies. As interdependencies between many real-world systems exhibit these characteristics, it is likely that many such systems operate near their critical thresholds. The vulnerability of an interdependent network is shown to be reducible in a cost effective way, either by optimising inter-network connections, or by hardening high degree nodes. The results improve understanding of the influence of interdependencies on system performance and provide insight into how to mitigate associated risks.

  3. Approaches to improve the robustness on interdependent networks against cascading failures with load-based model

    NASA Astrophysics Data System (ADS)

    Dong, Zhengcheng; Fang, Yanjun; Tian, Meng; Zhang, Rong

    2015-11-01

    With load-based model, considering the loss of capacity on nodes, we investigate how the coupling strength (many-to-many coupled pattern) and link patterns (one-to-one coupled pattern) can affect the robustness of interdependent networks. In one-to-one coupled pattern, we take into account the properties of degree and betweenness, and adopt four kinds of inter-similarity link patterns and random link pattern. In many-to-many coupled pattern, we propose a novel method to build new networks via adding inter-links (coupled links) on the existing one-to-one coupled networks. For a full investigation on the effects, we conduct two types of attack strategies, i.e. RO-attack (randomly remove only one node) and RF-attack (randomly remove a fraction of nodes). We numerically find that inter-similarity link patterns and bigger coupling strength can effectively improve the robustness under RO-attacks and RF-attacks in some cases. Therefore, the inter-similarity link patterns can be applied during the initial period of network construction. Once the networks are completed, the robustness level can be improved via adding inter-links appropriately without changing the existing inter-links and topologies of networks. We also find that BA-BA topology is a better choice and that it is not useful to infinitely increase the capacity which is defined as the cost of networks.

  4. Spatial Data Web Services Pricing Model Infrastructure

    NASA Astrophysics Data System (ADS)

    Ozmus, L.; Erkek, B.; Colak, S.; Cankurt, I.; Bakıcı, S.

    2013-08-01

    The General Directorate of Land Registry and Cadastre (TKGM) which is the leader in the field of cartography largely continues its missions which are; to keep and update land registry and cadastre system of the country under the responsibility of the treasure, to perform transactions related to real estate and to establish Turkish national spatial information system. TKGM a public agency has completed many projects. Such as; Continuously Operating GPS Reference Stations (TUSAGA-Aktif), Geo-Metadata Portal (HBB), Orthophoto-Base Map Production and web services, Completion of Initial Cadastre, Cadastral Renovation Project (TKMP), Land Registry and Cadastre Information System (TAKBIS), Turkish National Spatial Data Infrastructure Project (TNSDI), Ottoman Land Registry Archive Information System (TARBIS). TKGM provides updated map and map information to not only public institutions but also to related society in the name of social responsibility principals. Turkish National Spatial Data Infrastructure activities have been started by the motivation of Circular No. 2003/48 which was declared by Turkish Prime Ministry in 2003 within the context of e-Transformation of Turkey Short-term Action Plan. Action No. 47 in the mentioned action plan implies that "A Feasibility Study shall be made in order to establish the Turkish National Spatial Data Infrastructure" whose responsibility has been given to General Directorate of Land Registry and Cadastre. Feasibility report of NSDI has been completed in 10th of December 2010. After decision of Steering Committee, feasibility report has been send to Development Bank (old name State Planning Organization) for further evaluation. There are two main arrangements with related this project (feasibility report).First; Now there is only one Ministry which is Ministry of Environment and Urbanism responsible for establishment, operating and all national level activities of NSDI. And Second arrangement is related to institutional Level. The

  5. An Interdependent Model of Central/Peripheral Chemoreception: Evidence and Implications for Ventilatory Control

    PubMed Central

    Smith, Curtis A.; Forster, Hubert V.; Blain, Grégory M.; Dempsey, Jerome A.

    2010-01-01

    In this review we discuss the implications for ventilatory control of newer evidence suggesting that central and peripheral chemoreceptors are not functionally separate but rather that they are dependent upon one another such that the sensitivity of the medullary chemoreceptors is critically determined by input from the carotid body chemoreceptors and vice versa i.e., they are interdependent. We examine potential interactions of the interdependent central and carotid body (CB) chemoreceptors with other ventilatory-related inputs such as central hypoxia, lung stretch, and exercise. The limitations of current approaches addressing this question are discussed and future studies are suggested. PMID:20206717

  6. Interdependence in Women with Breast Cancer and Their Partners: An Interindividual Model of Distress

    ERIC Educational Resources Information Center

    Dorros, Sam M.; Card, Noel A.; Segrin, Chris; Badger, Terry A.

    2010-01-01

    Objective: The aim of this investigation was to test whether interdependence in dyads living with breast cancer could account for person-partner crossover effects in distress outcomes. Method: The sample consisted of 95 dyads with early-stage breast cancer. By using reciprocal dyadic data from women with breast cancer and their partners, we fit a…

  7. Tools for 21st Century infrastructure protection

    SciTech Connect

    Trost, S.R.

    1997-07-01

    The President`s Commission on Critical Infrastructure Protection (PCCEP) was formed under Executive Order 13010 to recommend a national strategy for protecting and assuring critical infrastructures. Eight critical infrastructure elements have been identified. This paper provides an overview of tools necessary to conduct in depth analysis and characterization of threats, vulnerabilities, and interdependencies of critical infrastructure subsystems, and their interaction with each other. Particular emphasis is placed on research requirements necessary to develop the next generation of tools. In addition to tools, a number of system level research suggestions are made including developing a system architecture, data flow models, national level resources, and a national test bed.

  8. Can the linguistic interdependence theory support a bilingual-bicultural model of literacy education for deaf students?

    PubMed

    Mayer, C; Wells, G

    1996-01-01

    Drawing on Cummins' (1989) linguistic interdependence model, proponents of bilingual-bicultural models of literacy education for deaf students claim that, if ASL is well established as the L1, then literacy in English (L2) can be achieved by means of reading and writing without exposure to English through either speech or English-based sign. In our opinion, this claim is based on a false analogy: the situation of the deaf learner of English literacy does not match the conditions assumed by the linguistic interdependence model. We draw on the work of Vygotsky and Halliday to develop a conceptualization of the processes involved in becoming literate, examining the particular and unique challenges that deaf students face as they strive to become members of the linguistic community of users of written English. We argue that becoming literate involves mastering three modes of lanuage use: 'social speech,' 'inner speech,' and written text. In some respects the educational context for deaf students is analogous to that of other bilingual learners; in some crucial aspects, it is very different. PMID:15579815

  9. Toward an ontology framework supporting the integration of geographic information with modeling and simulation for critical infrastructure protection

    SciTech Connect

    Ambrosiano, John J; Bent, Russell W; Linger, Steve P

    2009-01-01

    Protecting the nation's infrastructure from natural disasters, inadvertent failures, or intentional attacks is a major national security concern. Gauging the fragility of infrastructure assets, and understanding how interdependencies across critical infrastructures affect their behavior, is essential to predicting and mitigating cascading failures, as well as to planning for response and recovery. Modeling and simulation (M&S) is an indispensable part of characterizing this complex system of systems and anticipating its response to disruptions. Bringing together the necessary components to perform such analyses produces a wide-ranging and coarse-grained computational workflow that must be integrated with other analysis workflow elements. There are many points in both types of work flows in which geographic information (GI) services are required. The GIS community recognizes the essential contribution of GI in this problem domain as evidenced by past OGC initiatives. Typically such initiatives focus on the broader aspects of GI analysis workflows, leaving concepts crucial to integrating simulations within analysis workflows to that community. Our experience with large-scale modeling of interdependent critical infrastructures, and our recent participation in a DRS initiative concerning interoperability for this M&S domain, has led to high-level ontological concepts that we have begun to assemble into an architecture that spans both computational and 'world' views of the problem, and further recognizes the special requirements of simulations that go beyond common workflow ontologies. In this paper we present these ideas, and offer a high-level ontological framework that includes key geospatial concepts as special cases of a broader view.

  10. Modelling of hydrogen infrastructure for vehicle refuelling in London

    NASA Astrophysics Data System (ADS)

    Joffe, D.; Hart, D.; Bauen, A.

    One of the principal barriers to the widespread use of hydrogen as a road transport fuel is the need for a refuelling infrastructure to be established. The lack of an adequate refuelling infrastructure would severely inhibit an uptake of hydrogen vehicles. On the other hand, without significant penetration of these vehicles, the demand for hydrogen would be insufficient to make a widespread conventional refuelling infrastructure economic. The infrastructure is likely to develop initially in cities, due to the high concentration of vehicles and the anticipated air quality benefits of a switch to hydrogen as a road transport fuel. While trial schemes such as the Clean Urban Transport for Europe (CUTE) bus project will establish initial hydrogen refuelling sites, it is not clear how a transition to a widespread refuelling infrastructure will occur. Indeed, the number of possible different ways and scales of producing and distributing hydrogen means that the possible configurations for such an infrastructure are almost endless. Imperial College London is examining transition strategies for a hydrogen infrastructure for vehicle refuelling in London under a project funded by the UK Engineering and Physical Sciences Research Council (EPSRC). Imperial has five project partners from industry and local government to assist in this study: the Greater London Authority (GLA), BP, BOC, BMW and Air Products. This paper presents initial results from technical modelling of hydrogen infrastructure technologies and how they could be deployed to provide an initial facility for the refuelling of hydrogen fuel-cell buses in London. The results suggest that the choice of H 2 production technology can have significant effects on when the infrastructure would be installed, and the timing of hydrogen production, and bus refuelling.

  11. A modeling framework for resource-user-infrastructure systems

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, R.; Qubbaj, M.; Anderies, J. M.; Aggarwal, R.; Janssen, M.

    2012-12-01

    A compact modeling framework is developed to supplement a conceptual framework of coupled natural-human systems. The framework consists of four components: resource (R), users (U), public infrastructure (PI), and public infrastructure providers (PIP), the last two of which have not been adequately addressed in many existing modeling studies. The modeling approach employed here is a set of replicator equations describing the dynamical frequencies of social strategies (of U and PIP), whose payoffs are explicit and dynamical functions of biophysical components (R and PI). Model development and preliminary results from specific implementation will be reported and discussed.

  12. Associations between Perceived HIV Stigma and Quality of Life at the Dyadic Lvel: The Actor-Partner Interdependence Model

    PubMed Central

    Liu, Hongjie; Xu, Yongfang; Lin, Xinjin; Shi, Jian; Chen, Shiyi

    2013-01-01

    Background Few studies have investigated the relationship between HIV-related stigma and quality life at the dyadic level. The objective of this study was to examine the actor and partner effects of stigma that was perceived by people living with HIV/AIDS (PLWHAs) and caregivers on quality of life at the dyadic level. Method A survey was conducted among 148 dyads consisting of one PLWHA and one caregiver (296 participants) in Nanning, China. The interdependent relationship between a pair of dyadic members that influences the associations between stigma and quality of life was analyzed, using an innovative dyadic analysis technique: the Actor-Partner Interdependence Model (APIM). Results We found in this dyadic analysis that (1) PLWHAs compared to their caregivers exhibited a higher level of perceived HIV stigma and lower level of quality of life measured in four domains; (2) both PLWHAs' and caregivers' perceived HIV stigma influenced their own quality of life; (3) The quality of life was not substantially influenced by their partners' perceived stigma; and (4) Both actor and partner effects of stigma on quality of life were similar among PLWHAs and their caregivers. Conclusion As HIV stigma and quality of life are complex phenomena rooted in cultures, intervention programs should be carefully planned based on social or cognitive theories and should be culturally adopted. PMID:23383343

  13. Modeling, Simulation and Analysis of Public Key Infrastructure

    NASA Technical Reports Server (NTRS)

    Liu, Yuan-Kwei; Tuey, Richard; Ma, Paul (Technical Monitor)

    1998-01-01

    Security is an essential part of network communication. The advances in cryptography have provided solutions to many of the network security requirements. Public Key Infrastructure (PKI) is the foundation of the cryptography applications. The main objective of this research is to design a model to simulate a reliable, scalable, manageable, and high-performance public key infrastructure. We build a model to simulate the NASA public key infrastructure by using SimProcess and MatLab Software. The simulation is from top level all the way down to the computation needed for encryption, decryption, digital signature, and secure web server. The application of secure web server could be utilized in wireless communications. The results of the simulation are analyzed and confirmed by using queueing theory.

  14. Sustainable infrastructure system modeling under uncertainties and dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the

  15. Cooperation of German Airports in Europe: Comparison of Different Types by Means of an Interdependence-Profile-Model

    NASA Technical Reports Server (NTRS)

    Meincke, Peter A.

    2003-01-01

    The limited growth possibilities in the home markets - not the least of which, based on capacity and expansion problems - force the large airport operators to enter into, via partnerships, cooperations and alliances. The German airports already cooperate among one another in different forms. The purpose of the paper is to examine the structures and possibilities of cooperation among airports in Europe (e.g. Airport Systems, Airport Networks). The experience of German airports with different cooperations and alliances will be also considered. Finally the forms of cooperations among airports are analysed by means of interdependence-profile-models with different features (mutual dependence, coordination volume, complexity, cooperation profit, value, degree of formalization and temporal frame), in order to find out how high the cooperative attachment of cooperation is to be evaluated.

  16. Parental Self-Efficacy and Positive Contributions Regarding Autism Spectrum Condition: An Actor-Partner Interdependence Model.

    PubMed

    García-López, Cristina; Sarriá, Encarnación; Pozo, Pilar

    2016-07-01

    Couples affect each other cognitively, emotionally and behaviorally. The goal of this study is to test the benefits and potential use of the actor-partner interdependence model in examining how parental self-efficacy and positive contributions of fathers and mothers of children with Autism Spectrum Condition influence each other's psychological adaptation. The sample includes 76 Spanish couples who completed validated questionnaires measuring predictors, i.e., self-efficacy and positive contributions, and adaptation outcomes i.e., stress, anxiety, depression and psychological well-being. Multilevel analysis revealed many actor and some partner effects of parental self-efficacy and positive contributions to be important determinants of adaptation above and beyond child and sociodemographic factors, and as such, these effects should be targeted in clinical intervention programs. PMID:27007725

  17. Data Modeling & the Infrastructural Nature of Conceptual Tools

    ERIC Educational Resources Information Center

    Lesh, Richard; Caylor, Elizabeth; Gupta, Shweta

    2007-01-01

    The goal of this paper is to demonstrate the infrastructural nature of many modern conceptual technologies. The focus of this paper is on conceptual tools associated with elementary types of data modeling. We intend to show a variety of ways in which these conceptual tools not only express thinking, but also mold and shape thinking. And those ways…

  18. Actor Interdependence in Collaborative Telelearning.

    ERIC Educational Resources Information Center

    Wasson, Barbara; Bourdeau, Jacqueline

    This paper presents a model of collaborative telelearning and describes how coordination theory has provided a framework for the analysis of actor (inter)dependencies in this scenario. The model is intended to inform the instructional design of learning scenarios, the technological design of the telelearning environment, and the design of…

  19. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  20. Embracing Complexity: Using Technology to Develop a Life-Long Learning Model for Non-Working Time in the Interdependent Homes for Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Chiang, I-Tsun; Chen, Mei-Li

    2011-01-01

    The purpose of this study was to employ complexity theory as a theoretical framework and technology to facilitate the development of a life-long learning model for non-working time in the interdependent homes for adults with Autism Spectrum Disorders (ASD). A "Shining Star Sustainable Action Project" of the ROC Foundation for Autistic Children and…

  1. Model institutional infrastructures for recycling of photovoltaic modules

    SciTech Connect

    Moscowitz, P.D.; Reaven, J.; Fthenakis, V.M.

    1996-07-01

    This paper describes model approaches to designing an institutional infrastructure for the recycling of decommissioned photovoltaic modules; more detailed discussion of the information presented in this paper is contained in Reaven et al., (1996)[1]. The alternative approaches are based on experiences in other industries, with other products and materials. In the aluminum, scrap iron, and container glass industries, where recycling is a long-standing, even venerable practice, predominantly private, fully articulated institutional infrastructures exist. Nevertheless, even in these industries, arrangements are constantly evolving in response to regulatory changes, competition, and new technological developments. Institutional infrastructures are less settled for younger large- scale recycling industries that target components of the municipal solid waste (MSW) stream, such as cardboard and newspaper, polyethylene terephthalate (PET) and high-density polyethylene (HDPE) plastics, and textiles. In these industries the economics, markets, and technologies are rapidly changing. Finally, many other industries are developing projects to ensure that their products are recycled (and recyclable) e.g., computers, non-automotive batteries, communications equipment, motor and lubrication oil and oil filters, fluorescent lighting fixtures, automotive plastics and shredder residues, and bulk industrial chemical wastes. The lack of an an adequate recycling infrastructure, attractive end-markets, and clear the economic incentives, can be formidable impediments to a self- sustaining recycling system.

  2. Globalization, Interdependence and Education

    ERIC Educational Resources Information Center

    Neubauer, Deane

    2007-01-01

    Contemporary globalization is marked by rapidly and dramatically increasing interdependence, which operates both within and among countries. Increasing global interdependence has profound influence on education at all levels, such as how to deal with a world with more permeable boundaries in which people are on the move more frequently (migration)…

  3. INTERdependence Curriculum Aid.

    ERIC Educational Resources Information Center

    World Affairs Council of Philadelphia, PA.

    Stressing global interdependence, this guide suggests resources, materials, and activities related to major world problems. Global interdependence is interpreted as connections between and among nations in areas of war and peace, human rights, environmental use, economics, and international law. The major objective is to help students understand…

  4. The role of intergenerational similarity and parenting in adolescent self-criticism: An actor-partner interdependence model.

    PubMed

    Bleys, Dries; Soenens, Bart; Boone, Liesbet; Claes, Stephan; Vliegen, Nicole; Luyten, Patrick

    2016-06-01

    Research investigating the development of adolescent self-criticism has typically focused on the role of either parental self-criticism or parenting. This study used an actor-partner interdependence model to examine an integrated theoretical model in which achievement-oriented psychological control has an intervening role in the relation between parental and adolescent self-criticism. Additionally, the relative contribution of both parents and the moderating role of adolescent gender were examined. Participants were 284 adolescents (M = 14 years, range = 12-16 years) and their parents (M = 46 years, range = 32-63 years). Results showed that only maternal self-criticism was directly related to adolescent self-criticism. However, both parents' achievement-oriented psychological control had an intervening role in the relation between parent and adolescent self-criticism in both boys and girls. Moreover, one parent's achievement-oriented psychological control was not predicted by the self-criticism of the other parent. PMID:27007498

  5. Critical Infrastructures Security Modeling, Enforcement and Runtime Checking

    NASA Astrophysics Data System (ADS)

    Abou El Kalam, Anas; Deswarte, Yves

    This paper identifies the most relevant security requirements for critical infrastructures (CIs), and according to these requirements, proposes an access control framework. The latter supports the CI security policy modeling and enforcement. Then, it proposes a runtime model checker for the interactions between the organizations forming the CIs, to verify their compliance with previously signed contracts. In this respect, not only our security framework handles secure local and remote accesses, but also audits and verifies the different interactions. In particular, remote accesses are controlled, every deviation from the signed contracts triggers an alarm, the concerned parties are notified, and audits can be used as evidence for sanctioning the party responsible for the deviation.

  6. Beyond Dyadic Interdependence: Actor-Oriented Models for Co-Evolving Social Networks and Individual Behaviors

    ERIC Educational Resources Information Center

    Burk, William J.; Steglich, Christian E. G.; Snijders, Tom A. B.

    2007-01-01

    Actor-oriented models are described as a longitudinal strategy for examining the co-evolution of social networks and individual behaviors. We argue that these models provide advantages over conventional approaches due to their ability to account for inherent dependencies between individuals embedded in a social network (i.e., reciprocity,…

  7. Contribution of marital conflict to marital quality in short and long-term marriages: An actor-partner interdependence model

    PubMed Central

    Ahmadi, Khodabakhsh; Rezazade, Majid; Saadat, Hassan; Kimiaei, Seyed Ali; Zade, Nima Hoseyn

    2015-01-01

    Aims: In the field of family research, previous studies have made great strides toward understanding the relationship between marital conflict and quality. However, they have only studied couples in short-term marriages. Therefore, much remains to be unraveled with regard to long-term marriages. We aimed investigate the comparative contribution of aspects of marital conflict to marital quality in short-and long-term marriages in Iranian families. Materials and Methods: Using random clustered sampling, 400 dyads in intact first marriages were surveyed across eight provinces of Iran. Complete surveys for both husbands and wives were returned for 162 households (couple's response rate: 40.5%). Survey measures included demographics questionnaire, Barati and Sanai's Marital Conflict Questionnaire and Blum and Mehrabian's Comprehensive Marital Satisfaction Scale. Structural equation modeling was used to test the actor-partner interdependence model of marital conflict-marital quality. Results: Generalized additive models were incorporated to define what constitutes short-and long-term marriages. Based on the models regressed, duration ≤ 10 years was defined as short-term, whereas duration ≥ 25 years was labeled long-term. In short-term marriages (n = 44), decreased sexual relations, increased daily hassles and sidedness in relations with parents were negatively associated with marital quality in both actor and actor-to-partner paths. In long-term married couples (n = 46), only increased daily hassles (P < 0.001) and disagreement over financial affairs (P = 0.005) contributed to actor paths and only sidedness in relationships with parents showed significant negative association to marital quality in actor-to-partner paths. Conclusions: Different themes of conflict contribute to the diminished level of marital quality in early and late stages of the marriage. Conflicts over sex, relationship with extended family and daily hassles are emphasized in the early years of

  8. INTERDEPENDENCIES OF MULTI-POLLUTANT CONTROL SIMULATIONS IN AN AIR QUALITY MODEL

    EPA Science Inventory

    In this work, we use the Community Multi-Scale Air Quality (CMAQ) modeling system to examine the effect of several control strategies on simultaneous concentrations of ozone, PM2.5, and three important HAPs: formaldehyde, acetaldehyde and benzene.

  9. Federated Modelling and Simulation for Critical Infrastructure Protection

    NASA Astrophysics Data System (ADS)

    Rome, Erich; Langeslag, Peter; Usov, Andrij

    Modelling and simulation is an important tool for Critical Infrastructure (CI) dependency analysis, for testing methods for risk reduction, and as well for the evaluation of past failures. Moreover, interaction of such simulations with external threat models, e.g., a river flood model, or economic models enable consequence analysis and thus may assist in what-if decision-making processes. The simulation of complex scenarios involving several different CI sectors requires the usage of heterogeneous federated simulations of CIs. However, common standards for modelling and interoperability of such federated CI simulations are missing. Also, creating the required abstract models from CIs and other data, setting up the individual federate simulators and integrating all subsystems is a time-consuming and complicated task that requires substantial know-how and resources. In this chapter, we outline applications and benefit of federated modelling, simulation and analysis (MS&A) for Critical Infrastructure Protection (CIP). We review the state of the art in federated MS&A for CIP and categorise common approaches and interoperability concepts like central and lateral coupling of simulators. As examples for the latter two concepts, we will present in more detail an interoperability standard from the military domain, HLA, and an approach developed in the DIESIS project. Special emphasis will also be put on describing the problem of synchronising systems with different time models. Also, we will briefly assess the state of transferring MS&A for CIP research results to practical application by comparing the situations in the USA and in Europe.

  10. A regional interdependence model of musculoskeletal dysfunction: research, mechanisms, and clinical implications

    PubMed Central

    Sueki, Derrick G; Cleland, Joshua A; Wainner, Robert S

    2013-01-01

    The term ‘regional interdependence’ or RI has recently been introduced into the vernacular of physical therapy and rehabilitation literature as a clinical model of musculoskeletal assessment and intervention. The underlying premise of this model is that seemingly unrelated impairments in remote anatomical regions of the body may contribute to and be associated with a patient’s primary report of symptoms. The clinical implication of this premise is that interventions directed at one region of the body will often have effects at remote and seeming unrelated areas. The formalized concept of RI is relatively new and was originally derived in an inductive manner from a variety of earlier publications and clinical observations. However, recent literature has provided additional support to the concept. The primary purpose of this article will be to further refine the operational definition for the concept of RI, examine supporting literature, discuss possible clinically relevant mechanisms, and conclude with a discussion of the implications of these findings on clinical practice and research. PMID:24421619

  11. Modeling the near-term risk of climate uncertainty : interdependencies among the U.S. states.

    SciTech Connect

    Lowry, Thomas Stephen; Tidwell, Vincent Carroll; Backus, George A.; Warren, Drake E.

    2010-12-01

    Decisions made to address climate change must start with an understanding of the risk of an uncertain future to human systems, which in turn means understanding both the consequence as well as the probability of a climate induced impact occurring. In other words, addressing climate change is an exercise in risk-informed policy making, which implies that there is no single correct answer or even a way to be certain about a single answer; the uncertainty in future climate conditions will always be present and must be taken as a working-condition for decision making. In order to better understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions, this study estimates the impacts from responses to climate change on U.S. state- and national-level economic activity by employing a risk-assessment methodology for evaluating uncertain future climatic conditions. Using the results from the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report (AR4) as a proxy for climate uncertainty, changes in hydrology over the next 40 years were mapped and then modeled to determine the physical consequences on economic activity and to perform a detailed 70-industry analysis of the economic impacts among the interacting lower-48 states. The analysis determines industry-level effects, employment impacts at the state level, interstate population migration, consequences to personal income, and ramifications for the U.S. trade balance. The conclusions show that the average risk of damage to the U.S. economy from climate change is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs. Further analysis shows that an increase in uncertainty raises this risk. This paper will present the methodology behind the approach, a summary of the underlying models, as well as the path forward for improving the approach.

  12. Modeling the Near-Term Risk of Climate Uncertainty: Interdependencies among the U.S. States

    NASA Astrophysics Data System (ADS)

    Lowry, T. S.; Backus, G.; Warren, D.

    2010-12-01

    Decisions made to address climate change must start with an understanding of the risk of an uncertain future to human systems, which in turn means understanding both the consequence as well as the probability of a climate induced impact occurring. In other words, addressing climate change is an exercise in risk-informed policy making, which implies that there is no single correct answer or even a way to be certain about a single answer; the uncertainty in future climate conditions will always be present and must be taken as a working-condition for decision making. In order to better understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions, this study estimates the impacts from responses to climate change on U.S. state- and national-level economic activity by employing a risk-assessment methodology for evaluating uncertain future climatic conditions. Using the results from the Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment Report (AR4) as a proxy for climate uncertainty, changes in hydrology over the next 40 years were mapped and then modeled to determine the physical consequences on economic activity and to perform a detailed 70-industry analysis of the economic impacts among the interacting lower-48 states. The analysis determines industry-level effects, employment impacts at the state level, interstate population migration, consequences to personal income, and ramifications for the U.S. trade balance. The conclusions show that the average risk of damage to the U.S. economy from climate change is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs. Further analysis shows that an increase in uncertainty raises this risk. This paper will present the methodology behind the approach, a summary of the underlying models, as well as the path forward for improving the approach.

  13. Robustness of Interdependent Networks

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo

    2011-03-01

    In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of many interdependent networks. We will present a framework for understanding the robustness of interacting networks subject to such cascading failures and provide a basic analytic approach that may be useful in future studies. We present exact analytical solutions for the critical fraction of nodes that upon removal will lead to a failure cascade and to a complete fragmentation of two interdependent networks in a first order transition. Surprisingly, analyzing complex systems as a set of interdependent networks may alter a basic assumption that network theory has relied on: while for a single network a broader degree distribution of the network nodes results in the network being more robust to random failures, for interdependent networks, the broader the distribution is, the more vulnerable the networks become to random failure. We also show that reducing the coupling between the networks leads to a change from a first order percolation phase transition to a second order percolation transition at a critical point. These findings pose a significant challenge to the future design of robust networks that need to consider the unique properties of interdependent networks.

  14. Simulating economic effects of disruptions in the telecommunications infrastructure.

    SciTech Connect

    Cox, Roger Gary; Barton, Dianne Catherine; Reinert, Rhonda K.; Eidson, Eric D.; Schoenwald, David Alan

    2004-01-01

    CommAspen is a new agent-based model for simulating the interdependent effects of market decisions and disruptions in the telecommunications infrastructure on other critical infrastructures in the U.S. economy such as banking and finance, and electric power. CommAspen extends and modifies the capabilities of Aspen-EE, an agent-based model previously developed by Sandia National Laboratories to analyze the interdependencies between the electric power system and other critical infrastructures. CommAspen has been tested on a series of scenarios in which the communications network has been disrupted, due to congestion and outages. Analysis of the scenario results indicates that communications networks simulated by the model behave as their counterparts do in the real world. Results also show that the model could be used to analyze the economic impact of communications congestion and outages.

  15. Aging in complex interdependency networks.

    PubMed

    Vural, Dervis C; Morrison, Greg; Mahadevan, L

    2014-02-01

    Although species longevity is subject to a diverse range of evolutionary forces, the mortality curves of a wide variety of organisms are rather similar. Here we argue that qualitative and quantitative features of aging can be reproduced by a simple model based on the interdependence of fault-prone agents on one other. In addition to fitting our theory to the empiric mortality curves of six very different organisms, we establish the dependence of lifetime and aging rate on initial conditions, damage and repair rate, and system size. We compare the size distributions of disease and death and see that they have qualitatively different properties. We show that aging patterns are independent of the details of interdependence network structure, which suggests that aging is a many-body effect, and that the qualitative and quantitative features of aging are not sensitively dependent on the details of dependency structure or its formation. PMID:25353538

  16. 3D Geological modelling - towards a European level infrastructure

    NASA Astrophysics Data System (ADS)

    Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.

    2013-04-01

    The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large

  17. State of the art in risk analysis of workforce criticality influencing disaster preparedness for interdependent systems.

    PubMed

    Santos, Joost R; Herrera, Lucia Castro; Yu, Krista Danielle S; Pagsuyoin, Sheree Ann T; Tan, Raymond R

    2014-06-01

    The objective of this article is to discuss a needed paradigm shift in disaster risk analysis to emphasize the role of the workforce in managing the recovery of interdependent infrastructure and economic systems. Much of the work that has been done on disaster risk analysis has focused primarily on preparedness and recovery strategies for disrupted infrastructure systems. The reliability of systems such as transportation, electric power, and telecommunications is crucial in sustaining business processes, supply chains, and regional livelihoods, as well as ensuring the availability of vital services in the aftermath of disasters. There has been a growing momentum in recognizing workforce criticality in the aftermath of disasters; nevertheless, significant gaps still remain in modeling, assessing, and managing workforce disruptions and their associated ripple effects to other interdependent systems. The workforce plays a pivotal role in ensuring that a disrupted region continues to function and subsequently recover from the adverse effects of disasters. With this in mind, this article presents a review of recent studies that have underscored the criticality of workforce sectors in formulating synergistic preparedness and recovery policies for interdependent infrastructure and regional economic systems. PMID:24593287

  18. Modeling and assessment of concrete and the energy infrastructure

    SciTech Connect

    Guthrie, G.; Carey, J.

    1998-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Concrete is an essential component of the energy infrastructure. The characteristics of concrete that determine its effectiveness in any application--be it construction (e.g., roads, bridges, dams) or waste isolation--result from the chemical and structural evolution of the particular concrete structure. Geochemical and mineralogical factors are among the most important, yet most overlooked, controls of this evolutionary process. This project is geared at using a combination of advanced geochemical and mineralogical experimentation, characterization, and modeling (much of which was developed to understand geological systems such as Yucca Mountain) to understand the evolution of concrete in a mechanistic way. The goal was to develop a systematic approach to problems ranging from premature degradation of concrete to the design of next-generation concretes.

  19. Semantic Web Infrastructure Supporting NextFrAMES Modeling Platform

    NASA Astrophysics Data System (ADS)

    Lakhankar, T.; Fekete, B. M.; Vörösmarty, C. J.

    2008-12-01

    Emerging modeling frameworks offer new ways to modelers to develop model applications by offering a wide range of software components to handle common modeling tasks such as managing space and time, distributing computational tasks in parallel processing environment, performing input/output and providing diagnostic facilities. NextFrAMES, the next generation updates to the Framework for Aquatic Modeling of the Earth System originally developed at University of New Hampshire and currently hosted at The City College of New York takes a step further by hiding most of these services from modeler behind a platform agnostic modeling platform that allows scientists to focus on the implementation of scientific concepts in the form of a new modeling markup language and through a minimalist application programming interface that provide means to implement model processes. At the core of the NextFrAMES modeling platform there is a run-time engine that interprets the modeling markup language loads the module plugins establishes the model I/O and executes the model defined by the modeling XML and the accompanying plugins. The current implementation of the run-time engine is designed for single processor or symmetric multi processing (SMP) systems but future implementation of the run-time engine optimized for different hardware architectures are anticipated. The modeling XML and the accompanying plugins define the model structure and the computational processes in a highly abstract manner, which is not only suitable for the run-time engine, but has the potential to integrate into semantic web infrastructure, where intelligent parsers can extract information about the model configurations such as input/output requirements applicable space and time scales and underlying modeling processes. The NextFrAMES run-time engine itself is also designed to tap into web enabled data services directly, therefore it can be incorporated into complex workflow to implement End-to-End application

  20. Percolation in real interdependent networks

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo

    2015-07-01

    The function of a real network depends not only on the reliability of its own components, but is affected also by the simultaneous operation of other real networks coupled with it. Whereas theoretical methods of direct applicability to real isolated networks exist, the frameworks developed so far in percolation theory for interdependent network layers are of little help in practical contexts, as they are suited only for special models in the limit of infinite size. Here, we introduce a set of heuristic equations that takes as inputs the adjacency matrices of the layers to draw the entire phase diagram for the interconnected network. We demonstrate that percolation transitions in interdependent networks can be understood by decomposing these systems into uncoupled graphs: the intersection among the layers, and the remainders of the layers. When the intersection dominates the remainders, an interconnected network undergoes a smooth percolation transition. Conversely, if the intersection is dominated by the contribution of the remainders, the transition becomes abrupt even in small networks. We provide examples of real systems that have developed interdependent networks sharing cores of `high quality’ edges to prevent catastrophic failures.

  1. A model to forecast data centre infrastructure costs.

    NASA Astrophysics Data System (ADS)

    Vernet, R.

    2015-12-01

    The computing needs in the HEP community are increasing steadily, but the current funding situation in many countries is tight. As a consequence experiments, data centres, and funding agencies have to rationalize resource usage and expenditures. CC-IN2P3 (Lyon, France) provides computing resources to many experiments including LHC, and is a major partner for astroparticle projects like LSST, CTA or Euclid. The financial cost to accommodate all these experiments is substantial and has to be planned well in advance for funding and strategic reasons. In that perspective, leveraging infrastructure expenses, electric power cost and hardware performance observed in our site over the last years, we have built a model that integrates these data and provides estimates of the investments that would be required to cater to the experiments for the mid-term future. We present how our model is built and the expenditure forecast it produces, taking into account the experiment roadmaps. We also examine the resource growth predicted by our model over the next years assuming a flat-budget scenario.

  2. Interdependence and Group Effectiveness.

    ERIC Educational Resources Information Center

    Wageman, Ruth

    1995-01-01

    Investigated the differential effects of task design and reward system design on group functioning in a large U.S. corporation; the effectiveness of "hybrid" groups (having tasks and rewards with both individual and group elements); and how individuals' autonomy preferences moderate their responses to interdependence. Groups performed best when…

  3. The virtual machine (VM) scaler: an infrastructure manager supporting environmental modeling on IaaS clouds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific m...

  4. Interdependency Assessment of Coupled Natural Gas and Power Systems in Energy Market

    NASA Astrophysics Data System (ADS)

    Yang, Hongzhao; Qiu, Jing; Zhang, Sanhua; Lai, Mingyong; Dong, Zhao Yang

    2015-12-01

    Owing to the technological development of natural gas exploration and the increasing penetration of gas-fired power generation, gas and power systems inevitably interact with each other from both physical and economic points of view. In order to effectively assess the two systems' interdependency, this paper proposes a systematic modeling framework and constructs simulation platforms for coupled gas and power systems in an energy market environment. By applying the proposed approach to the Australian national electricity market (NEM) and gas market, the impacts of six types of market and system factors are quantitatively analyzed, including power transmission limits, gas pipeline contingencies, gas pipeline flow constraints, carbon emission constraints, power load variations, and non-electric gas load variations. The important interdependency and infrastructure weakness for the two systems are well studied and identified. Our work provides a quantitative basis for grid operators and policy makers to support and guide operation and investment decisions for electric power and natural gas industries.

  5. A green infrastructure experimental site for developing and evaluating models

    EPA Science Inventory

    The Ecosystems Research Division (ERD) of the U.S. EPA’s National Exposure Research Laboratory (NERL) in Athens, GA has a 14-acre urban watershed which has become an experimental research site for green infrastructure studies. About half of the watershed is covered by pervious la...

  6. Dyadic effects of attitude toward aging on psychological well-being of older Malaysian couples: an actor–partner interdependence model

    PubMed Central

    Momtaz, Yadollah Abolfathi; Hamid, Tengku Aizan; Masud, Jariah; Haron, Sharifah Azizah; Ibrahim, Rahimah

    2013-01-01

    Background There is a growing body of literature indicating that attitudes toward aging significantly affect older adults’ psychological well-being. However, there is a paucity of scientific investigations examining the role of older adults’ attitudes toward aging on their spouses’ psychological well-being. Therefore, the present study aimed to examine the dyadic effects of attitude toward aging on the psychological well-being of older couples. Methods Data for the present study, consisting of 300 couples aged 50 years and older, were drawn from a community-based survey entitled “Poverty among Elderly Women: Case Study of Amanah Ikhtiar” conducted in Peninsular Malaysia. An actor–partner interdependence model using AMOS version 20 (Europress Software, Cheshire, UK) was used to analyze the dyadic data. Results The mean ages of the husbands and wives in this sample were 60.37 years (±6.55) and 56.33 years (±5.32), respectively. Interdependence analyses revealed significant association between older adults’ attitudes toward aging and the attitudes of their spouses (intraclass correlation =0.59; P<0.001), and similar interdependence was found for psychological well-being (intraclass correlation =0.57; P<0.001). The findings from AMOS revealed that the proposed model fits the data (CMIN/degrees of freedom =3.23; goodness-of-fit index =0.90; confirmatory fit index =0.91; root mean square error of approximation =0.08). Results of the actor–partner independence model indicated that older adults’ psychological well-being is significantly predicted by their spouses’ attitudes toward aging, both among older men (critical ratio =2.92; P<0.01) and women (critical ratio =2.70; P<0.01). Husbands’ and wives’ own reports of their attitudes toward aging were significantly correlated with their own and their spouses’ psychological well-being. Conclusion The findings from this study supported the proposed Spousal Attitude–Well-Being Model, where older

  7. Associations of Emotional Distress and Perceived Health in Persons With Atrial Fibrillation and Their Partners Using the Actor-Partner Interdependence Model.

    PubMed

    Dalteg, Tomas; Benzein, Eva; Sandgren, Anna; Malm, Dan; Årestedt, Kristofer

    2016-08-01

    Individual behavior affects and is affected by other people. The aim of this study was to examine if emotional distress in patients with atrial fibrillation (AF) and their spouses was associated with their own and their partner's perceived health. Participants included 91 dyads of patients and their spouses. Emotional distress was measured using the Hospital Anxiety and Depression Scale and perceived health was measured with the Short Form 36 Health Survey. The Actor-Partner Interdependence Model was used for dyad-level analyses of associations, using structural equation modeling. Higher levels of anxiety and depression were associated with lower levels of perceived health in patients and spouses. Higher levels of depression in patients were associated with lower levels of vitality in spouses and vice versa. As AF patients and their spouses influence each other, health-care interventions should consider the dyad to address dyadic dynamics. This may benefit the health of the individual patient and of the couple. PMID:27385260

  8. Spontaneous Symmetry Breaking in Interdependent Networked Game

    NASA Astrophysics Data System (ADS)

    Jin, Qing; Wang, Lin; Xia, Cheng-Yi; Wang, Zhen

    2014-02-01

    Spatial evolution game has traditionally assumed that players interact with direct neighbors on a single network, which is isolated and not influenced by other systems. However, this is not fully consistent with recent research identification that interactions between networks play a crucial rule for the outcome of evolutionary games taking place on them. In this work, we introduce the simple game model into the interdependent networks composed of two networks. By means of imitation dynamics, we display that when the interdependent factor α is smaller than a threshold value αC, the symmetry of cooperation can be guaranteed. Interestingly, as interdependent factor exceeds αC, spontaneous symmetry breaking of fraction of cooperators presents itself between different networks. With respect to the breakage of symmetry, it is induced by asynchronous expansion between heterogeneous strategy couples of both networks, which further enriches the content of spatial reciprocity. Moreover, our results can be well predicted by the strategy-couple pair approximation method.

  9. New security infrastructure model for distributed computing systems

    NASA Astrophysics Data System (ADS)

    Dubenskaya, J.; Kryukov, A.; Demichev, A.; Prikhodko, N.

    2016-02-01

    At the paper we propose a new approach to setting up a user-friendly and yet secure authentication and authorization procedure in a distributed computing system. The security concept of the most heterogeneous distributed computing systems is based on the public key infrastructure along with proxy certificates which are used for rights delegation. In practice a contradiction between the limited lifetime of the proxy certificates and the unpredictable time of the request processing is a big issue for the end users of the system. We propose to use unlimited in time hashes which are individual for each request instead of proxy certificate. Our approach allows to avoid using of the proxy certificates. Thus the security infrastructure of distributed computing system becomes easier for development, support and use.

  10. Critical Infrastructure Consequence Modeler v 0.5.0 Beta

    Energy Science and Technology Software Center (ESTSC)

    2009-08-11

    Implements previously developed methodology to calculate total disutility to an organization caused by impacts imposed upon the physical system in question (electric power transmission system, water system, etc).Critical infrastructure utility personnel will use this as a planning tool to determine where system weaknesses are and where improvements should be made such that the consequence of some impact is no longer higher than acceptable.

  11. Recovery of Interdependent Networks

    NASA Astrophysics Data System (ADS)

    di Muro, M. A.; La Rocca, C. E.; Stanley, H. E.; Havlin, S.; Braunstein, L. A.

    2016-03-01

    Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy for nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1 ‑ p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γ ‑ p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot prevent system collapse.

  12. Recovery of Interdependent Networks

    PubMed Central

    Di Muro, M. A.; La Rocca, C. E.; Stanley, H. E.; Havlin, S.; Braunstein, L. A.

    2016-01-01

    Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy for nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1 − p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γ − p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot prevent system collapse. PMID:26956773

  13. The Investigation of Relationship among Relational-Interdependent Self-Construal, Cyberbullying, and Psychological Disharmony in Adolescents: An Investigation of Structural Equation Modelling

    ERIC Educational Resources Information Center

    Cetin, Bayram; Eroglu, Yuksel; Peker, Adem; Akbaba, Sirri; Pepsoy, Sevim

    2012-01-01

    The aim of this study is to investigate the effect of relational-interdependent self-construal on cyberbullying and the effect of cyberbullying on psychological disharmony. Participants were 258 high school students. In this study, the Relational-Interdependent Self-Construal Scale, the Revised Cyberbullying Inventory, and the Depression, Anxiety,…

  14. Project Interdependence: 1983/84 Report.

    ERIC Educational Resources Information Center

    Bronston, William

    The report addresses the background and accomplishments of Project Interdependence, an economic development model created to demonstrate public/private partnerships with California's youth for careers in science, the arts, recreation, and sports. A review of the project's history cites the influence of the International Year of Disabled Persons,…

  15. Independence and Interdependence in Early Childhood Services

    ERIC Educational Resources Information Center

    Whitington, Victoria

    2004-01-01

    It is through culture that children make sense of their worlds (Trevarthen, 1998). Cross- cultural models show that families are likely to primarily foster either independence or interdependence in their children (Gonzalez-Mena, 1997; Greenfield, 1994). Young children are likely to pay the "price of acculturation" when they enter early childhood…

  16. Current Capabilities, Requirements and a Proposed Strategy for Interdependency Analysis in the UK

    NASA Astrophysics Data System (ADS)

    Bloomfield, Robin; Chozos, Nick; Salako, Kizito

    The UK government recently commissioned a research study to identify the state-of-the-art in Critical Infrastructure modelling and analysis, and the government/industry requirements for such tools and services. This study (Cetifs) concluded with a strategy aiming to bridge the gaps between the capabilities and requirements, which would establish interdependency analysis as a commercially viable service in the near future. This paper presents the findings of this study that was carried out by CSR, City University London, Adelard LLP, a safety/security consultancy and Cranfield University, defense academy of the UK.

  17. A reference model for model-based design of critical infrastructure protection systems

    NASA Astrophysics Data System (ADS)

    Shin, Young Don; Park, Cheol Young; Lee, Jae-Chon

    2015-05-01

    Today's war field environment is getting versatile as the activities of unconventional wars such as terrorist attacks and cyber-attacks have noticeably increased lately. The damage caused by such unconventional wars has also turned out to be serious particularly if targets are critical infrastructures that are constructed in support of banking and finance, transportation, power, information and communication, government, and so on. The critical infrastructures are usually interconnected to each other and thus are very vulnerable to attack. As such, to ensure the security of critical infrastructures is very important and thus the concept of critical infrastructure protection (CIP) has come. The program to realize the CIP at national level becomes the form of statute in each country. On the other hand, it is also needed to protect each individual critical infrastructure. The objective of this paper is to study on an effort to do so, which can be called the CIP system (CIPS). There could be a variety of ways to design CIPS's. Instead of considering the design of each individual CIPS, a reference model-based approach is taken in this paper. The reference model represents the design of all the CIPS's that have many design elements in common. In addition, the development of the reference model is also carried out using a variety of model diagrams. The modeling language used therein is the systems modeling language (SysML), which was developed and is managed by Object Management Group (OMG) and a de facto standard. Using SysML, the structure and operational concept of the reference model are designed to fulfil the goal of CIPS's, resulting in the block definition and activity diagrams. As a case study, the operational scenario of the nuclear power plant while being attacked by terrorists is studied using the reference model. The effectiveness of the results is also analyzed using multiple analysis models. It is thus expected that the approach taken here has some merits

  18. Education for an Interdependent Future.

    ERIC Educational Resources Information Center

    Brodbelt, Samuel

    1979-01-01

    Calls for social studies teachers to emphasize future studies and the implications of growing global interdependence. Students should learn about alternative futures, the possible decline of nationalism, overpopulation and food resources, the ecological system and natural resources, and ways of achieving interdependence. (AV)

  19. Cascades in interdependent flow networks

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; De Sanctis Lucentini, Pier Giorgio; Caldarelli, Guido; D'Agostino, Gregorio

    2016-06-01

    In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.

  20. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.

    PubMed

    Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y

    2016-04-01

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures. PMID:25847370

  1. Concepts, Models and Implementation of the Marine Spatial Data Infrastructure in Germany Mdi-De

    NASA Astrophysics Data System (ADS)

    Rüh, C.; Bill, R.

    2012-07-01

    In Germany currently the development of a marine data infrastructure takes place with the aim of merging information concerning the fields coastal engineering, hydrography and surveying, protection of the marine environment, maritime conservation, regional planning and coastal research. This undertaking is embedded in a series of regulations and developments on many administrative levels from which specifications and courses of action derive. To set up a conceptual framework for the marine data infrastructure (MDI-DE) scientists at the Professorship for Geodesy and Geoinformatics at Rostock University are building a reference model, evaluating meta-information systems and developing models to support common workflows in marine applications. The reference model for the marine spatial data infrastructure of Germany (MDI-DE) is the guideline for all developments inside this infrastructure. Because the undertaking is embedded in a series of regulations and developments this paper illustrates an approach on modelling a scenario for the Marine Strategy Framework Directive (MSFD) using the Unified Modelling Language (UML). Evaluating how other countries built their marine spatial infrastructures is of main importance, to learn where obstacles are and errors are likely to occur. To be able to look at other initiatives from a neutral point of view it is necessary to construct a framework for evaluation of marine spatial data infrastructures. Spatial data infrastructure assessment approaches were used as bases and were expanded to meet the requirements of the marine domain. As an international case-study this paper will look at Canada's Marine Geospatial Data Infrastructure (MGDI), COINAtlantic and GeoPortal.

  2. Impact of Degree Heterogeneity on Attack Vulnerability of Interdependent Networks.

    PubMed

    Sun, Shiwen; Wu, Yafang; Ma, Yilin; Wang, Li; Gao, Zhongke; Xia, Chengyi

    2016-01-01

    The study of interdependent networks has become a new research focus in recent years. We focus on one fundamental property of interdependent networks: vulnerability. Previous studies mainly focused on the impact of topological properties upon interdependent networks under random attacks, the effect of degree heterogeneity on structural vulnerability of interdependent networks under intentional attacks, however, is still unexplored. In order to deeply understand the role of degree distribution and in particular degree heterogeneity, we construct an interdependent system model which consists of two networks whose extent of degree heterogeneity can be controlled simultaneously by a tuning parameter. Meanwhile, a new quantity, which can better measure the performance of interdependent networks after attack, is proposed. Numerical simulation results demonstrate that degree heterogeneity can significantly increase the vulnerability of both single and interdependent networks. Moreover, it is found that interdependent links between two networks make the entire system much more fragile to attacks. Enhancing coupling strength between networks can greatly increase the fragility of both networks against targeted attacks, which is most evident under the case of max-max assortative coupling. Current results can help to deepen the understanding of structural complexity of complex real-world systems. PMID:27609483

  3. Impact of Degree Heterogeneity on Attack Vulnerability of Interdependent Networks

    PubMed Central

    Sun, Shiwen; Wu, Yafang; Ma, Yilin; Wang, Li; Gao, Zhongke; Xia, Chengyi

    2016-01-01

    The study of interdependent networks has become a new research focus in recent years. We focus on one fundamental property of interdependent networks: vulnerability. Previous studies mainly focused on the impact of topological properties upon interdependent networks under random attacks, the effect of degree heterogeneity on structural vulnerability of interdependent networks under intentional attacks, however, is still unexplored. In order to deeply understand the role of degree distribution and in particular degree heterogeneity, we construct an interdependent system model which consists of two networks whose extent of degree heterogeneity can be controlled simultaneously by a tuning parameter. Meanwhile, a new quantity, which can better measure the performance of interdependent networks after attack, is proposed. Numerical simulation results demonstrate that degree heterogeneity can significantly increase the vulnerability of both single and interdependent networks. Moreover, it is found that interdependent links between two networks make the entire system much more fragile to attacks. Enhancing coupling strength between networks can greatly increase the fragility of both networks against targeted attacks, which is most evident under the case of max-max assortative coupling. Current results can help to deepen the understanding of structural complexity of complex real-world systems. PMID:27609483

  4. Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling

    SciTech Connect

    McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

    2009-03-26

    Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

  5. Toward a multidimensional model of athletes' commitment to coach-athlete relationships and interdependent sport teams: a substantive-methodological synergy.

    PubMed

    Jackson, Ben; Gucciardi, Daniel F; Dimmock, James A

    2014-02-01

    Drawing from a three-factor model of organizational commitment, we sought to provide validity evidence for a multidimensional conceptualization designed to capture adolescent athletes' commitment to their coach-athlete relationship or their team. In Study 1, 335 individual-sport athletes (Mage = 17.32, SD = 1.38) completed instruments assessing affective, normative, and continuance commitment to their relationship with their coach, and in Study 2, contextually modified instruments were administered to assess interdependent-sport athletes' (N = 286, Mage = 16.31, SD = 1.33) commitment to their team. Bayesian structural equation modeling revealed support for a three-factor (in comparison with a single-factor) model, along with relations between commitment dimensions and relevant correlates (e.g., satisfaction, return intentions, cohesion) that were largely consistent with theory. Guided by recent advancements in Bayesian modeling, these studies provide a new commitment instrument with the potential for use and refinement in team- and relationship-based settings and offer preliminary support for a conceptual framework that may help advance our understanding of the factors underpinning individuals' engagement in sport. PMID:24501144

  6. Breakdown of interdependent directed networks.

    PubMed

    Liu, Xueming; Stanley, H Eugene; Gao, Jianxi

    2016-02-01

    Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis. PMID:26787907

  7. An agent-based microsimulation of critical infrastructure systems

    SciTech Connect

    BARTON,DIANNE C.; STAMBER,KEVIN L.

    2000-03-29

    US infrastructures provide essential services that support the economic prosperity and quality of life. Today, the latest threat to these infrastructures is the increasing complexity and interconnectedness of the system. On balance, added connectivity will improve economic efficiency; however, increased coupling could also result in situations where a disturbance in an isolated infrastructure unexpectedly cascades across diverse infrastructures. An understanding of the behavior of complex systems can be critical to understanding and predicting infrastructure responses to unexpected perturbation. Sandia National Laboratories has developed an agent-based model of critical US infrastructures using time-dependent Monte Carlo methods and a genetic algorithm learning classifier system to control decision making. The model is currently under development and contains agents that represent the several areas within the interconnected infrastructures, including electric power and fuel supply. Previous work shows that agent-based simulations models have the potential to improve the accuracy of complex system forecasting and to provide new insights into the factors that are the primary drivers of emergent behaviors in interdependent systems. Simulation results can be examined both computationally and analytically, offering new ways of theorizing about the impact of perturbations to an infrastructure network.

  8. Decision analysis and risk models for land development affecting infrastructure systems.

    PubMed

    Thekdi, Shital A; Lambert, James H

    2012-07-01

    Coordination and layering of models to identify risks in complex systems such as large-scale infrastructure of energy, water, and transportation is of current interest across application domains. Such infrastructures are increasingly vulnerable to adjacent commercial and residential land development. Land development can compromise the performance of essential infrastructure systems and increase the costs of maintaining or increasing performance. A risk-informed approach to this topic would be useful to avoid surprise, regret, and the need for costly remedies. This article develops a layering and coordination of models for risk management of land development affecting infrastructure systems. The layers are: system identification, expert elicitation, predictive modeling, comparison of investment alternatives, and implications of current decisions for future options. The modeling layers share a focus on observable factors that most contribute to volatility of land development and land use. The relevant data and expert evidence include current and forecasted growth in population and employment, conservation and preservation rules, land topography and geometries, real estate assessments, market and economic conditions, and other factors. The approach integrates to a decision framework of strategic considerations based on assessing risk, cost, and opportunity in order to prioritize needs and potential remedies that mitigate impacts of land development to the infrastructure systems. The approach is demonstrated for a 5,700-mile multimodal transportation system adjacent to 60,000 tracts of potential land development. PMID:22050390

  9. Data management for geospatial vulnerability assessment of interdependencies in US power generation

    SciTech Connect

    Shih, C.Y.; Scown, C.D.; Soibelman, L.; Matthews, H.S.; Garrett, J.H.; Dodrill, K.; McSurdy, S.

    2009-09-15

    Critical infrastructures maintain our society's stability, security, and quality of life. These systems are also interdependent, which means that the disruption of one infrastructure system can significantly impact the operation of other systems. Because of the heavy reliance on electricity production, it is important to assess possible vulnerabilities. Determining the source of these vulnerabilities can provide insight for risk management and emergency response efforts. This research uses data warehousing and visualization techniques to explore the interdependencies between coal mines, rail transportation, and electric power plants. By merging geospatial and nonspatial data, we are able to model the potential impacts of a disruption to one or more mines, rail lines, or power plants, and visually display the results using a geographical information system. A scenario involving a severe earthquake in the New Madrid Seismic Zone is used to demonstrate the capabilities of the model when given input in the form of a potentially impacted area. This type of interactive analysis can help decision makers to understand the vulnerabilities of the coal distribution network and the potential impact it can have on electricity production.

  10. The IRIS Model: Building the Infrastructure for Seismology

    NASA Astrophysics Data System (ADS)

    Benson, R. B.; Ahern, T. K.

    2003-12-01

    The IRIS Consortium began a global, cooperative development in the mid-1980's, with the goal of being able to provide the necessary infrastructure (system) that would bring expensive, globally distributed geophysical data into the arena of open access, and to make these data available through a streamlined system of accessing that has profoundly improved the science of seismology. Historically, geophysical data were generated by scientists studying a particular problem, were limited in both the spatial and the temporal scales, and were self-managed and in native formats that hindered exchange. Data had little chance of being used again. The IRIS Data Management Center, located in Seattle, WA and affiliated with the University of Washington, operates an NSF-funded facility that is charged with acquiring, archiving, and distributing over 30 years (and counting) of geophysical time series data. Even though this volume exceeds 50 terabytes of dual-sorted data, these data can be requested on any spatial or temporal time scale. If you are studying the movement of mantle convection cells over decadal time scales, or studying aftershocks of a local earthquake, you can access these data from your workstation, convert these into your analysis format, and begin the process of doing hard science without ever having to burden yourself with acquiring the data, or drafting a detailed proposal justifying your area of interest. You can proceed directly to doing science. In the last two years, the IRIS DMC has targeted the problem of handling real time data generated in the field, forwarding it to a unified disk buffer, thereby eliminating all heterogeneity, and providing open access to large volumes of data which can be immediately utilized, providing the back-end for decision making in human time scales, not scientific time scales. We have now pushed this to the final step, closing the data loop and providing robust utilities that enable information-to-application functionality

  11. Toward a generic model of security in organizational context: exploring insider threats to information infrastructure.

    SciTech Connect

    Martinez-Moyano, I. J.; Samsa, M. E.; Burke, J. F.; Akcam, B. K.; Decision and Information Sciences; Rockefeller Coll. at the State Univ. of New York at Albany

    2008-01-01

    This paper presents a generic model for information security implementation in organizations. The model presented here is part of an ongoing research stream related to critical infrastructure protection and insider threat and attack analysis. This paper discusses the information security implementation case.

  12. Structural interdependence in teams: An integrative framework and meta-analysis.

    PubMed

    Courtright, Stephen H; Thurgood, Gary R; Stewart, Greg L; Pierotti, Abigail J

    2015-11-01

    Although interdependence is a central aspect of team design, there has been a lack of clarity regarding the meaning and impact of different forms of interdependence. To provide theoretical clarity and to advance research on team interdependence, we develop an organizing, conceptual framework of interdependence in teams and test it using meta-analysis. We first review and tie together different conceptualizations of interdependence in the literature and illustrate how they converge around 2 major constructs: task interdependence and outcome interdependence. After providing integrative definitions of these forms of interdependence, as well as subdimensions, we then explore the relative effects of task and outcome interdependence on team functioning and performance. Specifically, we propose a pattern of differential effects in which task interdependence is primarily associated with team performance through its effects on task-focused team functioning (i.e., transition/action processes, collective efficacy), whereas outcome interdependence is primarily associated with team performance through its effects on relational team functioning (i.e., interpersonal processes, cohesion). We test these differential effects using a meta-analytic database of 107 independent samples and 7,563 teams. The meta-analytic path model provides strong support for our hypotheses. Implications and future directions for the study of interdependence in work teams are discussed. PMID:25938722

  13. Sense making and benefit finding in couples who have a child with Asperger syndrome: an application of the Actor-Partner Interdependence Model.

    PubMed

    Samios, Christina; Pakenham, Kenneth I; Sofronoff, Kate

    2012-05-01

    Parents of children with Asperger syndrome face many challenges that may lead them to search for meaning by developing explanations for (sense making) and finding benefits (benefit finding) in having a child with special needs. Although family theorists have proposed that finding meaning occurs interpersonally, there is a dearth of empirical research that has examined finding meaning at the couple level. This study examined sense making and benefit finding in 84 couples who have a child with Asperger syndrome by using the Actor-Partner Interdependence Model (Kenny et al., 2006) to examine actor effects (i.e. the extent to which an individual's score on the predictor variable impacts his or her own level of adjustment) and partner effects (i.e. the extent to which an individual's score on the predictor variable has an impact on his or her partner's level of adjustment) of sense making and benefit finding on parental adjustment. Results demonstrated that parents' benefit finding related to greater anxiety and parents' sense making related to not only their own adjustment but also their partner's adjustment. Results highlight the importance of adopting an interpersonal perspective on finding meaning and adjustment. Limitations, future research and clinical implications are also discussed. PMID:21949006

  14. Robust-yet-fragile nature of interdependent networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Xia, Yongxiang; Wei, Zhi

    2015-05-01

    Interdependent networks have been shown to be extremely vulnerable based on the percolation model. Parshani et al. [Europhys. Lett. 92, 68002 (2010), 10.1209/0295-5075/92/68002] further indicated that the more intersimilar networks are, the more robust they are to random failures. When traffic load is considered, how do the coupling patterns impact cascading failures in interdependent networks? This question has been largely unexplored until now. In this paper, we address this question by investigating the robustness of interdependent Erdös-Rényi random graphs and Barabási-Albert scale-free networks under either random failures or intentional attacks. It is found that interdependent Erdös-Rényi random graphs are robust yet fragile under either random failures or intentional attacks. Interdependent Barabási-Albert scale-free networks, however, are only robust yet fragile under random failures but fragile under intentional attacks. We further analyze the interdependent communication network and power grid and achieve similar results. These results advance our understanding of how interdependency shapes network robustness.

  15. Emotional Interdependence and Well-Being in Close Relationships

    PubMed Central

    Sels, Laura; Ceulemans, Eva; Bulteel, Kirsten; Kuppens, Peter

    2016-01-01

    Emotional interdependence—here defined as partners’ emotions being linked to each other across time—is often considered a key characteristic of healthy romantic relationships. But is this actually the case? We conducted an experience-sampling study with 50 couples indicating their feelings 10 times a day for 7 days and modeled emotional interdependence for each couple separately taking a dyadographic approach. The majority of couples (64%) did not demonstrate strong signs of emotional interdependence, and couples that did, showed great inter-dyad differences in their specific patterns. Individuals from emotionally more interdependent couples reported higher individual well-being than individuals from more independent couples in terms of life satisfaction but not depression. Relational well-being was not (relationship satisfaction) or even negatively (empathic concern) related to the degree of emotional interdependence. Especially driving the emotions of the partner (i.e., sender effects) accounted for these associations, opposed to following the emotions of the partner (i.e., receiver effects). Additionally, assessing emotional interdependence for positive and negative emotions separately elucidated that primarily emotional interdependence for positive emotions predicted more self-reported life satisfaction and less empathic concern. These findings highlight the existence of large inter-dyad differences, explore relationships between emotional interdependence and key well-being variables, and demonstrate differential correlates for sending and receiving emotions. PMID:27014114

  16. The Michigan leadership model: developing a management infrastructure.

    PubMed

    Dawson, Carrie; Aebersold, Michelle; Mamolen, Nancy; Goldberg, Janet; Frank, Cathy

    2005-01-01

    University of Michigan Health System underwent a number of reduction strategies in the early 1990s to address the rising costs of healthcare. By 2001, an analysis revealed that these strategies negatively impacted employee satisfaction and patient care. A team of nurse managers was charged with redesigning the current support structure for nurse managers. The team conducted an analysis of the current situation and designed a new model called the Michigan Leadership Model comprising both administrative and leadership support positions. PMID:16077276

  17. HWA modelling web services for the IMPEx infrastructure

    NASA Astrophysics Data System (ADS)

    Kallio, Esa; Khodachenko, Maxim; Génot, Vincent; Schmidt, Walter; Häkkinen, Lasse; Jarvinen, Riku; Dyadechkin, Sergey; Pérez-Suárez, David; Topf, Florian; Al-Ubaidi, Tarek; Gangloff, Michel; Budnik, Elena; Bouchemit, Myriam; Bourrel, Natalyia; Penou, Emmanuel; André, Nicolas; Modolo, Ronan; Hess, Sebastien; Alexeev, Igor; Belenkaya, Elena

    2013-04-01

    The EU-FP7 Project "Integrated Medium for Planetary Exploration", IMPEx [1], was established as a result of scientific collaboration between institutions across Europe and is working on the integration of a set of interactive data analysis and modeling tools in the field of space plasma physics. These tools are comprised of numerical hybrid/MHD and analytical Paraboloid magnetospheric models from the simulation sector as well as from the data analysis and visualization sector (AMDA, ClWeb, 3DView). The basic feature of IMPEx consists in connection of different data sources, including archived computational simulation results and observational data, in order to analyse and visualize scientific data by means of interactive web-based tools. In this presentation we introduce a web service, Hybrid Web Archive, HWA [2], which enables access to the simulation runs made by HYB and GUMICS models included in the IMPEx HMM (Hybrid and Magnetohydrodynamic Modelling) environment. The HYB hybrid model and the GUMICS MHD model enables to study the solar wind interaction with the planets, moons, asteroids and comets [2]. We also introduce web services which enable a connection of the HWA and observational data resources. Acknowledgment: IMPEx was funded by the European Commission under the 7th Framework Program, grant agreement no 262863 References: [1] http://impex-fp7.oeaw.ac.at [2] http://hwa.fmi.fi

  18. Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought

    NASA Astrophysics Data System (ADS)

    Mackay, D. Scott; Roberts, David E.; Ewers, Brent E.; Sperry, John S.; McDowell, Nathan G.; Pockman, William T.

    2015-08-01

    Hydraulic systems of plants have evolved in the context of carbon allocation and fitness trade-offs of maximizing carbon gain and water transport in the face of short and long-term fluctuations in environmental conditions. The resulting diversity of traits include a continuum of isohydry-anisohydry or high to low relative stomatal closure during drought, shedding of canopy foliage or disconnecting roots from soil to survive drought, and adjusting root areas to efficiently manage canopy water costs associated with photosynthesis. These traits are examined within TREES, an integrated model that explicitly couples photosynthesis and carbon allocation to soil-plant hydraulics and canopy processes. Key advances of the model are its ability to account for differences in soil and xylem cavitation, transience of hydraulic impairment associated with delayed or no refilling of xylem, and carbon allocation to plant structures based on photosynthetic uptake of carbon and hydraulic limitations to water transport. The model was used to examine hydraulic traits of cooccurring isohydric (piñon pine) and anisohydric (one-seed juniper) trees from a field-based experimental drought. Model predictions of both transpiration and leaf water potential were improved when there was no refilling of xylem over simulations where xylem was able refill in response to soil water recharge. Model experiments with alternative root-to-leaf area ratios (RR/L) showed the RR/L that supports maximum cumulative water use is not beneficial for supporting maximum carbon gain during extended drought, illustrating how a process model reveals trade-offs in plant traits.

  19. The Interdependence of the Factors Influencing the Perceived Quality of the Online Learning Experience: A Causal Model

    ERIC Educational Resources Information Center

    Peltier, James W.; Schibrowsky, John A.; Drago, William

    2007-01-01

    A structural model of the drivers of online education is proposed and tested. The findings help to identify the interrelated nature of the lectures delivered via technology outside of the traditional classroom, the importance of mentoring, the need to develop course structure, the changing roles for instructors and students, and the importance of…

  20. Interdependent networks: the fragility of control

    PubMed Central

    Morris, Richard G.; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling ‘distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems— namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  1. Interdependent networks: the fragility of control.

    PubMed

    Morris, Richard G; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling 'distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems- namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  2. A Modeling Framework to Incorporate Effects of Infrastructure in Sociohydrological Systems

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, R.

    2014-12-01

    In studying coupled natural-human systems, most modeling efforts focus on humans and the natural resources. In reality, however, humans rarely interact with these resources directly; the relationships between humans and resources are mediated by infrastructures. In sociohydrological systems, these include, for example, dams and irrigation canals. These infrastructures have important characteristics such as threshold behavior and a separate entity/organization tasked with maintaining them. These characteristics influence social dynamics within the system, which in turn determines the state of infrastructure and water usage, thereby exerting feedbacks onto the hydrological processes. Infrastructure is thus a necessary ingredient for modeling co-evolution of human and water in sociohydrological systems. A conceptual framework to address this gap has been proposed by Anderies, Janssen, and Ostrom (2004). Here we develop a model to operationalize the framework and report some preliminary results. Simple in its setup, the model highlights the structure of the social dilemmas and how it affects the system's sustainability. The model also offers a platform to explore how the system's sustainability may respond to external shocks from globalization and global climate change.

  3. Combining Interactive Infrastructure Modeling and Evolutionary Algorithm Optimization for Sustainable Water Resources Design

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2013-12-01

    Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.

  4. An Information Infrastructure for Coastal Models and Data

    NASA Astrophysics Data System (ADS)

    Hardin, D.; Keiser, K.; Conover, H.; Graves, S.

    2007-12-01

    Advances in semantics and visualization have given rise to new capabilities for the location, manipulation, integration, management and display of data and information in and across domains. An example of these capabilities is illustrated by a coastal restoration project that utilizes satellite, in-situ data and hydrodynamic model output to address seagrass habitat restoration in the Northern Gulf of Mexico. In this project a standard stressor conceptual model was implemented as an ontology in addition to the typical CMAP diagram. The ontology captures the elements of the seagrass conceptual model as well as the relationships between them. Noesis, developed by the University of Alabama in Huntsville, is an application that provides a simple but powerful way to search and organize data and information represented by ontologies. Noesis uses domain ontologies to help scope search queries to ensure that search results are both accurate and complete. Semantics are captured by refining the query terms to cover synonyms, specializations, generalizations and related concepts. As a resource aggregator Noesis categorizes search results returned from multiple, concurrent search engines such as Google, Yahoo, and Ask.com. Search results are further directed by accessing domain specific catalogs that include outputs from hydrodynamic and other models. Embedded within the search results are links that invoke applications such as web map displays, animation tools and virtual globe applications such as Google Earth. In the seagrass prioritization project Noesis is used to locate information that is vital to understanding the impact of stressors on the habitat. This presentation will show how the intelligent search capabilities of Noesis are coupled with visualization tools and model output to investigate the restoration of seagrass habitat.

  5. Comparison of Modeled Results for Kansas City Middle Blue River Green Infrastructure Pilot Project

    EPA Science Inventory

    The Water Services Department (WSD) in Kansas City, Missouri (KCMO) has conducted extensive modeling and economic studies of its combined sewer system (CSS) over the last several years. A number of green infrastructure (GI) solutions were identified and constructed to reduce dis...

  6. e-infrastructure components to support the earth system modeling community in Europe

    NASA Astrophysics Data System (ADS)

    Kindermann, Stephan

    2010-05-01

    A stepwise integration of existing expertise, distributed information resources and services of the modeling community is inevitable. A growing user community calls for consistent access to existing resources like model documentation, (post-)processing tools as well as climate model data. Whereas substantial effort is invested to establish world wide climate model data handling infrastructures (e.g. the CMIP5/ESG data federation), e-infrastructural support to integrate information from the existing modeling groups, data centers as well as computing centers is missing. From a technical viewpoint, in this talk we discuss the selection and development of e-infrastructural components for the European IS-ENES project. These components should facilitate consistent access to the european CMIP5/AR5 data and service providers in addition to providing a consistent view to diverse information and tools provided by the european modeling community. The components discussed include: portal technology, information exchange protocols to collect highly structured as well as less structured descriptions (metadata) in the portal, semantic web technology to support searching based on a conceptual model. A prototype of a semantic search interface for the IS-ENES portal is hereby described in more detail. It is based on a first conceptual model taking into account the information model developed in the Metafor FP7 project as well as specific IS-ENES needs. Metafor will provide the metadata foundation of the future CMIP5 data federation and thus provides a highly structured conceptual model for the model and model output related part of the IS-ENES infrastructure. This has to be related to less structured information sources describing associated dokumentation, tools, expertise, etc. in the community.

  7. Sensing Models and Sensor Network Architectures for Transport Infrastructure Monitoring in Smart Cities

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.

  8. Dyadic conflict, drinking to cope, and alcohol-related problems: A psychometric study and longitudinal actor-partner interdependence model.

    PubMed

    Lambe, Laura; Mackinnon, Sean P; Stewart, Sherry H

    2015-10-01

    The motivational model of alcohol use posits that individuals may consume alcohol to cope with negative affect. Conflict with others is a strong predictor of coping motives, which in turn predict alcohol-related problems. Two studies examined links between conflict, coping motives, and alcohol-related problems in emerging adult romantic dyads. It was hypothesized that the association between conflict and alcohol-related problems would be mediated by coping-depression and coping-anxiety motives. It was also hypothesized that this would be true for actor (i.e., how individual factors influence individual behaviors) and partner effects (i.e., how partner factors influence individual behaviors) and at the between- (i.e., does not vary over the study period) and within-subjects (i.e., varies over the study period) levels. Both studies examined participants currently in a romantic relationship who consumed ≥12 alcoholic drinks in the past year. Study 1 was cross-sectional using university students (N = 130 students; 86.9% female; M = 21.02 years old, SD = 3.43). Study 2 used a 4-wave, 4-week longitudinal design with romantic dyads (N = 100 dyads; 89% heterosexual; M = 22.13 years old, SD = 5.67). In Study 2, coping-depression motives emerged as the strongest mediator of the conflict-alcohol-related problems association, and findings held for actor effects but not partner effects. Supplemental analyses revealed that this mediational pathway only held among women. Within any given week, alcohol-related problems changed systematically in the same direction between romantic partners. Interventions may wish to target coping-depression drinking motives within couples in response to conflict to reduce alcohol-related problems. PMID:26075735

  9. Critical Infrastructure Protection II, The International Federation for Information Processing, Volume 290.

    NASA Astrophysics Data System (ADS)

    Papa, Mauricio; Shenoi, Sujeet

    The information infrastructure -- comprising computers, embedded devices, networks and software systems -- is vital to day-to-day operations in every sector: information and telecommunications, banking and finance, energy, chemicals and hazardous materials, agriculture, food, water, public health, emergency services, transportation, postal and shipping, government and defense. Global business and industry, governments, indeed society itself, cannot function effectively if major components of the critical information infrastructure are degraded, disabled or destroyed. Critical Infrastructure Protection II describes original research results and innovative applications in the interdisciplinary field of critical infrastructure protection. Also, it highlights the importance of weaving science, technology and policy in crafting sophisticated, yet practical, solutions that will help secure information, computer and network assets in the various critical infrastructure sectors. Areas of coverage include: - Themes and Issues - Infrastructure Security - Control Systems Security - Security Strategies - Infrastructure Interdependencies - Infrastructure Modeling and Simulation This book is the second volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.10 on Critical Infrastructure Protection, an international community of scientists, engineers, practitioners and policy makers dedicated to advancing research, development and implementation efforts focused on infrastructure protection. The book contains a selection of twenty edited papers from the Second Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection held at George Mason University, Arlington, Virginia, USA in the spring of 2008.

  10. Model for a University-Based Clinical Research Development Infrastructure

    PubMed Central

    Havermahl, Tamara; LaPensee, Elizabeth; Williams, David; Clauw, Daniel; Parker, Robert A.; Downey, Brad; Liu, Jing; Myles, James

    2014-01-01

    The Research Development Core (RDC) is housed within the Michigan Institute for Clinical & Health Research (MICHR) at the University of Michigan (U-M). Established in 2006, RDC provides no-cost, in-person consultations to help U-M investigators strengthen their grant proposals. RDC offers investigators feedback and critique on all aspects of their study design, plus partnerships, funding mechanisms and future directions. This article describes RDC’s model and provides data describing the success of its services. The RDC is composed of a multidisciplinary team of professionals in grant development. It is comprised of two senior faculty co-directors from the U-M Medical School, two senior biostatisticians, outside faculty content experts, and RDC administrative staff. Investigators contact RDC to request a consultation and submit advance grant materials for review by the RDC team. During the consultation, investigators explain their project and identify challenges. The RDC team and additional experts offer feedback that is captured in meeting notes and provided to investigators. RDC commitments beyond the meetings are implemented and carefully tracked. Investigators may also request grant editing, budgeting, or proposal submission assistance. Investigators utilizing RDC have been awarded $44.5 million since 2011. The demand for RDC consultations doubled from 2010 to 2011, and reached a high of 131 consultations in 2012. Investigator feedback has been positive: 80% reported RDC had a strong impact on their proposal, and over 90% indicated they would recommend RDC to colleagues. MICHR is committed to providing investigators with RDC services to better ensure strong grant applications and successful research careers. PMID:25340362

  11. Model for a university-based clinical research development infrastructure.

    PubMed

    Havermahl, Tamara; LaPensee, Elizabeth; Williams, David; Clauw, Daniel; Parker, Robert A; Downey, Brad; Liu, Jing; Myles, James

    2015-01-01

    The Research Development Core (RDC) is housed within the Michigan Institute for Clinical & Health Research (MICHR) at the University of Michigan (U-M). Established in 2006, RDC provides no-cost, in-person consultations to help U-M investigators strengthen their grant proposals. RDC offers investigators feedback and critique on all aspects of their study design, plus partnerships, funding mechanisms, and future directions. This article describes RDC's model and provides data describing the success of its services.RDC is composed of a multidisciplinary team of professionals in grant development. It comprises two senior faculty codirectors from the U-M Medical School, two senior biostatisticians, outside faculty content experts, and RDC administrative staff. Investigators contact RDC to request a consultation and submit advance grant materials for review by the RDC team. During the consultation, investigators explain their project and identify challenges. The RDC team and additional experts offer feedback that is captured in meeting notes and provided to investigators. RDC commitments beyond the meetings are implemented and carefully tracked. Investigators may also request grant editing, budgeting, or proposal submission assistance. Investigators using RDC have been awarded $44.5 million since 2011.The demand for RDC consultations doubled from 2010 to 2011 and reached a high of 131 consultations in 2012. Investigator feedback has been positive: 80% reported that RDC had a strong impact on their proposal, and over 90% indicated that they would recommend RDC to colleagues. MICHR is committed to providing investigators with RDC services to better ensure strong grant applications and successful research careers. PMID:25340362

  12. Using AGWA and the KINEROS2 Model-to-Model Green Infrastructure in Two Typical Residential Lots in Prescott, AZ

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) Urban tool provides a step-by-step process to model subdivisions using the KINEROS2 model, with and without Green Infrastructure (GI) practices. AGWA utilizes the Kinematic Runoff and Erosion (KINEROS2) model, an event driven, ...

  13. Improving interdependent networks robustness by adding connectivity links

    NASA Astrophysics Data System (ADS)

    Ji, Xingpei; Wang, Bo; Liu, Dichen; Chen, Guo; Tang, Fei; Wei, Daqian; Tu, Lian

    2016-02-01

    Compared with a single and isolated network, interdependent networks have two types of links: connectivity link and dependency link. This paper aims to improve the robustness of interdependent networks by adding connectivity links. Firstly, interdependent networks failure model and four frequently used link addition strategies are briefly reviewed. Furthermore, by defining inter degree-degree difference, two novel link addition strategies are proposed. Finally, we verify the effectiveness of our proposed link addition strategies by comparing with the current link addition strategies in three different network models. The simulation results show that, given the number of added links, link allocation strategies have great effects on the robustness of interdependent networks, i.e., the double-network link allocation strategy is superior to single-network link allocation strategy. Link addition strategies proposed in this paper excel the current strategies, especially for BA interdependent networks. Moreover, our work can provide guidance on how to allocate limited resources to an existing interdependent networks system and optimize its topology to avoid the potential cascade failures.

  14. National Survey of Hematopoietic Cell Transplant Center Personnel, Infrastructure and Models of Care Delivery

    PubMed Central

    Majhail, Navneet S.; Mau, Lih-Wen; Chitphakdithai, Pintip; Payton, Tammy; Eckrich, Michael; Joffe, Steven; Lee, Stephanie J.; LeMaistre, Charles F.; LeRademacher, Jennifer; Loberiza, Fausto; Logan, Brent; Parsons, Susan K.; Repaczki-Jones, Ramona; Robinett, Pam; Rizzo, J Douglas; Murphy, Elizabeth; Denzen, Ellen M.

    2015-01-01

    Hematopoietic cell transplantation (HCT) is a complex procedure that requires availability of adequate infrastructure, personnel and resources at transplant centers. We conducted a national survey of transplant centers in the United States to obtain data on their personnel, infrastructure and care delivery models. A 42-item web-based survey was administered to medical directors of transplant centers in the US that reported any allogeneic HCT to the Center for International Blood and Marrow Transplant Research (CIBMTR) in 2011. The response rate for the survey was 79% for adult programs (85/108 centers) and 82% for pediatric programs (54/66 centers). For describing results, we categorized centers into groups with similar volumes based on 2010 total HCT activity (adult centers 9 categories, pediatric centers 6 categories). We observed considerable variation in available resources, infrastructure, personnel and care delivery models among adult and pediatric transplant centers. Characteristics varied substantially among centers with comparable transplant volumes. Transplant centers may find these data helpful in assessing their present capacity and use them to evaluate potential resource needs for personnel, infrastructure and care delivery and in planning for growth. PMID:25840337

  15. National Survey of Hematopoietic Cell Transplantation Center Personnel, Infrastructure, and Models of Care Delivery.

    PubMed

    Majhail, Navneet S; Mau, Lih-Wen; Chitphakdithai, Pintip; Payton, Tammy; Eckrich, Michael; Joffe, Steven; Lee, Stephanie J; LeMaistre, Charles F; LeRademacher, Jennifer; Loberiza, Fausto; Logan, Brent; Parsons, Susan K; Repaczki-Jones, Ramona; Robinett, Pam; Rizzo, J Douglas; Murphy, Elizabeth; Denzen, Ellen M

    2015-07-01

    Hematopoietic cell transplantation (HCT) is a complex procedure that requires availability of adequate infrastructure, personnel, and resources at transplantation centers. We conducted a national survey of transplantation centers in the United States to obtain data on their personnel, infrastructure, and care delivery models. A 42-item web-based survey was administered to medical directors of transplantation centers in the United States that reported any allogeneic HCT to the Center for International Blood and Marrow Transplant Research in 2011. The response rate for the survey was 79% for adult programs (85 of 108 centers) and 82% for pediatric programs (54 of 66 centers). For describing results, we categorized centers into groups with similar volumes based on 2010 total HCT activity (adult centers, 9 categories; pediatric centers, 6 categories). We observed considerable variation in available resources, infrastructure, personnel, and care delivery models among adult and pediatric transplantation centers. Characteristics varied substantially among centers with comparable transplantation volumes. Transplantation centers may find these data helpful in assessing their present capacity and use them to evaluate potential resource needs for personnel, infrastructure, and care delivery and in planning for growth. PMID:25840337

  16. WRF4G project: Adaptation of WRF Model to Distributed Computing Infrastructures

    NASA Astrophysics Data System (ADS)

    Cofino, Antonio S.; Fernández Quiruelas, Valvanuz; García Díez, Markel; Blanco Real, Jose C.; Fernández, Jesús

    2013-04-01

    Nowadays Grid Computing is powerful computational tool which is ready to be used for scientific community in different areas (such as biomedicine, astrophysics, climate, etc.). However, the use of this distributed computing infrastructures (DCI) is not yet common practice in climate research, and only a few teams and applications in this area take advantage of this infrastructure. Thus, the first objective of this project is to popularize the use of this technology in the atmospheric sciences area. In order to achieve this objective, one of the most used applications has been taken (WRF; a limited- area model, successor of the MM5 model), that has a user community formed by more than 8000 researchers worldwide. This community develop its research activity on different areas and could benefit from the advantages of Grid resources (case study simulations, regional hind-cast/forecast, sensitivity studies, etc.). The WRF model is been used as input by many energy and natural hazards community, therefore those community will also benefit. However, Grid infrastructures have some drawbacks for the execution of applications that make an intensive use of CPU and memory for a long period of time. This makes necessary to develop a specific framework (middleware). This middleware encapsulates the application and provides appropriate services for the monitoring and management of the jobs and the data. Thus, the second objective of the project consists on the development of a generic adaptation of WRF for Grid (WRF4G), to be distributed as open-source and to be integrated in the official WRF development cycle. The use of this WRF adaptation should be transparent and useful to face any of the previously described studies, and avoid any of the problems of the Grid infrastructure. Moreover it should simplify the access to the Grid infrastructures for the research teams, and also to free them from the technical and computational aspects of the use of the Grid. Finally, in order to

  17. A flexible framework for process-based hydraulic and water quality modeling of stormwater green infrastructure performance

    EPA Science Inventory

    Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However,...

  18. Modeling the Hydrologic Effects of Large-Scale Green Infrastructure Projects with GIS

    NASA Astrophysics Data System (ADS)

    Bado, R. A.; Fekete, B. M.; Khanbilvardi, R.

    2015-12-01

    Impervious surfaces in urban areas generate excess runoff, which in turn causes flooding, combined sewer overflows, and degradation of adjacent surface waters. Municipal environmental protection agencies have shown a growing interest in mitigating these effects with 'green' infrastructure practices that partially restore the perviousness and water holding capacity of urban centers. Assessment of the performance of current and future green infrastructure projects is hindered by the lack of adequate hydrological modeling tools; conventional techniques fail to account for the complex flow pathways of urban environments, and detailed analyses are difficult to prepare for the very large domains in which green infrastructure projects are implemented. Currently, no standard toolset exists that can rapidly and conveniently predict runoff, consequent inundations, and sewer overflows at a city-wide scale. We demonstrate how streamlined modeling techniques can be used with open-source GIS software to efficiently model runoff in large urban catchments. Hydraulic parameters and flow paths through city blocks, roadways, and sewer drains are automatically generated from GIS layers, and ultimately urban flow simulations can be executed for a variety of rainfall conditions. With this methodology, users can understand the implications of large-scale land use changes and green/gray storm water retention systems on hydraulic loading, peak flow rates, and runoff volumes.

  19. To connect or not to connect? Modelling the optimal degree of centralisation for wastewater infrastructures.

    PubMed

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2015-11-01

    The strong reliance of most utility services on centralised network infrastructures is becoming increasingly challenged by new technological advances in decentralised alternatives. However, not enough effort has been made to develop planning tools designed to address the implications of these new opportunities and to determine the optimal degree of centralisation of these infrastructures. We introduce a planning tool for sustainable network infrastructure planning (SNIP), a two-step techno-economic heuristic modelling approach based on shortest path-finding and hierarchical-agglomerative clustering algorithms to determine the optimal degree of centralisation in the field of wastewater management. This SNIP model optimises the distribution of wastewater treatment plants and the sewer network outlay relative to several cost and sewer-design parameters. Moreover, it allows us to construct alternative optimal wastewater system designs taking into account topography, economies of scale as well as the full size range of wastewater treatment plants. We quantify and confirm that the optimal degree of centralisation decreases with increasing terrain complexity and settlement dispersion while showing that the effect of the latter exceeds that of topography. Case study results for a Swiss community indicate that the calculated optimal degree of centralisation is substantially lower than the current level. PMID:26247101

  20. The stock-flow model of spatial data infrastructure development refined by fuzzy logic.

    PubMed

    Abdolmajidi, Ehsan; Harrie, Lars; Mansourian, Ali

    2016-01-01

    The system dynamics technique has been demonstrated to be a proper method by which to model and simulate the development of spatial data infrastructures (SDI). An SDI is a collaborative effort to manage and share spatial data at different political and administrative levels. It is comprised of various dynamically interacting quantitative and qualitative (linguistic) variables. To incorporate linguistic variables and their joint effects in an SDI-development model more effectively, we suggest employing fuzzy logic. Not all fuzzy models are able to model the dynamic behavior of SDIs properly. Therefore, this paper aims to investigate different fuzzy models and their suitability for modeling SDIs. To that end, two inference and two defuzzification methods were used for the fuzzification of the joint effect of two variables in an existing SDI model. The results show that the Average-Average inference and Center of Area defuzzification can better model the dynamics of SDI development. PMID:27006876

  1. ENES the European Network for Earth System modelling and its infrastructure projects IS-ENES

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Joussaume, Sylvie; Parinet, Marie

    2016-04-01

    The scientific community working on climate modelling is organized within the European Network for Earth System modelling (ENES). In the past decade, several European university departments, research centres, meteorological services, computer centres, and industrial partners engaged in the creation of ENES with the purpose of working together and cooperating towards the further development of the network, by signing a Memorandum of Understanding. As of 2015, the consortium counts 47 partners. The climate modelling community, and thus ENES, faces challenges which are both science-driven, i.e. analysing of the full complexity of the Earth System to improve our understanding and prediction of climate changes, and have multi-faceted societal implications, as a better representation of climate change on regional scales leads to improved understanding and prediction of impacts and to the development and provision of climate services. ENES, promoting and endorsing projects and initiatives, helps in developing and evaluating of state-of-the-art climate and Earth system models, facilitates model inter-comparison studies, encourages exchanges of software and model results, and fosters the use of high performance computing facilities dedicated to high-resolution multi-model experiments. ENES brings together public and private partners, integrates countries underrepresented in climate modelling studies, and reaches out to different user communities, thus enhancing European expertise and competitiveness. In this need of sophisticated models, world-class, high-performance computers, and state-of-the-art software solutions to make efficient use of models, data and hardware, a key role is played by the constitution and maintenance of a solid infrastructure, developing and providing services to the different user communities. ENES has investigated the infrastructural needs and has received funding from the EU FP7 program for the IS-ENES (InfraStructure for ENES) phase I and II

  2. Modeling the effect of urban infrastructure on hydrologic processes within i-Tree Hydro, a statistically and spatially distributed model

    NASA Astrophysics Data System (ADS)

    Taggart, T. P.; Endreny, T. A.; Nowak, D.

    2014-12-01

    Gray and green infrastructure in urban environments alters many natural hydrologic processes, creating an urban water balance unique to the developed environment. A common way to assess the consequences of impervious cover and grey infrastructure is by measuring runoff hydrographs. This focus on the watershed outlet masks the spatial variation of hydrologic process alterations across the urban environment in response to localized landscape characteristics. We attempt to represent this spatial variation in the urban environment using the statistically and spatially distributed i-Tree Hydro model, a scoping level urban forest effects water balance model. i-Tree Hydro has undergone expansion and modification to include the effect of green infrastructure processes, road network attributes, and urban pipe system leakages. These additions to the model are intended to increase the understanding of the altered urban hydrologic cycle by examining the effects of the location of these structures on the water balance. Specifically, the effect of these additional structures and functions on the spatially varying properties of interception, soil moisture and runoff generation. Differences in predicted properties and optimized parameter sets between the two models are examined and related to the recent landscape modifications. Datasets used in this study consist of watersheds and sewersheds within the Syracuse, NY metropolitan area, an urban area that has integrated green and gray infrastructure practices to alleviate stormwater problems.

  3. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  4. Resource modelling for control: how hydrogeological modelling can support a water quality monitoring infrastructure

    NASA Astrophysics Data System (ADS)

    Scozzari, Andrea; Doveri, Marco

    2015-04-01

    The knowledge of the physical/chemical processes implied with the exploitation of water bodies for human consumption is an essential tool for the optimisation of the monitoring infrastructure. Due to their increasing importance in the context of human consumption (at least in the EU), this work focuses on groundwater resources. In the framework of drinkable water networks, the physical and data-driven modelling of transport phenomena in groundwater can help optimising the sensor network and validating the acquired data. This work proposes the combined usage of physical and data-driven modelling as a support to the design and maximisation of results from a network of distributed sensors. In particular, the validation of physico-chemical measurements and the detection of eventual anomalies by a set of continuous measurements take benefit from the knowledge of the domain from which water is abstracted, and its expected characteristics. Change-detection techniques based on non-specific sensors (presented by quite a large literature during the last two decades) have to deal with the classical issues of maximising correct detections and minimising false alarms, the latter of the two being the most typical problem to be faced, in the view of designing truly applicable monitoring systems. In this context, the definition of "anomaly" in terms of distance from an expected value or feature characterising the quality of water implies the definition of a suitable metric and the knowledge of the physical and chemical peculiarities of the natural domain from which water is exploited, with its implications in terms of characteristics of the water resource.

  5. Report on three Genomes to Life Workshops: Data Infrastructure, Modeling and Simulation, and Protein Structure Prediction

    SciTech Connect

    Geist, GA

    2003-09-16

    On July 22, 23, 24, 2003, three one day workshops were held in Gaithersburg, Maryland. Each was attended by about 30 computational biologists, mathematicians, and computer scientists who were experts in the respective workshop areas The first workshop discussed the data infrastructure needs for the Genomes to Life (GTL) program with the objective to identify gaps in the present GTL data infrastructure and define the GTL data infrastructure required for the success of the proposed GTL facilities. The second workshop discussed the modeling and simulation needs for the next phase of the GTL program and defined how these relate to the experimental data generated by genomics, proteomics, and metabolomics. The third workshop identified emerging technical challenges in computational protein structure prediction for DOE missions and outlining specific goals for the next phase of GTL. The workshops were attended by representatives from both OBER and OASCR. The invited experts at each of the workshops made short presentations on what they perceived as the key needs in the GTL data infrastructure, modeling and simulation, and structure prediction respectively. Each presentation was followed by a lively discussion by all the workshop attendees. The following findings and recommendations were derived from the three workshops. A seamless integration of GTL data spanning the entire range of genomics, proteomics, and metabolomics will be extremely challenging but it has to be treated as the first-class component of the GTL program to assure GTL's chances for success. High-throughput GTL facilities and ultrascale computing will make it possible to address the ultimate goal of modern biology: to achieve a fundamental, comprehensive, and systematic understanding of life. But first the GTL community needs to address the problem of the massive quantities and increased complexity of biological data produced by experiments and computations. Genome-scale collection, analysis

  6. Wildlife mortality from infrastructure collisions: statistical modeling of count data from carcass surveys.

    PubMed

    Stevens, Bryan S; Dennis, Brian

    2013-09-01

    Anthropogenic infrastructure is a mortality source for many vertebrate species. Mortality is often measured using periodic counts of carcasses or remains at infrastructure segments, and bias from carcass removal is estimated via field experiments with wildlife carcasses. We describe a model for combining removal experiment and carcass count data to estimate underlying process parameters using joint likelihood. In the model, the instantaneous number of carcasses present is a stochastic birth-death process with Poisson arrivals (carcass addition) and proportional deaths (removal of carcasses). The approach accommodates modeling heterogeneity in the addition and removal processes using generalized regression. Results of fitting the model to a Greater Sage-Grouse (Centrocercus urophasianus) fence collision data set show that order of magnitude differences in expected carcass counts can be a function of spatial differences in removal and suggest caution for interpretation of many published studies. While the model assumption of negligible detection error may be tenable for some systems, the modeling framework provides a starting point for future state-space versions incorporating detection error. PMID:24279279

  7. Infrastructure requirement of knowledge management system model of statistical learning tool (SLT) for education community

    NASA Astrophysics Data System (ADS)

    Abdullah, Rusli; Samah, Bahaman Abu; Bolong, Jusang; D'Silva, Jeffrey Lawrence; Shaffril, Hayrol Azril Mohamed

    2014-09-01

    Today, teaching and learning (T&L) using technology as tool is becoming more important especially in the field of statistics as a part of the subject matter in higher education system environment. Eventhough, there are many types of technology of statistical learnig tool (SLT) which can be used to support and enhance T&L environment, however, there is lack of a common standard knowledge management as a knowledge portal for guidance especially in relation to infrastructure requirement of SLT in servicing the community of user (CoU) such as educators, students and other parties who are interested in performing this technology as a tool for their T&L. Therefore, there is a need of a common standard infrastructure requirement of knowledge portal in helping CoU for managing of statistical knowledge in acquiring, storing, desseminating and applying of the statistical knowedge for their specific purposes. Futhermore, by having this infrastructure requirement of knowledge portal model of SLT as a guidance in promoting knowledge of best practise among the CoU, it can also enhance the quality and productivity of their work towards excellence of statistical knowledge application in education system environment.

  8. Green infrastructure retrofits on residential parcels: Ecohydrologic modeling for stormwater design

    NASA Astrophysics Data System (ADS)

    Miles, B.; Band, L. E.

    2014-12-01

    To meet water quality goals stormwater utilities and not-for-profit watershed organizations in the U.S. are working with citizens to design and implement green infrastructure on residential land. Green infrastructure, as an alternative and complement to traditional (grey) stormwater infrastructure, has the potential to contribute to multiple ecosystem benefits including stormwater volume reduction, carbon sequestration, urban heat island mitigation, and to provide amenities to residents. However, in small (1-10-km2) medium-density urban watersheds with heterogeneous land cover it is unclear whether stormwater retrofits on residential parcels significantly contributes to reduce stormwater volume at the watershed scale. In this paper, we seek to improve understanding of how small-scale redistribution of water at the parcel scale as part of green infrastructure implementation affects urban water budgets and stormwater volume across spatial scales. As study sites we use two medium-density headwater watersheds in Baltimore, MD and Durham, NC. We develop ecohydrology modeling experiments to evaluate the effectiveness of redirecting residential rooftop runoff to un-altered pervious surfaces and to engineered rain gardens to reduce stormwater runoff. As baselines for these experiments, we performed field surveys of residential rooftop hydrologic connectivity to adjacent impervious surfaces, and found low rates of connectivity. Through simulations of pervasive adoption of downspout disconnection to un-altered pervious areas or to rain garden stormwater control measures (SCM) in these catchments, we find that most parcel-scale changes in stormwater fate are attenuated at larger spatial scales and that neither SCM alone is likely to provide significant changes in streamflow at the watershed scale.

  9. The Conservation Nexus: Valuing Interdependent Water and Energy Savings in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Chester, M.; Bartos, M.

    2013-12-01

    Energy and water resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially-explicit model of water-energy interdependencies in Arizona, and assesses the potential for co-beneficial conservation programs. Arizona consumes 2.8% of its water demand for thermoelectric power and 8% of its electricity demand for water infrastructure--roughly twice the national average. The interdependent benefits of investments in 7 conservation strategies are assessed. Deployment of irrigation retrofits and new reclaimed water facilities dominate potential water savings, while residential and commercial HVAC improvements dominate energy savings. Water conservation policies have the potential to reduce statewide electricity demand by 1.0-2.9%, satisfying 5-14% of mandated energy-efficiency goals. Likewise, adoption of energy-efficiency measures and renewable generation portfolios can reduce non-agricultural water demand by 2.0-2.6%. These co-benefits of conservation investments are typically not included in conservation plans or benefit-cost analyses. Residential water conservation measures produce significant water and energy savings, but are generally not cost-effective at current water prices. An evaluation of the true cost of water in Arizona would allow future water and energy savings to be compared objectively, and would help policymakers allocate scarce resources to the highest-value conservation measures. Water Transfers between Water Cycle Components in Arizona in 2008 Cumulative embedded energy in water cycle components in Arizona in 2008

  10. Independence-Supportive Praise Versus Interdependence-Promoting Praise

    ERIC Educational Resources Information Center

    Wang, Yan Z.; Wiley, Angela R.; Chiu, Chi-Yue

    2008-01-01

    This study used dinnertime observational data to investigate parental praise in Chinese-immigrant and European-American families. Three process models of praise with distinctive communicative content were uncovered. Two models focus on adherence to parental expectations, which promote the development of an interdependent self…

  11. Interdependent Catalysts for Transforming Learning Environments ... and the Faculty Who Teach in Them

    ERIC Educational Resources Information Center

    Solheim, Catherine; Longo, Bernadette; Cohen, Bradley A.; Dikkers, Amy Garrett

    2010-01-01

    Designers of new, technology-rich, interactive learning environments need to consider the interdependent factors of physical and virtual spaces, faculty, students, and institutional infrastructure to create an effective setting for teaching and learning in higher education settings. At the University of Minnesota, a small group of faculty, staff,…

  12. The Ecological Model Web Concept: A Consultative Infrastructure for Decision Makers and Researchers

    NASA Astrophysics Data System (ADS)

    Geller, G.; Nativi, S.

    2011-12-01

    Rapid climate and socioeconomic changes may be outrunning society's ability to understand, predict, and respond to change effectively. Decision makers want better information about what these changes will be and how various resources will be affected, while researchers want better understanding of the components and processes of ecological systems, how they interact, and how they respond to change. Although there are many excellent models in ecology and related disciplines, there is only limited coordination among them, and accessible, openly shared models or model systems that can be consulted to gain insight on important ecological questions or assist with decision-making are rare. A "consultative infrastructure" that increased access to and sharing of models and model outputs would benefit decision makers, researchers, as well as modelers. Of course, envisioning such an ambitious system is much easier than building it, but several complementary approaches exist that could contribute. The one discussed here is called the Model Web. This is a concept for an open-ended system of interoperable computer models and databases based on making models and their outputs available as services ("model as a service"). Initially, it might consist of a core of several models from which it could grow gradually as new models or databases were added. However, a model web would not be a monolithic, rigidly planned and built system--instead, like the World Wide Web, it would grow largely organically, with limited central control, within a framework of broad goals and data exchange standards. One difference from the WWW is that a model web is much harder to create, and has more pitfalls, and thus is a long term vision. However, technology, science, observations, and models have advanced enough so that parts of an ecological model web can be built and utilized now, forming a framework for gradual growth as well as a broadly accessible infrastructure. Ultimately, the value of a model

  13. Evolutionary dynamics on interdependent populations

    NASA Astrophysics Data System (ADS)

    Gómez-Gardeñes, Jesús; Gracia-Lázaro, Carlos; Floría, Luis Mario; Moreno, Yamir

    2012-11-01

    Although several mechanisms can promote cooperative behavior, there is no general consensus about why cooperation survives when the most profitable action for an individual is to defect, especially when the population is well mixed. Here we show that when a replicator such as evolutionary game dynamics takes place on interdependent networks, cooperative behavior is fixed on the system. Remarkably, we analytically and numerically show that this is even the case for well-mixed populations. Our results open the path to mechanisms able to sustain cooperation and can provide hints for controlling its rise and fall in a variety of biological and social systems.

  14. Avalanche Collapse of Interdependent Networks

    NASA Astrophysics Data System (ADS)

    Baxter, G. J.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.

    2012-12-01

    We reveal the nature of the avalanche collapse of the giant viable component in multiplex networks under perturbations such as random damage. Specifically, we identify latent critical clusters associated with the avalanches of random damage. Divergence of their mean size signals the approach to the hybrid phase transition from one side, while there are no critical precursors on the other side. We find that this discontinuous transition occurs in scale-free multiplex networks whenever the mean degree of at least one of the interdependent networks does not diverge.

  15. A year 2003 conceptual model for the U.S. telecommunications infrastructure.

    SciTech Connect

    Cox, Roger Gary; Reinert, Rhonda K.

    2003-12-01

    To model the telecommunications infrastructure and its role and robustness to shocks, we must characterize the business and engineering of telecommunications systems in the year 2003 and beyond. By analogy to environmental systems modeling, we seek to develop a 'conceptual model' for telecommunications. Here, the conceptual model is a list of high-level assumptions consistent with the economic and engineering architectures of telecommunications suppliers and customers, both today and in the near future. We describe the present engineering architectures of the most popular service offerings, and describe the supplier markets in some detail. We also develop a characterization of the customer base for telecommunications services and project its likely response to disruptions in service, base-lining such conjectures against observed behaviors during 9/11.

  16. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint

    SciTech Connect

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2011-01-01

    Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

  17. GIS based spatial and temporal modeling of surface runoff for considering manner of surface and underground stormwater infrastructure

    NASA Astrophysics Data System (ADS)

    Yi, H.; Choi, Y.; Go, W. R.; Park, H. D.; Kim, S. M.

    2014-12-01

    This study presents a new technique for the spatial and temporal modeling of surface runoff using a digital elevation model (DEM) by considering surface and underground stormwater infrastructure. This modeling uses the diffusion wave equation to calculate temporal changes in variables involved in surface runoff, such as flow depth and velocity. This technique can simulate the propagation of flood waves around stormwater infrastructure by calculating the volume of water flowing into inlets within the infrastructure and the time taken for this water to be removed from the infrastructure via outfalls. Therefore, it produces a time-specific flow depth and accumulative flux for each cell on the DEM as well as for inlets and outfalls of the stormwater infrastructure, enabling the spatial and temporal analyses of surface runoff. This study describes the concept behind, and details of, the new technique, and outlines potential applications for this technique using synthetic and real-world datasets. These data indicate that the new technique can effectively, spatially and temporally model surface runoff using a DEM by considering stormwater infrastructure.

  18. IMPEx - an infrastructure for joint analysis of space missions and computational modelling data in planetary science

    NASA Astrophysics Data System (ADS)

    Gangloff, Michel

    2012-07-01

    The FP7-SPACE project Integrated Medium for Planetary Exploration (IMPEx) was started in June 2011. The aim of the project is the creation of an integrated interactive IT framework where data from space missions will be interconnected to numerical models, providing a possibility to 1) simulate planetary phenomena and interpret spacecraft data; 2) test and improve models versus experimental data; 3) fill gaps in measurements by appropriate modelling runs; 4) solve technological tasks of mission operation and preparation. Specifically, the `modeling sector' of IMPEx is formed of four well established numerical codes and their related computational infrastructures: 1) 3D hybrid modeling platform HYB for the study of planetary plasma environments, hosted at FMI; 2) an alternative 3D hybrid modeling platform, hosted at LATMOS; 3) MHD modelling platform GUMICS for 3D terrestrial magnetosphere, hosted at FMI; and 4) the global 3D Paraboloid Magnetospheric Model for simulation of magnetospheres of different Solar System objects, hosted at SINP. Modelling results will be linked to the corresponding experimental data from space and planetary missions via several online tools: 1/ AMDA (Automated Multi-Dataset Analysis) which provides cross-linked visualization and analysis of experimental and numerical modelling data, 2/ 3DView which will enable 3D visualization of spacecraft trajectories in simulated and observed environments, and 3/ CLWeb software for computation of various micro-scale physical products (spectra, distribution functions, etc.). In practice, IMPEx is going to provide an external user with an access to an extended set of space and planetary missions' data and powerful, world leading computing models, equipped with advanced visualization tools. Via its infrastructure, IMPEx will enable to merge spacecraft data bases and scientific modelling tools, providing their joint interconnected analysis for the better understanding of related space and planetary physics

  19. A random growth model for power grids and other spatially embedded infrastructure networks

    NASA Astrophysics Data System (ADS)

    Schultz, Paul; Heitzig, Jobst; Kurths, Jürgen

    2014-09-01

    We propose a model to create synthetic networks that may also serve as a narrative of a certain kind of infrastructure network evolution. It consists of an initialization phase with the network extending tree-like for minimum cost and a growth phase with an attachment rule giving a trade-off between cost-optimization and redundancy. Furthermore, we implement the feature of some lines being split during the grid's evolution. We show that the resulting degree distribution has an exponential tail and may show a maximum at degree two, suitable to observations of real-world power grid networks. In particular, the mean degree and the slope of the exponential decay can be controlled in partial independence. To verify to which extent the degree distribution is described by our analytic form, we conduct statistical tests, showing that the hypothesis of an exponential tail is well-accepted for our model data.

  20. A random growth model for power grids and other spatially embedded infrastructure networks

    NASA Astrophysics Data System (ADS)

    Schultz, Paul; Heitzig, Jobst; Kurths, Jürgen

    2014-10-01

    We propose a model to create synthetic networks that may also serve as a narrative of a certain kind of infrastructure network evolution. It consists of an initialization phase with the network extending tree-like for minimum cost and a growth phase with an attachment rule giving a trade-off between cost-optimization and redundancy. Furthermore, we implement the feature of some lines being split during the grid's evolution. We show that the resulting degree distribution has an exponential tail and may show a maximum at degree two, suitable to observations of real-world power grid networks. In particular, the mean degree and the slope of the exponential decay can be controlled in partial independence. To verify to which extent the degree distribution is described by our analytic form, we conduct statistical tests, showing that the hypothesis of an exponential tail is well-accepted for our model data.

  1. Container cargo simulation modeling for measuring impacts of infrastructure investment projects in Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Li, Jia-Qi; Shibasaki, Ryuichi; Li, Bo-Wei

    2010-03-01

    In the Pearl River Delta (PRD), there is severe competition between container ports, particularly those in Hong Kong, Shenzhen, and Guangzhou, for collecting international maritime container cargo. In addition, the second phase of the Nansha terminal in Guangzhou’s port and the first phase of the Da Chang Bay container terminal in Shenzhen opened last year. Under these circumstances, there is an increasing need to quantitatively measure the impact these infrastructure investments have on regional cargo flows. The analysis should include the effects of container terminal construction, berth deepening, and access road construction. The authors have been developing a model for international cargo simulation (MICS) which can simulate the movement of cargo. The volume of origin-destination (OD) container cargo in the East Asian region was used as an input, in order to evaluate the effects of international freight transportation policies. This paper focuses on the PRD area and, by incorporating a more detailed network, evaluates the impact of several infrastructure investment projects on freight movement.

  2. Assessing Vulnerabilities, Risks, and Consequences of Damage to Critical Infrastructure

    SciTech Connect

    Suski, N; Wuest, C

    2011-02-04

    Since the publication of 'Critical Foundations: Protecting America's Infrastructure,' there has been a keen understanding of the complexity, interdependencies, and shared responsibility required to protect the nation's most critical assets that are essential to our way of life. The original 5 sectors defined in 1997 have grown to 18 Critical Infrastructures and Key Resources (CIKR), which are discussed in the 2009 National Infrastructure Protection Plan (NIPP) and its supporting sector-specific plans. The NIPP provides the structure for a national program dedicated to enhanced protection and resiliency of the nation's infrastructure. Lawrence Livermore National Laboratory (LLNL) provides in-depth, multi-disciplinary assessments of threat, vulnerability, and consequence across all 18 sectors at scales ranging from specific facilities to infrastructures spanning multi-state regions, such as the Oil and Natural Gas (ONG) sector. Like many of the CIKR sectors, the ONG sector is comprised of production, processing, distribution, and storage of highly valuable and potentially dangerous commodities. Furthermore, there are significant interdependencies with other sectors, including transportation, communication, finance, and government. Understanding the potentially devastating consequences and collateral damage resulting from a terrorist attack or natural event is an important element of LLNL's infrastructure security programs. Our work began in the energy sector in the late 1990s and quickly expanded other critical infrastructure sectors. We have performed over 600 physical assessments with a particular emphasis on those sectors that utilize, store, or ship potentially hazardous materials and for whom cyber security is important. The success of our approach is based on building awareness of vulnerabilities and risks and working directly with industry partners to collectively advance infrastructure protection. This approach consists of three phases: The Pre

  3. Interdependent figure-of-merit software development

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.; Kirsch, T.

    1989-01-01

    This program was undertaken in order to understand the complex nature of interdependent performance in space missions. At the first step in a planned sequence of progress, a spread sheet program was developed to evaluate different fuel/oxidizer combinations for a specific Martian mission. This program is to be linked with output attained using sophisticated software produced by Gordon and McBride. The programming to date makes use of 11 independent parameters. Optimization is essential when faced with the incredible magnitude of costs, risks, and benefits involved with space exploration. A system of weights needs to be devised on which to measure the options. It was the goal to devise a Figure of Merit (FoM) on which different choices can be presented and made. The plan was to model typical missions to Mars, identify the parameters, and vary them until the best one is found. Initially, most of the focus was placed on propellant selection.

  4. Implementing CUAHSI and SWE observation data models in the long-term monitoring infrastructure TERENO

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Stender, V.; Schroeder, M.

    2013-12-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. The contribution by the participating research centers is organized as regional observatories. The challenge for TERENO and its observatories is to integrate all aspects of data management, data workflows, data modeling and visualizations into the design of a monitoring infrastructure. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR. TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes the data available through standard web services. Data are stored following the CUAHSI observation data model in combination with the 52° North Sensor Observation Service data model. The data model was implemented using the PostgreSQL/PostGIS DBMS. Especially in a long-term project, such as TERENO, care has to be taken in the data model. We chose to adopt the CUAHSI observational data model because it is designed to store observations and descriptive information (metadata

  5. Enhancing resilience of interdependent networks by healing

    NASA Astrophysics Data System (ADS)

    Stippinger, Marcell; Kertész, János

    2014-12-01

    Interdependent networks are characterized by two kinds of interactions: The usual connectivity links within each network and the dependency links coupling nodes of different networks. Due to the latter links such networks are known to suffer from cascading failures and catastrophic breakdowns. When modeling these phenomena, usually one assumes that a fraction of nodes gets damaged in one of the networks, which is followed possibly by a cascade of failures. In real life the initiating failures do not occur at once and effort is made to replace the ties eliminated due to the failing nodes. Here we study a dynamic extension of the model of interdependent networks and introduce the possibility of link formation with a probability w, called healing, to bridge non-functioning nodes and enhance network resilience. A single random node is removed, which may initiate an avalanche. After each removal step healing starts resulting in a new topology. Then a new node fails and the process continues until the giant component disappears either in a catastrophic breakdown or in a smooth transition. Simulation results are presented for square lattices as starting networks under random attacks of constant intensity. We find that the shift in the position of the breakdown has a power-law scaling as a function of the healing probability with an exponent close to 1. Below a critical healing probability, catastrophic cascades form and the average degree of surviving nodes decreases monotonically, while above this value there are no macroscopic cascades and the average degree has first an increasing character and decreases only at the very late stage of the process. These findings facilitate to plan intervention in case of crisis situation by describing the efficiency of healing efforts needed to suppress cascading failures.

  6. Robustness of interdependent networks under targeted attack

    NASA Astrophysics Data System (ADS)

    Huang, Xuqing; Gao, Jianxi; Buldyrev, Sergey V.; Havlin, Shlomo; Stanley, H. Eugene

    2011-06-01

    When an initial failure of nodes occurs in interdependent networks, a cascade of failure between the networks occurs. Earlier studies focused on random initial failures. Here we study the robustness of interdependent networks under targeted attack on high or low degree nodes. We introduce a general technique which maps the targeted-attack problem in interdependent networks to the random-attack problem in a transformed pair of interdependent networks. We find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc=0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. The result implies that interdependent networks are difficult to defend by strategies such as protecting the high degree nodes that have been found useful to significantly improve robustness of single networks.

  7. Robustness of interdependent networks under targeted attack

    NASA Astrophysics Data System (ADS)

    Huang, Xuqing; Gao, Jianxi; Buldyrev, Sergey; Havlin, Shlomo; Stanley, H. Eugene

    2012-02-01

    When an initial failure of nodes occurs in interdependent networks, a cascade of failure between the networks occurs. Earlier studies focused on random initial failures. Here we study the robustness of interdependent networks under targeted attack on high or low degree nodes. We introduce a general technique which maps the targeted-attack problem in interdependent networks to the random-attack problem in a transformed pair of interdependent networks. We find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc=0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. The result implies that interdependent networks are difficult to defend by strategies such as protecting the high degree nodes that have been found useful to significantly improve robustness of single networks.

  8. The Semi-opened Infrastructure Model (SopIM): A Frame to Set Up an Organizational Learning Process

    NASA Astrophysics Data System (ADS)

    Grundstein, Michel

    In this paper, we introduce the "Semi-opened Infrastructure Model (SopIM)" implemented to deploy Artificial Intelligence and Knowledge-based Systems within a large industrial company. This model illustrates what could be two of the operating elements of the Model for General Knowledge Management within the Enterprise (MGKME) that are essential to set up the organizational learning process that leads people to appropriate and use concepts, methods and tools of an innovative technology: the "Ad hoc Infrastructures" element, and the "Organizational Learning Processes" element.

  9. Human Initiated Cascading Failures in Societal Infrastructures

    PubMed Central

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V.; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S. P.; Vullikanti, Anil Kumar S.

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded

  10. Human initiated cascading failures in societal infrastructures.

    PubMed

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S P; Vullikanti, Anil Kumar S

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded

  11. Accurate modeling and inversion of electrical resistivity data in the presence of metallic infrastructure with known location and dimension

    SciTech Connect

    Johnson, Timothy C.; Wellman, Dawn M.

    2015-06-26

    Electrical resistivity tomography (ERT) has been widely used in environmental applications to study processes associated with subsurface contaminants and contaminant remediation. Anthropogenic alterations in subsurface electrical conductivity associated with contamination often originate from highly industrialized areas with significant amounts of buried metallic infrastructure. The deleterious influence of such infrastructure on imaging results generally limits the utility of ERT where it might otherwise prove useful for subsurface investigation and monitoring. In this manuscript we present a method of accurately modeling the effects of buried conductive infrastructure within the forward modeling algorithm, thereby removing them from the inversion results. The method is implemented in parallel using immersed interface boundary conditions, whereby the global solution is reconstructed from a series of well-conditioned partial solutions. Forward modeling accuracy is demonstrated by comparison with analytic solutions. Synthetic imaging examples are used to investigate imaging capabilities within a subsurface containing electrically conductive buried tanks, transfer piping, and well casing, using both well casings and vertical electrode arrays as current sources and potential measurement electrodes. Results show that, although accurate infrastructure modeling removes the dominating influence of buried metallic features, the presence of metallic infrastructure degrades imaging resolution compared to standard ERT imaging. However, accurate imaging results may be obtained if electrodes are appropriately located.

  12. Urban Stormwater Management Model and Tools for Designing Stormwater Management of Green Infrastructure Practices

    NASA Astrophysics Data System (ADS)

    Haris, H.; Chow, M. F.; Usman, F.; Sidek, L. M.; Roseli, Z. A.; Norlida, M. D.

    2016-03-01

    Urbanization is growing rapidly in Malaysia. Rapid urbanization has known to have several negative impacts towards hydrological cycle due to decreasing of pervious area and deterioration of water quality in stormwater runoff. One of the negative impacts of urbanization is the congestion of the stormwater drainage system and this situation leading to flash flood problem and water quality degradation. There are many urban stormwater management softwares available in the market such as Storm Water Drainage System design and analysis program (DRAINS), Urban Drainage and Sewer Model (MOUSE), InfoWorks River Simulation (InfoWork RS), Hydrological Simulation Program-Fortran (HSPF), Distributed Routing Rainfall-Runoff Model (DR3M), Storm Water Management Model (SWMM), XP Storm Water Management Model (XPSWMM), MIKE-SWMM, Quality-Quantity Simulators (QQS), Storage, Treatment, Overflow, Runoff Model (STORM), and Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). In this paper, we are going to discuss briefly about several softwares and their functionality, accessibility, characteristics and components in the quantity analysis of the hydrological design software and compare it with MSMA Design Aid and Database. Green Infrastructure (GI) is one of the main topics that has widely been discussed all over the world. Every development in the urban area is related to GI. GI can be defined as green area build in the develop area such as forest, park, wetland or floodway. The role of GI is to improve life standard such as water filtration or flood control. Among the twenty models that have been compared to MSMA SME, ten models were selected to conduct a comprehensive review for this study. These are known to be widely accepted by water resource researchers. These ten tools are further classified into three major categories as models that address the stormwater management ability of GI in terms of quantity and quality, models that have the capability of conducting the

  13. A new methodology for modeling of direct landslide costs for transportation infrastructures

    NASA Astrophysics Data System (ADS)

    Klose, Martin; Terhorst, Birgit

    2014-05-01

    The world's transportation infrastructure is at risk of landslides in many areas across the globe. A safe and affordable operation of traffic routes are the two main criteria for transportation planning in landslide-prone areas. The right balancing of these often conflicting priorities requires, amongst others, profound knowledge of the direct costs of landslide damage. These costs include capital investments for landslide repair and mitigation as well as operational expenditures for first response and maintenance works. This contribution presents a new methodology for ex post assessment of direct landslide costs for transportation infrastructures. The methodology includes tools to compile, model, and extrapolate landslide losses on different spatial scales over time. A landslide susceptibility model enables regional cost extrapolation by means of a cost figure obtained from local cost compilation for representative case study areas. On local level, cost survey is closely linked with cost modeling, a toolset for cost estimation based on landslide databases. Cost modeling uses Landslide Disaster Management Process Models (LDMMs) and cost modules to simulate and monetize cost factors for certain types of landslide damage. The landslide susceptibility model provides a regional exposure index and updates the cost figure to a cost index which describes the costs per km of traffic route at risk of landslides. Both indexes enable the regionalization of local landslide losses. The methodology is applied and tested in a cost assessment for highways in the Lower Saxon Uplands, NW Germany, in the period 1980 to 2010. The basis of this research is a regional subset of a landslide database for the Federal Republic of Germany. In the 7,000 km² large Lower Saxon Uplands, 77 km of highway are located in potential landslide hazard area. Annual average costs of 52k per km of highway at risk of landslides are identified as cost index for a local case study area in this region. The

  14. Paradigm Shift in Data Content and Informatics Infrastructure Required for Generalized Constitutive Modeling of Materials Behavior

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    2006-01-01

    Materials property information such as composition and thermophysical/mechanical properties abound in the literature. Oftentimes, however, the corresponding response curves from which these data are determined are missing or at the very least difficult to retrieve. Further, the paradigm for collecting materials property information has historically centered on (1) properties for materials comparison/selection purposes and (2) input requirements for conventional design/analysis methods. However, just as not all materials are alike or equal, neither are all constitutive models (and thus design/ analysis methods) equal; each model typically has its own specific and often unique required materials parameters, some directly measurable and others indirectly measurable. Therefore, the type and extent of materials information routinely collected is not always sufficient to meet the current, much less future, needs of the materials modeling community. Informatics has been defined as the science concerned with gathering, manipulating, storing, retrieving, and classifying recorded information. A key aspect of informatics is its focus on understanding problems and applying information technology as needed to address those problems. The primary objective of this article is to highlight the need for a paradigm shift in materials data collection, analysis, and dissemination so as to maximize the impact on both practitioners and researchers. Our hope is to identify and articulate what constitutes "sufficient" data content (i.e., quality and quantity) for developing, characterizing, and validating sophisticated nonlinear time- and history-dependent (hereditary) constitutive models. Likewise, the informatics infrastructure required for handling the potentially massive amounts of materials data will be discussed.

  15. Infrastructure sensing.

    PubMed

    Soga, Kenichi; Schooling, Jennifer

    2016-08-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  16. Localized Modeling of Storm Surge Effects on Civil Infrastructure using ADCIRC

    NASA Astrophysics Data System (ADS)

    Simon, J. S.; Baugh, J.

    2010-12-01

    The increase in water levels in coastal areas due to hurricanes, or storm surge, has a large impact on coastal communities. This is primarily in the form of flooding and the associated loss of use of, and damages to, civil infrastructure such as roads and bridges. In an effort to better prepare coastal communities for hurricanes, highly sophisticated models can be used to simulate the effectiveness of protective civil infrastructure during both historical and hypothetical hurricane events. To find scenarios that can be considered optimized for a given set of constraints and objectives, the different decisions in question must first be modeled for a suite of hurricane events and their results represented quantitatively. Modeling of storm surge is often done on a large spatial scale. Simulation domains often cover the length of the eastern coast of the United States and Canada, the Gulf of Mexico and the Caribbean Sea. This is made necessary by the fact that these simulations are driven by wind fields that demand such a scale. Our goal is to limit our simulation space to a smaller geographical region of interest without sacrificing the quality of the model. This is done by imposing initial and boundary conditions obtained from a single large scale run to the smaller domain. This approach allows us to evaluate various local topographical changes under the stress of different hurricane events, e.g. improvements in design, layout and arrangement of levee structures as well as potential failures of those and other landforms, and to make this evaluation with a significantly reduced computational load. This introduced efficiency of simulating different topographical decisions enables decision-support systems for engineering design and resilience that are informed by the underlying physics of storm surge and wave loadings. ADCIRC is a parallel code written in Fortran that uses the Boussinesq approximations to solve the equations of motion for fluids, accounting for the

  17. WC WAVE - Integrating Diverse Hydrological-Modeling Data and Services Into an Interoperable Geospatial Infrastructure

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Baros, S.; Barrett, H.; Savickas, J.; Erickson, J.

    2015-12-01

    WC WAVE (Western Consortium for Watershed Analysis, Visualization and Exploration) is a collaborative research project between the states of Idaho, Nevada, and New Mexico that is funded under the National Science Foundation's Experimental Program to Stimulate Competitive Research (EPSCoR). The goal of the project is to understand and document the effects of climate change on interactions between precipitation, vegetation growth, soil moisture and other landscape properties. These interactions are modeled within a framework we refer to as a virtual watershed (VW), a computer infrastructure that simulates watershed dynamics by linking scientific modeling, visualization, and data management components into a coherent whole. Developed and hosted at the Earth Data Analysis Center, University of New Mexico, the virtual watershed has a number of core functions which include: a) streamlined access to data required for model initialization and boundary conditions; b) the development of analytic scenarios through interactive visualization of available data and the storage of model configuration options; c) coupling of hydrological models through the rapid assimilation of model outputs into the data management system for access and use by sequent models. The WC-WAVE virtual watershed accomplishes these functions by provision of large-scale vector and raster data discovery, subsetting, and delivery via Open Geospatial Consortium (OGC) and REST web service standards. Central to the virtual watershed is the design and use of an innovative array of metadata elements that permits the stepwise coupling of diverse hydrological models (e.g. ISNOBAL, PRMS, CASiMiR) and input data to rapidly assess variation in outcomes under different climatic conditions. We present details on the architecture and functionality of the virtual watershed, results from three western U.S. watersheds, and discuss the realized benefits to watershed science of employing this integrated solution.

  18. INTERDEPENDENT SUPERIORITY AND INFERIORITY FEELINGS

    PubMed Central

    Ingham, Harrington V.

    1949-01-01

    It is postulated that in neurotic persons who have unrealistic feelings of superiority and inferiority the two are interdependent. This is a departure from the concept of previous observers that either one or the other is primary and its opposite is overcompensation. The author postulates considerable parallelism, with equal importance for each. He submits that the neurotic person forms two logic-resistant compartments for the two opposed self-estimates and that treatment which makes inroads of logic upon one compartment, simultaneously does so upon the other. Two examples are briefly reported. The neurotic benefits sought in exaggeration of capability are the same as those sought in insistence upon inferiority: Presumption of superiority at once bids for approbation and delivers the subject from the need to prove himself worthy of it in dreaded competition; exaggeration of incapability baits sympathy and makes competition unnecessary because failure is conceded. Some of the characteristics of abnormal self-estimates that distinguish them from normal are: Preoccupation with self, resistance to logical explanation of personality problems, inconsistency in reasons for beliefs in adequacy on the one hand and inadequacy on the other, unreality, rationalization of faults, and difficulty and vacillation in the selection of adequate goals. PMID:15390573

  19. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures

    NASA Astrophysics Data System (ADS)

    Costa, Antonio

    2016-04-01

    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  20. Development of an informatics infrastructure for data exchange of biomolecular simulations: Architecture, data models and ontology.

    PubMed

    Thibault, J C; Roe, D R; Eilbeck, K; Cheatham Iii, T E; Facelli, J C

    2015-01-01

    Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data - both within the same organization and among different ones - remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations. PMID:26387907

  1. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)

    SciTech Connect

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2010-11-01

    This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

  2. Critical infrastructure protection decision support system decision model : overview and quick-start user's guide.

    SciTech Connect

    Samsa, M.; Van Kuiken, J.; Jusko, M.; Decision and Information Sciences

    2008-12-01

    The Critical Infrastructure Protection Decision Support System Decision Model (CIPDSS-DM) is a useful tool for comparing the effectiveness of alternative risk-mitigation strategies on the basis of CIPDSS consequence scenarios. The model is designed to assist analysts and policy makers in evaluating and selecting the most effective risk-mitigation strategies, as affected by the importance assigned to various impact measures and the likelihood of an incident. A typical CIPDSS-DM decision map plots the relative preference of alternative risk-mitigation options versus the annual probability of an undesired incident occurring once during the protective life of the investment, assumed to be 20 years. The model also enables other types of comparisons, including a decision map that isolates a selected impact variable and displays the relative preference for the options of interest--parameterized on the basis of the contribution of the isolated variable to total impact, as well as the likelihood of the incident. Satisfaction/regret analysis further assists the analyst or policy maker in evaluating the confidence with which one option can be selected over another.

  3. Portal of medical data models: information infrastructure for medical research and healthcare

    PubMed Central

    Dugas, Martin; Neuhaus, Philipp; Meidt, Alexandra; Doods, Justin; Storck, Michael; Bruland, Philipp; Varghese, Julian

    2016-01-01

    Introduction: Information systems are a key success factor for medical research and healthcare. Currently, most of these systems apply heterogeneous and proprietary data models, which impede data exchange and integrated data analysis for scientific purposes. Due to the complexity of medical terminology, the overall number of medical data models is very high. At present, the vast majority of these models are not available to the scientific community. The objective of the Portal of Medical Data Models (MDM, https://medical-data-models.org) is to foster sharing of medical data models. Methods: MDM is a registered European information infrastructure. It provides a multilingual platform for exchange and discussion of data models in medicine, both for medical research and healthcare. The system is developed in collaboration with the University Library of Münster to ensure sustainability. A web front-end enables users to search, view, download and discuss data models. Eleven different export formats are available (ODM, PDF, CDA, CSV, MACRO-XML, REDCap, SQL, SPSS, ADL, R, XLSX). MDM contents were analysed with descriptive statistics. Results: MDM contains 4387 current versions of data models (in total 10 963 versions). 2475 of these models belong to oncology trials. The most common keyword (n = 3826) is ‘Clinical Trial’; most frequent diseases are breast cancer, leukemia, lung and colorectal neoplasms. Most common languages of data elements are English (n = 328 557) and German (n = 68 738). Semantic annotations (UMLS codes) are available for 108 412 data items, 2453 item groups and 35 361 code list items. Overall 335 087 UMLS codes are assigned with 21 847 unique codes. Few UMLS codes are used several thousand times, but there is a long tail of rarely used codes in the frequency distribution. Discussion: Expected benefits of the MDM portal are improved and accelerated design of medical data models by sharing best practice, more standardised data models

  4. Leading Students to a World of Interdependence.

    ERIC Educational Resources Information Center

    Carr, Kate

    2001-01-01

    Discusses the importance of maintaining links between school children and the outdoors. By creatively looking for outreach programs and simple animal activities, teachers can keep students' innate interest in nature alive. Studying nature can also teach students about interdependence. (SAH)

  5. Interdependent network reciprocity in evolutionary games

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Szolnoki, Attila; Perc, Matjaž

    2013-01-01

    Besides the structure of interactions within networks, also the interactions between networks are of the outmost importance. We therefore study the outcome of the public goods game on two interdependent networks that are connected by means of a utility function, which determines how payoffs on both networks jointly influence the success of players in each individual network. We show that an unbiased coupling allows the spontaneous emergence of interdependent network reciprocity, which is capable to maintain healthy levels of public cooperation even in extremely adverse conditions. The mechanism, however, requires simultaneous formation of correlated cooperator clusters on both networks. If this does not emerge or if the coordination process is disturbed, network reciprocity fails, resulting in the total collapse of cooperation. Network interdependence can thus be exploited effectively to promote cooperation past the limits imposed by isolated networks, but only if the coordination between the interdependent networks is not disturbed.

  6. The PCMDI Climate Data Analysis Tool (CDAT) - an open system approach to model diagnosis infrastructure

    NASA Astrophysics Data System (ADS)

    Fiorino, M.

    2001-05-01

    The Climate Data Analysis Tool (CDAT) is software infrastructure that uses the object-oriented python scripting language to link separate software subsystems and thus form an integrated environment for solving model diagnosis problems. The power of the system comes from python and the software subsystems. Python provides a general purpose and full-featured scripting language with a variety of user interfaces including command line interaction, stand-alone scripts (applications) and GUIs. The CDAT subsystems, implemented as python modules, provide access and management of gridded data; large-array numerical operations; and visualization. We characterize CDAT as "open system" because the software subsystems are independent and the object-oriented nature of python allows CDAT to be "delay bound" or that the actual tool is built at run time, i.e., is not fixed. Thus, CDAT is easily extended and represents a different approach to the technical problem of model diagnosis. In this paper, we compare and contrast the CDAT approach with more traditional tools built from system-level software (e.g., C and X windows), such as GrADS and ferret, and show how CDAT complements and offers an alternative interface to data accessible by these popular tools.

  7. Comparison of WinSLAMM Modeled Results with Monitored Bioinfiltration Data during Kansas City Green Infrastructure Demonstration Project

    EPA Science Inventory

    The Water Services Department (WSD) in Kansas City, Missouri (KCMO) has conducted extensive modeling and economic studies of its combined sewer system (CSS) over the last several years. A number of green infrastructure (GI) solutions were identified and constructed to reduce dis...

  8. Freva - Freie Univ Evaluation System Framework for Scientific Infrastructures in Earth System Modeling

    NASA Astrophysics Data System (ADS)

    Kadow, Christopher; Illing, Sebastian; Kunst, Oliver; Schartner, Thomas; Kirchner, Ingo; Rust, Henning W.; Cubasch, Ulrich; Ulbrich, Uwe

    2016-04-01

    The Freie Univ Evaluation System Framework (Freva - freva.met.fu-berlin.de) is a software infrastructure for standardized data and tool solutions in Earth system science. Freva runs on high performance computers to handle customizable evaluation systems of research projects, institutes or universities. It combines different software technologies into one common hybrid infrastructure, including all features present in the shell and web environment. The database interface satisfies the international standards provided by the Earth System Grid Federation (ESGF). Freva indexes different data projects into one common search environment by storing the meta data information of the self-describing model, reanalysis and observational data sets in a database. This implemented meta data system with its advanced but easy-to-handle search tool supports users, developers and their plugins to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. Facilitation of the provision and usage of tools and climate data automatically increases the number of scientists working with the data sets and identifying discrepancies. The integrated web-shell (shellinabox) adds a degree of freedom in the choice of the working environment and can be used as a gate to the research projects HPC. Plugins are able to integrate their e.g. post-processed results into the database of the user. This allows e.g. post-processing plugins to feed statistical analysis plugins, which fosters an active exchange between plugin developers of a research project. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a database

  9. Modeling the demand reduction input-output (I-O) inoperability due to terrorism of interconnected infrastructures.

    PubMed

    Santos, Joost R; Haimes, Yacov Y

    2004-12-01

    Interdependency analysis in the context of this article is a process of assessing and managing risks inherent in a system of interconnected entities (e.g., infrastructures or industry sectors). Invoking the principles of input-output (I-O) and decomposition analysis, the article offers a framework for describing how terrorism-induced perturbations can propagate due to interconnectedness. Data published by the Bureau of Economic Analysis Division of the U.S. Department of Commerce is utilized to present applications to serve as test beds for the proposed framework. Specifically, a case study estimating the economic impact of airline demand perturbations to national-level U.S. sectors is made possible using I-O matrices. A ranking of the affected sectors according to their vulnerability to perturbations originating from a primary sector (e.g., air transportation) can serve as important input to risk management. For example, limited resources can be prioritized for the "top-n" sectors that are perceived to suffer the greatest economic losses due to terrorism. In addition, regional decomposition via location quotients enables the analysis of local-level terrorism events. The Regional I-O Multiplier System II (RIMS II) Division of the U.S. Department of Commerce is the agency responsible for releasing the regional multipliers for various geographical resolutions (economic areas, states, and counties). A regional-level case study demonstrates a process of estimating the economic impact of transportation-related scenarios on industry sectors within Economic Area 010 (the New York metropolitan region and vicinities). PMID:15660602

  10. Multiobjective prioritization methodology and decision support system for evaluating inventory enhancement strategies for disrupted interdependent sectors.

    PubMed

    Resurreccion, Joanna; Santos, Joost R

    2012-10-01

    Disruptions in the production of commodities and services resulting from disasters influence the vital functions of infrastructure and economic sectors within a region. The interdependencies inherent among these sectors trigger the faster propagation of disaster consequences that are often associated with a wider range of inoperability and amplified losses. This article evaluates the impact of inventory-enhanced policies for disrupted interdependent sectors to improve the disaster preparedness capability of dynamic inoperability input-output models (DIIM). In this article, we develop the dynamic cross-prioritization plot (DCPP)--a prioritization methodology capable of identifying and dynamically updating the critical sectors based on preference assignments to different objectives. The DCPP integrates the risk assessment metrics (e.g., economic loss and inoperability), which are independently analyzed in the DIIM. We develop a computer-based DCPP tool to determine the priority for inventory enhancement with user preference and resource availability as new dimensions. A baseline inventory case for the state of Virginia revealed a high concentration of (i) manufacturing sectors under the inoperability objective and (ii) service sectors under the economic loss objective. Simulation of enhanced inventory policies for selected critical manufacturing sectors has reduced the recovery period by approximately four days and the expected total economic loss by $33 million. Although the article focuses on enhancing inventory levels in manufacturing sectors, complementary analysis is recommended to manage the resilience of the service sectors. The flexibility of the proposed DCPP as a decision support tool can also be extended to accommodate analysis in other regions and disaster scenarios. PMID:22384946

  11. Environmental Life Cycle Assessment Model for Soil Bioengineering Measures on Infrastructure Slopes

    NASA Astrophysics Data System (ADS)

    Hoerbinger, Stephan; Obriejetan, Michael

    2015-04-01

    Soil bioengineering techniques can be a helpful instrument for civil engineers taking into account not only technical but also ecological, socio-economic and sustainability aspects. Environmental Life Cycle Assessment (LCA) models can serve as supplementary evaluation methods to economic analyses, taking into account the resource demand and environmental burdens of engineering structures. The presented LCA model includes the functional grade of structures in addition to environmental aspects. When using vegetation as living construction material, several factors have to be considered. There is the provision of ecosystem services of plants, such as the stabilization of the slope through its root-system, CO2 sequestration through biomass production et cetera. However, it must be noted that vegetation can cause security issues on infrastructure facilities and entail costs through the necessity of maintenance works. For this reason, it is necessary to already define the target systems during the planning phase of a soil bioengineering structure. In this way, necessary measures can be adapted in all life cycles of a structure. The objective of the presented LCA model is to serve as a basis for the definition of target systems. In the designed LCA model the soil bioengineering structures are divided into four life phases; construction phase, operational phase, end of life phase and subsequent use phase. A main objective of the LCA model is the understanding of the "Cumulative Energy Demand" (CED) and "Global Warming Potential" (GWP) of soil bioengineering structures during all life cycle phases. Additionally, the biomass production and the CO2 sequestration potential of the used plants are regarded as well as the functional integrity of the soil bioengineering system. In the life phase of soil bioengineering structures, a major part of the energy input is required during the construction phase. This is mainly due to the cumulative energy demand of the inert materials

  12. Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services.

    PubMed

    Snäll, Tord; Lehtomäki, Joona; Arponen, Anni; Elith, Jane; Moilanen, Atte

    2016-02-01

    There is high-level political support for the use of green infrastructure (GI) across Europe, to maintain viable populations and to provide ecosystem services (ES). Even though GI is inherently a spatial concept, the modern tools for spatial planning have not been recognized, such as in the recent European Environment Agency (EEA) report. We outline a toolbox of methods useful for GI design that explicitly accounts for biodiversity and ES. Data on species occurrence, habitats, and environmental variables are increasingly available via open-access internet platforms. Such data can be synthesized by statistical species distribution modeling, producing maps of biodiversity features. These, together with maps of ES, can form the basis for GI design. We argue that spatial conservation prioritization (SCP) methods are effective tools for GI design, as the overall SCP goal is cost-effective allocation of conservation efforts. Corridors are currently promoted by the EEA as the means for implementing GI design, but they typically target the needs of only a subset of the regional species pool. SCP methods would help to ensure that GI provides a balanced solution for the requirements of many biodiversity features (e.g., species, habitat types) and ES simultaneously in a cost-effective manner. Such tools are necessary to make GI into an operational concept for combating biodiversity loss and promoting ES. PMID:26395184

  13. ARMA modelled time-series classification for structural health monitoring of civil infrastructure

    NASA Astrophysics Data System (ADS)

    Peter Carden, E.; Brownjohn, James M. W.

    2008-02-01

    Structural health monitoring (SHM) is the subject of a great deal of ongoing research leading to the capability that reliable remote monitoring of civil infrastructure would allow a shift from schedule-based to condition-based maintenance strategies. The first stage in such a system would be the indication of an extraordinary change in the structure's behaviour. A statistical classification algorithm is presented here which is based on analysis of a structure's response in the time domain. The time-series responses are fitted with Autoregressive Moving Average (ARMA) models and the ARMA coefficients are fed to the classifier. The classifier is capable of learning in an unsupervised manner and of forming new classes when the structural response exhibits change. The approach is demonstrated with experimental data from the IASC-ASCE benchmark four-storey frame structure, the Z24 bridge and the Malaysia-Singapore Second Link bridge. The classifier is found to be capable of identifying structural change in all cases and of forming distinct classes corresponding to different structural states in most cases.

  14. Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Snäll, Tord; Lehtomäki, Joona; Arponen, Anni; Elith, Jane; Moilanen, Atte

    2016-02-01

    There is high-level political support for the use of green infrastructure (GI) across Europe, to maintain viable populations and to provide ecosystem services (ES). Even though GI is inherently a spatial concept, the modern tools for spatial planning have not been recognized, such as in the recent European Environment Agency (EEA) report. We outline a toolbox of methods useful for GI design that explicitly accounts for biodiversity and ES. Data on species occurrence, habitats, and environmental variables are increasingly available via open-access internet platforms. Such data can be synthesized by statistical species distribution modeling, producing maps of biodiversity features. These, together with maps of ES, can form the basis for GI design. We argue that spatial conservation prioritization (SCP) methods are effective tools for GI design, as the overall SCP goal is cost-effective allocation of conservation efforts. Corridors are currently promoted by the EEA as the means for implementing GI design, but they typically target the needs of only a subset of the regional species pool. SCP methods would help to ensure that GI provides a balanced solution for the requirements of many biodiversity features (e.g., species, habitat types) and ES simultaneously in a cost-effective manner. Such tools are necessary to make GI into an operational concept for combating biodiversity loss and promoting ES.

  15. TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment

    NASA Astrophysics Data System (ADS)

    Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano

    2016-04-01

    Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an

  16. Software for Optimizing Plans Involving Interdependent Goals

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Gaines, Daniel; Rabideau, Gregg

    2005-01-01

    A computer program enables construction and optimization of plans for activities that are directed toward achievement of goals that are interdependent. Goal interdependence is defined as the achievement of one or more goals affecting the desirability or priority of achieving one or more other goals. This program is overlaid on the Automated Scheduling and Planning Environment (ASPEN) software system, aspects of which have been described in a number of prior NASA Tech Briefs articles. Unlike other known or related planning programs, this program considers interdependences among goals that can change between problems and provides a language for easily specifying such dependences. Specifications of the interdependences can be formulated dynamically and provided to the associated planning software as part of the goal input. Then an optimization algorithm provided by this program enables the planning software to reason about the interdependences and incorporate them into an overall objective function that it uses to rate the quality of a plan under construction and to direct its optimization search. In tests on a series of problems of planning geological experiments by a team of instrumented robotic vehicles (rovers) on new terrain, this program was found to enhance plan quality.

  17. Blue and green infrastructures implementation to solve stormwater management issues in a new urban development project - a modelling approach

    NASA Astrophysics Data System (ADS)

    Versini, Pierre-Antoine; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    Concentrating buildings and socio-economic activities, urban areas are particularly vulnerable to hydrological risks. Modification in climate may intensify already existing issues concerning stormwater management (due to impervious area) and water supply (due to the increase of the population). In this context, water use efficiency and best water management practices are key-issues in the urban environment already stressed. Blue and green infrastructures are nature-based solutions that provide synergy of the blue and green systems to provide multifunctional solutions and multiple benefits: increased amenity, urban heat island improvement, biodiversity, reduced energy requirements... They are particularly efficient to reduce the potential impact of new and existing developments with respect to stormwater and/or water supply issues. The Multi-Hydro distributed rainfall-runoff model represents an adapted tool to manage the impacts of such infrastructures at the urban basin scale. It is a numerical platform that makes several models interact, each of them representing a specific portion of the water cycle in an urban environment: surface runoff and infiltration depending on a land use classification, sub-surface processes and sewer network drainage. Multi-Hydro is still being developed at the Ecole des Ponts (open access from https://hmco.enpc.fr/Tools-Training/Tools/Multi-Hydro.php) to take into account the wide complexity of urban environments. The latest advancements have made possible the representation of several blue and green infrastructures (green roof, basin, swale). Applied in a new urban development project located in the Paris region, Multi-Hydro has been used to simulate the impact of blue and green infrastructures implementation. It was particularly focused on their ability to fulfil regulation rules established by local stormwater managers in order to connect the parcel to the sewer network. The results show that a combination of several blue and green

  18. Co-integration Model of Logistics Infrastructure Investment and Regional Economic Growth in Central China

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Gan, Xiao-qing; Gao, Kuo

    The speed of logistics infrastructures investment in Central China is still lower than other regions since the rise of the central region strategy was put forward. And the ration of freight turnover was also being down. The analysis with the relations among the central region of the logistics investment, logistics value-added and GDP, found that three variables exists co-integration relation. And found that the investment in logistics infrastructure was the Granger reason of the GDP, the investment in logistics infrastructure and logistics value-added was the Granger reason for each other. According to the analysis, some countermeasures be put forward as following: accelerate the speed of logistics investment, optimize logistics environment, promote the logistics capability, reduce logistics cost, and so on.

  19. Exploring Actor-Partner Interdependence in Family Therapy: Whose View (Parent or Adolescent) Best Predicts Treatment Progress?

    ERIC Educational Resources Information Center

    Friedlander, Myrna L.; Kivlighan, Dennis M., Jr.; Shaffer, Katharine S.

    2012-01-01

    Predictions of family therapy outcome consistently vary depending on which client rates the alliance. We used the actor-partner interdependence model (Kenny, Kashy, & Cook, 2006) to test the interdependence of parents' and adolescents' ratings of alliance, session depth/value, and improvement-so-far after Sessions 3, 6, and 9. Initial analyses…

  20. Green Infrastructure

    EPA Science Inventory

    Large paved surfaces keep rain from infiltrating the soil and recharging groundwater supplies. Alternatively, Green infrastructure uses natural processes to reduce and treat stormwater in place by soaking up and storing water. These systems provide many environmental, social, an...

  1. Infrared thermography system for transport infrastructures survey with inline local atmospheric parameter measurements and offline model for radiation attenuation evaluations

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean; Boucher, Vincent

    2014-01-01

    An infrared system has been developed to monitor transport infrastructures in a standalone configuration. It is based on low cost infrared thermal cameras linked with a calculation unit in order to produce a corrected thermal map of the surveyed structure at a selected time step. With the inline version, the data collected feed simplified radiative models running a GPU. With the offline version, the thermal map can be corrected when data are collected under different atmospheric conditions up to foggy night conditions. A model for radiative transmission prediction is proposed and limitations are addressed. Furthermore, the results obtained by image and signal processing methods with data acquired on the transport infrastructure opened to traffic are presented. Finally, conclusions and perspectives for new implementation and new functionalities are presented and discussed.

  2. A sustainability model based on cloud infrastructures for core and downstream Copernicus services

    NASA Astrophysics Data System (ADS)

    Manunta, Michele; Calò, Fabiana; De Luca, Claudio; Elefante, Stefano; Farres, Jordi; Guzzetti, Fausto; Imperatore, Pasquale; Lanari, Riccardo; Lengert, Wolfgang; Zinno, Ivana; Casu, Francesco

    2014-05-01

    SAR products generation and exploitation. In particular, CNR is porting the multi-temporal DInSAR technique referred to as Small Baseline Subset (SBAS) into the ESA G-POD (Grid Processing On Demand) and CIOP (Cloud Computing Operational Pilot) platforms (Elefante et al., 2013) within the SuperSites Exploitation Platform (SSEP) project, which aim is contributing to the development of an ecosystem for big geo-data processing and dissemination. This work focuses on presenting the main results that have been achieved by the DORIS project concerning the use of advanced DInSAR products for supporting CPA during the risk management cycle. Furthermore, based on the DORIS experience, a sustainability model for Core and Downstream Copernicus services based on the effective exploitation of cloud platforms is proposed. In this framework, remote sensing community, both service providers and users, can significantly benefit from the Helix Nebula-The Science Cloud initiative, created by European scientific institutions, agencies, SMEs and enterprises to pave the way for the development and exploitation of a cloud computing infrastructure for science. REFERENCES Elefante, S., Imperatore, P. , Zinno, I., M. Manunta, E. Mathot, F. Brito, J. Farres, W. Lengert, R. Lanari, F. Casu, 2013, "SBAS-DINSAR Time series generation on cloud computing platforms". IEEE IGARSS Conference, Melbourne (AU), July 2013.

  3. Volcanic hazards at distant critical infrastructure: A method for bespoke, multi-disciplinary assessment

    NASA Astrophysics Data System (ADS)

    Odbert, H. M.; Aspinall, W.; Phillips, J.; Jenkins, S.; Wilson, T. M.; Scourse, E.; Sheldrake, T.; Tucker, P.; Nakeshree, K.; Bernardara, P.; Fish, K.

    2015-12-01

    Societies rely on critical services such as power, water, transport networks and manufacturing. Infrastructure may be sited to minimise exposure to natural hazards but not all can be avoided. The probability of long-range transport of a volcanic plume to a site is comparable to other external hazards that must be considered to satisfy safety assessments. Recent advances in numerical models of plume dispersion and stochastic modelling provide a formalized and transparent approach to probabilistic assessment of hazard distribution. To understand the risks to critical infrastructure far from volcanic sources, it is necessary to quantify their vulnerability to different hazard stressors. However, infrastructure assets (e.g. power plantsand operational facilities) are typically complex systems in themselves, with interdependent components that may differ in susceptibility to hazard impact. Usually, such complexity means that risk either cannot be estimated formally or that unsatisfactory simplifying assumptions are prerequisite to building a tractable risk model. We present a new approach to quantifying risk by bridging expertise of physical hazard modellers and infrastructure engineers. We use a joint expert judgment approach to determine hazard model inputs and constrain associated uncertainties. Model outputs are chosen on the basis of engineering or operational concerns. The procedure facilitates an interface between physical scientists, with expertise in volcanic hazards, and infrastructure engineers, with insight into vulnerability to hazards. The result is a joined-up approach to estimating risk from low-probability hazards to critical infrastructure. We describe our methodology and show preliminary results for vulnerability to volcanic hazards at a typical UK industrial facility. We discuss our findings in the context of developing bespoke assessment of hazards from distant sources in collaboration with key infrastructure stakeholders.

  4. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment.

    PubMed

    Miksys, N; Xu, C; Beaulieu, L; Thomson, R M

    2015-08-01

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  5. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment

    NASA Astrophysics Data System (ADS)

    Miksys, N.; Xu, C.; Beaulieu, L.; Thomson, R. M.

    2015-08-01

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  6. Toward Liberating Interdependence: Exploring an Intercultural Pedagogy

    ERIC Educational Resources Information Center

    Lee, Boyung

    2010-01-01

    This article proposes a postcolonial intercultural pedagogy, one that can create Liberating Interdependence among communities and across boundaries. First, the author examines conflicting ways that the Exodus is told in different communities: as a story of the God of the oppressed and as a story about an unjust God. Second, after analyzing the…

  7. A practice theory approach to understanding the interdependency of nursing practice and the environment: implications for nurse-led care delivery models.

    PubMed

    Bender, Miriam; Feldman, Martha S

    2015-01-01

    Nursing has a rich knowledge base with which to develop care models that can transform the ways health is promoted and valued. However, theory linking the environment domain of the nursing metaparadigm with the real-world environments where nurses practice and patients experience their health care is tenuous. Practice theory is used to foreground the generative role of nursing practice in producing environments of care, providing the basis for a metaparadigm relational proposition explicitly linking nursing practice and environment metaparadigm domains. A theoretical and empirical focus on the significance of nursing practice dynamics in producing environments of care that promote health and healing will strengthen present and future nursing care models. PMID:25932817

  8. Evaluation of the Earth System CoG Infrastructure in Supporting a Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Wallis, J. C.; Rood, R. B.; Murphy, S.; Cinquini, L.; DeLuca, C.

    2013-12-01

    Earth System CoG is a web-based collaboration environment that combines data services with metadata and project management services. The environment is particularly suited to support software development and model intercomparison projects. CoG was recently used to support the National Climate Predictions and Projections Platform (NCPP) Quantitative Evaluation of Downscaling (QED-2013) workshop. QED-2013 was a workshop with a community approach for the objective, quantitative evaluation of techniques to downscale climate model predictions and projections. This paper will present a brief introduction to CoG, QED-2013, and findings from an ethnographic evaluation of how CoG supported QED-2013. The QED-2013 workshop focused on real-world application problems drawn from several sectors, and contributed to the informed use of downscaled data. This workshop is a part of a larger effort by NCPP and partner organizations to develop a standardized evaluation framework for local and regional climate information. The main goals of QED-2013 were to a) coordinate efforts for quantitative evaluation, b) develop software infrastructure, c) develop a repository of information, d) develop translational and guidance information, e) identify and engage key user communities, and f) promote collaboration and interoperability. CoG was a key player in QED-2013 support. NCPP was an early adopter of the CoG platform, providing valuable recommendations for overall development plus specific workshop-related requirements. New CoG features developed for QED-2013 included: the ability to publish images and associated metadata contained within XML files to its associated data node combine both artifacts into an integrated display. The ability to modify data search facets into scientifically relevant groups and display dynamic lists of workshop participants and their interests was also added to the interface. During the workshop, the QED-2013 project page on CoG provided meeting logistics, meeting

  9. QuakeSim Computational Infrastructure for Integrating DESDynI and UAVSAR Data into Earthquake Models (Invited)

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Rundle, J. B.; Grant Ludwig, L.; McLeod, D.; Pierce, M.; Fox, G.; Al-Ghanmi, R. A.; Parker, J. W.; Granat, R. A.; Lyzenga, G. A.; Ma, Y.; Glasscoe, M. T.; Ji, J.; Wang, J.; Gao, X.; Quakesim Team

    2010-12-01

    QuakeSim is a computational infrastructure for studying, modeling, and forecasting earthquakes from a system perspective. QuakeSim takes into account the entire earthquake cycle of strain accumulation and release, requiring crustal deformation data as a key data source. Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data provide current crustal deformation rates, while paleoseismic data provide long-term fault slip rates and earthquake history. The QuakeTables federated multimedia database contains spaceborne and UAVSAR InSAR data for the California region as well as paleoseismic fault data from a number of self-consistent datasets, such as the Uniform California Earthquake Rupture Forecast (UCERF), California Geological Survey (CGS), and Virtual California. Access to QuakeTables is provided through a web interface and a Web Services based application program interface (API) for data delivery. Data are categorized into self-consistent datasets that can be queried in their original form or a derivation therefrom. QuakeTables provides access to mapping features through a web interface, that provides users with direct access to the QuakeTables federated data. Users can browse, map and navigate the available datasets. QuakeSim applications include crustal deformation modeling and pattern analysis. The crustal deformation tools include forward elastic dislocation models (DISLOC) and 3D viscoelastic finite element models (GeoFEST), and elastic inversions of crustal deformation data (SIMPLEX). The tools support mapping and applications for visualizing results in vector or interfermetric form. Virtual California simulates interacting fault systems. Pattern analysis tools include RDAHMM for identifying state changes in time series data, and RIPI for identifying hotspot locations of increased probabilities for magnitude 5 and above earthquakes. The QuakeSim infrastructure automatically posts UAVSAR data to QuakeTables for storage and

  10. Integrated Medium for Planetary Exploration (IMPEx): an infrastructure to bridge space missions data and computational models in planetary science

    NASA Astrophysics Data System (ADS)

    Khodachenko, M. L.; Kallio, E. J.; Génot, V. N.; Al-Ubaidi, T.; Topf, F.; Schmidt, W.; Alexeev, I. I.; Modolo, R.; André, N.; Gangloff, M.; Belenkaya, E. S.

    2012-04-01

    The FP7-SPACE project Integrated Medium for Planetary Exploration (IMPEx) has started in June 2011. The aim of the project is the Creation of an integrated interactive IT framework where data from space missions will be interconnected to numerical models, providing a possibility to 1) simulate planetary phenomena and interpret spacecraft data; 2) test and improve models versus experimental data; 3) fill gaps in measurements by appropriate modelling runs; 4) solve technological tasks of mission operation and preparation. Data analysis and visualization within IMPEx will be based on the advanced computational models of the planetary environments. Specifically, the 'modeling sector' of IMPEx is formed of four well established numerical codes and their related computational infrastructures: 1) 3D hybrid modeling platform HYB for the study of planetary plasma environments, hosted at FMI; 2) an alternative 3D hybrid modeling platform, hosted at LATMOS; 3) MHD modelling platform GUMICS for 3D terrestrial magnetosphere, hosted at FMI; and 4) the global 3D Paraboloid Magnetospheric Model for simulation of magnetospheres of different Solar System objects, hosted at SINP. Modelling results will be linked to the corresponding experimental data from space and planetary missions via several online tools: 1/ AMDA (Automated Multi-Dataset Analysis) which provides cross-linked visualization and operation of experimental and numerical modelling data, 2/ 3DView which will propose 3D visualization of spacecraft trajectories in simulated and observed environments, and 3/ "CLWeb" software which enables computation of various micro-scale physical products (spectra, distribution functions, etc.). In practice, IMPEx is going to provide an external user with an access to an extended set of space and planetary missions' data and powerful, world leading computing models, equipped with advanced visualization tools. Via its infrastructure, IMPEx will enable to merge spacecraft data bases and

  11. Building safeguards infrastructure

    SciTech Connect

    Stevens, Rebecca S; Mcclelland - Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  12. 3D-GEM: Geo-technical extension towards an integrated 3D information model for infrastructural development

    NASA Astrophysics Data System (ADS)

    Tegtmeier, W.; Zlatanova, S.; van Oosterom, P. J. M.; Hack, H. R. G. K.

    2014-03-01

    In infrastructural projects, communication as well as information exchange and (re-)use in and between involved parties is difficult. Mainly this is caused by a lack of information harmonisation. Various specialists are working together on the development of an infrastructural project and all use their own specific software and definitions for various information types. In addition, the lack of and/or differences in the use and definition of thematic semantic information regarding the various information types adds to the problem. Realistic 3D models describing and integrating parts of the earth already exist, but are generally neglecting the subsurface, and especially the aspects of geology and geo-technology. This paper summarises the research towards the extension of an existing integrated semantic information model to include surface as well as subsurface objects and in particular, subsurface geological and geotechnical objects. The major contributions of this research are the definition of geotechnical objects and the mechanism to link them with CityGML, GeoSciML and O&M standard models. The model is called 3D-GEM, short for 3D Geotechnical Extension Model.

  13. Whole Life Program. The Acculturation Model of Interdependent Apartment Living for Adults with Disabilities. Interfacing Individual Rights with the Responsibilities of Community Living. Continuing Education Courses through College for Living.

    ERIC Educational Resources Information Center

    Black, Jan L.; Roelofs, Alice R.

    This book is a resource for human service professionals with detailed information necessary to start, maintain, monitor, assess, and reevaluate a program targeting independence. It describes the Whole Life Program, an interdependent apartment program combined with continuing education for adults with developmental, physical, and emotional…

  14. The Interdependence between Rainfall and Temperature: Copula Analyses

    PubMed Central

    Cong, Rong-Gang; Brady, Mark

    2012-01-01

    Rainfall and temperature are important climatic inputs for agricultural production, especially in the context of climate change. However, accurate analysis and simulation of the joint distribution of rainfall and temperature are difficult due to possible interdependence between them. As one possible approach to this problem, five families of copula models are employed to model the interdependence between rainfall and temperature. Scania is a leading agricultural province in Sweden and is affected by a maritime climate. Historical climatic data for Scania is used to demonstrate the modeling process. Heteroscedasticity and autocorrelation of sample data are also considered to eliminate the possibility of observation error. The results indicate that for Scania there are negative correlations between rainfall and temperature for the months from April to July and September. The student copula is found to be most suitable to model the bivariate distribution of rainfall and temperature based on the Akaike information criterion (AIC) and Bayesian information criterion (BIC). Using the student copula, we simulate temperature and rainfall simultaneously. The resulting models can be integrated with research on agricultural production and planning to study the effects of changing climate on crop yields. PMID:23213286

  15. ActivitySim: large-scale agent based activity generation for infrastructure simulation

    SciTech Connect

    Gali, Emmanuel; Eidenbenz, Stephan; Mniszewski, Sue; Cuellar, Leticia; Teuscher, Christof

    2008-01-01

    The United States' Department of Homeland Security aims to model, simulate, and analyze critical infrastructure and their interdependencies across multiple sectors such as electric power, telecommunications, water distribution, transportation, etc. We introduce ActivitySim, an activity simulator for a population of millions of individual agents each characterized by a set of demographic attributes that is based on US census data. ActivitySim generates daily schedules for each agent that consists of a sequence of activities, such as sleeping, shopping, working etc., each being scheduled at a geographic location, such as businesses or private residences that is appropriate for the activity type and for the personal situation of the agent. ActivitySim has been developed as part of a larger effort to understand the interdependencies among national infrastructure networks and their demand profiles that emerge from the different activities of individuals in baseline scenarios as well as emergency scenarios, such as hurricane evacuations. We present the scalable software engineering principles underlying ActivitySim, the socia-technical modeling paradigms that drive the activity generation, and proof-of-principle results for a scenario in the Twin Cities, MN area of 2.6 M agents.

  16. Sinkhole risk modelling applied to transportation infrastructures. A case study from the Ebro valley evaporite karst (NE Spain)

    NASA Astrophysics Data System (ADS)

    Galve, Jorge P.; Remondo, Juan; Gutiérrez, Francisco; Guerrero, Jesús; Bonachea, Jaime; Lucha, Pedro

    2010-05-01

    Sinkholes disrupt transportation route serviceability causing significant direct and indirect economic losses. Additionally, catastrophic collapse sinkholes may lead to accidents producing loss of human lives. Sinkhole risk modelling allows the estimation of the expectable losses in different portions of infrastructures and the identification of the sections where the application corrective measures would have a better cost-benefit ratio. An example of sinkhole risk analysis applied to a motorway under construction in a mantled evaporite karst area with a very high probability of occurrence of cover collapse sinkholes is presented. Firstly, sinkhole susceptibility models have been obtained, and independently evaluated, on the basis of a probabilistic method which combines the distance to nearest sinkhole with other conditioning factors. The most reliable susceptibility model was then transformed into several sinkhole hazard models using empirical functions. This functions describe the relationships between the frequency of sinkholes and (1) sinkholes dimensions, (2) terrain susceptibility and (3) land cover. Although to evaluate hazard models more information on temporal occurrences would be needed, the quality and quantity of the data in which models are based and the distribution of the latest sinkholes of considerable magnitude occurred in the study area indicate that the models seem to be sound. Two collapse sinkholes 4 m across formed after the production of the models coincide with the zone of highest hazard, which occupy 15% of the study area. Finally, on the basis of the hazard models obtained, sinkhole risk models were generated for a motorway under construction with the aim of quantitatively estimating the expected losses in different sections of the infrastructure in a given period of time. To produce the risk models, the vulnerability of the motorway was estimated considering the cost of the structure, sinkhole magnitude and frequency and the expectable

  17. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    SciTech Connect

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system for purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.

  18. The ecological model web concept: A consultative infrastructure for researchers and decision makers using a Service Oriented Architecture

    NASA Astrophysics Data System (ADS)

    Geller, Gary

    2010-05-01

    Rapid climate and socioeconomic changes may be outrunning society's ability to understand, predict, and respond to change effectively. Decision makers such as natural resource managers want better information about what these changes will be and how the resources they are managing will be affected. Researchers want better understanding of the components and processes of ecological systems, how they interact, and how they respond to change. Nearly all these activities require computer models to make ecological forecasts that can address "what if" questions. However, despite many excellent models in ecology and related disciplines, there is no coordinated model system—that is, a model infrastructure--that researchers or decision makers can consult to gain insight on important ecological questions or help them make decisions. While this is partly due to the complexity of the science, to lack of critical observations, and other issues, limited access to and sharing of models and model outputs is a factor as well. An infrastructure that increased access to and sharing of models and model outputs would benefit researchers, decision makers of all kinds, and modelers. One path to such a "consultative infrastructure" for ecological forecasting is called the Model Web, a concept for an open-ended system of interoperable computer models and databases communicating using a Service Oriented Architectures (SOA). Initially, it could consist of a core of several models, perhaps made interoperable retroactively, and then it could grow gradually as new models or databases were added. Because some models provide basic information of use to many other models, such as simple physical parameters, these "keystone" models are of particular importance in a model web. In the long run, a model web would not be rigidly planned and built--instead, like the World Wide Web, it would grow largely organically, with limited central control, within a framework of broad goals and data exchange

  19. Technology Interdependency Roadmaps for Space Operations

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1995-01-01

    The requirements for Space Technology are outlined in terms of NASA Strategic Plan. The national emphasis on economic revitalization is described along with the environmental changes needed for the new direction. Space Technology Interdependency (STI) is elaborated in terms of its impact on national priority on science, education, and economy. Some suggested approaches to strengthening STI are outlined. Finally, examples of Technology Roadmaps for Space Operations area are included to illustrate the value of STI for national cohesiveness and economic revitalization.

  20. Mathematical programming (MP) model to determine optimal transportation infrastructure for geologic CO2 storage in the Illinois basin

    NASA Astrophysics Data System (ADS)

    Rehmer, Donald E.

    Analysis of results from a mathematical programming model were examined to 1) determine the least cost options for infrastructure development of geologic storage of CO2 in the Illinois Basin, and 2) perform an analysis of a number of CO2 emission tax and oil price scenarios in order to implement development of the least-cost pipeline networks for distribution of CO2. The model, using mixed integer programming, tested the hypothesis of whether viable EOR sequestration sites can serve as nodal points or hubs to expand the CO2 delivery infrastructure to more distal locations from the emissions sources. This is in contrast to previous model results based on a point-to- point model having direct pipeline segments from each CO2 capture site to each storage sink. There is literature on the spoke and hub problem that relates to airline scheduling as well as maritime shipping. A large-scale ship assignment problem that utilized integer linear programming was run on Excel Solver and described by Mourao et al., (2001). Other literature indicates that aircraft assignment in spoke and hub routes can also be achieved using integer linear programming (Daskin and Panayotopoulos, 1989; Hane et al., 1995). The distribution concept is basically the reverse of the "tree and branch" type (Rothfarb et al., 1970) gathering systems for oil and natural gas that industry has been developing for decades. Model results indicate that the inclusion of hubs as variables in the model yields lower transportation costs for geologic carbon dioxide storage over previous models of point-to-point infrastructure geometries. Tabular results and GIS maps of the selected scenarios illustrate that EOR sites can serve as nodal points or hubs for distribution of CO2 to distal oil field locations as well as deeper saline reservoirs. Revenue amounts and capture percentages both show an improvement over solutions when the hubs are not allowed to come into the solution. Other results indicate that geologic

  1. Integrated modelling of cost-effective siting and operation of flow-control infrastructure for river ecosystem conservation

    NASA Astrophysics Data System (ADS)

    Higgins, A. J.; Bryan, B. A.; Overton, I. C.; Holland, K.; Lester, R. E.; King, D.; Nolan, M.; Connor, J. D.

    2011-05-01

    Wetland and floodplain ecosystems along many regulated rivers are highly stressed, primarily due to a lack of environmental flows of appropriate magnitude, frequency, duration, and timing to support ecological functions. In the absence of increased environmental flows, the ecological health of river ecosystems can be enhanced by the operation of existing and new flow-control infrastructure (weirs and regulators) to return more natural environmental flow regimes to specific areas. However, determining the optimal investment and operation strategies over time is a complex task due to several factors including the multiple environmental values attached to wetlands, spatial and temporal heterogeneity and dependencies, nonlinearity, and time-dependent decisions. This makes for a very large number of decision variables over a long planning horizon. The focus of this paper is the development of a nonlinear integer programming model that accommodates these complexities. The mathematical objective aims to return the natural flow regime of key components of river ecosystems in terms of flood timing, flood duration, and interflood period. We applied a 2-stage recursive heuristic using tabu search to solve the model and tested it on the entire South Australian River Murray floodplain. We conclude that modern meta-heuristics can be used to solve the very complex nonlinear problems with spatial and temporal dependencies typical of environmental flow allocation in regulated river ecosystems. The model has been used to inform the investment in, and operation of, flow-control infrastructure in the South Australian River Murray.

  2. Using agent based modeling to assess the effect of increased Bus Rapid Transit system infrastructure on walking for transportation.

    PubMed

    Lemoine, Pablo D; Cordovez, Juan Manuel; Zambrano, Juan Manuel; Sarmiento, Olga L; Meisel, Jose D; Valdivia, Juan Alejandro; Zarama, Roberto

    2016-07-01

    The effect of transport infrastructure on walking is of interest to researchers because it provides an opportunity, from the public policy point of view, to increase physical activity (PA). We use an agent based model (ABM) to examine the effect of transport infrastructure on walking. Particular relevance is given to assess the effect of the growth of the Bus Rapid Transit (BRT) system in Bogotá on walking. In the ABM agents are assigned a home, work location, and socioeconomic status (SES) based on which they are assigned income for transportation. Individuals must decide between the available modes of transport (i.e., car, taxi, bus, BRT, and walking) as the means of reaching their destination, based on resources and needed travel time. We calibrated the model based on Bogota's 2011 mobility survey. The ABM results are consistent with previous empirical findings, increasing BRT access does indeed increase the number of minutes that individuals walk for transportation, although this effect also depends on the availability of other transport modes. The model indicates a saturation process: as more BRT lanes are added, the increment in minutes walking becomes smaller, and eventually the walking time decreases. Our findings on the potential contribution of the expansion of the BRT system to walking for transportation suggest that ABMs may prove helpful in designing policies to continue promoting walking. PMID:27012602

  3. Anger suppression, interdependent self-construal, and depression among Asian American and European American college students.

    PubMed

    Cheung, Rebecca Y M; Park, Irene J K

    2010-10-01

    The present study tested a theoretical model of emotion regulation (Yap, Sheeber, & Allen, 2007) in a sample of Asian American and European American college students (N = 365). Specifically, the mediating role of anger suppression in the effect of temperament and family processes on depressive symptoms was tested across race and levels of interdependent self-construal (a culturally based self orientation emphasizing connectedness with others). Next, the moderation of the suppression-depression relation was tested by race and interdependent self-construal. Results indicated that the hypothesized model fit well across Asian American and European American students, as well as those with high versus low levels of interdependent self-construal. Anger suppression was a significant mediator of the hypothesized indirect effects on depressive symptoms. Moreover, race and interdependent self-construal moderated the suppression-depression link, such that Asian American status and a stronger interdependent self-construal attenuated the relation between anger suppression and depressive symptoms. Understanding both universal and culture-specific aspects of emotion regulation in the development of depressive symptoms will be essential for sound theory, future research, and effective prevention and intervention efforts across diverse populations. PMID:21058815

  4. Anger Suppression, Interdependent Self-Construal, and Depression among Asian American and European American College Students

    PubMed Central

    Cheung, Rebecca Y. M.; Park, Irene J. K.

    2010-01-01

    The present study tested a theoretical model of emotion regulation (Yap, Sheeber, & Allen, 2007) in a sample of Asian American and European American college students (N = 365). Specifically, the mediating role of anger suppression in the effect of temperament and family processes on depressive symptoms was tested across race and levels of interdependent self-construal (a culturally based self orientation emphasizing connectedness with others). Next, the moderation of the suppression—depression relation was tested by race and interdependent self-construal. Results indicated that the hypothesized model fit well across Asian American and European American students as well as those with high vs. low levels of interdependent self-construal. Anger suppression was a significant mediator of the hypothesized indirect effects on depressive symptoms. Moreover, race and interdependent self-construal moderated the suppression—depression link, such that Asian American status and a stronger interdependent self-construal attenuated the relation between anger suppression and depressive symptoms. Understanding both universal and culture-specific aspects of emotion regulation in the development of depressive symptoms will be essential for sound theory, future research, and effective prevention and intervention efforts across diverse populations. PMID:21058815

  5. Cyberwarfare on the Electricity Infrastructure

    SciTech Connect

    Murarka, N.; Ramesh, V.C.

    2000-03-20

    The report analyzes the possibility of cyberwarfare on the electricity infrastructure. The ongoing deregulation of the electricity industry makes the power grid all the more vulnerable to cyber attacks. The report models the power system information system components, models potential threats and protective measures. It therefore offers a framework for infrastructure protection.

  6. Natural hazard resilient cities: the case of a SSMS model

    NASA Astrophysics Data System (ADS)

    Santos-Reyes, Jaime

    2010-05-01

    Modern society is characterised by complexity; i.e. technical systems are highly complex and highly interdependent. The nature of the interdependence amongst these systems has become an issue on increasing importance in recent years. Moreover, these systems face a number threats ranging from technical, human and natural. For example, natural hazards (earthquakes, floods, heavy snow, etc) can cause significant problems and disruption to normal life. On the other hand, modern society depends on highly interdependent infrastructures such as transport (rail, road, air, etc), telecommunications, power and water supply, etc. Furthermore, in many cases there is no single owner, operator, and regulator of such systems. Any disruption in any of the interconnected systems may cause a domino-effect. The domino-effect may occur at local, regional or at national level; or, in some cases; it may be extended across international borders. Given the above, it may be argued that society is less resilient to such events and therefore there is a need to have a system in place able to maintain risk within an acceptable range, whatever that might be. This paper presents the modelling process of the interdependences amongst "critical infrastructures" (i.e. transport, telecommunications, power & water supply, etc) for a typical city. The approach has been the application of the developed Systemic Safety Management System (SSMS) model. The main conclusion is that the SSMS model has the potentiality to be used to model interdependencies amongst the so called "critical infrastructures". It is hoped that the approach presented in this paper may help to gain a better understanding of the interdependence amongst these systems and may contribute to a resilient society when disrupted by natural hazards.

  7. Emergent Risks In Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Dynes, Scott

    Firms cannot function successfully without managing a host of internal and external organizational and process interdependencies. Part of this involves business continuity planning, which directly aects how resilient arm and its business sector are in the face of disruptions. This paper presents the results of eld studies related to information risk management practices in the health care and retail sectors. The studies explore information risk management coordinating signals within and across rms in these sectors as well as the potential eects of cyber disruptions on the rms as stand-alone entities and as part of a critical infrastructure. The health care case study investigates the impact of the Zotob worm on the ability to deliver medical care and treatment. The retail study examines the resilience of certain elements of the food supply chain to cyber disruptions.

  8. Extreme events in multilayer, interdependent complex networks and control

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Huang, Zi-Gang; Zhang, Hai-Feng; Eisenberg, Daniel; Seager, Thomas P.; Lai, Ying-Cheng

    2015-11-01

    We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers and/or the overlap among the layers are increased, extreme events can emerge in a cascading manner on a global scale. Asymptotically, there are two stable absorption states: a state free of extreme events and a state of full of extreme events, and the transition between them is abrupt. Our results indicate that internal interactions in the multiplex system can yield qualitatively distinct phenomena associated with extreme events that do not occur for independent network layers. An implication is that, e.g., public resource competitions among different service providers can lead to a higher resource requirement than naively expected. We derive an analytical theory to understand the emergence of global-scale extreme events based on the concept of effective betweenness. We also articulate a cost-effective control scheme through increasing the capacity of very few hubs to suppress the cascading process of extreme events so as to protect the entire multi-layer infrastructure against global-scale breakdown.

  9. SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools

    PubMed Central

    2013-01-01

    Background Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. Results We present the Systems Biology Markup Language (SBML) Qualitative Models Package (“qual”), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. Conclusions SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks. PMID:24321545

  10. Medical team interdependence as a determinant of use of clinical resources.

    PubMed Central

    Sicotte, C; Pineault, R; Lambert, J

    1993-01-01

    OBJECTIVE. Our objective, based on organization theory, is to examine whether interdependence among physicians leads to coordination problems that in turn may explain variations observed in the use of clinical resources. DATA SOURCES/STUDY SETTING. Secondary data about episodes of in-hospital care were collected over a 14-month period in two midsize acute care hospitals located in two suburbs of Montreal, Quebec. STUDY DESIGN. Hierarchical regression analysis was used to assess the marginal effect of medical team interdependence on clinical resource utilization after taking into account the effect attributable to the nature of several morbidities taken as specific and distinct tasks. PRINCIPAL FINDINGS. Medical team interdependence is found within medical specialties as well as between specialties. The largest portion of resource utilization was explained by morbidity characteristics, whereas team interdependence had a weaker, but systematic effect for all morbidities studied (15 regression models out of 18 performed). Task coordination was found to become more difficult as the number of physicians coming from different specialties increased in the context of teamwork. CONCLUSIONS. Results suggest that team practice does not entirely overcome coordination problems inherent to task (morbidity) interdependence. In considering the individual (especially the attending) physician as the main factor responsible for resource utilization, other factors related to team practice may too readily be overlooked. PMID:8270423

  11. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) Software Development: Applications, Infrastructure, and Middleware/Networks

    SciTech Connect

    Williams, Dean N.

    2011-06-30

    The status of and future plans for the Program for Climate Model Diagnosis and Intercomparison (PCMDI) hinge on software that PCMDI is either currently distributing or plans to distribute to the climate community in the near future. These software products include standard conventions, national and international federated infrastructures, and community analysis and visualization tools. This report also mentions other secondary software not necessarily led by or developed at PCMDI to provide a complete picture of the overarching applications, infrastructures, and middleware/networks. Much of the software described anticipates the use of future technologies envisioned over the span of next year to 10 years. These technologies, together with the software, will be the catalyst required to address extreme-scale data warehousing, scalability issues, and service-level requirements for a diverse set of well-known projects essential for predicting climate change. These tools, unlike the previous static analysis tools of the past, will support the co-existence of many users in a productive, shared virtual environment. This advanced technological world driven by extreme-scale computing and the data it generates will increase scientists’ productivity, exploit national and international relationships, and push research to new levels of understanding.

  12. Downscaling seasonal to centennial simulations on distributed computing infrastructures using WRF model. The WRF4G project

    NASA Astrophysics Data System (ADS)

    Cofino, A. S.; Fernández Quiruelas, V.; Blanco Real, J. C.; García Díez, M.; Fernández, J.

    2013-12-01

    Nowadays Grid Computing is powerful computational tool which is ready to be used for scientific community in different areas (such as biomedicine, astrophysics, climate, etc.). However, the use of this distributed computing infrastructures (DCI) is not yet common practice in climate research, and only a few teams and applications in this area take advantage of this infrastructure. Thus, the WRF4G project objective is to popularize the use of this technology in the atmospheric sciences area. In order to achieve this objective, one of the most used applications has been taken (WRF; a limited- area model, successor of the MM5 model), that has a user community formed by more than 8000 researchers worldwide. This community develop its research activity on different areas and could benefit from the advantages of Grid resources (case study simulations, regional hind-cast/forecast, sensitivity studies, etc.). The WRF model is used by many groups, in the climate research community, to carry on downscaling simulations. Therefore this community will also benefit. However, Grid infrastructures have some drawbacks for the execution of applications that make an intensive use of CPU and memory for a long period of time. This makes necessary to develop a specific framework (middleware). This middleware encapsulates the application and provides appropriate services for the monitoring and management of the simulations and the data. Thus,another objective of theWRF4G project consists on the development of a generic adaptation of WRF to DCIs. It should simplify the access to the DCIs for the researchers, and also to free them from the technical and computational aspects of the use of theses DCI. Finally, in order to demonstrate the ability of WRF4G solving actual scientific challenges with interest and relevance on the climate science (implying a high computational cost) we will shown results from different kind of downscaling experiments, like ERA-Interim re-analysis, CMIP5 models

  13. A virtualized infrastructure for molecular imaging research using a data grid model

    NASA Astrophysics Data System (ADS)

    Lee, Jasper; Dagliyan, Grant; Liu, Brent

    2009-02-01

    The animal-to-researcher workflow in many of today's small animal imaging center is burdened with proprietary data limitations, inaccessible back-up methods, and imaging results that are not easily viewable across campus. Such challenges decrease the amount of scans performed per day at the center and requires researchers to wait longer for their images and quantified results. Furthermore, data mining at the small animal imaging center is often limited to researcher names and date-labelled archiving hard-drives. To gain efficiency and reliable access to small animal imaging data, such a center needs to move towards an integrated workflow with file format normalization services, metadata databases, expandable archiving infrastructure, and comprehensive user interfaces for query / retrieval tools - achieving all in a cost-effective manner. This poster presentation demonstrates how grid technology can support such a molecular imaging and small animal imaging research community to bridge the needs between imaging modalities and clinical researchers. Existing projects have utilized the Data Grid in PACS tier 2 backup solutions, where fault-tolerance is a high priority, as well as imagingbased clinical trials where data security and auditing are primary concerns. Issues to be addressed include, but are not limited to, novel database designs, file format standards, virtual archiving and distribution workflows, and potential grid computing for 3-D reconstructions, co-registration, and post-processing analysis.

  14. Modeling Rainfall-Runoff Dynamics in Tropical, Urban Socio-Hydrological Systems: Green Infrastructure and Variable Precipitation Interception

    NASA Astrophysics Data System (ADS)

    Nytch, C. J.; Meléndez-Ackerman, E. J.

    2014-12-01

    There is a pressing need to generate spatially-explicit models of rainfall-runoff dynamics in the urban humid tropics that can characterize flow pathways and flood magnitudes in response to erratic precipitation events. To effectively simulate stormwater runoff processes at multiple scales, complex spatio-temporal parameters such as rainfall, evapotranspiration, and antecedent soil moisture conditions must be accurately represented, in addition to uniquely urban factors including stormwater conveyance structures and connectivity between green and gray infrastructure elements. In heavily urbanized San Juan, Puerto Rico, stream flashiness and frequent flooding are major issues, yet still lacking is a hydrological analysis that models the generation and movement of fluvial and pluvial stormwater through the watershed. Our research employs a novel and multifaceted approach to dealing with this problem that integrates 1) field-based rainfall interception and infiltration methodologies to quantify the hydrologic functions of natural and built infrastructure in San Juan; 2) remote sensing analysis to produce a fine-scale typology of green and gray cover types in the city and determine patterns of spatial distribution and connectivity; 3) assessment of precipitation and streamflow variability at local and basin-wide scales using satellite and radar precipitation estimates in concert with rainfall and stream gauge point data and participatory flood mapping; 4) simulation of historical, present-day, and future stormwater runoff scenarios with a fully distributed hydrologic model that couples diverse components of urban socio-hydrological systems from formal and informal knowledge sources; and 5) bias and uncertainty analysis of parameters and model structure within a Bayesian hierarchical framework. Preliminary results from the rainfall interception study suggest that canopy structure and leaf area index of different tree species contribute to variable throughfall and

  15. Interdependency of tropical marine ecosystems in response to climate change

    NASA Astrophysics Data System (ADS)

    Saunders, Megan I.; Leon, Javier X.; Callaghan, David P.; Roelfsema, Chris M.; Hamylton, Sarah; Brown, Christopher J.; Baldock, Tom; Golshani, Aliasghar; Phinn, Stuart R.; Lovelock, Catherine E.; Hoegh-Guldberg, Ove; Woodroffe, Colin D.; Mumby, Peter J.

    2014-08-01

    Ecosystems are linked within landscapes by the physical and biological processes they mediate. In such connected landscapes, the response of one ecosystem to climate change could have profound consequences for neighbouring systems. Here, we report the first quantitative predictions of interdependencies between ecosystems in response to climate change. In shallow tropical marine ecosystems, coral reefs shelter lagoons from incoming waves, allowing seagrass meadows to thrive. Deepening water over coral reefs from sea-level rise results in larger, more energetic waves traversing the reef into the lagoon, potentially generating hostile conditions for seagrass. However, growth of coral reef such that the relative water depth is maintained could mitigate negative effects of sea-level rise on seagrass. Parameterizing physical and biological models for Lizard Island, Great Barrier Reef, Australia, we find negative effects of sea-level rise on seagrass before the middle of this century given reasonable rates of reef growth. Rates of vertical carbonate accretion typical of modern reef flats (up to 3 mm yr-1) will probably be insufficient to maintain suitable conditions for reef lagoon seagrass under moderate to high greenhouse gas emissions scenarios by 2100. Accounting for interdependencies in ecosystem responses to climate change is challenging, but failure to do so results in inaccurate predictions of habitat extent in the future.

  16. Making green infrastructure healthier infrastructure.

    PubMed

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion. PMID:26615823

  17. Making green infrastructure healthier infrastructure

    PubMed Central

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion. PMID:26615823

  18. How well can calibrated Thornthwaite Mather models predict the variability in soil moisture observed in green infrastructure facilities?

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Digiovanni, K. A.; Montalto, F. A.

    2010-12-01

    Soil moisture patterns influence hydrologic fluxes (infiltration/percolation, evapotranspiration, runoff) as well the biogeochemical processes (nutrient transformations, redox potential, etc), and ecosystem functions and services that depend on them. A new generation of urban water management practices (e.g. green infrastructure technologies) alter soil moisture patterns in potentially dramatic ways, for example by retrofitting soil media into and onto formerly impervious surfaces, and/or by routing impervious surface runoff to vegetated areas. However, the hydrologic models typically used to predict the impact of these new practices rarely track the soil moisture state. In this study, we use the Thornthwaite Mather (T/M) approach to simulate the variability in soil moisture observed in green roofs and urban tree pits. Soil moisture was monitored continuously at hourly time steps using Decagon soil moisture probes installed at three different depths in a green roof (for six months) and in a tree pit (for two months). Tipping bucket precipitation gages were also installed on each site. T/M models were constructed for each system, and calibrated separately to each of three different weeks of observations by adjusting the porosity, field capacity, and wilting point, as well as the mathmatical form of the soil moisture decay function until the lowest possible standard error was achieved. We present the variability in the best fit hydrologic properties derived from the three separate calibration exercises for each system. We then use the models to generate soil moisture time series over the entire periods of observation, and use this validation exercise to discuss the potential usefullness of the T/M approach in urban green infrastructure studies.

  19. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model.

    PubMed

    Pinthong, Watthanai; Muangruen, Panya; Suriyaphol, Prapat; Mairiang, Dumrong

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555

  20. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model

    PubMed Central

    Pinthong, Watthanai; Muangruen, Panya

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555

  1. A Spatial Probit Econometric Model of Land Change: The Case of Infrastructure Development in Western Amazonia, Peru.

    PubMed

    Arima, E Y

    2016-01-01

    Tropical forests are now at the center stage of climate mitigation policies worldwide given their roles as sources of carbon emissions resulting from deforestation and forest degradation. Although the international community has created mechanisms such as REDD+ to reduce those emissions, developing tropical countries continue to invest in infrastructure development in an effort to spur economic growth. Construction of roads in particular is known to be an important driver of deforestation. This article simulates the impact of road construction on deforestation in Western Amazonia, Peru, and quantifies the amount of carbon emissions associated with projected deforestation. To accomplish this objective, the article adopts a Bayesian probit land change model in which spatial dependencies are defined between regions or groups of pixels instead of between individual pixels, thereby reducing computational requirements. It also compares and contrasts the patterns of deforestation predicted by both spatial and non-spatial probit models. The spatial model replicates complex patterns of deforestation whereas the non-spatial model fails to do so. In terms of policy, both models suggest that road construction will increase deforestation by a modest amount, between 200-300 km2. This translates into aboveground carbon emissions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region serves as a cautionary example that the models may be underestimating the impact of roads. PMID:27010739

  2. A Spatial Probit Econometric Model of Land Change: The Case of Infrastructure Development in Western Amazonia, Peru

    PubMed Central

    Arima, E. Y.

    2016-01-01

    Tropical forests are now at the center stage of climate mitigation policies worldwide given their roles as sources of carbon emissions resulting from deforestation and forest degradation. Although the international community has created mechanisms such as REDD+ to reduce those emissions, developing tropical countries continue to invest in infrastructure development in an effort to spur economic growth. Construction of roads in particular is known to be an important driver of deforestation. This article simulates the impact of road construction on deforestation in Western Amazonia, Peru, and quantifies the amount of carbon emissions associated with projected deforestation. To accomplish this objective, the article adopts a Bayesian probit land change model in which spatial dependencies are defined between regions or groups of pixels instead of between individual pixels, thereby reducing computational requirements. It also compares and contrasts the patterns of deforestation predicted by both spatial and non-spatial probit models. The spatial model replicates complex patterns of deforestation whereas the non-spatial model fails to do so. In terms of policy, both models suggest that road construction will increase deforestation by a modest amount, between 200–300 km2. This translates into aboveground carbon emissions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region serves as a cautionary example that the models may be underestimating the impact of roads. PMID:27010739

  3. The simplified self-consistent probabilities method for percolation and its application to interdependent networks

    NASA Astrophysics Data System (ADS)

    Feng, Ling; Pineda Monterola, Christopher; Hu, Yanqing

    2015-06-01

    Interdependent networks in areas ranging from infrastructure to economics are ubiquitous in our society, and the study of their cascading behaviors using percolation theory has attracted much attention in recent years. To analyze the percolation phenomena of these systems, different mathematical frameworks have been proposed, including generating functions and eigenvalues, and others. These different frameworks approach phase transition behaviors from different angles and have been very successful in shaping the different quantities of interest, including critical threshold, size of the giant component, order of phase transition, and the dynamics of cascading. These methods also vary in their mathematical complexity in dealing with interdependent networks that have additional complexity in terms of the correlation among different layers of networks or links. In this work, we review a particular approach of simple, self-consistent probability equations, and we illustrate that this approach can greatly simplify the mathematical analysis for systems ranging from single-layer network to various different interdependent networks. We give an overview of the detailed framework to study the nature of the critical phase transition, the value of the critical threshold, and the size of the giant component for these different systems.

  4. Brandenburg 3D - a comprehensive 3D Subsurface Model, Conception of an Infrastructure Node and a Web Application

    NASA Astrophysics Data System (ADS)

    Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim

    2014-05-01

    The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web

  5. CSDMS2.0: Computational Infrastructure for Community Surface Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Hutton, E.; Peckham, S. D.; Overeem, I.; Kettner, A.

    2012-12-01

    The Community Surface Dynamic Modeling System (CSDMS) is an NSF-supported, international and community-driven program that seeks to transform the science and practice of earth-surface dynamics modeling. CSDMS integrates a diverse community of more than 850 geoscientists representing 360 international institutions (academic, government, industry) from 60 countries and is supported by a CSDMS Interagency Committee (22 Federal agencies), and a CSDMS Industrial Consortia (18 companies). CSDMS presently distributes more 200 Open Source models and modeling tools, access to high performance computing clusters in support of developing and running models, and a suite of products for education and knowledge transfer. CSDMS software architecture employs frameworks and services that convert stand-alone models into flexible "plug-and-play" components to be assembled into larger applications. CSDMS2.0 will support model applications within a web browser, on a wider variety of computational platforms, and on other high performance computing clusters to ensure robustness and sustainability of the framework. Conversion of stand-alone models into "plug-and-play" components will employ automated wrapping tools. Methods for quantifying model uncertainty are being adapted as part of the modeling framework. Benchmarking data is being incorporated into the CSDMS modeling framework to support model inter-comparison. Finally, a robust mechanism for ingesting and utilizing semantic mediation databases is being developed within the Modeling Framework. Six new community initiatives are being pursued: 1) an earth - ecosystem modeling initiative to capture ecosystem dynamics and ensuing interactions with landscapes, 2) a geodynamics initiative to investigate the interplay among climate, geomorphology, and tectonic processes, 3) an Anthropocene modeling initiative, to incorporate mechanistic models of human influences, 4) a coastal vulnerability modeling initiative, with emphasis on deltas and

  6. Exploiting and developing interoperability between multidisciplinary environmental research infrastructures in Europe - step toward international collaboration

    NASA Astrophysics Data System (ADS)

    Sorvari, S.; Asmi, A.; Konijn, J.; Pursula, A.; Los, W.; Laj, P.; Kutsch, W. L.

    2014-12-01

    Environmental Research infrastructures are long-term facilities, resources, and related services that are used by research communities to conduct environmental research in their respective fields. The focus of the European environmental Research Infrastructures is in in-situ or short-range remote sensing infrastructures. Each environmental research infrastructure (RI) has its own particular set of science questions and foci that it must solve to achieve its objectives; however every RI is also providing its data and services to the wider user communities and thus contributing to the wider, trans- and interdisciplinary science questions and grand environmental challenges. Thus, there are many issues that most of the RIs share, e.g. data collection, preservation, quality control, integration and availability, as well as providing the computational capability to researchers. ENVRI - Common operation of European Research Infrastructures - project was a collaborative action of major European Environmental RIs working towards increased cooperation and interoperability between the infrastructures (www.envri.eu). From the technological point-of-view, one of the major results is the development of common Environmental RIs Reference Model, which is a tool to effectively enhance the interoperability among RIs. In addition to common technical solutions, also cultural and human related topics need to be tackled in parallel with the technical solutions. Topics such as open access, data policy issues (licenses, citation agreements, IPR agreements), technologies for machine-machine interaction, workflows, metadata, data annotations, and the training of the data scientist and research generalist to make it all work and implemented. These three interdependent resource capitals (technological incl. ENVRI Reference Model, cultural and human capitals) will be discussed in the presentation.

  7. Attachment Anxiety and Avoidance and Perceptions of Group Climate: An Actor-Partner Interdependence Analysis

    ERIC Educational Resources Information Center

    Kivlighan, Dennis M.; Lo Coco, Gianluca; Gullo, Salvatore

    2012-01-01

    There is a lack of research examining group members' attachment styles and group climate perceptions in the context of the attachment styles and group climate perceptions of the other group members. In the current study, the actor-partner interdependence model (APIM) was used to examine the relationships among (a) a group member's attachment…

  8. Piraña and PCluster: a modeling environment and cluster infrastructure for NONMEM.

    PubMed

    Keizer, Ron J; van Benten, Michel; Beijnen, Jos H; Schellens, Jan H M; Huitema, Alwin D R

    2011-01-01

    Pharmacokinetic-pharmacodynamic modeling using non-linear mixed effects modeling (NONMEM) is a powerful yet challenging technique, as the software is generally accessed from the command line. A graphical user interface, Piraña, was developed that offers a complete modeling environment for NONMEM, enabling both novice and advanced users to increase efficiency of their workflow. Piraña provides features for the management and creation of model files, the overview of modeling results, creation of run reports and handling of datasets and output tables, and the running of custom R scripts on model output. Through the secure shell (SSH) protocol, Piraña can also be used to connect to Linux clusters (SGE, MOSIX) for distribution of workload. Modeling with NONMEM is computationally burdensome, which may be alleviated by distributing runs to computer clusters. A solution to this problem is offered here, called PCluster. This platform is easy to set up, runs in standard network environments, and can be extended with additional nodes if needed. The cluster supports the modeling toolkit Perl speaks NONMEM (PsN), and can include dedicated or non-dedicated PCs. A daemon script, written in Perl, was designed to run in the background on each node in the cluster, and to manage job distribution. The PCluster can be accessed from Piraña, and both software products have extensively been tested on a large academic network. The software is available under an open-source license. PMID:20627442

  9. ESDORA: A Data Archive Infrastructure Using Digital Object Model and Open Source Frameworks

    NASA Astrophysics Data System (ADS)

    Shrestha, Biva; Pan, Jerry; Green, Jim; Palanisamy, Giriprakash; Wei, Yaxing; Lenhardt, W.; Cook, R. Bob; Wilson, B. E.; Leggott, M.

    2011-12-01

    There are an array of challenges associated with preserving, managing, and using contemporary scientific data. Large volume, multiple formats and data services, and the lack of a coherent mechanism for metadata/data management are some of the common issues across data centers. It is often difficult to preserve the data history and lineage information, along with other descriptive metadata, hindering the true science value for the archived data products. In this project, we use digital object abstraction architecture as the information/knowledge framework to address these challenges. We have used the following open-source frameworks: Fedora-Commons Repository, Drupal Content Management System, Islandora (Drupal Module) and Apache Solr Search Engine. The system is an active archive infrastructure for Earth Science data resources, which include ingestion, archiving, distribution, and discovery functionalities. We use an ingestion workflow to ingest the data and metadata, where many different aspects of data descriptions (including structured and non-structured metadata) are reviewed. The data and metadata are published after reviewing multiple times. They are staged during the reviewing phase. Each digital object is encoded in XML for long-term preservation of the content and relations among the digital items. The software architecture provides a flexible, modularized framework for adding pluggable user-oriented functionality. Solr is used to enable word search as well as faceted search. A home grown spatial search module is plugged in to allow user to make a spatial selection in a map view. A RDF semantic store within the Fedora-Commons Repository is used for storing information on data lineage, dissemination services, and text-based metadata. We use the semantic notion "isViewerFor" to register internally or externally referenced URLs, which are rendered within the same web browser when possible. With appropriate mapping of content into digital objects, many

  10. Mathematical modelling of tsunami impacts on critical infrastructures: exposure and severity associated with debris transport at Sines port, Portugal.

    NASA Astrophysics Data System (ADS)

    Conde, Daniel; Baptista, Maria Ana; Sousa Oliveira, Carlos; Ferreira, Rui M. L.

    2015-04-01

    Global energy production is still significantly dependant on the coal supply chain, justifying huge investments on building infrastructures, capable of stocking very large quantities of this natural resource. Most of these infrastructures are located at deep-sea ports and are therefore exposed to extreme coastal hazards, such as tsunami impacts. The 2011 Tohoku tsunami is reported to have inflicted severe damage to Japan's coal-fired power stations and related infrastructure. Sines, located in the Portuguese coast, hosts a major commercial port featuring an exposed coal stockpile area extending over more than 24 ha and a container terminal currently under expansion up to 100ha. It is protected against storm surges but tsunamis have not been considered in the design criteria. The dominant wind-generated wave direction is N to NW, while the main tsunamigenic faults are located S to SW of the port. This configuration potentially exposes sensitive facilities, such as the new terminal container and the coal stockpile area. According to a recent revision of the national tsunami catalogue (Baptista, 2009), Portugal has been affected by numerous major tsunamis over the last two millennia, with the most notorious event being the Great Lisbon Earthquake and Tsunami occurred on the 1st November 1755. The aim of this work is to simulate the open ocean propagation and overland impact of a tsunami on the Sines port, similar to the historical event of 1755, based on the different tsunamigenic faults and magnitudes proposed in the current literature. Open ocean propagation was modelled with standard simulation tools like TUNAMI and GeoClaw. Near-shore and overland propagation was carried out using a recent 2DH mathematical model for solid-fluid flows, STAV-2D from CERIS-IST (Ferreira et al., 2009; Canelas, 2013). STAV-2D is particularly suited for tsunami propagation over complex and morphodynamic geometries, featuring a discretization scheme based on a finite-volume method using

  11. Building Information Modelling (BIM) and Unmanned Aerial Vehicle (UAV) technologies in infrastructure construction project management and delay and disruption analysis

    NASA Astrophysics Data System (ADS)

    Vacanas, Yiannis; Themistocleous, Kyriacos; Agapiou, Athos; Hadjimitsis, Diofantos

    2015-06-01

    Time in infrastructure construction projects has always been a fundamental issue as early as from the inception of a project, during the construction process and often after the completion and delivery. In a typical construction contract time related matters such as the completion date and possible delays are among the most important issues that are dealt with by the contract provisions. In the event of delay there are usually provisions for extension of time award to the contractor with possible reimbursement for the extra cost and expenses caused by this extension of time to the contract duration. In the case the contractor is not entitled to extension of time, the owner will be possibly entitled to amounts as compensation for the time prohibited from using his development. Even in the event of completion within the time agreed, under certain circumstances a contractor may have claims for reimbursement for extra costs incurred due to induced acceleration measures he had to take in order to mitigate disruption effects caused to the progress of the works by the owner or his representatives. Depending on the size of the project and the agreement amount, these reimbursement sums may be extremely high. Therefore innovative methods with the exploitation of new technologies for effective project management for the avoidance of delays, delay analysis and mitigation measures are essential; moreover, methods for collecting efficiently information during the construction process so that disputes regarding time are avoided or resolved in a quick and fair manner are required. This paper explores the state of art for existing use of Building Information Modelling (BIM) and Unmanned Aerial Vehicles (UAV) technologies in the construction industry in general. Moreover the paper considers the prospect of using BIM technology in conjunction with the use of UAV technology for efficient and accurate as-built data collection and illustration of the works progress during an

  12. Risk-Based Input-Output Analysis of Influenza Epidemic Consequences on Interdependent Workforce Sectors

    PubMed Central

    Santos, Joost R.; May, Larissa; Haimar, Amine El

    2013-01-01

    Outbreaks of contagious diseases underscore the ever-looming threat of new epidemics. Compared to other disasters that inflict physical damage to infrastructure systems, epidemics can have more devastating and prolonged impacts on the population. This paper investigates the interdependent economic and productivity risks resulting from epidemic-induced workforce absenteeism. In particular, we develop a dynamic input-output model capable of generating sector-disaggregated economic losses based on different magnitudes of workforce disruptions. An ex post analysis of the 2009 H1N1 pandemic in the National Capital Region (NCR) reveals the distribution of consequences across different economic sectors. Consequences are categorized into two metrics: (i) economic loss, which measures the magnitude of monetary losses incurred in each sector, and (ii) inoperability, which measures the normalized monetary losses incurred in each sector relative to the total economic output of that sector. For a simulated mild pandemic scenario in NCR, two distinct rankings are generated using the economic loss and inoperability metrics. Results indicate that the majority of the critical sectors ranked according to the economic loss metric comprise of sectors that contribute the most to the NCR's gross domestic product (e.g., federal government enterprises). In contrast, the majority of the critical sectors generated by the inoperability metric include sectors that are involved with epidemic management (e.g., hospitals). Hence, prioritizing sectors for recovery necessitates consideration of the balance between economic loss, inoperability, and other objectives. Although applied specifically to the NCR region, the proposed methodology can be customized for other regions. PMID:23278756

  13. Risk-based input-output analysis of influenza epidemic consequences on interdependent workforce sectors.

    PubMed

    Santos, Joost R; May, Larissa; Haimar, Amine El

    2013-09-01

    Outbreaks of contagious diseases underscore the ever-looming threat of new epidemics. Compared to other disasters that inflict physical damage to infrastructure systems, epidemics can have more devastating and prolonged impacts on the population. This article investigates the interdependent economic and productivity risks resulting from epidemic-induced workforce absenteeism. In particular, we develop a dynamic input-output model capable of generating sector-disaggregated economic losses based on different magnitudes of workforce disruptions. An ex post analysis of the 2009 H1N1 pandemic in the national capital region (NCR) reveals the distribution of consequences across different economic sectors. Consequences are categorized into two metrics: (i) economic loss, which measures the magnitude of monetary losses incurred in each sector, and (ii) inoperability, which measures the normalized monetary losses incurred in each sector relative to the total economic output of that sector. For a simulated mild pandemic scenario in NCR, two distinct rankings are generated using the economic loss and inoperability metrics. Results indicate that the majority of the critical sectors ranked according to the economic loss metric comprise of sectors that contribute the most to the NCR's gross domestic product (e.g., federal government enterprises). In contrast, the majority of the critical sectors generated by the inoperability metric include sectors that are involved with epidemic management (e.g., hospitals). Hence, prioritizing sectors for recovery necessitates consideration of the balance between economic loss, inoperability, and other objectives. Although applied specifically to the NCR, the proposed methodology can be customized for other regions. PMID:23278756

  14. BluePyOpt: Leveraging Open Source Software and Cloud Infrastructure to Optimise Model Parameters in Neuroscience

    PubMed Central

    Van Geit, Werner; Gevaert, Michael; Chindemi, Giuseppe; Rössert, Christian; Courcol, Jean-Denis; Muller, Eilif B.; Schürmann, Felix; Segev, Idan; Markram, Henry

    2016-01-01

    At many scales in neuroscience, appropriate mathematical models take the form of complex dynamical systems. Parameterizing such models to conform to the multitude of available experimental constraints is a global non-linear optimisation problem with a complex fitness landscape, requiring numerical techniques to find suitable approximate solutions. Stochastic optimisation approaches, such as evolutionary algorithms, have been shown to be effective, but often the setting up of such optimisations and the choice of a specific search algorithm and its parameters is non-trivial, requiring domain-specific expertise. Here we describe BluePyOpt, a Python package targeted at the broad neuroscience community to simplify this task. BluePyOpt is an extensible framework for data-driven model parameter optimisation that wraps and standardizes several existing open-source tools. It simplifies the task of creating and sharing these optimisations, and the associated techniques and knowledge. This is achieved by abstracting the optimisation and evaluation tasks into various reusable and flexible discrete elements according to established best-practices. Further, BluePyOpt provides methods for setting up both small- and large-scale optimisations on a variety of platforms, ranging from laptops to Linux clusters and cloud-based compute infrastructures. The versatility of the BluePyOpt framework is demonstrated by working through three representative neuroscience specific use cases. PMID:27375471

  15. BluePyOpt: Leveraging Open Source Software and Cloud Infrastructure to Optimise Model Parameters in Neuroscience.

    PubMed

    Van Geit, Werner; Gevaert, Michael; Chindemi, Giuseppe; Rössert, Christian; Courcol, Jean-Denis; Muller, Eilif B; Schürmann, Felix; Segev, Idan; Markram, Henry

    2016-01-01

    At many scales in neuroscience, appropriate mathematical models take the form of complex dynamical systems. Parameterizing such models to conform to the multitude of available experimental constraints is a global non-linear optimisation problem with a complex fitness landscape, requiring numerical techniques to find suitable approximate solutions. Stochastic optimisation approaches, such as evolutionary algorithms, have been shown to be effective, but often the setting up of such optimisations and the choice of a specific search algorithm and its parameters is non-trivial, requiring domain-specific expertise. Here we describe BluePyOpt, a Python package targeted at the broad neuroscience community to simplify this task. BluePyOpt is an extensible framework for data-driven model parameter optimisation that wraps and standardizes several existing open-source tools. It simplifies the task of creating and sharing these optimisations, and the associated techniques and knowledge. This is achieved by abstracting the optimisation and evaluation tasks into various reusable and flexible discrete elements according to established best-practices. Further, BluePyOpt provides methods for setting up both small- and large-scale optimisations on a variety of platforms, ranging from laptops to Linux clusters and cloud-based compute infrastructures. The versatility of the BluePyOpt framework is demonstrated by working through three representative neuroscience specific use cases. PMID:27375471

  16. A Model for Sustainable Development of Child Mental Health Infrastructure in the LMIC World: Vietnam as a Case Example

    PubMed Central

    Weiss, Bahr; Ngo, Victoria Khanh; Dang, Hoang-Minh; Pollack, Amie; Trung, Lam T.; Tran, Cong V.; Tran, Nam T.; Sang, David; Do, Khanh N.

    2012-01-01

    Children and adolescents are among the highest need populations in regards to mental health support, especially in low and middle income countries (LMIC). Yet resources in LMIC for prevention and treatment of mental health problems are limited, in particular for children and adolescents. In this paper, we discuss a model for development of child and adolescent mental health (CAMH) resources in LMIC that has guided a ten year initiative focused on development of CAMH treatment and research infrastructure in Vietnam. We first review the need for development of mental health resources for children and adolescents in general, and then in Vietnam. We next present the model that guided our program as it developed, focused on the twin Capacity Development Goals of efficacy and sustainability, and the Capacity Development Targets used to move towards these goals. Finally we discuss our CAMH development initiative in Vietnam, the center of which has been development of a graduate program in clinical psychology at Vietnam National University, linking program activities to this model. PMID:24701368

  17. Two Approaches to Measuring Task Interdependence in Elementary Schools.

    ERIC Educational Resources Information Center

    Charters, W. W., Jr.

    This report compares two approaches to measuring task interdependence, a theoretically fruitful concept for analyzing an organization's technical system. Task interdependence exists among operating personnel in the degree that task performance of one operative constrains, augments, or otherwise poses contingencies for the performance of another.…

  18. Resource Interdependence, Student Interactions and Performance in Cooperative Learning

    ERIC Educational Resources Information Center

    Buchs, Celine; Butera, Fabrizio; Mugny, Gabriel

    2004-01-01

    Two studies were carried out during university workshops, and analyzed the effects of resource interdependence on student-student interactions, and the impact of these interactions on performance. Students worked cooperatively, either on complementary information (positive resource interdependence) or on identical information (resource…

  19. The University and Part-Time Faculty: An Interdependent Relationship.

    ERIC Educational Resources Information Center

    Smith, Robert M.

    Arguing for recognition of the interdependent relationship between the university and the part-time faculty member, this paper offers suggestions as to how both can benefit from strategies that make the most of that interdependence. Specifically, it recommends that university administrators take a leadership role in establishing a system of…

  20. Interdependent networks - Topological percolation research and application in finance

    NASA Astrophysics Data System (ADS)

    Zhou, Di

    This dissertation covers the two major parts of my Ph.D. research: i) developing a theoretical framework of complex networks and applying simulation and numerical methods to study the robustness of the network system, and ii) applying statistical physics concepts and methods to quantitatively analyze complex systems and applying the theoretical framework to study real-world systems. In part I, we focus on developing theories of interdependent networks as well as building computer simulation models, which includes three parts: 1) We report on the effects of topology on failure propagation for a model system consisting of two interdependent networks. We find that the internal node correlations in each of the networks significantly changes the critical density of failures, which can trigger the total disruption of the two-network system. Specifically, we find that the assortativity within a single network decreases the robustness of the entire system. 2) We study the percolation behavior of two interdependent scale-free (SF) networks under random failure of 1-p fraction of nodes. We find that as the coupling strength q between the two networks reduces from 1 (fully coupled) to 0 (no coupling), there exist two critical coupling strengths q1 and q2 , which separate the behaviors of the giant component as a function of p into three different regions, and for q2 < q < q 1 , we observe a hybrid order phase transition phenomenon. 3) We study the robustness of n interdependent networks with partially support-dependent relationship both analytically and numerically. We study a starlike network of n Erdos-Renyi (ER), SF networks and a looplike network of n ER networks, and we find for starlike networks, their phase transition regions change with n, but for looplike networks the phase regions change with average degree k . In part II, we apply concepts and methods developed in statistical physics to study economic systems. We analyze stock market indices and foreign exchange

  1. Omics, microbial modeling, and food safety information infrastructure: a food safety perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last three decades, advances in a variety of cutting-edge “omics” technologies, including genomics, proteomics, and metabolomics, as well as in molecular and mathematical modeling approaches have provided the ability to more easily determine and interpret the mechanisms underlying pathogene...

  2. Comparison of Learning Models to Build an Infrastructure for Performance Measurement of E-Learning Systems

    NASA Astrophysics Data System (ADS)

    Öztemel, Ercan; Yavuz, Elif

    In this paper, Models describing the learning process is compared in terms of six different criteria taking distance based education systems into account. The result of this study will be utilized in establishing learning performance assessment system in Adapazari Vocational School where main education is based on e-learning.

  3. Flight Test of Composite Model Reference Adaptive Control (CMRAC) Augmentation Using NASA AirSTAR Infrastructure

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Gadient, ROss; Lavretsky, Eugene

    2011-01-01

    This paper presents flight test results of a robust linear baseline controller with and without composite adaptive control augmentation. The flight testing was conducted using the NASA Generic Transport Model as part of the Airborne Subscale Transport Aircraft Research system at NASA Langley Research Center.

  4. Block models for improved earthwork allocation planning in linear infrastructure construction

    NASA Astrophysics Data System (ADS)

    Burdett, R.; Kozan, E.; Kenley, R.

    2015-03-01

    Earthwork planning is considered in this article and a generic block partitioning and modelling approach is devised to provide strategic plans of various levels of detail. Conceptually, this new approach is more accurate and comprehensive than others, for instance those that are section based. In response to recent environmental concerns, the metric for decision making was fuel consumption or emissions. Haulage distance and gradient, however, are important components of these metrics and are also included. Advantageously, the fuel consumption metric is generic and captures the physical difficulties of travelling over inclines of different gradients, which is consistent across all hauling vehicles. For validation, the proposed models and techniques are applied to a real-world road project. The numerical investigations demonstrate that the models can be solved with relatively little CPU time. The proposed block models also result in solutions of superior quality, i.e. they have reduced fuel consumption and cost. Furthermore, the plans differ considerably from those based solely on a distance-based metric, thus demonstrating a need for the industry to reflect on its current practices.

  5. Perfluorocarbon Gas Tracer Studies to Support Risk Assessment Modeling of Critical Infrastructure Subjected to Terrorist Attacks

    SciTech Connect

    Sullivan, Terry M.; Heiser, John H.; Watson, Tom; Allwine, K Jerry; Flaherty, Julia E.

    2006-05-06

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., “urban canyons”. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City’s (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport

  6. PERFLUOROCARBON GAS TRACER STUDIES TO SUPPORT RISK ASSESSMENT MODELING OF CRITICAL INFRASTRUCTURE SUBJECTED TO TERRORIST ATTACKS.

    SciTech Connect

    SULLIVAN, T.M.; HEISER, J.; WATSON, T.; ALLWINE, K.J.; FLAHERTY, J.E.

    2006-05-06

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., ''urban canyons''. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City's (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport models

  7. Mathematical modelling of tsunami impacts on critical infrastructures: exposure and severity associated with debris transport at Sines port, Portugal.

    NASA Astrophysics Data System (ADS)

    Conde, Daniel; Baptista, Maria Ana; Sousa Oliveira, Carlos; Ferreira, Rui M. L.

    2015-04-01

    Global energy production is still significantly dependant on the coal supply chain, justifying huge investments on building infrastructures, capable of stocking very large quantities of this natural resource. Most of these infrastructures are located at deep-sea ports and are therefore exposed to extreme coastal hazards, such as tsunami impacts. The 2011 Tohoku tsunami is reported to have inflicted severe damage to Japan's coal-fired power stations and related infrastructure. Sines, located in the Portuguese coast, hosts a major commercial port featuring an exposed coal stockpile area extending over more than 24 ha and a container terminal currently under expansion up to 100ha. It is protected against storm surges but tsunamis have not been considered in the design criteria. The dominant wind-generated wave direction is N to NW, while the main tsunamigenic faults are located S to SW of the port. This configuration potentially exposes sensitive facilities, such as the new terminal container and the coal stockpile area. According to a recent revision of the national tsunami catalogue (Baptista, 2009), Portugal has been affected by numerous major tsunamis over the last two millennia, with the most notorious event being the Great Lisbon Earthquake and Tsunami occurred on the 1st November 1755. The aim of this work is to simulate the open ocean propagation and overland impact of a tsunami on the Sines port, similar to the historical event of 1755, based on the different tsunamigenic faults and magnitudes proposed in the current literature. Open ocean propagation was modelled with standard simulation tools like TUNAMI and GeoClaw. Near-shore and overland propagation was carried out using a recent 2DH mathematical model for solid-fluid flows, STAV-2D from CERIS-IST (Ferreira et al., 2009; Canelas, 2013). STAV-2D is particularly suited for tsunami propagation over complex and morphodynamic geometries, featuring a discretization scheme based on a finite-volume method using

  8. Toward daily climate scenarios for Canadian Arctic coastal zones with more realistic temperature-precipitation interdependence

    NASA Astrophysics Data System (ADS)

    Gennaretti, Fabio; Sangelantoni, Lorenzo; Grenier, Patrick

    2015-12-01

    The interdependence between climatic variables should be taken into account when developing climate scenarios. For example, temperature-precipitation interdependence in the Arctic is strong and impacts on other physical characteristics, such as the extent and duration of snow cover. However, this interdependence is often misrepresented in climate simulations. Here we use two two-dimensional (2-D) methods for statistically adjusting climate model simulations to develop plausible local daily temperature (Tmean) and precipitation (Pr) scenarios. The first 2-D method is based on empirical quantile mapping (2Dqm) and the second on parametric copula models (2Dcopula). Both methods are improved here by forcing the preservation of the modeled long-term warming trend and by using moving windows to obtain an adjustment specific to each day of the year. These methods were applied to a representative ensemble of 13 global climate model simulations at 26 Canadian Arctic coastal sites and tested using an innovative cross-validation approach. Intervariable dependence was evaluated using correlation coefficients and empirical copula density plots. Results show that these 2-D methods, especially 2Dqm, adjust individual distributions of climatic time series as adequately as one common one-dimensional method (1Dqm) does. Furthermore, although 2Dqm outperforms the other methods in reproducing the observed temperature-precipitation interdependence over the calibration period, both 2Dqm and 2Dcopula perform similarly over the validation periods. For cases where temperature-precipitation interdependence is important (e.g., characterizing extreme events and the extent and duration of snow cover), both 2-D methods are good options for producing plausible local climate scenarios in Canadian Arctic coastal zones.

  9. Evaluating the role of green infrastructures on near-road pollutant dispersion and removal: Modelling and measurement.

    PubMed

    Morakinyo, Tobi Eniolu; Lam, Yun Fat; Hao, Song

    2016-11-01

    To enhance the quality of human life in a rapidly urbanized world plagued with high transportation, the masterful contribution of improved urban and local air quality cannot be overemphasized. In order to reduce human exposure to near-road air pollution, several approaches including the installation of roadside structural barriers especially in open street areas, such as city entrances are being applied. In the present study, the air quality around real world and idealized green infrastructures was investigated by means of numerical simulation and a short field measurement campaign. Fair agreement was found between ENVI-met modelled and measured particulate matter's concentration data around a realistic vegetation barrier indicating a fair representation of reality in the model. Several numerical experiments were conducted to investigate the influence of barrier type (vegetation/hedge and green wall) and dimensions on near-road air quality. The results show different horizontal/vertical patterns and magnitudes of upwind and downwind relative concentration (with and without a barrier) depending on wind condition, barrier type and dimension. Furthermore, an integrated dispersion-deposition approach was employed to assess the impact on air quality of near-road vegetation barrier. At last, recommendations to city and urban planners on the implementation of roadside structural barriers were made. PMID:27544646

  10. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect

    Saffer, Shelley I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  11. A Qualitative Readiness-Requirements Assessment Model for Enterprise Big-Data Infrastructure Investment

    SciTech Connect

    Olama, Mohammed M; McNair, Wade; Sukumar, Sreenivas R; Nutaro, James J

    2014-01-01

    In the last three decades, there has been an exponential growth in the area of information technology providing the information processing needs of data-driven businesses in government, science, and private industry in the form of capturing, staging, integrating, conveying, analyzing, and transferring data that will help knowledge workers and decision makers make sound business decisions. Data integration across enterprise warehouses is one of the most challenging steps in the big data analytics strategy. Several levels of data integration have been identified across enterprise warehouses: data accessibility, common data platform, and consolidated data model. Each level of integration has its own set of complexities that requires a certain amount of time, budget, and resources to implement. Such levels of integration are designed to address the technical challenges inherent in consolidating the disparate data sources. In this paper, we present a methodology based on industry best practices to measure the readiness of an organization and its data sets against the different levels of data integration. We introduce a new Integration Level Model (ILM) tool, which is used for quantifying an organization and data system s readiness to share data at a certain level of data integration. It is based largely on the established and accepted framework provided in the Data Management Association (DAMA-DMBOK). It comprises several key data management functions and supporting activities, together with several environmental elements that describe and apply to each function. The proposed model scores the maturity of a system s data governance processes and provides a pragmatic methodology for evaluating integration risks. The higher the computed scores, the better managed the source data system and the greater the likelihood that the data system can be brought in at a higher level of integration.

  12. A qualitative readiness-requirements assessment model for enterprise big-data infrastructure investment

    NASA Astrophysics Data System (ADS)

    Olama, Mohammed M.; McNair, Allen W.; Sukumar, Sreenivas R.; Nutaro, James J.

    2014-05-01

    In the last three decades, there has been an exponential growth in the area of information technology providing the information processing needs of data-driven businesses in government, science, and private industry in the form of capturing, staging, integrating, conveying, analyzing, and transferring data that will help knowledge workers and decision makers make sound business decisions. Data integration across enterprise warehouses is one of the most challenging steps in the big data analytics strategy. Several levels of data integration have been identified across enterprise warehouses: data accessibility, common data platform, and consolidated data model. Each level of integration has its own set of complexities that requires a certain amount of time, budget, and resources to implement. Such levels of integration are designed to address the technical challenges inherent in consolidating the disparate data sources. In this paper, we present a methodology based on industry best practices to measure the readiness of an organization and its data sets against the different levels of data integration. We introduce a new Integration Level Model (ILM) tool, which is used for quantifying an organization and data system's readiness to share data at a certain level of data integration. It is based largely on the established and accepted framework provided in the Data Management Association (DAMADMBOK). It comprises several key data management functions and supporting activities, together with several environmental elements that describe and apply to each function. The proposed model scores the maturity of a system's data governance processes and provides a pragmatic methodology for evaluating integration risks. The higher the computed scores, the better managed the source data system and the greater the likelihood that the data system can be brought in at a higher level of integration.

  13. Interdependence and dynamics of essential services in an extensive risk context: a case study in Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Sword-Daniels, V. L.; Rossetto, T.; Wilson, T. M.; Sargeant, S.

    2015-02-01

    The essential services that support urban living are complex and interdependent, and their disruption in disasters directly affects society. Yet there are few empirical studies to inform our understanding of the vulnerabilities and resilience of complex infrastructure systems in disasters. This research takes a systems thinking approach to explore the dynamic behaviour of a network of essential services, in the presence and absence of volcanic ashfall hazards in Montserrat, West Indies. Adopting a case study methodology and qualitative methods to gather empirical data we centre the study on the healthcare system and its interconnected network of essential services. We identify different types of relationship between sectors and develop a new interdependence classification system for analysis. Relationships are further categorised by hazard condition, for use in extensive risk contexts. During heightened volcanic activity, relationships between systems transform in both number and type: connections increase across the network by 41%, and adapt to increase cooperation and information sharing. Interconnections add capacities to the network, increasing the resilience of prioritised sectors. This in-depth and context-specific approach provides a new methodology for studying the dynamics of infrastructure interdependence in an extensive risk context, and can be adapted for use in other hazard contexts.

  14. Interdependence and dynamics of essential services in an extensive risk context: a case study in Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Sword-Daniels, V. L.; Rossetto, T.; Wilson, T. M.; Sargeant, S.

    2015-05-01

    The essential services that support urban living are complex and interdependent, and their disruption in disasters directly affects society. Yet there are few empirical studies to inform our understanding of the vulnerabilities and resilience of complex infrastructure systems in disasters. This research takes a systems thinking approach to explore the dynamic behaviour of a network of essential services, in the presence and absence of volcanic ashfall hazards in Montserrat, West Indies. Adopting a case study methodology and qualitative methods to gather empirical data, we centre the study on the healthcare system and its interconnected network of essential services. We identify different types of relationship between sectors and develop a new interdependence classification system for analysis. Relationships are further categorised by hazard conditions, for use in extensive risk contexts. During heightened volcanic activity, relationships between systems transform in both number and type: connections increase across the network by 41%, and adapt to increase cooperation and information sharing. Interconnections add capacities to the network, increasing the resilience of prioritised sectors. This in-depth and context-specific approach provides a new methodology for studying the dynamics of infrastructure interdependence in an extensive risk context, and can be adapted for use in other hazard contexts.

  15. Cascade of failures in interdependent networks coupled by different type networks

    NASA Astrophysics Data System (ADS)

    Cheng, Zunshui; Cao, Jinde

    2015-07-01

    Modern systems are mostly coupled together. Therefore, they should be modeled as interdependent networks. In this paper, the robustness of interdependent networks coupled with different type networks is studied in detail under both targeted and random attack. The critical fraction of nodes leading to a complete fragmentation of two interdependent networks is analyzed. Some findings are summarized as: (i) For random attack problem, the existence criteria for the giant component in interdependent networks coupled by two different type networks are quite different from those coupled by the same type networks. Different type coupled networks are more vulnerable than the same type coupled-networks. (ii) For targeted attack problem, if the highly connected nodes are protected and only the lowly connected nodes failed, the system leads to a first order percolation phase transition for different type coupled-networks, and a second transition for same type coupled-networks as well. The available result implies that different type coupled-networks are difficult to defend by strategies such as protecting the high degree nodes that can be useful to significantly improve robustness of the same type coupled-networks. (iii) For targeted attack problem, when the lowly connected nodes are protected and only the highly connected nodes failed, coupled scale free networks become more vulnerable than the others.

  16. Engineering Infrastructures: Problems of Safety and Security in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Makhutov, Nikolay A.; Reznikov, Dmitry O.; Petrov, Vitaly P.

    Modern society cannot exist without stable and reliable engineering infrastructures (EI), whose operation is vital for any national economy. These infrastructures include energy, transportation, water and gas supply systems, telecommunication and cyber systems, etc. Their performance is commensurate with storing and processing huge amounts of information, energy and hazardous substances. Ageing infrastructures are deteriorating — with operating conditions declining from normal to emergency and catastrophic. The complexity of engineering infrastructures and their interdependence with other technical systems makes them vulnerable to emergency situations triggered by natural and manmade catastrophes or terrorist attacks.

  17. Operation and planning of coordinated natural gas and electricity infrastructures

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaping

    Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and

  18. Academic-Practice Partnerships: The Interdependence Between Leadership and Followership.

    PubMed

    Everett, Linda Q

    2016-04-01

    In this article, there is a discussion focused on three contemporary nursing topics: leadership, followership, and academic-practice partnerships. These comments are framed within the context of the current healthcare system transformation. There is a focus on why each of these topics is relevant to the nursing profession in leading change and advancing health. Finally, there is a description about the interdependence of leadership and followership and the significance these hold for the interdependence between nursing education and nursing practice. PMID:26980899

  19. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect

    Jeong, Hyunju; Pandit, Arka; Crittenden, John; Xu, Ming; Perrings, Charles; Wang, Dali; Li, Ke; French, Steve

    2010-10-01

    The population growth coupled with increasing urbanization is predicted to exert a huge demand on the growth and retrofit of urban infrastructure, particularly in water and energy systems. The U.S. population is estimated to grow by 23% (UN, 2009) between 2005 and 2030. The corresponding increases in energy and water demand were predicted as 14% (EIA, 2009) and 20% (Elcock, 2008), respectively. The water-energy nexus needs to be better understood to satisfy the increased demand in a sustainable manner without conflicting with environmental and economic constraints. Overall, 4% of U.S. power generation is used for water distribution (80%) and treatment (20%). 3% of U.S. water consumption (100 billion gallons per day, or 100 BGD) and 40% of U.S. water withdrawal (340 BGD) are for thermoelectric power generation (Goldstein and Smith, 2002). The water demand for energy production is predicted to increase most significantly among the water consumption sectors by 2030. On the other hand, due to the dearth of conventional water sources, energy intensive technologies are increasingly in use to treat seawater and brackish groundwater for water supply. Thus comprehending the interrelation and interdependency between water and energy system is imperative to evaluate sustainable water and energy supply alternatives for cities. In addition to the water-energy nexus, decentralized or distributed concept is also beneficial for designing sustainable water and energy infrastructure as these alternatives require lesser distribution lines and space in a compact urban area. Especially, the distributed energy infrastructure is more suited to interconnect various large and small scale renewable energy producers which can be expected to mitigate greenhouse gas (GHG) emissions. In the case of decentralized water infrastructure, on-site wastewater treatment facility can provide multiple benefits. Firstly, it reduces the potable water demand by reusing the treated water for non-potable uses

  20. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome

    PubMed Central

    Dresch, Jacqueline M.; Zellers, Rowan G.; Bork, Daniel K.; Drewell, Robert A.

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development. PMID:27330274

  1. Complex interdependent supply chain networks: Cascading failure and robustness

    NASA Astrophysics Data System (ADS)

    Tang, Liang; Jing, Ke; He, Jie; Stanley, H. Eugene

    2016-02-01

    A supply chain network is a typical interdependent network composed of an undirected cyber-layer network and a directed physical-layer network. To analyze the robustness of this complex interdependent supply chain network when it suffers from disruption events that can cause nodes to fail, we use a cascading failure process that focuses on load propagation. We consider load propagation via connectivity links as node failure spreads through one layer of an interdependent network, and we develop a priority redistribution strategy for failed loads subject to flow constraint. Using a giant component function and a one-to-one directed interdependence relation between nodes in a cyber-layer network and physical-layer network, we construct time-varied functional equations to quantify the dynamic process of failed loads propagation in an interdependent network. Finally, we conduct a numerical simulation for two cases, i.e., single node removal and multiple node removal at the initial disruption. The simulation results show that when we increase the number of removed nodes in an interdependent supply chain network its robustness undergoes a first-order discontinuous phase transition, and that even removing a small number of nodes will cause it to crash.

  2. Positioning infrastructure and technologies for low-carbon urbanization

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail V.; Sperling, Josh; Stokes, Eleanor; Allenby, Braden; Kockelman, Kara; Kennedy, Christopher; Baker, Lawrence A.; Keirstead, James; Hendrickson, Chris T.

    2014-10-01

    The expected urbanization of the planet in the coming century coupled with aging infrastructure in developed regions, increasing complexity of man-made systems, and pressing climate change impacts have created opportunities for reassessing the role of infrastructure and technologies in cities and how they contribute to greenhouse gas (GHG) emissions. Modern urbanization is predicated on complex, increasingly coupled infrastructure systems, and energy use continues to be largely met from fossil fuels. Until energy infrastructures evolve away from carbon-based fuels, GHG emissions are critically tied to the urbanization process. Further complicating the challenge of decoupling urban growth from GHG emissions are lock-in effects and interdependencies. This paper synthesizes state-of-the-art thinking for transportation, fuels, buildings, water, electricity, and waste systems and finds that GHG emissions assessments tend to view these systems as static and isolated from social and institutional systems. Despite significant understanding of methods and technologies for reducing infrastructure-related GHG emissions, physical, institutional, and cultural constraints continue to work against us, pointing to knowledge gaps that must be addressed. This paper identifies three challenge themes to improve our understanding of the role of infrastructure and technologies in urbanization processes and position these increasingly complex systems for low-carbon growth. The challenges emphasize how we can reimagine the role of infrastructure in the future and how people, institutions, and ecological systems interface with infrastructure.

  3. The architecture of interdependent minds: A Motivation-management theory of mutual responsiveness.

    PubMed

    Murray, Sandra L; Holmes, John G

    2009-10-01

    A model of mutual responsiveness in adult romantic relationships is proposed. Behaving responsively in conflict-of-interest situations requires one partner to resist the temptation to be selfish and the other partner to resist the temptation to protect against exploitation. Managing risk and the attendant temptations of self-interest require the interpersonal mind to function in ways that coordinate trust and commitment across partners. The authors describe a system of procedural or "if... then" rules that foster mutuality in responsiveness by informing and motivating trust and commitment. The authors further argue that tuning rule accessibility and enactment to match the situations encountered in a specific relationship shapes its personality. By imposing a procedural structure on the interdependent mind, the proposed model of mutual responsiveness reframes interdependence theory and generates important research questions for the future. PMID:19839690

  4. The home health care routing and scheduling problem with interdependent services.

    PubMed

    Mankowska, Dorota Slawa; Meisel, Frank; Bierwirth, Christian

    2014-03-01

    This paper presents a model for the daily planning of health care services carried out at patients' homes by staff members of a home care company. The planning takes into account individual service requirements of the patients, individual qualifications of the staff and possible interdependencies between different service operations. Interdependencies of services can include, for example, a temporal separation of two services as is required if drugs have to be administered a certain time before providing a meal. Other services like handling a disabled patient may require two staff members working together at a patient's home. The time preferences of patients are included in terms of given time windows. In this paper, we propose a planning approach for the described problem, which can be used for optimizing economical and service oriented measures of performance. A mathematical model formulation is proposed together with a powerful heuristic based on a sophisticated solution representation. PMID:23780750

  5. The Development and Infrastructure Needs Required for Success--One College's Model: Online Nursing Education at Drexel University

    ERIC Educational Resources Information Center

    Cornelius, Fran; Glasgow, Mary Ellen Smith

    2007-01-01

    Technology's impact on the delivery of health care mandates that nursing faculty use all technologies at their disposal to better prepare students to work in technology-infused health care environments. Essential components of an infrastructure to grow technology-infused nursing education include a skilled team comprised of tech-savvy faculty and…

  6. California Hydrogen Infrastructure Project

    SciTech Connect

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations

  7. Interdependency enriches the spatial reciprocity in prisoner's dilemma game on weighted networks

    NASA Astrophysics Data System (ADS)

    Meng, Xiaokun; Sun, Shiwen; Li, Xiaoxuan; Wang, Li; Xia, Chengyi; Sun, Junqing

    2016-01-01

    To model the evolution of cooperation under the realistic scenarios, we propose an interdependent network-based game model which simultaneously considers the difference of individual roles in the spatial prisoner's dilemma game. In our model, the system is composed of two lattices on which an agent designated as a cooperator or defector will be allocated, meanwhile each agent will be endowed as a specific weight taking from three typical distributions on one lattice (i.e., weighted lattice), and set to be 1.0 on the other one (i.e., un-weighted or standard lattice). In addition, the interdependency will be built through the utility coupling between point-to-point partners. Extensive simulations indicate that the cooperation will be continuously elevated for the weighted lattice as the utility coupling strength (α) increases; while the cooperation will take on a nontrivial evolution on the standard lattice as α varies, and will be still greatly promoted when compared to the case of α = 0. At the same time, the full T - K phase diagrams are also explored to illustrate the evolutionary behaviors, and it is powerfully shown that the interdependency drives the defectors to survive within the narrower range, but individual weighting of utility will further broaden the coexistence space of cooperators and defectors, which renders the nontrivial evolution of cooperation in our model. Altogether, the current consequences about the evolution of cooperation will be helpful for us to provide the insights into the prevalent cooperation phenomenon within many real-world systems.

  8. Aging Water Infrastructure

    EPA Science Inventory

    The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...

  9. Mass Vaccination with a New, Less Expensive Oral Cholera Vaccine Using Public Health Infrastructure in India: The Odisha Model

    PubMed Central

    Kar, Shantanu K.; Sah, Binod; Patnaik, Bikash; Kim, Yang Hee; Kerketta, Anna S.; Shin, Sunheang; Rath, Shyam Bandhu; Ali, Mohammad; Mogasale, Vittal; Khuntia, Hemant K.; Bhattachan, Anuj; You, Young Ae; Puri, Mahesh K.; Lopez, Anna Lena; Maskery, Brian; Nair, Gopinath B.; Clemens, John D.; Wierzba, Thomas F.

    2014-01-01

    Introduction The substantial morbidity and mortality associated with recent cholera outbreaks in Haiti and Zimbabwe, as well as with cholera endemicity in countries throughout Asia and Africa, make a compelling case for supplementary cholera control measures in addition to existing interventions. Clinical trials conducted in Kolkata, India, have led to World Health Organization (WHO)-prequalification of Shanchol, an oral cholera vaccine (OCV) with a demonstrated 65% efficacy at 5 years post-vaccination. However, before this vaccine is widely used in endemic areas or in areas at risk of outbreaks, as recommended by the WHO, policymakers will require empirical evidence on its implementation and delivery costs in public health programs. The objective of the present report is to describe the organization, vaccine coverage, and delivery costs of mass vaccination with a new, less expensive OCV (Shanchol) using existing public health infrastructure in Odisha, India, as a model. Methods All healthy, non-pregnant residents aged 1 year and above residing in selected villages of the Satyabadi block (Puri district, Odisha, India) were invited to participate in a mass vaccination campaign using two doses of OCV. Prior to the campaign, a de jure census, micro-planning for vaccination and social mobilization activities were implemented. Vaccine coverage for each dose was ascertained as a percentage of the censused population. The direct vaccine delivery costs were estimated by reviewing project expenditure records and by interviewing key personnel. Results The mass vaccination was conducted during May and June, 2011, in two phases. In each phase, two vaccine doses were given 14 days apart. Sixty-two vaccination booths, staffed by 395 health workers/volunteers, were established in the community. For the censused population, 31,552 persons (61% of the target population) received the first dose and 23,751 (46%) of these completed their second dose, with a drop-out rate of 25

  10. Geospatial-Temporal Data Mining for Infrastructures or Ecosystems under Stress From Severe Weather Events

    NASA Astrophysics Data System (ADS)

    Vatsavai, R.; Ganguly, A.; Omitaomu, O.; Bhaduri, B.

    2008-05-01

    not be able to readily determine or utilize the co-occurrence of river networks and electrical grids to determine the anticipated impact of flooding on electrical power outages, spatial data mining can offer new and interesting solutions. This is especially true if we view infrastructures or ecosystems as patterns of interconnected systems with spatial and/or functional dependency. These patterns depend on several attributes including the density of population being served, the number of times each infrastructure failure is dependent on the failure of other infrastructures, and the path and intensity of the extreme weather events. For example, the co-location of two or more electrical substations along the path of a Tornado will have more impacts on other infrastructures than if the substations are spatially distant from each other. Spatial data mining techniques can expose other information and reveal hidden interdependencies that are useful for inference and accurate predictions. The recent literature in the area of modeling ecosystems or infrastructure interdependencies under stress often suggests the use of complex adaptive systems. The development of aggregate indicators and similarity measures for infrastructure or ecosystem components are required, which in turn can be facilitated by spatial and spatio-temporal data mining. We present a short tutorial on spatial and spatio-temporal data mining, with a particular emphasis on how they can offer new solutions over and above data science approaches commonly used by the earth science or impacts communities. We provide preliminary case studies to illustrate the possibilities.

  11. Toward a Relationship Perspective on Aggression among Schoolchildren: Integrating Social Cognitive and Interdependence Theories

    PubMed Central

    Card, Noel A.

    2011-01-01

    The traditional psychological approach of studying aggression among schoolchildren in terms of individual differences in aggression and in victimization has been valuable in identifying prevalence rates, risk, and consequences of involvement in aggression. However, it is argued that a focus on aggressor-victim relationships is warranted based on both conceptual and empirical grounds. Such a shift in focus requires modification and integration of existing theories of aggression, and this paper integrates social cognitive theory and interdependence theory to suggest a new, interdependent social cognitive theory of aggression. Specifically, this paper identifies points of overlap and different foci between these theories, and it illustrates their integration through a proposed model of the emergence of aggressor-victim interactions and relationships. The paper concludes that expanding consideration to include aggressor-victim relationships among schoolchildren offers considerable theoretical, empirical, and intervention opportunities. PMID:26985397

  12. Interdependent Utilities: How Social Ranking Affects Choice Behavior

    PubMed Central

    Bault, Nadège; Coricelli, Giorgio; Rustichini, Aldo

    2008-01-01

    Organization in hierarchical dominance structures is prevalent in animal societies, so a strong preference for higher positions in social ranking is likely to be an important motivation of human social and economic behavior. This preference is also likely to influence the way in which we evaluate our outcome and the outcome of others, and finally the way we choose. In our experiment participants choose among lotteries with different levels of risk, and can observe the choice that others have made. Results show that the relative weight of gains and losses is the opposite in the private and social domain. For private outcomes, experience and anticipation of losses loom larger than gains, whereas in the social domain, gains loom larger than losses, as indexed by subjective emotional evaluations and physiological responses. We propose a theoretical model (interdependent utilities), predicting the implication of this effect for choice behavior. The relatively larger weight assigned to social gains strongly affects choices, inducing complementary behavior: faced with a weaker competitor, participants adopt a more risky and dominant behavior. PMID:18941538

  13. Regional interdependence and manual therapy directed at the thoracic spine.

    PubMed

    McDevitt, Amy; Young, Jodi; Mintken, Paul; Cleland, Josh

    2015-07-01

    Thoracic spine manipulation is commonly used by physical therapists for the management of patients with upper quarter pain syndromes. The theoretical construct for using thoracic manipulation for upper quarter conditions is a mainstay of a regional interdependence (RI) approach. The RI concept is likely much more complex and is perhaps driven by a neurophysiological response including those related to peripheral, spinal cord and supraspinal mechanisms. Recent evidence suggests that thoracic spine manipulation results in neurophysiological changes, which may lead to improved pain and outcomes in individuals with musculoskeletal disorders. The intent of this narrative review is to describe the research supporting the RI concept and its application to the treatment of individuals with neck and/or shoulder pain. Treatment utilizing both thrust and non-thrust thoracic manipulation has been shown to result in improvements in pain, range of motion and disability in patients with upper quarter conditions. Research has yet to determine optimal dosage, techniques or patient populations to which the RI approach should be applied; however, emerging evidence supporting a neurophysiological effect for thoracic spine manipulation may negate the need to fully answer this question. Certainly, there is a need for further research examining both the clinical efficacy and effectiveness of manual therapy interventions utilized in the RI model as well as the neurophysiological effects resulting from this intervention. PMID:26309384

  14. Reading people's minds from emotion expressions in interdependent decision making.

    PubMed

    de Melo, Celso M; Carnevale, Peter J; Read, Stephen J; Gratch, Jonathan

    2014-01-01

    How do people make inferences about other people's minds from their emotion displays? The ability to infer others' beliefs, desires, and intentions from their facial expressions should be especially important in interdependent decision making when people make decisions from beliefs about the others' intention to cooperate. Five experiments tested the general proposition that people follow principles of appraisal when making inferences from emotion displays, in context. Experiment 1 revealed that the same emotion display produced opposite effects depending on context: When the other was competitive, a smile on the other's face evoked a more negative response than when the other was cooperative. Experiment 2 revealed that the essential information from emotion displays was derived from appraisals (e.g., Is the current state of affairs conducive to my goals? Who is to blame for it?); facial displays of emotion had the same impact on people's decision making as textual expressions of the corresponding appraisals. Experiments 3, 4, and 5 used multiple mediation analyses and a causal-chain design: Results supported the proposition that beliefs about others' appraisals mediate the effects of emotion displays on expectations about others' intentions. We suggest a model based on appraisal theories of emotion that posits an inferential mechanism whereby people retrieve, from emotion expressions, information about others' appraisals, which then lead to inferences about others' mental states. This work has implications for the design of algorithms that drive agent behavior in human-agent strategic interaction, an emerging domain at the interface of computer science and social psychology. PMID:24079297

  15. Culture moderates the relationship between interdependence and face recognition

    PubMed Central

    Ng, Andy H.; Steele, Jennifer R.; Sasaki, Joni Y.; Sakamoto, Yumiko; Williams, Amanda

    2015-01-01

    Recent theory suggests that face recognition accuracy is affected by people’s motivations, with people being particularly motivated to remember ingroup versus outgroup faces. In the current research we suggest that those higher in interdependence should have a greater motivation to remember ingroup faces, but this should depend on how ingroups are defined. To examine this possibility, we used a joint individual difference and cultural approach to test (a) whether individual differences in interdependence would predict face recognition accuracy, and (b) whether this effect would be moderated by culture. In Study 1 European Canadians higher in interdependence demonstrated greater recognition for same-race (White), but not cross-race (East Asian) faces. In Study 2 we found that culture moderated this effect. Interdependence again predicted greater recognition for same-race (White), but not cross-race (East Asian) faces among European Canadians; however, interdependence predicted worse recognition for both same-race (East Asian) and cross-race (White) faces among first-generation East Asians. The results provide insight into the role of motivation in face perception as well as cultural differences in the conception of ingroups. PMID:26579011

  16. Parallel digital forensics infrastructure.

    SciTech Connect

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  17. Nuclear hybrid energy infrastructure

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  18. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    PubMed Central

    Chang, Chih-Hao

    2013-01-01

    This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph). Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y), the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording), in Chan meditation (stage M), and the unique Chakra-focusing practice (stage C). Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group. PMID:24489583

  19. Private benefits and metabolic conflicts shape the emergence of microbial interdependencies.

    PubMed

    Estrela, Sylvie; Morris, J Jeffrey; Kerr, Benjamin

    2016-05-01

    Microbes perform many costly biological functions that benefit themselves, and may also benefit neighbouring cells. Losing the ability to perform such functions can be advantageous due to cost savings, but when they are essential for growth, organisms become dependent on ecological partners to compensate for those losses. When multiple functions may be lost, the ecological outcomes are potentially diverse, including independent organisms only; one-way dependency, where one partner performs all functions and others none; or mutual interdependency where partners perform complementary essential functions. What drives these different outcomes? We develop a model where organisms perform 'leaky' functions that provide both private and public benefits to explore the consequences of privatization level, costs and essentiality on influencing these outcomes. We show that mutual interdependency is favoured at intermediate levels of privatization for a broad range of conditions. One-way dependency, in contrast, is only favoured when privatization is low and loss-of-function benefits are accelerating. Our results suggest an interplay between privatization level and shape of benefits from loss in driving microbial dependencies. Given the ubiquity of microbial functions that are inevitably leaked and the ease of mutational inactivation, our findings may help to explain why microbial interdependencies are common in nature. PMID:26287440

  20. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation.

    PubMed

    Lo, Pei-Chen; Chang, Chih-Hao

    2013-01-01

    This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph). Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y), the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording), in Chan meditation (stage M), and the unique Chakra-focusing practice (stage C). Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group. PMID:24489583

  1. The Neuronal Infrastructure of Speaking

    ERIC Educational Resources Information Center

    Menenti, Laura; Segaert, Katrien; Hagoort, Peter

    2012-01-01

    Models of speaking distinguish producing meaning, words and syntax as three different linguistic components of speaking. Nevertheless, little is known about the brain's integrated neuronal infrastructure for speech production. We investigated semantic, lexical and syntactic aspects of speaking using fMRI. In a picture description task, we…

  2. Infrastructure for the Geospatial Web

    NASA Astrophysics Data System (ADS)

    Lake, Ron; Farley, Jim

    Geospatial data and geoprocessing techniques are now directly linked to business processes in many areas. Commerce, transportation and logistics, planning, defense, emergency response, health care, asset management and many other domains leverage geospatial information and the ability to model these data to achieve increased efficiencies and to develop better, more comprehensive decisions. However, the ability to deliver geospatial data and the capacity to process geospatial information effectively in these domains are dependent on infrastructure technology that facilitates basic operations such as locating data, publishing data, keeping data current and notifying subscribers and others whose applications and decisions are dependent on this information when changes are made. This chapter introduces the notion of infrastructure technology for the Geospatial Web. Specifically, the Geography Markup Language (GML) and registry technology developed using the ebRIM specification delivered from the OASIS consortium are presented as atomic infrastructure components in a working Geospatial Web.

  3. Teaching About Interdependence in a Peaceful World. No. 5418.

    ERIC Educational Resources Information Center

    United Nations Children's Fund, New York, NY. United States Committee.

    Designed for elementary-grade students, these resource materials provide activities which relate the global concepts of peace and interdependence to the direct experience of the child. Subunits on world food supply, world health, and the world mail system use simulation and role-playing activities to help learners see how the things that they…

  4. The Study of Geography in an Interdependent World.

    ERIC Educational Resources Information Center

    Saueressig-Schreuder, Yda

    The importance of restructuring the discipline of geography and enhancing its role in the precollege curriculum as part of a global approach to education is emphasized in this paper. International education is seen as an essential part of high school and college education in an increasingly interdependent world. The oil crisis, the world economic…

  5. Independent and Interdependent Remedial/Developmental Student Learners

    ERIC Educational Resources Information Center

    DeBraak, LaRonna

    2008-01-01

    As scholars continue to debate over the specific skills underprepared students need in order to complete their course of study, perhaps the focus should be on how to tap into students' independent thought processes and encourage students to utilize independent thought to contribute to interdependent groups. Placing value on students' independent…

  6. Supplementing Accelerated Reading with Classwide Interdependent Group-Oriented Contingencies

    ERIC Educational Resources Information Center

    Pappas, Danielle N.; Skinner, Christopher H.; Skinner, Amy L.

    2010-01-01

    An across-groups (classrooms), multiple-baseline design was used to investigate the effects of an interdependent group-oriented contingency on the Accelerated Reader (AR) performance of fourth-grade students. A total of 32 students in three classes participated. Before the study began, an independent group-oriented reward program was being applied…

  7. Hong Kong in Transition: A Look at Economic Interdependence.

    ERIC Educational Resources Information Center

    Lai, Selena

    Economic interdependence has played an important role in Hong Kong's history, from its earliest days as a British colony to its current status as a center of international trade and finance. Hong Kong occupies a unique place in history because of its unprecedented transfer of power in 1997 from Britain to the People's Republic of China. The future…

  8. Randomized Interdependent Group Contingencies: Group Reinforcement with a Twist.

    ERIC Educational Resources Information Center

    Kelshaw-Levering, Kimberly; Sterling-Turner, Heather E.; Henry, Jennifer R.; Skinner, Christopher H.

    2000-01-01

    Examines the effects of randomizing components of an interdependent group contingency procedure on the target behavior of 12 second-grade students. Study compares levels of disruptive behavior across baseline, an intervention phase with only randomized reinforcers, and an intervention phase with all components randomized. Results suggest that both…

  9. Shared impression formation in the cognitively interdependent dyad.

    PubMed

    Ruscher, Janet B; Santuzzi, Alecia M; Hammer, Elizabeth Yost

    2003-09-01

    We examined the role of cognitive interdependence in determining how close friends form shared impressions of another person. Cognitive interdependence should provide a processing advantage, such that close friends are more efficient in forming shared impressions and are more successful at doing so. Under normal circumstances, the conversations of close friends should be marked by little necessity to make explicit requests for information, mutual recognition of who currently is controlling the flow of conversation, and willingness to express differences in opinion. Given these advantages, close friends also should be able to form complex shared impressions that go beyond mere one-sided stereotypic judgments and that instead resolve apparent discrepancies in the target's personality. However, if the cognitive interdependence system is disrupted by mutual distraction, these advantages should attenuate or even reverse. Dyads of varying degrees of closeness were mutually distracted or not while discussing their impressions of another female college student. Results supported predictions and are discussed with reference to how cognitive interdependence may help close dyads function within their mutual social networks. PMID:14567845

  10. Classroom-Based Interdependent Group Contingencies Increase Children's Physical Activity

    ERIC Educational Resources Information Center

    Kuhl, Sarah; Rudrud, Eric H.; Witts, Benjamin N.; Schulze, Kimberly A.

    2015-01-01

    This study investigated the effects of 2 interdependent group contingencies (individual vs. cumulative classroom goal setting) on the number of pedometer-recorded steps taken per day. Thirty third-grade students in 2 classrooms participated. An ABACX design was conducted in which the X phase referred to a replication of the most successful phase…

  11. Science and Technology, Autonomous and More Interdependent Every Time

    ERIC Educational Resources Information Center

    Santilli, Haydee

    2012-01-01

    In a School of Engineering scientific and technological knowledge live together. Science teachers usually try to understand the role that scientific disciplines have over the engineer training. In this paper are descript three historical case studies that could help teachers and students for better understanding the interdependence between science…

  12. Optimization of large-scale heterogeneous system-of-systems models.

    SciTech Connect

    Parekh, Ojas; Watson, Jean-Paul; Phillips, Cynthia Ann; Siirola, John; Swiler, Laura Painton; Hough, Patricia Diane; Lee, Herbert K. H.; Hart, William Eugene; Gray, Genetha Anne; Woodruff, David L.

    2012-01-01

    Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

  13. HIV and Dyadic Intervention: An Interdependence and Communal Coping Analysis

    PubMed Central

    Montgomery, Catherine M.; Watts, Charlotte; Pool, Robert

    2012-01-01

    Background The most common form of HIV transmission in sub-Saharan Africa is heterosexual sex between two partners. While most HIV prevention interventions are aimed at the individual, there is mounting evidence of the feasibility, acceptability, and efficacy of dyadic interventions. However, the mechanisms through which dyadic-level interventions achieve success remain little explored. We address this gap by using Lewis et al’s interdependence model of couple communal coping and behaviour change to analyse data from partners participating in an HIV prevention trial in Uganda and Zambia. Methods and Findings We conducted a comparative qualitative study using in-depth interviews. Thirty-three interviews were conducted in total; ten with couples and twenty-three with staff members at the two sites. The Ugandan site recruited a sero-discordant couple cohort and the Zambian site recruited women alone. Spouses’ transformation of motivation is strong where couples are recruited and both partners stand to gain considerably by participating in the research; it is weaker where this is not the case. As such, coping mechanisms differ in the two sites; among sero-discordant couples in Uganda, communal coping is evidenced through joint consent to participate, regular couple counselling and workshops, sharing of HIV test results, and strong spousal support for adherence and retention. By contrast, coping at the Zambian site is predominantly left to the individual woman and occurs against a backdrop of mutual mistrust and male disenfranchisement. We discuss these findings in light of practical and ethical considerations of recruiting couples to HIV research. Conclusions We argue for the need to consider the broader context within which behaviour change occurs and propose that future dyadic research be situated within the framework of the ‘risk environment’. PMID:22808227

  14. Permafrost Hazards and Linear Infrastructure

    NASA Astrophysics Data System (ADS)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    climate change. Extra maintenance activity is needed for existence infrastructure to stay operable. Engineers should run climate models under the most pessimistic scenarios when planning new infrastructure projects. That would allow reducing the potential shortcomings related to the permafrost thawing.

  15. Creating a New Model for Mainstreaming Climate Change Adaptation for Critical Infrastructure: The New York City Climate Change Adaptation Task Force and the NYC Panel on Climate Change

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Solecki, W. D.; Freed, A. M.

    2008-12-01

    The New York City Climate Change Adaptation Task Force, launched in August 2008, aims to secure the city's critical infrastructure against rising seas, higher temperatures and fluctuating water supplies projected to result from climate change. The Climate Change Adaptation Task Force is part of PlaNYC, the city's long- term sustainability plan, and is composed of over 30 city and state agencies, public authorities and companies that operate the region's roads, bridges, tunnels, mass transit, and water, sewer, energy and telecommunications systems - all with critical infrastructure identified as vulnerable. It is one of the most comprehensive adaptation efforts yet launched by an urban region. To guide the effort, Mayor Michael Bloomberg has formed the New York City Panel on Climate Change (NPCC), modeled on the Intergovernmental Panel on Climate Change (IPCC). Experts on the panel include climatologists, sea-level rise specialists, adaptation experts, and engineers, as well as representatives from the insurance and legal sectors. The NPCC is developing planning tools for use by the Task Force members that provide information about climate risks, adaptation and risk assessment, prioritization frameworks, and climate protection levels. The advisory panel is supplying climate change projections, helping to identify at- risk infrastructure, and assisting the Task Force in developing adaptation strategies and guidelines for design of new structures. The NPCC will also publish an assessment report in 2009 that will serve as the foundation for climate change adaptation in the New York City region, similar to the IPCC reports. Issues that the Climate Change Adaptation Task Force and the NPCC are addressing include decision- making under climate change uncertainty, effective ways for expert knowledge to be incorporated into public actions, and strategies for maintaining consistent and effective attention to long-term climate change even as municipal governments cycle

  16. Infrastructure Survey 2011

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2012

    2012-01-01

    In 2011, the Group of Eight (Go8) conducted a survey on the state of its buildings and infrastructure. The survey is the third Go8 Infrastructure survey, with previous surveys being conducted in 2007 and 2009. The current survey updated some of the information collected in the previous surveys. It also collated data related to aspects of the…

  17. Green Infrastructure 101

    EPA Science Inventory

    Green Infrastructure 101 • What is it? What does it do? What doesn’t it do? • Green Infrastructure as a stormwater and combined sewer control • GI Controls and Best Management Practices that make sense for Yonkers o (Include operations and maintenance requirements for each)

  18. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes" are…

  19. Advanced simulation for analysis of critical infrastructure : abstract cascades, the electric power grid, and Fedwire.

    SciTech Connect

    Glass, Robert John, Jr.; Stamber, Kevin Louis; Beyeler, Walter Eugene

    2004-08-01

    Critical Infrastructures are formed by a large number of components that interact within complex networks. As a rule, infrastructures contain strong feedbacks either explicitly through the action of hardware/software control, or implicitly through the action/reaction of people. Individual infrastructures influence others and grow, adapt, and thus evolve in response to their multifaceted physical, economic, cultural, and political environments. Simply put, critical infrastructures are complex adaptive systems. In the Advanced Modeling and Techniques Investigations (AMTI) subgroup of the National Infrastructure Simulation and Analysis Center (NISAC), we are studying infrastructures as complex adaptive systems. In one of AMTI's efforts, we are focusing on cascading failure as can occur with devastating results within and between infrastructures. Over the past year we have synthesized and extended the large variety of abstract cascade models developed in the field of complexity science and have started to apply them to specific infrastructures that might experience cascading failure. In this report we introduce our comprehensive model, Polynet, which simulates cascading failure over a wide range of network topologies, interaction rules, and adaptive responses as well as multiple interacting and growing networks. We first demonstrate Polynet for the classical Bac, Tang, and Wiesenfeld or BTW sand-pile in several network topologies. We then apply Polynet to two very different critical infrastructures: the high voltage electric power transmission system which relays electricity from generators to groups of distribution-level consumers, and Fedwire which is a Federal Reserve service for sending large-value payments between banks and other large financial institutions. For these two applications, we tailor interaction rules to represent appropriate unit behavior and consider the influence of random transactions within two stylized networks: a regular homogeneous array and a

  20. MOEMS industrial infrastructure

    NASA Astrophysics Data System (ADS)

    van Heeren, Henne; Paschalidou, Lia

    2004-08-01

    numbers they want (several millions per year). The crossover point where building a dedicated facility becomes a realistic option, can differ very much depending on technology complexity, numbers and market value. Also history plays a role, companies with past experience in the production of a product and the necessary facilities and equipment will tend to achieve captive production. Companies not having a microtechnology history will tend to outsource, offering business opportunities for foundries. The number of foundries shows a steady growth over the years. The total availability of foundries, however, and their flexibility will, undoubtedly, rely on market potential and its size. Unlike design houses, foundries need to realise a substantial return on the "large" investments they make in terms of capital and infrastructure. These returns will be maximised through mass-produced products aimed at "killer" applications (accelerometers are only one example). The existence of professional suppliers of MOEMS packaging and assembly is an essential element in the supply chain and critical for the manufacturing and commercialisation of MOEMS products. In addition, the incorporation of packaging and assembly techniques at the front-end of the engineering cycle will pay back in terms of financial savings and shorter timescales to market. Packaging and assembly for MOEMS are, in general, more costly than their equivalents for standard integrated circuits. This is, primarily, due to the diversity of the interconnections (which are multi-functional and may incorporate: electrical, optical, fluidic etc). In addition, the high levels of accuracy and the potential sensitivity of the devices to mechanical and external influences play a major role in the cost aspects of the final MNT product. This article will give an overview of the package/assembly providers and foundry business models and analyse their contribution to the MOEMS supply chain illustrated with some typical examples. As

  1. Energy Transmission and Infrastructure

    SciTech Connect

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers

  2. The cloud services innovation platform- enabling service-based environmental modelling using infrastructure-as-a-service cloud computing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user's personal computers (PCs). Migration ...

  3. Reworking the science curriculum: A case study in the interdependence between introductory biology and multiculturalism

    NASA Astrophysics Data System (ADS)

    Persell, Roger

    1994-12-01

    Multiculturalism has emerged as the major influence in revising science curricula and teaching, yet misunderstanding about the history and theoretical underpinnings of multiculturalism has made the separation of political and education reform contentious and difficult. Within the context of a new college-wide pluralism and diversity requirement, a large introductory biology course at Hunter College of the City University of New York is now the testing ground for an interdependent model of multicultural education. The implications for multiculturalism, science pedagogy, and the pivotal role of introductory courses are discussed.

  4. Learning Microbiology Through Cooperation: Designing Cooperative Learning Activities that Promote Interdependence, Interaction, and Accountability

    PubMed Central

    TREMPY, JANINE E.; SKINNER, MONICA M.; SIEBOLD, WILLIAM A.

    2002-01-01

    A microbiology course and its corresponding learning activities have been structured according to the Cooperative Learning Model. This course, The World According to Microbes, integrates science, math, engineering, and technology (SMET) majors and non-SMET majors into teams of students charged with problem solving activities that are microbial in origin. In this study we describe development of learning activities that utilize key components of Cooperative Learning—positive interdependence, promotive interaction, individual accountability, teamwork skills, and group processing. Assessments and evaluations over an 8-year period demonstrate high retention of key concepts in microbiology and high student satisfaction with the course. PMID:23653547

  5. [Biobanks European infrastructure].

    PubMed

    Kinkorová, Judita; Topolčan, Ondřej

    2016-01-01

    Biobanks are structured repositories of human tissue samples connected with specific information. They became an integral part of personalized medicine in the new millennium. At the European research area biobanks are isolated not well coordinated and connected to the network. European commission supports European infrastructure BBMRI-ERIC (Biobanks and Biomolecular Resources Research Infrastructure European Research Infrastructure Consortium), consortium of 54 members with more than 225 associated organizations, largely biobanks from over 30 countries. The aim is to support biomedical research using stored samples. Czech Republic is a member of the consortium as a national node BBMRI_CZ, consisting of five partners. PMID:27256149

  6. Interdependent Mechanisms for Processing Gender and Emotion: The Special Status of Angry Male Faces

    PubMed Central

    Harris, Daniel A.; Ciaramitaro, Vivian M.

    2016-01-01

    While some models of how various attributes of a face are processed have posited that face features, invariant physical cues such as gender or ethnicity as well as variant social cues such as emotion, may be processed independently (e.g., Bruce and Young, 1986), other models suggest a more distributed representation and interdependent processing (e.g., Haxby et al., 2000). Here, we use a contingent adaptation paradigm to investigate if mechanisms for processing the gender and emotion of a face are interdependent and symmetric across the happy–angry emotional continuum and regardless of the gender of the face. We simultaneously adapted participants to angry female faces and happy male faces (Experiment 1) or to happy female faces and angry male faces (Experiment 2). In Experiment 1, we found evidence for contingent adaptation, with simultaneous aftereffects in opposite directions: male faces were biased toward angry while female faces were biased toward happy. Interestingly, in the complementary Experiment 2, we did not find evidence for contingent adaptation, with both male and female faces biased toward angry. Our results highlight that evidence for contingent adaptation and the underlying interdependent face processing mechanisms that would allow for contingent adaptation may only be evident for certain combinations of face features. Such limits may be especially important in the case of social cues given how maladaptive it may be to stop responding to threatening information, with male angry faces considered to be the most threatening. The underlying neuronal mechanisms that could account for such asymmetric effects in contingent adaptation remain to be elucidated. PMID:27471482

  7. Interdependent Mechanisms for Processing Gender and Emotion: The Special Status of Angry Male Faces.

    PubMed

    Harris, Daniel A; Ciaramitaro, Vivian M

    2016-01-01

    While some models of how various attributes of a face are processed have posited that face features, invariant physical cues such as gender or ethnicity as well as variant social cues such as emotion, may be processed independently (e.g., Bruce and Young, 1986), other models suggest a more distributed representation and interdependent processing (e.g., Haxby et al., 2000). Here, we use a contingent adaptation paradigm to investigate if mechanisms for processing the gender and emotion of a face are interdependent and symmetric across the happy-angry emotional continuum and regardless of the gender of the face. We simultaneously adapted participants to angry female faces and happy male faces (Experiment 1) or to happy female faces and angry male faces (Experiment 2). In Experiment 1, we found evidence for contingent adaptation, with simultaneous aftereffects in opposite directions: male faces were biased toward angry while female faces were biased toward happy. Interestingly, in the complementary Experiment 2, we did not find evidence for contingent adaptation, with both male and female faces biased toward angry. Our results highlight that evidence for contingent adaptation and the underlying interdependent face processing mechanisms that would allow for contingent adaptation may only be evident for certain combinations of face features. Such limits may be especially important in the case of social cues given how maladaptive it may be to stop responding to threatening information, with male angry faces considered to be the most threatening. The underlying neuronal mechanisms that could account for such asymmetric effects in contingent adaptation remain to be elucidated. PMID:27471482

  8. Phenology of two interdependent traits in migratory birds in response to climate change

    PubMed Central

    Kristensen, Nadiah Pardede; Johansson, Jacob; Ripa, Jörgen; Jonzén, Niclas

    2015-01-01

    In migratory birds, arrival date and hatching date are two key phenological markers that have responded to global warming. A body of knowledge exists relating these traits to evolutionary pressures. In this study, we formalize this knowledge into general mathematical assumptions, and use them in an ecoevolutionary model. In contrast to previous models, this study novelty accounts for both traits—arrival date and hatching date—and the interdependence between them, revealing when one, the other or both will respond to climate. For all models sharing the assumptions, the following phenological responses will occur. First, if the nestling-prey peak is late enough, hatching is synchronous with, and arrival date evolves independently of, prey phenology. Second, when resource availability constrains the length of the pre-laying period, hatching is adaptively asynchronous with prey phenology. Predictions for both traits compare well with empirical observations. In response to advancing prey phenology, arrival date may advance, remain unchanged, or even become delayed; the latter occurring when egg-laying resources are only available relatively late in the season. The model shows that asynchronous hatching and unresponsive arrival date are not sufficient evidence that phenological adaptation is constrained. The work provides a framework for exploring microevolution of interdependent phenological traits. PMID:25904668

  9. Phenology of two interdependent traits in migratory birds in response to climate change.

    PubMed

    Kristensen, Nadiah Pardede; Johansson, Jacob; Ripa, Jörgen; Jonzén, Niclas

    2015-05-22

    In migratory birds, arrival date and hatching date are two key phenological markers that have responded to global warming. A body of knowledge exists relating these traits to evolutionary pressures. In this study, we formalize this knowledge into general mathematical assumptions, and use them in an ecoevolutionary model. In contrast to previous models, this study novelty accounts for both traits-arrival date and hatching date-and the interdependence between them, revealing when one, the other or both will respond to climate. For all models sharing the assumptions, the following phenological responses will occur. First, if the nestling-prey peak is late enough, hatching is synchronous with, and arrival date evolves independently of, prey phenology. Second, when resource availability constrains the length of the pre-laying period, hatching is adaptively asynchronous with prey phenology. Predictions for both traits compare well with empirical observations. In response to advancing prey phenology, arrival date may advance, remain unchanged, or even become delayed; the latter occurring when egg-laying resources are only available relatively late in the season. The model shows that asynchronous hatching and unresponsive arrival date are not sufficient evidence that phenological adaptation is constrained. The work provides a framework for exploring microevolution of interdependent phenological traits. PMID:25904668

  10. Constraining nitrogen inputs to urban streams from leaking sewer infrastructure using inverse modeling: Implications for urban water quality

    NASA Astrophysics Data System (ADS)

    Sikora, M. T.; Elliott, E. M.; Bain, D. J.

    2011-12-01

    Excess fixed nitrogen contributes to stream degradation in densely populated regions, compounding problems of surface water contamination in urban landscapes. In particular, leaking sewer infrastructure is an acknowledged source of non-point source (NPS) nitrogen pollution to ground- and surface water in urban areas; however quantification of such contributions is exceedingly limited. This lack of knowledge inhibits efforts to understand urban nitrogen retention and export, despite the potential for this source to impact downstream water quality. Nine Mile Run (NMR), a restored urban stream in Pittsburgh, Pennsylvania (USA), drains a 1600 hectare urban watershed characterized by a high degree of impervious surface cover (38%). For years known locally as "stink creek," NMR remains significantly impacted by combined sewer overflows, leaky sewers, and degraded water quality. In order to assess sources of impairment, water samples were collected from four locations bi-weekly over two years, intensive sampling was conducted during one summer storm and DIN concentrations in water samples were analyzed (where DIN = nitrate + nitrite + ammonium). Using DIN concentrations, discharge records, published estimates of urban watershed nitrogen retention, and known inputs of atmospherically deposited nitrogen, a watershed nitrogen budget was constructed for NMR and subsequently inverted to constrain potential sewage inputs. Retention estimates ranging from 65 to 85% were applied and resulting calculations indicate that DIN contributions from sewage ranged from 5.5 to 25 kg ha-1yr-1. This research documents the potential contribution of sewage to DIN loads in urban streams and highlights the challenges of reducing nutrient pollution to receiving waters in cities with aging, degraded sewer lines.

  11. Moderate intra-group bias maximizes cooperation on interdependent populations.

    PubMed

    Tang, Changbing; Wang, Zhen; Li, Xiang

    2014-01-01

    Evolutionary game theory on spatial structures has received increasing attention during the past decades. However, the majority of these achievements focuses on single and static population structures, which is not fully consistent with the fact that real structures are composed of many interactive groups. These groups are interdependent on each other and present dynamical features, in which individuals mimic the strategy of neighbors and switch their partnerships continually. It is however unclear how the dynamical and interdependent interactions among groups affect the evolution of collective behaviors. In this work, we employ the prisoner's dilemma game to investigate how the dynamics of structure influences cooperation on interdependent populations, where populations are represented by group structures. It is found that the more robust the links between cooperators (or the more fragile the links between cooperators and defectors), the more prevalent of cooperation. Furthermore, theoretical analysis shows that the intra-group bias can favor cooperation, which is only possible when individuals are likely to attach neighbors within the same group. Yet, interestingly, cooperation can be even inhibited for large intra-group bias, allowing the moderate intra-group bias maximizes the cooperation level. PMID:24533084

  12. Moderate Intra-Group Bias Maximizes Cooperation on Interdependent Populations

    PubMed Central

    Tang, Changbing; Wang, Zhen; Li, Xiang

    2014-01-01

    Evolutionary game theory on spatial structures has received increasing attention during the past decades. However, the majority of these achievements focuses on single and static population structures, which is not fully consistent with the fact that real structures are composed of many interactive groups. These groups are interdependent on each other and present dynamical features, in which individuals mimic the strategy of neighbors and switch their partnerships continually. It is however unclear how the dynamical and interdependent interactions among groups affect the evolution of collective behaviors. In this work, we employ the prisoner's dilemma game to investigate how the dynamics of structure influences cooperation on interdependent populations, where populations are represented by group structures. It is found that the more robust the links between cooperators (or the more fragile the links between cooperators and defectors), the more prevalent of cooperation. Furthermore, theoretical analysis shows that the intra-group bias can favor cooperation, which is only possible when individuals are likely to attach neighbors within the same group. Yet, interestingly, cooperation can be even inhibited for large intra-group bias, allowing the moderate intra-group bias maximizes the cooperation level. PMID:24533084

  13. Cascading failures of interdependent modular small-world networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guowei; Wang, Xianpei; Tian, Meng; Dai, Dangdang; Long, Jiachuan; Zhang, Qilin

    2016-07-01

    Much empirical evidence shows that many real-world networks fall into the broad class of small-world networks and have a modular structure. The modularity has been revealed to have an important effect on cascading failure in isolated networks. However, the corresponding results for interdependent modular small-world networks remain missing. In this paper, we investigate the relationship between cascading failures and the intra-modular rewiring probabilities and inter-modular connections under different coupling preferences, i.e. random coupling with modules (RCWM), assortative coupling in modules (ACIM) and assortative coupling with modules (ACWM). The size of the largest connected component is used to evaluate the robustness from global and local perspectives. Numerical results indicate that increasing intra-modular rewiring probabilities and inter-modular connections can improve the robustness of interdependent modular small-world networks under intra-attacks and inter-attacks. Meanwhile, experiments on three coupling strategies demonstrate that ACIM has a better effect on preventing the cascading failures compared with RCWM and ACWM. These results can be helpful to allocate and optimize the topological structure of interdependent modular small-world networks to improve the robustness of such networks.

  14. Codifference as a practical tool to measure interdependence

    NASA Astrophysics Data System (ADS)

    Wyłomańska, Agnieszka; Chechkin, Aleksei; Gajda, Janusz; Sokolov, Igor M.

    2015-03-01

    Correlation and spectral analysis represent the standard tools to study interdependence in statistical data. However, for the stochastic processes with heavy-tailed distributions such that the variance diverges, these tools are inadequate. The heavy-tailed processes are ubiquitous in nature and finance. We here discuss codifference as a convenient measure to study statistical interdependence, and we aim to give a short introductory review of its properties. By taking different known stochastic processes as generic examples, we present explicit formulas for their codifferences. We show that for the Gaussian processes codifference is equivalent to covariance. For processes with finite variance these two measures behave similarly with time. For the processes with infinite variance the covariance does not exist, however, the codifference is relevant. We demonstrate the practical importance of the codifference by extracting this function from simulated as well as real data taken from turbulent plasma of fusion device and financial market. We conclude that the codifference serves as a convenient practical tool to study interdependence for stochastic processes with both infinite and finite variances as well.

  15. Interdependencies and Causalities in Coupled Financial Networks

    PubMed Central

    Vodenska, Irena; Aoyama, Hideaki; Fujiwara, Yoshi; Iyetomi, Hiroshi; Arai, Yuta

    2016-01-01

    We explore the foreign exchange and stock market networks for 48 countries from 1999 to 2012 and propose a model, based on complex Hilbert principal component analysis, for extracting significant lead-lag relationships between these markets. The global set of countries, including large and small countries in Europe, the Americas, Asia, and the Middle East, is contrasted with the limited scopes of targets, e.g., G5, G7 or the emerging Asian countries, adopted by previous works. We construct a coupled synchronization network, perform community analysis, and identify formation of four distinct network communities that are relatively stable over time. In addition to investigating the entire period, we divide the time period into into “mild crisis,” (1999–2002), “calm,” (2003–2006) and “severe crisis” (2007–2012) sub-periods and find that the severe crisis period behavior dominates the dynamics in the foreign exchange-equity synchronization network. We observe that in general the foreign exchange market has predictive power for the global stock market performances. In addition, the United States, German and Mexican markets have forecasting power for the performances of other global equity markets. PMID:26977806

  16. Modular interdependency in complex dynamical systems.

    PubMed

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability. PMID:16197673

  17. Interdependencies and Causalities in Coupled Financial Networks.

    PubMed

    Vodenska, Irena; Aoyama, Hideaki; Fujiwara, Yoshi; Iyetomi, Hiroshi; Arai, Yuta

    2016-01-01

    We explore the foreign exchange and stock market networks for 48 countries from 1999 to 2012 and propose a model, based on complex Hilbert principal component analysis, for extracting significant lead-lag relationships between these markets. The global set of countries, including large and small countries in Europe, the Americas, Asia, and the Middle East, is contrasted with the limited scopes of targets, e.g., G5, G7 or the emerging Asian countries, adopted by previous works. We construct a coupled synchronization network, perform community analysis, and identify formation of four distinct network communities that are relatively stable over time. In addition to investigating the entire period, we divide the time period into into "mild crisis," (1999-2002), "calm," (2003-2006) and "severe crisis" (2007-2012) sub-periods and find that the severe crisis period behavior dominates the dynamics in the foreign exchange-equity synchronization network. We observe that in general the foreign exchange market has predictive power for the global stock market performances. In addition, the United States, German and Mexican markets have forecasting power for the performances of other global equity markets. PMID:26977806

  18. Functional interdependence between septin and actin cytoskeleton

    PubMed Central

    Schmidt, Katja; Nichols, Benjamin J

    2004-01-01

    Background Septin2 is a member of a highly conserved GTPase family found in fungi and animals. Septins have been implicated in a diversity of cellular processes including cytokinesis, formation of diffusion barriers and vesicle trafficking. Septin2 partially co-localises with actin bundles in mammalian interphase cells and Septin2-filamentmorphology depends upon an intact actin cytoskeleton. How this interaction is regulated is not known. Moreover, evidence that Septin2 is remodelled or redistributed in response to other changes in actin organisation is lacking. Results Septin2 filaments are associated with actin fibres, but Septin2 is not associated with actin at the leading edge of moving cells or in ruffles where actin is highly dynamic. Rather, Septin2 is spatially segregated from these active areas and forms O- and C-shaped structures, similar to those previously observed after latrunculin treatment. FRAP experiments showed that all assemblies formed by Septin2 are highly dynamic with a constant exchange of Septin2 in and out of these structures, and that this property is independent of actin. A combination of RNAi experiments and expression of truncated forms of Septin2 showed that Septin2 plays a significant role in stabilising or maintaining actin bundles. Conclusion We show that Septin2 can form dynamic structures with differing morphologies in living cells, and that these morphologies are dependent on the functional state of the actin cytoskeleton. Our data provide a link between the different morphological states of Septin2 and functions of Septin2 in actin-dynamics, and are consistent with the model proposed by Kinoshita and colleagues, that Septin2 filaments play a role in stabilisation of actin stress fibres thus preventing actin turnover. PMID:15541171

  19. IPHE Infrastructure Workshop Proceedings

    SciTech Connect

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  20. Research infrastructure support to address ecosystem dynamics

    NASA Astrophysics Data System (ADS)

    Los, Wouter

    2014-05-01

    Predicting the evolution of ecosystems to climate change or human pressures is a challenge. Even understanding past or current processes is complicated as a result of the many interactions and feedbacks that occur within and between components of the system. This talk will present an example of current research on changes in landscape evolution, hydrology, soil biogeochemical processes, zoological food webs, and plant community succession, and how these affect feedbacks to components of the systems, including the climate system. Multiple observations, experiments, and simulations provide a wealth of data, but not necessarily understanding. Model development on the coupled processes on different spatial and temporal scales is sensitive for variations in data and of parameter change. Fast high performance computing may help to visualize the effect of these changes and the potential stability (and reliability) of the models. This may than allow for iteration between data production and models towards stable models reducing uncertainty and improving the prediction of change. The role of research infrastructures becomes crucial is overcoming barriers for such research. Environmental infrastructures are covering physical site facilities, dedicated instrumentation and e-infrastructure. The LifeWatch infrastructure for biodiversity and ecosystem research will provide services for data integration, analysis and modeling. But it has to cooperate intensively with the other kinds of infrastructures in order to support the iteration between data production and model computation. The cooperation in the ENVRI project (Common operations of environmental research infrastructures) is one of the initiatives to foster such multidisciplinary research.

  1. MFC Communications Infrastructure Study

    SciTech Connect

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  2. Water Intelligence and the Cyber-Infrastructure Revolution

    NASA Astrophysics Data System (ADS)

    Cline, D. W.

    2015-12-01

    As an intrinsic factor in national security, the global economy, food and energy production, and human and ecological health, fresh water resources are increasingly being considered by an ever-widening array of stakeholders. The U.S. intelligence community has identified water as a key factor in the Nation's security risk profile. Water industries are growing rapidly, and seek to revolutionize the role of water in the global economy, making water an economic value rather than a limitation on operations. Recent increased focus on the complex interrelationships and interdependencies between water, food, and energy signal a renewed effort to move towards integrated water resource management. Throughout all of this, hydrologic extremes continue to wreak havoc on communities and regions around the world, in some cases threatening long-term economic stability. This increased attention on water coincides with the "second IT revolution" of cyber-infrastructure (CI). The CI concept is a convergence of technology, data, applications and human resources, all coalescing into a tightly integrated global grid of computing, information, networking and sensor resources, and ultimately serving as an engine of change for collaboration, education and scientific discovery and innovation. In the water arena, we have unprecedented opportunities to apply the CI concept to help address complex water challenges and shape the future world of water resources - on both science and socio-economic application fronts. Providing actionable local "water intelligence" nationally or globally is now becoming feasible through high-performance computing, data technologies, and advanced hydrologic modeling. Further development on all of these fronts appears likely and will help advance this much-needed capability. Lagging behind are water observation systems, especially in situ networks, which need significant innovation to keep pace with and help fuel rapid advancements in water intelligence.

  3. Risk Assessment of Infrastructure System of Systems with Precursor Analysis.

    PubMed

    Guo, Zhenyu; Haimes, Yacov Y

    2016-08-01

    Physical infrastructure systems are commonly composed of interconnected and interdependent subsystems, which in their essence constitute system of systems (S-o-S). System owners and policy researchers need tools to foresee potential emergent forced changes and to understand their impact so that effective risk management strategies can be developed. We develop a systemic framework for precursor analysis to support the design of an effective and efficient precursor monitoring and decision support system with the ability to (i) identify and prioritize indicators of evolving risks of system failure; and (ii) evaluate uncertainties in precursor analysis to support informed and rational decision making. This integrated precursor analysis framework is comprised of three processes: precursor identification, prioritization, and evaluation. We use an example of a highway bridge S-o-S to demonstrate the theories and methodologies of the framework. Bridge maintenance processes involve many interconnected and interdependent functional subsystems and decision-making entities and bridge failure can have broad social and economic consequences. The precursor analysis framework, which constitutes an essential part of risk analysis, examines the impact of various bridge inspection and maintenance scenarios. It enables policy researchers and analysts who are seeking a risk perspective on bridge infrastructure in a policy setting to develop more risk informed policies and create guidelines to efficiently allocate limited risk management resources and mitigate severe consequences resulting from bridge failures. PMID:27575259

  4. Development of Markov Chain-Based Queuing Model and Wireless Infrastructure for EV to Smart Meter Communication in V2G

    NASA Astrophysics Data System (ADS)

    Santoshkumar; Udaykumar, R. Y.

    2015-04-01

    The electrical vehicles (EVs) can be connected to the grid for power transaction. The vehicle-to-grid (V2G) supports the grid requirements and helps in maintaining the load demands. The grid control center (GCC), aggregator and EV are three key entities in V2G communication. The GCC sends the information about power requirements to the aggregator. The aggregator after receiving the information from the GCC sends the information to the EVs. Based on the information, the interested EV owners participate in power transaction with the grid. The aggregator facilitates the EVs by providing the parking and charging slot. In this paper the queuing model for EVs connected to the grid and development of wireless infrastructure for the EV to Smart Meter communication is proposed. The queuing model is developed and simulated. The path loss models for WiMAX are analyzed and compared. Also, the physical layer of WiMAX protocol is modeled and simulated for the EV to Smart Meter communication in V2G.

  5. Production model in the conditions of unstable demand taking into account the influence of trading infrastructure: Ergodicity and its application

    NASA Astrophysics Data System (ADS)

    Obrosova, N. K.; Shananin, A. A.

    2015-04-01

    A production model with allowance for a working capital deficit and a restricted maximum possible sales volume is proposed and analyzed. The study is motivated by an attempt to analyze the problems of functioning of low competitive macroeconomic structures. The model is formalized in the form of a Bellman equation, for which a closed-form solution is found. The stochastic process of product stock variations is proved to be ergodic and its final probability distribution is found. Expressions for the average production load and the average product stock are found by analyzing the stochastic process. A system of model equations relating the model variables to official statistical parameters is derived. The model is identified using data from the Fiat and KAMAZ companies. The influence of the credit interest rate on the firm market value assessment and the production load level are analyzed using comparative statics methods.

  6. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using

  7. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using

  8. Understanding Building Infrastructure and Building Operation through DOE Asset Score Model: Lessons Learned from a Pilot Project

    SciTech Connect

    Wang, Na; Goel, Supriya; Gorrissen, Willy J.; Makhmalbaf, Atefe

    2013-06-24

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system to help building owners to evaluate the as-built physical characteristics (including building envelope, the mechanical and electrical systems) and overall building energy efficiency, independent of occupancy and operational choices. The energy asset score breaks down building energy use information by simulating building performance under typical operating and occupancy conditions for a given use type. A web-based modeling tool, the energy asset score tool facilitates the implementation of the asset score system. The tool consists of a simplified user interface built on a centralized simulation engine (EnergyPlus). It is intended to reduce both the implementation cost for the users and increase modeling standardization compared with an approach that requires users to build their own energy models. A pilot project with forty-two buildings (consisting mostly offices and schools) was conducted in 2012. This paper reports the findings. Participants were asked to collect a minimum set of building data and enter it into the asset score tool. Participants also provided their utility bills, existing ENERGY STAR scores, and previous energy audit/modeling results if available. The results from the asset score tool were compared with the building energy use data provided by the pilot participants. Three comparisons were performed. First, the actual building energy use, either from the utility bills or via ENERGY STAR Portfolio Manager, was compared with the modeled energy use. It was intended to examine how well the energy asset score represents a building’s system efficiencies, and how well it is correlated to a building’s actual energy consumption. Second, calibrated building energy models (where they exist) were used to examine any discrepancies between the asset score model and the pilot participant buildings’ [known] energy use pattern. This comparison examined the end

  9. Space Station Freedom commercial infrastructure

    NASA Technical Reports Server (NTRS)

    Barquinero, Kevin; Cassidy, Jeff

    1989-01-01

    NASA policy concerning the commercial infrastructure of the Space Station is examined. Plans for receiving and evaluating unsolicited proposals to provide commercial infrastructure are outlined. The guidelines for development of the commercial infrastructure and examples of opportunities for industry are listed. Also, a program for industry feedback concerning the commercial infrastructure policy is discussed.

  10. Effectiveness of water infrastructure for river flood management - Part 1: Flood hazard assessment using hydrological models in Bangladesh

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Kwak, Y.; Khairul, M. I.; Arifuzzaman, M. B.; Magome, J.; Sawano, H.; Takeuchi, K.

    2015-06-01

    This study introduces a flood hazard assessment part of the global flood risk assessment (Part 2) conducted with a distributed hydrological Block-wise TOP (BTOP) model and a GIS-based Flood Inundation Depth (FID) model. In this study, the 20 km grid BTOP model was developed with globally available data on and applied for the Ganges, Brahmaputra and Meghna (GBM) river basin. The BTOP model was calibrated with observed river discharges in Bangladesh and was applied for climate change impact assessment to produce flood discharges at each BTOP cell under present and future climates. For Bangladesh, the cumulative flood inundation maps were produced using the FID model with the BTOP simulated flood discharges and allowed us to consider levee effectiveness for reduction of flood inundation. For the climate change impacts, the flood hazard increased both in flood discharge and inundation area for the 50- and 100-year floods. From these preliminary results, the proposed methodology can partly overcome the limitation of the data unavailability and produces flood~maps that can be used for the nationwide flood risk assessment, which is presented in Part 2 of this study.

  11. The ecological interdependence of diet and disease in tribal societies.

    PubMed Central

    Murray, M. J.; Murray, A. B.; Murray, N. J.

    1980-01-01

    Observations among nomads suggest there is a strong ecological interdependence of diet and disease in tribal societies which favors survival of man. This relationship may be disrupted by changes in diet to conform to the highly productive technology of the West. Such changes may result in intensification of indigenous disease and in the transfer of disease characteristics of Western societies. To prevent these consequences, relief feeding and long-term attempts to upgrade nutrition should be carried out with traditional foods wherever possible. Images FIG. 2 FIG. 3 PMID:7445536

  12. Science and Technology, Autonomous and More Interdependent Every Time

    NASA Astrophysics Data System (ADS)

    Santilli, Haydée

    2012-06-01

    In a School of Engineering scientific and technological knowledge live together. Science teachers usually try to understand the role that scientific disciplines have over the engineer training. In this paper are descript three historical case studies that could help teachers and students for better understanding the interdependence between science and technology, and the way in which both are related to society. The cases clearly show that both kind of knowledge, scientific and technological, are autonomous, and that their growths involve complex processes. On this way, learners could have an insight of both, the NOS and the NOT.

  13. Cascading failures in coupled networks with both inner-dependency and inter-dependency links

    NASA Astrophysics Data System (ADS)

    Liu, Run-Ran; Li, Ming; Jia, Chun-Xiao; Wang, Bing-Hong

    2016-05-01

    We study the percolation in coupled networks with both inner-dependency and inter-dependency links, where the inner- and inter-dependency links represent the dependencies between nodes in the same or different networks, respectively. We find that when most of dependency links are inner- or inter-ones, the coupled networks system is fragile and makes a discontinuous percolation transition. However, when the numbers of two types of dependency links are close to each other, the system is robust and makes a continuous percolation transition. This indicates that the high density of dependency links could not always lead to a discontinuous percolation transition as the previous studies. More interestingly, although the robustness of the system can be optimized by adjusting the ratio of the two types of dependency links, there exists a critical average degree of the networks for coupled random networks, below which the crossover of the two types of percolation transitions disappears, and the system will always demonstrate a discontinuous percolation transition. We also develop an approach to analyze this model, which is agreement with the simulation results well.

  14. The conservation nexus: valuing interdependent water and energy savings in Arizona.

    PubMed

    Bartos, Matthew D; Chester, Mikhail V

    2014-02-18

    Water and energy resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially explicit model of water-energy interdependencies in Arizona and assesses the potential for cobeneficial conservation programs. The interdependent benefits of investments in eight conservation strategies are assessed within the context of legislated renewable energy portfolio and energy efficiency standards. The cobenefits of conservation are found to be significant. Water conservation policies have the potential to reduce statewide electricity demand by 0.82-3.1%, satisfying 4.1-16% of the state's mandated energy-efficiency standard. Adoption of energy-efficiency measures and renewable generation portfolios can reduce nonagricultural water demand by 1.9-15%. These conservation cobenefits are typically not included in conservation plans or benefit-cost analyses. Many cobenefits offer negative costs of saved water and energy, indicating that these measures provide water and energy savings at no net cost. Because ranges of costs and savings for water-energy conservation measures are somewhat uncertain, future studies should investigate the cobenefits of individual conservation strategies in detail. Although this study focuses on Arizona, the analysis can be extended elsewhere as renewable portfolio and energy efficiency standards become more common nationally and internationally. PMID:24460528

  15. Cascading failures in coupled networks with both inner-dependency and inter-dependency links

    PubMed Central

    Liu, Run-Ran; Li, Ming; Jia, Chun-Xiao; Wang, Bing-Hong

    2016-01-01

    We study the percolation in coupled networks with both inner-dependency and inter-dependency links, where the inner- and inter-dependency links represent the dependencies between nodes in the same or different networks, respectively. We find that when most of dependency links are inner- or inter-ones, the coupled networks system is fragile and makes a discontinuous percolation transition. However, when the numbers of two types of dependency links are close to each other, the system is robust and makes a continuous percolation transition. This indicates that the high density of dependency links could not always lead to a discontinuous percolation transition as the previous studies. More interestingly, although the robustness of the system can be optimized by adjusting the ratio of the two types of dependency links, there exists a critical average degree of the networks for coupled random networks, below which the crossover of the two types of percolation transitions disappears, and the system will always demonstrate a discontinuous percolation transition. We also develop an approach to analyze this model, which is agreement with the simulation results well. PMID:27142883

  16. Cascading failures in coupled networks with both inner-dependency and inter-dependency links.

    PubMed

    Liu, Run-Ran; Li, Ming; Jia, Chun-Xiao; Wang, Bing-Hong

    2016-01-01

    We study the percolation in coupled networks with both inner-dependency and inter-dependency links, where the inner- and inter-dependency links represent the dependencies between nodes in the same or different networks, respectively. We find that when most of dependency links are inner- or inter-ones, the coupled networks system is fragile and makes a discontinuous percolation transition. However, when the numbers of two types of dependency links are close to each other, the system is robust and makes a continuous percolation transition. This indicates that the high density of dependency links could not always lead to a discontinuous percolation transition as the previous studies. More interestingly, although the robustness of the system can be optimized by adjusting the ratio of the two types of dependency links, there exists a critical average degree of the networks for coupled random networks, below which the crossover of the two types of percolation transitions disappears, and the system will always demonstrate a discontinuous percolation transition. We also develop an approach to analyze this model, which is agreement with the simulation results well. PMID:27142883

  17. A process for the quantification of aircraft noise and emissions interdependencies

    NASA Astrophysics Data System (ADS)

    de Luis, Jorge

    The main purpose of this dissertation is to develop a process to improve actual policy-making procedures in terms of aviation environmental effects. This research work expands current practices with physics based publicly available models. The current method uses solely information provided by industry members, and this information is usually proprietary, and not physically intuitive. The process herein proposed provides information regarding the interdependencies between the environmental effects of aircraft. These interdependencies are also tied to the actual physical parameters of the aircraft and the engine, making it more intuitive for decision-makers to understand the impacts to the vehicle due to different policy scenarios. These scenarios involve the use of fleet analysis tools in which the existing aircraft are used to predict the environmental effects of imposing new stringency levels. The aircraft used are reduced to a series of coefficients that represent their performance, in terms of flight characteristics, fuel burn, noise, and emissions. These coefficients are then utilized to model flight operations and calculate what the environmental impacts of those aircraft are. If a particular aircraft does not meet the stringency to be analyzed, a technology response is applied to it, in order to meet that stringency. Depending on the level of reduction needed, this technology response can have an effect on the fuel burn characteristic of the aircraft. Another important point of the current stringency analysis process is that it does not take into account both noise and emissions concurrently, but instead, it considers them separately, one at a time. This assumes that the interdependencies between the two do not exists, which is not realistic. The latest stringency process delineated in 2004 imposed a 2% fuel burn penalty for any required improvements on NOx, no matter the type of aircraft or engine, assuming that no company had the ability to produce a

  18. Cloud Infrastructure & Applications - CloudIA

    NASA Astrophysics Data System (ADS)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  19. A technological infrastructure to sustain Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    La Mattina, Ernesto; Savarino, Vincenzo; Vicari, Claudia; Storelli, Davide; Bianchini, Devis

    In the Web 3.0 scenario, where information and services are connected by means of their semantics, organizations can improve their competitive advantage by publishing their business and service descriptions. In this scenario, Semantic Peer to Peer (P2P) can play a key role in defining dynamic and highly reconfigurable infrastructures. Organizations can share knowledge and services, using this infrastructure to move towards value networks, an emerging organizational model characterized by fluid boundaries and complex relationships. This chapter collects and defines the technological requirements and architecture of a modular and multi-Layer Peer to Peer infrastructure for SOA-based applications. This technological infrastructure, based on the combination of Semantic Web and P2P technologies, is intended to sustain Internetworked Enterprise configurations, defining a distributed registry and enabling more expressive queries and efficient routing mechanisms. The following sections focus on the overall architecture, while describing the layers that form it.

  20. Infrastructure Survey 2009

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2010

    2010-01-01

    In 2008 the Group of Eight (Go8) released a first report on the state of its buildings and infrastructure, based on a survey undertaken in 2007. A further survey was undertaken in 2009, updating some information about the assessed quality, value and condition of buildings and use of space. It also collated data related to aspects of the estate not…

  1. An Infrastructure Roadmap.

    ERIC Educational Resources Information Center

    Furgeson, Steven P.

    2002-01-01

    Describes how a master infrastructure plan for electrical and mechanical systems can help determine annual maintenance budgets, form annual capital-improvement budgets, take a snapshot of existing conditions, and lead to better energy management. Discusses important elements in such plans. (EV)

  2. An Infrastructure Museum

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    This article invites teachers to let their students' imaginations soar as they become part of a team that will design a whole new kind of living technological museum, a facility that celebrates the world of infrastructure. In this activity, a new two-story building will be built, occupying a vacant corner parcel of land, approximately 150…

  3. Robustness of a partially interdependent network formed of clustered networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2014-03-01

    Clustering, or transitivity, a behavior observed in real-world networks, affects network structure and function. This property has been studied extensively, but most of this research has been limited to clustering in single networks. The effect of clustering on the robustness of coupled networks, on the other hand, has received much less attention. Only the case of a pair of fully coupled networks with clustering has recently received study. Here we generalize the study of clustering of a fully coupled pair of networks and apply it to a partially interdependent network of networks with clustering within the network components. We show, both analytically and numerically, how clustering within networks affects the percolation properties of interdependent networks, including the percolation threshold, the size of the giant component, and the critical coupling point at which the first-order phase transition changes to a second-order phase transition as the coupling between the networks is reduced. We study two types of clustering, one proposed by Newman [Phys. Rev. Lett. 103, 058701 (2009), 10.1103/PhysRevLett.103.058701] in which the average degree is kept constant while the clustering is changed, and the other by Hackett et al. [Phys. Rev. E 83, 056107 (2011), 10.1103/PhysRevE.83.056107] in which the degree distribution is kept constant. The first type of clustering is studied both analytically and numerically, and the second is studied numerically.

  4. The difficult business model for mask equipment makers and mask infrastructure development support from consortia and governments

    NASA Astrophysics Data System (ADS)

    Hector, Scott

    2005-11-01

    The extension of optical projection lithography through immersion to patterning features with half pitch <=65 nm is placing greater demands on the mask. Strong resolution enhancement techniques (RETs), such as embedded and alternating phase shift masks and complex model-based optical proximity correction, are required to compensate for diffraction and limited depth of focus (DOF). To fabricate these masks, many new or upgraded tools are required to write patterns, measure feature sizes and placement, inspect for defects, review defect printability and repair defects on these masks. Beyond the significant technical challenges, suppliers of mask fabrication equipment face the challenge of being profitable in the small market for mask equipment while encountering significant R&D expenses to bring new generations of mask fabrication equipment to market. The total available market for patterned masks is estimated to be $2.5B to $2.9B per year. The patterned mask market is about 20% of the market size for lithography equipment and materials. The total available market for mask-making equipment is estimated to be about $800M per year. The largest R&D affordability issue arises for the makers of equipment for fabricating masks where total available sales are typically less than ten units per year. SEMATECH has used discounted cash flow models to predict the affordable R&D while maintaining industry accepted internal rates of return. The results have been compared to estimates of the total R&D cost to bring a new generation of mask equipment to market for various types of tools. The analysis revealed that affordability of the required R&D is a significant problem for many suppliers of mask-making equipment. Consortia such as SEMATECH and Selete have played an important role in cost sharing selected mask equipment and material development projects. Governments in the United States, in Europe and in Japan have also helped equipment suppliers with support for R&D. This paper

  5. The Identification of Filters and Interdependencies for Effective Resource Allocation: Coupling the Mitigation of Natural Hazards to Economic Development.

    NASA Astrophysics Data System (ADS)

    Agar, S. M.; Kunreuther, H.

    2005-12-01

    social benefits and costs. For example, spending after the 1992 Erzincan earthquake targeted local businesses but limited alternative employment, labor losses and diminished local markets all contributed to economic stagnation. Spending after the 1995 Dinar earthquake provided rent subsidies, supporting a major exodus from the town. Consequently many local people were excluded from reconstruction decisions and benefits offered by reconstruction funds. After the 1999 Marmara earthquakes, a 3-year economic decline in Yalova illustrates the vulnerability of local economic stability to weak regulation enforcement by a few agents. A resource allocation framework indicates that government-community relations, lack of economic diversification, beliefs, and compensation are weak links for effective spending. Stronger positive benefits could be achieved through spending to target land-use regulation enforcement, labor losses, time-critical needs of small businesses, and infrastructure. While the impacts of the Marmara earthquakes were devastating, strong commercial networks and international interests helped to re-establish the regional economy. Interdependencies may have helped to drive a recovery. Smaller events in eastern Turkey, however, can wipe out entire communities and can have long-lasting impacts on economic development. These differences may accelerate rural to urban migration and perpetuate regional economic divergence in the country. 1: Research performed in the Wharton MBA Program, Univ. of Pennsylvania.

  6. Identifying green infrastructure BMPs for reducing nitrogen export to a Chesapeake Bay agricultural stream: model synthesis and extension of experimental data

    EPA Science Inventory

    Background/Question/Methods The effectiveness of riparian forest buffers and other green infrastructure for reducing nitrogen export to agricultural streams has been well described experimentally, but a clear understanding of process-level hydrological and biogeochemical control...

  7. Commitment-Insurance: Compensating for the Autonomy Costs of Interdependence in Close Relationships

    PubMed Central

    Murray, Sandra L.; Holmes, John G.; Aloni, Maya; Pinkus, Rebecca T.; Derrick, Jaye L.; Leder, Sadie

    2014-01-01

    A model of the commitment-insurance system is proposed to examine how low and high self-esteem people cope with the costs interdependence imposes on autonomous goal pursuits. In this system, autonomy costs automatically activate compensatory cognitive processes that attach greater value to the partner. Greater partner-valuing compels greater responsiveness to the partner’s needs. Two experiments and a daily diary study of newlyweds supported the model. Autonomy costs automatically activate more positive implicit evaluations of the partner. On explicit measures of positive illusions, high self-esteem people continue to compensate for costs. However, cost-primed low self-esteem people correct and override their positive implicit sentiments when they have the opportunity to do so. Such corrections put the marriages of low self-esteem people at risk: Failing to compensate for costs predicted declines in satisfaction over a one year period. PMID:19634974

  8. The Water, Energy and Food Nexus: Finding the Balance in Infrastructure Investment

    NASA Astrophysics Data System (ADS)

    Huber-lee, A. T.; Wickel, B.; Kemp-Benedict, E.; Purkey, D. R.; Hoff, H.; Heaps, C.

    2013-12-01

    There is increasing evidence that single-sector infrastructure planning is leading to severely stressed human and ecological systems. There are a number of cross-sectoral impacts in these highly inter-linked systems. Examples include: - Promotion of biofuels that leads to conversion from food crops, reducing both food and water security. - Promotion of dams solely built for hydropower rather than multi-purpose uses, that deplete fisheries and affect saltwater intrusion dynamics in downstream deltas - Historical use of water for cooling thermal power plants, with increasing pressure from other water uses, as well as problems of increased water temperatures that affect the ability to cool plants efficiently. This list can easily be expanded, as these inter-linkages are increasing over time. As developing countries see a need to invest in new infrastructure to improve the livelihoods of the poor, developed countries face conditions of deteriorating infrastructure with an opportunity for new investment. It is crucial, especially in the face of uncertainty of climate change and socio-political realities, that infrastructure planning factors in the influence of multiple sectors and the potential impacts from the perspectives of different stakeholders. There is a need for stronger linkages between science and policy as well. The Stockholm Environment Institute is developing and implementing practical and innovative nexus planning approaches in Latin America, Africa and Asia that brings together stakeholders and ways of integrating uncertainty in a cross-sectoral quantitative framework using the tools WEAP (Water Evaluation and Planning) and LEAP (Long-range Energy Alternatives Planning). The steps used include: 1. Identify key actors and stakeholders via social network analysis 2. Work with these actors to scope out priority issues and decision criteria in both the short and long term 3. Develop quantitative models to clarify options and balances between the needs and

  9. The Interdependence of Adult Relationship Quality and Parenting Behaviours among African American and European Couples in Rural, Low-Income Communities

    ERIC Educational Resources Information Center

    Zvara, Bharathi J.; Mills-Koonce, W. Roger; Heilbron, Nicole; Clincy, Amanda; Cox, Martha J.

    2015-01-01

    The present study extends the spillover and crossover hypotheses to more carefully model the potential interdependence between parent-parent interaction quality and parent-child interaction quality in family systems. Using propensity score matching, the present study attempted to isolate family processes that are unique across African American and…

  10. Infrastructure Analysis Tools: A Focus on Cash Flow Analysis (Presentation)

    SciTech Connect

    Melaina, M.; Penev, M.

    2012-09-01

    NREL has developed and maintains a variety of infrastructure analysis models for the U.S. Department of Energy. Business case analysis has recently been added to this tool set. This presentation focuses on cash flow analysis. Cash flows depend upon infrastructure costs, optimized spatially and temporally, and assumptions about financing and revenue. NREL has incorporated detailed metrics on financing and incentives into the models. Next steps in modeling include continuing to collect feedback on regional/local infrastructure development activities and 'roadmap' dynamics, and incorporating consumer preference assumptions on infrastructure to provide direct feedback between vehicles and station rollout.

  11. Benchmarking infrastructure for mutation text mining

    PubMed Central

    2014-01-01

    Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600

  12. Launch facilities as infrastructure

    NASA Astrophysics Data System (ADS)

    Trial, Mike

    The idea is put forth that launch facilities in the U.S. impose inefficiencies on launch service providers due to the way they have been constructed. Rather than constructing facilities for a specific program, then discarding them when the program is complete, a better use of the facilities investment would be in constructing facilities flexible enough for use by multiple vehicle types over the course of a 25-year design lifetime. The planned National Launch System (NLS) program offers one possible avenue for the federal government to provide a nucleus of launch infrastructure which can improve launch efficiencies. The NLS goals are to develop a new space launch system to meet civil and national needs. The new system will be jointly funded by DOD and NASA but will actively consider commercial space needs. The NLS will improve reliability, responsiveness, and mission performance, and reduce operating costs. The specifics of the infrastructure concept are discussed.

  13. EPA NRMRL green Infrastructure research

    EPA Science Inventory

    Green Infrastructure is an engineering approach to wet weather flow management that uses infiltration, evapotranspiration, capture and reuse to better mimic the natural drainage processes than traditional gray systems. Green technologies supplement gray infrastructure to red...

  14. DRINKING WATER INFRASTRUCTURE NEEDS SURVEY

    EPA Science Inventory

    Conducted every 4 years, the Drinking Water Infrastructure Needs Survey (DWINS) is an EPA-conducted statistically-based survey of the infrastructure investment needs of the Nation's drinking water systems for the next 20 years.

  15. Do Physical Proximity and Availability of Adequate Infrastructure at Public Health Facility Increase Institutional Delivery? A Three Level Hierarchical Model Approach

    PubMed Central

    Patel, Rachana; Ladusingh, Laishram

    2015-01-01

    This study aims to examine the inter-district and inter-village variation of utilization of health services for institutional births in EAG states in presence of rural health program and availability of infrastructures. District Level Household Survey-III (2007–08) data on delivery care and facility information was used for the purpose. Bivariate results examined the utilization pattern by states in presence of correlates of women related while a three-level hierarchical multilevel model illustrates the effect of accessibility, availability of health facility and community health program variables on the utilization of health services for institutional births. The study found a satisfactory improvement in state Rajasthan, Madhya Pradesh and Orissa, importantly, in Bihar and Uttaranchal. The study showed that increasing distance from health facility discouraged institutional births and there was a rapid decline of more than 50% for institutional delivery as the distance to public health facility exceeded 10 km. Additionally, skilled female health worker (ANM) and observed improved public health facility led to significantly increase the probability of utilization as compared to non-skilled ANM and not-improved health centers. Adequacy of essential equipment/laboratory services required for maternal care significantly encouraged deliveries at public health facility. District/village variables neighborhood poverty was negatively related to institutional delivery while higher education levels in the village and women’s residing in more urbanized districts increased the utilization. “Inter-district” variation was 14 percent whereas “between-villages” variation for the utilization was 11 percent variation once controlled for all the three-level variables in the model. This study suggests that the mere availability of health facilities is necessary but not sufficient condition to promote utilization until the quality of service is inadequate and inaccessible

  16. The organization and control of an evolving interdependent population.

    PubMed

    Vural, Dervis C; Isakov, Alexander; Mahadevan, L

    2015-07-01

    Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations. PMID:26040593

  17. The organization and control of an evolving interdependent population

    PubMed Central

    Vural, Dervis C.; Isakov, Alexander; Mahadevan, L.

    2015-01-01

    Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations. PMID:26040593

  18. Efficient algorithm to compute mutually connected components in interdependent networks.

    PubMed

    Hwang, S; Choi, S; Lee, Deokjae; Kahng, B

    2015-02-01

    Mutually connected components (MCCs) play an important role as a measure of resilience in the study of interdependent networks. Despite their importance, an efficient algorithm to obtain the statistics of all MCCs during the removal of links has thus far been absent. Here, using a well-known fully dynamic graph algorithm, we propose an efficient algorithm to accomplish this task. We show that the time complexity of this algorithm is approximately O(N(1.2)) for random graphs, which is more efficient than O(N(2)) of the brute-force algorithm. We confirm the correctness of our algorithm by comparing the behavior of the order parameter as links are removed with existing results for three types of double-layer multiplex networks. We anticipate that this algorithm will be used for simulations of large-size systems that have been previously inaccessible. PMID:25768559

  19. Interdependent networks with identical degrees of mutually dependent nodes

    NASA Astrophysics Data System (ADS)

    Buldyrev, Sergey V.; Shere, Nathaniel W.; Cwilich, Gabriel A.

    2011-01-01

    We study a problem of failure of two interdependent networks in the case of identical degrees of mutually dependent nodes. We assume that both networks (A and B) have the same number of nodes N connected by the bidirectional dependency links establishing a one-to-one correspondence between the nodes of the two networks in a such a way that the mutually dependent nodes have the same number of connectivity links; i.e., their degrees coincide. This implies that both networks have the same degree distribution P(k). We call such networks correspondently coupled networks (CCNs). We assume that the nodes in each network are randomly connected. We define the mutually connected clusters and the mutual giant component as in earlier works on randomly coupled interdependent networks and assume that only the nodes that belong to the mutual giant component remain functional. We assume that initially a 1-p fraction of nodes are randomly removed because of an attack or failure and find analytically, for an arbitrary P(k), the fraction of nodes μ(p) that belong to the mutual giant component. We find that the system undergoes a percolation transition at a certain fraction p=pc, which is always smaller than pc for randomly coupled networks with the same P(k). We also find that the system undergoes a first-order transition at pc>0 if P(k) has a finite second moment. For the case of scale-free networks with 2<λ⩽3, the transition becomes a second-order transition. Moreover, if λ<3, we find pc=0, as in percolation of a single network. For λ=3 we find an exact analytical expression for pc>0. Finally, we find that the robustness of CCN increases with the broadness of their degree distribution.

  20. Percolation of partially interdependent scale-free networks

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Gao, Jianxi; Stanley, H. Eugene; Havlin, Shlomo

    2013-05-01

    We study the percolation behavior of two interdependent scale-free (SF) networks under random failure of 1-p fraction of nodes. Our results are based on numerical solutions of analytical expressions and simulations. We find that as the coupling strength between the two networks q reduces from 1 (fully coupled) to 0 (no coupling), there exist two critical coupling strengths q1 and q2, which separate three different regions with different behavior of the giant component as a function of p. (i) For q≥q1, an abrupt collapse transition occurs at p=pc. (ii) For q23, q1 decreases with increasing λ. Here, λ is the scaling exponent of the degree distribution, P(k)∝k-λ. (b) In the hybrid transition, at the q20 for λ>3. Thus, the known theoretical pc=0 for a single network with λ⩽3 is expected to be valid also for strictly partial interdependent networks.

  1. U.S.-Mexico Economic Interdependence: Perspectives from Both Sides of the Border, Part 3.

    ERIC Educational Resources Information Center

    Toland, Kathie

    The lessons in this 3-part series are intended to provide students with a basic understanding of the relationship between the United States and Mexico, with emphasis on multiple perspectives, conflict and cooperation, and interdependence. This curriculum unit, Part 3, examines the economic interdependence of the United States and Mexico to learn…

  2. Walls, Sovereignty, and Nature: Ecological Security in an Interdependent World. Teaching Strategy.

    ERIC Educational Resources Information Center

    Focseneanu, Veronica

    1993-01-01

    Presents two classroom lessons about global political interdependence and the relationship between humans and the natural environment. Uses the Great Wall of China as a metaphor for discussing the irrelevance of national sovereignty and the emergence of an interdependent world. (CFR)

  3. The Interdependence Continuum: A Perspective on the Nature of Spanish-English Bilingual Reading Comprehension

    ERIC Educational Resources Information Center

    Proctor, C. Patrick; August, Diane; Snow, Catherine; Barr, Christopher D.

    2010-01-01

    The purpose of the current study is to elaborate on the statistical nature of the linguistic interdependence hypothesis (Cummins, 1979). It is argued that reading skills across the languages of bilingual learners are differentially robust to interdependence, falling along a continuum mediated by the commonalities between Spanish and English.…

  4. In Situ Nuclear Characterization Infrastructure

    SciTech Connect

    James A. Smith; J. Rory Kennedy

    2011-11-01

    To be able to evolve microstructure with a prescribed in situ process, an effective measurement infrastructure must exist. This interdisciplinary infrastructure needs to be developed in parallel with in situ sensor technology. This paper discusses the essential elements in an effective infrastructure.

  5. Clients' and therapists' real relationship and session quality in brief therapy: an actor partner interdependence analysis.

    PubMed

    Markin, Rayna D; Kivlighan, Dennis M; Gelso, Charles J; Hummel, Ann M; Spiegel, Eric B

    2014-09-01

    This study used the Actor Partner Interdependence Model (APIM; Kenny & Cook, 1999) to examine the associations of client- and therapist-rated real relationship (RR) and session quality over time. Eighty-seven clients and their therapists (n = 25) completed RR and session quality measures after every session of brief therapy. Therapists' current session quality ratings were significantly related to all of the following: session number (b = .04), their session quality rating of the previous session (b = .24), their RR in the previous session (b = 1.091), their client's RR in the previous session (b = .17), and interactions between their own and their clients' RR and session number (b = -.16 and β = -.04, respectively). Clients' ratings of current session quality were significantly related to only their own RR in the previous session (b = .47). Implications for future research and practice are discussed. PMID:24773091

  6. PRACE - The European HPC Infrastructure

    NASA Astrophysics Data System (ADS)

    Stadelmeyer, Peter

    2014-05-01

    The mission of PRACE (Partnership for Advanced Computing in Europe) is to enable high impact scientific discovery and engineering research and development across all disciplines to enhance European competitiveness for the benefit of society. PRACE seeks to realize this mission by offering world class computing and data management resources and services through a peer review process. This talk gives a general overview about PRACE and the PRACE research infrastructure (RI). PRACE is established as an international not-for-profit association and the PRACE RI is a pan-European supercomputing infrastructure which offers access to computing and data management resources at partner sites distributed throughout Europe. Besides a short summary about the organization, history, and activities of PRACE, it is explained how scientists and researchers from academia and industry from around the world can access PRACE systems and which education and training activities are offered by PRACE. The overview also contains a selection of PRACE contributions to societal challenges and ongoing activities. Examples of the latter are beside others petascaling, application benchmark suite, best practice guides for efficient use of key architectures, application enabling / scaling, new programming models, and industrial applications. The Partnership for Advanced Computing in Europe (PRACE) is an international non-profit association with its seat in Brussels. The PRACE Research Infrastructure provides a persistent world-class high performance computing service for scientists and researchers from academia and industry in Europe. The computer systems and their operations accessible through PRACE are provided by 4 PRACE members (BSC representing Spain, CINECA representing Italy, GCS representing Germany and GENCI representing France). The Implementation Phase of PRACE receives funding from the EU's Seventh Framework Programme (FP7/2007-2013) under grant agreements RI-261557, RI-283493 and RI

  7. The Interdependence of Adult Relationship Quality and Parenting Behaviours among African American and European Couples in Rural, Low-Income Communities

    PubMed Central

    Zvara, Bharathi J.; Mills-Koonce, W. Roger; Heilbron, Nicole; Clincy, Amanda; Cox, Martha J.

    2015-01-01

    The present study extends the spillover and crossover hypotheses to more carefully model the potential interdependence between parent–parent interaction quality and parent–child interaction quality in family systems. Using propensity score matching, the present study attempted to isolate family processes that are unique across African American and European American couples that are independent of other socio-demographic factors to further clarify how interparental relationships may be related to parenting in a rural, low-income sample. The Actor–Partner Interdependence Model (APIM), a statistical analysis technique that accounts for the interdependence of relationship data, was used with a sample of married and non-married cohabiting African American and European American couples (n = 82 dyads) to evaluate whether mothers' and fathers' observed parenting behaviours are related to their behaviours and their partner's behaviours observed in a couple problem-solving interaction. Findings revealed that interparental withdrawal behaviour, but not conflict behaviour, was associated with less optimal parenting for fathers but not mothers, and specifically so for African American fathers. Our findings support the notion of interdependence across subsystems within the family and suggest that African American fathers may be specifically responsive to variations in interparental relationship quality. PMID:26430390

  8. Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet: Vehicle Infrastructure Cash-Flow Estimation -- VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Gonzales, John

    2015-04-02

    Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.

  9. Collaborative pre-competitive preclinical drug discovery with academics and pharma/biotech partners at Sanford|Burnham: infrastructure, capabilities & operational models.

    PubMed

    Chung, Thomas D Y

    2014-03-01

    There has been increased concern that the current "blockbuster" model of drug discovery and development practiced by "Big Pharma" are unsustainable in terms of cost (> $1 billion/approved drug) and time to market (10 - 15 years). The recent mergers and acquisitions (M&A), shuttering of internal research programs, closure of "redundant" sites of operations, senior management turnover and continued workforce reductions among the top 10 major pharmaceutical companies reflect draconian responses to reduce costs. However, the resultant exodus of intellectual capital, loss in motivation and momentum, and exit from early stage discovery programs by pharmaceutical companies has contributed to an "innovation deficit". Disease advocacy groups, investment communities and the government are calling for new innovative business models to address this deficit. In particular they are looking towards academia and clinical trials centers to catalyze new innovations in translational research. Indeed over the last decade many academic institutions have launched drug discovery centers largely comprising high-throughput screening (HTS) to accelerate "translational" research. A major impetus for this "open innovation" effort has been the National Institutes of Health (NIH) "Roadmap" and Molecular Libraries Initiative/Program (MLI/MLP), which is in its last year, and will be transitioned into the National Center for the Advancement of Translational Sciences (NCATS). With the end of Roadmap funding, general reduction in Federal government funding and its recent sequestration, academic drug discovery centers are being challenged to become selfsustaining, adding financial value, while remaining aligned with the missions of their respective academic non-profit institutions. We describe herein, a brief history of our bi-coastal Conrad Prebys Center for Chemical Genomics (Prebys Center) at the Sanford|Burnham Medical Research Institute (SBMRI), the key components of its infrastructure, core

  10. Climate Change and Infrastructure, Urban Systems, and Vulnerabilities

    SciTech Connect

    Wilbanks, Thomas J; Fernandez, Steven J

    2014-01-01

    associated with climate change that can disrupt infrastructure services, often cascading across infrastructures because of extensive interdependencies threatening health and local economies, especially in areas where human populations and economic activities are concentrated in urban areas. Vulnerabilities are especially large where infrastructures are subject to multiple stresses, beyond climate change alone; when they are located in areas vulnerable to extreme weather events; and if climate change is severe rather than moderate. But the report also notes that there are promising approaches for risk management, based on emerging lessons from a number of innovative initiatives in U.S. cities and other countries, involving both structural and non-structural (e.g., operational) options.

  11. Resource allocation in road infrastructure using ANP priorities with ZOGP formulation-A case study

    NASA Astrophysics Data System (ADS)

    Alias, Suriana; Adna, Norfarziah; Soid, Siti Khuzaimah; Kardri, Mahani

    2013-09-01

    Road Infrastructure (RI) project evaluation and selection is concern with the allocation of scarce organizational resources. In this paper, it is suggest an improved RI project selection methodology which reflects interdependencies among evaluation criteria and candidate projects. Fuzzy Delphi Method (FDM) is use to evoking expert group opinion and also to determine a degree of interdependences relationship between the alternative projects. In order to provide a systematic approach to set priorities among multi-criteria and trade-off among objectives, Analytic Network Process (ANP) is suggested to be applied prior to Zero-One Goal Programming (ZOGP) formulation. Specifically, this paper demonstrated how to combined FDM and ANP with ZOGP through a real-world RI empirical example on an ongoing decision-making project in Johor, Malaysia.

  12. Agile Infrastructure Monitoring

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Ascenso, J.; Fedorko, I.; Fiorini, B.; Paladin, M.; Pigueiras, L.; Santos, M.

    2014-06-01

    At the present time, data centres are facing a massive rise in virtualisation and cloud computing. The Agile Infrastructure (AI) project is working to deliver new solutions to ease the management of CERN data centres. Part of the solution consists in a new "shared monitoring architecture" which collects and manages monitoring data from all data centre resources. In this article, we present the building blocks of this new monitoring architecture, the different open source technologies selected for each architecture layer, and how we are building a community around this common effort.

  13. Trust and Reputation Management for Critical Infrastructure Protection

    NASA Astrophysics Data System (ADS)

    Caldeira, Filipe; Monteiro, Edmundo; Simões, Paulo

    Today's Critical Infrastructures (CI) depend of Information and Communication Technologies (ICT) to deliver their services with the required level of quality and availability. ICT security plays a major role in CI protection and risk prevention for single and also for interconnected CIs were cascading effects might occur because of the interdependencies that exist among different CIs. This paper addresses the problem of ICT security in interconnected CIs. Trust and reputation management using the Policy Based Management paradigm is the proposed solution to be applied at the CI interconnection points for information exchange. The proposed solution is being applied to the Security Mediation Gateway being developed in the European FP7 MICIE project, to allow for information exchange among interconnected CIs.

  14. Green Infrastructure Management Techniques in Arid and Semi-arid Regions: Software Implementation and Demonstration using the AGWA/KINEROS2 Watershed Model

    EPA Science Inventory

    Increasing urban development in the arid and semi-arid regions of the southwestern United States has led to greater demand for water in a region with limited water resources and has fundamentally altered the hydrologic response of developed watersheds. Green Infrastructure (GI) p...

  15. Representing Green Infrastructure Management Techniques in Arid and Semi-arid Regions: Software Implementation and Demonstration using the AGWA/KINEROS2 Watershed Model

    EPA Science Inventory

    Increasing urban development in the arid and semi-arid regions of the southwestern United States has led to greater demand for water from a region of limited water resources which has fundamentally altered the hydrologic response of developed watersheds. Green Infrastructure (GI)...

  16. Collective goals and shared tasks: interdependence structure and perceptions of individual sport team environments.

    PubMed

    Evans, M B; Eys, M A

    2015-02-01

    Across two studies, we tested the proposition that interdependence structures (i.e., task interaction among teammates during competition, competition against teammates, presence of a collective outcome) influence interdependence perceptions among teammates as well as perceptions of group cohesion, competitiveness, and satisfaction. Study 1 was a paper-and-pencil survey completed by 210 individual sport athletes from 12 university- and college-level teams. Multiple mediation analyses demonstrated that participants who had to work alongside teammates during competition reported increased interdependence perceptions that were, in turn, associated with increased cohesion and satisfaction as well as decreased competitiveness. There were no differences according to whether participants competed in the same event as all of their teammates or not. Study 2 involved a weekly e-mail survey with 17 university-level individual sport athletes who reported interdependence perceptions on a continual basis over the course of their competitive season. Interdependence perceptions were higher during weeks that were close in time to competitions with a collective group outcome. These studies reveal how interdependence structures shape the group environment and support applied efforts that consider ways to structure teammate interdependencies in ways to optimize group functioning and promote member satisfaction. PMID:24738561

  17. Local Legal Infrastructure and Population Health

    PubMed Central

    Patton, Dana J.

    2012-01-01

    Objectives. We explored the association between the legal infrastructure of local public health, as expressed in the exercise of local fiscal and legislative authority, and local population health outcomes. Methods. Our unit of analysis was public health jurisdictions with at least 100 000 residents. The dependent variable was jurisdiction premature mortality rates obtained from the Mobilize Action Toward Community Health (MATCH) database. Our primary independent variables represented local public health’s legal infrastructure: home rule status, board of health power, county government structure, and type of public health delivery system. Several control variables were included. We used a regression model to test the relationship between the varieties of local public health legal infrastructure identified and population health status. Results. The analyses suggested that public health legal infrastructure, particularly reformed county government, had a significant effect on population health status as a mediator of social determinants of health. Conclusions. Because states shape the legal infrastructure of local public health through power-sharing arrangements, our findings suggested recommendations for state legislation that positions local public health systems for optimal impact. Much more research is needed to elucidate the complex relationships among law, social capital, and population health status. PMID:22897523

  18. Modular Infrastructure for Rapid Flight Software Development

    NASA Technical Reports Server (NTRS)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  19. Infrastructure of the Gemini Observatory control system

    NASA Astrophysics Data System (ADS)

    Gillies, Kim K.; Walker, Shane

    1998-07-01

    Construction of the first Gemini 8-m telescope is well underway. The software that provides the user interface and high-level control of the observatory, the observatory control system (OCS), is also proceeding on track. The OCS provides tools that assist the astronomer from the proposal submission phase through planning, observation execution, and data review. A capable and flexible software infrastructure is required to support this comprehensive approach. New software technologies and industry standards have played a large part in the implementation of this infrastructure. For instance, the use of CORBA has provided many benefits in the software including object distribution, an interface definition language, and implementation language independence. In this paper, we describe the infrastructure of the OCS that supports observation planning and execution. Important software decisions and interfaces that allow Internet access and the ability to substitute alternate implementations easily are discussed as a model for other similar projects.

  20. Securing Infrastructure from High Explosive Threats

    SciTech Connect

    Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

    2009-03-20

    Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

  1. Michigan E85 Infrastructure

    SciTech Connect

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced

  2. A Framework for Analysis of Energy-Water Interdependency Problems

    SciTech Connect

    Robert Jeffers; Jacob J. Jacobson; Kristyn Scott

    2011-07-01

    The overall objective of this work is to improve the holistic value of energy development strategies by integrating management criteria for water availability, water quality, and ecosystem health into the energy system planning process. The Snake River Basin (SRB) in southern Idaho is used as a case study to show options for improving full economic utilization of aquatic resources given multiple scenarios such as changing climate, additional regulations, and increasing population. Through the incorporation of multiple management criteria, potential crosscutting solutions to energy and water issues in the SRB can be developed. The final result of this work will be a multi-criteria decision support tool - usable by policy makers and researchers alike - that will give insight into the behavior of the management criteria over time and will allow the user to experiment with a range of potential solutions. Because several basins in the arid west are dealing with similar water, energy, and ecosystem issues, the tool and conclusions will be transferrable to a wide range of locations and applications. This is a very large project to be completed in phases. This paper deals with interactions between the hydrologic system and water use at a basin level. Future work will include the interdependency between energy use and water use in these systems.

  3. A Framework for Analysis of Energy-Water Interdependency Problems

    SciTech Connect

    Robert F. Jeffers; Jacob J. Jacobson

    2011-08-01

    The overall objective of this work is to improve the holistic value of energy development strategies by integrating management criteria for water availability, water quality, and ecosystem health into the energy system planning process. The Snake River Basin (SRB) in southern Idaho is used as a case study to show options for improving full economic utilization of aquatic resources given multiple scenarios such as changing climate, additional regulations, and increasing population. Through the incorporation of multiple management criteria, potential crosscutting solutions to energy and water issues in the SRB can be developed. The final result of this work will be a multi-criteria decision support tool - usable by policy makers and researchers alike - that will give insight into the behavior of the management criteria over time and will allow the user to experiment with a range of potential solutions. Because several basins in the arid west are dealing with similar water, energy, and ecosystem issues, the tool and conclusions will be transferable to a wide range of locations and applications. This is a very large, multi-year project to be completed in phases. This paper deals with interactions between the hydrologic system and water use at a basin level. Future work will include the interdependency between energy use and water use in these systems.

  4. The effect of exogenous surfactant on alveolar interdependence.

    PubMed

    Salito, Caterina; Aliverti, Andrea; Mazzuca, Enrico; Rivolta, Ilaria; Miserocchi, Giuseppe

    2015-05-01

    To investigate the nature of alveolar mechanical interdependence, we purposefully disturbed the equilibrium condition by administering exogenous surfactant in physiological non-surfactant deprived conditions. Changes in alveolar morphology induced by intra-tracheal delivery of CUROSURF were evaluated after opening a pleural window allowing in-vivo microscopic imaging of sub-pleural alveoli in 6 male anesthetized, tracheotomized and mechanically ventilated rabbits. Surfactant instillation increased the surface area of alveoli smaller than 20,000 μm(2) up to ∼ 50% at 15 min after instillation, reflecting a lowering of surface tension due to local surfactant enrichment. Conversely, for alveoli greater than 20,000 μm(2), surface area decreased by ∼ 5%. Opposite changes in alveolar surface are interpreted as reflecting a new inter-alveolar mechanical equilibrium modified by local surfactant distribution and by a decrease in lung distending pressure. We propose that smaller alveoli, representing the majority of alveolar population, might mostly contribute to improve the oxygenation index following surfactant replacement therapy in case of surfactant deficiency. PMID:25600053

  5. Inter-ethics: towards an interactive and interdependent bioethics.

    PubMed

    Abma, Tineke A; Baur, Vivianne E; Molewijk, Bert; Widdershoven, Guy A M

    2010-06-01

    Since its origin bioethics has been a specialized, academic discipline, focussing on moral issues, using a vast set of globalized principles and rational techniques to evaluate and guide healthcare practices. With the emergence of a plural society, the loss of faith in experts and authorities and the decline of overarching grand narratives and shared moralities, a new approach to bioethics is needed. This approach implies a shift from an external critique of practices towards embedded ethics and interactive practice improvement, and from a legal defence of rights towards fostering interdependent practices of responsibility. This article describes these transitions within bioethics in relation to the broader societal and cultural dynamics within Western societies, and traces the implications for the methodologies and changing roles of the bioethicist. The bioethicist we foresee is not just a clever expert but also a relationally sensitive person who engages stakeholders in reciprocal dialogues about their practice of responsibility and helps to integrate various sorts of knowledge (embodied, experiential, visual, and cognitive-scientific). In order to illustrate this new approach, we present a case study. It concerns a project focusing on an innovation in elderly care, based on the participation of various stakeholders, especially older people themselves. PMID:20500761

  6. A general approach to critical infrastructure accident consequences analysis

    NASA Astrophysics Data System (ADS)

    Bogalecka, Magda; Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    2016-06-01

    The probabilistic general model of critical infrastructure accident consequences including the process of the models of initiating events generated by its accident, the process of environment threats and the process of environment degradation is presented.

  7. Infrastructure Upgrades to Support Model Longevity and New Applications: The Variable Infiltration Capacity Model Version 5.0 (VIC 5.0)

    NASA Astrophysics Data System (ADS)

    Nijssen, B.; Hamman, J.; Bohn, T. J.

    2015-12-01

    The Variable Infiltration Capacity (VIC) model is a macro-scale semi-distributed hydrologic model. VIC development began in the early 1990s and it has been used extensively, applied from basin to global scales. VIC has been applied in a many use cases, including the construction of hydrologic data sets, trend analysis, data evaluation and assimilation, forecasting, coupled climate modeling, and climate change impact analysis. Ongoing applications of the VIC model include the University of Washington's drought monitor and forecast systems, and NASA's land data assimilation systems. The development of VIC version 5.0 focused on reconfiguring the legacy VIC source code to support a wider range of modern modeling applications. The VIC source code has been moved to a public Github repository to encourage participation by the model development community-at-large. The reconfiguration has separated the physical core of the model from the driver, which is responsible for memory allocation, pre- and post-processing and I/O. VIC 5.0 includes four drivers that use the same physical model core: classic, image, CESM, and Python. The classic driver supports legacy VIC configurations and runs in the traditional time-before-space configuration. The image driver includes a space-before-time configuration, netCDF I/O, and uses MPI for parallel processing. This configuration facilitates the direct coupling of streamflow routing, reservoir, and irrigation processes within VIC. The image driver is the foundation of the CESM driver; which couples VIC to CESM's CPL7 and a prognostic atmosphere. Finally, we have added a Python driver that provides access to the functions and datatypes of VIC's physical core from a Python interface. This presentation demonstrates how reconfiguring legacy source code extends the life and applicability of a research model.

  8. Risk prediction of Critical Infrastructures against extreme natural hazards: local and regional scale analysis

    NASA Astrophysics Data System (ADS)

    Rosato, Vittorio; Hounjet, Micheline; Burzel, Andreas; Di Pietro, Antonio; Tofani, Alberto; Pollino, Maurizio; Giovinazzi, Sonia

    2016-04-01

    Natural hazard events can induce severe impacts on the built environment; they can hit wide and densely populated areas, where there is a large number of (inter)dependent technological systems whose damages could cause the failure or malfunctioning of further different services, spreading the impacts on wider geographical areas. The EU project CIPRNet (Critical Infrastructures Preparedness and Resilience Research Network) is realizing an unprecedented Decision Support System (DSS) which enables to operationally perform risk prediction on Critical Infrastructures (CI) by predicting the occurrence of natural events (from long term weather to short nowcast predictions, correlating intrinsic vulnerabilities of CI elements with the different events' manifestation strengths, and analysing the resulting Damage Scenario. The Damage Scenario is then transformed into an Impact Scenario, where punctual CI element damages are transformed into micro (local area) or meso (regional) scale Services Outages. At the smaller scale, the DSS simulates detailed city models (where CI dependencies are explicitly accounted for) that are of important input for crisis management organizations whereas, at the regional scale by using approximate System-of-Systems model describing systemic interactions, the focus is on raising awareness. The DSS has allowed to develop a novel simulation framework for predicting earthquakes shake maps originating from a given seismic event, considering the shock wave propagation in inhomogeneous media and the subsequent produced damages by estimating building vulnerabilities on the basis of a phenomenological model [1, 2]. Moreover, in presence of areas containing river basins, when abundant precipitations are expected, the DSS solves the hydrodynamic 1D/2D models of the river basins for predicting the flux runoff and the corresponding flood dynamics. This calculation allows the estimation of the Damage Scenario and triggers the evaluation of the Impact Scenario

  9. Toward a service-oriented e-infrastructure for data mining and data-intensive modeling applications in seismology: the VERCE (Virtual Earthquake and Seismology Research Community in Europe) initiative.

    NASA Astrophysics Data System (ADS)

    Vilotte, Jean-Pierre; van Hemert, Jano

    2010-05-01

    Global and regional seismology monitoring systems are continuously operated and are transmitting a growing wealth of seismological data in Europe and from around the world. This opens exciting opportunities for a large range of geophysical research. The multi-use nature of these data puts a great premium on open-access data archive infrastructures that are well integrated in the European Plate Observing System (EPOS)—an ESFRI initiative of the solid earth community. To exploit the full potential of this cornucopia of data and to guarantee optimal operation and design of the high-cost monitoring facilities, we need to new methods for data visualisation, data analysis and data modelling (imaging/inversion). Recent breakthroughs in theory and data analysis allow every byte of continuous seismological records to be used, extracting for example coherent information contained in background seismic "noise". This enables entirely new and exciting approaches for the imaging of wave sources and structures, the investigations of environmental changes, and the monitoring of volcanic and earthquake hazards. Data integration and data analysis applications are rapidly increasing in scale and complexity. Enabling advanced data analysis of these data within a well-designed data-aware distributed computing environment is becoming instrumental. Based on a set of data analysis and data modelling application requirements, the VERCE strategy will be presented here. The strategy of VERCE is to provide a comprehensive architecture and framework adapted to the scale and the diversity of these applications. It aims to integrate the community data infrastructure with Grid and HPC infrastructures. The first novel aspect of VERCE is a service-oriented architecture that provides well-equipped workbenches with an efficient communication layer between data and Grid infrastructures, which is augmented with bridges to European HPC facilities. The second novel aspect is the coupling between Grid

  10. The dependence of educational infrastructure on clinical infrastructure.

    PubMed

    Cimino, C

    1998-01-01

    The Albert Einstein College of Medicine needed to assess the growth of its infrastructure for educational computing as a first step to determining if student needs were being met. Included in computing infrastructure are space, equipment, software, and computing services. The infrastructure was assessed by reviewing purchasing and support logs for a six year period from 1992 to 1998. This included equipment, software, and e-mail accounts provided to students and to faculty for educational purposes. Student space has grown at a constant rate (averaging 14% increase each year respectively). Student equipment on campus has grown by a constant amount each year (average 8.3 computers each year). Student infrastructure off campus and educational support of faculty has not kept pace. It has either declined or remained level over the six year period. The availability of electronic mail clearly demonstrates this with accounts being used by 99% of students, 78% of Basic Science Course Leaders, 38% of Clerkship Directors, 18% of Clerkship Site Directors, and 8% of Clinical Elective Directors. The collection of the initial descriptive infrastructure data has revealed problems that may generalize to other medical schools. The discrepancy between infrastructure available to students and faculty on campus and students and faculty off campus creates a setting where students perceive a paradoxical declining support for computer use as they progress through medical school. While clinical infrastructure may be growing, it is at the expense of educational infrastructure at affiliate hospitals. PMID:9929262

  11. Simulation of the human TMJ behavior based on interdependent joints topology.

    PubMed

    Villamil, Marta B; Nedel, Luciana P; Freitas, Carla M D S; Macq, Benoit

    2012-03-01

    The temporomandibular joint (TMJ) is one of the most important and complex joints of the body and its pathologies affect a great percentage of the human population. The simulation of the TMJ behavior during opening, closing and chewing movements can be very useful to the understanding of this articulation by physicians, helping them to prevent or fix problems due to accidents or diseases. This work proposes a model to simulate the human TMJ behavior based on the concept of two interdependent joints. The model was conceived using multimodal information acquired from CT and MRI images of a live person, as well as motion data acquired from this same person with a magnetic motion capture device. Simulation of movement of other TMJs, based on different morphology of bones and teeth, is obtained by adapting the regular captured motion data through collision detection and treatment methods. The proposed model was evaluated through image registration techniques by comparing our simulated results with real, captured motion data. We also validate the model showing how it can be used to predict TMJ behavior in the presence of different--normal or abnormal--bones and teeth morphologies. PMID:22036476

  12. Governance of Large Scale Research Infrastructures: Tailoring Infrastructures to Fit the Research Needs

    NASA Astrophysics Data System (ADS)

    Kohler, E.; Pedersen, H.; Clémenceau, A.; Evans, R.

    2012-04-01

    The legal and governance structures of a pan-European large scale research infrastructure (RI) are critical. They shape the very operation of the undertaking - decision making processes, allocation of tasks and resources, and the relationships amongst the various interested parties - and its eventual success is crucially dependent on choosing these structures wisely. The experience of several examples is used to illustrate how legal and governance schemes for pan-European Research Infrastructures can be used as vehicles to tailor the infrastructure according to its scientific objectives. Indeed, the chosen model can: 1) foster multi-disciplinary research by having representatives of different communities deciding on joint programs; 2) better coordinate scattered communities, both geographically and thematically, increasing their cooperation; 3) implement an innovative Research organization; 4) leverage additional funding; 5) develop a strong identity and elevate international visibility for the communities served; 6) clarify responsibilities, accountability and authority. The ESFRI roadmap has extended the "classical" concept of single-sited RIs (as exemplified in the field of physics by facilities such as CERN) to that of distributed and virtual infrastructures but these raise new issues, especially regarding data exchange and management. As this concept of infrastructure at a European level is relatively new to the major part of the science community, it is especially important that governance models are thoroughly discussed and carefully adapted to fit the specific needs of each of these new distributed facilities. Alongside the legal frameworks which have previously been used for existing infrastructures, the European Commission has established a new legal vehicle, the European Research Infrastructure Consortium or "ERIC", to meet the requirements of the pan-European facilities. It will be shown that this flexible model can be used in a "customized" way to meet

  13. Infrastructure for distributed enterprise simulation

    SciTech Connect

    Johnson, M.M.; Yoshimura, A.S.; Goldsby, M.E.

    1998-01-01

    Traditional discrete-event simulations employ an inherently sequential algorithm and are run on a single computer. However, the demands of many real-world problems exceed the capabilities of sequential simulation systems. Often the capacity of a computer`s primary memory limits the size of the models that can be handled, and in some cases parallel execution on multiple processors could significantly reduce the simulation time. This paper describes the development of an Infrastructure for Distributed Enterprise Simulation (IDES) - a large-scale portable parallel simulation framework developed to support Sandia National Laboratories` mission in stockpile stewardship. IDES is based on the Breathing-Time-Buckets synchronization protocol, and maps a message-based model of distributed computing onto an object-oriented programming model. IDES is portable across heterogeneous computing architectures, including single-processor systems, networks of workstations and multi-processor computers with shared or distributed memory. The system provides a simple and sufficient application programming interface that can be used by scientists to quickly model large-scale, complex enterprise systems. In the background and without involving the user, IDES is capable of making dynamic use of idle processing power available throughout the enterprise network. 16 refs., 14 figs.

  14. Climate change risks to United States infrastructure: impacts on coastal development, roads, bridges, and urban drainage

    EPA Science Inventory

    Changes in temperature, precipitation, sea level, and coastal storms will likely increase the vulnerability of infrastructure across the United States. Using four models of vulnerability, impacts, and adaptation of infrastructure, its deployment, and its role in protecting econom...

  15. China and the world: self-reliance or interdependence.

    PubMed

    Terrill, R

    1977-01-01

    China's principle of self-reliance appears to have 4 sources: 1) having known the pain of dependence in the period of the Manchu Dynasty's encounter with the West, the Chinese are determined to be totally independent; 2) self-reliance appears to be related to China's long tradition of cultural self-containment; 3) a key tenet of Marxism to which history and culture pushed Mao is that internal factors are always decisive in a country's affairs; and 4) objective facts of China's great size and agricultural economy have made self-reliance in part the rationalization of necessity. The first 3 of these 4 sources of the principle of self-reliance are not immutable. In fact, self-reliance is being severely modified economically and politically, although not as yet militarily. China's trade with the world increased markedly in value during the 1970s, from U.S. $3.86 billion in 1969 to about U.S. $15 billion in 1975. A certain institutionalization of the country's international economic involvement also seems to be taking place. Behind all these developments is an apparent rejection of strict self-reliance in the sense of buying only what cannot be made and selling only waht is left over in favor of tentative acceptance of the law of comparative advantage in international economic relationships. On the political level a certain acceptance of an interdependent world is evident. The Chinese leadership, however has not been compltely united on these departures from self-reliance. Certain specific natural and socio-political factors that bear on the fate of self-reliance are identified. The 4th source of self-reliance--objective facts of China's size and agricultural character--appears the most persistent and will continue to be the major constraint against any clear-cut abandonment of self-reliance. PMID:12279157

  16. Distributed Data Integration Infrastructure

    SciTech Connect

    Critchlow, T; Ludaescher, B; Vouk, M; Pu, C

    2003-02-24

    The Internet is becoming the preferred method for disseminating scientific data from a variety of disciplines. This can result in information overload on the part of the scientists, who are unable to query all of the relevant sources, even if they knew where to find them, what they contained, how to interact with them, and how to interpret the results. A related issue is keeping up with current trends in information technology often taxes the end-user's expertise and time. Thus instead of benefiting from this information rich environment, scientists become experts on a small number of sources and technologies, use them almost exclusively, and develop a resistance to innovations that can enhance their productivity. Enabling information based scientific advances, in domains such as functional genomics, requires fully utilizing all available information and the latest technologies. In order to address this problem we are developing a end-user centric, domain-sensitive workflow-based infrastructure, shown in Figure 1, that will allow scientists to design complex scientific workflows that reflect the data manipulation required to perform their research without an undue burden. We are taking a three-tiered approach to designing this infrastructure utilizing (1) abstract workflow definition, construction, and automatic deployment, (2) complex agent-based workflow execution and (3) automatic wrapper generation. In order to construct a workflow, the scientist defines an abstract workflow (AWF) in terminology (semantics and context) that is familiar to him/her. This AWF includes all of the data transformations, selections, and analyses required by the scientist, but does not necessarily specify particular data sources. This abstract workflow is then compiled into an executable workflow (EWF, in our case XPDL) that is then evaluated and executed by the workflow engine. This EWF contains references to specific data source and interfaces capable of performing the desired

  17. Education, Infrastructure and America's Future.

    ERIC Educational Resources Information Center

    Moseley-Braun, Carol

    1997-01-01

    Senator Carol Moseley-Braun, D-Ill., a recognized advocate for federal funding of educational facilities, describes the strategy of placing school infrastructure in the same category as commercial and transportation infrastructure. Three researchers in the facilities field present empirical evidence that facility conditions directly affect…

  18. Multi-Scale Infrastructure Assessment

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) multi-scale infrastructure assessment project supports both water resource adaptation to climate change and the rehabilitation of the nation’s aging water infrastructure by providing tools, scientific data and information to progra...

  19. The 1990 direct support infrastructure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The airport and cargo terminal were individually analyzed in depth as the principal direct infrastructure components having cross impacts with aircraft carrying cargo. Containerization was also addressed in depth as an infrastructure component since it categorically is linked with and cross impacted by the aircraft, the cargo terminal, the surface transport system, the shipper and consignee, and the actual cargo being moved.

  20. Advanced Metering Infrastructure

    SciTech Connect

    2007-10-15

    The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

  1. LIGA Micromachining: Infrastructure Establishment

    SciTech Connect

    Alfredo M. Morales; Barry V. Hess; Dale R. Boehme; Jill M. Hruby; John S. Krafcik; Robert H. Nilson; Stewart K. Griffiths; William D. Bonivert

    1999-02-01

    LIGA is a micromachining technology that uses high energy x-rays from a synchrotron to create patterns with small lateral dimensions in a deep, non-conducting polymeric resist. Typical dimensions for LIGA parts are microns to tens of microns in lateral size, and hundreds of microns to millimeters in depth. Once the resist is patterned, metal is electrodeposited in the features to create metal microparts, or to create a metal mold for subsequent replication. The acronym LIGA comes from the German words for lithography, electroforming, and molding, and the technology has been under worldwide development for more than a decade. over the last five years, a full-service capability to produce metal microparts using the LIGA process has been established at Sandia national Laboratories, California. This report describes the accomplishments made during the past two years in infrastructure establishment funded by a Laboratory Directed Research and Development (LDRD) project entitled ''LIGA Micromachining.'' Specific topics include photoresist processing for LIGA mask making, x-ray scanning equipment, plating bath instrumentation, plating uniformity, and software architecture.

  2. Global information infrastructure.

    PubMed

    Lindberg, D A

    1994-01-01

    The High Performance Computing and Communications Program (HPCC) is a multiagency federal initiative under the leadership of the White House Office of Science and Technology Policy, established by the High Performance Computing Act of 1991. It has been assigned a critical role in supporting the international collaboration essential to science and to health care. Goals of the HPCC are to extend USA leadership in high performance computing and networking technologies; to improve technology transfer for economic competitiveness, education, and national security; and to provide a key part of the foundation for the National Information Infrastructure. The first component of the National Institutes of Health to participate in the HPCC, the National Library of Medicine (NLM), recently issued a solicitation for proposals to address a range of issues, from privacy to 'testbed' networks, 'virtual reality,' and more. These efforts will build upon the NLM's extensive outreach program and other initiatives, including the Unified Medical Language System (UMLS), MEDLARS, and Grateful Med. New Internet search tools are emerging, such as Gopher and 'Knowbots'. Medicine will succeed in developing future intelligent agents to assist in utilizing computer networks. Our ability to serve patients is so often restricted by lack of information and knowledge at the time and place of medical decision-making. The new technologies, properly employed, will also greatly enhance our ability to serve the patient. PMID:8125625

  3. Interdependence between Greece and other European stock markets: A comparison of wavelet and VMD copula, and the portfolio implications

    NASA Astrophysics Data System (ADS)

    Shahzad, Syed Jawad Hussain; Kumar, Ronald Ravinesh; Ali, Sajid; Ameer, Saba

    2016-09-01

    The interdependence of Greece and other European stock markets and the subsequent portfolio implications are examined in wavelet and variational mode decomposition domain. In applying the decomposition techniques, we analyze the structural properties of data and distinguish between short and long term dynamics of stock market returns. First, the GARCH-type models are fitted to obtain the standardized residuals. Next, different copula functions are evaluated, and based on the conventional information criteria and time varying parameter, Joe-Clayton copula is chosen to model the tail dependence between the stock markets. The short-run lower tail dependence time paths show a sudden increase in comovement during the global financial crises. The results of the long-run dependence suggest that European stock markets have higher interdependence with Greece stock market. Individual country's Value at Risk (VaR) separates the countries into two distinct groups. Finally, the two-asset portfolio VaR measures provide potential markets for Greece stock market investment diversification.

  4. Green Infrastructure, Ecosystem Services, and Human Health

    PubMed Central

    Coutts, Christopher; Hahn, Micah

    2015-01-01

    Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture—in the form of a primer—of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being. PMID:26295249

  5. The internal social sustainability of sanitation infrastructure.

    PubMed

    Kaminsky, Jessica A; Javernick-Will, Amy N

    2014-09-01

    While the construction of sanitation infrastructure is one of humankind's greatest public health and environmental engineering achievements, its benefits are not yet enjoyed by all. In addition to the billions of people not yet reached by sanitation infrastructure, at least half of systems constructed in developing contexts are abandoned in the years following initial construction. In this research, we target the problem of postconstruction onsite sanitation infrastructure abandonment in rural Guatemala using legitimacy and status theory. Legitimacy and status are established theoretical concepts from organizational theory that reflect cultural alignment and normative support. Crisp set Qualitative Comparative Analysis (csQCA), which uses Boolean algebra to discover combinations of theoretical conditions that produce an outcome of interest, allowed us to describe the various pathways that have caused socially sustainable uptake. We find that three combinations of legitimacy and status theory explain 85% of household cases at a consistency of 0.97. The most practically useful pathway covers 50% of household cases and shows that the combination of consequential legitimacy (a moral understanding of outcomes) and comprehensibility legitimacy (a cognitive model connecting outcomes to processes) is a powerful way to achieve socially sustainable sanitation infrastructure. PMID:25102164

  6. Green Infrastructure, Ecosystem Services, and Human Health.

    PubMed

    Coutts, Christopher; Hahn, Micah

    2015-08-01

    Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture-in the form of a primer-of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being. PMID:26295249

  7. Spatio-temporal dynamics of security investments in an interdependent risk environment

    NASA Astrophysics Data System (ADS)

    Shafi, Kamran; Bender, Axel; Zhong, Weicai; Abbass, Hussein A.

    2012-10-01

    In a globalised world where risks spread through contagion, the decision of an entity to invest in securing its premises from stochastic risks no longer depends solely on its own actions but also on the actions of other interacting entities in the system. This phenomenon is commonly seen in many domains including airline, logistics and computer security and is referred to as Interdependent Security (IDS). An IDS game models this decision problem from a game-theoretic perspective and deals with the behavioural dynamics of risk-reduction investments in such settings. This paper enhances this model and investigates the spatio-temporal aspects of the IDS games. The spatio-temporal dynamics are studied using simple replicator dynamics on a variety of network structures and for various security cost tradeoffs that lead to different Nash equilibria in an IDS game. The simulation results show that the neighbourhood configuration has a greater effect on the IDS game dynamics than network structure. An in-depth empirical analysis of game dynamics is carried out on regular graphs, which leads to the articulation of necessary and sufficient conditions for dominance in IDS games under spatial constraints.

  8. On Revenue-Optimal Dynamic Auctions for Bidders with Interdependent Values

    NASA Astrophysics Data System (ADS)

    Constantin, Florin; Parkes, David C.

    In a dynamic market, being able to update one's value based on information available to other bidders currently in the market can be critical to having profitable transactions. This is nicely captured by the model of interdependent values (IDV): a bidder's value can explicitly depend on the private information of other bidders. In this paper we present preliminary results about the revenue properties of dynamic auctions for IDV bidders. We adopt a computational approach to design single-item revenue-optimal dynamic auctions with known arrivals and departures but (private) signals that arrive online. In leveraging a characterization of truthful auctions, we present a mixed-integer programming formulation of the design problem. Although a discretization is imposed on bidder signals the solution is a mechanism applicable to continuous signals. The formulation size grows exponentially in the dependence of bidders' values on other bidders' signals. We highlight general properties of revenue-optimal dynamic auctions in a simple parametrized example and study the sensitivity of prices and revenue to model parameters.

  9. The role of infrastructure in the transformation of child-adolescent mental health systems.

    PubMed

    Stelk, Wayne; Slaton, Elaine

    2010-03-01

    There is a widespread recognition that the mental health system is not effective in meeting the needs of the children, adolescents, and families who seek its services. In response to this recognition, researchers and policy makers are developing and implementing strategies to transform mental health systems. This paper suggests that transformational interventions should not proceed faster than our understanding of the complexities of a mental health system. In a complex system, all component parts are interactive and interdependent. Problems with one component cannot be solved in isolation from other components. The inter-relationships between problems create inter-dependencies; and changes in the balance of these inter-dependencies can cause dramatic shifts in policy priorities, such as when managers of mental health systems respond to budget reductions in a recessionary economy. This paper examines the problem domains in mental health systems that are affected by complexity dynamics, and proposes that a well-built infrastructure is a necessary foundation for structural change in a child-adolescent mental health system. The concept of metastructure is proposed to account for the rule-based processes that govern the actions of agents within a system. PMID:20151194

  10. A Science Information Infrastructure

    NASA Astrophysics Data System (ADS)

    Christian, C. A.; Hawkins, I.; Malina, R. F.; Dow, K.; Murray, S.

    1994-12-01

    We have created a partnership of science museums, research institutions, teachers, and other centers of informal science education to enable access to the rich resources of remote sensing data available from NASA and other sources and to deliver this information to the general community. We are creating science resource centers in the nation's science museums and planetarium facilities, linking them together through a national Science Information Infrastructure (SII). The SII framework is being founded on Internet connections between the resource centers, which are in turn linked to research institutions. The most up-to-date and exciting science data, related information, and interpretive material will be available from the research institutions. The science museums will present this information in appropriate ways that respond to the needs and interest of the general public and K--12 communities. The science information will be available through the World Wide Web using a Mosaic interface that individuals will use to explore the on-line materials through self-guided learning modules. K--12 teachers will have access to the materials and, in a workshop forum, learn to find and use the information to create lesson plans and curricula for their classrooms. Eventually, as the connectivity of schools and libraries improves, students and teachers will have access to the resource centers from their own locations. The core partnership of the SII includes the Center for EUV Astrophysics (CEA), and Smithsonian Astrophysical Observatory, Exploratorium, Lawrence Hall of Science, Smithsonian National Air and Space Museum, Science Museum of Virginia, New York Hall of Science, Adler Museum of Chicago, University of California Museum of Paleontology, Boston Museum of Science, and the Earth Observing Satellite Company (EOSAT). A demonstration of the application of resource center materials in the K--12 community is being conducted through the Science On-Line project at the Center

  11. Carbon emissions of infrastructure development.

    PubMed

    Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

    2013-10-15

    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis. PMID:24053762

  12. Complex Networks and Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Setola, Roberto; de Porcellinis, Stefano

    The term “Critical Infrastructures” indicates all those technological infrastructures such as: electric grids, telecommunication networks, railways, healthcare systems, financial circuits, etc. that are more and more relevant for the welfare of our countries. Each one of these infrastructures is a complex, highly non-linear, geographically dispersed cluster of systems, that interact with their human owners, operators, users and with the other infrastructures. Their augmented relevance and the actual political and technological scenarios, which have increased their exposition to accidental failure and deliberate attacks, demand for different and innovative protection strategies (generally indicate as CIP - Critical Infrastructure Protection). To this end it is mandatory to understand the mechanisms that regulate the dynamic of these infrastructures. In this framework, an interesting approach is those provided by the complex networks. In this paper we illustrate some results achieved considering structural and functional properties of the corresponding topological networks both when each infrastructure is assumed as an autonomous system and when we take into account also the dependencies existing among the different infrastructures.

  13. Unraveling the complexities of disaster management: a framework for critical social infrastructure to promote population health and resilience.

    PubMed

    O'Sullivan, Tracey L; Kuziemsky, Craig E; Toal-Sullivan, Darene; Corneil, Wayne

    2013-09-01

    Complexity is a useful frame of reference for disaster management and understanding population health. An important means to unraveling the complexities of disaster management is to recognize the interdependencies between health care and broader social systems and how they intersect to promote health and resilience before, during and after a crisis. While recent literature has expanded our understanding of the complexity of disasters at the macro level, few studies have examined empirically how dynamic elements of critical social infrastructure at the micro level influence community capacity. The purpose of this study was to explore empirically the complexity of disasters, to determine levers for action where interventions can be used to facilitate collaborative action and promote health among high risk populations. A second purpose was to build a framework for critical social infrastructure and develop a model to identify potential points of intervention to promote population health and resilience. A community-based participatory research design was used in nine focus group consultations (n = 143) held in five communities in Canada, between October 2010 and March 2011, using the Structured Interview Matrix facilitation technique. The findings underscore the importance of interconnectedness of hard and soft systems at the micro level, with culture providing the backdrop for the social fabric of each community. Open coding drawing upon the tenets of complexity theory was used to develop four core themes that provide structure for the framework that evolved; they relate to dynamic context, situational awareness and connectedness, flexible planning, and collaboration, which are needed to foster adaptive responses to disasters. Seven action recommendations are presented, to promote community resilience and population health. PMID:22898721

  14. The Fermilab data storage infrastructure

    SciTech Connect

    Jon A Bakken et al.

    2003-02-06

    Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework.

  15. Design and optimization of photovoltaics recycling infrastructure.

    PubMed

    Choi, Jun-Ki; Fthenakis, Vasilis

    2010-11-15

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States. PMID:20886824

  16. 76 FR 81956 - National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... SECURITY National Infrastructure Advisory Council AGENCY: National Protection and Programs Directorate, DHS... Infrastructure Advisory Council (NIAC) will meet on Tuesday, January 10, 2012, at the National Press Club... CONTACT: Nancy Wong, National Infrastructure Advisory Council Designated Federal Officer, Department...

  17. The Integrated Behavioural Model for Water, Sanitation, and Hygiene: a systematic review of behavioural models and a framework for designing and evaluating behaviour change interventions in infrastructure-restricted settings

    PubMed Central

    2013-01-01

    exist, yet with some limitations. The IBM-WASH model aims to provide both a conceptual and practical tool for improving our understanding and evaluation of the multi-level multi-dimensional factors that influence water, sanitation, and hygiene practices in infrastructure-constrained settings. We outline future applications of our proposed model as well as future research priorities needed to advance our understanding of the sustained adoption of water, sanitation, and hygiene technologies and practices. PMID:24160869

  18. Front Range Infrastructure Resources project

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    Project goal: To provide the public and decision makers with objective information about the location and characteristics of land, natural aggregate, water, and energy resources that are vital to sustaining an area and its infrastructure.

  19. Multiple interdependent sequence elements control splicing of a fibroblast growth factor receptor 2 alternative exon.

    PubMed Central

    Del Gatto, F; Plet, A; Gesnel, M C; Fort, C; Breathnach, R

    1997-01-01

    The fibroblast growth factor receptor 2 gene contains a pair of mutually exclusive alternative exons, one of which (K-SAM) is spliced specifically in epithelial cells. We have described previously (F. Del Gatto and R. Breathnach, Mol. Cell. Biol. 15:4825-4834, 1995) some elements controlling K-SAM exon splicing, namely weak exon splice sites, an exon-repressing sequence, and an intron-activating sequence. We identify here two additional sequences in the intron downstream from the K-SAM exon which activate splicing of the exon. The first sequence (intron-activating sequence 2 [IAS2]) lies 168 to 186 nucleotides downstream from the exon's 5' splice site. The second sequence (intron-activating sequence 3 [IAS3]) lies 933 to 1,052 nucleotides downstream from the exon's 5' splice site. IAS3 is a complex region composed of several parts, one of which (nucleotides 963 to 983) can potentially form an RNA secondary structure with IAS2. This structure is composed of two stems separated by an asymmetric bulge. Mutations which disrupt either stem decrease activation, while compensatory mutations which reestablish the stem restore activation, either completely or partially, depending on the mutation. We present a model for K-SAM exon splicing involving the intervention of multiple, interdependent pre-mRNA sequence elements. PMID:9271388

  20. SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture.

    PubMed

    Hilbert, Manuel; Noga, Akira; Frey, Daniel; Hamel, Virginie; Guichard, Paul; Kraatz, Sebastian H W; Pfreundschuh, Moritz; Hosner, Sarah; Flückiger, Isabelle; Jaussi, Rolf; Wieser, Mara M; Thieltges, Katherine M; Deupi, Xavier; Müller, Daniel J; Kammerer, Richard A; Gönczy, Pierre; Hirono, Masafumi; Steinmetz, Michel O

    2016-04-01

    Centrioles are critical for the formation of centrosomes, cilia and flagella in eukaryotes. They are thought to assemble around a nine-fold symmetric cartwheel structure established by SAS-6 proteins. Here, we have engineered Chlamydomonas reinhardtii SAS-6-based oligomers with symmetries ranging from five- to ten-fold. Expression of a SAS-6 mutant that forms six-fold symmetric cartwheel structures in vitro resulted in cartwheels and centrioles with eight- or nine-fold symmetries in vivo. In combination with Bld10 mutants that weaken cartwheel-microtubule interactions, this SAS-6 mutant produced six- to eight-fold symmetric cartwheels. Concurrently, the microtubule wall maintained eight- and nine-fold symmetries. Expressing SAS-6 with analogous mutations in human cells resulted in nine-fold symmetric centrioles that exhibited impaired length and organization. Together, our data suggest that the self-assembly properties of SAS-6 instruct cartwheel symmetry, and lead us to propose a model in which the cartwheel and the microtubule wall assemble in an interdependent manner to establish the native architecture of centrioles. PMID:26999736

  1. Infrastructure dynamics: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Bencosme, A. J.

    1978-01-01

    The term infrastructure is used to denote the set of life support and public service systems which is necessary for the development of growth of human settlements. Included are some basic references in the field of dynamic simulation, as well as a number of relevant applications in the area of infrastructure planning. The intent is to enable the student or researcher to quickly identify such applications to the extent necessary for initiating further work in the field.

  2. Scaling Agile Infrastructure to People

    NASA Astrophysics Data System (ADS)

    Jones, B.; McCance, G.; Traylen, S.; Barrientos Arias, N.

    2015-12-01

    When CERN migrated its infrastructure away from homegrown fabric management tools to emerging industry-standard open-source solutions, the immediate technical challenges and motivation were clear. The move to a multi-site Cloud Computing model meant that the tool chains that were growing around this ecosystem would be a good choice, the challenge was to leverage them. The use of open-source tools brings challenges other than merely how to deploy them. Homegrown software, for all the deficiencies identified at the outset of the project, has the benefit of growing with the organization. This paper will examine what challenges there were in adapting open-source tools to the needs of the organization, particularly in the areas of multi-group development and security. Additionally, the increase in scale of the plant required changes to how Change Management was organized and managed. Continuous Integration techniques are used in order to manage the rate of change across multiple groups, and the tools and workflow for this will be examined.

  3. Strategic plan for infrastructure optimization

    SciTech Connect

    Donley, C.D.

    1998-05-27

    This document represents Fluor Daniel Hanford`s and DynCorp`s Tri-Cities Strategic Plan for Fiscal Years 1998--2002, the road map that will guide them into the next century and their sixth year of providing safe and cost effective infrastructure services and support to the Department of Energy (DOE) and the Hanford Site. The Plan responds directly to the issues raised in the FDH/DOE Critical Self Assessment specifically: (1) a strategy in place to give DOE the management (systems) and physical infrastructure for the future; (2) dealing with the barriers that exist to making change; and (3) a plan to right-size the infrastructure and services, and reduce the cost of providing services. The Plan incorporates initiatives from several studies conducted in Fiscal Year 1997 to include: the Systems Functional Analysis, 200 Area Water Commercial Practices Plan, $ million Originated Cost Budget Achievement Plan, the 1OO Area Vacate Plan, the Railroad Shutdown Plan, as well as recommendations from the recently completed Review of Hanford Electrical Utility. These and other initiatives identified over the next five years will result in significant improvements in efficiency, allowing a greater portion of the infrastructure budget to be applied to Site cleanup. The Plan outlines a planning and management process that defines infrastructure services and structure by linking site technical base line data and customer requirements to work scope and resources. The Plan also provides a vision of where Site infrastructure is going and specific initiatives to get there.

  4. Water Supply Infrastructure System Surety

    SciTech Connect

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  5. Cooperation in memory-based prisoner's dilemma game on interdependent networks

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Zhang, Xiaolin; Liu, Hong; Shao, Rui

    2016-05-01

    Memory or so-called experience normally plays the important role to guide the human behaviors in real world, that is essential for rational decisions made by individuals. Hence, when the evolutionary behaviors of players with bounded rationality are investigated, it is reasonable to make an assumption that players in system are with limited memory. Besides, in order to unravel the intricate variability of complex systems in real world and make a highly integrative understanding of their dynamics, in recent years, interdependent networks as a comprehensive network structure have obtained more attention in this community. In this article, the evolution of cooperation in memory-based prisoner's dilemma game (PDG) on interdependent networks composed by two coupled square lattices is studied. Herein, all or part of players are endowed with finite memory ability, and we focus on the mutual influence of memory effect and interdependent network reciprocity on cooperation of spatial PDG. We show that the density of cooperation can be significantly promoted within an optimal region of memory length and interdependent strength. Furthermore, distinguished by whether having memory ability/external links or not, each kind of players on networks would have distinct evolutionary behaviors. Our work could be helpful to understand the emergence and maintenance of cooperation under the evolution of memory-based players on interdependent networks.

  6. Measuring infrastructure: A key step in program evaluation and planning.

    PubMed

    Schmitt, Carol L; Glasgow, LaShawn; Lavinghouze, S Rene; Rieker, Patricia P; Fulmer, Erika; McAleer, Kelly; Rogers, Todd

    2016-06-01

    State tobacco prevention and control programs (TCPs) require a fully functioning infrastructure to respond effectively to the Surgeon General's call for accelerating the national reduction in tobacco use. The literature describes common elements of infrastructure; however, a lack of valid and reliable measures has made it difficult for program planners to monitor relevant infrastructure indicators and address observed deficiencies, or for evaluators to determine the association among infrastructure, program efforts, and program outcomes. The Component Model of Infrastructure (CMI) is a comprehensive, evidence-based framework that facilitates TCP program planning efforts to develop and maintain their infrastructure. Measures of CMI components were needed to evaluate the model's utility and predictive capability for assessing infrastructure. This paper describes the development of CMI measures and results of a pilot test with nine state TCP managers. Pilot test findings indicate that the tool has good face validity and is clear and easy to follow. The CMI tool yields data that can enhance public health efforts in a funding-constrained environment and provides insight into program sustainability. Ultimately, the CMI measurement tool could facilitate better evaluation and program planning across public health programs. PMID:27037655

  7. The PHEV Charging Infrastructure Planning (PCIP) Problem

    SciTech Connect

    Dashora, Yogesh; Barnes, J. Wesley; Pillai, Rekha S; Combs, Todd E; Hilliard, Michael R; Chinthavali, Madhu Sudhan

    2010-01-01

    Increasing debates over a gasoline independent future and the reduction of greenhouse gas (GHG) emissions has led to a surge in plug-in hybrid electric vehicles (PHEVs) being developed around the world. The majority of PHEV related research has been directed at improving engine and battery operations, studying future PHEV impacts on the grid, and projecting future PHEV charging infrastructure requirements. Due to the limited all-electric range of PHEVs, a daytime PHEV charging infrastructure will be required for most PHEV daily usage. In this paper, for the first time, we present a mixed integer mathematical programming model to solve the PHEV charging infrastructure planning (PCIP) problem for organizations with thousands of people working within a defined geographic location and parking lots well suited to charging station installations. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results, indicates the viability of the modeling approach and substantiates the importance of considering both employee convenience and appropriate grid connections in the PCIP problem.

  8. The pleasures and pains of distinct self-construals: the role of interdependence in regulatory focus.

    PubMed

    Lee, A Y; Aaker, J L; Gardner, W L

    2000-06-01

    Regulatory focus theory distinguishes between self-regulatory processes that focus on promotion and prevention strategies for goal pursuit. Five studies provide support for the hypothesis that these strategies differ for individuals with distinct self-construals. Specifically, individuals with a dominant independent self-construal were predicted to place more emphasis on promotion-focused information, and those with a dominant interdependent self-construal on prevention-focused information. Support for this hypothesis was obtained for participants who scored high versus low on the Self-Construal Scale, participants who were presented with an independent versus interdependent situation, and participants from a Western versus Eastern culture. The influence of interdependence on regulatory focus was observed in both importance ratings of information and affective responses consistent with promotion or prevention focus. PMID:10870913

  9. Interdependent self-construal and neural representations of self and mother

    PubMed Central

    Shelton, Amy L.; Hollon, Nick G.; Matsumoto, David; Frankel, Carl B.; Gross, James J.; Gabrieli, John D.E.

    2010-01-01

    Representations of self are thought to be dynamically influenced by one’s surroundings, including the culture one lives in. However, neuroimaging studies of self-representations have either ignored cultural influences or operationalized culture as country of origin. The present study used functional magnetic resonance imaging to examine the neural correlates of individual differences in interdependent self-construal. Participants rated whether trait adjectives applied to themselves or their mothers, or judged their valence or font. Findings indicated that individual differences in interdependent self-construal correlated positively with increased activation in the medial prefrontal cortex and posterior cingulated cortex when making judgments about one-self vs making judgments about one’s mother. This suggests that those with greater interdependent self-construals may rely more upon episodic memory, reflected appraisals, or theory of mind to incorporate social information to make judgments about themselves. PMID:19822601

  10. Toward a Systems Approach to Enteric Pathogen Transmission: From Individual Independence to Community Interdependence

    PubMed Central

    Eisenberg, Joseph N.S.; Trostle, James; Sorensen, Reed J.D.; Shields, Katherine F.

    2012-01-01

    Diarrheal disease is still a major cause of mortality and morbidity worldwide; thus a large body of research has been produced describing its risks. We review more than four decades of literature on diarrheal disease epidemiology. These studies detail a progression in the conceptual understanding of transmission of enteric pathogens and demonstrate that diarrheal disease is caused by many interdependent pathways. However, arguments by diarrheal disease researchers in favor of attending to interaction and interdependencies have only recently yielded more formal systems-level approaches. Therefore, interdependence has not yet been highlighted in significant new research initiatives or policy decisions. We argue for a systems-level framework that will contextualize transmission and inform prevention and control efforts so that they can integrate transmission pathways. These systems approaches should be employed to account for community effects (i.e., interactions among individuals and/or households). PMID:22224881

  11. Cooperation, competition and goal interdependence in work teams: a multilevel approach.

    PubMed

    Aritzeta, Aitor; Balluerka, Nekane

    2006-11-01

    The aim of this research was to predict cooperative and competitive conflict management styles in 26 new start-up work teams (time 1), and after one year of functioning (time 2) in an automotive company. Vertical-horizontal, individualism-collectivism cultural patterns were used as predictive variables. It was predicted that goal interdependence would moderate the relationship between cultural patterns and conflict management styles. Because of the hierarchically nested data structure, a Multilevel Analysis approach was used. Horizontal and vertical collectivism increased cooperation, and horizontal and vertical individualism increased competition. Only when work teams had been functioning for a year, goal interdependence increased cooperation and interaction effects between goal interdependence and vertical types of individualism and collectivism were observed. Implications for team-building as organizational transformational strategies are discussed. PMID:17296114

  12. Sovereign cat bonds and infrastructure project financing.

    PubMed

    Croson, David; Richter, Andreas

    2003-06-01

    We examine the opportunities for using catastrophe-linked securities (or equivalent forms of nondebt contingent capital) to reduce the total costs of funding infrastructure projects in emerging economies. Our objective is to elaborate on methods to reduce the necessity for unanticipated (emergency) project funding immediately after a natural disaster. We also place the existing explanations of sovereign-level contingent capital into a catastrophic risk management framework. In doing so, we address the following questions. (1) Why might catastrophe-linked securities be useful to a sovereign nation, over and above their usefulness for insurers and reinsurers? (2) Why are such financial instruments ideally suited for protecting infrastructure projects in emerging economies, under third-party sponsorship, from low-probability, high-consequence events that occur as a result of natural disasters? (3) How can the willingness to pay of a sovereign government in an emerging economy (or its external project sponsor), who values timely completion of infrastructure projects, for such instruments be calculated? To supplement our treatment of these questions, we use a multilayer spreadsheet-based model (in Microsoft Excel format) to calculate the overall cost reductions possible through the judicious use of catastrophe-based financial tools. We also report on numerical comparative statics on the value of contingent-capital financing to avoid project disruption based on varying costs of capital, probability and consequences of disasters, the feasibility of strategies for mid-stage project abandonment, and the timing of capital commitments to the infrastructure investment. We use these results to identify high-priority applications of catastrophe-linked securities so that maximal protection can be realized if the total number of catastrophe instruments is initially limited. The article concludes with potential extensions to our model and opportunities for future research. PMID

  13. Vorticity is a marker of diastolic ventricular interdependency in pulmonary hypertension

    PubMed Central

    Browning, James; Schroeder, Joyce D.; Shandas, Robin; Kheyfets, Vitaly O.; Buckner, J. Kern; Hunter, Kendall S.; Hertzberg, Jean R.; Fenster, Brett E.

    2016-01-01

    Abstract Our objective was to determine whether left ventricular (LV) vorticity (ω), the local spinning motion of a fluid element, correlated with markers of ventricular interdependency in pulmonary hypertension (PH). Maladaptive ventricular interdependency is associated with interventricular septal shift, impaired LV performance, and poor outcomes in PH patients, yet the pathophysiologic mechanisms underlying fluid-structure interactions in ventricular interdependency are incompletely understood. Because conformational changes in chamber geometry affect blood flow formations and dynamics, LV ω may be a marker of LV-RV (right ventricular) interactions in PH. Echocardiography was performed for 13 PH patients and 10 controls for assessment of interdependency markers, including eccentricity index (EI), and biventricular diastolic dysfunction, including mitral valve (MV) and tricuspid valve (TV) early and late velocities (E and A, respectively) as well as MV septal and lateral early tissue Doppler velocities (e′). Same-day 4-dimensional cardiac magnetic resonance was performed for LV E (early)-wave ω measurement. LV E-wave ω was significantly decreased in PH patients (P = 0.008) and correlated with diastolic EI (Rho = −0.53, P = 0.009) as well as with markers of LV diastolic dysfunction, including MV E(Rho = 0.53, P = 0.011), E/A (Rho = 0.56, P = 0.007), septal e′ (Rho = 0.63, P = 0.001), and lateral e′ (Rho = 0.57, P = 0.007). Furthermore, LV E-wave ω was associated with indices of RV diastolic dysfunction, including TV e′ (Rho = 0.52, P = 0.012) and TV E/A (Rho = 0.53, P = 0.009). LV E-wave ω is decreased in PH and correlated with multiple echocardiographic markers of ventricular interdependency. LV ω may be a novel marker for fluid-tissue biomechanical interactions in LV-RV interdependency. PMID:27162613

  14. Electric Power Infrastructure Reliability and Security (EPIRS) Reseach and Development Initiative

    SciTech Connect

    Rick Meeker; L. Baldwin; Steinar Dale; Alexander Domijan; Davild Larbalestier; Hui Li; Peter McLaren; Sastry Pamidi; Horatio Rodrigo; Michael Steurer

    2010-03-31

    Power systems have become increasingly complex and face unprecedented challenges posed by population growth, climate change, national security issues, foreign energy dependence and an aging power infrastructure. Increased demand combined with increased economic and environmental constraints is forcing state, regional and national power grids to expand supply without the large safety and stability margins in generation and transmission capacity that have been the rule in the past. Deregulation, distributed generation, natural and man-made catastrophes and other causes serve to further challenge and complicate management of the electric power grid. To meet the challenges of the 21st century while also maintaining system reliability, the electric power grid must effectively integrate new and advanced technologies both in the actual equipment for energy conversion, transfer and use, and in the command, control, and communication systems by which effective and efficient operation of the system is orchestrated - in essence, the 'smart grid'. This evolution calls for advances in development, integration, analysis, and deployment approaches that ultimately seek to take into account, every step of the way, the dynamic behavior of the system, capturing critical effects due to interdependencies and interaction. This approach is necessary to better mitigate the risk of blackouts and other disruptions and to improve the flexibility and capacity of the grid. Building on prior Navy and Department of Energy investments in infrastructure and resources for electric power systems research, testing, modeling, and simulation at the Florida State University (FSU) Center for Advanced Power Systems (CAPS), this project has continued an initiative aimed at assuring reliable and secure grid operation through a more complete understanding and characterization of some of the key technologies that will be important in a modern electric system, while also fulfilling an education and outreach

  15. Infrastructure Commons in Economic Perspective

    NASA Astrophysics Data System (ADS)

    Frischmann, Brett M.

    This chapter briefly summarizes a theory (developed in substantial detail elsewhere)1 that explains why there are strong economic arguments for managing and sustaining infrastructure resources in an openly accessible manner. This theory facilitates a better understanding of two related issues: how society benefits from infrastructure resources and how decisions about how to manage or govern infrastructure resources affect a wide variety of public and private interests. The key insights from this analysis are that infrastructure resources generate value as inputs into a wide range of productive processes and that the outputs from these processes are often public goods and nonmarket goods that generate positive externalities that benefit society as a whole. Managing such resources in an openly accessible manner may be socially desirable from an economic perspective because doing so facilitates these downstream productive activities. For example, managing the Internet infrastructure in an openly accessible manner facilitates active citizen involvement in the production and sharing of many different public and nonmarket goods. Over the last decade, this has led to increased opportunities for a wide range of citizens to engage in entrepreneurship, political discourse, social network formation, and community building, among many other activities. The chapter applies these insights to the network neutrality debate and suggests how the debate might be reframed to better account for the wide range of private and public interests at stake.

  16. E15 and Infrastructure

    SciTech Connect

    Moriarty, K.; Yanowitz, J.

    2015-05-27

    This report explores the compatibility of refueling station equipment with E15--a 15% ethanol and 85% gasoline blend intended for use in conventional gasoline light duty vehicles model year 2001 or newer. The report includes background information on E15, a literature review seeking to identify issues during the nationwide deployment of E10, a diagram of all station equipment and supporting data.

  17. Applying Climate Science to Urban Water Infrastructure Planning in California

    NASA Astrophysics Data System (ADS)

    Asante, K. O.; Khimsara, P.; Brown, K.

    2013-12-01

    Operators of urban water systems in California routinely develop long-range infrastructure plans to keep the communities they serve informed and to facilitate financing of planned projects. These plans compare baseline water supplies and demands to future projections, and they assess the adequacy of existing infrastructure for delivering water from raw water sources to customer connections under a variety of scenarios. In spite of these planning efforts, urban infrastructure projects are vulnerable to extreme climate and socioeconomic events. This paper examines the challenges facing infrastructure planners seeking to adapt urban water infrastructure to climate change using the current generation of climate predictions. A case study of small urban water systems in Lompoc Valley in California highlights the gap between climate variables available from global climate model predictions and decision parameters used in water infrastructure planning. Solutions are proposed for addressing some of the challenges encountered during climate impact analysis and vulnerability assessment. The paper also highlights outstanding gaps in our understanding of climate change and societal responses which could have profound impacts on urban water use and infrastructure needs.

  18. Toward a digital library strategy for a National Information Infrastructure

    NASA Technical Reports Server (NTRS)

    Coyne, Robert A.; Hulen, Harry

    1993-01-01

    Bills currently before the House and Senate would give support to the development of a National Information Infrastructure, in which digital libraries and storage systems would be an important part. A simple model is offered to show the relationship of storage systems, software, and standards to the overall information infrastructure. Some elements of a national strategy for digital libraries are proposed, based on the mission of the nonprofit National Storage System Foundation.

  19. LCG/AA build infrastructure

    NASA Astrophysics Data System (ADS)

    Hodgkins, Alex Liam; Diez, Victor; Hegner, Benedikt

    2012-12-01

    The Software Process & Infrastructure (SPI) project provides a build infrastructure for regular integration testing and release of the LCG Applications Area software stack. In the past, regular builds have been provided using a system which has been constantly growing to include more features like server-client communication, long-term build history and a summary web interface using present-day web technologies. However, the ad-hoc style of software development resulted in a setup that is hard to monitor, inflexible and difficult to expand. The new version of the infrastructure is based on the Django Python framework, which allows for a structured and modular design, facilitating later additions. Transparency in the workflows and ease of monitoring has been one of the priorities in the design. Formerly missing functionality like on-demand builds or release triggering will support the transition to a more agile development process.

  20. Computational Infrastructure for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Lingerfelt, E. J.; Scott, J. P.; Nesaraja, C. D.; Hix, W. R.; Bardayan, D. W.; Blackmon, J. C.; Chae, K.; Guidry, M. W.; Hard, C. C.; Sharp, J. E.; Kozub, R. L.; Meyer, R. A.

    2004-12-01

    The Computational Infrastructure for Nuclear Astrophysics is a platform-independent, online suite of computer codes developed by the ORNL Nuclear Data Project that makes a rapid connection between laboratory nuclear physics results and astrophysical models. It enables users to evaluate cross sections, process them into thermonuclear reaction rates, and parameterize (with a few percent accuracy) these rates that vary by up to 30 orders of magnitude over the temperatures of interest. Users can then properly format these rates for input into astrophysical computer simulations, create and manipulate libraries of rates, as well as run and visualize sample post-processing nucleosynthesis calculations. For example, we have developed animated nuclide charts that show how predicted abundances (represented by a user-defined color scale) change in time. With this unique suite, users can within a very short time quantify the astrophysical impact of a newly measured or calculated cross section, or a newly created customized reaction rate library, and then document and share their results with the scientific community. The suite has a straightforward interface with a "Windows Wizard" motif whereby users progress through complicated calculations in a step-by-step fashion. Users can upload their own files for processing and save their work on our server, as well as work with files that other users wish to share. These tools are currently being used to investigate novae and X-ray bursts. The suite is available through nucastrodata.org, a website that also hyperlinks available nuclear data sets relevant for nuclear astrophysics research. New features are continually being added to this software, which is funded by the U.S. Department of Energy Low Energy Nuclear Physics and Nuclear Data Programs. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  1. Methane Gas Emissions - is Older Infrastructure Leakier?

    NASA Astrophysics Data System (ADS)

    Wendt, L. P.; Caulton, D.; Zondlo, M. A.; Lane, H.; Lu, J.; Golston, L.; Pan, D.

    2015-12-01

    Large gains in natural gas production from hydraulic fracturing is reinvigorating the US energy economy. It is a clean burning fuel with lower emissions than that of coal or oil. Studies show that methane (CH4) leaks from natural gas infrastructure vary widely. A broader question is whether leak rates of methane might offset the benefits of combustion of natural gas. Excess methane (CH4) is a major greenhouse gas with a radiative forcing constant of 25 times that of CO2 when projected over a 100-year period. An extensive field study of 250 wells in the Marcellus Shale conducted in July 2015 examined the emission rates of this region and identifed super-emitters. Spud production data will provide information as to whether older infrastructure is responsible for more of the emissions. Quantifying the emission rate was determined by extrapolating methane releases at a distance from private well pads using an inverse Gaussian plume model. Wells studied were selected by prevailing winds, distance from public roads, and topographical information using commercial (ARCGIS and Google Earth), non-profit (drillinginfo), and government (State of PA) databases. Data were collected from the mobile sensing lab (CH4, CO2 and H2O sensors), as well as from a stationary tower. Emission rates from well pads will be compared to their original production (spud dates) to evaluate whether infrastructure age and total production correlates with the observed leak rates. Very preliminary results show no statistical correlation between well pad production rates and observed leak rates.

  2. Cyberspace Policy For Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Wilkin, Dorsey; Raines, Richard; Williams, Paul; Hopkinson, Kenneth

    The first step in preparing any battlespace is to define the domain for attack and maneuver. The various military service components have directed authority to focus their efforts in specific domains of operations (e.g., naval operations are mainly in the maritime domain). However, cyberspace operations pose challenges because they span multiple operational domains. This paper focuses on U.S. cyberspace policy related to defending and exploiting critical infrastructure assets. Also, it examines the issues involved in delineating responsibility for U.S. defensive and offensive operations related to critical infrastructures.

  3. Green Infrastructure, Groundwater and the Sustainable City

    NASA Astrophysics Data System (ADS)

    Band, L. E.

    2014-12-01

    The management of water is among the most important attributes of urbanization. Provision of sufficient quantities and quality of freshwater, treatment and disposal of wastewater and flood protection are critical for urban sustainability. Over the last century, two major shifts in water management paradigms have occurred, the first to improve public health with the provision of infrastructure for centralized sanitary effluent collection and treatment, and the rapid drainage and routing of stormwater. A current shift in paradigm is now occurring in response to the unintended consequences of sanitary and stormwater management, which have degraded downstream water bodies and shifted flood hazard downstream. Current infrastructure is being designed and implemented to retain, rather than rapidly drain, stormwater, with a focus on infiltration based methods. In urban areas, this amounts to a shift in hydrologic behavior to depression focused recharge. While stormwater is defined as surface flow resulting from developed areas, an integrated hydrologic systems approach to urban water management requires treatment of the full critical zone. In urban areas this extends from the top of the vegetation and building canopy, to a subsurface depth including natural soils, fill, saprolite and bedrock. In addition to matric and network flow in fracture systems, an urban "karst" includes multiple generations of current and past infrastructure, which has developed extensive subsurface pipe networks for supply and drainage, enhancing surface/groundwater flows and exchange. In this presentation, Band will discuss the need to focus on the urban critical zone, and the development and adaptation of new modeling and analytical approaches to understand and plan green infrastructure based on surface/groundwater/ecosystem interactions, and implications for the restoration and new design of cities.

  4. Performance of Cooperative Learning Groups in a Postgraduate Education Research Methodology Course: The Role of Social Interdependence

    ERIC Educational Resources Information Center

    Onwuegbuzie, Anthony J.; Collins, Kathleen M. T.; Jiao, Qun G.

    2009-01-01

    This study investigated the degree that social interdependence predicted the achievement of 26 cooperative learning groups. Social interdependence was assessed in terms of postgraduate students' individual orientation (that is, cooperative, competitive, and individualistic). Participants were 84 postgraduate students enrolled in an…

  5. A Context-Dependent View on the Linguistic Interdependence Hypothesis: Language Use and SES as Potential Moderators

    ERIC Educational Resources Information Center

    Prevoo, Mariëlle J. L.; Malda, Maike; Emmen, Rosanneke A. G.; Yeniad, Nihal; Mesman, Judi

    2015-01-01

    The linguistic interdependence hypothesis states that the development of skills in a second language (L2) partly depends on the skill level in the first language (L1). It has been suggested that the theory lacked attention for differential interdependence. In this study we test what we call the hypothesis of context-dependent linguistic…

  6. Managing Conflict in School Teams: The Impact of Task and Goal Interdependence on Conflict Management and Team Effectiveness

    ERIC Educational Resources Information Center

    Somech, Anit

    2008-01-01

    Purpose: Although conflict has traditionally been considered destructive, recent studies have indicated that conflict management can contribute to effective teamwork. The present study explores conflict management as a team phenomenon in schools. The author examined how the contextual variables (task interdependence, goal interdependence) are…

  7. A modified operational sequence methodology for zoo exhibit design and renovation: conceptualizing animals, staff, and visitors as interdependent coworkers.

    PubMed

    Kelling, Nicholas J; Gaalema, Diann E; Kelling, Angela S

    2014-01-01

    Human factors analyses have been used to improve efficiency and safety in various work environments. Although generally limited to humans, the universality of these analyses allows for their formal application to a much broader domain. This paper outlines a model for the use of human factors to enhance zoo exhibits and optimize spaces for all user groups; zoo animals, zoo visitors, and zoo staff members. Zoo exhibits are multi-faceted and each user group has a distinct set of requirements that can clash or complement each other. Careful analysis and a reframing of the three groups as interdependent coworkers can enhance safety, efficiency, and experience for all user groups. This paper details a general creation and specific examples of the use of the modified human factors tools of function allocation, operational sequence diagram and needs assessment. These tools allow for adaptability and ease of understanding in the design or renovation of exhibits. PMID:24838689

  8. Task Interdependence, Collegial Governance, and Teacher Attitudes in the Multiunit Elementary School.

    ERIC Educational Resources Information Center

    Charters, W. W., Jr.; Packard, John S.

    To test conclusions of previous investigations about the influence of team teaching upon task interdependence among elementary school teachers, University of Oregon researchers took measures in 14 elementary schools in six eastern states before and after installation of a multiunit instructional organization. Based upon research at Stanford…

  9. The Mission of the University--Addressing Issues of Universality, Diversity and Interdependence.

    ERIC Educational Resources Information Center

    DiBiaggio, John

    Rapid changes in science, technology, economics, and politics present great opportunities and even larger responsibilities to leaders in higher education. The concepts of universality, diversity, and interdependence are components of the mission of American universities. Many American universities are universal in two senses, in that they offer an…

  10. All about Plant & Animal Interdependency. Plant Life for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    Plants provide oxygen, food, shelter, medicine and more for all animals, including humans. In fact, people depend on plants for their very survival just as plants rely on animals! In All About Plant & Animal Interdependency, join aspiring botanists as they discover how plants and animals interrelate. Learn about the constant exchange of gases in…

  11. The Roots of Social Dominance: Aggression, Prosocial Behavior, and Social Interdependence

    ERIC Educational Resources Information Center

    Choi, Jiyoung; Johnson, David W.; Johnson, Roger

    2011-01-01

    The authors examined the nature of dominant students in Grades 3-5 in a midwestern school system in the United States. Previous research has indicated 2 ways a student may gain dominance--through bullying and prosocial behaviors. A cluster analysis for dominant children was conducted using social interdependence attitude scores, children's…

  12. Making the Most of Others: Autonomous Interdependence in Adult Beginner Distance Language Learners

    ERIC Educational Resources Information Center

    Furnborough, Concha

    2012-01-01

    Autonomy in language learning does not simply equate with independence, as language learning is a social activity that requires interaction with others. This also applies just as much to distance language learners, who need to reconcile independent language learning and interdependence with others. This article draws on findings from 43 mid-course…

  13. Gender Identification, Interdependence, and Pseudonyms in CMC: Language Patterns in an Electronic Conference.

    ERIC Educational Resources Information Center

    Jaffe, J. Michael; Lee, Young-Eum; Huang, Li-Ning; Oshagan, Hayg

    1999-01-01

    Examines how pseudonymous identification in a computer-mediated communication (CMC) context might: (1) reflect a motivation for gender-based status parity and (2) mitigate supposed gender-based communication differences associated with social interdependence. Subjects were 114 undergraduate students who participated in computer-based…

  14. Exploring Equity, Diversity and Interdependence through Dialogue and Understanding in Rural Northern Ireland.

    ERIC Educational Resources Information Center

    Murray, Michael; Murtagh, Brendan

    2003-01-01

    Explains the context for equity, diversity, and interdependence (EDI), followed by a case study of a Northern Ireland service organization using the EDI process to help articulate the voice of rural community groups. Illustrates the value of concerted dialogue to facilitate systemic relational change in organizations and with their constituents.…

  15. Differential Effectiveness of Interdependent and Dependent Group Contingencies in Reducing Disruptive Classroom Behavior

    ERIC Educational Resources Information Center

    Hartman, Kelsey; Gresham, Frank

    2016-01-01

    Disruptive behavior in the classroom negatively affects all students' academic engagement, achievement, and behavior. Group contingencies have been proven effective in reducing disruptive behavior as part of behavior interventions in the classroom. The Good Behavior Game is a Tier 1 classwide intervention that utilizes an interdependent group…

  16. Global Interdependence--Knocking the World We Know Off Its Axis.

    ERIC Educational Resources Information Center

    Hamilton, John Maxwell; Roberts, Lesley

    1989-01-01

    Discusses the need for teaching about global interdependence. Points out that nearly every dimension of life in the United States shows proliferating connections to other nations. Describes techniques for finding global links and appreciating their importance. Notes that information emanating from the school will increase general knowledge…

  17. Plant & Animal Interdependency. Plant Life in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    In every ecosystem, organisms rely on each other in unique relationships that ensure each other's survival. In Plant & Animal Interdependency, find out how plants and animals interact, cooperate and compete. All living things have basic needs and depend on other living things to meet those needs. Discover why the constant exchange of nutrients and…

  18. Community Redefined: School Leaders Moving from Autonomy to Global Interdependence through Short-Term Study Abroad

    ERIC Educational Resources Information Center

    Fine, Janis B.; McNamara, Krista W.

    2011-01-01

    In times of increased global interdependence, producing inter-culturally competent school leaders who can engage in informed, ethical decision-making when confronted with problems that involve a diversity of perspectives is becoming an urgent leadership priority. Helping school leaders form and internalize a global perspective requires today's…

  19. Parental Beliefs about Young Children's Socialization across US Ethnic Groups: Coexistence of Independence and Interdependence

    ERIC Educational Resources Information Center

    Suizzo, Marie-Anne; Chen, Wan-Chen; Cheng, Chi-Chia; Liang, Angel S.; Contreras, Helen; Zanger, Dinorah; Robinson, Courtney

    2008-01-01

    This study compared dimensions of independence and interdependence in parents' beliefs about daily child-rearing practices across four ethnic groups. Two questionnaires were completed by 310 parents of preschool-age children, and three belief constructs were identified. "Conformity" was least valued by European Americans. "Autonomy" was equally…

  20. Global Citizenship and Global Universities. The Age of Global Interdependence and Cosmopolitanism

    ERIC Educational Resources Information Center

    Torres, Carlos Alberto

    2015-01-01

    This article focuses on the role of global universities and globalisations in an age of global interdependence and cosmopolitanism. Competing agendas that result from actions and reactions to multiple globalisations are considered in relation to global citizenship education. These agendas are crucial in understanding dilemmas of the local and the…