Science.gov

Sample records for inherited virus responsible

  1. Inheritance of plum pox virus resistance in transgenic plums

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have studied the heritability of the virus transgene engineered in 'HoneySweet' plum through different cross-hybridization with two commercial cultivars of Prunus domestica (Prunier d’Ente 303 and Quetsche 2906) and one wild species, P. spinosa 2862, rootstock using 'HoneySweet' plum as the polle...

  2. Differential Light-induced Responses in Sectorial Inherited Retinal Degeneration*

    PubMed Central

    Ramon, Eva; Cordomí, Arnau; Aguilà, Mònica; Srinivasan, Sundaramoorthy; Dong, Xiaoyun; Moore, Anthony T.; Webster, Andrew R.; Cheetham, Michael E.; Garriga, Pere

    2014-01-01

    Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous inherited degenerative retinopathies caused by abnormalities of photoreceptors or retinal pigment epithelium in the retina leading to progressive sight loss. Rhodopsin is the prototypical G-protein-coupled receptor located in the vertebrate retina and is responsible for dim light vision. Here, novel M39R and N55K variants were identified as causing an intriguing sector phenotype of RP in affected patients, with selective degeneration in the inferior retina. To gain insights into the molecular aspects associated with this sector RP phenotype, whose molecular mechanism remains elusive, the mutations were constructed by site-directed mutagenesis, expressed in heterologous systems, and studied by biochemical, spectroscopic, and functional assays. M39R and N55K opsins had variable degrees of chromophore regeneration when compared with WT opsin but showed no gross structural misfolding or altered trafficking. M39R showed a faster rate for transducin activation than WT rhodopsin with a faster metarhodopsinII decay, whereas N55K presented a reduced activation rate and an altered photobleaching pattern. N55K also showed an altered retinal release from the opsin binding pocket upon light exposure, affecting its optimal functional response. Our data suggest that these sector RP mutations cause different protein phenotypes that may be related to their different clinical progression. Overall, these findings illuminate the molecular mechanisms of sector RP associated with rhodopsin mutations. PMID:25359768

  3. An inherited virus influences the coexistence of parasitoid species through behaviour manipulation.

    PubMed

    Patot, Sabine; Allemand, Roland; Fleury, Frédéric; Varaldi, Julien

    2012-06-01

    The potential role of pathogens or parasites in maintaining species coexistence is well documented. However, the impact of vertically transmitted symbionts, that can markedly modify their host's biology, is largely unknown. Some females of the Drosophila parasitoid Leptopilina boulardi are infected with an inherited virus (LbFV). The virus forces females to lay supernumerary eggs in already parasitised hosts, thus allowing its horizontal transmission. Using two independent experimental procedures, we found that LbFV impacts inter-specific competition between L. boulardi and the related L. heterotoma. While L. boulardi rapidly outcompetes L. heterotoma in the absence of the virus, L. heterotoma was able to maintain or even to eliminate L. boulardi in the presence of LbFV. By forcing females to superparasitise, LbFV induced egg wastage in L. boulardi thus explaining its impact on the competition outcome. We conclude that this symbiont whose transmission is L. boulardi-density-dependant may affect the coexistence of Leptopilina species. PMID:22487404

  4. Epidemic History of Hepatitis C Virus among Patients with Inherited Bleeding Disorders in Iran.

    PubMed

    Samimi-Rad, Katayoun; Rahimnia, Ramin; Sadeghi, Mahdi; Malekpour, Seyed Amir; Marzban, Mona; Keshvari, Maryam; Kiani, Seyed Jalal; Alavian, Seyed-Moayed

    2016-01-01

    The high rate of hepatitis C virus (HCV) infection among transfusion related risk groups such as patients with inherited bleeding disorders highlighting the investigation on prevalent subtypes and their epidemic history among this group. In this study, 166 new HCV NS5B sequences isolated from patients with inherited bleeding disorders together with 29 sequences related to hemophiliacs obtained from a previous study on diversity of HCV in Iran were analyzed. The most prevalent subtype was 1a (65%), followed by 3a (18.7%),1b (14.5%),4(1.2%) and 2k (0.6%). Subtypes 1a and 3a showed exponential expansion during the 20th century. Whereas expansion of 3a started around 20 years earlier than 1a among the study patients, the epidemic growth of 1a revealed a delay of about 10 years compared with that found for this subtype in developed countries. Our results supported the view that the spread of 3a reached the plateau 10 years prior to the screening of blood donors for HCV. Rather, 1a reached the plateau when screening program was implemented. The differences observed in the epidemic behavior of HCV-1a and 3a may be associated with different transmission routes of two subtypes. Indeed, expansion of 1a was more commonly linked to blood transfusion, while 3a was more strongly associated to drug use and specially IDU after 1960. Our findings also showed HCV transmission through blood products has effectively been controlled from late 1990s. In conclusion, the implementation of strategies such as standard surveillance programs and subsiding antiviral treatments seems to be essential to both prevent new HCV infections and to decline the current and future HCV disease among Iranian patients with inherited bleeding disorders. PMID:27611688

  5. Inheritance of resistance to Pepper yellow mosaic virus in Capsicum baccatum var. pendulum.

    PubMed

    Bento, C S; Rodrigues, R; Gonçalves, L S A; Oliveira, H S; Santos, M H; Pontes, M C; Sudré, C P

    2013-01-01

    We investigated inheritance of resistance to Pepper yellow mosaic virus (PepYMV) in Capsicum baccatum var. pendulum accessions UENF 1616 (susceptible) crossed with UENF 1732 (resistant). Plants from generations P1, P2, F1, F2, BC1:1, and BC1:2 were inoculated and the symptoms were evaluated for 25 days. Subsequently, an area under the disease progress curve was calculated and subjected to generation means analysis. Only the average and epistatic effects were significant. The broad and narrow sense heritability estimates were 35.52 and 21.79%, respectively. The estimate of the minimum number of genes that control resistance was 7, indicating that resistance is polygenic and complex. Thus, methods to produce segregant populations that advocate selection in more advanced generations would be the most appropriate to produce chili pepper cultivars resistant to PepYMV. PMID:23661433

  6. Inheritance of resistance to Beet curly top virus in G122 common bean landrace

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beet curly top virus (BCTV) is a devastating disease of common bean in the Western U.S. Genetic resistance provides effective control but can be difficult to discern in early generations. G122, an Andean landrace from India, known as Jatu Rong, appears to possess resistance independent of Bct-1 gen...

  7. Inheritance of resistance to Beet curly top virus in the G122 common bean landrace

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beet curly top virus (BCTV) is a devastating disease of common bean in the Western U.S. Genetic resistance provides effective control but can be difficult to discern in early generations. G122, an Andean landrace from India, known as Jatu Rong, appears to possess resistance independent of Bct-1 gen...

  8. Decision-making about inherited cancer risk: exploring dimensions of genetic responsibility.

    PubMed

    Etchegary, Holly; Miller, Fiona; deLaat, Sonya; Wilson, Brenda; Carroll, June; Cappelli, Mario

    2009-06-01

    Since genetic information has implications for family members, some choices about genetic risk may be influenced by perceptions of responsibility to relatives. Drawing upon 25 semi-structured interviews with test recipients in Canada, this study explored decisions about inherited breast-ovarian and colon cancer. Qualitative data analysis revealed the pervasive significance of genetic responsibility in test decisions. We highlight three dimensions of genetic responsibility: 1) to know about the self for self; 2) to know about the self for others; 3) to know about the self to oblige others to know. It is argued that these dimensions of genetic responsibility have implications for test decisions, family relationships and other family members' desire to know (or not know) and to act (or not act) with respect to their own genetic risk. In particular, genetic responsibility may play out as a framing of a relative's moral obligation to know their risk that could obviate any interest they might have in not knowing. We conclude that perceptions of responsibility to-and of-other family members be thoroughly explored in genetic counseling sessions. PMID:19294336

  9. Genetics of Heading Time in Wheat (TRITICUM AESTIVUM L.). II. the Inheritance of Vernalization Response

    PubMed Central

    Klaimi, Y. Y.; Qualset, C. O.

    1974-01-01

    The inheritance of vernalization response was studied in crosses involving four spring wheats (Sonora 64 (S), Pitic 62 (P), Justin (J) and Thatcher (T)) and three winter wheats (Blackhull (B), Early Blackhull (E) and Extra Early Blackhull (EE)).—All winter cultivars were highly responsive to vernalization, and Pitic 62 was the only spring cultivar whose time to heading was significantly accelerated following cold treatments. When vernalized and grown under long days, spring and winter cultivars became comparable in their heading response, indicating that cold requirement is the major attribute differentiating the heading behavior of true spring and true winter wheats.—Inheritance of growth habit in the F1 generation of a five-parent diallel cross showed dominance of the spring character in all spring x winter crosses. Depending on the cross, one or two duplicate major genes governing growth habit were detected in F2, F3 and backcross generations grown in the field under long days in the absence of vernalizing temperatures. In some spring x winter crosses most of the variation in heading time among spring segregates could be attributed to the effects of major genes conditioning growth habit. In other crosses the heading patterns appeared more complex, indicating that genes with smaller effects are also involved in the control of heading response under spring or summer environments.—Evidence was presented supporting the hypothesis that the cultivar Pitic 62 carries a different allele at one of the two major loci governing its spring habit. This allele was associated with some response to vernalization and acted as a dominant gene determining earliness under low temperature vernalization, but as a partially recessive gene determining lateness in the absence of vernalizing temperatures. Genotypes were assigned to five cultivars as follows: S, CC DD; P, CC D'D'; J, cc DD; B and EE, cc dd.—The presence of major and minor genes and of multiple alleles governing

  10. Genetics of Heading Time in Wheat (TRITICUM AESTIVUM L.). I. the Inheritance of Photoperiodic Response.

    PubMed

    Klaimi, Y Y; Qualset, C O

    1973-05-01

    The inheritance of photoperiodic response was studied in crosses involving four spring wheats (Sonora 64, Pitic 62, Justin and Thatcher) and three winter wheats (Blackhull, Early Blackhull and Extra Early Blackhull). The parental cultivars were classified into a photoperiod-sensitive group (Justin, Thatcher, Blackhull and Early Blackhull) and a relatively photoperiod-insensitive group (Sonora 64, Pitic 62 and Extra Early Blackhull) based on their heading response when vernalized and grown under different daylength regimes.-F(1) data indicated that daylength insensitivity is not always dominant over day-length sensitivity and that the dominance relationship with respect to photoperiodic response depends on the alleles present in the parents. The heading patterns after vernalization and growth under short days of F(1), F(2), F(3) and backcross generations of a 4-parent diallel cross involving Justin, Sonora 64, Extra Early Blackhull and Blackhull could be satisfactorily explained on the basis of two major loci with three alleles at each locus. The genotype for each parent was suggested in terms of these loci. Genes with minor effects also influenced the photoperiodic response in a quantitative manner.-Diallel cross analysis of the number of days to heading (log scale) indicated significant additive and dominance genetic variances, a high average degree of dominance for earliness (photoperiod insensitivity) and a preponderance of recessive alleles in the parents acting in the direction of lateness (photoperiod sensitivity). Estimation of the genetic components of variation contained in the generation means of individual crosses (untransformed data) showed that, besides additivity and dominance, epistasis was also an important factor in the genetic control of photoperiodic response in wheat. PMID:17248607

  11. Virus-Specific Cellular Response in Hepatitis C Virus Infection.

    PubMed

    Kaźmierczak, Justyna; Caraballo Cortes, Kamila; Bukowska-Ośko, Iwona; Radkowski, Marek

    2016-04-01

    Studies performed on chimpanzees and humans have revealed that strong, multispecific and sustained CD4(+) and CD8(+) T cell immune responses is a major determinant of hepatitis C virus (HCV) clearance. However, spontaneous elimination of the virus occurs in minority of infected individuals and cellular response directed against HCV antigens is not persistent in individuals with chronic infection. This review presents characteristics of the HCV-specific T cell response in patients with different clinical course of infection, including acute and chronic infection, persons who spontaneously eliminated HCV and non-infected subjects exposed to HCV. Detection of HCV-specific response, especially in non-infected subjects exposed to HCV, may be indicative of HCV prevalence in population and rate of spontaneous viral clearance. Understanding the mechanisms and role of HCV-specific cellular immune response would contribute to better understanding of HCV epidemiology, immunopathogenesis and may help to design an effective vaccine. PMID:26429740

  12. Inherited protein C deficiency and coumarin-responsive chronic relapsing purpura fulminans in a newborn infant.

    PubMed

    Branson, H E; Katz, J; Marble, R; Griffin, J H

    1983-11-19

    A coumarin-responsive chronic relapsing purpura fulminans syndrome is described in a protein-C-deficient newborn infant. Episodes of acute disseminated intravascular coagulation (DIC) and cutaneous gangrene, which first appeared at age 11 h, were effectively controlled for 28 months with transfusions of fresh-frozen plasma. Cryoprecipitate and cryoprecipitate-poor plasma induced remissions as long as those induced by fresh-frozen plasma (less than or equal to 72 h). Coumarins sustained a cryoprecipitate-induced remission for 19 days: they were then electively discontinued and 17 h later the patient had an acute exacerbation of DIC with haemorrhaging. Family studies showed protein C levels of 31-40% in the subject's symptom-free mother and full and half brothers. DIC, the coumarin effect, and the inherited protein C abnormality appear to have contributed to the extremely low plasma levels (less than or equal to 6%) of protein C in the patient. This experience suggests that protein C deficiency may greatly compromise the ability of newborn infants to control consumptive disorders. PMID:6139528

  13. Reduction in maternal Polycomb levels contributes to transgenerational inheritance of a response to toxic stress in flies

    PubMed Central

    Stern, Shay; Snir, Orli; Mizrachi, Eran; Galili, Matana; Zaltsman, Inbal; Soen, Yoav

    2014-01-01

    Transgenerational persistence of parental responses to environmental stimuli has been reported in various organisms, but the underlying mechanisms remain underexplored. In one of these reported examples, we have shown that exposure of fly larvae to G418 antibiotic leads to non-Mendelian inheritance of ectopic induction of certain developmental genes. Here we investigate if this inheritance involves changes in mRNA composition within the early, maternal-stage offspring embryos of exposed flies. Exposure to G418 in F1 modified the maternal RNA levels of many genes in their early (F2) embryos. This includes reduction of maternal Polycomb group genes which persisted in the following generation of embryos (F3). To investigate the functional meaning of this reduction, we compared genetically normal embryos of Polycomb mutant females to normal embryos of normal females. Analysis with two different alleles of Polycomb, Pc1 and Pc3, revealed that maternal reduction in Polycomb gene dosage has a positive influence on the inheritance of induced expression. Together, this shows that exposure to G418 stress reduces the maternal levels of Polycomb in the offspring embryos and this reduction contributes to the inheritance of induced expression. PMID:24535443

  14. The immune response to Nipah virus infection.

    PubMed

    Prescott, Joseph; de Wit, Emmie; Feldmann, Heinz; Munster, Vincent J

    2012-09-01

    Nipah virus has recently emerged as a zoonotic agent that is highly pathogenic in humans. Outbreaks have occurred regularly over the last two decades in South and Southeast Asia, where mortality rates reach as high as 100 %. The natural reservoir of Nipah virus has been identified as bats from the Pteropus family, where infection is largely asymptomatic. Human disease is characterized by both respiratory and encephalitic components, and thus far, no effective vaccine or intervention strategies are available. Little is know about how the immune response of either the reservoir host or incidental hosts responds to infection, and how this immune response is either inadequate or might contribute to disease in the dead-end host. Experimental vaccines strategies have given us some insight into the immunological requirements for protection. This review summarizes our current understanding of the immune response to Nipah virus infection and emphasizes the need for further research. PMID:22669317

  15. Antigen-specific immune responses in cattle with inherited beta2-integrin deficiency.

    PubMed

    Müller, K E; Hoek, A; Rutten, V P; Bernadina, W E; Wentink, G H

    1997-08-01

    The significance of beta2-integrins for the generation of antigen-specific immune responses in vivo was studied employing the bovine model of beta2-integrin deficiency. To that end four cattle with bovine leukocyte adhesion deficiency (BLAD) and healthy age-matched controls were immunized with tetanus toxoid (TT) and rabies virus (RV) vaccines three times in monthly intervals. In addition, two animals with BLAD and three controls received a fourth vaccination 8 months after the start of the study. Proliferative responses of peripheral blood mononuclear cells (PBMC) to the antigens TT and RV as well as specific serum immunoglobulin G (IgG) titers were determined in intervals for up to 10 months after primary vaccination. Proliferative responses of PBMC to TT and RV were substantially lower in cattle with BLAD than in controls, although PBMC from cattle with BLAD were shown to have the capacity to proliferate in the response to the mitogen concanavalin A. Occurrence of antigen-specific IgG titers was delayed and they were considerably lower in cattle with BLAD compared to controls. Finally, treatment of TT- and RV-stimulated PBMC from an immunized control with different concentrations of the anti-CD18 monoclonal antibody R15.7 resulted in a dose-dependent inhibition of lymphocyte proliferation to almost 100%. The results of the present study show that beta2-integrin deficiency leads to delayedand severely impaired immune responsiveness in vivo. The observations that antibody production, although considerably delayed and impaired, does occur and that apparently class-switching takes place in BLAD indicate T-cell reactivity in vivo. PMID:9343338

  16. Immune responses to infectious laryngotracheitis virus.

    PubMed

    Coppo, Mauricio J C; Hartley, Carol A; Devlin, Joanne M

    2013-11-01

    Infectious laryngotracheitis (ILT) is an upper respiratory tract disease in chickens caused by infectious laryngotracheitis virus (ILTV), an alphaherpesvirus. Despite the extensive use of attenuated, and more recently recombinant, vaccines for the control of this disease, ILT continues to affect the intensive poultry industries worldwide. Innate and cell-mediated, rather than humoral immune responses, have been identified as responsible for protection against disease. This review examines the current understandings in innate and adaptive immune responses towards ILTV, as well as the role of ILTV glycoprotein G in modulating the host immune response towards infection. Protective immunity induced by ILT vaccines is also examined. The increasing availability of tools and reagents for the characterisation of avian innate and cell-mediated immune responses are expected to further our understanding of immunity against ILTV and drive the development of new generation vaccines towards enhanced control of this disease. PMID:23567343

  17. Inheritance and molecular mapping of an allele providing resistance to Cowpea mild mottle virus-like symptoms in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Damage to soybean [Glycine max (L.) Merr.] from Cowpea mild mottle virus-like (CPMMV-L) symptoms (family: Betaflexiviridae, genus: Carlavirus) has been of increasing concern in Argentina, Brazil, Mexico, and Puerto Rico. Soybean cultivars and lines differing in their reaction to the virus have been ...

  18. MiR-204 is responsible for inherited retinal dystrophy associated with ocular coloboma.

    PubMed

    Conte, Ivan; Hadfield, Kristen D; Barbato, Sara; Carrella, Sabrina; Pizzo, Mariateresa; Bhat, Rajeshwari S; Carissimo, Annamaria; Karali, Marianthi; Porter, Louise F; Urquhart, Jill; Hateley, Sofie; O'Sullivan, James; Manson, Forbes D C; Neuhauss, Stephan C F; Banfi, Sandro; Black, Graeme C M

    2015-06-23

    Ocular developmental disorders, including the group classified as microphthalmia, anophthalmia, and coloboma (MAC) and inherited retinal dystrophies, collectively represent leading causes of hereditary blindness. Characterized by extreme genetic and clinical heterogeneity, the separate groups share many common genetic causes, in particular relating to pathways controlling retinal and retinal pigment epithelial maintenance. To understand these shared pathways and delineate the overlap between these groups, we investigated the genetic cause of an autosomal dominantly inherited condition of retinal dystrophy and bilateral coloboma, present in varying degrees in a large, five-generation family. By linkage analysis and exome sequencing, we identified a previously undescribed heterozygous mutation, n.37 C > T, in the seed region of microRNA-204 (miR-204), which segregates with the disease in all affected individuals. We demonstrated that this mutation determines significant alterations of miR-204 targeting capabilities via in vitro assays, including transcriptome analysis. In vivo injection, in medaka fish (Oryzias latipes), of the mutated miR-204 caused a phenotype consistent with that observed in the family, including photoreceptor alterations with reduced numbers of both cones and rods as a result of increased apoptosis, thereby confirming the pathogenic effect of the n.37 C > T mutation. Finally, knockdown assays in medaka fish demonstrated that miR-204 is necessary for normal photoreceptor function. Overall, these data highlight the importance of miR-204 in the regulation of ocular development and maintenance and provide the first evidence, to our knowledge, of its contribution to eye disease, likely through a gain-of-function mechanism. PMID:26056285

  19. MiR-204 is responsible for inherited retinal dystrophy associated with ocular coloboma

    PubMed Central

    Conte, Ivan; Hadfield, Kristen D.; Barbato, Sara; Carrella, Sabrina; Pizzo, Mariateresa; Bhat, Rajeshwari S.; Carissimo, Annamaria; Karali, Marianthi; Porter, Louise F.; Urquhart, Jill; Hateley, Sofie; O’Sullivan, James; Manson, Forbes D. C.; Neuhauss, Stephan C. F.; Banfi, Sandro; Black, Graeme C. M.

    2015-01-01

    Ocular developmental disorders, including the group classified as microphthalmia, anophthalmia, and coloboma (MAC) and inherited retinal dystrophies, collectively represent leading causes of hereditary blindness. Characterized by extreme genetic and clinical heterogeneity, the separate groups share many common genetic causes, in particular relating to pathways controlling retinal and retinal pigment epithelial maintenance. To understand these shared pathways and delineate the overlap between these groups, we investigated the genetic cause of an autosomal dominantly inherited condition of retinal dystrophy and bilateral coloboma, present in varying degrees in a large, five-generation family. By linkage analysis and exome sequencing, we identified a previously undescribed heterozygous mutation, n.37C > T, in the seed region of microRNA-204 (miR-204), which segregates with the disease in all affected individuals. We demonstrated that this mutation determines significant alterations of miR-204 targeting capabilities via in vitro assays, including transcriptome analysis. In vivo injection, in medaka fish (Oryzias latipes), of the mutated miR-204 caused a phenotype consistent with that observed in the family, including photoreceptor alterations with reduced numbers of both cones and rods as a result of increased apoptosis, thereby confirming the pathogenic effect of the n.37C > T mutation. Finally, knockdown assays in medaka fish demonstrated that miR-204 is necessary for normal photoreceptor function. Overall, these data highlight the importance of miR-204 in the regulation of ocular development and maintenance and provide the first evidence, to our knowledge, of its contribution to eye disease, likely through a gain-of-function mechanism. PMID:26056285

  20. CHARACTERIZATION OF THE EXPRESSION AND INHERITANCE OF POTATO LEAFROLL VIRUS (PLRV) AND POTATO VIRUS Y (PVY) RESISTANCE IN THREE GENERATIONS OF GERMPLASM DERIVED FROM SOLANUM ETUBEROSUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato virus Y (PVY) and potato leafroll virus (PLRV) are two of the most important viral pathogens of potato. Infection of potato by these viruses results in losses of yield and quality in commercial production and in the rejection of seed in certification programs. Host plant resistance to these...

  1. Inherited Neuropathies

    PubMed Central

    Li, Jun

    2013-01-01

    With a prevalence of 1 in 2500 people, inherited peripheral nerve diseases, collectively called Charcot-Marie-Tooth disease (CMT), are among the most common inherited neurologic disorders. Patients with CMT typically present with chronic muscle weakness and atrophy in limbs, sensory loss in the feet and hands, and foot deformities. Clinical similarities between patients often require genetic testing to achieve a precise diagnosis. In this article, the author reviews the clinical and pathologic features of CMT, and demonstrates how electrodiagnostic and genetic tools are used to assist in the diagnosis and symptomatic management of the diseases. Several cases are presented to illustrate the diagnostic processes. PMID:23117945

  2. Recessively inherited L-DOPA-responsive dystonia caused by a point mutation (Q381K) in the tyrosine hydroxylase gene.

    PubMed

    Knappskog, P M; Flatmark, T; Mallet, J; Lüdecke, B; Bartholomé, K

    1995-07-01

    Tyrosine hydroxylase (TH) catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA), the rate-limiting step in the biosynthesis of dopamine. Recently, we described a point mutation in hTH (Q381K) in a family of two siblings suffering from progressive L-DOPA-responsive dystonia (DRD), representing the first reported mutation in this gene. We here describe the cloning, expression and steady-state kinetic properties of the recombinant mutant enzyme. When expressed by a coupled in vitro transcription-translation system and in E. coli, the mutant enzyme represents a kinetic variant form, with a reduced affinity for L-tyrosine. The 'residual activity' of about 15% of the corresponding wild-type hTH (isoform hTH1), at substrate concentrations prevailing in vivo, is compatible with the clinical phenotype of the two Q381K homozygote patients carrying this recessively inherited mutation. PMID:8528210

  3. Immune responses of infants to infection with respiratory viruses and live attenuated respiratory virus candidate vaccines.

    PubMed

    Crowe, J E

    1998-01-01

    Respiratory viruses such as respiratory syncytial virus (RSV), the parainfluenza viruses (PIV), and the influenza viruses cause severe lower respiratory tract diseases in infants and children throughout the world. Experimental live attenuated vaccines for each of these viruses are being developed for intranasal administration in the first weeks or months of life. A variety of promising RSV, PIV-3, and influenza virus vaccine strains have been developed by classical biological methods, evaluated extensively in preclinical and clinical studies, and shown to be attenuated and genetically stable. The ongoing clinical evaluation of these vaccine candidates, coupled with recent major advances in the ability to develop genetically engineered viruses with specified mutations, may allow the rapid development of respiratory virus strains that possess ideal levels of replicative capacity and genetic stability in vivo. A major remaining obstacle to successful immunization of infants against respiratory virus associated disease may be the relatively poor immune response of very young infants to primary virus infection. This paper reviews the immune correlates of protection against disease caused by these viruses, immune responses of infants to naturally-acquired infection, and immune responses of infants to experimental infection with candidate vaccine viruses. PMID:9711783

  4. Inhibitors of the Interferon Response Enhance Virus Replication In Vitro

    PubMed Central

    Stewart, Claire E.; Randall, Richard E.; Adamson, Catherine S.

    2014-01-01

    Virus replication efficiency is influenced by two conflicting factors, kinetics of the cellular interferon (IFN) response and induction of an antiviral state versus speed of virus replication and virus-induced inhibition of the IFN response. Disablement of a virus's capacity to circumvent the IFN response enables both basic research and various practical applications. However, such IFN-sensitive viruses can be difficult to grow to high-titer in cells that produce and respond to IFN. The current default option for growing IFN-sensitive viruses is restricted to a limited selection of cell-lines (e.g. Vero cells) that have lost their ability to produce IFN. This study demonstrates that supplementing tissue-culture medium with an IFN inhibitor provides a simple, effective and flexible approach to increase the growth of IFN-sensitive viruses in a cell-line of choice. We report that IFN inhibitors targeting components of the IFN response (TBK1, IKK2, JAK1) significantly increased virus replication. More specifically, the JAK1/2 inhibitor Ruxolitinib enhances the growth of viruses that are sensitive to IFN due to (i) loss of function of the viral IFN antagonist (due to mutation or species-specific constraints) or (ii) mutations/host cell constraints that slow virus spread such that it can be controlled by the IFN response. This was demonstrated for a variety of viruses, including, viruses with disabled IFN antagonists that represent live-attenuated vaccine candidates (Respiratory Syncytial Virus (RSV), Influenza Virus), traditionally attenuated vaccine strains (Measles, Mumps) and a slow-growing wild-type virus (RSV). In conclusion, supplementing tissue culture-medium with an IFN inhibitor to increase the growth of IFN-sensitive viruses in a cell-line of choice represents an approach, which is broadly applicable to research investigating the importance of the IFN response in controlling virus infections and has utility in a number of practical applications including

  5. Astrocyte response to St. Louis encephalitis virus.

    PubMed

    Zuza, Adriano Lara; Barros, Heber Leão Silva; de Mattos Silva Oliveira, Thelma Fátima; Chávez-Pavoni, Juliana Helena; Zanon, Renata Graciele

    2016-06-01

    St. Louis encephalitis virus (SLEV), a flavivirus transmitted to humans by Culex mosquitoes, causes clinical symptoms ranging from acute febrile disorder to encephalitis. To reach the central nervous system (CNS) from circulating blood, the pathogen must cross the blood-brain barrier formed by endothelial cells and astrocytes. Because astrocytes play an essential role in CNS homeostasis, in this study these cells were infected with SLEV and investigated for astrogliosis, major histocompatibility complex (MHC)-I-dependent immune response, and apoptosis by caspase-3 activation. Cultures of Vero cells were used as a positive control for the viral infection. Cytopathic effects were observed in both types of cell cultures, and the cytotoxicity levels of the two were compared. Astrocytes infected with a dilution of 1E-01 (7.7E+08 PFU/mL) had a reduced mortality rate of more than 50% compared to the Vero cells. In addition, the astrocytes responded to the flavivirus infection with increased MHC-I expression and astrogliosis, characterized by intense glial fibrillary acidic protein expression and an increase in the number and length of cytoplasmic processes. When the astrocytes were exposed to higher viral concentrations, a proportional increase in caspase-3 expression was observed, as well as nuclear membrane destruction. SLEV immunostaining revealed a perinuclear location of the virus during the replication process. Together, these results suggest that mechanisms other than SLEV infection in astrocytes must be associated with the development of the neuroinvasive form of the disease. PMID:26975980

  6. Multilevel selection 1: Quantitative genetics of inheritance and response to selection.

    PubMed

    Bijma, Piter; Muir, William M; Van Arendonk, Johan A M

    2007-01-01

    Interaction among individuals is universal, both in animals and in plants, and substantially affects evolution of natural populations and responses to artificial selection in agriculture. Although quantitative genetics has successfully been applied to many traits, it does not provide a general theory accounting for interaction among individuals and selection acting on multiple levels. Consequently, current quantitative genetic theory fails to explain why some traits do not respond to selection among individuals, but respond greatly to selection among groups. Understanding the full impacts of heritable interactions on the outcomes of selection requires a quantitative genetic framework including all levels of selection and relatedness. Here we present such a framework and provide expressions for the response to selection. Results show that interaction among individuals may create substantial heritable variation, which is hidden to classical analyses. Selection acting on higher levels of organization captures this hidden variation and therefore always yields positive response, whereas individual selection may yield response in the opposite direction. Our work provides testable predictions of response to multilevel selection and reduces to classical theory in the absence of interaction. Statistical methodology provided elsewhere enables empirical application of our work to both natural and domestic populations. PMID:17110494

  7. The greasy response to virus infections

    PubMed Central

    Tanner, Lukas Bahati; Lee, Benhur

    2013-01-01

    Previews Virus replication requires lipid metabolism, but how lipids mediate virus infection remains obscure. In this issue, Amini-Bavil-Olyaee et al. (2013) reveal that IFITM proteins disturb cholesterol homeostasis to block virus entry. Previously in Cell, Morita and colleagues (2013) showed the antiviral potency of the lipid mediator protectin D1. PMID:23601099

  8. Correlation between Virus Replication and Antibody Responses in Macaques following Infection with Pandemic Influenza A Virus

    PubMed Central

    Koopman, Gerrit; Dekking, Liesbeth; Mortier, Daniëlla; Nieuwenhuis, Ivonne G.; van Heteren, Melanie; Kuipers, Harmjan; Remarque, Edmond J.; Radošević, Katarina; Bogers, Willy M. J. M.

    2015-01-01

    ABSTRACT Influenza virus infection of nonhuman primates is a well-established animal model for studying pathogenesis and for evaluating prophylactic and therapeutic intervention strategies. However, usually a standard dose is used for the infection, and there is no information on the relation between challenge dose and virus replication or the induction of immune responses. Such information is also very scarce for humans and largely confined to evaluation of attenuated virus strains. Here, we have compared the effect of a commonly used dose (4 × 106 50% tissue culture infective doses) versus a 100-fold-higher dose, administered by intrabronchial installation, to two groups of 6 cynomolgus macaques. Animals infected with the high virus dose showed more fever and had higher peak levels of gamma interferon in the blood. However, virus replication in the trachea was not significantly different between the groups, although in 2 out of 6 animals from the high-dose group it was present at higher levels and for a longer duration. The virus-specific antibody response was not significantly different between the groups. However, antibody enzyme-linked immunosorbent assay, virus neutralization, and hemagglutination inhibition antibody titers correlated with cumulative virus production in the trachea. In conclusion, using influenza virus infection in cynomolgus macaques as a model, we demonstrated a relationship between the level of virus production upon infection and induction of functional antibody responses against the virus. IMPORTANCE There is only very limited information on the effect of virus inoculation dose on the level of virus production and the induction of adaptive immune responses in humans or nonhuman primates. We found only a marginal and variable effect of virus dose on virus production in the trachea but a significant effect on body temperature. The induction of functional antibody responses, including virus neutralization titer, hemagglutination inhibition

  9. Multilevel Selection 2: Estimating the Genetic Parameters Determining Inheritance and Response to Selection

    PubMed Central

    Bijma, Piter; Muir, William M.; Ellen, Esther D.; Wolf, Jason B.; Van Arendonk, Johan A. M.

    2007-01-01

    Interactions among individuals are universal, both in animals and in plants and in natural as well as domestic populations. Understanding the consequences of these interactions for the evolution of populations by either natural or artificial selection requires knowledge of the heritable components underlying them. Here we present statistical methodology to estimate the genetic parameters determining response to multilevel selection of traits affected by interactions among individuals in general populations. We apply these methods to obtain estimates of genetic parameters for survival days in a population of layer chickens with high mortality due to pecking behavior. We find that heritable variation is threefold greater than that obtained from classical analyses, meaning that two-thirds of the full heritable variation is hidden to classical analysis due to social interactions. As a consequence, predicted responses to multilevel selection applied to this population are threefold greater than classical predictions. This work, combined with the quantitative genetic theory for response to multilevel selection presented in an accompanying article in this issue, enables the design of selection programs to effectively reduce competitive interactions in livestock and plants and the prediction of the effects of social interactions on evolution in natural populations undergoing multilevel selection. PMID:17110493

  10. Transcriptional Profiling of the Immune Response to Marburg Virus Infection

    PubMed Central

    Yen, Judy; Caballero, Ignacio S.; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J.

    2015-01-01

    ABSTRACT Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. IMPORTANCE Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the

  11. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    PubMed

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses. PMID:25904110

  12. High type I error and misrepresentations in search for transgenerational epigenetic inheritance: response to Guerrero-Bosagna.

    PubMed

    Iqbal, Khursheed; Tran, Diana A; Li, Arthur X; Warden, Charles; Bai, Angela Y; Singh, Purnima; Madaj, Zach B; Winn, Mary E; Wu, Xiwei; Pfeifer, Gerd P; Szabó, Piroska E

    2016-01-01

    In a recent paper, we described our efforts in search for evidence supporting epigenetic transgenerational inheritance caused by endocrine disrupter chemicals. One aspect of our study was to compare genome-wide DNA methylation changes in the vinclozolin-exposed fetal male germ cells (n = 3) to control samples (n = 3), their counterparts in the next, unexposed, generation (n = 3 + 3) and also in adult spermatozoa (n = 2 + 2) in both generations. We reported finding zero common hits in the intersection of these four comparisons. In our interpretation, this result did not support the notion that DNA methylation provides a mechanism for a vinclozolin-induced transgenerational male infertility phenotype. In response to criticism by Guerrero-Bosagna regarding our statistical power in the above study, here we provide power calculations to clarify the statistical power of our study and to show the validity of our conclusions. We also explain here how our data is misinterpreted in the commentary by Guerrero-Bosagna by leaving out important data points from consideration.Please see related Correspondence article: xxx (13059_2016_982) and related Research article: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0619-z. PMID:27411809

  13. Inherited Pain

    PubMed Central

    Eberhardt, Mirjam; Nakajima, Julika; Klinger, Alexandra B.; Neacsu, Cristian; Hühne, Kathrin; O'Reilly, Andrias O.; Kist, Andreas M.; Lampe, Anne K.; Fischer, Kerstin; Gibson, Jane; Nau, Carla; Winterpacht, Andreas; Lampert, Angelika

    2014-01-01

    Inherited erythromelalgia (IEM) causes debilitating episodic neuropathic pain characterized by burning in the extremities. Inherited “paroxysmal extreme pain disorder” (PEPD) differs in its clinical picture and affects proximal body areas like the rectal, ocular, or jaw regions. Both pain syndromes have been linked to mutations in the voltage-gated sodium channel Nav1.7. Electrophysiological characterization shows that IEM-causing mutations generally enhance activation, whereas mutations leading to PEPD alter fast inactivation. Previously, an A1632E mutation of a patient with overlapping symptoms of IEM and PEPD was reported (Estacion, M., Dib-Hajj, S. D., Benke, P. J., Te Morsche, R. H., Eastman, E. M., Macala, L. J., Drenth, J. P., and Waxman, S. G. (2008) NaV1.7 Gain-of-function mutations as a continuum. A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J. Neurosci. 28, 11079–11088), displaying a shift of both activation and fast inactivation. Here, we characterize a new mutation of Nav1.7, A1632T, found in a patient suffering from IEM. Although transfection of A1632T in sensory neurons resulted in hyperexcitability and spontaneous firing of dorsal root ganglia (DRG) neurons, whole-cell patch clamp of transfected HEK cells revealed that Nav1.7 activation was unaltered by the A1632T mutation but that steady-state fast inactivation was shifted to more depolarized potentials. This is a characteristic normally attributed to PEPD-causing mutations. In contrast to the IEM/PEPD crossover mutation A1632E, A1632T failed to slow current decay (i.e. open-state inactivation) and did not increase resurgent currents, which have been suggested to contribute to high-frequency firing in physiological and pathological conditions. Reduced fast inactivation without increased resurgent currents induces symptoms of IEM, not PEPD, in the new Nav1.7 mutation, A1632T

  14. Unfolded protein response in hepatitis C virus infection

    PubMed Central

    Chan, Shiu-Wan

    2014-01-01

    Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus of clinical importance. The virus establishes a chronic infection and can progress from chronic hepatitis, steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The mechanisms of viral persistence and pathogenesis are poorly understood. Recently the unfolded protein response (UPR), a cellular homeostatic response to endoplasmic reticulum (ER) stress, has emerged to be a major contributing factor in many human diseases. It is also evident that viruses interact with the host UPR in many different ways and the outcome could be pro-viral, anti-viral or pathogenic, depending on the particular type of infection. Here we present evidence for the elicitation of chronic ER stress in HCV infection. We analyze the UPR signaling pathways involved in HCV infection, the various levels of UPR regulation by different viral proteins and finally, we propose several mechanisms by which the virus provokes the UPR. PMID:24904547

  15. Inherit Space

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.; Jenks, K. C.

    1997-01-01

    The objective of the proposed research was to begin development of a unique educational tool targeted at educating and inspiring young people 12-16 years old about NASA and the Space Program. Since these young people are the future engineers, scientists and space pioneers, the nurturing of their enthusiasm and interest is of critical importance to the Nation. This summer the basic infrastructure of the tool was developed in the context of an educational game paradigm. The game paradigm has achieved remarkable success in maintaining the interest of young people in a self-paced, student-directed learning environment. This type of environment encourages student exploration and curiosity which are exactly the traits that future space pioneers need to develop to prepare for the unexpected. The Inherit Space Educational Tool is an open-ended learning environment consisting of a finite-state machine classic adventure game paradigm. As the young person explores this world, different obstacles must be overcome. Rewards will be offered such as using the flight simulator to fly around and explore Titan. This simulator was modeled on conventional Earth flight simulators but has been considerably enhanced to add texture mapping of Titan's atmosphere utilizing the latest information from the NASA Galileo Space Probe. Additional scenery was added to provide color VGA graphics of a futuristic research station on Titan as well as an interesting story to keep the youngster's attention. This summer the game infrastructure has been developed as well as the Titan Flight Simulator. A number of other enhancements are planned.

  16. Activation of the DNA Damage Response by RNA Viruses.

    PubMed

    Ryan, Ellis L; Hollingworth, Robert; Grand, Roger J

    2016-01-01

    RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively studied. It is apparent, however, that many RNA viruses can also induce significant DNA damage, even in cases where viral replication takes place exclusively in the cytoplasm. DNA damage can contribute to the pathogenesis of RNA viruses through the triggering of apoptosis, stimulation of inflammatory immune responses and the introduction of deleterious mutations that can increase the risk of tumorigenesis. In addition, activation of DDR pathways can contribute positively to replication of viral RNA genomes. Elucidation of the interactions between RNA viruses and the DDR has provided important insights into modulation of host cell functions by these pathogens. This review summarises the current literature regarding activation and manipulation of the DDR by several medically important RNA viruses. PMID:26751489

  17. Activation of the DNA Damage Response by RNA Viruses

    PubMed Central

    Ryan, Ellis L.; Hollingworth, Robert; Grand, Roger J.

    2016-01-01

    RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively studied. It is apparent, however, that many RNA viruses can also induce significant DNA damage, even in cases where viral replication takes place exclusively in the cytoplasm. DNA damage can contribute to the pathogenesis of RNA viruses through the triggering of apoptosis, stimulation of inflammatory immune responses and the introduction of deleterious mutations that can increase the risk of tumorigenesis. In addition, activation of DDR pathways can contribute positively to replication of viral RNA genomes. Elucidation of the interactions between RNA viruses and the DDR has provided important insights into modulation of host cell functions by these pathogens. This review summarises the current literature regarding activation and manipulation of the DDR by several medically important RNA viruses. PMID:26751489

  18. Individuals with inherited chromosomally integrated human herpes virus 6 (ciHHV-6) have functionally active HHV-6 specific T-cell immunity.

    PubMed

    Strenger, V; Kayser, S; Witte, K-E; Lassner, D; Schwinger, W; Jahn, G; Urban, C; Feuchtinger, T

    2016-02-01

    To evaluate the human herpes virus 6 (HHV-6) -specific immune response in individuals with chromosomally integrated HHV-6 (ciHHV-6), we measured HHV-6-antigen-specific cytokine responses (interferon-γ, interleukin-2, tumour necrosis factor-α) in T cells by flow cytometry in 12 and 16 individuals with and without ciHHV-6, respectively. All individuals with ciHHV-6 showed HHV-6-specific T cells with higher frequencies of HHV-6-specific CD8(+) cells (0.03-14.93, median 2.15% of CD8(+) cells) compared with non-ciHHV-6 (0.0-10.67, median 0.36%, p 0.026). The observed increased HHV-6-specific functionally active responses in individuals with ciHHV-6 clearly disprove speculations on immune tolerance in ciHHV-6 and indicate clinical and immunological implications of ciHHV-6. PMID:26482270

  19. Protective and Pathogenic Responses to Chikungunya Virus Infection

    PubMed Central

    Long, Kristin M.; Heise, Mark T.

    2015-01-01

    Chikungunya virus (CHIKV) is an arbovirus responsible for causing epidemic outbreaks of human disease characterized by painful and often debilitating arthralgia. Recently CHIKV has moved into the Caribbean and the Americas resulting in massive outbreaks in naïve human populations. Given the importance of CHIKV as an emerging disease, a significant amount of effort has gone into interpreting the virus-host interactions that contribute to protection or virus-induced pathology following CHIKV infection, with the long term goal of using this information to develop new therapies or safe and effective anti-CHIKV vaccines. This work has made it clear that numerous distinct host responses are involved in the response to CHIKV infection, where some aspects of the host innate and adaptive immune response protect from or limit virus-induced disease, while other pathways actually exacerbate the virus-induced disease process. This review will discuss mechanisms that have been identified as playing a role in the host response to CHIKV infection and illustrate the importance of carefully evaluating these responses to determine whether they play a protective or pathologic role during CHIKV infection. PMID:26366337

  20. Genetic Inheritance

    MedlinePlus

    ... two sex chromosomes (the X chromosome and the Y chromosome) are responsible for distinguishing men and women. Everyone ... while men have one X chromosome and one Y chromosome. So while women have two copies of every ...

  1. Immune response of sows and their offspring to pseudorabies virus: serum neutralization response to vaccination and field virus challenge.

    PubMed Central

    Wright, J C; Thawley, D G; Solorzano, R F

    1984-01-01

    One month prior to breeding, sows were vaccinated with an attenuated pseudorabies virus vaccine or challenged with a field strain of pseudorabies virus. A third group of sows were not vaccinated or challenged before breeding. Pigs from these sows were vaccinated at 3, 6, or 12 weeks of age and challenged with virulent virus three weeks later. One pig from each litter served as an unvaccinated, unchallenged control. Serum neutralization titers of these pigs were monitored from birth until 22 weeks of age. Titers of the sows were monitored through breeding, gestation and farrowing. The maximum prefarrowing anti-pseudorabies virus titer in the field virus challenged sows occurred four weeks following challenge. A significant decline in titers occurred at farrowing. Titers rose from one week postfarrowing and then declined. Titers in the field virus infected sows were consistently two to threefold greater than those of the vaccinated sows. The maximum prefarrowing anti-pseudorabies virus titer in the vaccinated sows occurred six weeks following vaccination. The geometric mean titer in these sow's then decreased and increased for two weeks after farrowing. The results in the pigs can be summarized as follows: Pigs from control sows had a greater serological response following field virus challenge than following vaccination with a modified live virus. Pigs from control sows responded serologically to vaccination at 3, 6 and 12 weeks of age. Pigs from control sows which were challenged at 6, 9 and 15 weeks of age had similar antibody responses. Pigs from vaccinated sows had no increase in titer following vaccination at three and six weeks of age. Titers increased when these pigs were vaccinated at 12 weeks of age. There was no significant increase in mean titers of pigs from challenged sows following vaccination at 3, 6 and 12 weeks of age. Vaccinated pigs from control and vaccinated sows had a secondary response following challenge three weeks after vaccination

  2. Persistent infection of chimpanzees with human immunodeficiency virus: serological responses and properties of reisolated viruses.

    PubMed Central

    Nara, P L; Robey, W G; Arthur, L O; Asher, D M; Wolff, A V; Gibbs, C J; Gajdusek, D C; Fischinger, P J

    1987-01-01

    Persistent infection by human immunodeficiency virus (HIV-1) in the chimpanzee may be valuable for immunopathologic and potential vaccine evaluation. Two HIV strains, the tissue culture-derived human T-cell lymphotropic virus type IIIB (HTLV-IIIB) and in vivo serially passaged lymphadenopathy-associated virus type 1 (LAV-1), were injected intravenously into chimpanzees. Two animals received HTLV-IIIB as either virus-infected H9 cells or cell-free virus. A third animal received chimpanzee-passaged LAV-1. Evaluation of their sera for virus-specific serologic changes, including neutralizations, was done during a 2-year period. During this period all animals had persistently high titers of antibodies to viral core and envelope antigens. All three animals developed a progressively increasing type-specific neutralizing LAV-1 versus HTLV-IIIB antibody titer during the 2-year observation period which broadened in specificity to include HTLV-HIRF, HTLV-IIIMN, and HTLV-IIICC after 6 to 12 months. The antibody titers against both viruses were still increasing by 2 years after experimental virus inoculation. Sera from all animals were capable of neutralizing both homologously and heterologously reisolated virus from chimpanzees. A slightly more rapid type-specific neutralizing response was noted for the animal receiving HTLV-IIIB-infected cells compared with that for cell-free HTLV-IIIB. Sera from all persistently infected chimpanzees were capable of mediating group-specific antibody-mediated complement-dependent cytolysis of HIV-infected cells derived from all isolates tested. Viruses reisolated from all three animals at 20 months after inoculation revealed very similar peptide maps of their respective envelope gp120s, as determined by two-dimensional chymotrypsin oligopeptide analysis. One peptide, however, from the original HTLV-IIIB-inoculated virus was deleted in viruses from all three animals, and in addition, we noted the appearance of a new or modified peptide which

  3. Persistent infection of chimpanzees with human immunodeficiency virus: serological responses and properties of reisolated viruses.

    PubMed

    Nara, P L; Robey, W G; Arthur, L O; Asher, D M; Wolff, A V; Gibbs, C J; Gajdusek, D C; Fischinger, P J

    1987-10-01

    Persistent infection by human immunodeficiency virus (HIV-1) in the chimpanzee may be valuable for immunopathologic and potential vaccine evaluation. Two HIV strains, the tissue culture-derived human T-cell lymphotropic virus type IIIB (HTLV-IIIB) and in vivo serially passaged lymphadenopathy-associated virus type 1 (LAV-1), were injected intravenously into chimpanzees. Two animals received HTLV-IIIB as either virus-infected H9 cells or cell-free virus. A third animal received chimpanzee-passaged LAV-1. Evaluation of their sera for virus-specific serologic changes, including neutralizations, was done during a 2-year period. During this period all animals had persistently high titers of antibodies to viral core and envelope antigens. All three animals developed a progressively increasing type-specific neutralizing LAV-1 versus HTLV-IIIB antibody titer during the 2-year observation period which broadened in specificity to include HTLV-HIRF, HTLV-IIIMN, and HTLV-IIICC after 6 to 12 months. The antibody titers against both viruses were still increasing by 2 years after experimental virus inoculation. Sera from all animals were capable of neutralizing both homologously and heterologously reisolated virus from chimpanzees. A slightly more rapid type-specific neutralizing response was noted for the animal receiving HTLV-IIIB-infected cells compared with that for cell-free HTLV-IIIB. Sera from all persistently infected chimpanzees were capable of mediating group-specific antibody-mediated complement-dependent cytolysis of HIV-infected cells derived from all isolates tested. Viruses reisolated from all three animals at 20 months after inoculation revealed very similar peptide maps of their respective envelope gp120s, as determined by two-dimensional chymotrypsin oligopeptide analysis. One peptide, however, from the original HTLV-IIIB-inoculated virus was deleted in viruses from all three animals, and in addition, we noted the appearance of a new or modified peptide which

  4. GMCSF-armed vaccinia virus induces an antitumor immune response.

    PubMed

    Parviainen, Suvi; Ahonen, Marko; Diaconu, Iulia; Kipar, Anja; Siurala, Mikko; Vähä-Koskela, Markus; Kanerva, Anna; Cerullo, Vincenzo; Hemminki, Akseli

    2015-03-01

    Oncolytic Western Reserve strain vaccinia virus selective for epidermal growth factor receptor pathway mutations and tumor-associated hypermetabolism was armed with human granulocyte-macrophage colony-stimulating factor (GMCSF) and a tdTomato fluorophore. As the assessment of immunological responses to human transgenes is challenging in the most commonly used animal models, we used immunocompetent Syrian golden hamsters, known to be sensitive to human GMCSF and semipermissive to vaccinia virus. Efficacy was initially tested in vitro on various human and hamster cell lines and oncolytic potency of transgene-carrying viruses was similar to unarmed virus. The hGMCSF-encoding virus was able to completely eradicate subcutaneous pancreatic tumors in hamsters, and to fully protect the animals from subsequent rechallenge with the same tumor. Induction of specific antitumor immunity was also shown by ex vivo co-culture experiments with hamster splenocytes. In addition, histological examination revealed increased infiltration of neutrophils and macrophages in GMCSF-virus-treated tumors. These findings help clarify the mechanism of action of GMCSF-armed vaccinia viruses undergoing clinical trials. PMID:25042001

  5. Sensing Viruses by Mechanical Tension of DNA in Responsive Hydrogels

    NASA Astrophysics Data System (ADS)

    Shin, Jaeoh; Cherstvy, Andrey G.; Metzler, Ralf

    2014-04-01

    The rapid worldwide spread of severe viral infections, often involving novel mutations of viruses, poses major challenges to our health-care systems. This means that tools that can efficiently and specifically diagnose viruses are much needed. To be relevant for broad applications in local health-care centers, such tools should be relatively cheap and easy to use. In this paper, we discuss the biophysical potential for the macroscopic detection of viruses based on the induction of a mechanical stress in a bundle of prestretched DNA molecules upon binding of viruses to the DNA. We show that the affinity of the DNA to the charged virus surface induces a local melting of the double helix into two single-stranded DNA. This process effects a mechanical stress along the DNA chains leading to an overall contraction of the DNA. Our results suggest that when such DNA bundles are incorporated in a supporting matrix such as a responsive hydrogel, the presence of viruses may indeed lead to a significant, macroscopic mechanical deformation of the matrix. We discuss the biophysical basis for this effect and characterize the physical properties of the associated DNA melting transition. In particular, we reveal several scaling relations between the relevant physical parameters of the system. We promote this DNA-based assay as a possible tool for efficient and specific virus screening.

  6. Systems biology unravels interferon responses to respiratory virus infections

    PubMed Central

    Kroeker, Andrea L; Coombs, Kevin M

    2014-01-01

    Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity. PMID:24600511

  7. A possible screening test for inherited p53-related defects based on the apoptotic response of peripheral blood lymphocytes to DNA damage.

    PubMed Central

    Camplejohn, R. S.; Perry, P.; Hodgson, S. V.; Turner, G.; Williams, A.; Upton, C.; MacGeoch, C.; Mohammed, S.; Barnes, D. M.

    1995-01-01

    The cellular response, in terms of cell cycle arrest(s) and apoptosis, to radiation-induced DNA damage was studied. Experiments were performed on both mitogen-stimulated and resting peripheral blood lymphocytes (PBLs) from normal and cancer-prone (C-P) individuals. The C-P individuals comprised three patients carrying germline p53 mutations and three members of two families apparently without such mutations, but with an inherited defect which results in p53 deregulation as shown by high levels of stabilised p53 protein in normal tissues. Interestingly, mitogen-stimulated PBL, from both normal and C-P individuals failed to demonstrate a G1 arrest after gamma radiation. However, a clear difference was seen in the apoptotic response to DNA damage, of PBL from normal and C-P individuals; PBLs from C-P individuals with inherited p53-related defects had a reduced apoptotic response (P = 0.0003). There was a wide margin of separation, with no overlap between the two groups, supporting the possibility of using this altered apoptotic response as a screening test. This simple and rapid procedure could be used to identify those individuals in a C-P family who carry germline p53-related defects. The method appears to detect both individuals with p53 mutations and those apparently without mutations but with other p53-related defects. Images Figure 4 PMID:7669577

  8. Adaptive immune response during hepatitis C virus infection

    PubMed Central

    Larrubia, Juan Ramón; Moreno-Cubero, Elia; Lokhande, Megha Uttam; García-Garzón, Silvia; Lázaro, Alicia; Miquel, Joaquín; Perna, Cristian; Sanz-de-Villalobos, Eduardo

    2014-01-01

    Hepatitis C virus (HCV) infection affects about 170 million people worldwide and it is a major cause of liver cirrhosis and hepatocellular carcinoma. HCV is a hepatotropic non-cytopathic virus able to persist in a great percentage of infected hosts due to its ability to escape from the immune control. Liver damage and disease progression during HCV infection are driven by both viral and host factors. Specifically, adaptive immune response carries out an essential task in controlling non-cytopathic viruses because of its ability to recognize infected cells and to destroy them by cytopathic mechanisms and to eliminate the virus by non-cytolytic machinery. HCV is able to impair this response by several means such as developing escape mutations in neutralizing antibodies and in T cell receptor viral epitope recognition sites and inducing HCV-specific cytotoxic T cell anergy and deletion. To impair HCV-specific T cell reactivity, HCV affects effector T cell regulation by modulating T helper and Treg response and by impairing the balance between positive and negative co-stimulatory molecules and between pro- and anti-apoptotic proteins. In this review, the role of adaptive immune response in controlling HCV infection and the HCV mechanisms to evade this response are reviewed. PMID:24707125

  9. Comparative proteome analysis of silkworm in its susceptibility and resistance responses to Bombyx mori densonucleosis virus.

    PubMed

    Chen, Hui-Qing; Yao, Qin; Bao, Fang; Chen, Ke-Ping; Liu, Xiao-Yong; Li, Jun; Wang, Lin

    2012-01-01

    Bombyx mori densonucleosis virus (BmDNV) is one of the most disastrous viruses in cocoon production. Silkworm resistance to BmDNV has been examined previously using a number of traditional biochemical and molecular techniques. In this study, a near isogenic line, BC(6), was constructed to eliminate the difference in inherited background, which has 99.9% identity with the susceptible strain but carries a resistant gene. We utilized a proteomic approach involving two-dimensional differential gel electrophoresis and mass spectrometry to examine changes in the midgut proteins from the susceptible and resistant silkworm larvae infected with BmDNV. The protein profiles were compared and 9 differentially expressed proteins were identified by mass spectrometry. In the resistant strains, the heat-shock 70-kDa protein cognate, cytochrome P450, vacuolar ATP synthase subunit B, arginine kinase, vacuolar ATP synthase subunit D and glutathione S-transferase sigma were strongly upregulated and α-tubulin was downregulated. Our results imply that these upregulated genes and the downregulated genes might be involved in B. mori immune responses against BmDNV-Z infection. PMID:21242662

  10. Reservoir Host Immune Responses to Emerging Zoonotic Viruses

    PubMed Central

    Mandl, Judith N.; Ahmed, Rafi; Barreiro, Luis B.; Daszak, Peter; Epstein, Jonathan H.; Virgin, Herbert W.; Feinberg, Mark B.

    2015-01-01

    Zoonotic viruses, such as HIV, Ebola virus, coronaviruses, influenza A viruses, hantaviruses, or henipaviruses, can result in profound pathology in humans. In contrast, populations of the reservoir hosts of zoonotic pathogens often appear to tolerate these infections with little evidence of disease. Why are viruses more dangerous in one species than another? Immunological studies investigating quantitative and qualitative differences in the host-virus equilibrium in animal reservoirs will be key to answering this question, informing new approaches for treating and preventing zoonotic diseases. Integrating an understanding of host immune responses with epidemiological, ecological, and evolutionary insights into viral emergence will shed light on mechanisms that minimize fitness costs associated with viral infection, facilitate transmission to other hosts, and underlie the association of specific reservoir hosts with multiple emerging viruses. Reservoir host studies provide a rich opportunity for elucidating fundamental immunological processes and their underlying genetic basis, in the context of distinct physiological and metabolic constraints that contribute to host resistance and disease tolerance. PMID:25533784

  11. Dynamics of virus shedding and antibody responses in influenza A virus-infected feral swine.

    PubMed

    Sun, Hailiang; Cunningham, Fred L; Harris, Jillian; Xu, Yifei; Long, Li-Ping; Hanson-Dorr, Katie; Baroch, John A; Fioranelli, Paul; Lutman, Mark W; Li, Tao; Pedersen, Kerri; Schmit, Brandon S; Cooley, Jim; Lin, Xiaoxu; Jarman, Richard G; DeLiberto, Thomas J; Wan, Xiu-Feng

    2015-09-01

    Given their free-ranging habits, feral swine could serve as reservoirs or spatially dynamic 'mixing vessels' for influenza A virus (IAV). To better understand virus shedding patterns and antibody response dynamics in the context of IAV surveillance amongst feral swine, we used IAV of feral swine origin to perform infection experiments. The virus was highly infectious and transmissible in feral swine, and virus shedding patterns and antibody response dynamics were similar to those in domestic swine. In the virus-inoculated and sentinel groups, virus shedding lasted ≤ 6 and ≤ 9 days, respectively. Antibody titres in inoculated swine peaked at 1 : 840 on day 11 post-inoculation (p.i.), remained there until 21 days p.i. and dropped to < 1 : 220 at 42 days p.i. Genomic sequencing identified changes in wildtype (WT) viruses and isolates from sentinel swine, most notably an amino acid divergence in nucleoprotein position 473. Using data from cell culture as a benchmark, sensitivity and specificity of a matrix gene-based quantitative reverse transcription-PCR method using nasal swab samples for detection of IAV in feral swine were 78.9 and 78.1 %, respectively. Using data from haemagglutination inhibition assays as a benchmark, sensitivity and specificity of an ELISA for detection of IAV-specific antibody were 95.4 and 95.0 %, respectively. Serological surveillance from 2009 to 2014 showed that ∼7.58 % of feral swine in the USA were positive for IAV. Our findings confirm the susceptibility of IAV infection and the high transmission ability of IAV amongst feral swine, and also suggest the need for continued surveillance of IAVs in feral swine populations. PMID:26297148

  12. Exercise and Inherited Arrhythmias.

    PubMed

    Cheung, Christopher C; Laksman, Zachary W M; Mellor, Gregory; Sanatani, Shubhayan; Krahn, Andrew D

    2016-04-01

    Sudden cardiac death (SCD) in an apparently healthy individual is a tragedy that prompts a series of investigations to identify the cause of death and to prevent SCD in potentially at-risk family members. Several inherited channelopathies and cardiomyopathies, including long QT syndrome (LQTS), catecholaminergic polymorphic ventricular cardiomyopathy (CPVT), hypertrophic cardiomyopathy (HCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) are associated with exercise-related SCD. Exercise restriction has been a historical mainstay of therapy for these conditions. Syncope and cardiac arrest occur during exercise in LQTS and CPVT because of ventricular arrhythmias, which are managed with β-blockade and exercise restriction. Exercise may provoke hemodynamic or ischemic changes in HCM, leading to ventricular arrhythmias. ARVC is a disease of the desmosome, whose underlying disease process is accelerated by exercise. On this basis, expert consensus has erred on the side of caution, recommending rigorous exercise restriction for all inherited arrhythmias. With time, as familiarity with inherited arrhythmia conditions has increased and patients with milder forms of disease are diagnosed, practitioners have questioned the historical rigorous restrictions advocated for all. This change has been driven by the fact that these are often children and young adults who wish to lead active lives. Recent evidence suggests a lower risk of exercise-related arrhythmias in treated patients than was previously assumed, including those with previous symptoms managed with an implantable cardioverter-defibrillator. In this review, we emphasize shared decision making, monitored medical therapy, individual and team awareness of precautions and emergency response measures, and a more permissive approach to recreational and competitive exercise. PMID:26927864

  13. Antibody response to rabies virus in Syrian hamsters.

    PubMed

    Coe, J E; Bell, J F

    1977-06-01

    Syrian hamsters were injected with inactivated, attenuated, and virulent rabies virus (RV), and the antibody response was quantified by a neutralization test and the immunoglobulin class of the virus antibody was characterized by indirect fluorescent microscopy. Serum antibodies to RV were found to be predominantly of the immunoglobulin G2 (IgG2) class, although IgG1 anti-RV also were detected in high-titered sera obtained after secondary challenge. Brain extracts of hamsters inoculated intracerebrally with RV contained only IgG2 anti-RV. IgA and IgM anti-RV were not detected. The preferential IgG2 response to RV is in marked contrast to the isolated IgG1 response detected after inoculation of hamsters with soluble purified protein antigens. PMID:330398

  14. CYTOPLASMIC VACUOLIZATION RESPONSES TO CYTOPATHIC BOVINE VIRAL DIARRHOEA VIRUS

    PubMed Central

    Birk, Alexander V.; Dubovi, Edward J.; Cohen-Gould, Leona; Donis, Ruben; Szeto, Hazel. H.

    2008-01-01

    Bovine Viral Diarrhea Virus (BVDV) is a positive sense, single-stranded RNA virus which exhibits two biotypes in standard cell culture systems. The cytopathic strains of this virus (cpBVDV) induce dramatic cytoplasmic vacuolization in cell cultures, while infection with the non-cytopathic (NCP-BVDV) strains produces no overt changes in the host cells. Our results show that extensive cytoplasmic vacuolization is the earliest morphological change in response to cpBVDV infection in MDBK cells. Cells with extensive vacuolization showed no co-existing chromatin condensation, caspase activation, or loss of membrane integrity. In addition, the caspase inhibitor (zVAD-fmk), although improving cell viability of infected cells from 6.7±2.2% to 18.8±2.2%, did not prevent vacuolization. On the ultrastructural level, the virus-induced cytoplasmic vacuoles are single membrane structures containing organelles and cellular debris, which appear capable of fusing with other vacuoles and engulfing surrounding cytoplasmic materials. LysoTracker Red which marks lysosomes did not stain the virus-induced cytoplasmic vacuoles. In addition, this lysosomal dye could be observed in the cytoplasm of vacuolized cells, suggesting a lysosomal abnormality. Our data demonstrate that cpBVDV induced a novel cell death pathway in MDBK cells that is primarily associated with lysosomal dysfunction and the formation of phagocytic cytoplasmic vacuoles, and this mode of cell death is different from apoptosis and necrosis. PMID:18054406

  15. Atypical mitochondrial inheritance patterns in eukaryotes.

    PubMed

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable. PMID:26501689

  16. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology.

    PubMed

    Newton, Amy H; Cardani, Amber; Braciale, Thomas J

    2016-07-01

    The respiratory tract is constantly exposed to the external environment, and therefore, must be equipped to respond to and eliminate pathogens. Viral clearance and resolution of infection requires a complex, multi-faceted response initiated by resident respiratory tract cells and innate immune cells and ultimately resolved by adaptive immune cells. Although an effective immune response to eliminate viral pathogens is essential, a prolonged or exaggerated response can damage the respiratory tract. Immune-mediated pulmonary damage is manifested clinically in a variety of ways depending on location and extent of injury. Thus, the antiviral immune response represents a balancing act between the elimination of virus and immune-mediated pulmonary injury. In this review, we highlight major components of the host response to acute viral infection and their role in contributing to mitigating respiratory damage. We also briefly describe common clinical manifestations of respiratory viral infection and morphological correlates. The continuing threat posed by pandemic influenza as well as the emergence of novel respiratory viruses also capable of producing severe acute lung injury such as SARS-CoV, MERS-CoV, and enterovirus D68, highlights the need for an understanding of the immune mechanisms that contribute to virus elimination and immune-mediated injury. PMID:26965109

  17. Epigenetic Inheritance: A Contributor to Species Differentiation?

    PubMed Central

    Boffelli, Dario

    2012-01-01

    Multiple epigenetic states can be associated with the same genome, and transmitted through the germline for generations, to create the phenomenon of epigenetic inheritance. This form of inheritance is mediated by complex and highly diverse components of the chromosome that associate with DNA, control its transcription, and are inherited alongside it. But, how extensive, and how stable, is the information carried in the germline by the epigenome? Several known examples of epigenetic inheritance demonstrate that it has the ability to create selectable traits, and thus to mediate Darwinian evolution. Here we discuss the possibility that epigenetic inheritance is responsible for some stable characteristics of species, focusing on a recent comparison of the human and chimpanzee methylomes which reveals that somatic methylation states are related to methylation states in the germline. Interpretation of this finding highlights the potential significance of germline epigenetic states, as well as the challenge of investigating a form of inheritance with complex and unfamiliar rules. PMID:22966965

  18. Persistence of antibodies and anamnestic response in calves vaccinated with inactivated infectious bovine rhinotracheitis virus and parainfluenza-3 virus vaccines.

    PubMed

    Sweat, R L

    1983-04-15

    Persistence of antibodies in calves vaccinated with 2 types of inactivated infectious bovine rhinotracheitis (IBR) virus and parainfluenza-3 (PI-3) virus vaccines were determined. Calves seronegative for IBR and PI-3 viruses were inoculated with 2 doses of inactivated IBR virus-PI-3 virus vaccines administered 2 weeks apart. Blood samples were obtained from the calves for serum at 2 weeks, 6 months, and 1 year after vaccination. The serums were tested by serum-neutralization tests. Antibody response to the vaccines persisted on a declining scale for 1 year. The anamnestic responses to the vaccines were determined by inoculating the same calves with a booster dose of vaccine 1 year after the original 2 doses were given. Blood samples were obtained from the calves for serum 2 weeks later. The serums were tested by serum-neutralization tests. The single booster dose of vaccine elicited an anamnestic response to both IBR and PI-3 viruses. PMID:6303996

  19. Virus-like nanostructures for tuning immune response

    NASA Astrophysics Data System (ADS)

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-11-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.

  20. Virus-like nanostructures for tuning immune response

    PubMed Central

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-01-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system. PMID:26577983

  1. Humoral response to herpes simplex virus is complement-dependent

    PubMed Central

    Da Costa, Xavier J.; Brockman, Mark A.; Alicot, Elisabeth; Ma, Minghe; Fischer, Michael B.; Zhou, Xioaning; Knipe, David M.; Carroll, Michael C.

    1999-01-01

    The complement system represents a cascade of serum proteins, which provide a major effector function in innate immunity. Recent studies have revealed that complement links innate and adaptive immunity via complement receptors CD21/CD35 in that it enhances the B cell memory response to noninfectious protein antigens introduced i.v. To examine the importance of complement for immune responses to virus infection in a peripheral tissue, we compared the B cell memory response of mice deficient in complement C3, C4, or CD21/CD35 with wild-type controls. We found that the deficient mice failed to generate a normal memory response, which is characterized by a reduction in IgG antibody and germinal centers. Thus, complement is important not only in the effector function of innate immunity but also in the stimulation of memory B cell responses to viral-infected cell antigens in both blood and peripheral tissues. PMID:10535987

  2. Hepatitis C Virus. Strategies to Evade Antiviral Responses

    PubMed Central

    Gokhale, Nandan S.; Vazquez, Christine; Horner, Stacy M.

    2015-01-01

    Summary Hepatitis C virus (HCV) causes chronic liver disease and poses a major clinical and economic burden worldwide. HCV is an RNA virus that is sensed as non-self in the infected liver by host pattern recognition receptors, triggering downstream signaling to interferons (IFNs). The type III IFNs play an important role in immunity to HCV, and human genetic variation in their gene loci is associated with differential HCV infection outcomes. HCV evades host antiviral innate immune responses to mediate a persistent infection in the liver. This review focuses on anti-HCV innate immune sensing, innate signaling and effectors, and the processes and proteins used by HCV to evade and regulate host innate immunity. PMID:25983854

  3. Analysis of a successful immune response against hepatitis C virus.

    PubMed

    Cooper, S; Erickson, A L; Adams, E J; Kansopon, J; Weiner, A J; Chien, D Y; Houghton, M; Parham, P; Walker, C M

    1999-04-01

    To investigate the type of immunity responsible for resolution of hepatitis C virus (HCV) infection, we monitored antibody and intrahepatic cytotoxic T lymphocyte (CTL) responses during acute (<20 weeks) infection in chimpanzees. Two animals who terminated infection made strong CTL but poor antibody responses. In both resolvers, CTL targeted at least six viral regions. In contrast, animals developing chronic hepatitis generated weaker acute CTL responses. Extensive analysis of the fine specificity of the CTL in one resolver revealed nine peptide epitopes and restriction by all six MHC class I allotypes. Every specificity shown during acute hepatitis persisted in normal liver tissue more than 1 yr after resolution. These results suggest that CD8+CTL are better correlated with protection against HCV infection than antibodies. PMID:10229187

  4. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus.

    PubMed

    Priyamvada, Lalita; Quicke, Kendra M; Hudson, William H; Onlamoon, Nattawat; Sewatanon, Jaturong; Edupuganti, Srilatha; Pattanapanyasat, Kovit; Chokephaibulkit, Kulkanya; Mulligan, Mark J; Wilson, Patrick C; Ahmed, Rafi; Suthar, Mehul S; Wrammert, Jens

    2016-07-12

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus of significant public health concern. ZIKV shares a high degree of sequence and structural homology compared with other flaviviruses, including dengue virus (DENV), resulting in immunological cross-reactivity. Improving our current understanding of the extent and characteristics of this immunological cross-reactivity is important, as ZIKV is presently circulating in areas that are highly endemic for dengue. To assess the magnitude and functional quality of cross-reactive immune responses between these closely related viruses, we tested acute and convalescent sera from nine Thai patients with PCR-confirmed DENV infection against ZIKV. All of the sera tested were cross-reactive with ZIKV, both in binding and in neutralization. To deconstruct the observed serum cross-reactivity in depth, we also characterized a panel of DENV-specific plasmablast-derived monoclonal antibodies (mAbs) for activity against ZIKV. Nearly half of the 47 DENV-reactive mAbs studied bound to both whole ZIKV virion and ZIKV lysate, of which a subset also neutralized ZIKV. In addition, both sera and mAbs from the dengue-infected patients enhanced ZIKV infection of Fc gamma receptor (FcγR)-bearing cells in vitro. Taken together, these findings suggest that preexisting immunity to DENV may impact protective immune responses against ZIKV. In addition, the extensive cross-reactivity may have implications for ZIKV virulence and disease severity in DENV-experienced populations. PMID:27354515

  5. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus

    PubMed Central

    Priyamvada, Lalita; Quicke, Kendra M.; Hudson, William H.; Onlamoon, Nattawat; Sewatanon, Jaturong; Edupuganti, Srilatha; Pattanapanyasat, Kovit; Chokephaibulkit, Kulkanya; Mulligan, Mark J.; Wilson, Patrick C.; Ahmed, Rafi; Suthar, Mehul S.; Wrammert, Jens

    2016-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus of significant public health concern. ZIKV shares a high degree of sequence and structural homology compared with other flaviviruses, including dengue virus (DENV), resulting in immunological cross-reactivity. Improving our current understanding of the extent and characteristics of this immunological cross-reactivity is important, as ZIKV is presently circulating in areas that are highly endemic for dengue. To assess the magnitude and functional quality of cross-reactive immune responses between these closely related viruses, we tested acute and convalescent sera from nine Thai patients with PCR-confirmed DENV infection against ZIKV. All of the sera tested were cross-reactive with ZIKV, both in binding and in neutralization. To deconstruct the observed serum cross-reactivity in depth, we also characterized a panel of DENV-specific plasmablast-derived monoclonal antibodies (mAbs) for activity against ZIKV. Nearly half of the 47 DENV-reactive mAbs studied bound to both whole ZIKV virion and ZIKV lysate, of which a subset also neutralized ZIKV. In addition, both sera and mAbs from the dengue-infected patients enhanced ZIKV infection of Fc gamma receptor (FcγR)-bearing cells in vitro. Taken together, these findings suggest that preexisting immunity to DENV may impact protective immune responses against ZIKV. In addition, the extensive cross-reactivity may have implications for ZIKV virulence and disease severity in DENV-experienced populations. PMID:27354515

  6. Immune responses of ducks infected with duck Tembusu virus

    PubMed Central

    Li, Ning; Wang, Yao; Li, Rong; Liu, Jiyuan; Zhang, Jinzhou; Cai, Yumei; Liu, Sidang; Chai, Tongjie; Wei, Liangmeng

    2015-01-01

    Duck Tembusu virus (DTMUV) can cause serious disease in ducks, characterized by reduced egg production. Although the virus has been isolated and detection methods developed, the host immune responses to DTMUV infection are unclear. Therefore, we systematically examined the expression of immune-related genes and the viral distribution in DTMUV-infected ducks, using quantitative real-time PCR. Our results show that DTMUV replicates quickly in many tissues early in infection, with the highest viral titers in the spleen 1 day after infection. Rig-1, Mda5, and Tlr3 are involved in the host immune response to DTMUV, and the expression of proinflammatory cytokines (Il-1β, –2, –6, Cxcl8) and antiviral proteins (Mx, Oas, etc.) are also upregulated early in infection. The expression of Il-6 increased most significantly in the tissues tested. The upregulation of Mhc-I was observed in the brain and spleen, but the expression of Mhc-II was upregulated in the brain and downregulated in the spleen. The expression of the interferons was also upregulated to different degrees in the spleen but that of the brain was various. Our study suggests that DTMUV replicates rapidly in various tissues and that the host immune responses are activated early in infection. However, the overexpression of cytokines may damage the host. These results extend our understanding of the immune responses of ducks to DTMUV infection, and provide insight into the pathogenesis of DTMUV attributable to host factors. PMID:26005441

  7. Modified live virus vaccine induces a distinct immune response profile compared to inactivated influenza A virus vaccines in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and antigenic diversity within H1 influenza A virus (IAV) subtypes circulating in swine is increasing. The need for cross-protective influenza vaccines in swine is necessary as the virus becomes more diverse. This study compared the humoral and cell-mediated immune response of modified live ...

  8. Microarray analysis shows that recessive resistance to Watermelon mosaic virus in melon is associated with the induction of defense response genes.

    PubMed

    Gonzalez-Ibeas, Daniel; Cañizares, Joaquin; Aranda, Miguel A

    2012-01-01

    Resistance to Watermelon mosaic virus (WMV) in melon (Cucumis melo L.) accession TGR-1551 is characterized by a significant reduction in virus titer, and is inherited as a recessive, loss-of-susceptibility allele. We measured virus RNA accumulation in TGR-1551 plants and a susceptible control ('Tendral') by real-time quantitative polymerase chain reaction, and also profiled the expression of 17,443 unigenes represented on a melon microarray over a 15-day time course. The virus accumulated to higher levels in cotyledons of the resistant variety up to 9 days postinoculation (dpi) but, thereafter, levels increased in the susceptible variety while those in the resistant variety declined. Microarray experiments looking at the early response to infection (1 and 3 dpi), as well as responses after 7 and 15 dpi, revealed more profound transcriptomic changes in resistant plants than susceptible ones. The gene expression profiles revealed deep and extensive transcriptome remodeling in TGR-1551 plants, often involving genes with pathogen response functions. Overall, our data suggested that resistance to WMV in TGR-1551 melon plants is associated with a defense response, which contrasts with the recessive nature of the resistance trait. PMID:21970693

  9. Plant Immune Responses Against Viruses: How Does a Virus Cause Disease?[OA

    PubMed Central

    Mandadi, Kranthi K.; Scholthof, Karen-Beth G.

    2013-01-01

    Plants respond to pathogens using elaborate networks of genetic interactions. Recently, significant progress has been made in understanding RNA silencing and how viruses counter this apparently ubiquitous antiviral defense. In addition, plants also induce hypersensitive and systemic acquired resistance responses, which together limit the virus to infected cells and impart resistance to the noninfected tissues. Molecular processes such as the ubiquitin proteasome system and DNA methylation are also critical to antiviral defenses. Here, we provide a summary and update of advances in plant antiviral immune responses, beyond RNA silencing mechanisms—advances that went relatively unnoticed in the realm of RNA silencing and nonviral immune responses. We also document the rise of Brachypodium and Setaria species as model grasses to study antiviral responses in Poaceae, aspects that have been relatively understudied, despite grasses being the primary source of our calories, as well as animal feed, forage, recreation, and biofuel needs in the 21st century. Finally, we outline critical gaps, future prospects, and considerations central to studying plant antiviral immunity. To promote an integrated model of plant immunity, we discuss analogous viral and nonviral immune concepts and propose working definitions of viral effectors, effector-triggered immunity, and viral pathogen-triggered immunity. PMID:23709626

  10. Early antiviral response and virus-induced genes in fish.

    PubMed

    Verrier, Eloi R; Langevin, Christelle; Benmansour, Abdenour; Boudinot, Pierre

    2011-12-01

    In fish as in mammals, virus infections induce changes in the expression of many host genes. Studies conducted during the last fifteen years revealed a major contribution of the interferon system in fish antiviral response. This review describes the screening methods applied to compare the impact of virus infections on the transcriptome in different fish species. These approaches identified a "core" set of genes that are strongly induced in most viral infections. The "core" interferon-induced genes (ISGs) are generally conserved in vertebrates, some of them inhibiting a wide range of viruses in mammals. A selection of ISGs -PKR, vig-1/viperin, Mx, ISG15 and finTRIMs - is further analyzed here to illustrate the diversity and complexity of the mechanisms involved in establishing an antiviral state. Most of the ISG-based pathways remain to be directly determined in fish. Fish ISGs are often duplicated and the functional specialization of multigenic families will be of particular interest for future studies. PMID:21414349

  11. Immune surveillance and response to JC virus infection and PML

    PubMed Central

    Beltrami, Sarah; Gordon, Jennifer

    2014-01-01

    The ubiquitous human polyomavirus JC virus (JCV) is the established etiological agent of the debilitating and often fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Most healthy individuals have been infected with JCV and generate an immune response to the virus, yet remain persistently infected at subclinical levels. The onset of PML is rare in the general population, but has become an increasing concern in immunocompromised patients, where reactivation of JCV leads to uncontrolled replication in the CNS. Understanding viral persistence and the normal immune response to JCV provides insight into the circumstances which could lead to viral resurgence. Further, clues on the potential mechanisms of reactivation may be gleaned from the crosstalk among JCV and HIV-1, as well as the impact of monoclonal antibody therapies used for the treatment of autoimmune disorders, including multiple sclerosis, on the development of PML. In this review, we will discuss what is known about viral persistence and the immune response to JCV replication in immunocompromised individuals to elucidate the deficiencies in viral containment that permit viral reactivation and spread. PMID:24297501

  12. Host Immune Status and Response to Hepatitis E Virus Infection

    PubMed Central

    Krain, Lisa J.; Nelson, Kenrad E.

    2014-01-01

    SUMMARY Hepatitis E virus (HEV), identified over 30 years ago, remains a serious threat to life, health, and productivity in developing countries where access to clean water is limited. Recognition that HEV also circulates as a zoonotic and food-borne pathogen in developed countries is more recent. Even without treatment, most cases of HEV-related acute viral hepatitis (with or without jaundice) resolve within 1 to 2 months. However, HEV sometimes leads to acute liver failure, chronic infection, or extrahepatic symptoms. The mechanisms of pathogenesis appear to be substantially immune mediated. This review covers the epidemiology of HEV infection worldwide, the humoral and cellular immune responses to HEV, and the persistence and protection of antibodies produced in response to both natural infection and vaccines. We focus on the contributions of altered immune states (associated with pregnancy, human immunodeficiency virus [HIV], and immunosuppressive agents used in cancer and transplant medicine) to the elevated risks of chronic infection (in immunosuppressed/immunocompromised patients) and acute liver failure and mortality (among pregnant women). We conclude by discussing outstanding questions about the immune response to HEV and interactions with hormones and comorbid conditions. These questions take on heightened importance now that a vaccine is available. PMID:24396140

  13. Rice Responses and Resistance to Planthopper-Borne Viruses at Transcriptomic and Proteomic Levels.

    PubMed

    Cui, Feng; Zhao, Wan; Luo, Lan; Kang, Le

    2016-01-01

    Rice (Oryza sativa) is one of the most important cereal crops in the world, especially in Asian areas. Rice virus diseases are considered as the most serious threat to rice yields. Most rice viruses are transmitted by hemipteran insects such as planthoppers and leafhoppers. In Asia five rice viruses are transmitted mainly by three planthopper species in a persistent manner: Rice stripe virus, Rice black-streaked dwarf virus, Rice ragged stunt virus, Rice grassy stunt virus, and Southern rice black-streaked dwarf virus. In rice antivirus studies, several individual genes have been shown to function in rice resistance to viruses. Since plant responses to viral infection are complex, system-level omic studies are required to fully understand the responses. Recently more and more omic studies have appeared in the literatures on relationships between planthoppers and viruses, employing microarray, RNA-Seq, small RNA deep sequencing, degradome sequencing, and proteomic analysis. In this paper, we review the current knowledge and progress of omic studies in rice plant responses and resistance to four planthopper-borned viruses. We also discuss progress in the omic study of the interactions of planthoppers and rice viruses. Future research directions and translational applications of fundamental knowledge of virus-vector-rice interactions are proposed. PMID:26363817

  14. Gene expression responses to highly pathogenic avian influenza H5N1 virus infections in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in host response to infection with avian influenza (AI) viruses were investigated by identifying genes differentially expressed in tissues of infected ducks. Clear differences in pathogenicity were observed among ducks inoculated with five H5N1 HPAI viruses. Virus titers in tissues cor...

  15. Competitive seedlings and inherited traits: a test of rapid evolution of Elymus multisetus (big squirreltail) in response to cheatgrass invasion

    PubMed Central

    Rowe, Courtney L J; Leger, Elizabeth A

    2011-01-01

    Widespread invasion by Bromus tectorum (cheatgrass) in the Intermountain West has drastically altered native plant communities. We investigated whether Elymus multisetus (big squirreltail) is evolving in response to invasion and what traits contribute to increased performance. Seedlings from invaded areas exhibited significantly greater tolerance to B. tectorum competition and a greater ability to suppress B. tectorum biomass than seedlings from adjacent uninvaded areas. To identify potentially adaptive traits, we examined which phenological and phenotypic traits were correlated with seedling performance within the uninvaded area, determined their genetic variation by measuring sibling resemblance, and asked whether trait distribution had shifted in invaded areas. Increased tolerance to competition was correlated with early seedling root to shoot ratio, root fork number, and fine root length. Root forks differed among families, but none of these traits differed significantly across invasion status. Additionally, we surveyed more broadly for traits that varied between invaded and uninvaded areas. Elymus multisetus plants collected from invaded areas were smaller, allocated more biomass to roots, and produced a higher percentage of fine roots than plants from uninvaded areas. The ability of native populations to evolve in response to invasion has significant implications for the management and restoration of B. tectorum-invaded communities. PMID:25567997

  16. Subversion of the Immune Response by Rabies Virus.

    PubMed

    Scott, Terence P; Nel, Louis H

    2016-01-01

    Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses-including age, sex, cerebral lateralization and temperature-are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host's response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment. PMID:27548204

  17. Inherited renal cystic diseases.

    PubMed

    Kim, Bohyun; King, Bernard F; Vrtiska, Terri J; Irazabal, Maria V; Torres, Vicente E; Harris, Peter C

    2016-06-01

    A number of inherited renal diseases present with renal cysts and often lead to end-stage renal disease. With recent advances in genetics, increasing number of genes and mutations have been associated with cystic renal diseases. Although genetic testing can provide a definite diagnosis, it is often reserved for equivocal cases or for ongoing investigational research. Therefore, imaging findings are essential in the routine diagnosis, follow-up, and detection of complications in patients with inherited cystic renal diseases. In this article, the most recent classification, genetic analysis, clinical presentations, and imaging findings of inherited cystic renal diseases will be discussed. PMID:27167233

  18. Dual Modulation of Type I Interferon Response by Bluetongue Virus

    PubMed Central

    Doceul, Virginie; Chauveau, Emilie; Lara, Estelle; Bréard, Emmanuel; Sailleau, Corinne; Zientara, Stéphan

    2014-01-01

    ABSTRACT Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus that causes an economically important disease in ruminants. BTV infection is a strong inducer of type I interferon (IFN-I) in multiple cell types. It has been shown recently that BTV and, more specifically, the nonstructural protein NS3 of BTV are able to modulate the IFN-I synthesis pathway. However, nothing is known about the ability of BTV to counteract IFN-I signaling. Here, we investigated the effect of BTV on the IFN-I response pathway and, more particularly, the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. We found that BTV infection triggered the expression of IFN-stimulated genes (ISGs) in A549 cells. However, when BTV-infected cells were stimulated with external IFN-I, we showed that activation of the IFN-stimulated response element (ISRE) promoter and expression of ISGs were inhibited. We found that this inhibition involved two different mechanisms that were dependent on the time of infection. After overnight infection, BTV blocked specifically the phosphorylation and nuclear translocation of STAT1. This inhibition correlated with the redistribution of STAT1 in regions adjacent to the nucleus. At a later time point of infection, BTV was found to interfere with the activation of other key components of the JAK/STAT pathway and to induce the downregulation of JAK1 and TYK2 protein expression. Overall, our study indicates for the first time that BTV is able to interfere with the JAK/STAT pathway to modulate the IFN-I response. IMPORTANCE Bluetongue virus (BTV) causes a severe disease in ruminants and has an important impact on the livestock economy in areas of endemicity such as Africa. The emergence of strains, such as serotype 8 in Europe in 2006, can lead to important economic losses due to commercial restrictions and prophylactic measures. It has been known for many years that BTV is a strong inducer of type I

  19. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    PubMed

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population. PMID:26104333

  20. Subversion of the Immune Response by Rabies Virus

    PubMed Central

    Scott, Terence P.; Nel, Louis H.

    2016-01-01

    Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment. PMID:27548204

  1. Cellular unfolded protein response against viruses used in gene therapy

    PubMed Central

    Sen, Dwaipayan; Balakrishnan, Balaji; Jayandharan, Giridhara R.

    2014-01-01

    Viruses are excellent vehicles for gene therapy due to their natural ability to infect and deliver the cargo to specific tissues with high efficiency. Although such vectors are usually “gutted” and are replication defective, they are subjected to clearance by the host cells by immune recognition and destruction. Unfolded protein response (UPR) is a naturally evolved cyto-protective signaling pathway which is triggered due to endoplasmic reticulum (ER) stress caused by accumulation of unfolded/misfolded proteins in its lumen. The UPR signaling consists of three signaling pathways, namely PKR-like ER kinase, activating transcription factor 6, and inositol-requiring protein-1. Once activated, UPR triggers the production of ER molecular chaperones and stress response proteins to help reduce the protein load within the ER. This occurs by degradation of the misfolded proteins and ensues in the arrest of protein translation machinery. If the burden of protein load in ER is beyond its processing capacity, UPR can activate pro-apoptotic pathways or autophagy leading to cell death. Viruses are naturally evolved in hijacking the host cellular translation machinery to generate a large amount of proteins. This phenomenon disrupts ER homeostasis and leads to ER stress. Alternatively, in the case of gutted vectors used in gene therapy, the excess load of recombinant vectors administered and encountered by the cell can trigger UPR. Thus, in the context of gene therapy, UPR becomes a major roadblock that can potentially trigger inflammatory responses against the vectors and reduce the efficiency of gene transfer. PMID:24904562

  2. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  3. Ebola virus disease surveillance and response preparedness in northern Ghana

    PubMed Central

    Adokiya, Martin N.; Awoonor-Williams, John K.

    2016-01-01

    Background The recent Ebola virus disease (EVD) outbreak has been described as unprecedented in terms of morbidity, mortality, and geographical extension. It also revealed many weaknesses and inadequacies for disease surveillance and response systems in Africa due to underqualified staff, cultural beliefs, and lack of trust for the formal health care sector. In 2014, Ghana had high risk of importation of EVD cases. Objective The objective of this study was to assess the EVD surveillance and response system in northern Ghana. Design This was an observational study conducted among 47 health workers (district directors, medical, disease control, and laboratory officers) in all 13 districts of the Upper East Region representing public, mission, and private health services. A semi-structured questionnaire with focus on core and support functions (e.g. detection, confirmation) was administered to the informants. Their responses were recorded according to specific themes. In addition, 34 weekly Integrated Disease Surveillance and Response reports (August 2014 to March 2015) were collated from each district. Results In 2014 and 2015, a total of 10 suspected Ebola cases were clinically diagnosed from four districts. Out of the suspected cases, eight died and the cause of death was unexplained. All the 10 suspected cases were reported, none was confirmed. The informants had knowledge on EVD surveillance and data reporting. However, there were gaps such as delayed reporting, low quality protective equipment (e.g. gloves, aprons), inadequate staff, and lack of laboratory capacity. The majority (38/47) of the respondents were not satisfied with EVD surveillance system and response preparedness due to lack of infrared thermometers, ineffective screening, and lack of isolation centres. Conclusion EVD surveillance and response preparedness is insufficient and the epidemic is a wake-up call for early detection and response preparedness. Ebola surveillance remains a neglected public

  4. The Cellular Bases of Antibody Responses during Dengue Virus Infection

    PubMed Central

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618

  5. Model of influenza A virus infection: dynamics of viral antagonism and innate immune response

    PubMed Central

    Fribourg, M.; Hartmann, B.; Schmolke, M.; Marjanovic, N.; Albrecht, R.A.; García-Sastre, A.; Sealfon, S. C.; Jayaprakash, C.; Hayot, F.

    2014-01-01

    Viral antagonism of host responses is an essential component of virus pathogenicity. The study of the interplay between immune response and viral antagonism is challenging due to the involvement of many processes acting at multiple time scales. Here we develop an ordinary differential equation model to investigate the early, experimentally-measured, responses of human monocyte-derived dendritic cells to infection by two H1N1 influenza A viruses of different clinical outcome: pandemic A/California/4/2009 and seasonal A/New Caledonia/20/1999. Our results reveal how the strength of virus antagonism, and the time scale over which it acts to thwart the innate immune response, differ significantly between the two viruses, as is made clear by their impact on the temporal behavior of a number of measured genes. The model thus sheds light on the mechanisms that underlie the variability of innate immune responses to different H1N1 viruses. PMID:24594370

  6. Mouse macrophage innate immune response to chikungunya virus infection

    PubMed Central

    2012-01-01

    Background Infection with Chikungunya alphavirus (CHIKV) can cause severe arthralgia and chronic arthritis in humans with persistence of the virus in perivascular macrophages of the synovial membrane by mechanisms largely ill-characterized. Findings We herein analysed the innate immune response (cytokine and programmed cell death) of RAW264.7 mouse macrophages following CHIKV infection. We found that the infection was restrained to a small percentage of cells and was not associated with a robust type I IFN innate immune response (IFN-α4 and ISG56). TNF-α, IL-6 and GM-CSF expression were upregulated while IFN-γ, IL-1α, IL-2, IL-4, IL-5, IL-10 or IL-17 expression could not be evidenced prior to and after CHIKV exposure. Although CHIKV is known to drive apoptosis in many cell types, we found no canonical signs of programmed cell death (cleaved caspase-3, -9) in infected RAW264.7 cells. Conclusion These data argue for the capacity of CHIKV to infect and drive a specific innate immune response in RAW264.7 macrophage cell which seems to be polarized to assist viral persistence through the control of apoptosis and IFN signalling. PMID:23253140

  7. Inherited Peripheral Neuropathies

    PubMed Central

    Saporta, Mario A.; Shy, Michael E.

    2013-01-01

    SYNOPSIS Charcot Marie Tooth disease (CMT) is a heterogeneous group of inherited peripheral neuropathies in which the neuropathy is the sole or primary component of the disorder, as opposed to diseases in which the neuropathy is part of a more generalized neurological or multisystem syndrome. Due to the great genetic heterogeneity of this condition, it can be challenging for the general neurologist to diagnose patients with specific types of CMT. Here, we review the biology of the inherited peripheral neuropathies, delineate major phenotypic features of the CMT subtypes and suggest strategies for focusing genetic testing. PMID:23642725

  8. Inherited interstitial lung disease.

    PubMed

    Garcia, Christine Kim; Raghu, Ganesh

    2004-09-01

    This article focuses on recent advances in the identification of genes and genetic polymorphisms that have been implicated in the development of human interstitial lung diseases. It focuses on the inherited mendelian diseases in which pulmonary fibrosis is part of the clinical phenotype and the genetics of familial idiopathic pulmonary fibrosis and other rare inherited interstitial lung diseases. The article also reviews the association studies that have been published to date regarding the genetics of sporadic idiopathic pulmonary fibrosis. The reader is directed to recent reviews on human genetic predisposition of sarcoidosis, environmental-related, drug-related, connective tissue related pulmonary fibrosis, and genetic predisposition of fibrosis in animal models. PMID:15331184

  9. Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila.

    PubMed

    Kemp, Cordula; Mueller, Stefanie; Goto, Akira; Barbier, Vincent; Paro, Simona; Bonnay, François; Dostert, Catherine; Troxler, Laurent; Hetru, Charles; Meignin, Carine; Pfeffer, Sébastien; Hoffmann, Jules A; Imler, Jean-Luc

    2013-01-15

    The fruit fly Drosophila melanogaster is a good model to unravel the molecular mechanisms of innate immunity and has led to some important discoveries about the sensing and signaling of microbial infections. The response of Drosophila to virus infections remains poorly characterized and appears to involve two facets. On the one hand, RNA interference involves the recognition and processing of dsRNA into small interfering RNAs by the host RNase Dicer-2 (Dcr-2), whereas, on the other hand, an inducible response controlled by the evolutionarily conserved JAK-STAT pathway contributes to the antiviral host defense. To clarify the contribution of the small interfering RNA and JAK-STAT pathways to the control of viral infections, we have compared the resistance of flies wild-type and mutant for Dcr-2 or the JAK kinase Hopscotch to infections by seven RNA or DNA viruses belonging to different families. Our results reveal a unique susceptibility of hop mutant flies to infection by Drosophila C virus and cricket paralysis virus, two members of the Dicistroviridae family, which contrasts with the susceptibility of Dcr-2 mutant flies to many viruses, including the DNA virus invertebrate iridescent virus 6. Genome-wide microarray analysis confirmed that different sets of genes were induced following infection by Drosophila C virus or by two unrelated RNA viruses, Flock House virus and Sindbis virus. Overall, our data reveal that RNA interference is an efficient antiviral mechanism, operating against a large range of viruses, including a DNA virus. By contrast, the antiviral contribution of the JAK-STAT pathway appears to be virus specific. PMID:23255357

  10. Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading.

    PubMed

    Collum, Tamara D; Padmanabhan, Meenu S; Hsieh, Yi-Cheng; Culver, James N

    2016-05-10

    Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. In this study, an interaction between the replication protein of tobacco mosaic virus (TMV) and phloem-specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading in an age-dependent manner. Promoter expression studies show that in mature tissues TMV 126/183-kDa-interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CCs). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus. In situ analysis of virus spread shows that the inability to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at moving out of older plant tissues than a noninteracting virus. Similarly, CC expression and overaccumulation of a degradation-resistant Aux/IAA-interacting protein was found to inhibit TMV accumulation and phloem loading selectively in flowering plants. Transcriptional expression studies demonstrate a role for Aux/IAA-interacting proteins in the regulation of salicylic and jasmonic acid host defense responses as well as virus-specific movement factors, including pectin methylesterase, that are involved in regulating plasmodesmata size-exclusion limits and promoting virus cell-to-cell movement. Combined, these findings indicate that TMV directs the reprogramming of auxin-regulated gene expression within the vascular phloem of mature tissues as a means to enhance phloem loading and systemic spread. PMID:27118842

  11. Vaccine-Induced Antibody Responses Prevent the Induction of Interferon Type I Responses Upon a Homotypic Live Virus Challenge.

    PubMed

    Chan, J; Babb, R; David, S C; McColl, S R; Alsharifi, M

    2016-03-01

    During acute viral infections, innate immunity provides essential protective measures to minimize virus dissemination and regulate adaptive immunity. This helps to successfully eliminate the pathogen and establish long-term memory. Here, we investigated the effect of vaccine-induced antibody responses on the induction of IFN-I responses and the associated lymphocyte activation using influenza A virus vaccination and challenge models. Mice were vaccinated with gamma-irradiated influenza A virus (γ-FLU) and challenged three weeks later with live virus. Our data show a significant reduction in IFN-I responses and lymphocyte activation following a homotypic virus challenge. We confirmed the role of vaccine-induced antibody responses in the observed impairment of IFN-I and the associated lymphocyte activation using adoptive transfer of immune sera and the administration of sera-treated viruses prior to challenge. Overall, we addressed a fundamental concept in immunology and provided experimental data illustrating the inhibition of IFN-I responses in vaccinated animals upon a homotypic virus challenge. PMID:26715418

  12. Inflammatory responses in Ebola virus-infected patients

    PubMed Central

    BAIZE, S; LEROY, E M; GEORGES, A J; GEORGES-COURBOT, M-C; CAPRON, M; BEDJABAGA, I; LANSOUD-SOUKATE, J; MAVOUNGOU, E

    2002-01-01

    Ebola virus subtype Zaire (Ebo-Z) induces acute haemorrhagic fever and a 60–80% mortality rate in humans. Inflammatory responses were monitored in victims and survivors of Ebo-Z haemorrhagic fever during two recent outbreaks in Gabon. Survivors were characterized by a transient release in plasma of interleukin-1β (IL-1β), IL-6, tumour necrosis factor-α (TNFα), macrophage inflammatory protein-1α (MIP-1α) and MIP-1β early in the disease, followed by circulation of IL-1 receptor antagonist (IL-1RA) and soluble receptors for TNFα (sTNF-R) and IL-6 (sIL-6R) towards the end of the symptomatic phase and after recovery. Fatal infection was associated with moderate levels of TNFα and IL-6, and high levels of IL-10, IL-1RA and sTNF-R, in the days before death, while IL-1β was not detected and MIP-1α and MIP-1β concentrations were similar to those of endemic controls. Simultaneous massive activation of monocytes/macrophages, the main target of Ebo-Z, was suggested in fatal infection by elevated neopterin levels. Thus, presence of IL-1β and of elevated concentrations of IL-6 in plasma during the symptomatic phase can be used as markers of non-fatal infection, while release of IL-10 and of high levels of neopterin and IL-1RA in plasma as soon as a few days after the disease onset is indicative of a fatal outcome. In conclusion, recovery from Ebo-Z infection is associated with early and well-regulated inflammatory responses, which may be crucial in controlling viral replication and inducing specific immunity. In contrast, defective inflammatory responses and massive monocyte/macrophage activation were associated with fatal outcome. PMID:11982604

  13. Essential role of IPS-1 in innate immune responses against RNA viruses.

    PubMed

    Kumar, Himanshu; Kawai, Taro; Kato, Hiroki; Sato, Shintaro; Takahashi, Ken; Coban, Cevayir; Yamamoto, Masahiro; Uematsu, Satoshi; Ishii, Ken J; Takeuchi, Osamu; Akira, Shizuo

    2006-07-10

    IFN-beta promoter stimulator (IPS)-1 was recently identified as an adapter for retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda5), which recognize distinct RNA viruses. Here we show the critical role of IPS-1 in antiviral responses in vivo. IPS-1-deficient mice showed severe defects in both RIG-I- and Mda5-mediated induction of type I interferon and inflammatory cytokines and were susceptible to RNA virus infection. RNA virus-induced interferon regulatory factor-3 and nuclear factor kappaB activation was also impaired in IPS-1-deficient cells. IPS-1, however, was not essential for the responses to either DNA virus or double-stranded B-DNA. Thus, IPS-1 is the sole adapter in both RIG-I and Mda5 signaling that mediates effective responses against a variety of RNA viruses. PMID:16785313

  14. Immunity to herpes simplex virus type 2. Suppression of virus-induced immune responses in ultraviolet B-irradiated mice

    SciTech Connect

    Yasumoto, S.; Hayashi, Y.; Aurelian, L.

    1987-10-15

    Ultraviolet B irradiation (280 to 320 nm) of mice at the site of intradermal infection with herpes simplex virus type 2 increased the severity of the herpes simplex virus type 2 disease and decreased delayed-type hypersensitivity (DTH) responses to viral antigen. Decrease in DTH resulted from the induction of suppressor T cells, as evidenced by the ability of spleen cells from UV-irradiated mice to inhibit DTH and proliferative responses after adoptive transfer. Lymph node cells from UV-irradiated animals did not transfer suppression. DTH was suppressed at the induction but not the expression phase. Suppressor T cells were Lyt-1+, L3T4+, and their activity was antigen-specific. However, after in vitro culture of spleen cells from UV-irradiated mice with herpes simplex virus type 2 antigen, suppressor activity was mediated by Lyt-2+ cells. Culture supernatants contained soluble nonantigen-specific suppressive factors.

  15. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    PubMed

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals. PMID:25764477

  16. Effects of interferon-alpha on the immune response to porcine reproductive and respiratory syndrome virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating and costly diseases to the swine industry world-wide. Overall, the adaptive immune response to PRRS virus (PRRSV) is weak and results in delayed elimination of virus from the host and inferior vaccine protection. PR...

  17. Marek's Disease Virus-Induced Immunosuppression: Array Analysis of Chicken Immune Response Gene Expression Profiling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is a lymphoproliferative disease of chickens induced by a highly cell-associated oncogenic alpha-herpesvirus, Marek’s disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latency infection within CD4+ T cells. Host-virus interaction, immune responses to...

  18. Mathematical models of immune effector responses to viral infections: Virus control versus the development of pathology

    NASA Astrophysics Data System (ADS)

    Wodarz, Dominik

    2005-12-01

    This article reviews mathematical models which have investigated the importance of lytic and non-lytic immune responses for the control of viral infections. Lytic immune responses fight the virus by killing infected cells, while non-lytic immune responses fight the virus by inhibiting viral replication while leaving the infected cell alive. The models suggest which types or combinations of immune responses are required to resolve infections which vary in their characteristics, such as the rate of viral replication and the rate of virus-induced target cell death. This framework is then applied to persistent infections and viral evolution. It is investigated how viral evolution and antigenic escape can influence the relative balance of lytic and non-lytic responses over time, and how this might correlate with the transition from an asymptomatic infection to pathology. This is discussed in the specific context of hepatitis C virus infection.

  19. Reduced innate immune response, apoptosis, and virus release in cells cured of respiratory syncytial virus persistent infection.

    PubMed

    Herranz, Cristina; Melero, José A; Martínez, Isidoro

    2011-02-01

    It has been reported that cell clones isolated at different passages from a culture of HEp-2 cells infected persistently with human respiratory syncytial virus (HRSV) were cured of the virus. Further studies on one of these clones (31C1) are reported here, showing that 31C1 cells can still be infected by HRSV but release low amounts of virus to the culture supernatant, develop smaller and less numerous syncytia than the original HEp-2 cells, and display only a weak innate immune response to the infection. Accordingly, uninfected 31C1 cells, but not clones derived from uninfected HEp-2 cells, express low levels of TLR3 and RIG-I. In addition, 31C1 cells are partly resistant to apoptosis. These results indicate that persistent infection of HEp-2 cells by HRSV has selected cell variants, with changes affecting cell survival, virus growth and the innate immune response that may be valuable for studies of virus-cell interaction. PMID:21093006

  20. Immunogenic response to a recombinant pseudorabies virus carrying bp26 gene of Brucella melitensis in mice.

    PubMed

    Yao, Lan; Wu, Chang-Xian; Zheng, Ke; Xu, Xian-Jin; Zhang, Hui; Chen, Chuang-Fu; Liu, Zheng-Fei

    2015-06-01

    Brucellae are facultative intracellular bacterial pathogens of a zoonotic disease called brucellosis. Live attenuated vaccines are utilized for prophylaxis of brucellosis; however, they retain residual virulence to human and/or animals, as well as interfere with diagnosis. In this study, recombinant virus PRV ΔTK/ΔgE/bp26 was screened and purified. One-step growth curve assay showed that the titer of recombinant virus was comparable to the parent strain. Mice experiments showed the recombinant virus elicited high titer of humoral antibodies against Brucella detected by enzyme-linked immunosorbent assay and against PRV by serum neutralization test. The recombinant virus induced high level of Brucella-specific lymphocyte proliferation response and production of interferon gamma. Collectively, these data suggest that the bivalent virus was capable of inducing both humoral and cellular immunity, and had the potential to be a vaccine candidate to prevent Brucella and/or pseudorabies virus infections. PMID:25890577

  1. Attenuated Rabies Virus Activates, while Pathogenic Rabies Virus Evades, the Host Innate Immune Responses in the Central Nervous System

    PubMed Central

    Wang, Zhi W.; Sarmento, Luciana; Wang, Yuhuan; Li, Xia-qing; Dhingra, Vikas; Tseggai, Tesfai; Jiang, Baoming; Fu, Zhen F.

    2005-01-01

    Rabies virus (RV) induces encephalomyelitis in humans and animals. However, the pathogenic mechanism of rabies is not fully understood. To investigate the host responses to RV infection, we examined and compared the pathology, particularly the inflammatory responses, and the gene expression profiles in the brains of mice infected with wild-type (wt) virus silver-haired bat RV (SHBRV) or laboratory-adapted virus B2C, using a mouse genomic array (Affymetrix). Extensive inflammatory responses were observed in animals infected with the attenuated RV, but little or no inflammatory responses were found in mice infected with wt RV. Furthermore, attenuated RV induced the expression of the genes involved in the innate immune and antiviral responses, especially those related to the alpha/beta interferon (IFN-α/β) signaling pathways and inflammatory chemokines. For the IFN-α/β signaling pathways, many of the interferon regulatory genes, such as the signal transduction activation transducers and interferon regulatory factors, as well as the effector genes, for example, 2′-5′-oligoadenylate synthetase and myxovirus proteins, are highly induced in mice infected with attenuated RV. However, many of these genes were not up-regulated in mice infected with wt SHBRV. The data obtained by microarray analysis were confirmed by real-time PCR. Together, these data suggest that attenuated RV activates, while pathogenic RV evades, the host innate immune and antiviral responses. PMID:16160183

  2. Regulation and evasion of antiviral immune responses by porcine reproductive and respiratory syndrome virus.

    PubMed

    Huang, Chen; Zhang, Qiong; Feng, Wen-hai

    2015-04-16

    Virus infection of mammalian cells triggers host innate immune responses to restrict viral replication and induces adaptive immunity for viral elimination. In order to survive and propagate, viruses have evolved sophisticated mechanisms to subvert host defense system by encoding proteins that target key components of the immune signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV), a RNA virus, impairs several processes of host immune responses including interfering with interferon production and signaling, modulating cytokine expression, manipulating apoptotic responses and regulating adaptive immunity. In this review, we highlight the molecular mechanisms of how PRRSV interferes with the different steps of initial antiviral host responses to establish persistent infection in pigs. Dissection of the PRRSV-host interaction is the key in understanding PRRSV pathogenesis and will provide a basis for the rational design of vaccines. PMID:25529442

  3. Inherited platelet disorders.

    PubMed

    Sandrock-Lang, Kirstin; Wentzell, Rüdiger; Santoso, Sentot; Zieger, Barbara

    2016-08-01

    Inherited platelet disorders may be the cause of bleeding symptoms of varying severity as platelets fail to fulfil their haemostatic role after vessel injury. Platelet disorders may be difficult to diagnose (and are likely to be misdiagnosed) and raise problems in therapy and management. This review explores the clinical and molecular genetic phenotype of several inherited disorders. Inherited platelet disorders can be classified according to their platelet defects: receptor defects (adhesion or aggregation), secretion disorder, and cytoskeleton defects. The best characterized platelet receptor defects are Glanzmann thrombasthenia (integrin αIIbβ3 defect) and Bernard-Soulier syndrome (defect of GPIb/IX/V). Detailed case reports of patients suffering from Glanzmann thrombasthenia (GT) or Bernard-Soulier syndrome (BSS) showing the bleeding diathesis as well as investigation of platelet aggregation/agglutination and platelet receptor expression will complement this review. In addition, Hermansky-Pudlak syndrome (HPS) as an important defect of δ-granule secretion is extensively described together with a case report of a patient suffering from HPS type 1. PMID:25707719

  4. The tRNAMet 4435A>G mutation in the mitochondrial haplogroup G2a1 is responsible for maternally inherited hypertension in a Chinese pedigree

    PubMed Central

    Lu, Zhongqiu; Chen, Hong; Meng, Yanzi; Wang, Yan; Xue, Ling; Zhi, Shaoce; Qiu, Qiaomeng; Yang, Li; Mo, Jun Qin; Guan, Min-Xin

    2011-01-01

    Mutations in mitochondrial DNA (mtDNA) have been associated with hypertension in several pedigrees with maternal inheritance. However, the pathophysiology of maternally inherited hypertension remains poorly understood. We reported here clinical, genetic evaluations and molecular analysis of mtDNA in a three-generation Han Chinese family with essential hypertension. Eight of 17 matrilineal relatives exhibited a wide range of severity in essential hypertension, whereas none of the offsprings of the affected father had hypertension. The age-at-onset of hypertension in the maternal kindred varied from 31 to 65 years, with an average of 52 years. Sequence analysis of mtDNA in this pedigree identified the known homoplasmic 4435A>G mutation, which is located at immediately 3′ end to the anticodon, corresponding to the conventional position 37 of tRNAMet, and 41 variants belonging to the Asian haplogroup G2a1. In contrast, the 4435A>G mutation occurred among mtDNA haplogroups B5a, D, M7a2 and J. The adenine (A37) at this position of tRNAMet is extraordinarily conserved from bacteria to human mitochondria. This modified A37 was shown to contribute to the high fidelity of codon recognition, structural formation and stabilization of functional tRNAs. However, 41 other mtDNA variants in this pedigree were the known polymorphisms. The occurrence of the 4435A>G mutation in two genetically unrelated families affected by hypertension indicates that this mutation is involved in hypertension. Our present investigations further supported our previous findings that the 4435A>G mutation acted as an inherited risk factor for the development of hypertension. Our findings will be helpful for counseling families of maternally inherited hypertension. PMID:21694735

  5. Sterilizing immunity to influenza virus infection requires local antigen-specific T cell response in the lungs

    PubMed Central

    Dutta, Avijit; Huang, Ching-Tai; Lin, Chun-Yen; Chen, Tse-Ching; Lin, Yung-Chang; Chang, Chia-Shiang; He, Yueh-Chia

    2016-01-01

    Sterilizing immunity is a unique immune status, which prevents effective virus infection into the host. It is different from the immunity that allows infection but with subsequent successful eradication of the virus. Pre-infection induces sterilizing immunity to homologous influenza virus challenge in ferret. In our antigen-specific experimental system, mice pre-infected with PR8 influenza virus through nasal route are likewise resistant to reinfection of the same strain of virus. The virus is cleared before establishment of effective infection. Intramuscular influenza virus injection confers protection against re-infection with facilitated virus clearance but not sterilizing immunity. Pre-infection and intramuscular injection generates comparable innate immunity and antibody response, but only pre-infection induces virus receptor reduction and efficient antigen-specific T cell response in the lungs. Pre-infection with nH1N1 influenza virus induces virus receptor reduction but not PR8-specific T cell immune response in the lungs and cannot prevent infection of PR8 influenza virus. Pre-infection with PR8 virus induced PR8-specific T cell response in the lungs but cannot prevent infection of nH1N1 virus either. These results reveal that antigen-specific T cell immunity is required for sterilizing immunity. PMID:27596047

  6. Sterilizing immunity to influenza virus infection requires local antigen-specific T cell response in the lungs.

    PubMed

    Dutta, Avijit; Huang, Ching-Tai; Lin, Chun-Yen; Chen, Tse-Ching; Lin, Yung-Chang; Chang, Chia-Shiang; He, Yueh-Chia

    2016-01-01

    Sterilizing immunity is a unique immune status, which prevents effective virus infection into the host. It is different from the immunity that allows infection but with subsequent successful eradication of the virus. Pre-infection induces sterilizing immunity to homologous influenza virus challenge in ferret. In our antigen-specific experimental system, mice pre-infected with PR8 influenza virus through nasal route are likewise resistant to reinfection of the same strain of virus. The virus is cleared before establishment of effective infection. Intramuscular influenza virus injection confers protection against re-infection with facilitated virus clearance but not sterilizing immunity. Pre-infection and intramuscular injection generates comparable innate immunity and antibody response, but only pre-infection induces virus receptor reduction and efficient antigen-specific T cell response in the lungs. Pre-infection with nH1N1 influenza virus induces virus receptor reduction but not PR8-specific T cell immune response in the lungs and cannot prevent infection of PR8 influenza virus. Pre-infection with PR8 virus induced PR8-specific T cell response in the lungs but cannot prevent infection of nH1N1 virus either. These results reveal that antigen-specific T cell immunity is required for sterilizing immunity. PMID:27596047

  7. Ebola Virus Disease: Ethics and Emergency Medical Response Policy.

    PubMed

    Jecker, Nancy S; Dudzinski, Denise M; Diekema, Douglas S; Tonelli, Mark

    2015-09-01

    Caring for patients affected with Ebola virus disease (EVD) while simultaneously preventing EVD transmission represents a central ethical challenge of the EVD epidemic. To address this challenge, we propose a model policy for resuscitation and emergent procedure policy of patients with EVD and set forth ethical principles that lend support to this policy. The policy and principles we propose bear relevance beyond the EVD epidemic, offering guidance for the care of patients with other highly contagious, virulent, and lethal diseases. The policy establishes (1) a limited code status for patients with confirmed or suspected EVD. Limited code status means that a code blue will not be called for patients with confirmed or suspected EVD at any stage of the disease; however, properly protected providers (those already in full protective equipment) may initiate resuscitative efforts if, in their clinical assessment, these efforts are likely to benefit the patient. The policy also requires that (2) resuscitation not be attempted for patients with advanced EVD, as resuscitation would be medically futile; (3) providers caring for or having contact with patients with confirmed or suspected EVD be properly protected and trained; (4) the treating team identify and treat in advance likely causes of cardiac and respiratory arrest to minimize the need for emergency response; (5) patients with EVD and their proxies be involved in care discussions; and (6) care team and provider discretion guide the care of patients with EVD. We discuss ethical issues involving medical futility and the duty to avoid harm and propose a utilitarian-based principle of triage to address resource scarcity in the emergency setting. PMID:25855946

  8. Repertoire of virus-derived small RNAs produced by mosquito and mammalian cells in response to dengue virus infection.

    PubMed

    Schirtzinger, Erin E; Andrade, Christy C; Devitt, Nicholas; Ramaraj, Thiruvarangan; Jacobi, Jennifer L; Schilkey, Faye; Hanley, Kathryn A

    2015-02-01

    RNA interference (RNAi) is the major defense of many arthropods against arthropod-borne RNA viruses (arboviruses), but the role of RNAi in vertebrate immunity to arboviruses is not clear. RNA viruses can trigger RNAi in vertebrate cells, but the vertebrate interferon response may obscure this interaction. We quantified virus-derived small RNAs (vRNAs) generated by mosquito (U4.4) cells and interferon-deficient (Vero) and interferon-competent (HuH-7) mammalian cells infected with a single isolate of mosquito-borne dengue virus. Mosquito cells produced significantly more vRNAs than mammalian cells, and mosquito cell vRNAs were derived from both the positive- and negative-sense dengue genomes whereas mammalian cell vRNAs were derived primarily from positive-sense genome. Mosquito cell vRNAs were predominantly 21 nucleotides in length whereas mammalian cell vRNAs were between 12 and 36 nucleotides with a modest peak at 24 nucleotides. Hot-spots, regions of the virus genome that generated a disproportionate number of vRNAs, overlapped among the cell lines. PMID:25528416

  9. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication.

    PubMed

    Wang, Gefei; Li, Rui; Jiang, Zhiwu; Gu, Liming; Chen, Yanxia; Dai, Jianping; Li, Kangsheng

    2016-01-01

    Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i.) but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy. PMID:27525278

  10. Viewpoint: factors involved in type I interferon responses during porcine virus infections.

    PubMed

    Summerfield, Artur

    2012-07-15

    Since type I interferon (IFN-I) is considered a potent antiviral defence mechanism, it is not surprising that during evolution viruses have development of various mechanisms to counteract IFN-I induction or release. Despite this, certain virus infections are associated with very high levels of systemic IFN-I. One explanation for this observation is the presence of plasmacytoid dendritic cells (pDC), which are able to produce high levels of IFN-I despite the presence of viral IFN-I antagonists. Examples of virus infection in pigs including classical swine fever virus, influenza virus, foot-and-mouth disease virus, and porcine circo virus type 2 highlight factors involved in controlling such responses and illustrate potential negative and positive effects for the host. Based on published data, we propose that in addition to the ability to activate pDC, the ability to spread systemically, and the tropism for lymphoid tissue also represent important factors contributing to strong systemic IFN-I responses during certain virus infections. PMID:21458079

  11. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication

    PubMed Central

    Jiang, Zhiwu; Gu, Liming; Chen, Yanxia

    2016-01-01

    Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i.) but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy. PMID:27525278

  12. Inherited Arrhythmias - Where do we Stand?

    PubMed

    Katritsis, Demosthenes G; Gersh, Bernard J; Camm, A John

    2014-08-01

    This review discusses inherited arrhythmias and conduction disturbances due to genetic disorders. Known channel mutations that are responsible for these conditions are presented, the indications and value of genetic testing are discussed, and a glossary of terms related to the discipline of genetic cardiology has been compiled. PMID:26835071

  13. At a crossroads: human DNA tumor viruses and the host DNA damage response.

    PubMed

    Nikitin, Pavel A; Luftig, Micah A

    2011-07-01

    Human DNA tumor viruses induce host cell proliferation in order to establish the necessary cellular milieu to replicate viral DNA. The consequence of such viral-programmed induction of proliferation coupled with the introduction of foreign replicating DNA structures makes these viruses particularly sensitive to the host DNA damage response machinery. In fact, sensors of DNA damage are often activated and modulated by DNA tumor viruses in both latent and lytic infection. This article focuses on the role of the DNA damage response during the life cycle of human DNA tumor viruses, with a particular emphasis on recent advances in our understanding of the role of the DNA damage response in EBV, Kaposi's sarcoma-associated herpesvirus and human papillomavirus infection. PMID:21927617

  14. Type I and III interferon production in response to RNA viruses.

    PubMed

    Reid, Elizabeth; Charleston, Bryan

    2014-09-01

    The biology of RNA viruses is closely linked to the type I and type III interferon (IFN) response of the host. These viruses display a range of molecular patterns that may be detected by host cells resulting in the induction of IFNs. Consequently, there are many examples of mechanisms employed by RNA viruses to block or delay IFN induction and reduce the expression of IFN-stimulated genes (ISGs), a necessary step in the virus lifecycle because of the capacity of IFNs to block virus replication. Efficient transmission of viruses depends, in part, on maintaining a balance between virus replication and host survival; specialized host cells, such as plasmacytoid dendritic cells, can sense viral molecular patterns and produce IFNs to help maintain this balance. There are now many examples of RNA viruses inducing type I and type III IFNs, and although these IFNs act through different receptors, in many systems studied, they induce a similar spectrum of genes. However, there may be a difference in the temporal expression pattern, with more prolonged expression of ISGs in response to type III IFN compared with type I IFN. There are also examples of synergy between type I and type III IFNs to induce antiviral responses. Clearly, it is important to understand the different roles of these IFNs in the antiviral response in vivo. One of the most striking differences between these 2 IFN systems is the distribution of the receptors: type I IFN receptors are expressed on most cells, yet type III receptor expression is restricted primarily to epithelial cells but has also been demonstrated on other cells, including dendritic cells. There is increasing evidence that type III IFNs are a key control mechanism against RNA viruses that infect respiratory and enteric epithelia. PMID:24956361

  15. Parenterally transmitted non-A, non-B hepatitis: virus-specific antibody response patterns in hepatitis C virus-infected chimpanzees.

    PubMed

    Bradley, D W; Krawczynski, K; Ebert, J W; McCaustland, K A; Choo, Q L; Houghton, M A; Kuo, G

    1990-10-01

    An established chimpanzee model of parenterally-transmitted non-A, non-B hepatitis was used to define virus-specific immune response patterns in acutely and persistently infected animals. Serial bleedings were obtained from 23 chimpanzees that had been experimentally infected with an isolate of hepatitis C virus, originally recovered from contaminated lots of factor VIII (antihemophilic) materials. Sera were assayed for the presence of antihepatitis C virus by a newly developed radioimmunoassay procedure that incorporated recombinant DNA-expressed viral antigen as a reagent. Twenty-one of 23 hepatitis C virus infected animals were shown to acquire antihepatitis C virus, most within 2-8 weeks after the major peak of alanine aminotransferase activity. All chimpanzees with biochemical, electron microscopic, and histological evidence of chronic disease clearly acquired antibody; 14 of 16 animals observed through the acute phase of disease were also shown to acquire antibody. A booster effect or anamnestic response was noted in two chimpanzees (one of which was negative for antihepatitis C virus following the acute phase of disease) after challenge with hepatitis C virus. Antihepatitis C virus was not neutralizing, because some animals with high levels of antibody were also shown to have high titers of circulating hepatitis C virus. The development and maintenance of anti-hepatitis C virus appears to reflect concomitant virus replication and high potential for infectivity. PMID:1697546

  16. Immunological, Viral, Environmental, and Individual Factors Modulating Lung Immune Response to Respiratory Syncytial Virus

    PubMed Central

    Bottau, Paolo; Faldella, Giacomo

    2015-01-01

    Respiratory syncytial virus is a worldwide pathogen agent responsible for frequent respiratory tract infections that may become severe and potentially lethal in high risk infants and adults. Several studies have been performed to investigate the immune response that determines the clinical course of the infection. In the present paper, we review the literature on viral, environmental, and host factors influencing virus response; the mechanisms of the immune response; and the action of nonimmunological factors. These mechanisms have often been studied in animal models and in the present review we also summarize the main findings obtained from animal models as well as the limits of each of these models. Understanding the lung response involved in the pathogenesis of these respiratory infections could be useful in improving the preventive strategies against respiratory syncytial virus. PMID:26064963

  17. Response to "Variable directionality of gene expression changes across generations does not constitute negative evidence of epigenetic inheritance" Sharma, A. Environmental Epigenetics, 2015, 1-5.

    PubMed

    Szabó, Piroska E

    2016-01-01

    Abhay Sharma brings two arguments in favor of transgenerational epigenetic inheritance (TGEI) in mammals when criticizing our work. He uses probability calculations and finds that the probability of obtaining the number of common changes in the in utero-exposed prospermatogonia and the same cells in the next generation is significant in our study. He also compares our results to other published datasets and concludes that the probability for the observed overlap between independent studies is significant. We disagree with both arguments of Sharma and show here that his meta-analysis and statistical calculations are not correct. PMID:27184890

  18. Inheritance of Cytosine Methylation.

    PubMed

    Tillo, Desiree; Mukherjee, Sanjit; Vinson, Charles

    2016-11-01

    There are numerous examples of parental transgenerational inheritance that is epigenetic. The informational molecules include RNA, chromatin modifications, and cytosine methylation. With advances in DNA sequencing technologies, the molecular and epigenetic mechanisms mediating these effects are now starting to be uncovered. This mini-review will highlight some of the examples of epigenetic inheritance, the establishment of cytosine methylation in sperm, and recent genomic studies linking sperm cytosine methylation to epigenetic effects on offspring. A recent paper examining changes in diet and sperm cytosine methylation from pools of eight animals each, found differences between a normal diet, a high fat diet, and a low protein diet. However, epivariation between individuals within a group was greater than the differences between groups obscuring any potential methylation changes linked to diet. Learning more about epivariation may help unravel the mechanisms that regulate cytosine methylation. In addition, other experimental and genetic systems may also produce more dramatic changes in the sperm methylome, making it easier to unravel potential transgenerational phenomena. J. Cell. Physiol. 231: 2346-2352, 2016. © 2016 Wiley Periodicals, Inc. PMID:26910768

  19. Inherited mitochondrial disorders.

    PubMed

    Finsterer, Josef

    2012-01-01

    Though inherited mitochondrial disorders (MIDs) are most well known for their syndromic forms, for which widely known acronyms (MELAS, MERRF, NARP, LHON etc.) have been coined, the vast majority of inherited MIDs presents in a non-syndromic form. Since MIDs are most frequently multisystem disorders already at onset or during the disease course, a MID should be suspected if there is a combination of neurological and non-neurological abnormalities. Neurological abnormalities occurring as a part of a MID include stroke-like episodes, epilepsy, migraine-like headache, movement disorders, cerebellar ataxia, visual impairment, encephalopathy, cognitive impairment, dementia, psychosis, hypopituitarism, aneurysms, or peripheral nervous system disease, such as myopathy, neuropathy, or neuronopathy. Non-neurological manifestations concern the ears, the endocrine organs, the heart, the gastrointestinal tract, the kidneys, the bone marrow, and the skin. Whenever there is an unexplained combination of neurological and non-neurological disease in a patient or kindred, a MID should be suspected and appropriate diagnostic measures initiated. Genetic testing should be guided by the phenotype, the biopsy findings, and the biochemical results. PMID:22399423

  20. Airway Epithelial Orchestration of Innate Immune Function in Response to Virus Infection. A Focus on Asthma.

    PubMed

    Ritchie, Andrew I; Jackson, David J; Edwards, Michael R; Johnston, Sebastian L

    2016-03-01

    Asthma is a very common respiratory condition with a worldwide prevalence predicted to increase. There are significant differences in airway epithelial responses in asthma that are of particular interest during exacerbations. Preventing exacerbations is a primary aim when treating asthma because they often necessitate unscheduled healthcare visits and hospitalizations and are a significant cause of morbidity and mortality. The most common cause of asthma exacerbations is a respiratory virus infection, of which the most likely type is rhinovirus infection. This article focuses on the role played by the epithelium in orchestrating the innate immune responses to respiratory virus infection. Recent studies show impaired bronchial epithelial cell innate antiviral immune responses, as well as augmentation of a pro-Th2 response characterized by the epithelial-derived cytokines IL-25 and IL-33, crucial in maintaining the Th2 cytokine response to virus infection in asthma. A better understanding of the mechanisms of these abnormal immune responses has the potential to lead to the development of novel therapeutic targets for virus-induced exacerbations. The aim of this article is to highlight current knowledge regarding the role of viruses and immune modulation in the asthmatic epithelium and to discuss exciting areas for future research and novel treatments. PMID:27027954

  1. Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease.

    PubMed

    Martos, Suzanne N; Tang, Wan-Yee; Wang, Zhibin

    2015-07-01

    Epigenetic mechanisms involving DNA methylation, histone modification, histone variants and nucleosome positioning, and noncoding RNAs regulate cell-, tissue-, and developmental stage-specific gene expression by influencing chromatin structure and modulating interactions between proteins and DNA. Epigenetic marks are mitotically inherited in somatic cells and may be altered in response to internal and external stimuli. The idea that environment-induced epigenetic changes in mammals could be inherited through the germline, independent of genetic mechanisms, has stimulated much debate. Many experimental models have been designed to interrogate the possibility of transgenerational epigenetic inheritance and provide insight into how environmental exposures influence phenotypes over multiple generations in the absence of any apparent genetic mutation. Unexpected molecular evidence has forced us to reevaluate not only our understanding of the plasticity and heritability of epigenetic factors, but of the stability of the genome as well. Recent reviews have described the difference between transgenerational and intergenerational effects; the two major epigenetic reprogramming events in the mammalian lifecycle; these two events making transgenerational epigenetic inheritance of environment-induced perturbations rare, if at all possible, in mammals; and mechanisms of transgenerational epigenetic inheritance in non-mammalian eukaryotic organisms. This paper briefly introduces these topics and mainly focuses on (1) transgenerational phenotypes and epigenetic effects in mammals, (2) environment-induced intergenerational epigenetic effects, and (3) the inherent difficulties in establishing a role for epigenetic inheritance in human environmental disease. PMID:25792089

  2. Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease

    PubMed Central

    Martos, Suzanne N.; Tang, Wan-yee; Wang, Zhibin

    2016-01-01

    Epigenetic mechanisms involving DNA methylation, histone modification, histone variants and nucleosome positioning, and noncoding RNAs regulate cell-, tissue-, and developmental stage-specific gene expression by influencing chromatin structure and modulating interactions between proteins and DNA. Epigenetic marks are mitotically inherited in somatic cells and may be altered in response to internal and external stimuli. The idea that environment-induced epigenetic changes in mammals could be inherited through the germline, independent of genetic mechanisms, has stimulated much debate. Many experimental models have been designed to interrogate the possibility of transgenerational epigenetic inheritance and provide insight into how environmental exposures influence phenotypes over multiple generations in the absence of any apparent genetic mutation. Unexpected molecular evidence has forced us to reevaluate not only our understanding of the plasticity and heritability of epigenetic factors, but of the stability of the genome as well. Recent reviews have described the difference between transgenerational and intergenerational effects; the two major epigenetic reprogramming events in the mammalian lifecycle; these two events making transgenerational epigenetic inheritance of environment-induced perturbations rare, if at all possible, in mammals; and mechanisms of transgenerational epigenetic inheritance in non-mammalian eukaryotic organisms. This paper briefly introduces these topics and mainly focuses on (1) transgenerational phenotypes and epigenetic effects in mammals, (2) environment-induced intergenerational epigenetic effects, and (3) the inherent difficulties in establishing a role for epigenetic inheritance in human environmental disease. PMID:25792089

  3. Immune Responses Against Classical Swine Fever Virus: Between Ignorance and Lunacy

    PubMed Central

    Summerfield, Artur; Ruggli, Nicolas

    2015-01-01

    Classical swine fever virus infection of pigs causes disease courses from life-threatening to asymptomatic, depending on the virulence of the virus strain and the immunocompetence of the host. The virus targets immune cells, which are central in orchestrating innate and adaptive immune responses such as macrophages and conventional and plasmacytoid dendritic cells. Here, we review current knowledge and concepts aiming to explain the immunopathogenesis of the disease at both the host and the cellular level. We propose that the interferon type I system and in particular the interaction of the virus with plasmacytoid dendritic cells and macrophages is crucial to understand elements governing the induction of protective rather than pathogenic immune responses. The review also concludes that despite the knowledge available many aspects of classical swine fever immunopathogenesis are still puzzling. PMID:26664939

  4. Tobacco Smoke Exposure and Altered Nasal Responses to Live Attenuated Influenza Virus

    PubMed Central

    Noah, Terry L.; Zhou, Haibo; Monaco, Jane; Horvath, Katie; Herbst, Margaret; Jaspers, Ilona

    2011-01-01

    Background Epidemiologic evidence links tobacco smoke and increased risk for influenza in humans, but the specific host defense pathways involved are unclear. Objective We developed a model to examine influenza-induced innate immune responses in humans and test the hypothesis that exposure to cigarette smoke alters nasal inflammatory and antiviral responses to live attenuated influenza virus (LAIV). Methods This was an observational cohort study comparing nasal mucosal responses to LAIV among young adult active smokers (n = 17), nonsmokers exposed to secondhand smoke (SHS; n = 20), and unexposed controls (n = 23). Virus RNA and inflammatory factors were measured in nasal lavage fluids (NLF) serially after LAIV inoculation. For key end points, peak and total (area under curve) responses were compared among groups. Results Compared with controls, NLF interleukin-6 (IL-6) responses to LAIV (peak and total) were suppressed in smokers. Virus RNA in NLF cells was significantly increased in smokers, as were interferon-inducible protein 10:virus ratios. Responses in SHS-exposed subjects were generally intermediate between controls and smokers. We observed significant associations between urine cotinine and NLF IL-6 responses (negative correlation) or virus RNA in NLF cells (positive correlation) for all subjects combined. Conclusions Nasal inoculation with LAIV results in measurable inflammatory and antiviral responses in human volunteers, thus providing a model for investigating environmental effects on influenza infections in humans. Exposure to cigarette smoke was associated with suppression of specific nasal inflammatory and antiviral responses, as well as increased virus quantity, after nasal inoculation with LAIV. These data suggest mechanisms for increased susceptibility to influenza infection among persons exposed to tobacco smoke. PMID:20920950

  5. Antibody response of five bird species after vaccination with a killed West Nile virus vaccine.

    PubMed

    Okeson, Danelle M; Llizo, Shirley Yeo; Miller, Christine L; Glaser, Amy L

    2007-06-01

    West Nile virus has been associated with numerous bird mortalities in the United States since 1999. Five avian species at three zoological parks were selected to assess the antibody response to vaccination for West Nile virus: black-footed penguins (Spheniscus demersus), little blue penguins (Eudyptula minor), American flamingos (Phoenicopterus ruber), Chilean flamingos (Phoenicopterus chilensis), and Attwater's prairie chickens (Tympanuchus cupido attwateri). All birds were vaccinated intramuscularly at least twice with a commercially available inactivated whole virus vaccine (Innovator). Significant differences in antibody titer over time were detected for black-footed penguins and both flamingo species. PMID:17679507

  6. A Case of Chikungunya Virus Induced Arthralgia Responsive to Colchicine.

    PubMed

    Redel, Henry

    2016-04-01

    Chikungunya virus is an emerging infectious disease that has started circulating throughout the Americas and Caribbean. It can lead to persistent arthralgia lasting months to years. Treatment has been symptomatic with nonsteroidal anti-inflammatory medications. This case report describes a trial of colchicine for chikungunya arthralgia in 1 patient. PMID:27419183

  7. SEROLOGICAL RESPONSES AMONG TEENAGERS AFTER NATURAL EXPOSURE TO NORWALK VIRUS

    EPA Science Inventory

    Twenty-one teenagers who were exposed to the common source during an outbreak of gastroenteritis were tested for seroconversion to the Norwalk virus. Serum pairs were collected within 72 hours of exposure and four weeks later. Each of the 11 subjects who developed symptoms and fi...

  8. A Case of Chikungunya Virus Induced Arthralgia Responsive to Colchicine

    PubMed Central

    Redel, Henry

    2016-01-01

    Chikungunya virus is an emerging infectious disease that has started circulating throughout the Americas and Caribbean. It can lead to persistent arthralgia lasting months to years. Treatment has been symptomatic with nonsteroidal anti-inflammatory medications. This case report describes a trial of colchicine for chikungunya arthralgia in 1 patient. PMID:27419183

  9. Immune responses of poultry to newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease (ND) remains a constant threat to poultry producers worldwide, in spite of the availability and global employment of ND vaccinations since the 1950s. Strains of Newcastle disease virus (NDV) belong to the order Mononegavirales, family Paramyxoviridae, and genus Avulavirus, are cont...

  10. EFFECT OF ADJUVANTS ON ANTIBODY RESPONSE OF RABBITS INOCULATED WITH VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS

    PubMed Central

    Shepel, Michael; Klugerman, Maxwell R.

    1963-01-01

    Shepel, Michael (U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.) and Maxwell R. Klugerman. Effect of adjuvants on antibody response of rabbits inoculated with Venezuelan equine encephalomyelitis virus. J. Bacteriol. 85:1150–1155. 1963.—Hemagglutination-inhibition, neutralization, and complement-fixation tests were performed on sera of rabbits inoculated with Venezuelan equine encephalomyelitis (VEE) virus in combination with Freund's adjuvants and in Hank's salt solution. This study indicated that the complete adjuvants (i.e., with mycobacteria) considerably increased the antibody response to VEE virus. Mycobacterium butyricum (M. smegmatis) appeared to be more effective than M. tuberculosis H37Ra. In the absence of mycobacteria, the response was much less pronounced. Paper electrophoretic studies of the antisera demonstrated a marked increase in gamma-globulin production, an increase in the beta-globulin, and an increase in total protein as the result of adding VEE virus to the complete adjuvants. A decrease in the albumin fraction appeared to be caused by the complete adjuvants rather than by the VEE virus itself. The incomplete adjuvant (without mycobacteria) plus virus contributed little, if any, stimulation toward the production of gamma-globulin, nor did it appear to affect the serum-albumin levels. Images PMID:14044008

  11. Interactions of tropilaelaps mercedesae, honey bee viruses, and immune response in Apis mellifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropilaelaps mites are the major health threat to Apis mellifera colonies in Asia because of their widespread occurrence, rapid population growth and potential ability to transfer bee viruses. Honey bee immune responses in the presence of feeding mites may occur in response to mite feeding, to the ...

  12. A new paradigm: innate immune sensing of viruses via the unfolded protein response.

    PubMed

    Smith, Judith A

    2014-01-01

    THE IMMUNE SYSTEM DEPENDS UPON COMBINATIONS OF SIGNALS TO MOUNT APPROPRIATE RESPONSES: pathogen specific signals in the context of co-stimulatory "danger" signals drive immune strength and accuracy. Viral infections trigger anti-viral type I interferon (IFN) responses by stimulating endosomal and cytosolic pattern recognition receptors (PRRs). However, viruses have also evolved many strategies to counteract IFN responses. Are there intracellular danger signals that enhance immune responses to viruses? During infection, viruses place a heavy demand on the protein folding machinery of the host endoplasmic reticulum (ER). To survive ER stress, host cells mount an unfolded protein response (UPR) to decrease ER protein load and enhance protein-folding capacity. Viruses also directly elicit the UPR to enhance their replication. Increasing evidence supports an intersection between the host UPR and inflammation, in particular the production of pro-inflammatory cytokines and type I IFN. The UPR directly activates pro-inflammatory cytokine transcription factors and dramatically enhances cytokine production in response to viral PRR engagement. Additionally, viral PRR engagement may stimulate specific pathways within the UPR to enhance cytokine production. Through these mechanisms, viral detection via the UPR and inflammatory cytokine production are intertwined. Consequently, the UPR response is perfectly poised to act as an infection-triggered "danger" signal. The UPR may serve as an internal "co-stimulatory" signal that (1) provides specificity and (2) critically augments responses to overcome viral subterfuge. Further work is needed to test this hypothesis during viral infections. PMID:24904537

  13. Transcriptomic analysis of responses to infectious salmon anemia virus infection in macrophage-like cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aquatic orthomyxovirus infectious salmon anemia virus (ISAV) is an important pathogen for salmonid aquaculture, however little is known about protective and pathological host responses to infection. We have investigated intracellular responses during cytopathic ISAV infection in the macrophage-l...

  14. Evasion of the Innate Response of Circulation DC Populations by Foot-and-Mouth Disease Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolution among viruses of multiple mechanisms to evade the innate immune response, particularly the actions of interferons, has also been described for FMDV infected cells. However, mechanisms involving the response of cells of the innate immune system, especially uninfected cells, are not well...

  15. Influence of interleukin 1b, interleukin 8 and interferon gamma responses on PRRS virus persistence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection with Porcine Reproductive and Respiratory Syndrome virus (PRRSV) elicits a weak immune response that is weakly protective and results in persistent infection in a subset of pigs. We investigated the intensity and timing of the early cytokine responses to PRRSV infection to determine their ...

  16. Inherited renal carcinomas.

    PubMed

    Kawashima, Akira; Young, Scott W; Takahashi, Naoki; King, Bernard F; Atwell, Thomas D

    2016-06-01

    Hereditary forms of kidney carcinoma account for 5-8% of all malignant kidney neoplasms. The renal tumors are often multiple and bilateral and occur at an earlier age. Each of the hereditary kidney carcinoma syndromes is associated with specific gene mutations as well as a specific histologic type of kidney carcinoma. The presence of associated extrarenal manifestations may suggest a hereditary kidney cancer syndrome. Radiology is most commonly used to screen and manage patients with hereditary kidney cancer syndromes. This manuscript reviews the clinical and imaging findings of well-defined inherited kidney cancer syndromes including von Hippel-Lindau disease, Birt-Hogg-Dubé syndrome, hereditary papillary renal carcinoma syndrome, hereditary leiomyomatosis and RCC syndrome, tuberous sclerosis complex, and Lynch syndrome. PMID:27108134

  17. Chronic stress, leukocyte subpopulations, and humoral response to latent viruses

    SciTech Connect

    McKinnon, W.; Weisse, C.S.; Reynolds, C.P.; Bowles, C.A.; Baum, A. )

    1989-01-01

    Psychological stress has been shown to affect immune system status and function, but most studies of this relationship have focused on acute stress and/or laboratory situations. The present study compared total numbers of leukocytes and lymphocyte subpopulations (determined by flow cytometry) and antibody titers to latent and nonlatent viruses among a group of chronically stressed individuals living near the damaged Three Mile Island (TMI) nuclear power plant with those of a demographically comparable control group. Urinary catecholamine and cortisol levels were also examined. Residents of the TMI area exhibited greater numbers of neutrophils, which were positively correlated with epinephrine levels. The TMI group also exhibited fewer B lymphocytes, T-suppressor/cytotoxic lymphocytes, and natural killer cells. Antibody titers to herpes simplex were significantly different across groups as well, whereas titers to nonlatent rubella virus as well as IgG and IgM levels were comparable.

  18. Chronic stress, leukocyte subpopulations, and humoral response to latent viruses.

    PubMed

    McKinnon, W; Weisse, C S; Reynolds, C P; Bowles, C A; Baum, A

    1989-01-01

    Psychological stress has been shown to affect immune system status and function, but most studies of this relationship have focused on acute stress and/or laboratory situations. The present study compared total numbers of leukocytes and lymphocyte subpopulations (determined by flow cytometry) and antibody titers to latent and nonlatent viruses among a group of chronically stressed individuals living near the damaged Three Mile Island (TMI) nuclear power plant with those of a demographically comparable control group. Urinary catecholamine and cortisol levels were also examined. Residents of the TMI area exhibited greater numbers of neutrophils, which were positively correlated with epinephrine levels. The TMI group also exhibited fewer B lymphocytes, T-suppressor/cytotoxic lymphocytes, and natural killer cells. Antibody titers to herpes simplex were significantly different across groups as well, whereas titers to nonlatent rubella virus as well as IgG and IgM levels were comparable. PMID:2555149

  19. Responses of cloned rainbow trout Oncorhynchus mykiss to an attenuated strain of infectious hematopoietic necrosis virus.

    PubMed

    Ristow, S S; LaPatra, S E; Dixon, R; Pedrow, C R; Shewmaker, W D; Park, J W; Thorgaard, G H

    2000-09-28

    The objective of this work was to examine the response of homozygous clones of rainbow trout to vaccination by an attenuated strain (Nan Scott Lake; NSL) of infectious hematopoietic necrosis virus (IHNV). Adult rainbow trout of the Hot Creek Strain (YY males maintained in a recirculating system at 12 degrees C) were injected 3 times with 10(5) to 10(7) plaque forming units (pfu) of NSL. Intraperitoneal injections were given at Day 0 and at 2 and 4 mo post-infection. All fish were nonlethally bled at monthly intervals for 18 mo. Serum from each fish was analyzed by the complement-dependent neutralization assay and by western blot against purified NSL virus. The highest virus neutralization titers were detected 4 mo after the first injection, and peaked at 1280. When sera were analyzed by western blot, the predominating responses of the serum from immunized fish on the reduced western blot were against M1, a matrix protein of the virus and to a 90 kDa stress protein. The 90 kDa protein was identified by a monoclonal antibody as a stress protein derived from the CHSE-214 cells in which the purified IHN virus was grown and which associates with the virus during purification. PMID:11104067

  20. Proteomic Analysis of Membrane Proteins of Vero Cells: Exploration of Potential Proteins Responsible for Virus Entry

    PubMed Central

    Guo, Donghua; Zhu, Qinghe; Zhang, Hong

    2014-01-01

    Vero cells are highly susceptible to many viruses in humans and animals, and its membrane proteins (MPs) are responsible for virus entry. In our study, the MP proteome of the Vero cells was investigated using a shotgun LC-MS/MS approach. Six hundred twenty-seven proteins, including a total of 1839 peptides, were identified in MP samples of the Vero cells. In 627 proteins, 307 proteins (48.96%) were annotated in terms of biological process of gene ontology (GO) categories; 356 proteins (56.78%) were annotated in terms of molecular function of GO categories; 414 proteins (66.03%) were annotated in terms of cellular components of GO categories. Of 627 identified proteins, seventeen proteins had been revealed to be virus receptor proteins. The resulting protein lists and highlighted proteins may provide valuable information to increase understanding of virus infection of Vero cells. PMID:24286161

  1. Novel Avian Influenza A (H7N9) Virus Induces Impaired Interferon Responses in Human Dendritic Cells

    PubMed Central

    Arilahti, Veera; Mäkelä, Sanna M.; Tynell, Janne; Julkunen, Ilkka; Österlund, Pamela

    2014-01-01

    In March 2013 a new avian influenza A(H7N9) virus emerged in China and infected humans with a case fatality rate of over 30%. Like the highly pathogenic H5N1 virus, H7N9 virus is causing severe respiratory distress syndrome in most patients. Based on genetic analysis this avian influenza A virus shows to some extent adaptation to mammalian host. In the present study, we analyzed the activation of innate immune responses by this novel H7N9 influenza A virus and compared these responses to those induced by the avian H5N1 and seasonal H3N2 viruses in human monocyte-derived dendritic cells (moDCs). We observed that in H7N9 virus-infected cells, interferon (IFN) responses were weak although the virus replicated as well as the H5N1 and H3N2 viruses in moDCs. H7N9 virus-induced expression of pro-inflammatory cytokines remained at a significantly lower level as compared to H5N1 virus-induced “cytokine storm” seen in human moDCs. However, the H7N9 virus was extremely sensitive to the antiviral effects of IFN-α and IFN-β in pretreated cells. Our data indicates that different highly pathogenic avian viruses may show considerable differences in their ability to induce host antiviral responses in human primary cell models such as moDCs. The unexpected appearance of the novel H7N9 virus clearly emphasizes the importance of the global influenza surveillance system. It is, however, equally important to systematically characterize in normal human cells the replication capacity of the new viruses and their ability to induce and respond to natural antiviral substances such as IFNs. PMID:24804732

  2. Baculoviruses Modulate a Proapoptotic DNA Damage Response To Promote Virus Multiplication

    PubMed Central

    Mitchell, Jonathan K.

    2012-01-01

    The baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) initiates apoptosis in diverse insects through events triggered by virus DNA (vDNA) replication. To define the proapoptotic pathway and its role in antivirus defense, we investigated the link between the host's DNA damage response (DDR) and apoptosis. We report here that AcMNPV elicits a DDR in the model insect Drosophila melanogaster. Replication of vDNA activated DDR kinases, as evidenced by ATM-driven phosphorylation of the Drosophila histone H2AX homolog (H2Av), a critical regulator of the DDR. Ablation or inhibition of ATM repressed H2Av phosphorylation and blocked virus-induced apoptosis. The DDR kinase inhibitors caffeine and KU55933 also prevented virus-induced apoptosis in cells derived from the permissive AcMNPV host, Spodoptera frugiperda. This block occurred at a step upstream of virus-mediated depletion of the cellular inhibitor-of-apoptosis protein, an event that initiates apoptosis in Spodoptera and Drosophila. Thus, the DDR is a conserved, proapoptotic response to baculovirus infection. DDR inhibition also repressed vDNA replication and reduced virus yields 100,000-fold, demonstrating that the DDR contributes to virus production, despite its recognized antivirus role. In contrast to virus-induced phosphorylation of Drosophila H2Av, AcMNPV blocked phosphorylation of the Spodoptera H2AX homolog (SfH2AX). Remarkably, AcMNPV also suppressed SfH2AX phosphorylation following pharmacologically induced DNA damage. These findings indicate that AcMNPV alters canonical DDR signaling in permissive cells. We conclude that AcMNPV triggers a proapoptotic DDR that is subsequently modified, presumably to stimulate vDNA replication. Thus, manipulation of the DDR to facilitate multiplication is an evolutionarily conserved strategy among DNA viruses of insects and mammals. PMID:23035220

  3. Short Communication: CXCL12 rs1029153 Polymorphism Is Associated with the Sustained Virological Response in HIV/Hepatitis C Virus-Coinfected Patients on Hepatitis C Virus Therapy.

    PubMed

    Pineda-Tenor, Daniel; Jiménez-Sousa, María A; Rallón, Norma; Berenguer, Juan; Soriano, Vicente; Aldámiz-Echevarria, Teresa; García-Álvarez, Mónica; Diez, Cristina; Fernández-Rodríguez, Amanda; Benito, Jose Miguel; Resino, Salvador

    2016-03-01

    The immune response against HIV and hepatitis C virus (HCV) infection partly depends on chemokine-mediated recruitment of specific T cells. CXCL12 polymorphisms have been associated with AIDS progression and survival, but there are no data related to HCV infection. The aim of this study was to determine whether CXCL12 polymorphisms are related so as to achieve sustained virological response (SVR) after HCV therapy with pegylated-interferon-alpha/ribavirin (pegIFN-α/ribavirin) in HIV/HCV-coinfected patients. We carried out a retrospective study in 319 naive patients who started HCV treatment. The CXCL12 (rs266093, rs1029153, and rs1801157) and IL28B (rs12980275) polymorphisms were genotyped by using the GoldenGate assay. Genetic data were analyzed under an additive inheritance model. The overall rates of the SVR were 54.9% (175/319) and 41.5% (90/217) in GT1/4 patients and 83.2% (84/101) in GT2/3 patients. Patients with a favorable CXCL12 rs1029153 T allele had higher SVR rates than patients with the rs1029153 CC genotype (44% CC, 49% CT, and 61.3% TT; p = 0.025). No significant results for the rs266093 and rs1801157 polymorphisms were found. Patients harboring the favorable rs1029153 T allele had significantly increased odds of achieving SVR [adjusted odds ratio (aOR) = 1.55; 95% confidence interval (95% CI) = 1.01; 2.40; p = 0.047]. Moreover, no significant association was found when the study population was stratified by HCV genotype (data not shown), possibly due to the low number of patients in each group. In conclusion, in this study we found that the favorable CXCL12 rs1029153 T allele seems to be related so as to achieve an SVR in HIV/HCV-coinfected patients on pegIFN-α/ribavirin therapy. PMID:26499461

  4. Host Genetic Background Strongly Influences the Response to Influenza A Virus Infections

    PubMed Central

    Srivastava, Barkha; Błażejewska, Paulina; Heßmann, Manuela; Bruder, Dunja; Geffers, Robert; Mauel, Susanne; Gruber, Achim D.; Schughart, Klaus

    2009-01-01

    The genetic make-up of the host has a major influence on its response to combat pathogens. For influenza A virus, several single gene mutations have been described which contribute to survival, the immune response and clearance of the pathogen by the host organism. Here, we have studied the influence of the genetic background to influenza A H1N1 (PR8) and H7N7 (SC35M) viruses. The seven inbred laboratory strains of mice analyzed exhibited different weight loss kinetics and survival rates after infection with PR8. Two strains in particular, DBA/2J and A/J, showed very high susceptibility to viral infections compared to all other strains. The LD50 to the influenza virus PR8 in DBA/2J mice was more than 1000-fold lower than in C57BL/6J mice. High susceptibility in DBA/2J mice was also observed after infection with influenza strain SC35M. In addition, infected DBA/2J mice showed a higher viral load in their lungs, elevated expression of cytokines and chemokines, and a more severe and extended lung pathology compared to infected C57BL/6J mice. These findings indicate a major contribution of the genetic background of the host to influenza A virus infections. The overall response in highly susceptible DBA/2J mice resembled the pathology described for infections with the highly virulent influenza H1N1-1918 and newly emerged H5N1 viruses. PMID:19293935

  5. Generation of cytotoxic and humoral immune responses by nonreplicative recombinant Semliki Forest virus.

    PubMed Central

    Zhou, X; Berglund, P; Zhao, H; Liljeström, P; Jondal, M

    1995-01-01

    The Semliki Forest virus (SFV) expression system can be used to package recombinant RNA into infectious suicide particles. Such RNA encodes only the SFV replicase and the heterologous protein but no structural proteins of SFV, and it is thus deficient in productive replication. We demonstrate here that infection of C57BL/6 (H-2b) and BALB/c (H-2d) mice with recombinant SFV expressing the nucleoprotein (NP) of influenza virus (SFV-NP) resulted in efficient priming of influenza virus-specific CD8+ cytotoxic T-cell (CTL) responses. The generated CTLs lysed both homologous (A/PR/8/34) and heterologous (A/HK/68) influenza virus-infected, or peptide-coated, target cells to a similar degree as CTLs induced by wild-type influenza virus in a major histocompatibility complex class I-restricted fashion. As few as 100 infectious units of virus induced a strong CTL response. Induction of CTL by SFV-NP could also be achieved in CD4 gene-targeted mice, demonstrating the independence of the primary CTL response of CD4+ helper T cells. One immunization generated a CTL response that peaked after 1 week, and an additional booster injection generated a CTL memory, which was still detectable after 40 days. SFV-NP immunizations also generated high-titered IgG humoral responses that remained significant after several months. These results demonstrate that the recombinant SFV suicide system is highly efficient in antigen presentation and suggest that it may have a potential as a recombinant vaccine. Images Fig. 1 PMID:7708765

  6. Inherited mitochondrial neuropathies.

    PubMed

    Finsterer, Josef

    2011-05-15

    Mitochondrial disorders (MIDs) occasionally manifest as polyneuropathy either as the dominant feature or as one of many other manifestations (inherited mitochondrial neuropathy). MIDs in which polyneuropathy is the dominant feature, include NARP syndrome due to the transition m.8993T>, CMT2A due to MFN2 mutations, CMT2K and CMT4A due to GDAP1 mutations, and axonal/demyelinating neuropathy with external ophthalmoplegia due to POLG1 mutations. MIDs in which polyneuropathy is an inconstant feature among others is the MELAS syndrome, MERRF syndrome, LHON, Mendelian PEO, KSS, Leigh syndrome, MNGIE, SANDO; MIRAS, MEMSA, AHS, MDS (hepato-cerebral form), IOSCA, and ADOA syndrome. In the majority of the cases polyneuropathy presents in a multiplex neuropathy distribution. Nerve conduction studies may reveal either axonal or demyelinated or mixed types of neuropathies. If a hereditary neuropathy is due to mitochondrial dysfunction, the management of these patients is at variance from non-mitochondrial hereditary neuropathies. Patients with mitochondrial hereditary neuropathy need to be carefully investigated for clinical or subclinical involvement of other organs or systems. Supportive treatment with co-factors, antioxidants, alternative energy sources, or lactate lowering agents can be tried. Involvement of other organs may require specific treatment. Mitochondrial neuropathies should be included in the differential diagnosis of hereditary neuropathies. PMID:21402391

  7. Humoral Response in Toscana Virus Acute Neurologic Disease Investigated by Viral-Protein-Specific Immunoassays

    PubMed Central

    Magurano, Fabio; Nicoletti, Loredana

    1999-01-01

    The Toscana virus (family Bunyaviridae, genus Phlebovirus) is the only sandfly-transmitted virus that demonstrates neurotropic activity. Clinical cases ranging from aseptic meningitis to meningoencephalitis caused by Toscana virus are yearly observed in central Italy during the summer, and several cases have been reported among tourists returning from zones of endemicity (Italy, Portugal, Spain, and Cyprus). In Toscana virus patients, immunoglobulin M (IgM) antibodies, usually present at the onset of symptoms, can reveal elevated titers by enzyme-linked immunosorbent assay and can persist for at least 1 year. IgG antibodies can be absent at the onset of symptoms: titers rise in convalescent sera and persist for many years. At least five proteins have been identified in Toscana virus-infected cells: nucleoprotein N, glycoproteins G1 and G2, a large protein (L) assumed to be a component of the polymerase, and two nonstructural proteins, NSm and NSs. We report results of a study on the antibody response to individual viral proteins in patients with Toscana virus-associated acute neurologic disease. Immunoblotting and semiquantitative radioimmunoprecipitation assay (RIPA) allow identification of nucleoprotein N as the major antigen responsible for both IgM and IgG responses. Antibodies to proteins other than nucleoprotein N are detected only by RIPA. Antibodies to glycoproteins are detected in about one-third of patients, and whereas their presence always predicts neutralization, some serum samples with neutralizing activity have undetectable levels of antibodies to G1-G2. Antibodies to nonstructural proteins NSm and NSs are also identified. The results obtained raise some questions about antigenic variability and relevant neutralization epitopes of Toscana virus. PMID:9874664

  8. Efficient Virus Assembly, but Not Infectivity, Determines the Magnitude of Hepatitis C Virus-Induced Interferon Alpha Responses of Plasmacytoid Dendritic Cells

    PubMed Central

    Grabski, Elena; Wappler, Ilka; Pfaender, Stephanie; Steinmann, Eike; Haid, Sibylle; Dzionek, Andrzej

    2014-01-01

    ABSTRACT Worldwide, approximately 160 million people are chronically infected with hepatitis C virus (HCV), seven distinct genotypes of which are discriminated. The hallmarks of HCV are its genetic variability and the divergent courses of hepatitis C progression in patients. We assessed whether intragenotypic HCV variations would differentially trigger host innate immunity. To this end, we stimulated human primary plasmacytoid dendritic cells (pDC) with crude preparations of different cell culture-derived genotype 2a HCV variants. Parental Japanese fulminant hepatitis C virus (JFH1) did not induce interferon alpha (IFN-α), whereas the intragenotypic chimera Jc1 triggered massive IFN-α responses. Purified Jc1 retained full infectivity but no longer induced IFN-α. Coculture of pDC with HCV-infected hepatoma cells retrieved the capacity to induce IFN-α, whereas Jc1-infected cells triggered stronger responses than JFH1-infected cells. Since the infectivity of virus particles did not seem to affect pDC activation, we next tested Jc1 mutants that were arrested at different stages of particle assembly. These experiments revealed that efficient assembly and core protein envelopment were critically needed to trigger IFN-α. Of note, sequences within domain 2 of the core that vitally affect virus assembly also crucially influenced the IFN-α responses of pDC. These data showed that viral determinants shaped host innate IFN-α responses to HCV. IMPORTANCE Although pegylated IFN-α plus ribavirin currently is the standard of care for the treatment of chronic hepatitis C virus infection, not much is known about the relevance of early interferon responses in the pathogenesis of hepatitis C virus infection. Here, we addressed whether intragenotypic variations of hepatitis C virus would account for differential induction of type I interferon responses mounted by primary blood-derived plasmacytoid dendritic cells. Surprisingly, a chimeric genotype 2a virus carrying the

  9. Pathogenic Chikungunya Virus Evades B Cell Responses to Establish Persistence.

    PubMed

    Hawman, David W; Fox, Julie M; Ashbrook, Alison W; May, Nicholas A; Schroeder, Kristin M S; Torres, Raul M; Crowe, James E; Dermody, Terence S; Diamond, Michael S; Morrison, Thomas E

    2016-08-01

    Chikungunya virus (CHIKV) and related alphaviruses cause epidemics of acute and chronic musculoskeletal disease. To investigate the mechanisms underlying the failure of immune clearance of CHIKV, we studied mice infected with an attenuated CHIKV strain (181/25) and the pathogenic parental strain (AF15561), which differ by five amino acids. Whereas AF15561 infection of wild-type mice results in viral persistence in joint tissues, 181/25 is cleared. In contrast, 181/25 infection of μMT mice lacking mature B cells results in viral persistence in joint tissues, suggesting that virus-specific antibody is required for clearance of infection. Mapping studies demonstrated that a highly conserved glycine at position 82 in the A domain of the E2 glycoprotein impedes clearance and neutralization of multiple CHIKV strains. Remarkably, murine and human antibodies targeting E2 domain B failed to neutralize pathogenic CHIKV strains efficiently. Our data suggest that pathogenic CHIKV strains evade E2 domain-B-neutralizing antibodies to establish persistence. PMID:27452455

  10. Depressed chemiluminescence response by influenza virus is enhanced after conjugation of viral subunits to muramyl dipeptide.

    PubMed Central

    Masihi, K N; Lange, W; Rohde-Schulz, B; Chedid, L; Jolivet, M

    1985-01-01

    The effect on respiratory burst of murine spleen cells after in vitro exposure to influenza virus, subunits, or subunits conjugated to muramyl dipeptide (MDP) was studied by luminol-dependent chemiluminescence (CL) in response to stimulation by zymosan. CL induced by infectious influenza A virus was depressed but could be elevated to normal levels when MDP was added together with a low, but not with a high, dose of the virus. Profound depression of CL was induced by high doses of influenza A/Brazil, A/Bangkok, and B/Singapore subunits. The same amounts of viral subunits conjugated to MDP restored or even enhanced the CL responses of spleen cells from BALB/c and C57BL/6 mice. Splenic cells from BALB/c mice generated higher levels of CL than did cells from C57BL/6 mice. PMID:4044031

  11. Innate immune responses to infection with H5N1 highly pathogenic avian influenza virus in different duck species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Differences in pathogenicity and response to vaccination have been observed between different duck species. The innate immune system is responsible for controlling viruses during t...

  12. Whole influenza virus vaccine is more immunogenic than split influenza virus vaccine and induces primarily an IgG2a response in BALB/c mice.

    PubMed

    Hovden, A-O; Cox, R J; Haaheim, L R

    2005-07-01

    The aim of this study was to compare the kinetics and the magnitude of the humoral immune response to two different influenza vaccine formulations, whole and split virus vaccines. BALB/c mice were immunized intramuscularly with one or two doses (3 weeks apart) of 7.5, 15 or 30 microg of haemagglutinin of monovalent A/Panama/2007/99 (H3N2) split or whole virus vaccine. The two vaccine formulations induced similar kinetics of the antibody-secreting cells response; however, differences in the magnitude were observed in the spleen and bone marrow. Vaccination with whole virus vaccine generally elicited a quicker and higher neutralizing antibody response, particularly after the first dose of vaccine. The two vaccine formulations gave different immunoglobulin G (IgG) subclass profiles. Split virus vaccine stimulated both IgG1 and IgG2a antibodies suggestive of mixed T-helper 1 (Th1) and Th2 response, whereas whole virus vaccine induced mainly an IgG2a antibody response, which is indicative of a dominant Th1 response. The increased immunogenicity of whole virus vaccine in a naïve population could reduce the vaccine concentration needed to provide protective immunity. PMID:16092921

  13. Quantification of the host response proteome after herpes simplex virus type 1 infection.

    PubMed

    Berard, Alicia R; Coombs, Kevin M; Severini, Alberto

    2015-05-01

    Viruses employ numerous host cell metabolic functions to propagate and manage to evade the host immune system. For herpes simplex virus type 1 (HSV1), a virus that has evolved to efficiently infect humans without seriously harming the host in most cases, the virus-host interaction is specifically interesting. This interaction can be best characterized by studying the proteomic changes that occur in the host during infection. Previous studies have been successful at identifying numerous host proteins that play important roles in HSV infection; however, there is still much that we do not know. This study identifies host metabolic functions and proteins that play roles in HSV infection, using global quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling of the host cell combined with LC-MS/MS. We showed differential proteins during early, mid and late infection, using both cytosolic and nuclear fractions. We identified hundreds of differentially regulated proteins involved in fundamental cellular functions, including gene expression, DNA replication, inflammatory response, cell movement, cell death, and RNA post-transcriptional modification. Novel differentially regulated proteins in HSV infections include some previously identified in other virus systems, as well as fusion protein, involved in malignant liposarcoma (FUS) and hypoxia up-regulated 1 protein precursor (HYOU1), which have not been identified previously in any virus infection. PMID:25815715

  14. Coinfection with Streptococcus pneumoniae Modulates the B Cell Response to Influenza Virus

    PubMed Central

    Wolf, Amaya I.; Strauman, Maura C.; Mozdzanowska, Krystyna; Whittle, James R. R.; Williams, Katie L.; Sharpe, Arlene H.; Weiser, Jeffrey N.; Caton, Andrew J.; Hensley, Scott E.

    2014-01-01

    ABSTRACT Pathogen-specific antibodies (Abs) protect against respiratory infection with influenza A virus (IAV) and Streptococcus pneumoniae and are the basis of effective vaccines. Sequential or overlapping coinfections with both pathogens are common, yet the impact of coinfection on the generation and maintenance of Ab responses is largely unknown. We report here that the B cell response to IAV is altered in mice coinfected with IAV and S. pneumoniae and that this response differs, depending on the order of pathogen exposure. In mice exposed to S. pneumoniae prior to IAV, the initial virus-specific germinal center (GC) B cell response is significantly enhanced in the lung-draining mediastinal lymph node and spleen, and there is an increase in CD4+ T follicular helper (TFH) cell numbers. In contrast, secondary S. pneumoniae infection exaggerates early antiviral antibody-secreting cell formation, and at later times, levels of GCs, TFH cells, and antiviral serum IgG are elevated. Mice exposed to S. pneumoniae prior to IAV do not maintain the initially robust GC response in secondary lymphoid organs and exhibit reduced antiviral serum IgG with diminished virus neutralization activity a month after infection. Our data suggest that the history of pathogen exposures can critically affect the generation of protective antiviral Abs and may partially explain the differential susceptibility to and disease outcomes from IAV infection in humans. IMPORTANCE Respiratory tract coinfections, specifically those involving influenza A viruses and Streptococcus pneumoniae, remain a top global health burden. We sought to determine how S. pneumoniae coinfection modulates the B cell immune response to influenza virus since antibodies are key mediators of protection. PMID:25100838

  15. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...

  16. Evaluating the cell mediated immune response of avian species to avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The measurement of avian cellular immunity is critical to understanding the role and regulation of avian lymphocytes following avian influenza virus infection. Although the ability to measure avian T cell responses has steadily increased over the last few years, few studies have examined the role o...

  17. Squash vein yellowing virus infection of vining cucurbits and the vine decline response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Squash vein yellowing virus (SqVYV) is the cause of viral watermelon vine decline. In this study, the responses of a diverse group of vining cucurbits to SqVYV inoculation was determined. The majority of cucurbits tested had either no symptoms of infection, or developed relatively mild symptoms. ...

  18. GENOMIC ANALYSIS OF INCREASED HOST IMMUNE AND CELL DEATH RESPONSES BY 1918 INFLUENZA VIRUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influenza pandemic of 1918-19 was responsible for in excess of 20-40 million deaths worldwide and is believed to potentially originate from introduction of a novel avian virus into humans. The disease reported in 1918-19 consisted of a severe, rapidly progressive pneumonia with severe pulmonary...

  19. GENETIC CONTROL OF SWINE RESPONSES TO PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS INFECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our goal is use the Swine Protein-Annotated Oligonucleotide Microarray (www.pigoligoarray.org) to identify immune regulatory and protective pathways to uncover genetic components involved in early immune responses during porcine reproductive and respiratory syndrome virus (PRRSV) infection. Animals ...

  20. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: To evaluate and compare humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine. Methods: Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each....

  1. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine were evaluated and compared. Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each. Pigs were va...

  2. Innate immune responses of porcine macrophage cell line (Cdelts2+) to virus-associated virulence determinants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was to define the changes in the expression of immune genes in response to virus-associated virulence determinants. We stimulated a monocyte-derived porcine macrophage cell line (Cdelta2+) for 3 and 24h with Imiquimod, Poly IC and Poly IC with Lyovec. Cell lysates were process...

  3. Responses of Varroa-resistant honey bees (Apis mellifera L.) to Deformed wing virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The negative impact of Deformedwing virus (DWV) on European honey bees Apis mellifera is magnified by Varroa destructor parasitism. This study compared the responses of two Varroa-resistant honey bee stocks, pure Russian honey bees (RHB) and out-crossed Varroa Sensitive Hygienic bees, Pol-line (POL)...

  4. Simulating the immune response to the HIV-1 virus with cellular automata

    NASA Astrophysics Data System (ADS)

    Kougias, Ch. F.; Schulte, J.

    1990-07-01

    Two cellular automata models are presented which simulate the immune response to the HIV-1 virus at the early stage of the infection. The simple model A is based on the generalized nearest neighbor interaction, and the complex model B on the explicitly defined local interactions between the neighboring sites. These two models are discussed in the context of related work by Pandey.

  5. Physiological responses of hard red winter wheat to infection by wheat streak mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect o...

  6. GENETIC CONTROL OF SWINE RESPONSES TO PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS INFECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our goal is to uncover genetic components involved in early immune responses during porcine reproductive and respiratory syndrome virus (PRRSV) infection. PRRS costs U.S. swine producers >$700 million annually. We want to determine what are the most significant pathways and genes involved in early i...

  7. Pea embryonic tissues show common responses to the replication of a wide range of viruses.

    PubMed

    Escaler, M; Aranda, M A; Thomas, C L; Maule, A J

    2000-02-15

    The response of pea embryonic tissues to the replication of a range of different viruses was investigated using in situ hybridization to analyze changes in the expression of two host genes, heat shock protein 70 (hsp70) and lipoxygenase (lox1). Excised pea embryos were infected using microprojectile bombardment with a nonseed transmissible strain of Pea seed-borne mosaic potyvirus, or with Pea early browning tobravirus (PEBV), White Clover mosaic potexvirus, or Beet curly top geminivirus. Collectively, these examples represent families of viruses with differing genomic features, differing numbers of genomic components and differing replication strategies. In all cases, there was an induction of hsp70 associated with virus replication and, in most cases, a downregulation of lox1. Hence, either each virus has a direct inducer of these common responses or the induction is indirectly the result of a generic feature of virus infection. By exploiting the bipartite nature of the PEBV genome, the coat protein gene and genes involved in vector transmission were excluded as potential inducers. PMID:10662627

  8. Human T cell responses to Japanese encephalitis virus in health and disease.

    PubMed

    Turtle, Lance; Bali, Tanushka; Buxton, Gemma; Chib, Savita; Chan, Sajesh; Soni, Mohammed; Hussain, Mohammed; Isenman, Heather; Fadnis, Prachi; Venkataswamy, Manjunatha M; Satishkumar, Vishali; Lewthwaite, Penny; Kurioka, Ayako; Krishna, Srinivasa; Shankar, M Veera; Ahmed, Riyaz; Begum, Ashia; Ravi, Vasanthapuram; Desai, Anita; Yoksan, Sutee; Fernandez, Stefan; Willberg, Christian B; Kloverpris, Henrik N; Conlon, Christopher; Klenerman, Paul; Satchidanandam, Vijaya; Solomon, Tom

    2016-06-27

    Japanese encephalitis (JE) virus (JEV) is an important cause of encephalitis in children of South and Southeast Asia. However, the majority of individuals exposed to JEV only develop mild symptoms associated with long-lasting adaptive immunity. The related flavivirus dengue virus (DENV) cocirculates in many JEV-endemic areas, and clinical data suggest cross-protection between DENV and JEV. To address the role of T cell responses in protection against JEV, we conducted the first full-breadth analysis of the human memory T cell response using a synthetic peptide library. Ex vivo interferon-γ (IFN-γ) responses to JEV in healthy JEV-exposed donors were mostly CD8(+) and targeted nonstructural (NS) proteins, whereas IFN-γ responses in recovered JE patients were mostly CD4(+) and targeted structural proteins and the secreted protein NS1. Among patients, a high quality, polyfunctional CD4(+) T cell response was associated with complete recovery from JE. T cell responses from healthy donors showed a high degree of cross-reactivity to DENV that was less apparent in recovered JE patients despite equal exposure. These data reveal divergent functional CD4(+) and CD8(+) T cell responses linked to different clinical outcomes of JEV infection, associated with distinct targeting and broad flavivirus cross-reactivity including epitopes from DENV, West Nile, and Zika virus. PMID:27242166

  9. Chimeric Rabies Virus-Like Particles Containing Membrane-Anchored GM-CSF Enhances the Immune Response against Rabies Virus

    PubMed Central

    Kang, Hongtao; Qi, Yinglin; Wang, Hualei; Zheng, Xuexing; Gao, Yuwei; Li, Nan; Yang, Songtao; Xia, Xianzhu

    2015-01-01

    Rabies remains an important public health threat in most developing countries. To develop a more effective and safe vaccine against rabies, we have constructed a chimeric rabies virus-like particle (VLP), which containing glycoprotein (G) and matrix protein (M) of rabies virus (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, and membrane-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF), and it was named of EVLP-G. The immunogenicity and protective efficacy of EVLP-G against RABV were evaluated by intramuscular administration in a mouse model. The EVLP-G was successfully produced in insect cells by coinfection with three recombinant baculoviruses expressing G, M, and GM-CSF, respectively. The membrane-anchored GM-CSF possesses a strong adjuvant activity. More B cells and dendritic cells (DCs) were recruited and/or activated in inguinal lymph nodes in mice immunized with EVLP-G. EVLP-G was found to induce a significantly increased RABV-specific virus-neutralizing antibody and elicit a larger and broader antibody subclass responses compared with the standard rabies VLP (sRVLP, consisting of G and M). The EVLP-G also elicited significantly more IFN-γ- or IL-4-secreting CD4+ and CD8+ T cells than the sRVLP. Moreover, the immune responses induced by EVLP-G protect all vaccinated mice from lethal challenge with RABV. These results suggest that EVLP-G has the potential to be developed as a novel vaccine candidate for the prevention and control of animal rabies. PMID:25768031

  10. Chimeric rabies virus-like particles containing membrane-anchored GM-CSF enhances the immune response against rabies virus.

    PubMed

    Kang, Hongtao; Qi, Yinglin; Wang, Hualei; Zheng, Xuexing; Gao, Yuwei; Li, Nan; Yang, Songtao; Xia, Xianzhu

    2015-03-01

    Rabies remains an important public health threat in most developing countries. To develop a more effective and safe vaccine against rabies, we have constructed a chimeric rabies virus-like particle (VLP), which containing glycoprotein (G) and matrix protein (M) of rabies virus (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, and membrane-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF), and it was named of EVLP-G. The immunogenicity and protective efficacy of EVLP-G against RABV were evaluated by intramuscular administration in a mouse model. The EVLP-G was successfully produced in insect cells by coinfection with three recombinant baculoviruses expressing G, M, and GM-CSF, respectively. The membrane-anchored GM-CSF possesses a strong adjuvant activity. More B cells and dendritic cells (DCs) were recruited and/or activated in inguinal lymph nodes in mice immunized with EVLP-G. EVLP-G was found to induce a significantly increased RABV-specific virus-neutralizing antibody and elicit a larger and broader antibody subclass responses compared with the standard rabies VLP (sRVLP, consisting of G and M). The EVLP-G also elicited significantly more IFN-γ- or IL-4-secreting CD4+ and CD8+ T cells than the sRVLP. Moreover, the immune responses induced by EVLP-G protect all vaccinated mice from lethal challenge with RABV. These results suggest that EVLP-G has the potential to be developed as a novel vaccine candidate for the prevention and control of animal rabies. PMID:25768031

  11. Venezuelan Equine Encephalitis Virus Induces Apoptosis through the Unfolded Protein Response Activation of EGR1

    PubMed Central

    Baer, Alan; Lundberg, Lindsay; Swales, Danielle; Waybright, Nicole; Pinkham, Chelsea; Dinman, Jonathan D.

    2016-01-01

    ABSTRACT Venezuelan equine encephalitis virus (VEEV) is a previously weaponized arthropod-borne virus responsible for causing acute and fatal encephalitis in animal and human hosts. The increased circulation and spread in the Americas of VEEV and other encephalitic arboviruses, such as eastern equine encephalitis virus and West Nile virus, underscore the need for research aimed at characterizing the pathogenesis of viral encephalomyelitis for the development of novel medical countermeasures. The host-pathogen dynamics of VEEV Trinidad donkey-infected human astrocytoma U87MG cells were determined by carrying out RNA sequencing (RNA-Seq) of poly(A) and mRNAs. To identify the critical alterations that take place in the host transcriptome following VEEV infection, samples were collected at 4, 8, and 16 h postinfection and RNA-Seq data were acquired using an Ion Torrent PGM platform. Differential expression of interferon response, stress response factors, and components of the unfolded protein response (UPR) was observed. The protein kinase RNA-like endoplasmic reticulum kinase (PERK) arm of the UPR was activated, as the expression of both activating transcription factor 4 (ATF4) and CHOP (DDIT3), critical regulators of the pathway, was altered after infection. Expression of the transcription factor early growth response 1 (EGR1) was induced in a PERK-dependent manner. EGR1−/− mouse embryonic fibroblasts (MEFs) demonstrated lower susceptibility to VEEV-induced cell death than isogenic wild-type MEFs, indicating that EGR1 modulates proapoptotic pathways following VEEV infection. The influence of EGR1 is of great importance, as neuronal damage can lead to long-term sequelae in individuals who have survived VEEV infection. IMPORTANCE Alphaviruses represent a group of clinically relevant viruses transmitted by mosquitoes to humans. In severe cases, viral spread targets neuronal tissue, resulting in significant and life-threatening inflammation dependent on a combination

  12. Lamprey VLRB response to influenza virus supports universal rules of immunogenicity and antigenicity.

    PubMed

    Altman, Meghan O; Bennink, Jack R; Yewdell, Jonathan W; Herrin, Brantley R

    2015-01-01

    Immunoglobulins (Igs) are a crown jewel of jawed vertebrate evolution. Through recombination and mutation of small numbers of genes, Igs can specifically recognize a vast variety of natural and man-made organic molecules. Jawless vertebrates evolved a parallel system of humoral immunity, which recognizes antigens not with Ig, but with a structurally unrelated receptor called the variable lymphocyte receptor B (VLRB). We exploited the convergent evolution of Ig and VLRB antibodies (Abs) to investigate if intrinsic chemical features of foreign proteins determine their antigenicity and immunogenicity. Surprisingly, we find lamprey VLRB and mouse Ig responses to influenza A virus are extremely similar. Each focuses ~80% of the response on hemagglutinin (HA), mainly through recognition of the major antigenic sites in the HA globular head domain. Our findings predict basic conservation of Ab responses to protein antigens, strongly supporting the use of animal models for understanding human Ab responses to viruses and protein immunogens. PMID:26252514

  13. The initial antibody response to HIV-1: induction of ineffective early B cell responses against GP41 by the transmitted/founder virus

    SciTech Connect

    Chavez, Leslie L; Perelson, Alan

    2008-01-01

    A window of opportunity for immune responses to extinguish HIV -1 exists from the moment of transmission through establishment of the latent pool of HIV -I-infected cells. A critical time to study the initial immune responses to the transmitted/founder virus is the eclipse phase of HIV-1 infection (time from transmission to the first appearance of plasma virus) but, to date, this period has been logistically difficult to analyze. Studies in non-human primates challenged with chimeric simianhuman immunodeficiency virus have shown that neutralizing antibodies, when present at the time of infection, can prevent virus infection.

  14. Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions

    PubMed Central

    Glennon, Nicole B.; Jabado, Omar; Lo, Michael K.

    2015-01-01

    ABSTRACT Bats are important reservoirs for several viruses, many of which cause lethal infections in humans but have reduced pathogenicity in bats. As the innate immune response is critical for controlling viruses, the nature of this response in bats and how it may differ from that in other mammals are of great interest. Using next-generation transcriptome sequencing (mRNA-seq), we profiled the transcriptional response of Pteropus vampyrus bat kidney (PVK) cells to Newcastle disease virus (NDV), an avian paramyxovirus known to elicit a strong innate immune response in mammalian cells. The Pteropus genus is a known reservoir of Nipah virus (NiV) and Hendra virus (HeV). Analysis of the 200 to 300 regulated genes showed that genes for interferon (IFN) and antiviral pathways are highly upregulated in NDV-infected PVK cells, including genes for beta IFN, RIG-I, MDA5, ISG15, and IRF1. NDV-infected cells also upregulated several genes not previously characterized to be antiviral, such as RND1, SERTAD1, CHAC1, and MORC3. In fact, we show that MORC3 is induced by both IFN and NDV infection in PVK cells but is not induced by either stimulus in human A549 cells. In contrast to NDV infection, HeV and NiV infection of PVK cells failed to induce these innate immune response genes. Likewise, an attenuated response was observed in PVK cells infected with recombinant NDVs expressing the NiV IFN antagonist proteins V and W. This study provides the first global profile of a robust virus-induced innate immune response in bats and indicates that henipavirus IFN antagonist mechanisms are likely active in bat cells. IMPORTANCE Bats are the reservoir host for many highly pathogenic human viruses, including henipaviruses, lyssaviruses, severe acute respiratory syndrome coronavirus, and filoviruses, and many other viruses have also been isolated from bats. Viral infections are reportedly asymptomatic or heavily attenuated in bat populations. Despite their ecological importance to viral

  15. Leading the Team You Inherit.

    PubMed

    Watkins, Michael D

    2016-06-01

    Most leaders don't have the luxury of building their teams from scratch. Instead they're put in charge of an existing group, and they need guidance on the best way to take over and improve performance. Watkins, an expert on transitions, suggests a three-step approach: Assess. Act quickly to size up the personnel you've inherited, systematically gathering data from one-on-one chats, team meetings, and other sources. Reflect, too, on the business challenges you face, the kinds of people you want in various roles, and the degree to which they need to collaborate. Reshape. Adjust the makeup of the team by moving people to new positions, shifting their responsibilities, or replacing them. Make sure that everyone is aligned on goals and how to achieve them--you may need to change the team's stated direction. Consider also making changes in the way the team operates (reducing the frequency of meetings, for example, or creating new subteams). Then establish ground rules and processes to sustain desired behaviors, and revisit those periodically. Accelerate team development. Set your people up for some early wins. Initial successes will boost everyone's confidence and reinforce the value of your new operating model, thus paving the way for ongoing growth. PMID:27491196

  16. Immune response of mice to non-adapted avian influenza A virus.

    PubMed

    Stropkovská, A; Mikušková, T; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-12-01

    Human infections with avian influenza A viruses (IAVs) without or with clinical symptoms of disease were recently reported from several continents, mainly in high risk groups of people, who came into the contact with infected domestic birds or poultry. It was shown that avian IAVs are able to infect humans directly without previous adaptation, however, their ability to replicate and to cause a disease in this new host can differ. No spread of these avian IAVs among humans has been documented until now, except for one case described in Netherlands in the February of 2003 in people directly involved in handling IAV (H7N7)-infected poultry. The aim of our work was to examine whether a low pathogenic avian IAV can induce a virus-specific immune response of biological relevancy, in spite of its restricted replication in mammals. As a model we used a low pathogenic virus A/Duck/Czechoslovakia/1956 (H4N6) (A/Duck), which replicated well in MDCK cells and produced plaques on cell monolayers, but was unable to replicate productively in mouse lungs. We examined how the immune system of mice responds to the intranasal application of this non-adapted avian virus. Though we did not prove the infectious virus in lungs of mice following A/Duck application even after its multiple passaging in mice, we detected virus-specific vRNA till day 8 post infection. Moreover, we detected virus-specific mRNA and de novo synthesized viral nucleoprotein (NP) and membrane protein (M1) in lungs of mice on day 2 and 4 after exposure to A/Duck. Virus-specific antibodies in sera of these mice were detectable by ELISA already after a single intranasal dose of A/Duck virus. Not only antibodies specific to the surface glycoprotein hemagglutinin (HA) were induced, but also antibodies specific to the NP and M1 of IAV were detected by Western blot and their titers increased after the second exposure of mice to this virus. Importantly, antibodies neutralizing virus A/Duck were proved in mouse

  17. Hepatitis C virus-specific cytotoxic T cell response restoration after treatment-induced hepatitis C virus control

    PubMed Central

    Larrubia, Juan-Ramón; Moreno-Cubero, Elia; Miquel, Joaquín; Sanz-de-Villalobos, Eduardo

    2015-01-01

    Hepatitis C virus (HCV)-specific cytotoxic T cell (CTL) response plays a major role in viral control during spontaneous infection resolution. These cells develop an exhausted and pro-apoptotic status during chronic onset, being unable to get rid of HCV. The role of this response in contributing to sustained viral response (SVR) after anti-HCV is controversial. Recent studies show that after successful interferon-based anti-HCV treatment, HCV traces are still detectable and this correlates with a peak of HCV-specific CTL response activation, probably responsible for maintaining SVR by subsequent complete HCV clearing. Moreover, SVR patients’ serum is still able to induce HCV infection in naïve chimpanzees, suggesting that the infection could be under the control of the immune system after a successful treatment, being transmissible in absence of this adaptive response. At least theoretically, treatment-induced viral load decrease could allow an effective HCV-specific CTL response reestablishment. This effect has been recently described with anti-HCV interferon-free regimes, based on direct-acting antivirals. Nevertheless, this is to some extent controversial with interferon-based therapies, due to the detrimental immunoregulatory α-interferon effect on T cells. Moreover, HCV-specific CTL response features during anti-HCV treatment could be a predictive factor of SVR that could have clinical implications in patient management. In this review, the recent knowledge about the role of HCV-specific CTL response in the development of SVR after anti-HCV treatment is discussed. PMID:25834312

  18. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus.

    PubMed

    Barletta, Ana Beatriz Ferreira; Alves, Liliane Rosa; Silva, Maria Clara L Nascimento; Sim, Shuzhen; Dimopoulos, George; Liechocki, Sally; Maya-Monteiro, Clarissa M; Sorgine, Marcos H Ferreira

    2016-01-01

    In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells - an immune responsive cell lineage - accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism. PMID:26887863

  19. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus

    PubMed Central

    Barletta, Ana Beatriz Ferreira; Alves, Liliane Rosa; Nascimento Silva, Maria Clara L.; Sim, Shuzhen; Dimopoulos, George; Liechocki, Sally; Maya-Monteiro, Clarissa M.; Sorgine, Marcos H. Ferreira

    2016-01-01

    In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells – an immune responsive cell lineage – accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism. PMID:26887863

  20. Cell-mediated immune responses to respiratory syncytial virus infection

    PubMed Central

    Geevarghese, Bessey; Weinberg, Adriana

    2014-01-01

    We evaluated the cell-mediated immune (CMI) response to RSV acute infection including the magnitude, kinetics and correlates with morbidity and age. Twenty-nine RSV-infected patients with mean ± SD age of 15 ± 14 months were enrolled during their first week of disease. Th1, Th2, Th9, Th17 and Th22 responses were measured at entry and 2 and 6 weeks later. All subjects were hospitalized for a median (range) of 5 (3–11) days. RSV-specific effector and memory Th1 CMI measured by lymphocyte proliferation and IFNγ ELISPOT significantly increased over time (P ≤ 0.03). In contrast, Th22 responses decreased over time (P ≤ 0.03). Other changes did not reach statistical significance. The severity of RSV disease measured by the length of hospitalization positively correlated with the magnitude of Th9, Th22 and TNFα inflammatory responses (rho ≥ 0.4; P ≤ 0.04) and negatively with memory CMI (rho = –0.45; P = 0.04). The corollary of this observation is that robust Th1 and/or low Th9, Th22, and TNFα inflammatory responses may be associated with efficient clearance of RSV infection and therefore desirable characteristics of an RSV vaccine. Young age was associated with low memory and effector Th1 responses (rho ≥ 0.4; P ≤ 0.04) and high Th2, Th9, Th17, Th22 and TNFα inflammatory responses (rho ≤ –0.4; P ≤ 0.04), indicating that age at vaccination may be a major determinant of the CMI response pattern. PMID:24513666

  1. Preimplantation genetic diagnosis for inherited neurological disorders.

    PubMed

    Tur-Kaspa, Ilan; Jeelani, Roohi; Doraiswamy, P Murali

    2014-07-01

    Preimplantation genetic diagnosis (PGD) is an option for couples at risk of having offspring with an inherited debilitating or fatal neurological disorder who wish to conceive a healthy child. PGD has been carried out for conditions with various modes of inheritance, including spinal muscular atrophy, Huntington disease, fragile X syndrome, and chromosomal or mitochondrial disorders, and for susceptibility genes for cancers with nervous system involvement. Most couples at risk of transmitting a genetic mutation would opt for PGD over prenatal testing and possible termination of a pregnancy. The aim of this Perspectives article is to assist neurologists in counselling and treating patients who wish to explore the option of PGD to enable conception of an unaffected child. PGD can be accomplished for most disorders in which the genetic basis is known, and we argue that it is time for clinicians and neurological societies to consider the evidence and to formulate guidelines for the responsible integration of PGD into modern preventative neurology. PMID:24866878

  2. The nucleocapsid protein of measles virus blocks host interferon response

    SciTech Connect

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko

    2012-03-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-{alpha}/{beta} and {gamma}-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  3. Recombinant rabies virus expressing IFNα1 enhanced immune responses resulting in its attenuation and stronger immunogenicity.

    PubMed

    Wang, Yifei; Tian, Qin; Xu, Xiaojuan; Yang, Xianfeng; Luo, Jun; Mo, Weiyu; Peng, Jiaojiao; Niu, Xuefeng; Luo, Yongwen; Guo, Xiaofeng

    2014-11-01

    Several studies have shown that type 1 interferons (IFNs) exert multiple biological effects on both innate and adaptive immune responses. Here, we investigated the pathogenicity and immunogenicity of recombinant rabies virus (RABV) expressing canine interferon α1 (rHEP-CaIFNα1). It was shown that Kun Ming (KM) mice that received a single intramuscular immunization with rHEP-CaIFNα1 had an earlier increase and a higher level of virus-neutralizing antibody titers compared with immunization of the parent HEP-Flury. A challenge experiment further confirmed that more mice that were immunized with rHEP-CaIFNα1 survived compared with mice immunized with the parent virus. Quantitative real-time PCR indicated that rHEP-CaIFNα1 induced a stronger innate immune response, especially the type 1 IFN response. Flow cytometry was conducted to show that rHEP-CaIFNα1 recruited more activated B cells in lymph nodes and CD8 T cells in the peripheral blood, which is beneficial to achieve virus clearance in the early infective stage. PMID:25310498

  4. Evaluation of immunological responses to a glycoprotein G deficient candidate vaccine strain of infectious laryngotracheitis virus.

    PubMed

    Devlin, Joanne M; Viejo-Borbolla, Abel; Browning, Glenn F; Noormohammadi, Amir H; Gilkerson, James R; Alcami, Antonio; Hartley, Carol A

    2010-02-01

    Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes severe respiratory disease in poultry. Glycoprotein G (gG) is a virulence factor in ILTV. Recent studies have shown that gG-deficient ILTV is an effective attenuated vaccine however the function of ILTV gG is unknown. This study examined the function and in vivo relevance of ILTV gG. The results showed that ILTV gG binds to chemokines with high affinity and inhibits leukocyte chemotaxis. Specific-pathogen-free (SPF) chickens infected with gG-deficient virus had altered tracheal leukocyte populations and lower serum antibody levels compared with those infected with the parent virus. The findings suggest that the absence of chemokine-binding activity during infection with gG-deficient ILTV results in altered host immune responses. PMID:19932672

  5. Domestic cats infected with lion or puma lentivirus develop anti-feline immunodeficiency virus immune responses.

    PubMed

    VandeWoude, Sue; Hageman, Catherine L; Hoover, Edward A

    2003-09-01

    Attenuated live viral strains have afforded significant protection against virus challenge in HIV vaccine models. Although both cellular and humoral immunity are assumed to be vital for protection, specific parameters consistently associated with control of infection have been elusive. Our previous studies have shown that lentiviruses from 2 nondomestic feline species--lion (Pathera leo) and puma (Felis concolor)--persistently but nonpathogenetically infect domestic cats (Felis domestica). Moreover, infection with either the puma lentivirus (PLV) or lion lentivirus (LLV) conferred partial protection against superinfection with virulent feline immunodeficiency virus (FIV), the feline equivalent of HIV. To determine whether domestic cats infected by the lentiviruses of pumas or lions generate cross-reactive immune responses, we infected groups of 5 domestic cats with PLV, LLV, or a sham control and then monitored virus load, hematologic parameters, antibody protection, proliferative responses, and the ability of blood mononuclear cells to inhibit LLV, PLV, and FIV replication in vitro. All cats inoculated with LLV or PLV developed persistent infection, and low-level cell-associated viremia has been previously described. Infected cats also generated robust antibody titers and lymphocytes that proliferated in response to viral antigens and downregulated PLV, LLV, and FIV replication in vitro. This latter activity was CD8 cell associated for PLV and LLV inhibition but not for FIV inhibition. Thus, cats infected with the phylogenetically more ancient and less pathogenic feline lentiviruses generated humoral and cell-mediated immune responses reactive against both the homologous viruses and the heterologous FIV of domestic cats, which correlated with decreased viral load. These results are analogous to protection studies with attenuated primate immunodeficiency viruses and provide a system by which to examine adaptation, interference, and cross protection among

  6. Pepper Mild Mottle Virus, a Plant Virus Associated with Specific Immune Responses, Fever, Abdominal Pains, and Pruritus in Humans

    PubMed Central

    Colson, Philippe; Richet, Hervé; Desnues, Christelle; Balique, Fanny; Moal, Valérie; Grob, Jean-Jacques; Berbis, Philippe; Lecoq, Hervé; Harlé, Jean-Robert; Berland, Yvon; Raoult, Didier

    2010-01-01

    Background Recently, metagenomic studies have identified viable Pepper mild mottle virus (PMMoV), a plant virus, in the stool of healthy subjects. However, its source and role as pathogen have not been determined. Methods and Findings 21 commercialized food products containing peppers, 357 stool samples from 304 adults and 208 stool samples from 137 children were tested for PMMoV using real-time PCR, sequencing, and electron microscopy. Anti-PMMoV IgM antibody testing was concurrently performed. A case-control study tested the association of biological and clinical symptoms with the presence of PMMoV in the stool. Twelve (57%) food products were positive for PMMoV RNA sequencing. Stool samples from twenty-two (7.2%) adults and one child (0.7%) were positive for PMMoV by real-time PCR. Positive cases were significantly more likely to have been sampled in Dermatology Units (p<10−6), to be seropositive for anti-PMMoV IgM antibodies (p = 0.026) and to be patients who exhibited fever, abdominal pains, and pruritus (p = 0.045, 0.038 and 0.046, respectively). Conclusions Our study identified a local source of PMMoV and linked the presence of PMMoV RNA in stool with a specific immune response and clinical symptoms. Although clinical symptoms may be imputable to another cofactor, including spicy food, our data suggest the possibility of a direct or indirect pathogenic role of plant viruses in humans. PMID:20386604

  7. Effect of the adjuvant dimethyl dioctadecyl ammonium bromide on the humoral and cellular immune responses to encephalomyocarditis virus.

    PubMed

    Kraaijeveld, C A; la Rivière, G; Benaissa-Trouw, B J; Jansen, J; Harmsen, T; Snippe, H

    1983-09-01

    The effects of the adjuvant dimethyl dioctadecyl ammonium bromide (DDA) on the immune responses to encephalomyocarditis (EMC) virus were studied in mice. The humoral response, as measured by appearance of neutralizing antibodies, was slightly enhanced in mice immunized by the intraperitoneal route. Intracutaneously, DDA almost did not affect the humoral response but resulted in distinct enhancement of delayed type hypersensitivity (DH), as measured by the footpad swelling test. DH to EMC virus was found to be antigen-specific and could be passively transferred to normal mice with peritoneal exudate cells from immunized mice. Dose-response curves for DH and humoral antibody responses to EMC virus were not concordant. Low doses induced DH on day 6 without measurable circulating antibodies; high doses gave good antibody responses but suboptimal DH reactions. Immunization conferred a state of resistance to infection with virulent EMC virus. Protection seemed more related to DH than to the prevalence of specific antibodies at the time of infection. PMID:6316848

  8. Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection.

    PubMed

    Murtaugh, Michael P; Xiao, Zhengguo; Zuckermann, Federico

    2002-01-01

    The immunology of porcine reproductive and respiratory syndrome virus (PRRS) begins with an initial encounter of PRRSV with the pig. Regardless of the route of entry of PRRSV--via inhalation, intramuscular vaccination, insemination, or other routes--productive infection occurs predominately in alveolar macrophages of the lung. Thus, innate responses of the lung and the alveolar macrophage comprise the initial defense against PRRSV. The virus appears not to elicit innate interferon and cytokine responses characteristic of other strongly immunogenic viral pathogens, and its effects are consistent with induction of a weak adaptive immune response. Humoral and cell-mediated immunity is induced in due course, and results in clearance of virus from the circulation but not from lymphoid tissues, where the infection becomes persistent. Subsequent reexposure to PRRSV elicits an anamnestic response that is partially to completely protective. Within this unconventional picture of anti-PRRSV immunity lie a variety of unresolved issues, including the nature of protective immunity within individual pigs and among pigs in commercial populations, the efficacy of protective immunity against genetically different PRRSV isolates, the effects of developmental age, sex, genetics, and other host factors on the immune response to PRRSV, and the possible suppression of host immunity to other pathogens. PMID:12513925

  9. Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock

    PubMed Central

    Rudd, Penny A.; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T.; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A.

    2012-01-01

    Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7−/−) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7−/− mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7−/− mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364

  10. Interferon response factors 3 and 7 protect against Chikungunya virus hemorrhagic fever and shock.

    PubMed

    Rudd, Penny A; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A; Suhrbier, Andreas

    2012-09-01

    Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7(-/-)) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7(-/-) mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7(-/-) mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364

  11. Cross-protective immune responses between genotypically distinct lineages of infectious laryngotracheitis viruses.

    PubMed

    Lee, Sang-Won; Markham, Philip F; Coppo, Mauricio J C; Legione, Alistair R; Shil, Niraj K; Quinteros, José A; Noormohammadi, Amir H; Browning, Glenn F; Hartley, Carol A; Devlin, Joanne M

    2014-03-01

    Recent phylogenetic studies have identified different genotypic lineages of infectious laryngotracheitis virus (ILTV), and these lineages can recombine in the field. The emergence of virulent recombinant field strains of ILTV by natural recombination between commercial vaccines belonging to different genotypic lineages has been reported recently. Despite the use of attenuated ILTV vaccines, these recombinant viruses were able to spread and cause disease in commercial poultry flocks, raising the question of whether the different lineages of ILTV can induce cross-protective immune responses. This study examined the capacity of the Australian-origin A20 ILTV vaccine to protect against challenge with the class 8 ILTV recombinant virus, the genome of which is predominantly derived from a heterologous genotypic lineage. Following challenge, birds vaccinated via eyedrop were protected from clinical signs of disease and pathological changes in the tracheal mucosa, although they were not completely protected from viral infection or replication. In contrast, the challenge virus induced severe clinical signs and tracheal pathology in unvaccinated birds. This is the first study to examine the ability of a vaccine from the Australian lineage to protect against challenge with a virus from a heterologous lineage. These results suggest that the two distinct genotypic lineages of ILTV can both induce cross-protection, indicating that current commercial vaccines are still likely to assist in control of ILTV in the poultry industry, in spite of the emergence of novel recombinants derived from different genotypic lineages. PMID:24758128

  12. Immune response and resistance to Rous sarcoma virus challenge of chickens immunized with cell-associated glycoproteins provided with a recombinant avian leukosis virus.

    PubMed Central

    Chebloune, Y; Rulka, J; Cosset, F L; Valsesia, S; Ronfort, C; Legras, C; Drynda, A; Kuzmak, J; Nigon, V M; Verdier, G

    1991-01-01

    The Rous-associated virus 1 env gene, which encodes the envelope gp85 and gp37 glycoproteins, was isolated and inserted in place of the v-erbB oncogene into an avian erythroblastosis virus-based vector, carrying the neo resistance gene substituted for the v-erbA oncogene, to generate the pNEA recombinant vector. A helper-free virus stock of the pNEA vector was produced on an avian transcomplementing cell line and used to infect primary chicken embryo fibroblasts (CEFs) or quail QT6 cells. These infected cells, selected with G418 (CEF/NEA and QT6/NEA, respectively) were found to be resistant to superinfections with subgroup A retroviruses. The CEF/NEA preparations were used as a cell-associated antigen to inoculate adult chickens by the intravenous route compared with direct inoculations of NEA recombinant helper-free virus used as a cell-free antigen. Chickens injected with the cell-associated antigen (CEF/NEA) exhibited an immune response demonstrated by induction of high titers of neutralizing antibodies and were found to be protected against tumor production after Rous sarcoma virus A challenge. Conversely, no immune response and no protection against Rous sarcoma virus A challenge were observed in chickens directly inoculated with cell-free NEA recombinant virus or in sham-inoculated chickens. PMID:1654445

  13. Involvement of Potato (Solanum tuberosum L.) MKK6 in Response to Potato virus Y

    PubMed Central

    Lazar, Ana; Coll, Anna; Dobnik, David; Baebler, Špela; Bedina-Zavec, Apolonija; Žel, Jana; Gruden, Kristina

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades have crucial roles in the regulation of plant development and in plant responses to stress. Plant recognition of pathogen-associated molecular patterns or pathogen-derived effector proteins has been shown to trigger activation of several MAPKs. This then controls defence responses, including synthesis and/or signalling of defence hormones and activation of defence related genes. The MAPK cascade genes are highly complex and interconnected, and thus the precise signalling mechanisms in specific plant–pathogen interactions are still not known. Here we investigated the MAPK signalling network involved in immune responses of potato (Solanum tuberosum L.) to Potato virus Y, an important potato pathogen worldwide. Sequence analysis was performed to identify the complete MAPK kinase (MKK) family in potato, and to identify those regulated in the hypersensitive resistance response to Potato virus Y infection. Arabidopsis has 10 MKK family members, of which we identified five in potato and tomato (Solanum lycopersicum L.), and eight in Nicotiana benthamiana. Among these, StMKK6 is the most strongly regulated gene in response to Potato virus Y. The salicylic acid treatment revealed that StMKK6 is regulated by the hormone that is in agreement with the salicylic acid-regulated domains found in the StMKK6 promoter. The involvement of StMKK6 in potato defence response was confirmed by localisation studies, where StMKK6 accumulated strongly only in Potato-virus-Y-infected plants, and predominantly in the cell nucleus. Using a yeast two-hybrid method, we identified three StMKK6 targets downstream in the MAPK cascade: StMAPK4_2, StMAPK6 and StMAPK13. These data together provide further insight into the StMKK6 signalling module and its involvement in plant defence. PMID:25111695

  14. CD4 T lymphocyte proliferative responses to hepatitis C virus (HCV) antigens in patients coinfected with HCV and human immunodeficiency virus who responded to anti-HCV treatment.

    PubMed

    Legrand, Elisabeth; Neau, Didier; Galperine, Tatiana; Trimoulet, Pascale; Moreau, Jean-François; Pitard, Vincent; Lacut, Jean-Yves; Ragnaud, Jean-Marie; Dupon, Michel; Le Bail, Brigitte; Bernard, Noëlle; Schvoerer, Evelyne; Houghton, Michael; Fleury, Hervé; Lafon, Marie-Edith

    2002-08-01

    CD4 T lymphocyte proliferative responses to hepatitis C virus (HCV) antigens were evaluated before and during an anti-HCV regimen (interferon-alpha2a and ribavirin) in 36 patients coinfected with HCV and human immunodeficiency virus (HIV), to determine whether immune responses against HCV antigens are present in such patients, whether these responses are modified by anti-HCV treatment, and whether they are correlated with treatment efficacy. The CD4 responses against HCV antigens (primarily core antigens) detected at study entry in one-half of the patients did not correlate with anti-HCV treatment efficacy. Of 36 patients, 8 had patterns of persistent immune response to infection by genotypes 3 or 4 that were significantly correlated with sustained virologic response. Persistent immunologic reactivity and sustained virologic response coexisted only in patients infected with genotype 3. These findings suggest that HCV genotype may influence specific immune response, which, in turn, is implicated in virologic control. PMID:12134226

  15. Lymphocytic Choriomeningitis Virus Differentially Affects the Virus-Induced Type I Interferon Response and Mitochondrial Apoptosis Mediated by RIG-I/MAVS

    PubMed Central

    Pythoud, Christelle; Rothenberger, Sylvia; Martínez-Sobrido, Luis; de la Torre, Juan Carlos

    2015-01-01

    ABSTRACT Arenaviruses are important emerging human pathogens maintained by noncytolytic persistent infection in their rodent reservoir hosts. Despite high levels of viral replication, persistently infected carrier hosts show only mildly elevated levels of type I interferon (IFN-I). Accordingly, the arenavirus nucleoprotein (NP) has been identified as a potent IFN-I antagonist capable of blocking activation of interferon regulatory factor 3 (IRF3) via the retinoic acid inducible gene (RIG)-I/mitochondrial antiviral signaling (MAVS) pathway. Another important mechanism of host innate antiviral defense is represented by virus-induced mitochondrial apoptosis via RIG-I/MAVS and IRF3. In the present study, we investigated the ability of the prototypic Old World arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with RIG-I/MAVS-dependent apoptosis. We found that LCMV does not induce apoptosis at any time during infection. While LCMV efficiently blocked induction of IFN-I via RIG-I/MAVS in response to superinfection with cytopathic RNA viruses, virus-induced mitochondrial apoptosis remained fully active in LCMV-infected cells. Notably, in LCMV-infected cells, RIG-I was dispensable for virus-induced apoptosis via MAVS. Our study reveals that LCMV infection efficiently suppresses induction of IFN-I but does not interfere with the cell's ability to undergo virus-induced mitochondrial apoptosis as a strategy of innate antiviral defense. The RIG-I independence of mitochondrial apoptosis in LCMV-infected cells provides the first evidence that arenaviruses can reshape apoptotic signaling according to their needs. IMPORTANCE Arenaviruses are important emerging human pathogens that are maintained in their rodent hosts by persistent infection. Persistent virus is able to subvert the cellular interferon response, a powerful branch of the innate antiviral defense. Here, we investigated the ability of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to

  16. Robust Research and Rapid Response: The Plum Pox Virus Story

    ERIC Educational Resources Information Center

    Alter, Theodore R.; Bridger, Jeffrey C.; Travis, James W.

    2004-01-01

    Universities are frequently criticized for being unresponsive to the needs of their stakeholders. In response to this perception, many institutions of higher learning have taken steps to become more productively engaged with the people, organizations, and communities they serve. In this article, we analyze the process of engagement by focusing on…

  17. Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lytic bacteriophages, viruses which infect and lyse bacterial cells, can provide a natural method to reduce bacterial pathogens on produce commodities. The use of multi-phage cocktails is most likely to be effective against bacterial pathogens on produce commodities, and minimize the development of...

  18. Genome-Wide Study of Response to Platinum, Taxane, and Combination Therapy in Ovarian Cancer: In vitro Phenotypes, Inherited Variation, and Disease Recurrence

    PubMed Central

    Fridley, Brooke L.; Ghosh, Taraswi M.; Wang, Alice; Raghavan, Rama; Dai, Junqiang; Goode, Ellen L.; Lamba, Jatinder K.

    2016-01-01

    Background: The standard treatment for epithelial ovarian cancer (EOC) patients with advanced disease is carboplatin-paclitaxel combination therapy following initial debulking surgery, yet there is wide inter-patient variation in clinical response. We sought to identify pharmacogenomic markers related to carboplatin-paclitaxel therapy. Methods: The lymphoblastoid cell lines, derived from 74 invasive EOC patients seen at the Mayo Clinic, were treated with increasing concentrations of carboplatin and/or paclitaxel and assessed for in vitro drug response using MTT viability and caspase3/7 apoptosis assays. Drug response phenotypes IC50 (effective dose at which 50% of cells are viable) and EC50 (dose resulting in 50% induction of caspase 3/7 activity) were estimated for each patient to paclitaxel and carboplatin (alone and in combination). For each of the six drug response phenotypes, a genome-wide association study was conducted. Results: Statistical analysis found paclitaxel in vitro drug response phenotypes to be moderately associated with time to EOC recurrence (p = 0.008 IC50; p = 0.058 EC50). Although no pharmacogenomic associations were significant at p < 5 × 10−8, seven genomic loci were associated with drug response at p < 10−6, including at 4q21.21 for carboplatin, 4p16.1 and 5q23.2 for paclitaxel, and 3q24, 10q, 1q44, and 13q21 for combination therapy. Nearby genes of interest include FRAS1, MGC32805, SNCAIP, SLC9A9, TIAL1, ZNF731P, and PCDH20. Conclusions: These results suggest the existence of genetic loci associated with response to platinum-taxane therapies. Further research is needed to understand the mechanism by which these loci may impact EOC clinical response to this commonly used regimen. PMID:27047539

  19. Macrophage response to oncolytic paramyxoviruses potentiates virus-mediated tumor cell killing.

    PubMed

    Tan, Darren Qiancheng; Zhang, LiFeng; Ohba, Kenji; Ye, Min; Ichiyama, Koji; Yamamoto, Naoki

    2016-04-01

    Tumor-associated macrophages (TAMs) are known to regulate tumor response to many anti-cancer therapies, including oncolytic virotherapy. Oncolytic virotherapy employing oncolytic paramyxoviruses, such as attenuated measles (MeV) and mumps (MuV) viruses, has demonstrated therapeutic potential against various malignancies. However, the response of TAMs to oncolytic paramyxoviruses and the consequent effect on virotherapeutic efficacy remains to be characterized. Here, we demonstrate that the presence of human monocyte-derived macrophages (MDMs), irrespective of initial polarization state, enhances the virotherapeutic effect of MeV and MuV on breast cancer cells. Notably, our finding contrasts those of several studies involving other oncolytic viruses, which suggest that TAMs negatively impact virotherapeutic efficacy by impeding virus replication and dissemination. We found that the enhanced virotherapeutic effect in the presence of MDMs was due to slightly delayed proliferation and significantly elevated cell death that was not a result of increased virus replication. Instead, we found that the enhanced virotherapeutic effect involved several macrophage-associated anti-tumor mediators, and was associated with the modulation of MDMs towards an anti-tumor phenotype. Our findings present an alternative view on the role of TAMs in oncolytic virotherapy, and highlight the immunotherapeutic potential of oncolytic paramyxoviruses; possibly contributing towards the overall efficacy of oncolytic virotherapy. PMID:26763072

  20. Complex Modulation of the Aedes aegypti Transcriptome in Response to Dengue Virus Infection

    PubMed Central

    Bonizzoni, Mariangela; Dunn, W. Augustine; Campbell, Corey L.; Olson, Ken E.; Marinotti, Osvaldo; James, Anthony A.

    2012-01-01

    Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1–4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes. PMID:23209765

  1. Lessons from T cell responses to virus induced tumours for cancer eradication in general.

    PubMed

    Melief, C J; Kast, W M

    1992-01-01

    Immunotherapy of virus induced tumours by adoptive transfer of virus specific cytotoxic T cells (CTL) is now feasible in experimental murine systems. These CTL recognize viral peptide sequences of defined length presented in the groove of MHC class I molecules. Effective eradication of large tumour masses requires coadministration of IL-2. In essence, T cell immunity against virus induced tumours does not differ from anti-viral T cell immunity in general. Tumour escape strategies are numerous but, in various instances, can be counteracted by defined measures. Initiation of CTL responses against poorly immunogenic non-virus induced tumours (the majority of human cancer) requires novel strategies to overcome T cell inertia. Rather than waiting to see whether tumour specific CTL (against unknown antigens) can be cultured from TIL, we propose an alternative strategy in which CTL are raised against target molecules of choice, including differentiation antigens of restricted tissue distribution (autoantigens) or mutated/overexpressed oncogene products. The various steps proposed include: (a) identification of target molecules of choice; (b) identification in these target molecules of MHC allele specific peptide motifs involved in peptide binding to MHC molecules; (c) evaluation of actual binding of such peptides to specific MHC class I molecules; (d) in vitro CTL response induction by such peptides, presented either by highly efficient antigen presenting cells (such as processing defective cells, which carry empty MHC class I molecules) loaded with a single peptide or by dendritic cells, both cell types being capable of primary CTL response induction in vitro and (e) adoptive transfer of tumour specific CTL generated in vivo or, more conveniently, vaccination with immunodominant peptides. The latter possibility seems to be feasible because peptide vaccination with a single immunodominant viral peptide can install CTL memory and confer protection against lethal virus

  2. Phenotype as Agent for Epigenetic Inheritance.

    PubMed

    Torday, John S; Miller, William B

    2016-01-01

    The conventional understanding of phenotype is as a derivative of descent with modification through Darwinian random mutation and natural selection. Recent research has revealed Lamarckian inheritance as a major transgenerational mechanism for environmental action on genomes whose extent is determined, in significant part, by germ line cells during meiosis and subsequent stages of embryological development. In consequence, the role of phenotype can productively be reconsidered. The possibility that phenotype is directed towards the effective acquisition of epigenetic marks in consistent reciprocation with the environment during the life cycle of an organism is explored. It is proposed that phenotype is an active agent in niche construction for the active acquisition of epigenetic marks as a dominant evolutionary mechanism rather than a consequence of Darwinian selection towards reproductive success. The reproductive phase of the life cycle can then be appraised as a robust framework in which epigenetic inheritance is entrained to affect growth and development in continued reciprocal responsiveness to environmental stresses. Furthermore, as first principles of physiology determine the limits of epigenetic inheritance, a coherent justification can thereby be provided for the obligate return of all multicellular eukaryotes to the unicellular state. PMID:27399791

  3. Transcriptional response of chicken embryo cells to Newcastle disease virus (D58 strain) infection.

    PubMed

    Kumar, Ramesh; Kirubaharan, J John; Chandran, N Daniel Joy; Gnanapriya, N

    2013-09-01

    Newcastle disease virus (NDV), the causative agent of Newcastle disease (ND) in chicken causes significant economic loss for the poultry industry worldwide. The mechanism involved in host response to NDV infection is not well understood. For better understanding of the virus-host interaction; transcriptional profile of some genes of chicken embryo (CE) cells infected with NDV vaccine strain D58 was established using quantitative RT-PCR SYBR Green method. The relative standard curve method was used to measure the level of transcripts of the cellular genes against an endogenous control (β actin) gene. Among the genes studied, IFN α, IFN γ, MHC I and DDX 1 were up-regulated while IL 6 was down regulated. The expression of viral genes (M and F) in the infected CE cells was also confirmed by relative quantification. The host cellular genes involved in pro-inflammatory response, interferon-regulated proteins and the cellular immune response were affected by NDV infection, indicating involvement of complex signaling pathways of host cell responses to the infection. Thus, this study contributes to the understanding of the pathogenesis of ND and provides an insight into the virus-host interaction. PMID:24426287

  4. Immune responses in piglets infected with highly pathogenic porcine reproductive and respiratory syndrome virus.

    PubMed

    Wang, Gang; Song, Tengfei; Yu, Ying; Liu, Yonggang; Shi, Wenda; Wang, Shujie; Rong, Fulong; Dong, Jianguo; Liu, He; Cai, Xuehui; Zhou, En-Min

    2011-08-15

    Porcine reproductive and respiratory syndrome virus (PRRSV) infection compromises the host's innate and adaptive immunity. The aim of this study was to investigate the immune responses of piglets infected with highly pathogenic (HP) PRRSV (HuN4 strain) with or without the immunization with CH-1R attenuated PRRSV vaccine. The response was evaluated for the clinical signs, pathological changes and virus load in immune organs, antibody responses and levels of serum IFN-γ, IL-4 and IL-10. The result showed that in comparison with the piglets received the immunization, the piglets infected with HP-PRRSV alone had the thymus atrophy, decreased serum levels of IL-4 and increased serum levels of IL-10 and INF-γ. These results suggest that elevated IL-10 levels at the early stage of the infection may enhance virus survival and delay the induction of protective immunity, while increased levels of IL-4 induce the effective immune responses and increase the animals' health status. PMID:21612828

  5. Immune response to influenza A virus hemagglutinin protein is sufficient to induce vaccine-associated enhanced respiratory disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antigenic diversity of influenza A virus (IAV) circulating in pigs continues to complicate control of swine influenza through the use of vaccination in the United States. The antibody response elicited by whole inactivated virus (WIV) vaccines can lead to vaccine-associated enhanced respiratory ...

  6. The effect of IL-2 expression by recombinant Newcastle disease virus on host immune response, viral replication and pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interleukin 2 (IL-2) is a soluble cytokine that stimulates the cell-mediated immune response. Virus constructs, such as recombinant vaccinia virus, expressing chicken IL-2 have been shown to improve viral clearance by natural killer cells in mice. We have inserted the open-reading frame of the chi...

  7. Dengue virus-specific murine T-lymphocyte proliferation: serotype specificity and response to recombinant viral proteins.

    PubMed Central

    Rothman, A L; Kurane, I; Zhang, Y M; Lai, C J; Ennis, F A

    1989-01-01

    Definition of the T-lymphocyte responses to dengue viruses should aid in the development of safe and effective vaccines and help to explain the pathophysiology of dengue hemorrhagic fever and dengue shock syndrome. In this study, we demonstrated that dengue virus-specific T lymphocytes were detected in spleen cells from dengue virus-immune mice using an in vitro proliferation assay. Following immunization with a single dose of infectious dengue virus, murine lymphocytes showed increased proliferation when incubated in the presence of viral antigens of the same serotype but not in the presence of control antigens. Depletion experiments with antibody and complement showed that the population of responding cells expressed the Thy1+ L3T4+ Lyt2- phenotype. This indicates that the predominant proliferating cells are T lymphocytes of the helper-inducer phenotype. Dengue virus-specific memory lymphocyte responses were detectable for at least 22 weeks after immunization. The response to primary infection was primarily serotype specific, with some serotype cross-reactivity present at a low level. We demonstrated that lymphocytes from mice immunized with dengue 4 virus proliferate in response to a combination of dengue 4 virus C, pre-M, E, NS1, and NS2a proteins expressed in Sf9 cells with a recombinant baculovirus, and, to a lesser extent, to the dengue 4 virus E protein alone. PMID:2786087

  8. Respiratory syncytial virus replication is prolonged by a concomitant allergic response

    PubMed Central

    Hassantoufighi, A; Oglesbee, M; Richter, B W M; Prince, G A; Hemming, V; Niewiesk, S; Eichelberger, M C

    2007-01-01

    Epidemiological studies show an association between early exposure to respiratory syncytial virus (RSV) and the development or exacerbation of asthma. This idea is supported by studies in mice that demonstrate worsened airway hyper-reactivity (AHR) when RSV-infected animals are exposed to allergen. The effect of allergen on RSV disease, however, has not been reported. Cotton rats (Sigmodon hispidus) that have been used as a model to study RSV pathogenesis were sensitized to extracts of Aspergillus fumigatus (Af), a common household mould. The allergic response to Af included eosinophilia, formation of granulomas and induction of Th2 type cytokines. RSV infection prior to allergen challenge resulted in exacerbation of the inflammatory response as well as increased airway responsiveness to methacholine. The exacerbated response was indeed dependent on virus replication. Virus replication in turn was influenced by the allergic response, with persistence in the noses for 2 days longer in animals challenged with allergen. This diminished clearance corresponded to decreased induction of mRNA for IFN-γ, a Th1-type cytokine that is characteristic of viral infection. Treatment of RSV-infected Af-challenged animals with recombinant IFN-γ reduced the allergic inflammatory response as well as the relative levels of Th1 and Th2 cytokine mRNA. However, this treatment did not reduce airway reactivity, showing that these pathologic and physiologic measures of exacerbated disease are independent. We speculate that the reciprocal effect of the allergic response on viral immunity may benefit the host by limiting exacerbation of physiologic responses that are IFN-γ-dependent. PMID:17335559

  9. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells

    PubMed Central

    Weiskopf, Daniela; Angelo, Michael A.; de Azeredo, Elzinandes L.; Sidney, John; Greenbaum, Jason A.; Fernando, Anira N.; Broadwater, Anne; Kolla, Ravi V.; De Silva, Aruna D.; de Silva, Aravinda M.; Mattia, Kimberly A.; Doranz, Benjamin J.; Grey, Howard M.; Shresta, Sujan; Peters, Bjoern; Sette, Alessandro

    2013-01-01

    The role of CD8+ T cells in dengue virus infection and subsequent disease manifestations is not fully understood. According to the original antigenic sin theory, skewing of T-cell responses induced by primary infection with one serotype causes less effective response upon secondary infection with a different serotype, predisposing individuals to severe disease. A comprehensive analysis of CD8+ responses in the general population from the Sri Lankan hyperendemic area, involving the measurement of ex vivo IFNγ responses associated with more than 400 epitopes, challenges the original antigenic sin theory. Although skewing of responses toward primary infecting viruses was detected, this was not associated with impairment of responses either qualitatively or quantitatively. Furthermore, we demonstrate higher magnitude and more polyfunctional responses for HLA alleles associated with decreased susceptibility to severe disease, suggesting that a vigorous response by multifunctional CD8+ T cells is associated with protection from dengue virus disease. PMID:23580623

  10. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology

    PubMed Central

    Cervantes-Ortiz, Sandra L.; Zamorano Cuervo, Natalia; Grandvaux, Nathalie

    2016-01-01

    Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis. PMID:27187445

  11. Genomic profiling of host responses to Lassa virus: therapeutic potential from primate to man

    PubMed Central

    Zapata, Juan C; Salvato, Maria S

    2015-01-01

    Lassa virus infection elicits distinctive changes in host gene expression and metabolism. We focus on changes in host gene expression that may be biomarkers that discriminate individual pathogens or may help to provide a prognosis for disease. In addition to assessing mRNA changes, functional studies are also needed to discriminate causes of disease from mechanisms of host resistance. Host responses that drive pathogenesis are likely to be targets for prevention or therapy. Host responses to Lassa or its related arenaviruses have been monitored in cell culture, in animal models of hemorrhagic fever, in Lassa-infected nonhuman primates and, to a limited extent, in infected human beings. Here, we describe results from those studies and discuss potential targets for reducing virus replication and mitigating disease. PMID:25844088

  12. [Inherited bone marrow failure syndromes].

    PubMed

    Okuno, Yusuke

    2016-02-01

    Inherited bone marrow failure syndromes comprise a series of disorders caused by various gene mutations. Genetic tests were formerly difficult to perform because of the large size and number of causative genes. However, recent advances in next-generation sequencing has enabled simultaneous testing of all causative genes to be performed at an acceptable cost. We collaboratively conducted a series of whole-exome sequencing studies of patients with inherited bone marrow failure syndromes and discovered RPS27/RPL27 and FANCT as causative genes of Diamond-Blackfan anemia and Fanconi anemia, respectively. Furthermore, we established a target gene sequencing system to cover 189 genes associated with pediatric blood diseases to assist genetic diagnoses in clinical practice. In this review, discovery of new causative genes and possible roles of next-generation sequencing in the genetic diagnosis of inherited bone marrow failure syndromes are discussed. PMID:26935625

  13. Inherited thrombophilia and reproductive disorders

    PubMed Central

    Liatsikos, Spyros A.; Tsikouras, Panagiotis; Manav, Bachar; Csorba, Roland; von Tempelhoff, Georg Friedrich; Galazios, Georgios

    2016-01-01

    Apart from its established role in the pathogenesis of venous thromboembolism (VTE), inherited thrombophilia has been proposed as a possible cause of pregnancy loss and vascular gestational complications. There is a lot of controversy in the literature on the relationship between inherited prothrombotic defects and these obstetric complications. This is a review of the literature on inherited thrombophilia and reproductive disorders. Factor V Leiden, prothrombin G20210A mutation, and protein S deficiency seem to be associated with late and recurrent early pregnancy loss, while their impact on other pregnancy complications is conflicting. No definite association has been established between protein C and antithrombin deficiency and adverse pregnancy outcome, primarily due to their low prevalence. Screening is suggested only for women with early recurrent loss or late pregnancy loss. Anticoagulant treatment during pregnancy should be considered for women with complications who were tested positive for thrombophilia. PMID:27026779

  14. Inherited thrombophilia and reproductive disorders.

    PubMed

    Liatsikos, Spyros A; Tsikouras, Panagiotis; Manav, Bachar; Csorba, Roland; von Tempelhoff, Georg Friedrich; Galazios, Georgios

    2016-01-01

    Apart from its established role in the pathogenesis of venous thromboembolism (VTE), inherited thrombophilia has been proposed as a possible cause of pregnancy loss and vascular gestational complications. There is a lot of controversy in the literature on the relationship between inherited prothrombotic defects and these obstetric complications. This is a review of the literature on inherited thrombophilia and reproductive disorders. Factor V Leiden, prothrombin G20210A mutation, and protein S deficiency seem to be associated with late and recurrent early pregnancy loss, while their impact on other pregnancy complications is conflicting. No definite association has been established between protein C and antithrombin deficiency and adverse pregnancy outcome, primarily due to their low prevalence. Screening is suggested only for women with early recurrent loss or late pregnancy loss. Anticoagulant treatment during pregnancy should be considered for women with complications who were tested positive for thrombophilia. PMID:27026779

  15. Nongenetic inheritance and transgenerational epigenetics.

    PubMed

    Szyf, Moshe

    2015-02-01

    The idea that inherited genotypes define phenotypes has been paramount in modern biology. The question remains, however, whether stable phenotypes could be also inherited from parents independently of the genetic sequence per se. Recent data suggest that parental experiences can be transmitted behaviorally, through in utero exposure of the developing fetus to the maternal environment, or through either the male or female germline. The challenge is to delineate a plausible mechanism. In the past decade it has been proposed that epigenetic mechanisms are involved in multigenerational transmission of phenotypes and transgenerational inheritance. The prospect that ancestral experiences are written in our epigenome has immense implications for our understanding of human behavior, health, and disease. PMID:25601643

  16. Induction of a Protective Heterosubtypic Immune Response Against the Influenza Virus by using Recombinant Adenoviral Vectors Expressing Hemagglutinin of the Influenza H5 Virus.

    PubMed

    Shmarov, M M; Sedova, E S; Verkhovskaya, L V; Rudneva, I A; Bogacheva, E A; Barykova, Yu A; Shcherbinin, D N; Lysenko, A A; Tutykhina, I L; Logunov, D Y; Smirnov, Yu A; Naroditsky, B S; Gintsburg, A L

    2010-04-01

    Influenza viruses are characterized by a high degree of antigenic variability, which causes the annual emergence of flu epidemics and irregularly timed pandemics caused by viruses with new antigenic and biological traits. Novel approaches to vaccination can help circumvent this problem. One of these new methods incorporates genetic vaccines based on adenoviral vectors. Recombinant adenoviral vectors which contain hemagglutinin-encoding genes from avian H5N1 and H5N2 (Ad-HA5-1 and Ad-HA5-2) influenza viruses were obtained using the AdEasy Adenoviral Vector System (Stratagene). Laboratory mice received a double intranasal vaccination with Ad-HA5-1 and Ad-HA5-2. This study demonstrates that immunization with recombinant adenoviruses bearing the Н 5 influenza virus hemagglutinin gene induces a immune response which protects immunized mice from a lethal dose of the H5 influenza virus. Moreover, it also protects the host from a lethal dose of the H1 virus, which belongs to the same clade as H5, but does not confer protection from the subtype H3 influenza virus, which belongs to a different clade. PMID:22649637

  17. Protective Role of the Virus-Specific Immune Response for Development of Severe Neurologic Signs in Simian Immunodeficiency Virus-Infected Macaques

    PubMed Central

    Sopper, Sieghart; Sauer, Ursula; Hemm, Susanne; Demuth, Monika; Müller, Justus; Stahl-Hennig, Christiane; Hunsmann, Gerhard; ter Meulen, Volker; Dörries, Rüdiger

    1998-01-01

    The pathogenesis of human immunodeficiency virus-associated motor and cognitive disorders is poorly understood. In this context both a protective and a harmful role of the immune system has been discussed. This question was addressed in the present study by correlating the occurrence of neurologic disease in simian immunodeficiency virus (SIV)-infected macaques with disease progression and the humoral and cellular intrathecal antiviral immune response. Overt neurologic signs consisting of ataxia and apathy were observed at a much higher frequency in rapid progressor animals (6 of 12) than in slow progressors (1 of 7). Whereas slow progressors mounted a strong antiviral antibody (Ab) response as evidenced by enzyme-linked immunosorbent and immunospot assays, neither virus-specific Ab titers nor Ab-secreting cells could be found in the cerebrospinal fluid (CSF) or brain parenchyma of rapid progressors. Similarly, increased infiltration of CD8+ T cells and cytotoxic T lymphocytes specific for viral antigens were detected only in the CSF of slow progressors. The finding that neurologic signs develop frequently in SIV-infected macaques in the absence of an antiviral immune response demonstrates that the immune system does not contribute to the development of motor disorders in these animals. Moreover, the lower incidence of neurologic symptoms in slow progressors with a strong intrathecal immune response suggests a protective role of the virus-specific immunity in immunodeficiency virus-induced central nervous system disease. PMID:9811731

  18. Comprehensive metagenomic analysis of glioblastoma reveals absence of known virus despite antiviral-like type I interferon gene response

    PubMed Central

    Cosset, Érika; Petty, Tom J; Dutoit, Valérie; Cordey, Samuel; Padioleau, Ismael; Otten-Hernandez, Patricia; Farinelli, Laurent; Kaiser, Laurent; Bruyère-Cerdan, Pascale; Tirefort, Diderik; Amar El-Dusouqui, Soraya; Nayernia, Zeynab; Krause, Karl-Heinz; Zdobnov, Evgeny M; Dietrich, Pierre-Yves; Rigal, Emmanuel; Preynat-Seauve, Olivier

    2014-01-01

    Glioblastoma is a deadly malignant brain tumor and one of the most incurable forms of cancer in need of new therapeutic targets. As some cancers are known to be caused by a virus, the discovery of viruses could open the possibility to treat, and perhaps prevent, such a disease. Although an association with viruses such as cytomegalovirus or Simian virus 40 has been strongly suggested, involvement of these and other viruses in the initiation and/or propagation of glioblastoma remains vague, controversial and warrants elucidation. To exhaustively address the association of virus and glioblastoma, we developed and validated a robust metagenomic approach to analyze patient biopsies via high-throughput sequencing, a sensitive tool for virus screening. In addition to traditional clinical diagnostics, glioblastoma biopsies were deep-sequenced and analyzed with a multistage computational pipeline to identify known or potentially discover unknown viruses. In contrast to the studies reporting the presence of viral signatures in glioblastoma, no common or recurring active viruses were detected, despite finding an antiviral-like type I interferon response in some specimens. Our findings highlight a discrete and non-specific viral signature and uncharacterized short RNA sequences in glioblastoma. This study provides new insights into glioblastoma pathogenesis and defines a general methodology that can be used for high-resolution virus screening and discovery in human cancers. PMID:24347514

  19. Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2.

    PubMed

    Patial, Sonika; Chaturvedi, V K; Rai, A; Saini, M; Chandra, Rajesh; Saini, Y; Gupta, Praveen K

    2007-05-16

    A bicistronic DNA vaccine against rabies and parvovirus infection of dogs was developed by subcloning rabies glycoprotein and canine parvovirus (CPV) VP2 genes into a bicistronic vector. After characterizing the expression of both the proteins in vitro, the bicistronic DNA vaccine was injected in mice and induced immune response was compared with monocistronic DNA vaccines. There was no significant difference in ELISA and virus neutralizing (VN) antibody responses against rabies and CPV in mice immunized with either bicistronic or monocistronic DNA vaccine. Further, there was significantly similar protection in mice immunized with either bicistronic or monocistronic rabies DNA vaccine on rabies virus challenge. Similarly, dogs immunized with monocistronic and bicistronic DNA vaccines developed comparable VN antibodies against rabies and CPV. This study indicated that bicistronic DNA vaccine can be used in dogs to induce virus neutralizing immune responses against both rabies and CPV. PMID:17391817

  20. Basic mechanisms of monogenic inheritance.

    PubMed

    Ziegler, A

    1999-01-01

    To revive the appreciation of the importance of genetic studies for the understanding of neurologic diseases inherited in a monogenic fashion. After a description of the basic patterns of monogenic inheritance, the importance of linkage studies for the mapping of a disease gene is mentioned. Furthermore, the term linkage disequilibrium is introduced. Finally, several procedures used in current linkage analyses are briefly mentioned, with the aim of identifying the disease gene. The importance of genetic studies of disease families with many members, preferably from isolated surroundings to favor homogeneity, is stressed. However, such analyses can be performed only as a consequence of a close cooperation between clinicians and research scientists. PMID:10446743

  1. Approaches for monitoring of non virus-specific and virus-specific T-cell response in solid organ transplantation and their clinical applications.

    PubMed

    Calarota, Sandra A; Aberle, Judith H; Puchhammer-Stöckl, Elisabeth; Baldanti, Fausto

    2015-09-01

    Opportunistic viral infections are still a major complication following solid organ transplantation. Immune monitoring may allow the identification of patients at risk of infection and, eventually, the modulation of immunosuppressive strategies. Immune monitoring can be performed using virus-specific and non virus-specific assays. This article describes and summarizes the pros and cons of the different technical approaches. Among the assays based on non virus-specific antigens, the enumeration of T-cell subsets, the quantification of cytokines and chemokines and the quantification of intracellular adenosine triphosphate following mitogen stimulation are described and their clinical applications to determine the risk for viral infection are discussed. In addition, current specific methods available for monitoring viral-specific T-cell responses are summarized, such as peptide-MHC multimer staining, intracellular cytokine staining, enzyme-linked immunospot and virus-specific IFN-γ ELISA assays, and their clinical applications to determine the individual risk for opportunistic viral infections with human cytomegalovirus, Epstein-Barr virus and polyoma BK virus are discussed. The standardization of the procedure, the choice of the antigen(s) and the criteria to define cut-off values for positive responses are needed for some of these approaches before their implementation in the clinic. Nevertheless, immune monitoring combined with virological monitoring in transplant recipients is increasingly regarded as a helpful tool to identify patients at risk of infection as well as to assess treatment efficacy. PMID:26305832

  2. Immune and non-immune responses to hepatitis C virus infection

    PubMed Central

    Sun, Jiaren; Rajsbaum, Ricardo; Yi, MinKyung

    2015-01-01

    The host innate and adaptive immune systems are involved in nearly every step of hepatitis C virus (HCV) infection. In patients, the outcome is determined by a series of complex host-virus interactions, whether it is a natural infection or results from clinical intervention. Strong and persistent CD8+ and CD4+ T-cell responses are critical in HCV clearance, as well as cytokine-induced factors that can directly inhibit virus replication. Newly available direct-acting antivirals (DAAs) are very effective in viral clearance in patients. DAA treatment may further result in the down-regulation of programmed death-1, leading to rapid restoration of HCV-specific CD8+ T cell functions. In this review, we focus on recent studies that address the host responses critical for viral clearance and disease resolution. Additional discussion is devoted to the prophylactic vaccine development as well as to current efforts aimed at understanding the host innate responses against HCV infection. Current theories on how the ubiquitin system and interferon-stimulated genes may affect HCV replication are also discussed. PMID:26478666

  3. Kinetics of immune responses in deer mice experimentally infected with Sin Nombre virus.

    PubMed

    Schountz, Tony; Acuña-Retamar, Mariana; Feinstein, Shira; Prescott, Joseph; Torres-Perez, Fernando; Podell, Brendan; Peters, Staci; Ye, Chunyan; Black, William C; Hjelle, Brian

    2012-09-01

    Deer mice are the principal reservoir hosts of Sin Nombre virus, the etiologic agent of most hantavirus cardiopulmonary syndrome cases in North America. Infection of deer mice results in persistence without conspicuous pathology, and most, if not all, infected mice remain infected for life, with periods of viral shedding. The kinetics of viral load, histopathology, virus distribution, and immune gene expression in deer mice were examined. Viral antigen was detected as early as 5 days postinfection and peaked on day 15 in the lungs, hearts, kidneys, and livers. Viral RNA levels varied substantially but peaked on day 15 in the lungs and heart, and antinucleocapsid IgG antibodies appeared in some animals on day 10, but a strong neutralizing antibody response failed to develop during the 20-day experiment. No clinical signs of disease were observed in any of the infected deer mice. Most genes were repressed on day 2, suggesting a typical early downregulation of gene expression often observed in viral infections. Several chemokine and cytokine genes were elevated, and markers of a T cell response occurred but then declined days later. Splenic transforming growth factor beta (TGF-β) expression was elevated early in infection, declined, and then was elevated again late in infection. Together, these data suggest that a subtle immune response that fails to clear the virus occurs in deer mice. PMID:22787210

  4. Complement Activation Is Required for Induction of a Protective Antibody Response against West Nile Virus Infection

    PubMed Central

    Mehlhop, Erin; Whitby, Kevin; Oliphant, Theodore; Marri, Anantha; Engle, Michael; Diamond, Michael S.

    2005-01-01

    Infection with West Nile virus (WNV) causes a severe infection of the central nervous system (CNS) with higher levels of morbidity and mortality in the elderly and the immunocompromised. Experiments with mice have begun to define how the innate and adaptive immune responses function to limit infection. Here, we demonstrate that the complement system, a major component of innate immunity, controls WNV infection in vitro primarily in an antibody-dependent manner by neutralizing virus particles in solution and lysing WNV-infected cells. More decisively, mice that genetically lack the third component of complement or complement receptor 1 (CR1) and CR2 developed increased CNS virus burdens and were vulnerable to lethal infection at a low dose of WNV. Both C3-deficient and CR1- and CR2-deficient mice also had significant deficits in their humoral responses after infection with markedly reduced levels of specific anti-WNV immunoglobulin M (IgM) and IgG. Overall, these results suggest that complement controls WNV infection, in part through its ability to induce a protective antibody response. PMID:15919902

  5. Virus-independent and common transcriptome responses of leafhopper vectors feeding on maize infected with semi-persistently and persistent propagatively transmitted viruses

    PubMed Central

    2014-01-01

    Background Insects are the most important epidemiological factors for plant virus disease spread, with >75% of viruses being dependent on insects for transmission to new hosts. The black-faced leafhopper (Graminella nigrifrons Forbes) transmits two viruses that use different strategies for transmission: Maize chlorotic dwarf virus (MCDV) which is semi-persistently transmitted and Maize fine streak virus (MFSV) which is persistently and propagatively transmitted. To date, little is known regarding the molecular and cellular mechanisms in insects that regulate the process and efficiency of transmission, or how these mechanisms differ based on virus transmission strategy. Results RNA-Seq was used to examine transcript changes in leafhoppers after feeding on MCDV-infected, MFSV-infected and healthy maize for 4 h and 7 d. After sequencing cDNA libraries constructed from whole individuals using Illumina next generation sequencing, the Rnnotator pipeline in Galaxy was used to reassemble the G. nigrifrons transcriptome. Using differential expression analyses, we identified significant changes in transcript abundance in G. nigrifrons. In particular, transcripts implicated in the innate immune response and energy production were more highly expressed in insects fed on virus-infected maize. Leafhoppers fed on MFSV-infected maize also showed an induction of transcripts involved in hemocoel and cell-membrane linked immune responses within four hours of feeding. Patterns of transcript expression were validated for a subset of transcripts by quantitative real-time reverse transcription polymerase chain reaction using RNA samples collected from insects fed on healthy or virus-infected maize for between a 4 h and seven week period. Conclusions We expected, and found, changes in transcript expression in G. nigrifrons feeding of maize infected with a virus (MFSV) that also infects the leafhopper, including induction of immune responses in the hemocoel and at the cell membrane. The

  6. Characterization of the Treg Response in the Hepatitis B Virus Hydrodynamic Injection Mouse Model

    PubMed Central

    Dietze, Kirsten K.; Schimmer, Simone; Kretzmer, Freya; Wang, Junzhong; Lin, Yong; Huang, Xuan; Wu, Weimin; Wang, Baoju; Lu, Mengji

    2016-01-01

    Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance. PMID:26986976

  7. Incomplete immune response to coxsackie B viruses associates with early autoimmunity against insulin.

    PubMed

    Ashton, Michelle P; Eugster, Anne; Walther, Denise; Daehling, Natalie; Riethausen, Stephanie; Kuehn, Denise; Klingel, Karin; Beyerlein, Andreas; Zillmer, Stephanie; Ziegler, Anette-Gabriele; Bonifacio, Ezio

    2016-01-01

    Viral infections are associated with autoimmunity in type 1 diabetes. Here, we asked whether this association could be explained by variations in host immune response to a putative type 1 etiological factor, namely coxsackie B viruses (CVB). Heterogeneous antibody responses were observed against CVB capsid proteins. Heterogeneity was largely defined by different binding to VP1 or VP2. Antibody responses that were anti-VP2 competent but anti-VP1 deficient were unable to neutralize CVB, and were characteristic of children who developed early insulin-targeting autoimmunity, suggesting an impaired ability to clear CVB in early childhood. In contrast, children who developed a GAD-targeting autoimmunity had robust VP1 and VP2 antibody responses to CVB. We further found that 20% of memory CD4(+) T cells responding to the GAD65247-266 peptide share identical T cell receptors to T cells responding to the CVB4 p2C30-51 peptide, thereby providing direct evidence for the potential of molecular mimicry as a mechanism for GAD autoimmunity. Here, we highlight functional immune response differences between children who develop insulin-targeting and GAD-targeting autoimmunity, and suggest that children who lose B cell tolerance to insulin within the first years of life have a paradoxical impaired ability to mount humoral immune responses to coxsackie viruses. PMID:27604323

  8. Incomplete immune response to coxsackie B viruses associates with early autoimmunity against insulin

    PubMed Central

    Ashton, Michelle P.; Eugster, Anne; Walther, Denise; Daehling, Natalie; Riethausen, Stephanie; Kuehn, Denise; Klingel, Karin; Beyerlein, Andreas; Zillmer, Stephanie; Ziegler, Anette-Gabriele; Bonifacio, Ezio

    2016-01-01

    Viral infections are associated with autoimmunity in type 1 diabetes. Here, we asked whether this association could be explained by variations in host immune response to a putative type 1 etiological factor, namely coxsackie B viruses (CVB). Heterogeneous antibody responses were observed against CVB capsid proteins. Heterogeneity was largely defined by different binding to VP1 or VP2. Antibody responses that were anti-VP2 competent but anti-VP1 deficient were unable to neutralize CVB, and were characteristic of children who developed early insulin-targeting autoimmunity, suggesting an impaired ability to clear CVB in early childhood. In contrast, children who developed a GAD-targeting autoimmunity had robust VP1 and VP2 antibody responses to CVB. We further found that 20% of memory CD4+ T cells responding to the GAD65247-266 peptide share identical T cell receptors to T cells responding to the CVB4 p2C30-51 peptide, thereby providing direct evidence for the potential of molecular mimicry as a mechanism for GAD autoimmunity. Here, we highlight functional immune response differences between children who develop insulin-targeting and GAD-targeting autoimmunity, and suggest that children who lose B cell tolerance to insulin within the first years of life have a paradoxical impaired ability to mount humoral immune responses to coxsackie viruses. PMID:27604323

  9. Characterization of the Treg Response in the Hepatitis B Virus Hydrodynamic Injection Mouse Model.

    PubMed

    Dietze, Kirsten K; Schimmer, Simone; Kretzmer, Freya; Wang, Junzhong; Lin, Yong; Huang, Xuan; Wu, Weimin; Wang, Baoju; Lu, Mengji; Dittmer, Ulf; Yang, Dongliang; Liu, Jia

    2016-01-01

    Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance. PMID:26986976

  10. Synthetic generation of influenza vaccine viruses for rapid response to pandemics.

    PubMed

    Dormitzer, Philip R; Suphaphiphat, Pirada; Gibson, Daniel G; Wentworth, David E; Stockwell, Timothy B; Algire, Mikkel A; Alperovich, Nina; Barro, Mario; Brown, David M; Craig, Stewart; Dattilo, Brian M; Denisova, Evgeniya A; De Souza, Ivna; Eickmann, Markus; Dugan, Vivien G; Ferrari, Annette; Gomila, Raul C; Han, Liqun; Judge, Casey; Mane, Sarthak; Matrosovich, Mikhail; Merryman, Chuck; Palladino, Giuseppe; Palmer, Gene A; Spencer, Terika; Strecker, Thomas; Trusheim, Heidi; Uhlendorff, Jennifer; Wen, Yingxia; Yee, Anthony C; Zaveri, Jayshree; Zhou, Bin; Becker, Stephan; Donabedian, Armen; Mason, Peter W; Glass, John I; Rappuoli, Rino; Venter, J Craig

    2013-05-15

    During the 2009 H1N1 influenza pandemic, vaccines for the virus became available in large quantities only after human infections peaked. To accelerate vaccine availability for future pandemics, we developed a synthetic approach that very rapidly generated vaccine viruses from sequence data. Beginning with hemagglutinin (HA) and neuraminidase (NA) gene sequences, we combined an enzymatic, cell-free gene assembly technique with enzymatic error correction to allow rapid, accurate gene synthesis. We then used these synthetic HA and NA genes to transfect Madin-Darby canine kidney (MDCK) cells that were qualified for vaccine manufacture with viral RNA expression constructs encoding HA and NA and plasmid DNAs encoding viral backbone genes. Viruses for use in vaccines were rescued from these MDCK cells. We performed this rescue with improved vaccine virus backbones, increasing the yield of the essential vaccine antigen, HA. Generation of synthetic vaccine seeds, together with more efficient vaccine release assays, would accelerate responses to influenza pandemics through a system of instantaneous electronic data exchange followed by real-time, geographically dispersed vaccine production. PMID:23677594

  11. Dynamics of cellular immune responses in the acute phase of dengue virus infection.

    PubMed

    Yoshida, Tomoyuki; Omatsu, Tsutomu; Saito, Akatsuki; Katakai, Yuko; Iwasaki, Yuki; Kurosawa, Terue; Hamano, Masataka; Higashino, Atsunori; Nakamura, Shinichiro; Takasaki, Tomohiko; Yasutomi, Yasuhiro; Kurane, Ichiro; Akari, Hirofumi

    2013-06-01

    In this study, we examined the dynamics of cellular immune responses in the acute phase of dengue virus (DENV) infection in a marmoset model. Here, we found that DENV infection in marmosets greatly induced responses of CD4/CD8 central memory T and NKT cells. Interestingly, the strength of the immune response was greater in animals infected with a dengue fever strain than in those infected with a dengue hemorrhagic fever strain of DENV. In contrast, when animals were re-challenged with the same DENV strain used for primary infection, the neutralizing antibody induced appeared to play a critical role in sterilizing inhibition against viral replication, resulting in strong but delayed responses of CD4/CD8 central memory T and NKT cells. The results in this study may help to better understand the dynamics of cellular and humoral immune responses in the control of DENV infection. PMID:23381396

  12. Molecular Mechanisms of Inherited Demyelinating Neuropathies

    PubMed Central

    SCHERER, STEVEN S.; WRABETZ, LAWRENCE

    2008-01-01

    The past 15 years have witnessed the identification of more than 25 genes responsible for inherited neuropathies in humans, many associated with primary alterations of the myelin sheath. A remarkable body of work in patients, as well as animal and cellular models, has defined the clinical and molecular genetics of these illnesses and shed light on how mutations in associated genes produce the heterogeneity of dysmyelinating and demyelinating phenotypes. Here, we review selected recent developments from work on the molecular mechanisms of these disorders and their implications for treatment strategies. PMID:18803325

  13. Early growth response-1 protein is induced by JC virus infection and binds and regulates the JC virus promoter

    SciTech Connect

    Romagnoli, Luca; Sariyer, Ilker K.; Tung, Jacqueline; Feliciano, Mariha; Sawaya, Bassel E.; Del Valle, Luis; Ferrante, Pasquale; Khalili, Kamel; Safak, Mahmut; White, Martyn K.

    2008-06-05

    JC virus (JCV) is a human polyomavirus that can emerge from a latent state to cause the cytolytic destruction of oligodendrocytes in the brain resulting in the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Previous studies described a cis-acting transcriptional regulatory element in the JCV non-coding control region (NCCR) that is involved in the response of JCV to cytokines. This consists of a 23 base pair GGA/C rich sequence (GRS) near the replication origin (5112 to + 4) that contains potential binding sites for Sp1 and Egr-1. Gel shift analysis showed that Egr-1, but not Sp1, bound to GRS. Evidence is presented that the GRS gel shift seen on cellular stimulation is due to Egr-1. Thus, TPA-induced GRS gel shift could be blocked by antibody to Egr-1. Further, the TPA-induced GRS DNA/protein complex was isolated and found to contain Egr-1 by Western blot. No other Egr-1 sites were found in the JCV NCCR. Functionally, Egr-1 was found to stimulate transcription of JCV late promoter but not early promoter reporter constructs. Mutation of the Egr-1 site abrogated Egr-1 binding and virus with the mutated Egr-1 site showed markedly reduced VP1 expression and DNA replication. Infection of primary astrocytes by wild-type JCV induced Egr-1 nuclear expression that was maximal at 5-10 days post-infection. Finally, upregulation of Egr-1 was detected in PML by immunohistochemistry. These data suggest that Egr-1 induction may be important in the life cycle of JCV and PML pathogenesis.

  14. Impact of ageing on the response and repertoire of influenza virus-specific CD4 T cells

    PubMed Central

    2014-01-01

    Background Ageing has been shown to reduce CD8 T cell repertoire diversity and immune responses against influenza virus infection in mice. In contrast, less is known about the impact of ageing on CD4 T cell repertoire diversity and immune response to influenza virus infection. Results The CD4 T cell response was followed after infection of young and aged C57BL/6 mice with influenza virus using a tetramer specific for an immunodominant MHC class II epitope of the influenza virus nucleoprotein. The appearance of virus-specific CD4 T cells in the lung airways of aged mice was delayed compared to young mice, but the overall peak number and cytokine secretion profile of responding CD4 T cells was not greatly perturbed. In addition, the T cell repertoire of responding cells, determined using T cell receptor Vβ analysis, failed to show the profound effect of age we previously described for CD8 T cells. The reduced impact of age on influenza-specific CD4 T cells was consistent with a reduced effect of age on the overall CD4 compared with the CD8 T cell repertoire in specific pathogen free mice. Aged mice that were thymectomized as young adults showed an enhanced loss of the epitope-specific CD4 T cell response after influenza virus infection compared with age-matched sham-thymectomized mice, suggesting that a reduced repertoire can contribute to impaired responsiveness. Conclusions The diversity of the CD4 T cell repertoire and response to influenza virus is not as profoundly impaired by ageing in C57BL/6 mice as previously shown for CD8 T cells. However, adult thymectomy enhanced the impact of ageing on the response. Understanding the impact of ageing on CD4 T cell responses to influenza virus infection is an important prerequisite for developing better vaccines for the elderly. PMID:24999367

  15. Dissection of the Antibody Response against Herpes Simplex Virus Glycoproteins in Naturally Infected Humans

    PubMed Central

    Huang, Zhen-Yu; Whitbeck, J. Charles; Ponce de Leon, Manuel; Lou, Huan; Wald, Anna; Krummenacher, Claude; Eisenberg, Roselyn J.; Cohen, Gary H.

    2014-01-01

    ABSTRACT Relatively little is known about the extent of the polyclonal antibody (PAb) repertoire elicited by herpes simplex virus (HSV) glycoproteins during natural infection and how these antibodies affect virus neutralization. Here, we examined IgGs from 10 HSV-seropositive individuals originally classified as high or low virus shedders. All PAbs neutralized virus to various extents. We determined which HSV entry glycoproteins these PAbs were directed against: glycoproteins gB, gD, and gC were recognized by all sera, but fewer sera reacted against gH/gL. We previously characterized multiple mouse monoclonal antibodies (MAbs) and mapped those with high neutralizing activity to the crystal structures of gD, gB, and gH/gL. We used a biosensor competition assay to determine whether there were corresponding human antibodies to those epitopes. All 10 samples had neutralizing IgGs to gD epitopes, but there were variations in which epitopes were seen in individual samples. Surprisingly, only three samples contained neutralizing IgGs to gB epitopes. To further dissect the nature of these IgGs, we developed a method to select out gD- and gB-specific IgGs from four representative sera via affinity chromatography, allowing us to determine the contribution of antibodies against each glycoprotein to the overall neutralization capacity of the serum. In two cases, gD and gB accounted for all of the neutralizing activity against HSV-2, with a modest amount of HSV-1 neutralization directed against gC. In the other two samples, the dominant response was to gD. IMPORTANCE Antibodies targeting functional epitopes on HSV entry glycoproteins mediate HSV neutralization. Virus-neutralizing epitopes have been defined and characterized using murine monoclonal antibodies. However, it is largely unknown whether these same epitopes are targeted by the humoral response to HSV infection in humans. We have shown that during natural infection, virus-neutralizing antibodies are principally

  16. Transgenerational Inheritance of Metabolic Disease

    PubMed Central

    Stegemann, Rachel; Buchner, David A.

    2015-01-01

    Metabolic disease encompasses several disorders including obesity, type 2 diabetes, and dyslipidemia. Recently, the incidence of metabolic disease has drastically increased, driven primarily by a worldwide obesity epidemic. Transgenerational inheritance remains controversial, but has been proposed to contribute to human metabolic disease risk based on a growing number of proof-of-principle studies in model organisms ranging from C. elegans to M. musculus to S. scrofa. Collectively, these studies demonstrate that heritable risk is epigenetically transmitted from parent to offspring over multiple generations in the absence of a continued exposure to the triggering stimuli. A diverse assortment of initial triggers can induce transgenerational inheritance including high-fat or high-sugar diets, low-protein diets, various toxins, and ancestral genetic variants. Although the mechanistic basis underlying the transgenerational inheritance of disease risk remains largely unknown, putative molecules mediating transmission include small RNAs, histone modifications, and DNA methylation. Due to the considerable impact of metabolic disease on human health, it is critical to better understand the role of transgenerational inheritance of metabolic disease risk to open new avenues for therapeutic intervention and improve upon the current methods for clinical diagnoses and treatment. PMID:25937492

  17. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response

    PubMed Central

    Santiago, Felix W.; Halsey, Eric S.; Siles, Crystyan; Vilcarromero, Stalin; Guevara, Carolina; Silvas, Jesus A.; Ramal, Cesar; Ampuero, Julia S.; Aguilar, Patricia V.

    2015-01-01

    Mayaro virus (MAYV), an alphavirus similar to chikungunya virus (CHIKV), causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals. Currently, the immune response and its role in the development of MAYV-induced persistent arthralgia remain unknown. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. We report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. The composition of these inflammatory mediators, in some cases, differed to those previously observed for CHIKV. Key mediators such as IL-13, IL-7 and VEGF were strongly induced following MAYV infection and were significantly increased in subjects that eventually developed persistent arthralgia. Although a strong neutralizing antibody response was observed in all subjects, it was not sufficient to prevent the long-term outcomes of MAYV infection. This study provides initial immunologic insight that may eventually contribute to prognostic tools and therapeutic treatments against this emerging pathogen. PMID:26496497

  18. Tomato genome-wide transcriptional responses to Fusarium wilt and Tomato Mosaic Virus.

    PubMed

    Andolfo, Giuseppe; Ferriello, Francesca; Tardella, Luca; Ferrarini, Alberto; Sigillo, Loredana; Frusciante, Luigi; Ercolano, Maria Raffaella

    2014-01-01

    Since gene expression approaches constitute a starting point for investigating plant-pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol) and Tomato Mosaic Virus (ToMV). Differentially expressed tomato genes upon inoculation with Fol and ToMV were identified at two days post-inoculation. A large overlap was found in differentially expressed genes throughout the two incompatible interactions. However, Gene Ontology enrichment analysis evidenced specific categories in both interactions. Response to ToMV seems more multifaceted, since more than 70 specific categories were enriched versus the 30 detected in Fol interaction. In particular, the virus stimulated the production of an invertase enzyme that is able to redirect the flux of carbohydrates, whereas Fol induced a homeostatic response to prevent the fungus from killing cells. Genomic mapping of transcripts suggested that specific genomic regions are involved in resistance response to pathogen. Coordinated machinery could play an important role in prompting the response, since 60% of pathogen receptor genes (NB-ARC-LRR, RLP, RLK) were differentially regulated during both interactions. Assessment of genomic gene expression patterns could help in building up models of mediated resistance responses. PMID:24804963

  19. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response.

    PubMed

    Santiago, Felix W; Halsey, Eric S; Siles, Crystyan; Vilcarromero, Stalin; Guevara, Carolina; Silvas, Jesus A; Ramal, Cesar; Ampuero, Julia S; Aguilar, Patricia V

    2015-01-01

    Mayaro virus (MAYV), an alphavirus similar to chikungunya virus (CHIKV), causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals. Currently, the immune response and its role in the development of MAYV-induced persistent arthralgia remain unknown. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. We report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. The composition of these inflammatory mediators, in some cases, differed to those previously observed for CHIKV. Key mediators such as IL-13, IL-7 and VEGF were strongly induced following MAYV infection and were significantly increased in subjects that eventually developed persistent arthralgia. Although a strong neutralizing antibody response was observed in all subjects, it was not sufficient to prevent the long-term outcomes of MAYV infection. This study provides initial immunologic insight that may eventually contribute to prognostic tools and therapeutic treatments against this emerging pathogen. PMID:26496497

  20. DNA vaccination using expression vectors carrying FIV structural genes induces immune response against feline immunodeficiency virus.

    PubMed

    Cuisinier, A M; Mallet, V; Meyer, A; Caldora, C; Aubert, A

    1997-07-01

    Following inactivated virus vaccination trials, the surface glycoprotein gp120 of the feline immunodeficiency virus (FIV) was considered as one of the determinants for protection. However, several vaccination trials using recombinant Env protein or some peptides failed to induce protection. To understand the role of the gp120 protein in vivo, we vaccinated cats with naked DNA coding for FIV structural proteins gp120 and p10. We analyzed the ability of these vaccinations to induce immune protection and to influence the onset of infection. Injection in cat muscles of expression vectors coding for the FIV gp120 protein induced a humoral response. Cats immunized twice with the gp120 gene showed different patterns after challenge. Two cats were, like the control cats, infected from the second week after infection onwards. The two others maintained a low proviral load with no modification of their antibody pattern. The immune response induced by gp120 DNA injection could control the level of viral replication. This protective-like immune response was not correlated to the humoral response. All the cats immunized with the gp120 gene followed by the p10 gene were infected, like the control cats, from the second week but they developed a complete humoral response against viral proteins after challenge. Furthermore, they showed a sudden but transient drop of the proviral load at 4 weeks after infection. Under these conditions, one injection of the p10 gene after one injection of the gp120 gene was not sufficient to stimulate protection. On the contrary, after a period, it seems to facilitate virus replication. PMID:9269051

  1. Structural Basis for Suppression of a Host Antiviral Response by Influenza A Virus

    SciTech Connect

    Das,K.; Ma, L.; Xiao, R.; Radvansky, B.; Aramini, J.; Zhao, L.; Marklund, J.; Kuo, R.; Twu, K.; Arnold, E.

    2008-01-01

    Influenza A viruses are responsible for seasonal epidemics and high mortality pandemics. A major function of the viral NS1A protein, a virulence factor, is the inhibition of the production of IFN-{beta}{beta} mRNA and other antiviral mRNAs. The NS1A protein of the human influenza A/Udorn/72 (Ud) virus inhibits the production of these antiviral mRNAs by binding the cellular 30-kDa subunit of the cleavage and polyadenylation specificity factor (CPSF30), which is required for the 3' end processing of all cellular pre-mRNAs. Here we report the 1.95- Angstroms resolution X-ray crystal structure of the complex formed between the second and third zinc finger domain (F2F3) of CPSF30 and the C-terminal domain of the Ud NS1A protein. The complex is a tetramer, in which each of two F2F3 molecules wraps around two NS1A effector domains that interact with each other head-to-head. This structure identifies a CPSF30 binding pocket on NS1A comprised of amino acid residues that are highly conserved among human influenza A viruses. Single amino acid changes within this binding pocket eliminate CPSF30 binding, and a recombinant Ud virus expressing an NS1A protein with such a substitution is attenuated and does not inhibit IFN-{beta} pre-mRNA processing. This binding pocket is a potential target for antiviral drug development. The crystal structure also reveals that two amino acids outside of this pocket, F103 and M106, which are highly conserved (>99%) among influenza A viruses isolated from humans, participate in key hydrophobic interactions with F2F3 that stabilize the complex.

  2. Engineering the vaccinia virus L1 protein for increased neutralizing antibody response after DNA immunization

    PubMed Central

    Shinoda, Kaori; Wyatt, Linda S; Irvine, Kari R; Moss, Bernard

    2009-01-01

    Background The licensed smallpox vaccine, comprised of infectious vaccinia virus, has associated adverse effects, particularly for immunocompromised individuals. Therefore, safer DNA and protein vaccines are being investigated. The L1 protein, a component of the mature virion membrane that is conserved in all sequenced poxviruses, is required for vaccinia virus entry into host cells and is a target for neutralizing antibody. When expressed by vaccinia virus, the unglycosylated, myristoylated L1 protein attaches to the viral membrane via a C-terminal transmembrane anchor without traversing the secretory pathway. The purpose of the present study was to investigate modifications of the gene expressing the L1 protein that would increase immunogenicity in mice when delivered by a gene gun. Results The L1 gene was codon modified for optimal expression in mammalian cells and potential N-glycosylation sites removed. Addition of a signal sequence to the N-terminus of L1 increased cell surface expression as shown by confocal microscopy and flow cytometry of transfected cells. Removal of the transmembrane domain led to secretion of L1 into the medium. Induction of binding and neutralizing antibodies in mice was enhanced by gene gun delivery of L1 containing the signal sequence with or without the transmembrane domain. Each L1 construct partially protected mice against weight loss caused by intranasal administration of vaccinia virus. Conclusion Modifications of the vaccinia virus L1 gene including codon optimization and addition of a signal sequence with or without deletion of the transmembrane domain can enhance the neutralizing antibody response of a DNA vaccine. PMID:19257896

  3. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process. PMID:26906695

  4. Antibodies with 'Original Antigenic Sin' Properties Are Valuable Components of Secondary Immune Responses to Influenza Viruses.

    PubMed

    Linderman, Susanne L; Hensley, Scott E

    2016-08-01

    Human antibodies (Abs) elicited by influenza viruses often bind with a high affinity to past influenza virus strains, but paradoxically, do not bind to the viral strain actually eliciting the response. This phenomena is called 'original antigenic sin' (OAS) since this can occur at the expense of generating new de novo Abs. Here, we characterized the specificity and functionality of Abs elicited in mice that were sequentially exposed to two antigenically distinct H1N1 influenza virus strains. Many Abs elicited under these conditions had an OAS phenotype, in that they bound strongly to the viral strain used for the first exposure and very weakly to the viral strain used for the second exposure. We found that OAS and non-OAS Abs target the same general region of the influenza hemagglutinin protein and that B cells expressing these two types of Abs can be clonally-related. Surprisingly, although OAS Abs bound with very low affinities, some were able to effectively protect against an antigenically drifted viral strain following passive transfer in vivo. Taken together, our data indicate that OAS Abs share some level of cross-reactivity between priming and recall viral strains and that B cells producing these Abs can be protective when recalled into secondary immune responses. PMID:27537358

  5. Natural Immunity to Ebola Virus in the Syrian Hamster Requires Antibody Responses.

    PubMed

    Prescott, Joseph; Falzarano, Darryl; Feldmann, Heinz

    2015-10-01

    Most ebolaviruses can cause severe disease in humans and other primates, with high case fatality rates during human outbreaks. Although these viruses have been studied for almost 4 decades, little is know regarding the mechanisms by which they cause disease and what is important for protection or treatment after infection. Because of the sporadic nature of the outbreaks and difficulties accessing the populations affected by ebolaviruses, little is also known about what constitutes an appropriate immune response to infection in humans that survive infection. Such knowledge would allow a targeted approach to therapies. In contrast to humans, rodents are protected from disease on infection with ebolaviruses, although adapted versions of some of the viruses are lethal in mice, hamsters and guinea pigs. Using the recently described hamster model, along with T-cell depletion strategies, we show that CD4(+) T cells are required for natural immunity to Ebola virus infection and that CD4-dependent antibody responses are required for immunity in this model. PMID:25948862

  6. A highly virulent strain of Newcastle disease virus elicits a strong innate response and nitric oxide production in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The avian immune response to Newcastle disease virus (NDV) and the contribution of this response to disease are not well understood. In this study, the transcriptional host response of chickens to a virulent NDV outbreak strain (California 2002) was characterized in vivo. Using microarray, a stron...

  7. Enhanced natural killer-cell and T-cell responses to influenza A virus during pregnancy

    PubMed Central

    Kay, Alexander W.; Fukuyama, Julia; Aziz, Natali; Dekker, Cornelia L.; Mackey, Sally; Swan, Gary E.; Davis, Mark M.; Holmes, Susan; Blish, Catherine A.

    2014-01-01

    Pregnant women experience increased morbidity and mortality after influenza infection, for reasons that are not understood. Although some data suggest that natural killer (NK)- and T-cell responses are suppressed during pregnancy, influenza-specific responses have not been previously evaluated. Thus, we analyzed the responses of women that were pregnant (n = 21) versus those that were not (n = 29) immediately before inactivated influenza vaccination (IIV), 7 d after vaccination, and 6 wk postpartum. Expression of CD107a (a marker of cytolysis) and production of IFN-γ and macrophage inflammatory protein (MIP) 1β were assessed by flow cytometry. Pregnant women had a significantly increased percentage of NK cells producing a MIP-1β response to pH1N1 virus compared with nonpregnant women pre-IIV [median, 6.66 vs. 0.90% (P = 0.0149)] and 7 d post-IIV [median, 11.23 vs. 2.81% (P = 0.004)], indicating a heightened chemokine response in pregnant women that was further enhanced by the vaccination. Pregnant women also exhibited significantly increased T-cell production of MIP-1β and polyfunctionality in NK and T cells to pH1N1 virus pre- and post-IIV. NK- and T-cell polyfunctionality was also enhanced in pregnant women in response to the H3N2 viral strain. In contrast, pregnant women had significantly reduced NK- and T-cell responses to phorbol 12-myristate 13-acetate and ionomycin. This type of stimulation led to the conclusion that NK- and T-cell responses during pregnancy are suppressed, but clearly this conclusion is not correct relative to the more biologically relevant assays described here. Robust cellular immune responses to influenza during pregnancy could drive pulmonary inflammation, explaining increased morbidity and mortality. PMID:25246558

  8. Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

    PubMed Central

    Landeras-Bueno, Sara; Fernández, Yolanda; Falcón, Ana; Oliveros, Juan Carlos

    2016-01-01

    ABSTRACT Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK) as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection. PMID:27094326

  9. The Viral Transcription Group Determines the HLA Class I Cellular Immune Response Against Human Respiratory Syncytial Virus*

    PubMed Central

    Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A.; David, Chella S.; Admon, Arie; López, Daniel

    2015-01-01

    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. PMID:25635267

  10. Identification of a glucocorticoid-responsive element in Epstein-Barr virus.

    PubMed Central

    Kupfer, S R; Summers, W C

    1990-01-01

    Immortalization of B lymphocytes by Epstein-Barr virus (EBV) is complex and poorly understood. However, some evidence suggests that glucocorticoids influence this process. We identified a glucocorticoid-responsive element in the BamHI C fragment of EBV which we call ES-1. In glucocorticoid-treated cells, ES-1 enhanced chloramphenicol acetyltransferase gene expression from the herpes simplex virus thymidine kinase promoter, as well as the EBV Bam-C promoter, from which several latent viral gene products are transcribed. By Northern blot analysis, glucocorticoid treatment enhanced transcription from the Bam-C promoter in Jijoye cells, a Burkitt's lymphoma cell line. In addition, the DNA-binding domain of the glucocorticoid receptor bound specifically to the ES-1 region. These glucocorticoid effects on the Bam-C promoter region may provide some insight into the process of EBV immortalization. Images PMID:2157866