Sample records for inhibit lipid peroxidation

  1. Selenium and sulphur derivatives of hydroxytyrosol: inhibition of lipid peroxidation in liver microsomes of vitamin E-deficient rats.

    PubMed

    Rodríguez-Gutiérrez, Guillermo; Rubio-Senent, Fátima; Gómez-Carretero, Antonio; Maya, Inés; Fernández-Bolaños, Juan; Duthie, Garry G; de Roos, Baukje

    2018-05-28

    The objective of this study was to evaluate the capacity of modified phenols synthesized from hydroxytyrosol, a natural olive oil phenol, specifically those containing a selenium or sulphur group, to inhibit lipid peroxidation. The compounds' abilities to inhibit lipid peroxidation in liver microsomes obtained from vitamin E-deficient rats were compared to hydroxytyrosol. All synthetic compounds had a significant higher ability to inhibit lipid peroxidation than hydroxytyrosol. Selenium derivates displayed a higher antioxidant activity than sulphur derivatives. In addition, the antioxidant activity increased with a higher number of heteroatoms in the hydroxytyrosol molecular structure. The study shows, for the first time, the ability of synthetic compounds, derived from the most active phenol present in olives in free form (hydroxytyrosol), and containing one or two atoms of sulphur or selenium, to inhibit the lipid peroxidation of vitamin E-deficient microsomes. The antioxidant activity of five thioureas, a disulfide, a thiol, three selenoureas, a diselenide, and a selenonium were evaluated and the results showed a higher inhibition of lipid peroxidation than the natural phenol. Selenium and sulphur derivatives of hydroxytyrosol are novel antioxidants with the potential to supplement the lack of vitamin E in the diet as natural alternatives for the prevention of diseases related to oxidative damage.

  2. Lipid peroxidation inhibition and antiradical activities of some leaf fractions of Mangifera indica.

    PubMed

    Badmus, Jelili A; Adedosu, Temitope O; Fatoki, John O; Adegbite, Victor A; Adaramoye, Oluwatosin A; Odunola, Oyeronke A

    2011-01-01

    This study was undertaken to assess in vitro lipid peroxidation inhibitions and anti-radical activities of methanolic, chloroform, ethyl acetate and water fractions of Mangifera indica leaf. Inhibition of Fe(2+)-induced lipid peroxidation (LPO) in egg, brain, and liver homogenates, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (OH-) radical scavenging activities were evaluated. Total phenol was assessed in all fractions, and the reducing power of methanolic fraction was compared to gallic acid and ascorbic acid. The results showed that Fe2+ induced significant lipid peroxidation (LPO) in all the homogenates. Ethyl acetate fraction showed the highest percentage inhibition of LPO in both egg yolk (68.3%) and brain (66.3%), while the aqueous fraction exerted the highest inhibition in liver homogenate (89.1%) at a concentration of 10 microg/mL. These observed inhibitions of LPO by these fractions were higher than that of ascorbic acid used as a standard. The DPPH radical scavenging ability exhibited by ethyl acetate fraction was found to be the highest with IC50 value of 1.5 microg/mL. The ethyl acetate and methanolic fractions had the highest OH- radical scavenging ability with the same IC50 value of 5 microg/mL. The total phenol content of ethyl acetate fraction was the highest with 0.127 microg/mg gallic acid equivalent (GAE). The reductive potential of methanolic fraction showed a concentration-dependent increase. This study showed that inhibition of LPO and the DPPH and OH- radicals scavenging abilities of Mangifera indica leaf could be related to the presence of phenolic compounds. Therefore, the ethyl acetate fraction of the leaf may be a good source of natural antioxidative agent.

  3. Inhibition of lipid peroxidation by extracts/subfractions of Chickrassy ( Chukrasia tabularis A. Juss.)

    NASA Astrophysics Data System (ADS)

    Kaur, Rajbir; Thind, Tarunpreet Singh; Singh, Bikram; Arora, Saroj

    2009-01-01

    Polyphenols and polyphenol-rich fractions of plants have been reported to have protective effects against lipid peroxidation, most probably by serving as scavengers of free radicals and/or by chelating metal ions. In the present study, the effect of different extracts/subfractions of Chickrassy ( Chukrasia tabularis) on peroxyl radical mediated damage to the polyunsaturated fatty acids was investigated. Liver homogenate was used as experimental material. The production of malondialdehyde served as a marker of lipid peroxidation and oxidative stress. It was observed that polyphenol-rich fractions, particularly the ethyl acetate fractions of bark and leaves, showed the highest protective activity of 83.02% and 88.62% inhibition, respectively. This study will help in knowing the scientific validation of this plant, for its use in ayurvedic formulations.

  4. Lipid Peroxidation Is an Early Symptom Triggered by Aluminum, But Not the Primary Cause of Elongation Inhibition in Pea Roots1

    PubMed Central

    Yamamoto, Yoko; Kobayashi, Yukiko; Matsumoto, Hideaki

    2001-01-01

    Pea (Pisum sativum) roots were treated with aluminum in a calcium solution, and lipid peroxidation was investigated histochemically and biochemically, as well as other events caused by aluminum exposure. Histochemical stainings were observed to distribute similarly on the entire surface of the root apex for three events (aluminum accumulation, lipid peroxidation, and callose production), but the loss of plasma membrane integrity (detected by Evans blue uptake) was localized exclusively at the periphery of the cracks on the surface of root apex. The enhancement of four events (aluminum accumulation, lipid peroxidation, callose production, and root elongation inhibition) displayed similar aluminum dose dependencies and occurred by 4 h. The loss of membrane integrity, however, was enhanced at lower aluminum concentrations and after longer aluminum exposure (8 h). The addition of butylated hydroxyanisole (a lipophilic antioxidant) during aluminum treatment completely prevented lipid peroxidation and callose production by 40%, but did not prevent or slow the other events. Thus lipid peroxidation is a relatively early symptom induced by the accumulation of aluminum and appears to cause, in part, callose production, but not the root elongation inhibition; by comparison, the loss of plasma membrane integrity is a relatively late symptom caused by cracks in the root due to the inhibition of root elongation. PMID:11154329

  5. Digestibility of Quinoa (Chenopodium quinoa Willd.) Protein Concentrate and Its Potential to Inhibit Lipid Peroxidation in the Zebrafish Larvae Model.

    PubMed

    Vilcacundo, R; Barrio, D; Carpio, C; García-Ruiz, A; Rúales, J; Hernández-Ledesma, B; Carrillo, W

    2017-09-01

    Quinoa protein concentrate (QPC) was extracted and digested under in vitro gastrointestinal conditions. The protein content of QPC was in the range between 52.40 and 65.01% depending on the assay used. Quinoa proteins were almost completely hydrolyzed by pepsin at pH of 1.2, 2.0, and 3.2. At high pH, only partial hydrolysis was observed. During the duodenal phase, no intact proteins were visible, indicating their susceptibility to the in vitro simulated digestive conditions. Zebrafish larvae model was used to evaluate the in vivo ability of gastrointestinal digests to inhibit lipid peroxidation. Gastric digestion at pH 1.2 showed the highest lipid peroxidation inhibition percentage (75.15%). The lipid peroxidation activity increased after the duodenal phase. The digest obtained at the end of the digestive process showed an inhibition percentage of 82.10%, comparable to that showed when using BHT as positive control (87.13%).

  6. Desferrioxamine as an electron donor. Inhibition of membranal lipid peroxidation initiated by H2O2-activated metmyoglobin and other peroxidizing systems.

    PubMed

    Kanner, J; Harel, S

    1987-01-01

    Desferrioxamine (DFO) involvement in several peroxidative systems was studied. These systems included: a) membranal lipid peroxidation initiated by H2O2-activated metmyoglobin (or methemoglobin); b) phenol-red oxidation by activated metmyoglobin or horseradish peroxidase (HRP): c) beta-carotene-linoleate couple oxidation stimulated by lipoxygenase or hemin. Desferrioxamine was found to inhibit all these systems but not ferrioxamine (FO). Phenol-red oxidation by H2O2-horseradish peroxidase was inhibited competitively with DFO. Kinetic studies using the spectra changes in the Soret region of metmyoglobin suggest a mechanism by which H2O2 reacts with the iron-heme to form an intermediate of oxy-ferryl myoglobin that subsequently reacts with DFO to return the activated compound to the resting state. These activities of DFO resemble the reaction of other electron donors.

  7. CALCIUM-INDUCED LIPID PEROXIDATION IS MEDIATED BY RHODNIUS HEME-BINDING PROTEIN (RHBP) AND PREVENTED BY VITELLIN.

    PubMed

    Paes, Marcia C; Silveira, Alan B; Ventura-Martins, Guilherme; Luciano, Monalisa; Coelho, Marsen G P; Todeschini, Adriane R; Bianconi, M Lucia; Atella, Georgia C; Silva-Neto, Mário A C

    2015-10-01

    Lipid peroxidation is promoted by the quasi-lipoxygenase (QL) activity of heme proteins and enhanced by the presence of free calcium. Unlike mammalian plasma, the hemolymph of Rhodnius prolixus, a vector of Chagas disease, contains both a free heme-binding protein (RHBP) and circulating lipoproteins. RHBP binds and prevents the heme groups of the proteins from participating in lipid peroxidation reactions. Herein, we show that despite being bound to RHBP, heme groups promote lipid peroxidation through a calcium-dependent QL reaction. This reaction is readily inhibited by the presence of ethylene glycol tetraacetic acid (EGTA), the antioxidant butylated hydroxytoluene or micromolar levels of the main yolk phosphoprotein vitellin (Vt). The inhibition of lipid peroxidation is eliminated by the in vitro dephosphorylation of Vt, indicating that this reaction depends on the interaction of free calcium ions with negatively charged phosphoamino acids. Our results demonstrate that calcium chelation mediated by phosphoproteins occurs via an antioxidant mechanism that protects living organisms from lipid peroxidation. © 2015 Wiley Periodicals, Inc.

  8. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices.

    PubMed

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu

    2012-07-01

    Spices have been used as food adjuncts and in folklore for ages. Inhibition of key enzymes (α-amylase and α-glucosidase) involved in the digestion of starch and protection against free radicals and lipid peroxidation in pancreas could be part of the therapeutic approach towards the management of hyperglycemia and dietary phenolics have shown promising potentials. This study investigated and compared the inhibitory properties of aqueous extracts of some tropical spices: Xylopia aethiopica [Dun.] A. Rich (Annonaceae), Monodora myristica (Gaertn.) Dunal (Annonaceae), Syzygium aromaticum [L.] Merr. et Perry (Myrtaceae), Piper guineense Schumach. et Thonn (Piperaceae), Aframomum danielli K. Schum (Zingiberaceae) and Aframomum melegueta (Rosc.) K. Schum (Zingiberaceae) against α-amylase, α-glucosidase, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and sodium nitroprusside (SNP)-induced lipid peroxidation in rat pancreas--in vitro using different spectrophotometric method. Aqueous extract of the spices was prepared and the ability of the spice extracts to inhibit α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in rat pancreas--in vitro was investigated using various spectrophotometric methods. All the spice extracts inhibited α-amylase (IC(50) = 2.81-4.83 mg/mL), α-glucosidase (IC(50) = 2.02-3.52 mg/mL), DPPH radicals (EC(50) = 15.47-17.38 mg/mL) and SNP-induced lipid peroxidation (14.17-94.38%), with the highest α-amylase & α-glucosidase inhibitory actions and DPPH radical scavenging ability exhibited by X. aethiopica, A. danielli and S. aromaticum, respectively. Also, the spices possess high total phenol (0.88-1.3 mg/mL) and flavonoid (0.24-0.52 mg/mL) contents with A. melegueta having the highest total phenolic and flavonoid contents. The inhibitory effects of the spice extracts on α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in pancreas (in vitro) could be attributed to the presence of biologically

  9. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal

    PubMed Central

    Muñoz, Mario F.; Argüelles, Sandro

    2014-01-01

    Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown. PMID:24999379

  10. Ulinastatin Suppresses Burn-Induced Lipid Peroxidation and Reduces Fluid Requirements in a Swine Model

    PubMed Central

    Luo, Hong-Min; Du, Ming-Hua; Lin, Zhi-Long; Hu, Quan; Zhang, Lin; Ma, Li; Wang, Huan; Wen, Yu; Lv, Yi; Lin, Hong-Yuan; Pi, Yu-Li; Hu, Sen; Sheng, Zhi-Yong

    2013-01-01

    Objective. Lipid peroxidation plays a critical role in burn-induced plasma leakage, and ulinastatin has been reported to reduce lipid peroxidation in various models. This study aims to examine whether ulinastatin reduces fluid requirements through inhibition of lipid peroxidation in a swine burn model. Methods. Forty miniature swine were subjected to 40% TBSA burns and were randomly allocated to the following four groups: immediate lactated Ringer's resuscitation (ILR), immediate LR containing ulinastatin (ILR/ULI), delayed LR resuscitation (DLR), and delayed LR containing ulinastatin (DLR/ULI). Hemodynamic variables, net fluid accumulation, and plasma thiobarbituric acid reactive substances (TBARS) concentrations were measured. Heart, liver, lung, skeletal muscle, and ileum were harvested at 48 hours after burn for evaluation of TBARS concentrations, activities of antioxidant enzymes, and tissue water content. Results. Ulinastatin significantly reduced pulmonary vascular permeability index (PVPI) and extravascular lung water index (ELWI), net fluid accumulation, and water content of heart, lung, and ileum in both immediate or delayed resuscitation groups. Furthermore, ulinastatin infusion significantly reduced plasma and tissue concentrations of TBARS in both immediate or delayed resuscitation groups. Conclusions. These results indicate that ulinastatin can reduce fluid requirements through inhibition of lipid peroxidation. PMID:23738046

  11. Endrin-induced histopathological changes and lipid peroxidation in livers and kidneys of rats, mice, guinea pigs and hamsters.

    PubMed

    Hassan, M Q; Numan, I T; al-Nasiri, N; Stohs, S J

    1991-01-01

    Endrin toxicity may be due to an oxidative stress associated with increased lipid peroxidation, decreased glutathione content, and inhibition of glutathione peroxidase activity. Extensive interspecies variability exists in sensitivity towards endrin. Therefore, histopathological changes and lipid peroxidation in the livers and kidneys of rats, mice, hamsters, and guinea pigs were examined 24 hr after the administration of 4 mg endrin/kg body weight orally in corn oil. Degeneration and necrotic changes with inflammatory cell infiltration were observed in livers and kidneys, and interspecies variability occurred. Fatty changes in the form of hepatic foam cells with cytoplasmic vacuolation were present. Lipofuscin pigments, associated with lipid peroxidation, were observed in hepatocytes and Kupffer cells. These histopathological conditions were prevented in rats which had been pretreated with butylated hydroxyanisole, vitamins E and C, or cysteine, antioxidants and free radical scavengers which have previously been shown to inhibit lipid peroxidation. The extent of endrin-induced lipid peroxidation correlated well with the degree of histopathological changes. Thus, histological changes consistent with the induction of an oxidative stress were observed following the administration of endrin to various animal species.

  12. The mechanism of Fe(2+)-initiated lipid peroxidation in liposomes: the dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical.

    PubMed Central

    Tang, L; Zhang, Y; Qian, Z; Shen, X

    2000-01-01

    The mechanism of Fe(2+)-initiated lipid peroxidation in a liposomal system was studied. It was found that a second addition of ferrous ions within the latent period lengthened the time lag before lipid peroxidation started. The apparent time lag depended on the total dose of Fe(2+) whenever the second dose of Fe(2+) was added, which indicates that Fe(2+) has a dual function: to initiate lipid peroxidation on one hand and suppress the species responsible for the initiation of the peroxidation on the other. When the pre-existing lipid peroxides (LOOH) were removed by incorporating triphenylphosphine into liposomes, Fe(2+) could no longer initiate lipid peroxidation and the acceleration of Fe(2+) oxidation by the liposomes disappeared. However, when extra LOOH were introduced into liposomes, both enhancement of the lipid peroxidation and shortening of the latent period were observed. When the scavenger of lipid peroxyl radicals (LOO(.)), N,N'-diphenyl-p-phenylene-diamine, was incorporated into liposomes, neither initiation of the lipid peroxidation nor acceleration of the Fe(2+) oxidation could be detected. The results may suggest that both the pre-existing LOOH and LOO(.) are necessary for the initiation of lipid peroxidation. The latter comes initially from the decomposition of the pre-existing LOOH by Fe(2+) and can be scavenged by its reaction with Fe(2+). Only when Fe(2+) is oxidized to such a degree that LOO(.) is no longer effectively suppressed does lipid peroxidation start. It seems that by taking the reactions of Fe(2+) with LOOH and LOO(.) into account, the basic chemistry in lipid peroxidation can explain fairly well the controversial phenomena observed in Fe(2+)-initiated lipid peroxidation, such as the existence of a latent period, the critical ratio of Fe(2+) to lipid and the required oxidation of Fe(2+). PMID:11062055

  13. Lipid peroxidation and neurodegenerative disease.

    PubMed

    Reed, Tanea T

    2011-10-01

    Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Dual Ca2+ requirement for optimal lipid peroxidation of low density lipoprotein by activated human monocytes.

    PubMed

    Li, Q; Tallant, A; Cathcart, M K

    1993-04-01

    The oxidative modification of LDL seems a key event in atherogenesis and may participate in inflammatory tissue injury. Our previous studies suggested that the process of LDL oxidation by activated human monocytes/macrophages required O2- and activity of intracellular lipoxygenase. Herein, we studied the mechanisms involved in this oxidative modification of LDL. In this study, we used the human monocytoid cell line U937 to examine the role of Ca2+ in U937 cell-mediated lipid peroxidation of LDL. U937 cells were activated by opsonized zymosan. Removal of Ca2+ from cell culture medium by EGTA inhibited U937 cell-mediated peroxidation of LDL lipids. Therefore, Ca2+ influx and mobilization were examined for their influence on U937 cell-mediated LDL lipid peroxidation. Ca2+ channel blockers nifedipine and verapamil blocked both Ca2+ influx and LDL lipid peroxidation by activated U937 cells. The inhibitory effects of nifedipine and verapamil were dose dependent. TMB-8 and ryanodine, agents known to prevent Ca2+ release from intracellular stores, also caused a dose-dependent inhibition of LDL lipid peroxidation by activated U937 cells while exhibiting no effect on Ca2+ influx. Thus, both Ca2+ influx through functional calcium channels and Ca2+ mobilization from intracellular stores participate in the oxidative modification of LDL by activated U937 cells. 45Ca2+ uptake experiments revealed profound Ca2+ influx during the early stages of U937 cell activation, however, the Ca2+ ionophore 4-bromo A23187 was unable to induce activation of U937 cells and peroxidation of LDL lipids. Release of intracellular Ca2+ by thapsigargin only caused a suboptimal peroxidation of LDL lipids. Our results indicate that although increases in intracellular Ca2+ levels provided by both influx and intracellular Ca2+ mobilization are required, other intracellular signals may be involved for optimal peroxidation of LDL lipids by activated human monocytes.

  15. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking.

    PubMed

    Zhang, Yanjun; Henning, Susanne M; Lee, Ru-Po; Huang, Jianjun; Zerlin, Alona; Li, Zhaoping; Heber, David

    2015-05-01

    Spices are rich in natural antioxidants and have been shown to be potent inhibitors of lipid peroxidation during cooking of meat. Turmeric contains unique conjugated curcuminoids with strong antioxidant activity. Piperine, one of the main constituents of black pepper, is known to increase the bioavailability of curcuminoids in mouse and human studies when consumed with turmeric. We investigated whether adding black pepper to turmeric powder may further inhibit lipid peroxidation when added to meat patties prior to cooking. The addition of black pepper to turmeric significantly decreased the lipid peroxidation in hamburger meat. When investigating the antioxidant activity of the main chemical markers, we determined that piperine did not exhibit any antioxidant activity. Therefore, we conclude that other black pepper ingredients are responsible for the increased antioxidant activity of combining black pepper with turmeric powder.

  16. Effect of quercetin and genistein on copper- and iron-induced lipid peroxidation in methyl linolenate.

    PubMed

    Boadi, William Y; Iyere, Peter A; Adunyah, Samuel E

    2003-01-01

    The single and combined effects of two abundant flavonoids, namely quercetin and genistein, were investigated according to their ability to inhibit the oxidation of methyl linolenate via Fenton's pathway. Antioxidative activity was determined by oxidizing methyl linolenate suspended in a buffer solution with either Fe2+ (50 microM) or Cu2+ (50 microM) and hydrogen peroxide (0.01 mM) without or with a flavonoid sample (10 or 20 microM). Lipid peroxidation products were measured by the thiobarbituric acid (TBA) assay and the amounts of thiobarbituric acid-reactive substances (TBARS) were calculated from a calibration curve using 1,1,3,3-tetraethoxypropane as the standard. Both quercetin and genistein at the 10 or 20 microM level decreased lipid peroxidation significantly compared with their respective controls. Of the two flavonoids tested, quercetin had a more marked effect on inhibiting lipid peroxides. Peroxidation products for the control samples were higher for the Fe2+-treated samples compared with the Cu2+ samples. Combination of both flavonoids at the same dose levels continued to decrease lipid peroxidation, the effect being the same for both metal ions. The data suggest that the combined flavonoids offered better protection than the single treatments and this may be attributed to the better radical scavenging or increased chelating capabilities of the combined over the single treatments. The differences in peroxide levels for the single treatment of quercetin compared with the genistein-treated samples may reflect the structural differences between these compounds in combating oxidative stress. Copyright 2003 John Wiley & Sons, Ltd.

  17. Inhibition of Oxidative Stress and Lipid Peroxidation by Anthocyanins from Defatted Canarium odontophyllum Pericarp and Peel Using In Vitro Bioassays

    PubMed Central

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah; Hamid, Muhajir

    2014-01-01

    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection. PMID:24416130

  18. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking

    PubMed Central

    Zhang, Yanjun; Henning, Susanne M.; Lee, Ru-Po; Huang, Jianjun; Zerlin, Alona; Li, Zhaoping; Heber, David

    2015-01-01

    Abstract Spices are rich in natural antioxidants and have been shown to be potent inhibitors of lipid peroxidation during cooking of meat. Turmeric contains unique conjugated curcuminoids with strong antioxidant activity. Piperine, one of the main constituents of black pepper, is known to increase the bioavailability of curcuminoids in mouse and human studies when consumed with turmeric. We investigated whether adding black pepper to turmeric powder may further inhibit lipid peroxidation when added to meat patties prior to cooking. The addition of black pepper to turmeric significantly decreased the lipid peroxidation in hamburger meat. When investigating the antioxidant activity of the main chemical markers, we determined that piperine did not exhibit any antioxidant activity. Therefore, we conclude that other black pepper ingredients are responsible for the increased antioxidant activity of combining black pepper with turmeric powder. PMID:25582173

  19. Fish oil changes the lifespan of Caenorhabditis elegans via lipid peroxidation

    PubMed Central

    Sugawara, Soko; Honma, Taro; Ito, Junya; Kijima, Ryo; Tsuduki, Tsuyoshi

    2013-01-01

    Recently, we administered fish oil containing eicosapentaenoic acid and docosahexaenoic acid (DHA) to senescence-accelerated mice P8 (SAMP8), in order to investigate the effects on lifespan. Surprisingly, the lifespan of SAMP8 that were fed fish oil was shortened significantly, through a mechanism that likely involved lipid peroxidation. In this study, we investigated this phenomenon in further detail. To examine whether this phenomenon occurs only in SAMP8, we investigated the effect of fish oil on the lifespan of another organism species, Caenorhabditis elegans (C. elegans). C. elegans fed fish oil were cultured and the lifespan monitored. As a consequence of the provision of large amounts of fish oil the lifespan of C. elegans was shortened significantly, whereas an appropriate amount of fish oil extended their lifespan significantly. Lipid peroxide levels in C. elegans that were fed fish oil increased significantly in a dose-dependent manner. However, lipid peroxide levels in C. elegans were inhibited by the addition of fish oil and an antioxidant, α-tocopherol, and completely abrogated the changes in the lifespan. To further confirm whether the oxidation of n-3 polyunsaturated fatty acid in fish oil would change the lifespan of C. elegans, the effect of oxidized DHA was examined. Large amounts of oxidized DHA were found to shorten their lifespan significantly. Thus, fish oil changes the lifespan of C. elegans through lipid peroxidation. PMID:23526170

  20. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli.

    PubMed

    Joshi, Suresh G; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D

    2011-03-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.

  1. Nonthermal Dielectric-Barrier Discharge Plasma-Induced Inactivation Involves Oxidative DNA Damage and Membrane Lipid Peroxidation in Escherichia coli▿

    PubMed Central

    Joshi, Suresh G.; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K.; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D.

    2011-01-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria. PMID:21199923

  2. Role of Lipid Composition and Lipid Peroxidation in the Sensitivity of Fungal Plant Pathogens to Aluminum Chloride and Sodium Metabisulfite▿

    PubMed Central

    Avis, Tyler J.; Michaud, Mélanie; Tweddell, Russell J.

    2007-01-01

    Aluminum chloride and sodium metabisulfite have shown high efficacy at low doses in controlling postharvest pathogens on potato tubers. Direct effects of these two salts included the loss of cell membrane integrity in exposed pathogens. In this work, four fungal potato pathogens were studied in order to elucidate the role of membrane lipids and lipid peroxidation in the relative sensitivity of microorganisms exposed to these salts. Inhibition of mycelial growth in these fungi varied considerably and revealed sensitivity groups within the tested fungi. Analysis of fatty acids in these fungi demonstrated that sensitivity was related to high intrinsic fatty acid unsaturation. When exposed to the antifungal salts, sensitive fungi demonstrated a loss of fatty acid unsaturation, which was accompanied by an elevation in malondialdehyde content (a biochemical marker of lipid peroxidation). Our data suggest that aluminum chloride and sodium metabisulfite could induce lipid peroxidation in sensitive fungi, which may promote the ensuing loss of integrity in the plasma membrane. This direct effect on fungal membranes may contribute, at least in part, to the observed antimicrobial effects of these two salts. PMID:17337539

  3. Unsolved mysteries: How does lipid peroxidation cause ferroptosis?

    PubMed Central

    Feng, Huizhong

    2018-01-01

    Ferroptosis is a cell death process driven by damage to cell membranes and linked to numerous human diseases. Ferroptosis is caused by loss of activity of the key enzyme that is tasked with repairing oxidative damage to cell membranes—glutathione peroxidase 4 (GPX4). GPX4 normally removes the dangerous products of iron-dependent lipid peroxidation, protecting cell membranes from this type of damage; when GPX4 fails, ferroptosis ensues. Ferroptosis is distinct from apoptosis, necroptosis, necrosis, and other modes of cell death. Several key mysteries regarding how cells die during ferroptosis remain unsolved. First, the drivers of lipid peroxidation are not yet clear. Second, the subcellular location of lethal lipid peroxides remains an outstanding question. Finally, how exactly lipid peroxidation leads to cell death is an unsolved mystery. Answers to these questions will provide insights into the mechanisms of ferroptotic cell death and associated human diseases, as well as new therapeutic strategies for such diseases. PMID:29795546

  4. A survey of chemicals inducing lipid peroxidation in biological systems.

    PubMed

    Kappus, H

    1987-01-01

    A great number of drugs and chemicals are reviewed which have been shown to stimulate lipid peroxidation in any biological system. The underlying mechanisms, as far as known, are also dealt with. Lipid peroxidation induced by iron ions, organic hydroperoxides, halogenated hydrocarbons, redox cycling drugs, glutathione depleting chemicals, ethanol, heavy metals, ozone, nitrogen dioxide and a number of miscellaneous compounds, e.g. hydrazines, pesticides, antibiotics, are mentioned. It is shown that lipid peroxidation is stimulated by many of these compounds. However, quantitative estimates cannot be given yet and it is still impossible to judge the biological relevance of chemical-induced lipid peroxidation.

  5. Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides.

    PubMed

    Bajpai, Vivek K; Sharma, Ajay; Kang, Sun Chul; Baek, Kwang-Hyun

    2014-01-01

    To investigate the antioxidant efficacy of a biologically active diterpenoid compound sugiol isolated from Metasequoia glyptostroboides (M. glyptostroboides) in various antioxidant models. An abietane type diterpenoid sugiol, isolated from ethyl acetate extract of M. glyptostroboides cones, was analyzed for its antioxidant efficacy as reducing power ability and lipid peroxidation inhibition as well as its ability to scavenge free radicals such as 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl radicals. The sugiol showed significant and concentration-dependent antioxidant and free radical scavenging activities. Consequently, the sugiol exerted lipid peroxidation inhibitory effect by 76.5% as compared to α-tocopherol (80.13%) and butylated hydroxyanisole (76.59%). In addition, the sugiol had significant scavenging activities of 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl free radicals in a concentration-dependent manner by 78.83%, 72.42%, 72.99% and 85.04%, when compared to the standard compound ascorbic acid (81.69%, 74.62%, 73.00% and 73.79%) and α-tocopherol/butylated hydroxyanisole (84.09%, 78.61%, 74.45% and 70.02%), respectively. These findings justify the biological and traditional uses of M. glyptostroboides or its secondary metabolites as confirmed by its promising antioxidant efficacy. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  6. Importance of iron in lipid peroxidation in the tyrosinase/4-hydroxyanisole system: possible mechanism of killing of malignant melanoma cells by 4-hydroxyanisole.

    PubMed

    Koga, S; Nakano, M; Ito, T; Tomita, Y

    1992-03-01

    Phospholipid peroxidation of unsaturated phospholipid liposomes in the tyrosinase(mushroom)-4-hydroxyanisole system was studied in both the presence and absence of Fe3+, as a model of melanocyte damage by this agent. Ferric ion is required for the lipid peroxidation, and maximal lipid peroxidation was achieved with a molar ratio of [Fe3+]/[4-hydroxyanisole] of about 1. The lipid peroxidation was significantly inhibited by ceruloplasmin (a ferroxidase), indicating that Fe3+, which would be coordinated with metabolites, catechols, should be reduced to express its oxidant property. Judging from the results obtained with inhibitors or scavengers of active oxygen species, O2-, H2O2, and .OH would not mainly involve in the lipid peroxidation.

  7. Radical-scavenging activity, protective effect against lipid peroxidation and mineral contents of monofloral Cuban honeys.

    PubMed

    Alvarez-Suarez, José M; Giampieri, Francesca; Damiani, Elisabetta; Astolfi, Paola; Fattorini, Daniele; Regoli, Francesco; Quiles, José L; Battino, Maurizio

    2012-03-01

    Several monofloral Cuban honeys were analyzed to determine their free radical-scavenging activity and from this the total antioxidant content was estimated. The protective effect against lipid peroxidation in an in vitro model of rat liver homogenates was evaluated and, lastly, the mineral content of the honeys, which can be related to the maintenance of intracellular oxidative balance, was determined. The scavenging capacities against hydroxyl and superoxide radicals were determined using the spin-trapping technique and the hypoxanthine/xanthine oxidase assay, respectively. Lipid peroxidation was evaluated through the production of TBARS and hydroperoxides. All honeys tested showed potential antioxidant activity with Linen vine displaying the highest scavenging capacity towards the DPPH, hydroxyl and superoxide radicals, while the least efficient was Christmas vine honey. Honeys also inhibited, in a concentration-dependent mode, lipid peroxidation in rat liver homogenates, with Linen vine resulting the best while the least effective was Christmas vine honey. The ability to scavenge free radicals and protect against lipid peroxidation may contribute to the ability of certain Cuban honeys to help in preventing/reducing some inflammatory diseases in which oxidative stress is involved. A total of eight minerals were identified and quantified as follows: cadmium, chromium, copper, nickel, iron, manganese, lead, and zinc. Minerals found in higher concentrations were iron, zinc and manganese.

  8. Lipid Peroxidation in a Stomach Medium Is Affected by Dietary Oils (Olive/Fish) and Antioxidants: The Mediterranean versus Western Diet.

    PubMed

    Tirosh, Oren; Shpaizer, Adi; Kanner, Joseph

    2015-08-12

    Red meat is an integral part of the Western diet, and high consumption is associated with an increased risk of chronic diseases. Using a system that simulated the human stomach, red meat was interacted with different oils (olive/fish) and lipid peroxidation was determined by measuring accumulation of malondialdehyde (MDA) and lipid peroxides (LOOH). Olive oil decreased meat lipid peroxidation from 121.7 ± 3.1 to 48.2 ± 1.3 μM and from 327.1 ± 9.5 to 77.3 ± 6.0 μM as assessed by MDA and ROOH, respectively. The inhibitory effect of olive oil was attributed to oleic acid rather than its polyphenol content. In contrast, fish oils from tuna or an ω-3 supplement dramatically increased meat lipid peroxidation from 96.2 ± 3.6 to 514.2 ± 6.7 μM MDA. Vitamin E inhibited meat lipid peroxidation in the presence of olive oil but paradoxically increased peroxidation in the presence of fish oil. The inhibitory properties of oleic acid may play a key role in the health benefits of the Mediterranean diet.

  9. Lipid peroxidation in sarcoplasmic reticulum membranes: effect on functional and biophysical properties.

    PubMed

    Dinis, T C; Almeida, L M; Madeira, V M

    1993-03-01

    The fluorescent polyunsaturated parinaric acid (PnA) incorporated in sarcoplasmic reticulum membranes (SR) was used to probe the initial stages of membrane lipid peroxidation. The experimental set up of the PnA assay was investigated by means of several peroxidation initiators to ascertain peroxidation conditions. This assay in SR is particularly useful to evaluate the membrane susceptibility to peroxidation and to ascertain suitable conditions (concentration of initiators and cofactors) to challenge peroxidation in each preparation under study. On the basis of the PnA assay, Fe2+/ascorbate was selected among the different initiator systems to assess the effect of lipid peroxidation upon biochemical and biophysical parameters of SR membranes. Under mildly controlled conditions at 25 degrees C, the lipid degradative process, as detected by fatty acid analysis, decreases the Ca2+ uptake (up to about 50% of control) and reduces the Ca2+ pump efficiency (Ca2+/ATP ratio) up to about 58% of control, without inactivation the ATPase enzyme turnover. The effect of lipid peroxidation on the SR bilayer organization is dependent either on the extent of lipid peroxidation or on the depth of the bilayer as probed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene and by intramolecular excimerization of 1,3-di(1-pyrenyl)propane. It is concluded that the effect of mild lipid peroxidation on Ca2+ pump activity is partially exerted through the alteration of physical properties in the lipid phase or lipid-protein interfaces.

  10. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy

    PubMed Central

    Higdon, Ashlee N.; Benavides, Gloria A.; Chacko, Balu K.; Ouyang, Xiaosen; Johnson, Michelle S.; Landar, Aimee; Zhang, Jianhua

    2012-01-01

    The hemolysis of red blood cells and muscle damage results in the release of the heme proteins myoglobin, hemoglobin, and free heme into the vasculature. The mechanisms of heme toxicity are not clear but may involve lipid peroxidation, which we hypothesized would result in mitochondrial damage in endothelial cells. To test this, we used bovine aortic endothelial cells (BAEC) in culture and exposed them to hemin. Hemin led to mitochondrial dysfunction, activation of autophagy, mitophagy, and, at high concentrations, apoptosis. To detect whether hemin induced lipid peroxidation and damaged proteins, we used derivatives of arachidonic acid tagged with biotin or Bodipy (Bt-AA, BD-AA). We found that in cells treated with hemin, Bt-AA was oxidized and formed adducts with proteins, which were inhibited by α-tocopherol. Hemin-dependent mitochondrial dysfunction was also attenuated by α-tocopherol. Protein thiol modification and carbonyl formation occurred on exposure and was not inhibited by α-tocopherol. Supporting a protective role of autophagy, the inhibitor 3-methyladenine potentiated cell death. These data demonstrate that hemin mediates cytotoxicity through a mechanism which involves protein modification by oxidized lipids and other oxidants, decreased respiratory capacity, and a protective role for the autophagic process. Attenuation of lipid peroxidation may be able to preserve mitochondrial function in the endothelium and protect cells from heme-dependent toxicity. PMID:22245770

  11. Photoirradiation of Retinyl Palmitate in Ethanol with Ultraviolet Light - Formation of Photodecomposition Products, Reactive Oxygen Species, and Lipid Peroxides

    PubMed Central

    Xia, Qingsu; Yin, Jun J.; Wamer, Wayne G.; Cherng, Shu-Hui; Boudreau, Mary D.; Howard, Paul C.; Yu, Hongtao; Fu, Peter P.

    2006-01-01

    We have previously reported that photoirradiation of retinyl palmitate (RP), a storage and ester form of vitamin A (retinol), with UVA light resulted in the formation of photodecomposition products, generation of reactive oxygen species, and induction of lipid peroxidation. In this paper, we report our results following the photoirradiation of RP in ethanol by an UV lamp with approximately equal UVA and UVB light. The photodecomposition products were separated by reversed-phase HPLC and characterized spectroscopically by comparison with authentic standards. The identified products include: 4-keto-RP, 11-ethoxy-12-hydroxy-RP, 13-ethoxy-14-hydroxy-RP, anhydroretinol (AR), and trans- and cis-15-ethoxy-AR. Photoirradiation of RP in the presence of a lipid, methyl linoleate, resulted in induction of lipid peroxidation. Lipid peroxidation was inhibited when sodium azide was present during photoirradiation which suggests free radicals were formed. Our results demonstrate that, similar to irradiation with UVA light, RP can act as a photosensitizer leading to free radical formation and induction of lipid peroxidation following irradiation with UVB light. PMID:16823091

  12. 'Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia'.

    PubMed

    Abeti, R; Parkinson, M H; Hargreaves, I P; Angelova, P R; Sandi, C; Pook, M A; Giunti, P; Abramov, A Y

    2016-05-26

    Friedreich's ataxia (FRDA) is an inherited neurodegenerative disease. The mutation consists of a GAA repeat expansion within the FXN gene, which downregulates frataxin, leading to abnormal mitochondrial iron accumulation, which may in turn cause changes in mitochondrial function. Although, many studies of FRDA patients and mouse models have been conducted in the past two decades, the role of frataxin in mitochondrial pathophysiology remains elusive. Are the mitochondrial abnormalities only a side effect of the increased accumulation of reactive iron, generating oxidative stress? Or does the progressive lack of iron-sulphur clusters (ISCs), induced by reduced frataxin, cause an inhibition of the electron transport chain complexes (CI, II and III) leading to reactive oxygen species escaping from oxidative phosphorylation reactions? To answer these crucial questions, we have characterised the mitochondrial pathophysiology of a group of disease-relevant and readily accessible neurons, cerebellar granule cells, from a validated FRDA mouse model. By using live cell imaging and biochemical techniques we were able to demonstrate that mitochondria are deregulated in neurons from the YG8R FRDA mouse model, causing a decrease in mitochondrial membrane potential (▵Ψm) due to an inhibition of Complex I, which is partially compensated by an overactivation of Complex II. This complex activity imbalance leads to ROS generation in both mitochondrial matrix and cytosol, which results in glutathione depletion and increased lipid peroxidation. Preventing this increase in lipid peroxidation, in neurons, protects against in cell death. This work describes the pathophysiological properties of the mitochondria in neurons from a FRDA mouse model and shows that lipid peroxidation could be an important target for novel therapeutic strategies in FRDA, which still lacks a cure.

  13. Curcumin Blocks Naproxen-Induced Gastric Antral Ulcerations through Inhibition of Lipid Peroxidation and Activation of Enzymatic Scavengers in Rats.

    PubMed

    Kim, Jeong-Hwan; Jin, Soojung; Kwon, Hyun Ju; Kim, Byung Woo

    2016-08-28

    Curcumin is a polyphenol derived from the plant Curcuma longa, which is used for the treatment of diseases associated with oxidative stress and inflammation. The present study was undertaken to determine the protective effect of curcumin against naproxen-induced gastric antral ulcerations in rats. Different doses (10, 50, and 100 mg/kg) of curcumin or vehicle (curcumin, 0 mg/kg) were pretreated for 3 days by oral gavage, and then gastric mucosal lesions were caused by 80 mg/kg naproxen applied for 3 days. Curcumin significantly inhibited the naproxen-induced gastric antral ulcer area and lipid peroxidation in a dose-dependent manner. In addition, curcumin markedly increased activities of radical scavenging enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase in a dose-dependent manner. Specifically, 100 mg/kg curcumin completely protected the gastric mucosa against the loss in the enzyme, resulting in a drastic increase of activities of radical scavenging enzymes up to more than the level of untreated normal rats. Histological examination obviously showed that curcumin prevents naproxen-induced gastric antral ulceration as a result of direct protection of the gastric mucosa. These results suggest that curcumin blocks naproxen-induced gastric antral ulcerations through prevention of lipid peroxidation and activation of radical scavenging enzymes, and it may offer a potential remedy of gastric antral ulcerations.

  14. Mutual anti-oxidative effect of gossypol acetic acid and gossypol-iron complex on hepatic lipid peroxidation in male rats.

    PubMed

    El-Sharaky, A S; Wahby, M M; Bader El-Dein, M M; Fawzy, R A; El-Shahawy, I N

    2009-11-01

    Gossypol displays anticancer behavior and anti-fertility in males. Male rats were treated with either gossypol acetic acid (GAA) or gossypol-iron complex (GIC). Serum alanine transaminase (ALT) activity elevated of GAA. However, GIC-treated animals showed a decrease in hepatic glutathione (GSH) content with increased malondialdehyde (MDA) content. Whereas, GSH-Px specific activity increased in GAA group. GAA and GIC induce significant increases in the hepatic NEFA with remarkable decrease in the total saturated fatty acids with a significant increase of PUFA. Lipid peroxidation is inhibited by gossypol, which shield lipids against oxidative damage. Phenols are oxidized to phenoxy radicals, which do not permit anti-oxidation due to resonance stabilization. GAA stimulate hydroxyl radicals (()OH) generation and DNA damage. GAA and GIC produce increase in lipid peroxidation as proved by a steep rise in thiobarbituric acid reactive species (TBARS). Controversy of specificity of TBARS towards compounds other than MDA was reported. If TBARS increased, more specific assay to be employed. Assay of lipid classes and fatty acids pattern, reveled the significance of the technique in assessment of lipid peroxidation in tissues. GAA and GIC were powerful inhibitors of lipid peroxidation and exhibit pro- and antioxidant behavior, with less toxicity of GIC.

  15. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation.

    PubMed

    Bartesaghi, Silvina; Herrera, Daniel; Martinez, Débora M; Petruk, Ariel; Demicheli, Verónica; Trujillo, Madia; Martí, Marcelo A; Estrín, Darío A; Radi, Rafael

    2017-05-15

    Tyrosine nitration is an oxidative post-translational modification that can occur in proteins associated to hydrophobic bio-structures such as membranes and lipoproteins. In this work, we have studied tyrosine nitration in membranes using a model system consisting of phosphatidylcholine liposomes with pre-incorporated tyrosine-containing 23 amino acid transmembrane peptides. Tyrosine residues were located at positions 4, 8 or 12 of the amino terminal, resulting in different depths in the bilayer. Tyrosine nitration was accomplished by exposure to peroxynitrite and a peroxyl radical donor or hemin in the presence of nitrite. In egg yolk phosphatidylcholine liposomes, nitration was highest for the peptide with tyrosine at position 8 and dramatically increased as a function of oxygen levels. Molecular dynamics studies support that the proximity of the tyrosine phenolic ring to the linoleic acid peroxyl radicals contributes to the efficiency of tyrosine oxidation. In turn, α-tocopherol inhibited both lipid peroxidation and tyrosine nitration. The mechanism of tyrosine nitration involves a "connecting reaction" by which lipid peroxyl radicals oxidize tyrosine to tyrosyl radical and was fully recapitulated by computer-assisted kinetic simulations. Altogether, this work underscores unique characteristics of the tyrosine oxidation and nitration process in lipid-rich milieu that is fueled via the lipid peroxidation process. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Diallyl sulfide inhibits diethylstilbestrol-induced lipid peroxidation in breast tissue of female ACI rats: implications in breast cancer prevention.

    PubMed

    Gued, Lisa R; Thomas, Ronald D; Green, Mario

    2003-01-01

    Diallyl sulfide (DAS) is a component of garlic and prevents cancer in several animal models in various organs. The chemopreventive effects of DAS are attributed to modulation of enzymes to alter the bioactivation of xenobiotics. Diethylstilbestrol (DES) is a synthetic estrogen that causes breast cancer in female ACI rats subsequent to metabolism with concurrent free radical production. This study assessed the effect of DAS on DES-induced reactive oxygen species (ROS) using lipid peroxidation as an empirical endpoint. We have demonstrated that acute exposure to DES results in a significant increase in lipid hydroperoxides (LPH) in breast tissue and DAS attenuated DES-induced LPH concentrations. Two-week exposure to DES caused significant increases in LPH concentrations in breast and liver tissues. DES-induced LPH concentrations were decreased by coadministration of DAS at this time point. There were no statistical differences in the concentrations of LPH in breast and liver tissues of rats treated for 4/6 weeks with DAS/DES. These results demonstrate that DAS inhibits the production of ROS which suggests that DAS effectively inhibits DES bioactivation in female ACI rats which may have implications for chemopreventive intervention strategies. Our results suggest that garlic consumption might be useful for the prevention of human breast cancers.

  17. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    PubMed

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  18. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    PubMed Central

    Prasad, Ankush; Pospíšil, Pavel

    2011-01-01

    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the

  19. Effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in brain mitochondria from rats and dogs.

    PubMed

    Sugiyama, Y; Fujita, T; Matsumoto, M; Okamoto, K; Imada, I

    1985-12-01

    The effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in isolated brain mitochondria from rats and dogs were studied. CV-2619 was easily reduced by canine brain mitochondria in the presence of respiratory substrates. Reduced CV-2619 (2H-CV-2619) was rapidly oxidized through the cytochrome b chain, indicating that the compound functioned simply as an electron carrier of mitochondrial respiratory system. Both nicotinamide adenine dinucleotide (NADH)- and nicotinamide adenine dinucleotide phosphate (NADPH)-dependent lipid peroxidations were examined in canine brain mitochondria in the presence of adenosine diphosphate (ADP) and Fe3+. NADH-cytochrome c reductase activity was sensitive to NADPH-dependent lipid peroxidation. CV-2619 (10(-5)M) strongly inhibited both types of the lipid peroxidation reactions and protected the resultant inactivation of the NADH-cytochrome c reductase activity. Activities of succinate oxidase in rat and canine brain mitochondria were virtually unaffected by CV-2619 and its metabolites (10(-5)-10(-6) M). On the other hand, CV-2619 markedly suppressed the state 3 respiration in glutamate oxidation in a dose dependent manner without any effect on the state 4 respiration and the ADP/O ratio in intact rat brain mitochondria. The inhibitory effect of CV-2619 was also observed in NADH-cytochrome c reductase, but not in NADH-2,6-dichlorophenolindophenol (DCIP) and NADH-ubiquinone reductases in canine brain mitochondria. These facts and results of inhibitor analysis suggest that the action site of CV-2619 is NADH-linked complex I in the mitochondrial respiratory chain and is different from that of inhibitors of oxidative phosphorylation such as rotenone, oligomycin and 2,4-dinitrophenol. Finally, the above findings suggest that CV-2619 acts as an electron carrier in respiratory chains and functions as an antioxidant against membrane damage caused by lipid peroxidation in brain mitochondria. It appears

  20. Reactive oxygen species and lipid peroxidation product-scavenging ability of yogurt organisms.

    PubMed

    Lin, M Y; Yen, C L

    1999-08-01

    The antioxidative activity of the intracellular extracts of yogurt organisms was investigated. All 11 strains tested, including five strains of Streptococcus thermophilus and six strains of Lactobacillus delbrueckii ssp. bulgaricus, demonstrated an antioxidative effect on the inhibition of linoleic acid peroxidation. The antioxidative effect of intracellular extracts of 10(8) cells of yogurt organisms was equivalent to 25 to 96 ppm butylated hydroxytoluene, which indicated that all strains demonstrated excellent antioxidative activity. The scavenging of reactive oxygen species, hydroxyl radical, and hydrogen peroxide was studied for intracellular extracts of yogurt organisms. All strains showed reactive oxygen species-scavenging ability. Lactobacillus delbrueckii ssp. bulgaricus Lb demonstrated the highest hydroxyl radical-scavenging ability at 234 microM. Streptococcus thermophilus MC and 821 and L. delbrueckii ssp. bulgaricus 448 and 449 scavenged the most hydrogen peroxide at approximately 50 microM. The scavenging ability of lipid peroxidation products, t-butylhydroperoxide and malondialdehyde, was also evaluated. Results showed that the extracts were not able to scavenge the t-butylhydroperoxide. Nevertheless, malondialdehyde was scavenged well by most strains.

  1. Evaluation of the antioxidant activity of root extract of pepper fruit (Dennetia tripetala), and it's potential for the inhibition of lipid peroxidation.

    PubMed

    Okolie, Ngozi Paulinus; Falodun, Abiodun; Davids, Oluseyi

    2014-01-01

    The antioxidant properties of ethanolic root extract of pepper fruit (Donnetia tripetala), and its effect on lipid peroxidation of some fresh beef tissues during frozen storage were investigated. The antioxidant parameters were assessed using standard methods, while malondialdehyde levels of different fresh beef tissue sections treated with the extract prior to freezing, were estimated in a colorimetric reaction with thiobarbituric acid. The H2O2-scavenging ability of the extract was similar to that of ascorbic acid, with a maximum scavenging power of 55.61 ±4.98%, and an IC50 value of 86µg/ml. The extract exhibited a concentration-dependent ferric ion-reducing power, although this was significantly lower relative to that of the ascorbic acid (p < 0.05). The total phenolic content was 212.5 ± 0.002 mg/g, while the nitric oxide-scavenging ability was 64.33 ± 0.2% after 150 min. The capacity of the extract to inhibit lipid peroxidation in frozen heart muscle slices was significantly higher than that of vitamin C (p < 0 .05), but comparable to vitamins C and E in frozen testes and kidney slices. These results suggest that the root extract of D. tripetala is rich in antioxidants which can be applied to meat preservation during refrigerated storage.

  2. Continuous millimeter-wave radiation has no effect on lipid peroxidation in liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logani, M.K.; Ziskin, M.C.

    1996-02-01

    The effect of millimeter waves on lipid peroxidation was studied in the presence and absence of melanin. Irradiation of liposomes with continuous millimeter electromagnetic waves at frequencies of 53.6, 61.2 and 78.2 GHz and incident power densities of 10, 1 and 500 mW/cm{sup 2}, respectively, did not show an enhancement in the formation of lipid peroxides compared to unirradiated samples. Liposomes exposed to 254 nm UVC radiation at 0.32 mW/cm{sup 2} and 302 nm UVB radiation at 1.12 mW/cm{sup 2} served as positive controls. No increment in the formation of lipid peroxides was observed when irradiation of liposomes was carriedmore » out in the presence of ADP-Fe{sup +3} and EDTA-Fe{sup +3}. Direct irradiation of melanin with millimeter waves did not exhibit an increased formation of superoxide or hydrogen peroxide. The present results indicate that millimeter waves of the above frequencies and intensities do not cause lipid peroxidation in liposomal membranes. 19 refs., 2 figs., 1 tab.« less

  3. [Cerebral vasospasm and lipid peroxidation--lipid peroxides in the cerebrospinal fluid after subarachnoid hemorrhage].

    PubMed

    Sasaki, T; Asano, T; Takakura, K; Sano, K; Nakamura, T; Suzuki, N; Imabayashi, S; Ishikawa, Y

    1982-12-01

    The relationship between lipid peroxides in cerebrospinal fluid (CSF) and the occurrence of cerebral vasospasm following subarachnoid hemorrhage (SAH) was evaluated by analyzing CSF with high-performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC-MS). Hydroperoxy eicosatetraenoic acids (HPETEs) and hydroxy eicosatetraenoic acids (HETEs) were synthesized by the treatment of arachidonic acid with hydrogen peroxide and cupric chloride. The retention time of these HPETEs and HETEs were determined on HPLC. The position of oxydation occurred was determined after methylation, reduction and trimethyl silylation using GC-MS. Thus the elucidation of positional isomers of HPETEs and HETEs was made possible by the retention time on HPLC. The supernant of CSF after SAH was adjusted to pH 3.0 and then absorbed to octadecyl silyl silica column. The eluted fraction with 15% ethanol-water from octadecyl silyl silica column was analyzed by HPLC detecting at 238 nm. No peak was observed on HPLC at the region of HPETEs and HETEs in the CSF obtained from healthy person. In SAH patients, several peaks were recognized in accordance with the occurrence of cerebral vasospasm. One of the peaks was identified as 5-HETE by HPLC and GC-MS. In 10 SAH patients, semi-quantitative analysis of 5-HETE in the CSF was performed by measuring the height of the peak identified as 5-HETE on HPLC. The close correlation was recognized between the occurrence of cerebral vasospasm and the appearance of 5-HETE in the CSF. The results of the present study suggest that lipid peroxidation is involved in the pathogenesis of chronic vasospasm after SAH.

  4. The effect of ghee (clarified butter) on serum lipid levels and microsomal lipid peroxidation.

    PubMed

    Sharma, Hari; Zhang, Xiaoying; Dwivedi, Chandradhar

    2010-04-01

    Ghee, also known as clarified butter, has been utilized for thousands of years in Ayurveda as a therapeutic agent. In ancient India, ghee was the preferred cooking oil. In the last several decades, ghee has been implicated in the increased prevalence of coronary artery disease (CAD) in Asian Indians due to its content of saturated fatty acids and cholesterol and, in heated ghee, cholesterol oxidation products. Our previous research on Sprague-Dawley outbred rats, which serve as a model for the general population, showed no effect of 5 and 10% ghee-supplemented diets on serum cholesterol and triglycerides. However, in Fischer inbred rats, which serve as a model for genetic predisposition to diseases, results of our previous research showed an increase in serum total cholesterol and triglyceride levels when fed a 10% ghee-supplemented diet. In the present study, we investigated the effect of 10% dietary ghee on microsomal lipid peroxidation, as well as serum lipid levels in Fischer inbred rats to assess the effect of ghee on free radical mediated processes that are implicated in many chronic diseases including cardiovascular disease. Results showed that 10% dietary ghee fed for 4 weeks did not have any significant effect on levels of serum total cholesterol, but did increase triglyceride levels in Fischer inbred rats. Ghee at a level of 10% in the diet did not increase liver microsomal lipid peroxidation or liver microsomal lipid peroxide levels. Animal studies have demonstrated many beneficial effects of ghee, including dose-dependent decreases in serum total cholesterol, low density lipoprotein (LDL), very low density lipoprotein (VLDL), and triglycerides; decreased liver total cholesterol, triglycerides, and cholesterol esters; and a lower level of nonenzymatic-induced lipid peroxidation in liver homogenate. Similar results were seen with heated (oxidized) ghee which contains cholesterol oxidation products. A preliminary clinical study showed that high doses of

  5. Assay to detect lipid peroxidation upon exposure to nanoparticles.

    PubMed

    Potter, Timothy M; Neun, Barry W; Stern, Stephan T

    2011-01-01

    This chapter describes a method for the analysis of human hepatocarcinoma cells (HEP G2) for lipid peroxidation products, such as malondialdehyde (MDA), following treatment with nanoparticle formulations. Oxidative stress has been identified as a likely mechanism of nanoparticle toxicity, and cell-based in vitro systems for evaluation of nanoparticle-induced oxidative stress are widely considered to be an important component of biocompatibility screens. The products of lipid peroxidation, lipid hydroperoxides, and aldehydes, such as MDA, can be measured via a thiobarbituric acid reactive substances (TBARS) assay. In this assay, which can be performed in cell culture or in cell lysate, MDA combines with thiobarbituric acid (TBA) to form a fluorescent adduct that can be detected at an excitation wavelength of 530 nm and an emission wavelength of 550 nm. The results are then expressed as MDA equivalents, normalized to total cellular protein (determined by Bradford assay).

  6. Medicinal Mushroom Cracked-Cap Polypore, Phellinus rimosus (Higher Basidiomycetes) Attenuates Acute Ethanol-Induced Lipid Peroxidation in Mice.

    PubMed

    Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K

    2015-01-01

    Alcohol abuse and alcoholism remain one of the major health issues worldwide, especially in developing countries. The protective effect of Phellinus rimosus against acute alcohol-induced lipid peroxidation in the liver, kidney, and brain as well as its effect against antioxidant enzyme activity such as superoxide (SOD) and catalase (CAT) in the liver was evaluated in mice. Ethyl acetate extract of Ph. Rimosus (50 mg/kg body wt, p.o.) 1 h before each administration of alcohol (3 mL/kg, p.o.; total 2 doses at 24-h intervals) protected against lipid peroxidation in all organs and attenuated the decline of SOD and CAT activity in the liver. The fold increase in lipid peroxidation, including conjugated diene and thiobarbituric acid reactive substance (TBARS) levels, was highest in the liver. There were 2.6- and 1.5- fold increases in TBARS levels in the liver of the alcohol alone- and alcohol+Ph. Rimosus-treated groups, compared with that of the normal group. Activity of SOD and CAT in the liver of alcohol- and alcohol+Ph. Rimosus- treated animals was 9.05±1.38, 18.76±1.71, and 11.26±1.02, 31.58±3.35 IU/mg protein, respectively. Extract at 1 mg/mL inhibited 50.6% activity of aniline hydroxylase (CYP2E1) in liver homogenate. From these results, we concluded that the extract significantly protected against the lipid peroxidation. Protection in the liver may be due to the inhibitory effect on CYP2E1 as well as the direct radical scavenging effect of Ph. Rimosus, which warrants further research.

  7. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    PubMed Central

    Omotayo, T.I.; Akinyemi, G.S.; Omololu, P.A.; Ajayi, B.O.; Akindahunsi, A.A.; Rocha, J.B.T.; Kade, I.J.

    2014-01-01

    The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump. PMID:25618580

  8. Rebamipide attenuates nonsteroidal anti-inflammatory drugs (NSAID) induced lipid peroxidation by the manganese superoxide dismutase (MnSOD) overexpression in gastrointestinal epithelial cells.

    PubMed

    Nagano, Y; Matsui, H; Shimokawa, O; Hirayama, A; Tamura, M; Nakamura, Y; Kaneko, T; Rai, K; Indo, H P; Majima, H J; Hyodo, I

    2012-04-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) often cause gastrointestinal complications such as gastric ulcers and erosions. Recent studies on the pathogenesis have revealed that NSAIDs induce lipid peroxidation in gastric epithelial cells by generating superoxide anion in mitochondria, independently with cyclooxygenase-inhibition and the subsequent prostaglandin deficiency. Although not clearly elucidated, the impairment of mitochondrial oxidative phosphorylation, or uncoupling, by NSAIDs is associated with the generation of superoxide anion. Physiologically, superoxide is immediately transformed into hydrogen peroxide and diatomic oxygen with manganese superoxide dismutase (MnSOD). Rebamipide is an antiulcer agent that showed protective effects against NSAID-induced lipid peroxidation in gastrointestinal tracts. We hypothesized that rebamipide may attenuate lipid peroxidation by increasing the expression of MnSOD protein in mitochondria and decreasing the leakage of superoxide anion in NSAID-treated gastric and small intestinal epithelial cells. Firstly, to examine rebamipide increases the expression of MnSOD proteins in mitochondria of gastrointestinal epithelial cells, we underwent Western blotting analysis against anti-MnSOD antibody in gastric RGM1 cells and small intestinal IEC6 cells. Secondly, to examine whether the pretreatment of rebamipide decreases NSAID-induced mitochondrial impairment and lipid peroxidation, we treated these cells with NSAIDs with or without rebamipide pretreatment, and examined with specific fluorescent indicators. Finally, to examine whether pretreatment of rebamipide attenuates NSAID-induced superoxide anion leakage from mitochondria, we examined the mitochondria from indomethacin-treated RGM1 cells with electron spin resonance (ESR) spectroscopy using a specific spin-trapping reagent, CYPMPO. Rebamipide increased the expression of MnSOD protein, and attenuated NSAID-induced mitochondrial impairment and lipid peroxidation in RGM1

  9. Immunoaffinity Knockout of Saponin Glycosides from Asparagus racemosus to Assess Anti-lipid Peroxidation.

    PubMed

    Onlom, Churanya; Phrompittayarat, Watoo; Putalun, Waraporn; Waranuch, Neti; Ingkaninan, Kornkanok

    2017-07-01

    Asparagus racemosus Willd (Asparagaceae family), known as Shatavari, is important in Ayurveda and traditional Thai medicines. The saponin glycosides, shatavarin I and IV are major constituents in its roots and may be responsible for their actions including protection against lipid peroxidation and carcinogenesis. To develop an immunoaffinity column for isolating compounds with structures related to shatavarin IV from crude extracts of A. racemosus root. The monoclonal antibody recognising shatavarin IV (mAbShavIV) was coupled to an Affi-Gel Hz gel to isolate compounds with structures related to shatavarin IV from the other components of crude extracts of A. racemosus root. The saponin glycosides in each fraction were analysed by mAbShavIV ELISA and LC-MS/MS. The pooled wash-through fractions contained 3% of loaded mAbShavIV reactive saponin glycosides, while eluted fractions released ~ 90% of shatavarin saponin glycosides in a single step. Using thiobarbiturate (TBARs) to measure lipid-peroxidation, the extract, and the pooled wash-through fractions showed moderate protection against Cu + -induced oxidation of human low density lipoprotein (LDL) (IC 50 11.3 ± 1.4 and 12.6 ± 0.9 μg/mL, respectively). In contrast, the saponin glycosides eluted from the mAbShavIV-column had weaker protectant (IC 50 29.7 ± 1.8 μg/mL) suggesting that A. racemosus shatavarins do not inhibit carcinogenesis through preventing lipid peroxidation. The strategy described here demonstrates its utility for isolating a group of related compounds from the rest of the extract with selectivity and recovery rate. Pharmacological efficacy and synergistic effects of the components obtained can be further investigated. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Seasonal and photoperiodic effects on lipid droplet size and lipid peroxidation in the brown adipose tissue of bank voles (Myodes glareolus).

    PubMed

    Bonda-Ostaszewska, Elżbieta; Włostowski, Tadeusz; Krasowska, Alicja; Kozłowski, Paweł

    2012-10-01

    Seasonal changes in lipid droplet size and lipid peroxidation in the brown adipose tissue (BAT) of wild bank voles were examined. In addition, a role of photoperiod in these changes was studied; bank voles were held from the birth under long photoperiod (LP) for 12 weeks, and then half of them was transferred to short photoperiod (SP) for 6 weeks and another one remained under LP. In the wild bank voles the absolute BAT weight was seasonally constant, while the significant differences in the lipid droplet size were observed. The smallest lipid droplets (mean, 11 μm(2)) were seen in winter; they increased by 30 % in spring and reached the highest size (24 μm(2)) in summer. Lipid peroxidation in the BAT did not differ significantly between the seasons, although high intraseason variation of this process was noted. The laboratory experiment revealed that the size of lipid droplets was determined by photoperiod; SP induced 13-fold decrease, and continuous exposure to LP brought about a further 2.5-fold increase in the size of lipid droplets. Conversely, a significant decrease in lipid peroxidation was seen in LP bank voles in comparison with the SP animals. The data indicate that short photoperiod is responsible for the small size of lipid droplets in the BAT of bank voles during winter, which may be a necessary requirement for high thermogenic capacity of the tissue. Photoperiod appears also to affect lipid peroxidation in the BAT of these animals.

  11. Plasma lipid peroxidation and erythrocyte antioxidant enzymes status in workers exposed to cadmium.

    PubMed

    Babu, Kalahasthi Ravi; Rajmohan, Hirehal Raghavendra Rao; Rajan, Bagalur Krishna Murthy; Kumar, Karuna M

    2006-09-01

    Cadmium (Cd) is a corrosion-resistant metal, used extensively for electroplating in the automobile, electronic and aerospace industry. Only a few studies are available regarding Cd-induced oxidative stress in animals, but no reports are available regarding the effects of Cd on oxidative stress during occupational exposure. The present study was carried out to determine the plasma lipid peroxidation and erythrocyte antioxidant enzymes status in workers exposed to Cd during electroplating. 50 subjects exposed to Cd during electroplating formed the study group. An equal number of age-sex matched subjects, working in the administrative section, formed the control group. Urinary Cd levels were determined using the flameless atomic absorption spectrophotometer. Plasma lipid peroxidation and erythrocyte antioxidant enzymes were determined using spectrophotometric methods. A significant increase of plasma lipid peroxidation and a significant decrease of superoxide dismutase and glutathione peroxidase levels were noted in the study group compared with the control group. The level of plasma lipid peroxidation was positively and erythrocyte antioxidant enzymes were negatively and significantly associated with Cd levels in urine. Multiple regression analysis assessed the oxidative stress associated with Cd and other lifestyle confounding factors, such as age, body mass index, the consumption of vegetables, coffee, tea, smoking and alcohol. Analysis showed that the lifestyle confounding factors viz; smoking, body mass index and urinary Cd levels > 5 microg/g of creatinine, were significantly associated with oxidative stress. The results of the present study suggest that increased plasma lipid peroxidation and decreased superoxide dismutase levels could be used as biomarkers of oxidative stress in cadmium-exposed workers.

  12. Alterations in lipids & lipid peroxidation in rats fed with flavonoid rich fraction of banana (Musa paradisiaca) from high background radiation area.

    PubMed

    Krishnan, Kripa; Vijayalakshmi, N R

    2005-12-01

    A group of villages in Kollam district of Kerala, southern part of India are exposed to a higher dose of natural radiation than global average. Yet no adverse health effects have been found in humans, animals and plants in these areas. The present study was carried out to understand whether radiation affects the quantity and quality of flavonoids in plants grown in this area of high radiation, and to assess the effect of feeding flavonoid rich fraction (FRF) of the two varieties of banana to rats on their biochemical parameters like lipids, lipid peroxides and antioxidant enzyme levels. A total of 42 albino rats were equally divided into 7 groups. Rats fed laboratory diet alone were grouped under group I (normal control). Groups II and V received flavonoid rich fraction (FRF) from the fruits of two varieties of Musa paradisiaca, Palayamkodan and Rasakadali respectively from normal background radiation area (Veli) and treated as controls. Rats of groups III and IV received FRF of Palayamkodan from high background radiation areas (HBRAs) - Neendakara and Karunagappally respectively while groups VI and VII received FRF of Rasakadali from HBRAs. At the end of the experimental period of 45 days, lipids, lipid peroxides and antioxidant enzymes from liver, heart and kidney were analyzed. FRF of Palayamkodan and Rasakadali varieties showed significant hypolipidaemic and antioxidant activities. But these activities were found to be lowered in plants grown in HBRAs, particularly in Karunagappally area. Of the two, Palayamkodan variety was more effective in reducing lipids and lipid peroxides. MDA and hydroperoxides were significantly diminished in rats given FRF of banana from Veli (control area) only. FRF from plants grown in HBRAs exerted inhibition in the activities of antioxidant enzymes in the liver of rats and this inhibitory effect was maximum in rats fed FRF from Karunagappally. Banana grown in HBRAs is of lower quality with less efficient antioxidant system

  13. UVA Photoirradiation of Nitro-Polycyclic Aromatic Hydrocarbons—Induction of Reactive Oxygen Species and Formation of Lipid Peroxides

    PubMed Central

    Xia, Qingsu; Yin, Jun J.; Zhao, Yuewei; Wu, Yuh-Sen; Wang, Yu-Qui; Ma, Liang; Chen, Shoujun; Sun, Xin; Fu, Peter P.; Yu, Hongtao

    2013-01-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which nitro-PAHs induce genotoxicity. Although the metabolic activation of nitro-PAHs leading to toxicological activities has been well studied, the photo-induced activation of nitro-PAHs has seldom been reported. In this paper, we report photo-induced lipid peroxidation by 19 nitro-PAHs. The results indicated that all but two of the nitro-PAHs can induce lipid peroxidation. Mechanistic studies suggest that lipid peroxidation by nitro-PAHs is mediated by free radicals generated in the reaction. There was no structural correlation between the nitro-PAHs and their ability to induce lipid peroxidation upon UVA irradiation, or between the HOMO-LUMO gap and the ability to cause lipid peroxidation. Most of the nitro-PAHs are less potent in terms of causing lipid peroxidation than their parent PAHs. The lack of correlation is attributed to the complex photophysics and photochemistry of the nitro-PAHs and the yield of reactive oxygen species (ROS) and other factors. PMID:23493032

  14. α-lipoic acid ameliorates n-3 highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp (Ctenopharyngodon idellus).

    PubMed

    Shi, Xiao-Chen; Jin, Ai; Sun, Jian; Yang, Zhou; Tian, Jing-Jing; Ji, Hong; Yu, Hai-Bo; Li, Yang; Zhou, Ji-Shu; Du, Zhen-Yu; Chen, Li-Qiao

    2017-08-01

    This study evaluated the protective effect of α-lipoic acid (LA) on n-3 highly unsaturated fatty acids (HUFAs)-induced lipid peroxidation in grass carp. The result indicated that diets with n-3 HUFAs increased the production of malondialdehyde (MDA) (P < 0.05), thereby inducing lipid peroxidation in liver and muscle of grass carp. Meanwhile, compared with control group, the hepatosomatic index (HSI) and kidney index (KI) of grass carp were markedly increased in n-3 HUFAs-only group. However, diets with LA remarkably inhibited the n-3 HUFAs-induced increase of HSI, KI, and MDA level in serum, liver and muscle (P < 0.05). Interestingly, LA also significantly elevated the ratio of total n-3 HUFAs in fatty acid composition of muscle and liver (P < 0.05). Furthermore, LA significantly promoted the activity of antioxidant enzymes in serum, muscle and liver of grass carp (P < 0.05), including superoxide dismutase (SOD), catalase (CAT), and glutathione s-transferase (GST). The further results showed that LA significantly elevated mRNA expression of antioxidant enzymes with promoting the mRNA expression of NF-E2-related nuclear factor 2 (Nrf2) and decreasing Kelch-like-ECH-associated protein 1 (Keap1) mRNA level. From the above, these results suggested that LA could attenuate n-3 HUFAs-induced lipid peroxidation, remit the toxicity of the lipid peroxidant, and protect n-3 HUFAs against lipid peroxidation to promote its deposition in fish, likely strengthening the activity of antioxidant enzymes through regulating mRNA expressions of antioxidant enzyme genes via mediating Nrf2-Keap1 signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sex-related differences in lipid peroxidation and photoprotection in Pistacia lentiscus.

    PubMed

    Juvany, Marta; Müller, Maren; Pintó-Marijuan, Marta; Munné-Bosch, Sergi

    2014-03-01

    Sex-related differences in the response of dioecious plants to abiotic stress have been poorly studied to date. This work explored to what extent sex may affect plant stress responses in Pistacia lentiscus L. (Anacardiaceae), a tree well adapted to Mediterranean climatic conditions. It was hypothesized that a greater reproductive effort in females may increase oxidative stress in leaves, particularly when plants are exposed to abiotic stress. Measurements of oxidative stress markers throughout the year revealed increased lipid peroxidation in females, but only during the winter. Enhanced lipid peroxidation in females was associated with reduced photoprotection, as indicated by reduced tocopherol levels and nonphotochemical quenching (NPQ) of chlorophyll fluorescence. Enhanced lipid peroxidation in females was also observed at predawn, which was associated with increased lipoxygenase activity and reduced cytokinin levels. An analysis of the differences between reproductive (R) and nonreproductive (NR) shoots showed an enhanced photoprotective capacity in R shoots compared to NR shoots in females. This capacity was characterized by an increased NPQ and a better antioxidant protection (increased carotenoid and tocopherol levels per unit of chlorophyll) in R compared to NR shoots. It is concluded that (i) females exhibit higher lipid peroxidation in leaves than males, but only during the winter (when sex-related differences in reproductive effort are the highest), (ii) this is associated with a lower photoprotective capacity at midday, as well as enhanced lipoxygenase activity and reduced cytokinin levels at predawn, and (iii) photoprotection capacity is higher in R relative to NR shoots in females.

  16. Sex-related differences in lipid peroxidation and photoprotection in Pistacia lentiscus

    PubMed Central

    Munné-Bosch, Sergi

    2014-01-01

    Sex-related differences in the response of dioecious plants to abiotic stress have been poorly studied to date. This work explored to what extent sex may affect plant stress responses in Pistacia lentiscus L. (Anacardiaceae), a tree well adapted to Mediterranean climatic conditions. It was hypothesized that a greater reproductive effort in females may increase oxidative stress in leaves, particularly when plants are exposed to abiotic stress. Measurements of oxidative stress markers throughout the year revealed increased lipid peroxidation in females, but only during the winter. Enhanced lipid peroxidation in females was associated with reduced photoprotection, as indicated by reduced tocopherol levels and nonphotochemical quenching (NPQ) of chlorophyll fluorescence. Enhanced lipid peroxidation in females was also observed at predawn, which was associated with increased lipoxygenase activity and reduced cytokinin levels. An analysis of the differences between reproductive (R) and nonreproductive (NR) shoots showed an enhanced photoprotective capacity in R shoots compared to NR shoots in females. This capacity was characterized by an increased NPQ and a better antioxidant protection (increased carotenoid and tocopherol levels per unit of chlorophyll) in R compared to NR shoots. It is concluded that (i) females exhibit higher lipid peroxidation in leaves than males, but only during the winter (when sex-related differences in reproductive effort are the highest), (ii) this is associated with a lower photoprotective capacity at midday, as well as enhanced lipoxygenase activity and reduced cytokinin levels at predawn, and (iii) photoprotection capacity is higher in R relative to NR shoots in females. PMID:24378602

  17. The influence of angiotensin converting enzyme inhibitors on lipid peroxidation in sera and aorta of rabbits in diet-induced hypercholesterolemia.

    PubMed

    Wojakowski, W; Gminski, J; Siemianowicz, K; Goss, M; Machalski, M

    2000-11-01

    In hypercholesterolemia increased lipid and lipoprotein peroxidation occurs. The renin-angiotensin system plays an important role in atherogenesis. Angiotensin II induces smooth muscle cells proliferation and stimulates oxidation of LDL particles and foam cell accumulation. Inhibition of ang II production leads to decrease in lipid peroxide production. The aim of this study was to assess the lipid peroxidation expressed as concentration of thiobarbituric acid reactive species (TBARS) in sera and aorta homogenates after administration of two doses of angiotensin-converting enzyme (ACE) inhibitors (captopril, enalapril and quinapril) in diet-induced hypercholesterolemia in rabbits. Sixty-four New Zealand rabbits were used. Animals were fed with standard fodder, special diet (1% cholesterol content) or special diet + tested ACEI. Two doses of ACE inhibitors were used: i), equivalent to applied to humans, ii), dose 10 times higher. The animals were divided into 8 groups: control, standard fodder; B, special diet; C1, C2, special diet + captopril in doses 2.5 and 25 mg/kg/24 h, respectively; E1, E2, special diet + enalapril in doses 0.75 and 7.5 mg/kg/24 h, respectively; Q1 and Q2, special diet + quinapril in doses 0.75 and 7.5 mg/kg per day, respectively. In cholesterol-fed rabbits and in groups receiving lower doses of tested ACE inhibitors, the serum TBARS concentration at 6 months was significantly higher in comparison to the control. The higher doses of enalapril, quinapril and captopril, prevented the cholesterol-induced rise in TBARS concentration. Lower dose of captopril attenuated the rise in TBARS concentration, it was significantly lower in comparison to group B, but higher than in the control group. In animals from groups B, E1, C1, Q1 TBARS concentration in aortae was significantly higher as compared to control group. Both doses of captopril and higher doses of enalapril and quinapril inhibited the rise of lipid peroxides concentration induced by

  18. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats' pancreas by phenolic extracts of avocado pear leaves and fruit.

    PubMed

    Oboh, Ganiyu; Isaac, Adelusi Temitope; Akinyemi, Ayodele Jacobson; Ajani, Richard Akinlolu

    2014-09-01

    Persea americana fruit and leaves had been known in folk medicine for their anti-diabetic prowess. Therefore, this study sought to investigate the inhibitory effect of phenolic extract from avocado pear (Persea americana) leaves and fruits on some key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase); and sodium nitroprusside (SNP) induced lipid peroxidation in rats' pancreas in vitro. The phenolic extracts of Persea americana fruit and leaves were extracted using methanol and 1M HCl (1:1 v/v). Thereafter, their inhibitory effects on sodium nitroprusside induced lipid peroxidation and key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) were determined in vitro. The result revealed that the leaves had fruit of avocado pear inhibit both α-amylase and α-glucosidase activities in a dose dependent manner. However, the Peel had the highest α-amylase inhibitory activity while the leaf had the highest α-glucosidase inhibitory activity as revealed by their IC50 value. Furthermore, incubation of the rat pancreas in the presence of 5 mM SNP caused an increase in the malondialdehyde (MDA) content in the tissue, however, introduction of the phenolic extracts inhibited MDA produced in a dose dependent manner. The additive and/or synergistic action of major phenolic compounds such as syringic acid, eugenol, vnillic acid, isoeugenol, guaiacol, kaemferol, catechin, ρ-hydroxybenzoic acid, ferulic acid, apigenin, naringenin, epigallocatechin, epicatechin, lupeol and epigallocatechin-3-O-gallate in avocado pear using gas chromatography (GC) could have contributed to the observed medicinal properties of the plant. Therefore, inhibition of some key enzymes linked to type 2 diabetes and prevention of oxidative stress in the pancreas could be some of the possible mechanism by which they exert their anti-diabetic properties.

  19. Inhibition of Key Enzymes Linked to Type 2 Diabetes and Sodium Nitroprusside Induced Lipid Peroxidation in Rats’ Pancreas by Phenolic Extracts of Avocado Pear Leaves and Fruit

    PubMed Central

    Oboh, Ganiyu; Isaac, Adelusi Temitope; Akinyemi, Ayodele Jacobson; Ajani, Richard Akinlolu

    2014-01-01

    Persea americana fruit and leaves had been known in folk medicine for their anti-diabetic prowess. Therefore, this study sought to investigate the inhibitory effect of phenolic extract from avocado pear (Persea americana) leaves and fruits on some key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase); and sodium nitroprusside (SNP) induced lipid peroxidation in rats’ pancreas in vitro. The phenolic extracts of Persea americana fruit and leaves were extracted using methanol and 1M HCl (1:1 v/v). Thereafter, their inhibitory effects on sodium nitroprusside induced lipid peroxidation and key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) were determined in vitro. The result revealed that the leaves had fruit of avocado pear inhibit both α-amylase and α-glucosidase activities in a dose dependent manner. However, the Peel had the highest α-amylase inhibitory activity while the leaf had the highest α-glucosidase inhibitory activity as revealed by their IC50 value. Furthermore, incubation of the rat pancreas in the presence of 5 mM SNP caused an increase in the malondialdehyde (MDA) content in the tissue, however, introduction of the phenolic extracts inhibited MDA produced in a dose dependent manner. The additive and/or synergistic action of major phenolic compounds such as syringic acid, eugenol, vnillic acid, isoeugenol, guaiacol, kaemferol, catechin, ρ-hydroxybenzoic acid, ferulic acid, apigenin, naringenin, epigallocatechin, epicatechin, lupeol and epigallocatechin-3-O-gallate in avocado pear using gas chromatography (GC) could have contributed to the observed medicinal properties of the plant. Therefore, inhibition of some key enzymes linked to type 2 diabetes and prevention of oxidative stress in the pancreas could be some of the possible mechanism by which they exert their anti-diabetic properties PMID:25324703

  20. An in vitro model to test relative antioxidant potential: Ultraviolet-induced lipid peroxidation in liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelle, E.; Maes, D.; Padulo, G.A.

    1990-12-01

    Since antioxidants have been shown to play a major role in preventing some of the effects of aging and photoaging in skin, it is important to study this phenomenon in a controlled manner. This was accomplished by developing a simple and reliable in vitro technique to assay antioxidant efficacy. Inhibition of peroxidation by antioxidants was used as a measure of relative antioxidant potential. Liposomes, high in polyunsaturated fatty acids (PUFA), were dispersed in buffer and irradiated with ultraviolet (UV) light. Irradiated liposomes exhibited a significantly higher amount of hydroperoxides than liposomes containing antioxidants in a dose- and concentration-dependent manner. Lipidmore » peroxidation was determined spectrophotometrically by an increase in thiobarbituric acid reacting substances. To further substantiate the production of lipid peroxides, gas chromatography was used to measure a decrease in PUFA substrate. In order of decreasing antioxidant effectiveness, the following results were found among lipophilic antioxidants: BHA greater than catechin greater than BHT greater than alpha-tocopherol greater than chlorogenic acid. Among hydrophilic antioxidants, ascorbic acid and dithiothreitol were effective while glutathione was ineffective. In addition, ascorbic acid was observed to act synergistically with alpha-tocopherol, which is in agreement with other published reports on the interaction of these two antioxidants. Although peroxyl radical scavengers seem to be at a selective advantage in this liposomal/UV system, these results demonstrate the validity of this technique as an assay for measuring an antioxidant's potential to inhibit UV-induced peroxidation.« less

  1. Inhibition of lymphocyte proliferation and antibody production in vitro by silica, talc, bentonite or Corynebacterium parvum: involvement of peroxidative processes.

    PubMed

    Hoffeld, J T

    1983-05-01

    This study was undertaken to determine whether and by what means particles which induce granulomata in vivo can affect murine spleen lymphoproliferative and antibody responses in vitro. Particles of silica, talc, Bentonite or C. parvum cells inhibited lipopolysaccharide- or concanavalin A-stimulated proliferation and sheep red blood cell-induced antibody response in vitro. The inhibition required at least 48 hours exposure of the cells to the particles. The late onset of inhibition and its reproducibility at different cell or mitogen concentrations implicated particle-induced injury to both phagocytes and lymphocytes. Either alpha-tocopherol or 2-mercaptoethanol prevented the particle-induced inhibition of spleen cell responses. alpha-Tocopherol and 2-mercaptoethanol have in common the capacity to protect cells against membrane lipid peroxidation. The inhibitory peroxidative process(es) implicated by these studies are most likely attributable to: (a) stimulation of oxidative metabolism of phagocytic cells by particles; and (b) iron-catalyzed peroxidation directly by the particles. These data may be relevant in understanding the pathogenesis of and devising therapeutic approaches toward various granulomatous conditions.

  2. [Indicators of lipid peroxidation in the blood in hereditary predisposition to arteriosclerosis].

    PubMed

    Davidenkova, E F; Shafran, M G; Veksler, B M

    1990-02-01

    In members of the families whose parents had atherosclerosis complicated by macrofocal myocardial infarction or stroke, the serum level of lipid peroxidation products was correlated to enzymatic activity of neutrophil and red blood cells oxidation-antioxidation. In persons with hereditary predisposition to atherosclerosis both with clinical signs of atherosclerosis and phenotypically healthy against the control group there was elevated content of plasma acylhydroperoxides and hypoactivity of neutrophil myeloperoxidase. Determination of lipid peroxidation products by malonic dealdehyde showed this parameter to be higher in members of the families of the study group and in those with cardiovascular disorders. For those whose parents had atherosclerosis versus control subjects there were no differences in the activity of superoxide dismutase, glutation peroxidase and catalase in the blood red cells. Shifts in lipid peroxidation and activity of blood myeloperoxidase are identical in type and may represent a pathogenetic ling in formation of hereditary predisposition to cardiovascular disorders of atherosclerotic origin, the detection of which becomes feasible in a subclinical period.

  3. Inhibiting LDL glycation ameliorates increased cholesteryl ester synthesis in macrophages and hypercholesterolemia and aortic lipid peroxidation in streptozotocin diabetic rats

    PubMed Central

    Cohen, Margo P.; Shea, Elizabeth A.; Wu, Van-Yu

    2009-01-01

    Increased nonenzymatic glycation of apoB-containing lipoproteins impairs uptake and metabolism by the high affinity low density lipoprotein (LDL) receptor, and is one of the post-secretory modifications contributory to accelerated atherosclerosis in diabetes. The present study evaluated in vitro and in vivo effects of 2,2-chlorophenylaminophenylacetate (CAP22) to probe the influence of glycated lipoprotein on cholesterol homeostasis. This compound prevented the increased formation of glycated products in LDL incubated with 200 mM glucose and the increased cholesteryl ester synthesis in THP-1 macrophages induced by apoB-containing lipoproteins preincubated with high glucose concentration. The elevated circulating concentrations of glycated lipoprotein and cholesterol and higher vascular levels of lipid peroxidation products observed in streptozotocin diabetic rats compared to nondiabetic controls were significantly reduced in diabetic animals treated for six months with test compound. These results are the first to demonstrate that inhibiting nonenzymatic glycation of apoB-containing lipoproteins ameliorates abnormalities contributory to hypercholesterolemia and atherogenic risk in diabetes. PMID:19922964

  4. Reproducing Phenomenology of Peroxidation Kinetics via Model Optimization

    NASA Astrophysics Data System (ADS)

    Ruslanov, Anatole D.; Bashylau, Anton V.

    2010-06-01

    We studied mathematical modeling of lipid peroxidation using a biochemical model system of iron (II)-ascorbate-dependent lipid peroxidation of rat hepatocyte mitochondrial fractions. We found that antioxidants extracted from plants demonstrate a high intensity of peroxidation inhibition. We simplified the system of differential equations that describes the kinetics of the mathematical model to a first order equation, which can be solved analytically. Moreover, we endeavor to algorithmically and heuristically recreate the processes and construct an environment that closely resembles the corresponding natural system. Our results demonstrate that it is possible to theoretically predict both the kinetics of oxidation and the intensity of inhibition without resorting to analytical and biochemical research, which is important for cost-effective discovery and development of medical agents with antioxidant action from the medicinal plants.

  5. Radiosensitization by fullerene-C60 dissolved in squalene on human malignant melanoma through lipid peroxidation and enhanced mitochondrial membrane potential

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Kimura, Masatsugu; Miwa, Nobuhiko

    2014-04-01

    We examined fullerene-C60 dissolved in squalene (C60/Sqe) for the ability to potentiate the radiosensitization under X-ray irradiation on human malignant melanoma HMV-II cells, which were treated with C60/Sqe and thereafter irradiated with X-ray. The cell proliferation for C60/Sqe was inhibited more markedly than for Sqe alone. Meanwhile, cell proliferation was almost unaltered for C60/squalane (Sqa) or Sqa, a hydrogenated form of Sqe, as compared to no-additive control. Thus radiosensitization of C60/Sqe is attributed to peroxidation of unsaturated bonds of squalene by X-ray-excited C60 in contrast to squalane. The fluorescence images of HMV-II cells stained with Rhodamine123, an indicator for mitochondrial membrane potential, were monitored for 6 h after X-ray irradiation. C60/Sqe obviously exhibited more augmented fluorescence intensity on perinuclear region of HMV-II cells than Sqe alone. TBARS assay showed that the lipid peroxidation level as malondialdehyde-equivalent increased by combination of C60/Sqe and X-ray dose-dependently on X-ray doses. C60/Sqe exhibited lipid peroxidation more markedly by 1.2-fold than Sqe alone. Thus the level of lipid peroxidation of squalene was sufficiently higher in C60/Sqe than in Sqe in the absence of C60 under X-ray irradiation, suggesting the combination of C60/Sqe and X-ray irradiation induced radiosensitization on HMV-II cells by peroxidation of absorbed Sqe in mitochondrial membrane via oxidative stress mediated by fullerene-C60.

  6. Endogenous Intoxication and Saliva Lipid Peroxidation in Patients with Lung Cancer.

    PubMed

    Bel'skaya, Lyudmila V; Kosenok, Victor K; Massard, Gilbert

    2016-11-16

    This research was aimed at a search for regularities in changes to parameters of endogenous intoxication and saliva lipid peroxidation in patients with lung cancer, non-malignant lung diseases, and apparently healthy people. All patients went through saliva sampling at an amount of 1 mL. A concentration of malondialdehyde (MDA) was measured according to a reaction with thiobarbituric acid, and a level of middle molecules (MM) was measured with UV spectroscopy at 254 and 280 nm, while the content of lipid peroxidation products was measured according to a degree of heptane extract light absorption at wavelengths of 220, 232, 278, and 400 nm. It has been revealed that in the context of lung cancer, the level of diene conjugates decreases, increasing the level of triene conjugates, Schiff's bases, and MM. As a tumor grows, there is a decrease in the level of lipid peroxidation primary products and an increase in endotoxemia phenomena. The process is more apparent when going from local to locally advanced disease states. The nature of the MDA change is nonlinearly associated with tumor progression. The findings might be used to optimize traditional aids of diagnostics, in disease state forecasting, in treatment monitoring, etc.

  7. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  8. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors.

    PubMed

    Negre-Salvayre, A; Coatrieux, C; Ingueneau, C; Salvayre, R

    2008-01-01

    Reactive carbonyl compounds (RCCs) formed during lipid peroxidation and sugar glycoxidation, namely Advanced lipid peroxidation end products (ALEs) and Advanced Glycation end products (AGEs), accumulate with ageing and oxidative stress-related diseases, such as atherosclerosis, diabetes or neurodegenerative diseases. RCCs induce the 'carbonyl stress' characterized by the formation of adducts and cross-links on proteins, which progressively leads to impaired protein function and damages in all tissues, and pathological consequences including cell dysfunction, inflammatory response and apoptosis. The prevention of carbonyl stress involves the use of free radical scavengers and antioxidants that prevent the generation of lipid peroxidation products, but are inefficient on pre-formed RCCs. Conversely, carbonyl scavengers prevent carbonyl stress by inhibiting the formation of protein cross-links. While a large variety of AGE inhibitors has been developed, only few carbonyl scavengers have been tested on ALE-mediated effects. This review summarizes the signalling properties of ALEs and ALE-precursors, their role in the pathogenesis of oxidative stress-associated diseases, and the different agents efficient in neutralizing ALEs effects in vitro and in vivo. The generation of drugs sharing both antioxidant and carbonyl scavenger properties represents a new therapeutic challenge in the treatment of carbonyl stress-associated diseases.

  9. Dietary fiber and lipid peroxidation: effect of dietary fiber on levels of lipids and lipid peroxides in high fat diet.

    PubMed

    Thampi, B S; Manoj, G; Leelamma, S; Menon, V P

    1991-06-01

    Effect of feeding coconut and blackgram fiber isolated as neutral detergent fiber (NDF) on the levels of lipids and lipid peroxides was studied in rats given a high fat diet. Concentration of cholesterol, free falty acid and phospholipids showed significant decrease in the serum, liver aorta and intestine of coconut and blackgram fiber groups. Concentration of malondialdehyde (MDA) and conjugated dienes was significantly decreased in liver and intestine of both fiber groups, while hydroperoxides showed significant increase in liver and heart of both the fiber groups. SOD and catalase activity was found to be increased in liver, intestine, heart proximal colon and distal colon of both the fiber groups. Serum ceruloplasmin levels showed a slight increase in animals fed coconut and blackgram fiber groups. Glutathione levels in liver, intestine proximal colon, distal colon and heart also showed a significant decrease in the animals of both the fiber groups.

  10. Alteration of lipid status and lipid metabolism, induction of oxidative stress and lipid peroxidation by 2,4-dichlorophenoxyacetic herbicide in rat liver.

    PubMed

    Tayeb, Wafa; Nakbi, Amel; Cheraief, Imed; Miled, Abdelhedi; Hammami, Mohamed

    2013-07-01

    This study aims to investigate the effects of the 2,4-dichlorophenoxyacetic herbicide (2,4-D) on plasma lipids, lipoproteins concentrations, hepatic lipid peroxidation, fatty acid composition and antioxidant enzyme activities in rats. Animals were randomly divided into four groups of 10 each: control group and three 2,4-D-treated groups G1, G2 and G3 were administered 15, 75 and 150 mg/kg/BW/d 2,4-D by gavage for 28 d, respectively. Results showed that 2,4-D caused significant negative changes in the biochemical parameters investigated. The malondialdehyde level was significantly increased in 2,4-D-treated groups. Fatty acid composition of the liver was also significantly changed with 2,4-D exposure. Furthermore, the hepatic antioxidant enzyme activities were significantly affected. Finally, 2,4-D at the studied doses modifies lipidic status, disrupt lipid metabolism and induce hepatic oxidative stress. In conclusion, at higher doses, 2,4-D may play an important role in the development of vascular disease via metabolic disorder of lipoproteins, lipid peroxidation and oxidative stress.

  11. Lycopene control of benzophenone-sensitized lipid peroxidation

    NASA Astrophysics Data System (ADS)

    Cvetković, Dragan; Marković, Dejan

    2012-05-01

    Lycopene antioxidant activity in the presence of two different mixtures of phospholipids in hexane solution, under continuous regime of UV-irradiation from three different ranges (UV-A, UV-B, and UV-C) has been evaluated in this work. Lycopene expected role was to control lipid peroxidation, by scavenging free radicals generated by UV-irradiation, in the presence and in the absence of selected photosensitizer, benzophenone. This work shows that lycopene undergoes to UV-induced destruction (bleaching), highly dependent on the incident photons energy input, more expressed in the presence than in the absence of benzophenone. The further increase ("excess") of its bleaching is undoubtedly related to the further increase of its antioxidant activity in the presence of benzophenone, having the same cause: increase of (phospholipids peroxidation) chain-breaking activities.

  12. Drinking orange juice increases total antioxidant status and decreases lipid peroxidation in adults.

    PubMed

    Foroudi, Shahrzad; Potter, Andrew S; Stamatikos, Alexis; Patil, Bhimanagouda S; Deyhim, Farzad

    2014-05-01

    Cardiovascular disease (CVD) is the leading cause of death in the world and is the primary cause of mortality among Americans. One of the many reasons for the pathogenesis of CVD is attributed to eating diets high in saturated fat and refined carbohydrates and low in fruits and vegetables. Epidemiological evidence has supported a strong association between eating diets rich in fruits and vegetables and cardiovascular health. An experiment was conducted utilizing 24 adults with hypercholesterolemia and hypertriglyceridemia to evaluate the impact of drinking 20 fl oz of freshly squeezed orange juice daily for 90 days on blood pressure, lipid panels, plasma antioxidant capacity, metabolic hormones, lipid peroxidation, and inflammatory markers. Except for addition of drinking orange juice, subjects did not modify their eating habits. The findings suggested that drinking orange juice does not affect (P>.1) blood pressure, lipid panels, metabolic hormones, body fat percentage, or inflammatory markers. However, total plasma antioxidant capacity was significantly increased (P<.05) and lipid peroxidation was significantly decreased (P<.05) after orange juice consumption. Drinking orange juice may protect the cardiovascular system by increasing total plasma antioxidant status and by lowering lipid peroxidation independent of other cardiovascular risk markers evaluated in this study.

  13. Bioactive potential of Vitis labrusca L. grape juices from the Southern Region of Brazil: phenolic and elemental composition and effect on lipid peroxidation in healthy subjects.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; Alves, Tatiana de Lima; de Gois, Jefferson Santos; Borges, Daniel L G; Cunha, Heloisa Pamplona; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2015-04-15

    Grapes are rich in polyphenols with biologically active properties. Although the bioactive potential of grape constituents are frequently reported, the effects of Brazilian Vitis labrusca L. grape juices ingestion have not been demonstrated in humans. This study identified the phenolic and elemental composition of red and white grape juices and the effect of organic and conventional red grape juice consumption on lipid peroxidation in healthy individuals. Concentrations of anthocyanins, flavanols and phenolic acids and the in vitro antioxidant activity were significantly higher in the organic juice. The macro-elements K, Ca, Na and Mg were the most abundant minerals in all juices. The acute consumption of red grape juices promoted significant decrease of lipid peroxides in serum and TBARS levels in plasma. It is concluded that red V. labrusca L. grape juices produced in Southern Brazil showed lipid peroxidation inhibition abilities in healthy subjects, regardless of the cultivation system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ecklonia cava Extract and Dieckol Attenuate Cellular Lipid Peroxidation in Keratinocytes Exposed to PM10.

    PubMed

    Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10  μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.

  15. Protective effect of ascorbic acid on netilmicin-induced lipid profile and peroxidation parameters in rabbit blood plasma.

    PubMed

    Devbhuti, Pritesh; Sikdar, Debasis; Saha, Achintya; Sengupta, Chandana

    2011-01-01

    A drug may cause alteration in blood-lipid profile and induce lipid peroxidation phenomena on administration in the body. Antioxidant may play beneficial role to control the negative alteration in lipid profile and lipid peroxidation. In view of this context, the present in vivo study was carried out to evaluate the role of ascorbic acid as antioxidant on netilmicin-induced alteration of blood lipid profile and peroxidation parameters. Rabbits were used as experimental animals and blood was collected to estimate blood-lipid profiles, such as total cholesterol (TCh), high density lipoprotein cholesterol (HDL-Ch), low density lipoprotein cholesterol (LDL-Ch), very low density lipoprotein cholesterol (VLDL-Ch), triglycerides (Tg), phospholipids (PL), and total lipids (TL), as well as peroxidation parameters, such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), reduced glutathione (GSH) and nitric oxide (NO). The results revealed that netilmicin caused significant enhancement of MDA, HNE, TCh, LDL-Ch, VLDL-Ch, Tg levels and reduction in GSH, NO, HDL-Ch, PL, TL levels. On co-administration, ascorbic acid was found to be effective in reducing netilmicin-induced negative alterations of the above parameters.

  16. Tissue Trace Elements and Lipid Peroxidation in Breeding Female Bank Voles Myodes glareolus.

    PubMed

    Bonda-Ostaszewska, Elżbieta; Włostowski, Tadeusz; Łaszkiewicz-Tiszczenko, Barbara

    2018-04-27

    Recent studies have demonstrated that reproduction reduces oxidative damage in various tissues of small mammal females. The present work was designed to determine whether the reduction of oxidative stress in reproductive bank vole females was associated with changes in tissue trace elements (iron, copper, zinc) that play an essential role in the production of reactive oxygen species. Lipid peroxidation (a marker of oxidative stress) and iron concentration in liver, kidneys, and skeletal muscles of reproducing bank vole females that weaned one litter were significantly lower than in non-reproducing females; linear regression analysis confirmed a positive relation between the tissue iron and lipid peroxidation. The concentrations of copper were significantly lower only in skeletal muscles of reproductive females and correlated positively with lipid peroxidation. No changes in tissue zinc were found in breeding females when compared with non-breeding animals. These data indicate that decreases in tissue iron and copper concentrations may be responsible for the reduction of oxidative stress in reproductive bank vole females.

  17. Total antioxidant status and lipid peroxidation with and without in vitro zinc supplementation in infertile men.

    PubMed

    Ajina, T; Sallem, A; Haouas, Z; Mehdi, M

    2017-09-01

    The aim of this study was to assess the total antioxidant capacity (TAC) and malondialdehyde (MDA) level in infertile men with asthenozoospermia and asthenoteratozoospermia compared to fertile donors, and to examine the effect of zinc on sperm lipid peroxidation and antioxidant status in infertile and fertile men. Semen samples provided by infertile men (n = 38) and fertile donors (controls; n = 12) were exposed to 6 mmol/L of zinc for 2 hr at 37°C. After semen analysis, lipid peroxidation was detected by MDA assay and seminal TAC was assessed by colorimetric method using TAS (total antioxidant status) Kit. TAC was significantly lower in infertile group compared to controls (p = .037). However, lipid peroxidation did not alter in infertile patients compared to controls (p > .05). After in vitro incubation of samples with zinc, a significant increase in TAC level was found only in infertile men (p < .001). Meanwhile, zinc had no effect on sperm lipid peroxidation in both fertile and infertile men (p > .05). Our data indicate that antioxidant treatment based on zinc in vitro supplementation may be helpful to enhance the rate of seminal antioxidant status in infertile men; however, it does not prevent sperm lipid peroxidation. © 2016 Blackwell Verlag GmbH.

  18. Dietary Fat Feeding Alters Lipid Peroxidation in Surfactant-like Particles Secreted by Rat Small Intestine.

    PubMed

    Turan, Aasma; Mahmood, Akhtar; Alpers, David H

    2009-04-01

    Long-term feeding of fish oil (n-3) and corn oil (n-6) markedly enhances levels of lipid peroxidation within isolated rat enterocytes. The effect is 10-fold greater at the villus tip than in the crypt region, correlating with the distribution of deleterious oxidative systems (glutathione reductase) in the tip and beneficial systems (superoxide dismutase) at the base of the villus. Because of this vertical gradient of peroxidation, the process was thought to play a role in apoptosis of enterocytes at the villus tip. Surfactant-like particles (SLPs) are membranes secreted by the enterocyte and a component of these membranes is directed to the intestinal surface overlying villus tips. One suggested role for SLPs has been to protect the mucosal surface from the harsh luminal conditions that might enhance apoptotic loss of enterocytes. The hypothesis to be tested was whether SLP lipids, like those in enterocytes, were also peroxidized, although they were external to the cellular processes that seem to oxidize enterocyte lipids, or whether SLP were immune to these biological processes. Feeding with groundnut oil (n-9) was compared with fish oil (n-3) and corn oil (predominantly n-6) to determine whether oils with various lipid composition would affect peroxidation in both SLP and enterocytes. After an overnight fast, Wistar rats were fed 2 mL of dietary oil by gavage. Five hours later SLPs and underlying microvillus membranes (MVM) were isolated and analyzed for generation of thiobarbituric acid reactive substances (TBARS) and for hydrolase activities, at baseline and after addition of an Fe +2 /ascorbate system to induce peroxidation. In vitro lipid peroxidation using the Fe 2+ /ascorbate system produced greater peroxidation than in MVM. Intestinal alkaline phosphatase (IAP), sucrase and lactase activities were decreased in SLPs, but were unaltered in MVM except for IAP. The activities of maltase, trehalase, Leucine aminopeptidase and γ-glutamyltranspeptidase, were

  19. Lipid peroxidation in workers exposed to hexavalent chromium.

    PubMed

    Huang, Y L; Chen, C Y; Sheu, J Y; Chuang, I C; Pan, J H; Lin, T H

    1999-02-26

    The aim of this study was to investigate whether exposure to hexavalent chromium induces lipid peroxidation in human. This study involved 25 chrome-plating factory workers and a reference group of 28 control subjects. The whole-blood and urinary chromium concentrations were determined by graphite furnace atomic absorption spectrophotometry. Malondialdehyde (MDA), the product of lipid peroxidation, was determined by high-performance liquid chromatography, and the activities of protective enzymes were measured by ultraviolet-visible spectrophotometry. In the chrome-plating workers, the mean concentrations of chromium in blood and urine were 5.98 microg/L and 5.25 microg/g creatinine, respectively; the mean concentrations of MDA in blood and urine were 1.7 micromol/L and 2.24 micromol/g creatinine. The concentrations of both chromium and MDA in blood and urine were significantly higher in the chromium-exposed workers. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) were not markedly different between control and exposed workers. Data suggest that MDA may be used as a biomarker for occupational chromium exposure. Antioxidant enzymic activities are not a suitable marker for chromium exposure.

  20. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro.

    PubMed

    Shodehinde, Sidiqat Adamson; Oboh, Ganiyu

    2013-06-01

    To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe(2+) chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress.

  1. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro

    PubMed Central

    Shodehinde, Sidiqat Adamson; Oboh, Ganiyu

    2013-01-01

    Objective To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Methods Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. Results The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe2+ chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Conclusions Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress. PMID:23730557

  2. [Status of the lipid peroxidation system in the tissues of rats following a 7-day flight on the Kosmos-1667 biosatellite].

    PubMed

    Delenian, N V; Markin, A A

    1989-01-01

    Rats flown for 7 days on Cosmos-1667 were for the first time used to measure antioxidative enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase, catalase), lipid peroxidation products (diene conjugates, malonic dialdehyde, Schiff bases) and tocopherol. Enhanced lipid peroxidation in the heart was completely compensated by activation of antioxidative enzymes. The content of all lipid peroxidation products measured in the liver increased; this was accompanied by a decrease of glutathione peroxidase and an increase of superoxide dismutase activities. It is suggested that lipid peroxidation was activated in response to altered gravity.

  3. Liver Necrosis and Lipid Peroxidation in the Rat as the Result of Paraquat and Diquat Administration

    PubMed Central

    Burk, Raymond F.; Lawrence, Richard A.; Lane, James M.

    1980-01-01

    Paraquat and diquat facilitate formation of superoxide anion in biological systems, and lipid peroxidation has been postulated to be their mechanism of toxicity. Paraquat has been shown to be more toxic to selenium-deficient mice than to controls, presumably as the result of decreased activity of the selenoenzyme glutathione peroxidase. The present study was designed to measure lipid peroxidation and to assess toxicity in control and selenium-deficient rats given paraquat and diquat. Lipid peroxidation was measured by determining ethane production rates of intact animals; toxicity was assessed by survival and by histological and serum enzyme evidence of liver and kidney necrosis. Paraquat and diquat were both much more toxic to selenium-deficient rats than to control rats. Diquat (19.5 μmol/kg) caused rapid and massive liver and kidney necrosis and very high ethane production rates in selenium-deficient rats. The effect of paraquat (78 μmol/kg) was similar to that of diquat but was not as severe. Acutely lethal doses of paraquat (390 μmol/kg) and diquat (230 μmol/kg) in control rats caused very little ethane production and no evidence of liver necrosis. These findings suggest that paraquat and diquat exert their acute toxicity largely through lipid peroxidation in selenium-deficient rats. Selenium deficiency had no effect on superoxide dismutase activity in erythrocytes or in 105,000 g supernate of liver or kidney. Glutathione peroxidase, which represents the only well-characterized biochemical function of selenium in animals, was dissociated from the protective effect of selenium against diquat-induced lipid peroxidation and toxicity by a time-course study in which selenium-deficient rats were injected with 50 μg of selenium and later given diquat (19.5 μmol/kg). Within 10 h, the selenium injection provided significant protection against diquat-induced lipid peroxidation and mortality even though this treatment resulted in no rise in glutathione peroxidase

  4. Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba.

    PubMed

    Unyayar, Serpil; Celik, Ayla; Cekiç, F Ozlem; Gözel, Aysin

    2006-01-01

    Cadmium (Cd) is one of the most toxic environmental pollutants affecting cytogenetically the various organisms. The cytogenetic damage in root tip cells exposed to cadmium nitrate (CdNO3) solutions at four different concentrations (1, 10, 100 and 200 microM) was evaluated with biological tests based on micronucleus (MN) assay in two plant species, Allium sativum and Vicia faba. Additionally to the cytogenetic analysis, lipid peroxidation analyses were performed in both A.sativum and V.faba roots. Cd enhanced the MN frequency in both A.sativum and V.faba root tip cells, but no dose-dependent. Induction of MN is not depending on CdNO3 concentrations. Besides, high concentrations of Cd decreased the mitotic index and caused the delay in mitosis stages in both plants, mainly in V.faba. On the other hand, lipid peroxidation was significantly enhanced with external Cd in V.faba. The results clearly indicate that high concentrations of cadmium induce the lipid peroxidation resulting in oxidative stress that may contribute to the genotoxicity and cytotoxicity of Cd ions.

  5. Oxalomalate, a competitive inhibitor of NADP+ -dependent isocitrate dehydrogenase, regulates lipid peroxidation-mediated apoptosis in U937 cells.

    PubMed

    Yang, Eun Sun; Yang, Joon-Hyuck; Park, Ji Eun; Park, Jeen-Woo

    2005-01-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+ -dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.

  6. [Effects of exogenous spermidine on lipid peroxidation and membrane proton pump activity of cucumber seedling leaves under high temperature stress].

    PubMed

    Tian, Jing; Guo, Shi-Rong; Sun, Jin; Wang, Li-Ping; Yang, Yan-Juan; Li, Bin

    2011-12-01

    Taking a relatively heat-resistant cucumber (Cucumis sativus) cultivar 'Jinchun No. 4' as test material, a sand culture experiment was conducted in growth chamber to investigate the effects of foliar spraying spermidine (Spd) on the lipid peroxidation, membrane proton pump activity, and corresponding gene expression of cucumber seedling leaves under high temperature stress. Compared with the control, foliar spraying Spd increased the plant height, stem diameter, dry and fresh mass, and leaf area significantly, and inhibited the increase of leaf relative conductivity, malondialdehyde (MDA) content, and lipoxygenase (LOX) activity effectively. Foliar spraying Spd also helped to the increase of leaf plasma membrane- and tonoplast H(+)-ATPase activity, but no significant difference was observed in the gene expression levels. These results suggested that exogenous Spd could significantly decrease the leaf lipid peroxidation and increase the proton pump activity, and thus, stabilize the leaf membrane structure and function, alleviate the damage induced by high temperature stress, and enhance the heat tolerance of cucumber seedlings.

  7. [Correction of lipid peroxidation and antioxidant system disorders by bioflavonoids during modeling of cholesterol atherosclerosis in rabbits].

    PubMed

    Shysh, A M; Pashevin, D O; Dosenko, V Ie; Moĭbenko, O O

    2011-01-01

    We have studied the influence of bioflavonoids (quercetin, corvitin) on lipid peroxidation and antioxidant enzymes in the modeling of cholesterol atherosclerosis in rabbits. It has been shown that simultaneous administration of the quercetin derivative corvitin suppressed lipid peroxidation. We showed that under hypercholesterolemia, the concentration of malone dialdehyde in myocardial tissue in rabbits is significantly increased, while administration of bioflavonoids decreased the concentration of malone dialdehyde by 38.3%. Furthermore, corvitin caused activating effects on antioxidant enzymes superoxide dismutase and catalase in cardiac tissue. Our data suggest that bioflavonoids are able to suppress lipid peroxidation and prevent the decrease ofantioxidant enzymes activity in rabbits with cholesterol-rich diet induced atherosclerosis.

  8. Hydrogen peroxide inhibits iodide uptake and iodine organification in cultured porcine thyroid follicles.

    PubMed

    Fukayama, H; Murakami, S; Nasu, M; Sugawara, M

    1991-01-01

    We investigated the effect of hydrogen peroxide on the process of thyroid hormone formation in a physiologic culture system of porcine thyroid follicles that we recently established. Porcine thyroid follicles cultured in medium containing 1 mU/mL TSH were exposed to 0 to 500 microM hydrogen peroxide in the presence of 0.1 microCi carrier-free Na125 and sodium iodide for 2 h. Iodide uptake and iodine organification were measured in this incubation system. The kinetics of iodide uptake were used to explain the action of hydrogen peroxide. In addition, cAMP content and Na+,K(+)-ATPase activity (an enzyme necessary for iodide uptake) were measured to investigate the mechanism of hydrogen peroxide action. Hydrogen peroxide at concentrations of 100, 200, and 500 microM inhibited iodide uptake in a dose-dependent manner. Iodide organification was inhibited only when the concentration of hydrogen peroxide was greater than 200 microM. The kinetics of iodide uptake indicated that hydrogen peroxide was a noncompetitive inhibitor with iodide. Inhibition of iodide uptake and iodine organification by hydrogen peroxide were not mediated by alteration of cAMP content of Na+,K(+)-ATPase activity, since exposure to even 500 microM hydrogen peroxide did not change these parameters in the follicle when compared with those of control samples. Our results suggest that the iodide transport system in the thyroid follicle is inhibited at 200 microM hydrogen peroxide or greater.

  9. Smoking habits and plasma lipid peroxide and vitamin E levels in never-treated first-episode patients with schizophrenia.

    PubMed

    2000-03-01

    Lipid peroxidation may be increased in schizophrenia, due to the illness, lifestyle or medication. To determine plasma lipid peroxide levels and serum vitamin E and A levels in first-episode never-treated people with schizophrenia and in controls. Thirty in-patients with a first episode of schizophrenia or schizophreniform psychosis were recruited, as were controls matched for gender, age, smoking and dietary status. Blood samples were taken, smoking status was recorded and body mass index measured. There were no significant differences between patients and controls in plasma peroxide levels. Seventy-three per cent of the patients smoked. Patients who smoked had a higher mean lipid peroxide level than non-smokers. Seventy-seven per cent of patients and 70% of controls had a ratio of vitamin E to cholesterol of less than 5. Body mass index was lower in patients than in controls. As a result of the high prevalence of smoking this group shows increased lipid peroxidation. Low serum ratios of vitamin E to cholesterol in both patients and controls suggest an unsatisfactory diet.

  10. Potential for free radical-induced lipid peroxidation as a cause of endothelial cell injury in Rocky Mountain spotted fever.

    PubMed Central

    Silverman, D J; Santucci, L A

    1988-01-01

    Cells infected by Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, display unusual intracellular morphological changes characterized by dilatation of the membranes of the endoplasmic reticulum and outer nuclear envelope. These changes are consistent with those that might be expected to occur following peroxidation of membrane lipids initiated by oxygen radical species, such as the hydroxyl radical or a variety of organic radicals. Using a fluorescent probe, we have found significantly increased levels of peroxides in human endothelial cells infected by R. rickettsii. Studies with desferrioxamine, an iron chelator effective in preventing formation of the hydroxyl radical from hydrogen peroxide and the superoxide free radical, reduced peroxide levels in infected cells to those found in uninfected cells. This observation suggests that the increased peroxides in infected cells may be lipid peroxides, degradation products of free radical attack on polyenoic fatty acids. The potential for lipid peroxidation as an important mechanism in endothelial cell injury caused by R. rickettsii is discussed. Images PMID:3141280

  11. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe2+-induced lipid peroxidation in rat pancreas

    PubMed Central

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu

    2012-01-01

    Objective To investigate and compare the inhibitory properties of free and bound phenolic extracts of clove bud against carbohydrate hydrolyzing enzymes (alpha-amylase & alpha-glucosidase) and Fe2+-induced lipid peroxidation in rat pancreas in vitro. Methods The free phenolics were extracted with 80% (v/v) acetone, while bound phenolics were extracted from the alkaline and acid hydrolyzed residue with ethyl acetate. Then, the interaction of the extracts with alpha-amylase and alpha-glucosidase was subsequently assessed. Thereafter, the total phenolic contents and antioxidant activities of the extracts were determined. Results The result revealed that both extracts inhibited alpha-amylase and alpha-glucosidase in a dose-dependent manner. However, the alpha-glucosidase inhibitory activity of the extracts were significantly (P<0.05) higher than their alpha-amylase inhibitory activity. The free phenolics (31.67 mg/g) and flavonoid (17.28 mg/g) contents were significantly (P<0.05) higher than bound phenolic (23.52 mg/g) and flavonoid (13.70 mg/g) contents. Both extracts also exhibited high antioxidant activities as typified by their high reducing power, 1,1 diphenyl-2- picrylhydrazyl (DPPH) and 2, 2-azinobis-3-ethylbenzo-thiazoline-6-sulfonate (ABTS) radical scavenging abilities, as well as inhibition of Fe2+-induced lipid peroxidation in rat pancreas in vitro. Conclusions This study provides a biochemical rationale by which clove elicits therapeutic effect on type 2 diabetes. PMID:23569846

  12. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe(2+)-induced lipid peroxidation in rat pancreas.

    PubMed

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu

    2012-10-01

    To investigate and compare the inhibitory properties of free and bound phenolic extracts of clove bud against carbohydrate hydrolyzing enzymes (alpha-amylase & alpha-glucosidase) and Fe(2+)-induced lipid peroxidation in rat pancreas in vitro. The free phenolics were extracted with 80% (v/v) acetone, while bound phenolics were extracted from the alkaline and acid hydrolyzed residue with ethyl acetate. Then, the interaction of the extracts with alpha-amylase and alpha-glucosidase was subsequently assessed. Thereafter, the total phenolic contents and antioxidant activities of the extracts were determined. The result revealed that both extracts inhibited alpha-amylase and alpha-glucosidase in a dose-dependent manner. However, the alpha-glucosidase inhibitory activity of the extracts were significantly (P<0.05) higher than their alpha-amylase inhibitory activity. The free phenolics (31.67 mg/g) and flavonoid (17.28 mg/g) contents were significantly (P<0.05) higher than bound phenolic (23.52 mg/g) and flavonoid (13.70 mg/g) contents. Both extracts also exhibited high antioxidant activities as typified by their high reducing power, 1,1 diphenyl-2- picrylhydrazyl (DPPH) and 2, 2-azinobis-3-ethylbenzo-thiazoline-6-sulfonate (ABTS) radical scavenging abilities, as well as inhibition of Fe(2+)-induced lipid peroxidation in rat pancreas in vitro. This study provides a biochemical rationale by which clove elicits therapeutic effect on type 2 diabetes.

  13. Lipid peroxidation is increased in tears from the elderly.

    PubMed

    Benlloch-Navarro, Soledad; Franco, Ilenia; Sánchez-Vallejo, Violeta; Silvestre, Dolores; Romero, Francisco Javier; Miranda, María

    2013-10-01

    We describe a procedure in which tears, obtained from Schirmer strips, are used to measure a marker of lipid peroxidation, malondialdehyde (MDA). We also compared the levels of proteins and MDA in tears from two groups of people: young adults (18-30 years old) and elderly adults (65-85 years old), because the data related to total protein concentration of human tears vary widely and because the majority of people over the age of 65 experience some symptoms of dry eyes and this condition has been recognized as an oxidative stress-induced disease. Our results show a significant difference in the protein concentration of the tears taken from the two age categories, younger adults (18-30 years old) and older adults (65-85 years old). Herein, we report for the first time an increase in MDA concentrations determined by HPLC in human tears based on age. It is possible that alterations in the tear lipid layer may lead to an increase in lipid peroxidation. Further studies are needed to understand the nature and function of tear film and stability in order to obtain new methods to analyze tears in patients with different diseases. In this sense, it would be interesting to compare MDA concentration in tears from control subjects and from people with meibomian gland dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Platelet rebound effect of alcohol withdrawal and wine drinking in rats. Relation to tannins and lipid peroxidation.

    PubMed

    Ruf, J C; Berger, J L; Renaud, S

    1995-01-01

    We investigated in rats fed a purified diet for 2 and 4 months whether wine drinking was associated with the rebound effect on thrombin-induced platelet aggregation observed after alcohol withdrawal. With 6% ethanol drinking or its equivalent in red or white wine, platelet aggregation was reduced similarly by 70% when the animals drank the alcoholic beverages up to the venipuncture. Depriving the rats of alcoholic beverages for 18 hours was associated with an increase in the platelet response of 124% in those receiving 6% ethanol, of 46% with white wine but a decrease of 59% in those with red wine. The protective effect of red wine on platelets could be reproduced by tannins (procyanidins) extracted from grape seeds or red wine and added to 6% ethanol, but not by glycerol or wine without alcohol. That was related to inhibition of the alcohol-induced lipid peroxidation as shown by the lowering of conjugated dienes, lipid peroxides, and the increase in vitamin E in plasma. Owing to tannins, the platelets of rats drinking red wine did not exhibit the rebound effect observed hours after alcohol drinking, eventually associated with sudden death and stroke in humans.

  15. [Lipid peroxidation in thyroid tissue of people with diffuse toxic goiter].

    PubMed

    Rom-Boguslavskaia, E S; Somova, E V; Ovsiannikova, T N; Diageleva, E A; Karachentsev, Iu I; Asaula, V A

    1997-01-01

    The processes of lipids free-radical oxidation in euthyroid and thyrotoxic tissue samples of human thyroid gland were studied. It was shown, that the content of TBA-active lipid peroxidation products was considerably increased in thyrotoxic tissue of the thyroid, and the activity of antioxidant enzymes (catalase, glutation peroxidase) was decreased in it. Possible mechanism of the tissue lipoperoxide alternation under conditions of the thyroid hyperfunction is discussed.

  16. Polyphenols from Berries of Aronia melanocarpa Reduce the Plasma Lipid Peroxidation Induced by Ziprasidone

    PubMed Central

    Dietrich-Muszalska, Anna; Kopka, Justyna

    2014-01-01

    Background. Oxidative stress in schizophrenia may be caused partially by the treatment of patients with antipsychotics. The aim of the study was to establish the effects of polyphenol compounds derived from berries of Aronia melanocarpa (Aronox) on the plasma lipid peroxidation induced by ziprasidone in vitro. Methods. Lipid peroxidation was measured by the level of thiobarbituric acid reactive species (TBARS). The samples of plasma from healthy subjects were incubated with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) alone and with Aronox (5 ug/ml; 50 ug/ml). Results. We observed a statistically significant increase of TBARS level after incubation of plasma with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) (after 24 h incubation: P = 7.0 × 10−4, P = 1.6 × 10−3, and P = 2.7 × 10−3, resp.) and Aronox lipid peroxidation caused by ziprasidone was significantly reduced. After 24-hour incubation of plasma with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) in the presence of 50 ug/ml Aronox, the level of TBARS was significantly decreased: P = 6.5 × 10−8, P = 7.0 × 10−6, and P = 3.0 × 10−5, respectively. Conclusion. Aronox causes a distinct reduction of lipid peroxidation induced by ziprasidone. PMID:25061527

  17. Dietary docosahexaenoic acid-induced generation of liver lipid peroxides is not suppressed further by elevated levels of glutathione in ODS rats.

    PubMed

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2006-04-01

    We examined the effects of ascorbic acid (AsA) and glutathione (GSH; experiment 1) and of GSH in acetaminophen-fed rats (experiment 2) on dietary docosahexaenoic acid (DHA)-induced tissue lipid peroxidation. In experiment 1, AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats were fed soybean protein diets containing DHA (10.0% total energy) and AsA at 50 (low) or 300 (normal) mg/kg without (low) or with (normal) methionine at 2 g/kg for 32 d. In experiment 2, ODS rats were fed diets containing DHA (7.8% total energy) and acetaminophen (4 g/kg) with different levels of dietary methionine (low, moderate, high, and excessive at 0, 3, 6, and 9 g/kg, respectively) for 30 d. Tissue lipid peroxides and antioxidant levels were determined. In experiment 1, liver lipid peroxide levels in the low-AsA group were lower than those in the normal-AsA group, but kidney and testis lipid peroxide levels in the low-AsA group were higher than those in the normal-AsA group. Dietary methionine tended to decrease tissue lipid peroxide levels but did not decrease vitamin E (VE) consumption. In experiment 2, a high level of methionine (6 g/kg) decreased liver lipid peroxide levels and VE consumption. However, generation of tissue lipid peroxides and VE consumption were not decreased further by a higher dose of methionine (9 g/kg). Higher than normal levels of dietary methionine are not necessarily associated with decreased dietary DHA-induced generation of tissue lipid peroxides and VE consumption except that the GSH requirement is increased in a condition such as acetaminophen feeding.

  18. Lipid Peroxidation and Transforming Growth Factor-β1 Levels in Gastric Cancer at Pathologic Stages.

    PubMed

    Tüzün, Sefa; Yücel, Ahmet Fikret; Pergel, Ahmet; Kemik, Ahu Sarbay; Kemik, Ozgür

    2012-09-01

    High levels of TGF-β1 and enhanced TGF-β1 receptor signaling are related to the pathology of gastric cancer. This effect is caused by oxidative stress and lipid peroxidation products. The aim of this study was to investigate the levels of TGF-β1 and lipid peroxidation products in gastric cancer patients and their correlation with pathologic stage. Lipid peroxidation products and TGF-β1 levels were studied in the serum samples of 50 gastric cancer patients and 18 control subjects. HNE-protein adducts and TGF-β1 levels were significantly higher in T2, T3 and T4 gastric cancers than in either the T1 stage or controls (p<0.001). Pathologic stage was correlated with TGF-β1 levels (r=0.702, p<0.05). These markers production may contribute to tumor angiogenesis and aid in the prognosis of the gastric cancer.

  19. Regulation of NF-κB-Induced Inflammatory Signaling by Lipid Peroxidation-Derived Aldehydes

    PubMed Central

    Yadav, Umesh C. S.; Ramana, Kota V.

    2013-01-01

    Oxidative stress plays a critical role in the pathophysiology of a wide range of diseases including cancer. This view has broadened significantly with the recent discoveries that reactive oxygen species initiated lipid peroxidation leads to the formation of potentially toxic lipid aldehyde species such as 4-hydroxy-trans-2-nonenal (HNE), acrolein, and malondialdehyde which activate various signaling intermediates that regulate cellular activity and dysfunction via a process called redox signaling. The lipid aldehyde species formed during synchronized enzymatic pathways result in the posttranslational modification of proteins and DNA leading to cytotoxicity and genotoxicty. Among the lipid aldehyde species, HNE has been widely accepted as a most toxic and abundant lipid aldehyde generated during lipid peroxidation. HNE and its glutathione conjugates have been shown to regulate redox-sensitive transcription factors such as NF-κB and AP-1 via signaling through various protein kinase cascades. Activation of redox-sensitive transcription factors and their nuclear localization leads to transcriptional induction of several genes responsible for cell survival, differentiation, and death. In this review, we describe the mechanisms by which the lipid aldehydes transduce activation of NF-κB signaling pathways that may help to develop therapeutic strategies for the prevention of a number of inflammatory diseases. PMID:23710287

  20. Lipid peroxidation, occupational stress and aging in workers of a prehospital emergency service.

    PubMed

    Casado, Angela; De Lucas, Nieves; López-Fernández, Encarnación; Sánchez, Alberto; Jimenez, José-Antonio

    2006-06-01

    Stressful conditions lead to formation of excessive free radicals, and lipid peroxidation is one of the major outcomes of free radical-mediated injury that directly damages membranes and generates a number of secondary products. To determine the levels of malondialdehyde, an end product of lipid peroxidation, according to demographic and occupational variables in workers of a prehospital emergency service and to analyse the relationship between malondialdehyde levels and burnout. One hundred and eleven healthy workers of a prehospital emergency service and eighty aged-matched healthy individuals of both sexes as a control group were surveyed. Malondialdehyde levels were measured by the Bull and Marnett method. To measure burnout, the Maslach Burnout Inventory was used. Professional category is associated with lipid peroxidation and burnout levels (Malondialdehyde levels were: physicians 338.10+/-14.47, nurses 329.17+/-12.62 and technicians 296.74+/-14.28; burnout levels were: physicians 41.29+/-3.59, nurses 37.38+/-6.05 and technicians 35.33+/-5.87). Working at night and in the evening increased malondialdehyde and burnout levels. Malondialdehyde levels increase with age. No significant variations with respect to sex were detected. Significant variations in malondialdehyde levels were detected between singles (303.13+/-12.74) and married people (344.43+/-13.43) but not with respect to divorcees (326.44+/-11.74). Significant differences were detected in erythrocyte malondialdehyde levels between smokers (341.37+/-17.09) and nonsmokers (302.21+/-12.38), but not for alcohol consumption. These findings suggest a positive correlation between malondialdehyde, a biomarker of lipid peroxidation and occupational stress, as estimated by elements of the Maslach Burnout Inventory, and oxidative stress.

  1. Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation.

    PubMed

    Moazamian, Ryan; Polhemus, Ashley; Connaughton, Haley; Fraser, Barbara; Whiting, Sara; Gharagozloo, Parviz; Aitken, Robert John

    2015-06-01

    Oxidative stress is known to compromise human sperm function and to activate the intrinsic apoptotic cascade in these cells. One of the key features of oxidatively stressed spermatozoa is the induction of a lipid peroxidation process that results in the formation of aldehydes potentially capable of disrupting sperm function through the formation of adducts with DNA and key proteins. In this study, we have examined the impact of a range of small molecular mass aldehydes generated as a consequence of lipid peroxidation on human sperm function and also compared the two most commonly formed compounds, 4-hydroxynonenal (4HNE) and malondialdehyde (MDA), for their relative ability to reflect a state of oxidative stress in these cells. Dramatic differences in the bioactivity of individual aldehydes were observed, that generally correlated with the second order rate constants describing their interaction with the model nucleophile, glutathione. Our results demonstrate that acrolein and 4HNE were the most reactive lipid aldehydes, inhibiting sperm motility while augmenting reactive oxygen species production, lipid peroxidation, oxidative DNA damage and caspase activation, in a dose-dependent manner (P < 0.001). In contrast, a variety of saturated aldehydes and the well-known marker of oxidative stress, MDA, were without effect on this cell type. While MDA was not cytotoxic per se, its generation did reflect the induction of oxidative stress in vivo and in vitro in a manner that was highly correlated with the bioactive lipid aldehyde, 4HNE. Despite such overall correlations, individual patient samples were observed in which either MDA or 4HNE predominated. Given the relative cytotoxicity of 4HNE, we propose that this aldehyde should be the preferred criterion for diagnosing oxidative stress in the male germ line. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions

  2. Oxalomalate, a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase, enhances lipid peroxidation-mediated oxidative damage in U937 cells.

    PubMed

    Yang, Joon-Hyuck; Park, Jeen-Woo

    2003-08-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.

  3. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash.

    PubMed

    Cervini-Silva, Javiera; Antonio-Nieto-Camacho; Gomez-Vidales, Virginia; Ramirez-Apan, María Teresa; Palacios, Eduardo; Montoya, Ascención; Kaufhold, Stephan; Abidin, Zeanal; Theng, Benny K G

    2014-06-15

    This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe(3+), and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot(-1). LP was surface controlled but not restricted by structural or surface-bound Fe(3+), because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe(3+) soluble species stemming from surface-bound Fe(3+) or small-sized Fe(3+) refractory minerals in allophane surpassed that of structural Fe(3+) located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell-viability values were as low as 68.5 ± 6.7%. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Oxidative stress and lipid peroxidation in prolonged users of methamphetamine.

    PubMed

    Solhi, Hassan; Malekirad, Aliakbar; Kazemifar, Amir Mohammad; Sharifi, Farzaneh

    2014-07-01

    Methamphetamine abuse results in numerous adverse health effects. Formation of free radicals may be a contributing factor. Methamphetamine has produced free radicals in animal studies. Present study was conducted to evaluate status of oxidative stress and lipid peroxidation among chronic methamphetamine users. Ninety six individuals were selected randomly from methamphetamine abusers who had referred to rehabilitation and treatment center for drug abuse and their closed relatives, after providing informed consent. Blood samples were taken from each of the studied individuals. Ferric reducing ability of plasma (FRAP) assay and serum level of MDA (malondialdehyde) were used to assess the total anti-oxidant power and status of lipid peroxidation of the body, respectively. The results were analyzed by SPSS software version 16.0. Differences among groups were determined by T-test. Total anti-oxidant powers of plasma were 0.31±0.04 micromoles/liter and 0.46±0.05 micromoles/liter in methamphetamine abusers and control groups respectively. The difference was statistically significant (p-value=0.04). Levels of MDA were 4.38±5.05 micromoles/liter and 1.72±2.04 micromoles/liter in methamphetamine abusers and control group. The difference was statistically significant (p-value=0.01). results of present study suggest that prolonged use of methamphetamine exerts oxidative stress on the body and enhances lipid peroxidation. The event may contribute to emergence of adverse effects of acute and prolonged use of methamphetamine; such as loss of attention, psychomotor dysfunction, and cognitive deficits. It is recommended that antioxidants were included in drug regimens prescribed for methamphetamine abusers who referred to physicians to seek medical care for any reason.

  5. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla.

    PubMed

    Chen, Jiana; Huang, Min; Cao, Fangbo; Pardha-Saradhi, P; Zou, Yingbin

    2017-01-01

    A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata.

  6. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats.

    PubMed

    Maharaj, D S; Saravanan, K S; Maharaj, H; Mohanakumar, K P; Daya, S

    2004-04-01

    We assessed the antioxidant activity of non-narcotic analgesics, acetaminophen and aspirin in rat brain homogenates and neuroprotective effects in vivo in rats intranigrally treated with 1-methyl-4-phenyl pyridinium (MPP+). Both drugs inhibited cyanide-induced superoxide anion generation, as well as lipid peroxidation in rat brain homogenates, the combination of the agents resulting in a potentiation of this effect. Acetaminophen or aspirin when administered alone or in combination, did not alter dopamine (DA) levels in the forebrain or in the striatum. Intranigral infusion of MPP+ in rats caused severe depletion of striatal DA levels in the ipsilateral striatum in rats by the third day. Systemic post-treatment of acetaminophen afforded partial protection, whereas similar treatment of aspirin resulted in complete blockade of MPP+-induced striatal DA depletion. While these findings suggest usefulness of non-narcotic analgesics in neuroprotective therapy in neurodegenerative diseases, aspirin appears to be a potential candidate in prophylactic as well as in adjuvant therapy in Parkinson's disease.

  7. Lipid peroxidation, cyclooxygenase enzyme and tumor cell proliferation inhibitory compounds in Cornus kousa fruits.

    PubMed

    Vareed, Shaiju K; Schutzki, Robert E; Nair, Muraleedharan G

    2007-10-01

    The genus Cornus is well known for its medicinal properties. Bioassay-guided isolation and characterization of C. kousa fruits afforded kaempferol 3-O-rhamnoside (1), myricetin 3-O-rhamnoside (2), kaempferol 3-O-glucoside (3), cornin (4) and stenophyllin (5) in addition to ursolic acid and beta-sitosterol. These compounds are isolated for the first time from C. kousa. Compounds 1-5 inhibited Fe(2+) catalyzed lipid peroxidation by 63%, 57%, 61%, 53%, and 51%, at 23, 22, 23, 129, and 108 microM, respectively. Similarly, they inhibited COX-1 and -2 enzymes activities by 24% and 47%, 40% and 37%, 20% and 37%, 52% and 63%, and 48% and 55% respectively, at 231, 215, 226, 258, and 217 microM, respectively. At 129 microM, compound 4 displayed growth inhibition of HCT-116 (colon), MCF-7 (breast), NCI-H460 (lung), SF-268 (central nervous system CNS), and AGS (stomach) human tumor cell lines by 31%, 29%, 40%, 9%, and 28%, respectively. Similarly, compound 5 inhibited the growth of colon, breast, lung, CNS, and stomach tumor cell lines by 0%, 27%, 35%, 16%, and 27%, respectively, at 108 microM.

  8. [The accumulation of lipid peroxidation products in the eye structures of mice under whole-body x-ray irradiation].

    PubMed

    Sakina, N L; Dontsov, A E; Afanas'ev, G G; Ostrovski, M A; Pelevina, I I

    1990-01-01

    In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Schiff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation.

  9. New assays for detection and localization of endogenous lipid peroxidation products in living boar sperm after BTS dilution or after freeze-thawing.

    PubMed

    Brouwers, Jos F; Silva, Patricia F N; Gadella, Barend M

    2005-01-15

    Reactive oxygen species have been implicated in sperm aberrations causing multiple pathologies including sub- and infertility. Freeze/thawing of sperm samples is routinely performed in the cattle breeding industries for semen storage prior to artificial insemination but unusual in porcine breeding industries as semen dilution and storage at 17 degrees C is sufficient for artificial insemination within 2-3 days. However, longer semen storage requires cryopreservation of boar semen. Freeze/thawing procedures induce sperm damage and induce reactive oxygen species in mammalian sperm and boar sperm seems to be more vulnerable for this than bull sperm. We developed a new method to detect reactive oxygen species induced damage at the level of the sperm plasma membrane in bull sperm. Lipid peroxidation in freshly stored and frozen/thawed sperm cells was assessed by mass spectrometric analysis of the main endogenous lipid classes, phosphatidylcholine and cholesterol and by fluorescence techniques using the lipid peroxidation reporter probe C11-BODIPY(581/591). Peroxidation as reported by the fluorescent probe, clearly corresponded with the presence of hydroxy- and hydroperoxyphosphatidylcholine in the sperm membranes, which are early stage products of lipid peroxidation. This allowed us, for the first time, to correlate endogenous lipid peroxidation with localization of this process in the living sperm cells. Cytoplasmatic droplets in incompletely matured sperm cells were intensely peroxidized. Furthermore, lipid peroxidation was particularly strong in the mid-piece and tail of frozen/thawed spermatozoa and significantly less intense in the sperm head. Induction of peroxidation in fresh sperm cells with the lipid soluble reactive oxygen species tert-butylhydroperoxide gave an even more pronounced effect, demonstrating antioxidant activity in the head of fresh sperm cells. Furthermore, we were able to show using the flow cytometer that spontaneous peroxidation was not a

  10. Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline.

    PubMed

    Dhir, Bhupinder; Sharmila, P; Saradhi, P Pardha

    2004-02-10

    Investigations were carried out to evaluate if hydrophytes (viz. Ceratophyllum, Wolffia, and Hydrilla) can be used as markers to assess the level of heavy metal pollution in aquatic bodies. The potential of these hydrophytes for lipid peroxidation and accumulation of proline in response to cadmium (Cd2+) pollution was studied. Hydrophytes were raised in artificial pond water (APW) supplemented with various levels of Cd2+. Interestingly, unlike mesophytes none of the hydrophytes showed ability to accumulate proline. Infact, in response to Cd2+ pollution hydrophytes exhibited a decline in proline levels in comparison to controls but mesophytes (viz. Brassica juncea, Vigna radiata and Triticum aestivum) showed progressive increase in the level of proline with increase in the extent of Cd2+ pollution. Mesophytes showed six to nine-fold increase in the level of proline in response to 1 mM Cd2+. The potential of the above hydrophytes for lipid peroxidation was also low under Cd2+ stress. In contrast, as expected a significant enhancement in the lipid peroxidation was observed in all three mesophytes in response to their exposure to Cd2+. About two-fold increase in production of malondialdehyde (a cytotoxic product of lipid peroxidation) was recorded in mesophytes exposed to 1 mM Cd2+. However, a decline in chlorophyll (Chl a and Chl b) levels was recorded in response to Cd2+pollution both in hydrophytes as well as mesophytes. In summary, hydrophytes neither have potential to accumulate proline nor have ability to accelerate lipid peroxidation under heavy metal stress. This suggests that the adaptive mechanism(s) existing in hydrophytes to tackle heavy metal stress is distinct from that in mesophytes.

  11. Lipid Peroxidation and Transforming Growth Factor-β1 Levels in Gastric Cancer at Pathologic Stages

    PubMed Central

    Tüzün, Sefa; Yücel, Ahmet Fikret; Pergel, Ahmet; Kemik, Ahu Sarbay; Kemik, Özgür

    2012-01-01

    Objective: High levels of TGF-β1 and enhanced TGF-β1 receptor signaling are related to the pathology of gastric cancer. This effect is caused by oxidative stress and lipid peroxidation products. The aim of this study was to investigate the levels of TGF-β1 and lipid peroxidation products in gastric cancer patients and their correlation with pathologic stage. Material and Methods: Lipid peroxidation products and TGF-β1 levels were studied in the serum samples of 50 gastric cancer patients and 18 control subjects. Results: HNE-protein adducts and TGF-β1 levels were significantly higher in T2, T3 and T4 gastric cancers than in either the T1 stage or controls (p<0.001). Pathologic stage was correlated with TGF-β1 levels (r=0.702, p<0.05). Conclusion: These markers production may contribute to tumor angiogenesis and aid in the prognosis of the gastric cancer. PMID:25207013

  12. Astaxanthin Normalizes Epigenetic Modifications of Bovine Somatic Cell Cloned Embryos and Decreases the Generation of Lipid Peroxidation.

    PubMed

    Li, R; Wu, H; Zhuo, W W; Mao, Q F; Lan, H; Zhang, Y; Hua, S

    2015-10-01

    Astaxanthin is an extremely common antioxidant scavenging reactive oxygen species (ROS) and blocking lipid peroxidation. This study was conducted to investigate the effects of astaxanthin supplementation on oocyte maturation, and development of bovine somatic cell nuclear transfer (SCNT) embryos. Cumulus-oocyte complexes were cultured in maturation medium with astaxanthin (0, 0.5, 1.0, or 1.5 mg/l), respectively. We found that 0.5 mg/l astaxanthin supplementation significantly increased the proportion of oocyte maturation. Oocytes cultured in 0.5 mg/l astaxanthin supplementation were used to construct SCNT embryos and further cultured with 0, 0.5, 1.0 or 1.5 mg/l astaxanthin. The results showed that the supplementation of 0.5 mg/l astaxanthin significantly improved the proportions of cleavage and blastulation, as well as the total cell number in blastocysts compared with the control group, yet this influence was not concentration dependent. Chromosomal analyses revealed that more blastomeres showed a normal chromosomal complement in 0.5 mg/l astaxanthin treatment group, which was similar to that in IVF embryos. The methylation levels located on the exon 1 of the imprinted gene H19 and IGF2, pluripotent gene OCT4 were normalized, and global DNA methylation, H3K9 and H4K12 acetylation were also improved significantly, which was comparable to that in vitro fertilization (IVF) embryos. Moreover, we also found that astaxanthin supplementation significantly decreased the level of lipid peroxidation. Our findings showed that the supplementation of 0.5 mg/l astaxanthin to oocyte maturation medium and embryo culture medium improved oocyte maturation, SCNT embryo development, increased chromosomal stability and normalized the epigenetic modifications, as well as inhibited overproduction of lipid peroxidation. © 2015 Blackwell Verlag GmbH.

  13. Release of enzymes from lysosomes by irradiation and the relation of lipid peroxide formation to enzyme release

    PubMed Central

    Wills, E. D.; Wilkinson, A. E.

    1966-01-01

    1. Acid phosphatase, cathepsin and β-glucuronidase are released from rat-liver lysosomes by irradiation in vitro. Enzyme release is detectable after a dose of 1krad and increases with dose up to 100krads. 2. Maximum radiation effects were observed when the lysosomes were kept for 20hr. at 4° or 20° after irradiation. 3. An atmosphere of nitrogen considerably decreases enzyme release from lysosomes. 4. Enzyme release is enhanced by ascorbic acid and decreased by vitamin E. 5. Irradiation causes formation of lipid peroxides in lysosomes, and enzyme release increases with lipid peroxide formation. 6. It is suggested that lipid peroxide formation leads to rupture of the lysosome membrane and allows release of the contained hydrolytic enzymes. PMID:5964962

  14. Study of lipid peroxidation and ascorbic acid protective role in large unilamellar vesicles from a new electrochemical performance.

    PubMed

    Barroso, M Fátima; Luna, M Alejandra; Moyano, Fernando; Delerue-Matos, Cristina; Correa, N Mariano; Molina, Patricia G

    2018-04-01

    In this contribution an electrochemical study is described for the first time of lipid peroxidation and the role of antioxidant on lipid protection using large unilamellar vesicles (LUVs). In order to simulate the cell membrane, LUVs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were used. A vesicle-modified electrode was constructed by immobilizing DOPC LUVs onto carbon paste electrodes (CPEs). Lipid peroxidation was studied electrochemically by incubating the vesicle-modified electrodes with hydroxyl (HO) radicals generated via the Fenton reaction. Oxidative damage induced by HO was verified by using square wave voltammetry (SWV) and was indirectly measured by the increase of electrochemical peak current to [Fe(CN) 6 ] 4- which was used as the electrochemical label. Ascorbic acid (AA) was used as the antioxidant model in order to study its efficacy on free radical scavenging. The decrease of the electrochemical signal confirms the protective key role promoted by AA in the prevention of lipid peroxidation in vesicles. Through microscopy, it was possible to observe morphologic modification on vesicle structures after lipid peroxidation in the presence or absence of AA. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla

    PubMed Central

    Chen, Jiana; Cao, Fangbo; Pardha-Saradhi, P.; Zou, Yingbin

    2017-01-01

    A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata. PMID:28945775

  16. Polyphenols of Salix aegyptiaca modulate the activities of drug metabolizing and antioxidant enzymes, and level of lipid peroxidation.

    PubMed

    Nauman, Mohd; Kale, R K; Singh, Rana P

    2018-03-07

    Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and

  17. Implications of oxidative stress and cell membrane lipid peroxidation in human cancer (Spain).

    PubMed

    Cejas, Paloma; Casado, Enrique; Belda-Iniesta, Cristobal; De Castro, Javier; Espinosa, Enrique; Redondo, Andrés; Sereno, María; García-Cabezas, Miguel A; Vara, Juan A F; Domínguez-Cáceres, Aurora; Perona, Rosario; González-Barón, Manuel

    2004-09-01

    Reactive Oxygen Species (ROS) result from cell metabolism as well as from extracellular processes. ROS exert some functions necessary for cell homeostasis maintenance. When produced in excess they play a role in the causation of cancer. ROS mediated lipid peroxides are of critical importance because they participate in chain reactions that amplify damage to biomolecules including DNA. DNA attack gives rise to mutations that may involve tumor suppressor genes or oncogenes, and this is an oncogenic mechanism. On the other hand, ROS production is a mechanism shared by many chemotherapeutic drugs due to their implication in apoptosis control. The ROS mediated cell responses depend on the duration and intensity of the cells exposing to the increased ROS environment. Thus the status redox is of great importance for oncogenetic process activation and it is also implicated in tumor susceptibility to specific chemotherapeutic drugs. Phospholipid Hydroperoxide Glutathione Peroxidase (PH-GPx) is an antioxidant enzyme that is able to directly reduce lipid peroxides even when they are bound to cellular membranes. This article will review the relevance of oxidative stress, particularly of lipid peroxidation, in cell response with special focus in carcinogenesis and cancer therapy that suggests PH-GPx as a potentially important enzyme involved in the control of this processes.

  18. Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation

    PubMed Central

    Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman

    2016-01-01

    Summary Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1–diphenyl–2–picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products. PMID:28115903

  19. Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation.

    PubMed

    Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman; Kızıl, Murat

    2016-12-01

    Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products.

  20. [Participation of final products of lipid peroxidation in the anticancer mechanism of ionizing radiation and radiomimetic cytostatics].

    PubMed

    Przybyszewski, W M

    2001-01-01

    This review reports the evidence for the participation of final products of lipid peroxidation in the anticancer mechanism of ionising radiation and radiomimetic cytostatics. Processes of lipid peroxidation occur endogenously in response to oxidative stress and great diversity of reactive metabolites is formed. However, direct observation of radical reaction in pathophysiology of cells, tissues and organs is limited technically. Most investigations focused on the indirect assessment of their final products, aldehydes. The peroxidative breakdown of polyunsaturated fatty acids is believed to be involved in the regulation of cell division, and antitumor effect through biochemical and genetic processes.

  1. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract.

    PubMed

    Okoko, Tebekeme; Ere, Diepreye

    2012-06-01

    To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.

  2. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    PubMed

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  3. Tyrosine-Lipid Peroxide Adducts from Radical Termination: Para-Coupling and Intramolecular Diels-Alder Cyclization

    PubMed Central

    Shchepin, Roman; Möller, Matias N.; Kim, Hye-young H.; Hatch, Duane M.; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael

    2013-01-01

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogs of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR as well as by mass spectrometry. The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic 13C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl 13C chemical shifts at ~198 ppm. All NMR HMBC and HSQC correlations support the structure assignment of the primary and Diels-Alder adducts, as does MS collision induced dissociation. Kinetic rate constants and activation parameters for the IMDA reaction were determined and the primary adducts were reduced with cuprous ion giving a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found either in the primary or the cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein crosslinks via interprotein Michael adducts. PMID:21090613

  4. [Methodological aspects of evaluation of potential lipid capacity for peroxidation from the serum levels of TBA-active products during iron ion stimulation].

    PubMed

    Kulikova, A I; Tugusheva, F A; Zubina, I M; Shepilova, I N

    2008-05-01

    The authors propose a simple and reproducible procedure for using iron ions to stimulate serum lipid peroxidation, with TBA-active products being further determined. The procedure determines the reserve of lipids that can be oxidized during oxidative stress. A combination of direct studies and correlation analysis suggests that low-density lipoproteins and very low-density lipoproteins are the major substrates for lipid peroxidation while high-density lipoproteins show a high resistance to this process. The presented procedure may be used to monitor lipid peroxidation in various conditions and upon various exposures in common laboratory practice.

  5. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    PubMed Central

    Lee, Seung Eun; Park, Yong Seek

    2013-01-01

    Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction. PMID:23819013

  6. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes

    PubMed Central

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2015-01-01

    Ferulic acid (FA) is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM) significantly reduced the levels of glycated hemoglobin (HbA1c) whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM) prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes. PMID:26053739

  7. Antioxidant capacity of BO-653, 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran, and uric acid as evaluated by ORAC method and inhibition of lipid peroxidation.

    PubMed

    Niki, Etsuo; Fukuhara, Akiko; Omata, Yo; Saito, Yoshiro; Yoshida, Yasukazu

    2008-04-01

    The role of radical-scavenging antioxidant against oxidative stress has received much attention. The antioxidant capacity has been assessed by various methods. Above all, oxygen radical absorbance capacity (ORAC) has been frequently employed [Prior et.al., J. Agric. Food Chem.2005, 53, 4290]. In the present study, the antioxidant capacity of 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran (BO-653) and uric acid was assessed by ORAC method using pyranine as a reference probe and compared with that against lipid peroxidation of human plasma. It was found that BO-653 was assessed to be much less potent than uric acid by ORAC method, whereas BO-653 exerted much higher antioxidant activity than uric acid against plasma lipid peroxidation. The reason for such discrepancy is discussed. The results suggest that ORAC method is suitable for the assessment of free radical scavenging capacity, but not for the assessment of antioxidant capacity against lipid peroxidation in plasma.

  8. Evidence for lipid peroxidation in endotoxin-poisoned mice.

    PubMed Central

    Peavy, D L; Fairchild, E J

    1986-01-01

    Ethane has been identified and quantitated in air exhaled by mice following intraperitoneal injection of 20, 40, or 200 mg of Escherichia coli O111:B4 lipopolysaccharide (LPS) per kg. Significant increases in ethane concentration occurred within 1 to 5 h after LPS administration. In addition, increased concentrations of malondialdehyde were found in crude homogenates of livers obtained from mice 16 h after administration of 20 mg of LPS per kg. These results suggest that lipid peroxidation may be an important mechanism responsible for LPS toxicity. PMID:3516882

  9. Aerobic training suppresses exercise-induced lipid peroxidation and inflammation in overweight/obese adolescent girls.

    PubMed

    Youssef, Hala; Groussard, Carole; Lemoine-Morel, Sophie; Pincemail, Joel; Jacob, Christophe; Moussa, Elie; Fazah, Abdallah; Cillard, Josiane; Pineau, Jean-Claude; Delamarche, Arlette

    2015-02-01

    This study aimed to determine whether aerobic training could reduce lipid peroxidation and inflammation at rest and after maximal exhaustive exercise in overweight/obese adolescent girls. Thirty-nine adolescent girls (14-19 years old) were classified as nonobese or overweight/obese and then randomly assigned to either the nontrained or trained group (12-week multivariate aerobic training program). Measurements at the beginning of the experiment and at 3 months consisted of body composition, aerobic fitness (VO2peak) and the following blood assays: pre- and postexercise lipid peroxidation (15F2a-isoprostanes [F2-Isop], lipid hydroperoxide [ROOH], oxidized LDL [ox-LDL]) and inflammation (myeloperoxidase [MPO]) markers. In the overweight/ obese group, the training program significantly increased their fat-free mass (FFM) and decreased their percentage of fat mass (%FM) and hip circumference but did not modify their VO2peak. Conversely, in the nontrained overweight/obese group, weight and %FM increased, and VO2peak decreased, during the same period. Training also prevented exercise-induced lipid peroxidation and/or inflammation in overweight/obese girls (F2-Isop, ROOH, ox-LDL, MPO). In addition, in the trained overweight/obese group, exercise-induced changes in ROOH, ox-LDL and F2-Isop were correlated with improvements in anthropometric parameters (waist-to-hip ratio, %FM and FFM). In conclusion aerobic training increased tolerance to exercise-induced oxidative stress in overweight/obese adolescent girls partly as a result of improved body composition.

  10. Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid.

    PubMed

    Zoeller, Maria; Stingl, Nadja; Krischke, Markus; Fekete, Agnes; Waller, Frank; Berger, Susanne; Mueller, Martin J

    2012-09-01

    Lipid peroxidation (LPO) is induced by a variety of abiotic and biotic stresses. Although LPO is involved in diverse signaling processes, little is known about the oxidation mechanisms and major lipid targets. A systematic lipidomics analysis of LPO in the interaction of Arabidopsis (Arabidopsis thaliana) with Pseudomonas syringae revealed that LPO is predominantly confined to plastid lipids comprising galactolipid and triacylglyceride species and precedes programmed cell death. Singlet oxygen was identified as the major cause of lipid oxidation under basal conditions, while a 13-lipoxygenase (LOX2) and free radical-catalyzed lipid oxidation substantially contribute to the increase upon pathogen infection. Analysis of lox2 mutants revealed that LOX2 is essential for enzymatic membrane peroxidation but not for the pathogen-induced free jasmonate production. Despite massive oxidative modification of plastid lipids, levels of nonoxidized lipids dramatically increased after infection. Pathogen infection also induced an accumulation of fragmented lipids. Analysis of mutants defective in 9-lipoxygenases and LOX2 showed that galactolipid fragmentation is independent of LOXs. We provide strong in vivo evidence for a free radical-catalyzed galactolipid fragmentation mechanism responsible for the formation of the essential biotin precursor pimelic acid as well as of azelaic acid, which was previously postulated to prime the immune response of Arabidopsis. Our results suggest that azelaic acid is a general marker for LPO rather than a general immune signal. The proposed fragmentation mechanism rationalizes the pathogen-induced radical amplification and formation of electrophile signals such as phytoprostanes, malondialdehyde, and hexenal in plastids.

  11. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  12. Reversal of noradrenergic depletion and lipid peroxidation in the pons after brain injury correlates with motor function recovery in rats.

    PubMed

    Bueno-Nava, Antonio; Montes, Sergio; DelaGarza-Montano, Paloma; Alfaro-Rodriguez, Alfonso; Ortiz, Ascencion; Gonzalez-Pina, Rigoberto

    2008-09-26

    Functional impairment after brain injury (BI) has been attributed to the inhibition of regions that are related to the injured site. Therefore, noradrenaline (NA) is thought to play a critical role in recovery from motor injury. However, the mechanism of this recovery process has not been completely elucidated. Moreover, the locus coeruleus (LC) projects from the pons through the rat sensorimotor cortex, and injury axotomizes LC fibers, depressing NA function. This was tested by measuring lipid peroxidation (LP) in the pons after sensorimotor cortex injury. Depression of function in the pons would be expected to alter areas receiving pontine efferents. Male Wistar rats were divided into three groups: control (n=16), injured (n=10) and recovering (n=16), and they were evaluated using a beam-walking assay between 2 and 20 days after cortical injury. We performed measures of NA and LP in both sides of the pons and cerebellum. We found a decrease of NA in the pons and the cerebellum, and a concomitant increase in the motor deficit and LP in the pons of injured animals. Recovering rats had NA and LP levels that were very similar to those observed in control rats. These observations suggest that the mechanism of remote inhibition after BI involves lipid peroxidation, and that the NA decrease found in the cerebellum of injured animals is mediated by a noradrenergic depression in the pons, or in areas receiving NA projections from the pons.

  13. The Effects of Boron on Arsenic-Induced Lipid Peroxidation and Antioxidant Status in Male and Female Rats.

    PubMed

    Kucukkurt, Ismail; Ince, Sinan; Demirel, Hasan Huseyin; Turkmen, Ruhi; Akbel, Erten; Celik, Yasemin

    2015-12-01

    The aim of the present study was to investigate the possible protective effects of boron, an antioxidant agent, against arsenic-induced oxidative stress in male and female rats. In total, 42 Wistar albino male and female rats were divided into three equal groups: The animals in the control group were given normal drinking water, the second group was given drinking water with 100 mg/L arsenic, and the third group was orally administered drinking water with 100 mg/kg boron together with arsenic. At the end of the 28-day experiment, arsenic increased lipid peroxidation and damage in the tissues of rats. However, boron treatment reversed this arsenic-induced lipid peroxidation and activities of antioxidant enzymes in rats. Moreover, boron exhibited a protective action against arsenic-induced histopathological changes in the tissues of rats. In conclusion, boron was found to be effective in protecting rats against arsenic-induced lipid peroxidation by enhancing antioxidant defense mechanisms. © 2015 Wiley Periodicals, Inc.

  14. Blueberries reduce lipid peroxidation and boost antioxidant enzymes in apoe knockout mice

    USDA-ARS?s Scientific Manuscript database

    ApoE knockout (ApoE-/-) mice fed AIN-93G diet (CD) formulated to contain 1 % freeze-dried whole wild blueberries (CD1 percent BB) were found to have significantly less atherosclerotic lesions in aorta. Biomarkers of lipid peroxidation, including F2-isoprostanes, hydroxyoctadecadienoic acids (HODEs) ...

  15. Antispermatogenic Mechanism of Trona is Associated with Lipid Peroxidation but Not Testosterone Suppression.

    PubMed

    Ajayi, Ayodeji F; Akhigbe, Roland E

    2017-01-01

    About half of the cases of infertility in couples have been attributed to male factor. Despite the claim in folklore medicine that trona (a sesquicarbonate or hydrated carbonate of sodium) causes fetal loss, its effect on male reproductive function has not been investigated. This study sought to provide scientific evidence on the effect of trona on sperm characteristics, male reproductive hormones and organs, and lipid peroxidation. Forty male Wistar rats of comparable weights were used for the study. Rats were randomized into four different groups. The control received 1 mL of distilled water orally, whereas those in groups 1, 2, and 3 (test groups) received orally, same volume of trona preparation corresponding to 100, 200, and 400 mg/kg body weight, respectively, for 28 days. Body weight was monitored throughout the study period, and at the end of the experiment, testicular morphometry, sperm characteristic, reproductive hormones, and malondialdehyde (MDA), an index of lipid peroxidation, were determined. Sperm count, motility, progressibility, and percentage of normal sperm were significantly decreased in the trona-treated rats ( P < 0.05). The percentage of abnormal sperm, luteinizing hormone, follicle stimulating hormone, and MDA were significantly increased in the treated rats ( P < 0.05). Body weight, testicular morphometry, and testosterone level were comparable across all groups ( P > 0.05). The study showed that trona has a dose-dependent deleterious effect on sperm characteristic. The antispermatogenic effect of trona was associated with lipid peroxidation but not testosterone.

  16. Lipid peroxidation and decomposition-Conflicting roles in plaque vulnerability and stability

    PubMed Central

    Parthasarathy, Sampath; Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi

    2008-01-01

    The low density lipoprotein (LDL) oxidation hypothesis has generated considerable interest in oxidative stress and how it might affect atherosclerosis. However, the failure of antioxidants, particularly vitamin E, to affect the progression of the disease in humans has convinced even staunch supporters of the hypothesis to take a step backwards and reconsider alternatives. Preponderant evidence for the hypothesis came from animal antioxidant intervention studies. In this review we point out basic differences between animal and human atherosclerosis development and suggest that human disease starts where animal studies end. While initial oxidative steps in the generation of early fatty streak lesions might be common, the differences might be in the steps involved in the decomposition of peroxidized lipids into aldehydes and their further oxidation into carboxylic acids. We suggest that these steps may not be amenable to attenuation by antioxidants and antioxidants might actually counter the stabilization of plaque by preventing the formation of carboxylic acids which are anti-inflammatory in nature. The formation of such dicarboxylic acids may also be conducive to plaque stabilization by trapping calcium. We suggest that agents that would prevent the decomposition of lipid peroxides and promote the formation and removal of lipid hydroxides, such as paraoxonase (PON 1) or apo A1/high density lipoprotein (HDL) might be more conducive to plaque regression. PMID:18406361

  17. Oxidative stress and cytotoxicity elicited lipid peroxidation in hemocytes of Bombyx mori larva infested with dipteran parasitoid, Exorista bombycis.

    PubMed

    Pooja, Makwana; Pradeep, Appukuttan Nair R; Hungund, Shambhavi P; Sagar, Chandrashekhar; Ponnuvel, Kangayam M; Awasthi, Arvind K; Trivedy, Kanika

    2017-12-20

    Parasitization of silkworm, Bombyx mori by invasive larva of dipteran parasitoid Exorista bombycis caused upto 20% revenue loss in sericulture. The parasitism was successful by suppressing host immune system however mechanism of immune suppression induced by E. bombycis is unknown which is unravelled here. The infestation induced cytotoxic symptoms in host hemocytes, such as vacuolated cytoplasm, porous plasma membrane, indented nuclei with condensed chromatin and dilated RER. One of the markers of necrosis is cell permeabilization, which can be measured as released lactate dehydrogenase (LDH). LDH level showed significantly (P<0.01) high release into extracellular medium in vitro after exposure of hemocytes to parasitoid larval tissue protein compared with control revealing membrane permeability and loss of cell integrity. At five minutes after exposure, cytotoxicity was 43% and was increased to 99% at 3h. The cytotoxicity is signalled by increased content of hydrogen peroxide (H2O2) causing lipid peroxidation followed by porosity in plasma membrane. A test for lipid peroxidation by measurement of lipid peroxidation breakdown product, malondialdehyde (MDA) revealed significant increase in peroxidation from one to 24 h post-invasion, with maximum at 12 h (P<0.008). Level of reactive oxygen species measured as H2O2 production increased from 6 to 12 h post-invasion and continued to increase significantly (P<0.03) reaching maximum at 48 h. These observations reveal that dipteran endoparasitoid invasion induced H2O2 production in the hemocytes causing cytotoxicity, lipid peroxidation and membrane porosity that suppressed both humoral- and cell-mediated immune responses of hemocytes in B. mori.

  18. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy.

    PubMed

    Horton, Jureta W

    2003-07-15

    (ascorbic acid, glutathione, N-acetyl-L-cysteine, or vitamins A, E, and C alone or in combination) have been shown to reduce burn and burn/sepsis mediated mortality, to attenuate changes in cellular energetics, to protect microvascular circulation, reduce tissue lipid peroxidation, improve cardiac output, and to reduce the volume of required fluid resuscitation. Antioxidant vitamin therapy with fluid resuscitation has also been shown to prevent burn related cardiac NF-kappaB nuclear migration, to inhibit cardiomyocyte secretion of TNF-alpha, IL-1beta, and IL-6, and to improve cardiac contractile function. These data collectively support the hypothesis that cellular oxidative stress is a critical step in burn-mediated injury, and suggest that antioxidant strategies designed to either inhibit free radical formation or to scavage free radicals may provide organ protection in patients with burn injury.

  19. [The influence of the actoprotectors on lipid peroxidation and erythrocyte membranes in rats poisoned with malathion ].

    PubMed

    Myshkin, V A; Guliaeva, I A; Ibatullina, R B; Savlukov, A I; Enikeev, D A; Sergeeva, S A

    2004-01-01

    Actoprotecting properties ofbemitil, tietasol in combination with atropin were studied in red cell membranes and lipid peroxidation of rats poisoned with MI in a dose 320 mg/kg (0.9 LD50). Atropin treatment showed a low effect. The addition of bemitil and tietasol normalized electric charge and osmotic resistance in red cell membranes, activity of superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase and content of lipid peroxidation products--ketodienes and TBA-reacting products. Efficacy of the combined treatment is due primarily to noncholinergic mechanism of action of bemitil and tietasol--stimulation of endogenic antioxidant systems of erythron and antiradical activity (bemitil).

  20. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation.

    PubMed

    Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi

    2016-01-01

    The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease.

  1. Lipid peroxidation biomarkers in adolescents with or at high-risk for bipolar disorder.

    PubMed

    Scola, Gustavo; McNamara, Robert K; Croarkin, Paul E; Leffler, Jarrod M; Cullen, Kathryn R; Geske, Jennifer R; Biernacka, Joanna M; Frye, Mark A; DelBello, Melissa P; Andreazza, Ana C

    2016-03-01

    Prior work suggests that adult bipolar disorder (BD) is associated with increased oxidative stress and inflammation. This exploratory study examined markers of lipid and protein oxidation and inflammation in adolescents with and at varying risk for BD type I (BD-I). Blood was obtained from four groups of adolescents (9-20 years of age): (1) healthy comparison subjects with no personal or family history of psychiatric disorders (n=13), (2) subjects with no psychiatric diagnosis and at least one parent with BD-I ('high-risk', n=15), (3) subjects with at least one parent with BD-I and a diagnosis of depressive disorder not-otherwise-specified ('ultra-high-risk', n=20), and (4) first-episode patients exhibiting mixed or manic symptoms that received a diagnosis of BD-I (n=16). Plasma levels of lipid peroxidation (LPH, 4-HNE, 8-ISO), protein carbonyl, and inflammation (IL-1α-β, IL-6, IL-10, IFNγ, TNFα) were assessed using analysis of variance and covariance models. LPH was lower in adolescents with fully syndromal BD than controls, while LPH levels in the at-risk groups were between healthy controls and fully syndromal BD. Post-hoc analysis showed a non-significant increase in the (4-HNE+8-ISO)/LPH ratio suggesting a potential conversion of LPH into late-stage markers of lipid peroxidation. There were no significant differences among protein carbonyl content and inflammatory markers. In adolescents, fully syndromal BD is associated with significant reductions in LPH levels, and LPH levels decrease along the spectrum of risk for BD-I. Quantifying lipid peroxidation in longitudinal studies may help clarify the role of LPH in BD risk progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Octanal inhibits spore germination of Penicillium digitatum involving membrane peroxidation.

    PubMed

    Dou, Shiwen; Liu, Shengquan; Xu, Xiaoyong; OuYang, Qiuli; Tao, Nengguo

    2017-07-01

    Octanal is a potential alternative to chemical fungicides in controlling postharvest disease of citrus fruit. In this study, the antifungal activity and the underlying mechanism of octanal against spore germination of Penicillium digitatum, one of the main postharvest pathogens in citrus, were investigated. Results showed that octanal at different concentrations (0, 0.25, 0.50, 1.00, 2.00 μl/ml) inhibited the growth of P. digitatum spores in a dose-dependent manner. The morphology and the membrane permeability of P. digitatum spores were visibly altered by 0.25 and 2.00 μl/ml of octanal. Meanwhile, octanal decreased the total lipids contents of P. digitatum spores, indicating that the membrane integrity is damaged. Furthermore, octanal apparently induced the massive accumulation of total malonaldehyde (MDA) and the reactive oxygen species (ROS). An increase in the activities of lipoxygenase (LOX), NADH oxidase, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) was also observed. These results suggested that a membrane damage mechanism involving membrane peroxidation might contribute to the antifungal activity of octanal against P. digitatum spores.

  3. Effect of estradiol and hydrocortisone on the process of peroxidation of mitochondrial membrane lipids in irradiated rat liver. [/sup 60/Co. gamma. rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saksonov, N.P.

    Experiments were conducted on male, mongrel albino rats. They were exposed to /sup 60/Co ..gamma.. radiation once, in a dosage of 600 R. Estradiol and hydrocortisone were given intraperitoneally at the rate of 1 mg/kg, 2 h before irradiation or 2, 24 and 72 h after exposure. The animals were sacrificed 5 days after irradiation. These studies established that single exposure of animals to radiation in a dosage of 600 R leads to activation of processes of peroxidation of membrane lipids of the hepatic mitochondria. When estradiol is given 2 and 4 days before sacrificing, one observes acceleration of processesmore » of peroxidation of lipids without reliable change in malonic dialdehyde content. Administration of estrogen 5 days prior to sacrificing leads to a drop of malonic dialdehyde level, which is indicative of attenuation of the process of lipid peroxidation. Administration of hydrocortisone is associated with elevation of the latency period and level of peroxidation after 5 days, as compared to intact animals. Injection of this hormone 2 days before sacrificing the animals leads to attenuation and decrease in rate of peroxidation. The obtained data indicate that there are different mechanisms involved in the inhibitory effects of estradiol and hydrocortisone on peroxidation of lipids of mitochondrial membranes of the rat liver, activated by irradiation. Thus, it may be assumed that steroid hormones are actively involved in regulation of lipid peroxidation when mammals are exposed to radiation. (ERB)« less

  4. Curcumin prevents the oxidation and lipid modification of LDL and its inhibition of prostacyclin generation by endothelial cells in culture.

    PubMed

    Mahfouz, Mohamedain M; Zhou, Sherry Q; Kummerow, Fred A

    2009-11-01

    Low-density lipoprotein (LDL) was isolated from human plasma and oxidized by 5microM copper sulfate for 4h at 37 degrees C in the absence and presence of 1, 3, 5, 10, or 20microM of curcumin. LDL oxidized in the absence of curcumin (oxLDL) showed an increased levels of conjugated dienes, lipid peroxides (TBARS) and lysolecithin (lysoPC) and a significant loss of polyunsaturated fatty acids (PUFA). LDL oxidized with 5microM copper sulfate in the presence of curcumin caused a significant decrease of conjugated diene, lipid peroxides, lysoPC and significant increase of PUFA compared to oxLDL. These changes were dose dependent and reached a maximum at 5microM curcumin. Incubation of human endothelial cells (EC) with 200microg protein/ml of oxLDL caused a significant decrease of prostacyclin (PGI(2)) generation. LDL oxidized in presence of 5microM curcumin did not show any inhibition of PGI(2) generation compared to the control cells. These results indicate that curcumin is an effective chain-breaking antioxidant which prevents oxidation and lipid modification of LDL. The inhibition of oxLDL on PGI(2) is considered a contributing factor in the pathogenesis of thrombosis and atherosclerosis. Curcumin supplementation could be an effective strategy in preventing LDL oxidation and its impact on atherosclerosis and lesion formation.

  5. Protective Effect of Pulp Oil Extracted from Canarium odontophyllum Miq. Fruit on Blood Lipids, Lipid Peroxidation, and Antioxidant Status in Healthy Rabbits

    PubMed Central

    Shakirin, Faridah Hanim; Azlan, Azrina; Ismail, Amin; Amom, Zulkhairi; Cheng Yuon, Lau

    2012-01-01

    The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil. PMID:22685623

  6. Protective effect of pulp oil extracted from Canarium odontophyllum Miq. Fruit on blood lipids, lipid peroxidation, and antioxidant status in healthy rabbits.

    PubMed

    Shakirin, Faridah Hanim; Azlan, Azrina; Ismail, Amin; Amom, Zulkhairi; Yuon, Lau Cheng

    2012-01-01

    The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil.

  7. Effects of isoquinoline alkaloid berberine on lipid peroxidation, antioxidant defense system, and liver damage induced by lead acetate in rats.

    PubMed

    Hasanein, Parisa; Ghafari-Vahed, Masumeh; Khodadadi, Iraj

    2017-01-01

    Liver is considered a target organ affected by lead toxicity. Oxidative stress is among the mechanisms involved in liver damage. Here we investigated the effects of the natural alkaloid berberine on oxidative stress and hepatotoxicity induced by lead in rats. Animals received an aqueous solution of lead acetate (500 mg Pb/l in the drinking water) and/or daily oral gavage of berberine (50 mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical, molecular, and histological evaluations. Lead-induced oxidative stress, shown by increasing lipid peroxidation along with a concomitant decrease in hepatic levels of thiol groups, total antioxidant capacity, the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and reduced versus oxidized glutathione ratio. Berberine corrected all the disturbances in oxidative stress markers induced by lead administration. Berberine also prevented the elevated levels of enzymes (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) and the decrease in body weight and albumin. The protective effects of berberine were comparable with silymarin. Furthermore, berberine attenuated liver damage, shown by decreased necrosis and inflammatory cell infiltration. Berberine represents a potential therapeutic option against lead-induced hepatotoxicity through inhibiting lipid peroxidation and enhancing antioxidant defenses. Berberine exerted protective effects on lead-induced oxidative stress and hepatotoxicity in rats.

  8. The Peroxisome Proliferator-activated Receptor γ (PPARγ) Controls Natural Protective Mechanisms against Lipid Peroxidation in Amyotrophic Lateral Sclerosis*

    PubMed Central

    Benedusi, Valeria; Martorana, Francesca; Brambilla, Liliana; Maggi, Adriana; Rossi, Daniela

    2012-01-01

    Recent evidence highlights the peroxisome proliferator-activated receptors (PPARs) as critical neuroprotective factors in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). To gain new mechanistic insights into the role of these receptors in the context of ALS, here we investigated how PPAR transcriptional activity varies in hSOD1G93A ALS transgenic mice. We demonstrate that PPARγ-driven transcription selectively increases in the spinal cord of symptomatic hSOD1G93A mice. This phenomenon correlates with the up-regulation of target genes, such as lipoprotein lipase and glutathione S-transferase α-2, which are implicated in scavenging lipid peroxidation by-products. Such events are associated with enhanced PPARγ immunoreactivity within motor neuronal nuclei. This observation, and the fact that PPARγ displays increased responsiveness in cultured hSOD1G93A motor neurons, points to a role for this receptor in neutralizing deleterious lipoperoxidation derivatives within the motor cells. Consistently, in both motor neuron-like cultures and animal models, we report that PPARγ is activated by lipid peroxidation end products, such as 4-hydroxynonenal, whose levels are elevated in the cerebrospinal fluid and spinal cord from ALS patients. We propose that the accumulation of critical concentrations of lipid peroxidation adducts during ALS progression leads to the activation of PPARγ in motor neurons. This in turn triggers self-protective mechanisms that involve the up-regulation of lipid detoxification enzymes, such as lipoprotein lipase and glutathione S-transferase α-2. Our findings indicate that anticipating natural protective reactions by pharmacologically modulating PPARγ transcriptional activity may attenuate neurodegeneration by limiting the damage induced by lipid peroxidation derivatives. PMID:22910911

  9. Alleviation of Waterlogging Damage in Winter Rape by Uniconazole Application: Effects on Enzyme Activity, Lipid Peroxidation, and Membrane Integrity.

    PubMed

    Leul; Zhou

    1999-08-01

    Oilseed rape (Brassica napus L.) seedlings treated with uniconazole [(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-l-yl)-l-penten-3-ol] were transplanted at the five-leaf stage into specially designed experimental containers and then exposed to waterlogging for 3 weeks. After waterlogging stress, uniconazole-treated seedlings had significantly higher activities of superoxide dismutase, catalase, and peroxidase enzymes and endogenous free proline content at both the seedling and flowering stages. Uniconazole plus waterlogging-treated plants had a significantly higher content of unsaturated fatty acids than the waterlogged plants. There was a parallel increase in the lipid peroxidation level and electrolyte leakage rate from the leaves of waterlogged plants. Leaves from uniconazole plus waterlogging-treated plants had a significantly lower lipid peroxidation level and electrolyte leakage rate compared with waterlogged plants at both the seedling and flowering stages. Pretreatment of seedlings with uniconazole could effectively delay stress-induced degradation of chlorophyll and reduction of root oxidizability. Uniconazole did not alter the soluble sugar content of leaves and stems, after waterlogging of seedlings. Uniconazole improved waterlogged plant performance and increased seed yield, possibly because of improved antioxidation defense mechanisms, and it retarded lipid peroxidation and membrane deterioration of plants.Key Words. Waterlogging-Uniconazole-Brassica napus L.-Enzymes-Lipid peroxidation-Membrane integrityhttp://link.springer-ny.com/link/service/journals/00344/bibs/18n1p9.html

  10. N-3 Polyunsaturated Fatty Acids are Selective Targets of Ethanol Withdrawal-Induced Lipid Peroxidation

    USDA-ARS?s Scientific Manuscript database

    Ethanol withdrawal is a potentially life-threatening neurological syndrome owing to decreased GABA transmission and increased glutamatergic transmission resulting in a pro-excitotoxic state. Previous data indicate that ethanol withdrawal may increase CNS lipid peroxidation particularly to the n-3 fa...

  11. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation

    PubMed Central

    Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi

    2016-01-01

    Purpose: The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. Methods: A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Results: Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Conclusions: Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease. PMID:27648122

  12. Investigations of antioxidant-mediated protection and mitigation of radiation-induced DNA damage and lipid peroxidation in murine skin.

    PubMed

    Jelveh, Salomeh; Kaspler, Pavel; Bhogal, Nirmal; Mahmood, Javed; Lindsay, Patricia E; Okunieff, Paul; Doctrow, Susan R; Bristow, Robert G; Hill, Richard P

    2013-08-01

    Radioprotection and mitigation effects of the antioxidants, Eukarion (EUK)-207, curcumin, and the curcumin analogs D12 and D68, on radiation-induced DNA damage or lipid peroxidation in murine skin were investigated. These antioxidants were studied because they have been previously reported to protect or mitigate against radiation-induced skin reactions. DNA damage was assessed using two different assays. A cytokinesis-blocked micronucleus (MN) assay was performed on primary skin fibroblasts harvested from the skin of C3H/HeJ male mice 1 day, 1 week and 4 weeks after 5 Gy or 10 Gy irradiation. Local skin or whole body irradiation (100 kVp X-rays or caesium (Cs)-137 γ-rays respectively) was performed. DNA damage was further quantified in keratinocytes by immunofluorescence staining of γ-histone 2AX (γ-H2AX) foci in formalin-fixed skin harvested 1 hour or 1 day post-whole body irradiation. Radiation-induced lipid peroxidation in the skin was investigated at the same time points as the MN assay by measuring malondialdehyde (MDA) with a Thiobarbituric acid reactive substances (TBARS) assay. None of the studied antioxidants showed significant mitigation of skin DNA damage induced by local irradiation. However, when EUK-207 or curcumin were delivered before irradiation they provided some protection against DNA damage. In contrast, all the studied antioxidants demonstrated significant mitigating and protecting effects on radiation-induced lipid peroxidation at one or more of the three time points after local skin irradiation. Our results show no evidence for mitigation of DNA damage by the antioxidants studied in contrast to mitigation of lipid peroxidation. Since these agents have been reported to mitigate skin reactions following irradiation, the data suggest that changes in lipid peroxidation levels in skin may reflect developing skin reactions better than residual post-irradiation DNA damage in skin cells. Further direct comparison studies are required to confirm

  13. Nitroxide free radicals protect macular carotenoids against chemical destruction (bleaching) during lipid peroxidation

    PubMed Central

    Zareba, M.; Widomska, J.; Burke, J. M.; Subczynski, W. K.

    2016-01-01

    Macular xanthophylls (MXs) lutein and zeaxanthin are dietary carotenoids that are selectively concentrated in the human eye retina, where they are thought to protect against age-related macular degeneration (AMD) by multiple mechanisms, including filtration of phototoxic blue light and quenching of singlet oxygen and triplet states of photosensitizers. These physical protective mechanisms require that MXs be in their intact structure. Here, we investigated the protection of the intact structure of zeaxanthin incorporated into model membranes subjected to oxidative modification by water- and/or membrane-soluble small nitroxide free radicals. Model membranes were formed from saturated, monounsaturated, and polyunsaturated phosphatidylcholines (PCs). Oxidative modification involved autoxidation, iron-mediated, and singlet oxygen-mediated lipid peroxidation. The extent of chemical destruction (bleaching) of zeaxanthin was evaluated from its absorption spectra and compared with the extent of lipid peroxidation evaluated using the thiobarbituric acid assay. Nitroxide free radicals with different polarity (membrane/water partition coefficients) were used. The extent of zeaxanthin bleaching increased with membrane unsaturation and correlated with the rate of PC oxidation. Protection of the intact structure of zeaxanthin by membrane-soluble nitroxides was much stronger than that by water-soluble nitroxides. The combination of zeaxanthin and lipid-soluble nitroxides exerted strong synergistic protection against singlet oxygen-induced lipid peroxidation. The synergistic effect may be explained in terms of protection of the intact zeaxanthin structure by effective scavenging of free radicals by nitroxides, therefore allowing zeaxanthin to quench the primary oxidant, singlet oxygen, effectively by the physical protective mechanism. The redox state of nitroxides was monitored using electron paramagnetic resonance spectroscopy. Both nitroxide free radicals and their reduced form

  14. Nitroxide free radicals protect macular carotenoids against chemical destruction (bleaching) during lipid peroxidation.

    PubMed

    Zareba, M; Widomska, J; Burke, J M; Subczynski, W K

    2016-12-01

    Macular xanthophylls (MXs) lutein and zeaxanthin are dietary carotenoids that are selectively concentrated in the human eye retina, where they are thought to protect against age-related macular degeneration (AMD) by multiple mechanisms, including filtration of phototoxic blue light and quenching of singlet oxygen and triplet states of photosensitizers. These physical protective mechanisms require that MXs be in their intact structure. Here, we investigated the protection of the intact structure of zeaxanthin incorporated into model membranes subjected to oxidative modification by water- and/or membrane-soluble small nitroxide free radicals. Model membranes were formed from saturated, monounsaturated, and polyunsaturated phosphatidylcholines (PCs). Oxidative modification involved autoxidation, iron-mediated, and singlet oxygen-mediated lipid peroxidation. The extent of chemical destruction (bleaching) of zeaxanthin was evaluated from its absorption spectra and compared with the extent of lipid peroxidation evaluated using the thiobarbituric acid assay. Nitroxide free radicals with different polarity (membrane/water partition coefficients) were used. The extent of zeaxanthin bleaching increased with membrane unsaturation and correlated with the rate of PC oxidation. Protection of the intact structure of zeaxanthin by membrane-soluble nitroxides was much stronger than that by water-soluble nitroxides. The combination of zeaxanthin and lipid-soluble nitroxides exerted strong synergistic protection against singlet oxygen-induced lipid peroxidation. The synergistic effect may be explained in terms of protection of the intact zeaxanthin structure by effective scavenging of free radicals by nitroxides, therefore allowing zeaxanthin to quench the primary oxidant, singlet oxygen, effectively by the physical protective mechanism. The redox state of nitroxides was monitored using electron paramagnetic resonance spectroscopy. Both nitroxide free radicals and their reduced form

  15. Modulatory effect of Scoparia dulcis in oxidative stress-induced lipid peroxidation in streptozotocin diabetic rats.

    PubMed

    Latha, M; Pari, L

    2003-01-01

    In light of evidence that diabetes mellitus is associated with oxidative stress and altered antioxidant status, we investigated the effect of Scoparia dulcis plant extracts (SPEt) (aqueous, ethanolic, and chloroform) in streptozotocin diabetic rats. Significant increases in the activities of insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, reduced glutathione, vitamin C, and vitamin E were observed in liver, kidney, and brain on treatment with SPEt. In addition, the treated groups also showed significant decreases in blood glucose, thiobarbituric acid-reactive substances, and hydroperoxide formation in tissues, suggesting its role in protection against lipid peroxidation-induced membrane damage. Thus, the results of the present study indicate that extracts of S. dulcis, especially the aqueous extract, showed a modulatory effect by attenuating the above lipid peroxidation in streptozotocin diabetes.

  16. 4-Hydroxy-nonenal—A Bioactive Lipid Peroxidation Product †

    PubMed Central

    Schaur, Rudolf J.; Siems, Werner; Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress. PMID:26437435

  17. Lipid Profiling of the Arabidopsis Hypersensitive Response Reveals Specific Lipid Peroxidation and Fragmentation Processes: Biogenesis of Pimelic and Azelaic Acid1[C][W

    PubMed Central

    Zoeller, Maria; Stingl, Nadja; Krischke, Markus; Fekete, Agnes; Waller, Frank; Berger, Susanne; Mueller, Martin J.

    2012-01-01

    Lipid peroxidation (LPO) is induced by a variety of abiotic and biotic stresses. Although LPO is involved in diverse signaling processes, little is known about the oxidation mechanisms and major lipid targets. A systematic lipidomics analysis of LPO in the interaction of Arabidopsis (Arabidopsis thaliana) with Pseudomonas syringae revealed that LPO is predominantly confined to plastid lipids comprising galactolipid and triacylglyceride species and precedes programmed cell death. Singlet oxygen was identified as the major cause of lipid oxidation under basal conditions, while a 13-lipoxygenase (LOX2) and free radical-catalyzed lipid oxidation substantially contribute to the increase upon pathogen infection. Analysis of lox2 mutants revealed that LOX2 is essential for enzymatic membrane peroxidation but not for the pathogen-induced free jasmonate production. Despite massive oxidative modification of plastid lipids, levels of nonoxidized lipids dramatically increased after infection. Pathogen infection also induced an accumulation of fragmented lipids. Analysis of mutants defective in 9-lipoxygenases and LOX2 showed that galactolipid fragmentation is independent of LOXs. We provide strong in vivo evidence for a free radical-catalyzed galactolipid fragmentation mechanism responsible for the formation of the essential biotin precursor pimelic acid as well as of azelaic acid, which was previously postulated to prime the immune response of Arabidopsis. Our results suggest that azelaic acid is a general marker for LPO rather than a general immune signal. The proposed fragmentation mechanism rationalizes the pathogen-induced radical amplification and formation of electrophile signals such as phytoprostanes, malondialdehyde, and hexenal in plastids. PMID:22822212

  18. Placental antioxidant enzyme status and lipid peroxidation in pregnant women with type 1 diabetes: The effect of vitamin C and E supplementation.

    PubMed

    Johnston, Philip C; McCance, David R; Holmes, Valerie A; Young, Ian S; McGinty, Ann

    2016-01-01

    In view of the increased rates of pre-eclampsia observed in diabetic pregnancy and the lack of ex vivo data on placental biomarkers of oxidative stress in T1 diabetic pregnancy, the aim of the current investigation was to examine placental antioxidant enzyme status and lipid peroxidation in pregnant women with type 1 diabetes. A further objective of the study was to investigate the putative impact of vitamin C and E supplementation on antioxidant enzyme activity and lipid peroxidation in type 1 diabetic placentae. The current study measured levels of antioxidant enzyme [glutathione peroxidase (Gpx), glutathione reductase (Gred), superoxide dismutase (SOD) and catalase] activity and degree of lipid peroxidation (aqueous phase hydroperoxides and 8-iso-prostaglandin F2α) in matched central and peripheral samples from placentae of DAPIT (n=57) participants. Levels of vitamin C and E were assessed in placentae and cord blood. Peripheral placentae demonstrated significant increases in Gpx and Gred activities in pre-eclamptic in comparison to non-pre-eclamptic women. Vitamin C and E supplementation had no significant effect on cord blood or placental levels of these vitamins, nor on placental antioxidant enzyme activity or degree of lipid peroxidation in comparison to placebo-supplementation. The finding that maternal supplementation with vitamin C/E does not augment cord or placental levels of these vitamins is likely to explain the lack of effect of such supplementation on placental indices including antioxidant enzymes or markers of lipid peroxidation. Copyright © 2016. Published by Elsevier Inc.

  19. Daily supplementation with iron increases lipid peroxidation in young women with low iron stores.

    PubMed

    King, Sarah M; Donangelo, Carmen M; Knutson, Mitchell D; Walter, Patrick B; Ames, Bruce N; Viteri, Fernando E; King, Janet C

    2008-06-01

    The aim of this study was to determine whether women with low iron stores (plasma ferritin lipid peroxidation as measured by ethane exhalation rates and plasma malondialdehyde. The women served as their own control as pre- and post-supplementation periods were compared. Twelve women participated in the study for a 70-day period and consumed daily iron supplements (98 mg of iron as ferrous sulfate) from day 14 to day 70. Baseline blood and expired air samples were obtained on days 1 and 14; measurements during supplementation were performed on days 56 and 70, that is at 6 and 8 weeks of supplementation. Iron status improved during the iron supplementation period; biochemical indicators of lipid peroxidation also increased. After 6 wks of iron supplementation, serum ferritin almost doubled and body iron more than doubled. Hemoglobin levels increased slightly and other indicators of iron status became normal. However, plasma malondialdehyde (MDA) and breath ethane exhalation rates (BEER) increased by more than 40% between baseline and 6 wks of supplementation; these increases correlated significantly with plasma iron and ferritin levels. MDA was positively correlated with BEER. BEER increased further after 8 wks of iron supplementation. The increased indicators of lipid peroxidation with duration of supplementation and as iron status improved suggest that providing daily nearly 100 mg iron may not be a totally innocuous regimen for correcting iron depletion in women.

  20. Protective effect of hydroxytyrosol and its metabolite homovanillic alcohol on H(2)O(2) induced lipid peroxidation in renal tubular epithelial cells.

    PubMed

    Deiana, Monica; Incani, Alessandra; Rosa, Antonella; Corona, Giulia; Atzeri, Angela; Loru, Debora; Paola Melis, M; Assunta Dessì, M

    2008-09-01

    We investigated the capacity of hydroxytyrosol (HT), 3,4-dihydroxyphenylethanol, and homovanillic alcohol (HVA), 4-hydroxy-3-methoxy-phenylethanol, to inhibit H(2)O(2) induced oxidative damage in LLC-PK1, a porcine kidney epithelial cell line, studying the effect of H(2)O(2) on specific cell membrane lipid targets, unsaturated fatty acids and cholesterol. Exposure to H(2)O(2) induced a significant increase of the level of MDA together with a disruption of the membrane structure, with the loss of unsaturated fatty acids, cholesterol and alpha-tocopherol, and the formation of fatty acids hydroperoxides and 7-ketocholesterol. Pretreatment with HT protected renal cells from oxidative damage: the level of membrane lipids was preserved and there was no significant detection of oxidation products. HVA exerted a comparable activity, thus both HT and HVA were able to prevent in renal cells the lipid peroxidation process that plays a central role in tubular cell injury.

  1. Evaluation of lipid peroxidation activity at intravenous administration of gold nanorods in rats with simulated diabetes and transplanted liver cancer

    NASA Astrophysics Data System (ADS)

    Bucharskaya, Alla B.; Dikht, Natalia I.; Afanasyeva, Galina A.; Terentyuk, Georgy S.; Maslyakova, Galina N.; Zaraeva, Nadezhda V.; Khlebtsov, Nikolai G.; Khlebtsov, Boris N.

    2014-01-01

    In the experiment the white outbred rats with transplanted liver cancer (cholangiocarcinoma line PC-1) and simulated alloxan diabetes were treated by single intravenous injection of gold nanorods. State of lipid peroxidation was evaluated by the following parameters: the malondialdehyde, lipid hydroperoxide, the average weght molecules in the serum of animals by conventional spectrophotometric methods study using a spectrofluorometer RF-5301 PC (Shimadzu, Japan). In both experimental groups of animals the significant increasing of levels of lipid peroxidation products was noted compared with control group. After intravenous administration of nanoparticles in the group of animals with alloxan diabetes the activation of a free radical oxidation was not observed, in group with transplanted liver cancer the increasing of levels of lipid hydroperoxide, malondialdehyde was established.

  2. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    PubMed Central

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A.

    2012-01-01

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation. PMID:22473321

  3. Interrelationships between lipid peroxidation and total antioxidant status in sedentary controls and unprofessional athletes.

    PubMed

    Caimi, Gregorio; Canino, Baldassare; Lo Presti, Rosalia

    2010-01-01

    We examined the thiobarbituric acid-reactive substances (TBARS) as an index of lipid peroxidation, and the total antioxidant status (TAS) in 81 unprofessional athletes subdivided into three subgroups. The first group included 28 subjects who practised endurance sports, the second included 30 subjects who practised mixed sports, the third included 23 subjects who practised power sports. We enrolled also a group of 61 sedentary controls (SC). TBARS were increased and TAS was decreased in the whole group of athletes in comparison with SC; an almost similar behaviour was present also subdividing athletes according to the practised sport. A significant negative correlation between these two parameters emerged in SC but not in the whole group of athletes. Unless for the athletes that practised endurance sports a similar trend was found in athletes that practised mixed and power sports. In conclusion, at rest the symmetrical behaviour between the lipid peroxidation increase and the TAS decrease, observed in sedentary controls, was not evident in unprofessional athletes who practised different sports.

  4. Effect of alpha-tocopherol on lipid peroxidation and antioxidant system in fibrosarcoma bearing rats.

    PubMed

    Vasavi, H; Thangaraju, M; Sachdanandam, P

    1994-02-23

    The anticarcinogenic activity of alpha-tocopherol (Vitamin E) was tried in fibrosarcoma induced rats through its antioxidative potential. The rate of formation of malondialdehyde (MDA), the end product of lipid peroxidation was analysed in alpha-tocopherol (400 mg/kg body weight) treated and untreated fibrosarcoma bearing rats with respective controls. The levels of non-enzymic antioxidants like, glutathione and vitamin E, and enzymic antioxidants viz., catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and glutathione-S-transferase (GST) were assayed as well. Significantly increased (p < 0.001) level of lipid peroxide was observed with concomitant decreases in the level of enzymic and non-enzymic antioxidants in fibrosarcoma bearing rats when compared with control animals. In alpha-tocopherol supplemented animals, the corrected level of these parameters were observed likely to near normal values. Thus, alpha-tocopherol can be accepted to pose first line of defense mechanism against excessively formed reactive species due to impaired antioxidant systems in fibrosarcoma conditions, that cause membrane damage leading to deleterious effects.

  5. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls

    PubMed Central

    Singh, Mahavir; Kapoor, Aniruddh; Bhatnagar, Aruni

    2015-01-01

    Extensive research has shown that increased production of reactive oxygen species (ROS) results in tissue injury under a variety of pathological conditions and chronic degenerative diseases. While ROS are highly reactive and can incite significant injury, polyunsaturated lipids in membranes and lipoproteins are their main targets. ROS-triggered lipid peroxidation reactions generate a range of reactive carbonyl species (RCS), and these RCS spread and amplify ROS-related injury. Several RCS generated in oxidizing lipids, such as 4-hydroxy trans-2-nonenal (HNE), 4-oxo-2-(E)-nonenal (ONE), acrolein, malondialdehyde (MDA) and phospholipid aldehydes have been shown to be produced under conditions of oxidative stress and contribute to tissue injury and dysfunction by depleting glutathione and other reductants leading to the modification of proteins, lipids, and DNA. To prevent tissue injury, these RCS are metabolized by several oxidoreductases, including members of the aldo-keto reductase (AKR) superfamily, aldehyde dehydrogenases (ALDHs), and alcohol dehydrogenases (ADHs). Metabolism via these enzymes results in RCS inactivation and detoxification, although under some conditions, it can also lead to the generation of signaling molecules that trigger adaptive responses. Metabolic transformation and detoxification of RCS by oxidoreductases prevent indiscriminate ROS toxicity, while at the same time, preserving ROS signaling. A better understanding of RCS metabolism by oxidoreductases could lead to the development of novel therapeutic interventions to decrease oxidative injury in several disease states and to enhance resistance to ROS-induced toxicity. PMID:25559856

  6. Influence of diet with kale on lipid peroxides and malondialdehyde levels in blood serum of laboratory rats over intoxication with paraquat.

    PubMed

    Sikora, Elżbieta; Bodziarczyk, Izabela

    2013-01-01

    Organism's lipid peroxidation is one of the most often examined and known physiological process evoked by free radicals. It concerns oxidation reaction of unsaturated fatty acid and/or other lipids leading to lipid oxidation products (LOP), which as a result of further changes generate among others the malondialdehyde molecules. The aim of the work was an estimation if raw or cooked kale addition to rat's diet influences antioxidant defense efficiency in their organisms in comparison to rats fed with standard AIN-93G diet. The experiment was conducted with 36 Wistar strain, male rats over 21 days. The rats were divided into 3 groups (each 12 stuck) which were fed with: standard diet AIN-93G (2 groups), AIN-93G diet with 10% addition of raw kale (2 groups), and AIN-93G with 10% addition of cooked lyophilised kale. The total content of polyphenols (FC method) and antioxidant activity (ABTS+•) were previously determined in raw and then in cooked kale. On the 20th day of experiment, half of rats (6 stuck) of each kind of the diet were injected intraperitoneally by the solution of paraquat (PQ) in physiological salt to evoke the oxidative stress. The next day animals were stunned and blood from their hearts was sampled. In the obtained serum, the levels of lipid oxidation products (LOP) and malondialdehyde (MDA) were assessed. It was observed that in blood serum of rats fed with modified diet with raw and cooked lyophilised kale addition the lipid oxides level was lower in comparison to control group fed with standard diet (p < 0.05). It was found that intoxication with paraquat caused growth of MDA and LOP levels in blood serum of all rats in comparison to not intoxicated groups but that growth was the lowest in group fed diet with cooked kale addition. Diet with kale, both raw and cooked, efficiently inhibited the lipid peroxidation process in rats' organisms, ongoing during natural metabolism and during evoked oxidative stress.

  7. Effects of n-3 polyunsaturated fatty acids and vitamin E on colonic mucosal leukotriene generation, lipid peroxidation, and microcirculation in rats with experimental colitis.

    PubMed

    Shimizu, T; Igarashi, J; Ohtuka, Y; Oguchi, S; Kaneko, K; Yamashiro, Y

    2001-01-01

    We investigated the effect of n-3 polyunsaturated fatty acids (PUFAs) on mucosal levels of leukotrienes (LTs) and lipid peroxide (LPO), and on mucosal microcirculation, in rats with experimental colitis induced by dextran sulfate sodium (DSS). We fed Wistar rats a perilla oil-enriched diet containing alpha-linolenic acid (63.2% of total fatty acids) with various doses of vitamin E for 4 weeks, with 4% DSS added to the drinking water during the last week. Control rats were fed a diet produced from soybean oil containing alpha-linolenic acid (5.1% of total fatty acids). Colonic mucosal blood flow was measured with a laser Doppler flowmeter. The mucosal level of arachidonic acid was significantly lower and that of eicosapentaenoic acid was significantly higher in the experimental group. The mucosal level of LPO in the experimental group fed a trace or ordinary dose of vitamin E was significantly higher than that of the controls. The production of LTB(4) and LTC(4) from the colonic mucosa in the experimental group was significantly lower than that in controls. However, only the experimental group fed a vitamin E dose 4-fold higher than that given to the controls showed a significant increase in mucosal blood flow. These results suggest that n-3 PUFAs increase mucosal blood flow by inhibiting LT production when there is sufficient vitamin E to inhibit lipid peroxidation in rats with experimental colitis. Copyright 2001 S. Karger AG, Basel

  8. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart.

    PubMed

    Anderson, Ethan J; Katunga, Lalage A; Willis, Monte S

    2012-02-01

    The heart is a highly oxidative organ in which cardiomyocyte turnover is virtually absent, making it particularly vulnerable to accumulation of lipid peroxidation products (LPP) formed as a result of oxidative damage. Reactive oxygen and nitrogen species are the most common electrophiles formed during lipid peroxidation and lead to the formation of both stable and unstable LPP. Of the LPP formed, highly reactive aldehydes are a well-recognized causative factor in ageing and age-associated diseases, including cardiovascular disease and diabetes. Recent studies have identified that the mitochondria are both a primary source and target of LPP, with specific emphasis on aldehydes in cardiomyocytes and how these affect the electron transport system and Ca(2+) balance. Numerous studies have found that there are functional consequences in the heart following exposure to specific aldehydes (acrolein, trans-2-hexanal, 4-hydroxynonenal and acetaldehyde). Because these LPP are known to form in heart failure, cardiac ischaemia-reperfusion injury and diabetes, they may have an underappreciated role in the pathophysiology of these disease processes. Lipid peroxidation products are involved in the transcriptional regulation of endogenous anti-oxidant systems. Recent evidence demonstrates that transient increases in LPP may be beneficial in cardioprotection by contributing to mitohormesis (i.e. induction of anti-oxidant systems) in cardiomyocytes. Thus, exploitation of the cardioprotective actions of the LPP may represent a novel therapeutic strategy for future treatment of heart disease. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  9. [The composition of lipids and lipid peroxidation in the pancreas of quails exposed to nitrates and correction by the amaranth's seeds].

    PubMed

    Tsekhmistrenko, S I; Ponomarenko, N V

    2013-01-01

    Researches of features of lipid composition, functioning of the system of antioxidant defense, maintenance of lipid peroxidation products in the quail's pancreas on the early postnatal ontogenesis stages are conducted for actions of nitrates and feeding with amaranth's seeds in mixed fodder. The arrival of nitrates in the organism of quails results in the decline of general lipids maintenance and nonetherified fat acids in the pancreas. Using of amaranth's seeds in mixed fodder on the background of the nitrate loading results in the increase of activity of the enzimes system of antioxidant defence, the growth of general lipid level in the quail's pancreas. Thus in correlation with separate classes of lipid maintenance of cholesterol goes down for certain, whereas the maintenance of triacylglycerols and ethers of cholesterol rises. The results obtained in the researches show the ability of amaranth's seeds to avert oxidative stress in quail's pancreas under nitrates influence.

  10. Reinterpreting the best biomarker of oxidative stress: The 8-iso-PGF(2α)/PGF(2α) ratio distinguishes chemical from enzymatic lipid peroxidation.

    PubMed

    van 't Erve, Thomas J; Lih, Fred B; Kadiiska, Maria B; Deterding, Leesa J; Eling, Thomas E; Mason, Ronald P

    2015-06-01

    The biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) is regarded as the gold standard for detection of excessive chemical lipid peroxidation in humans. However, biosynthesis of 8-iso-PGF2α via enzymatic lipid peroxidation by prostaglandin-endoperoxide synthases (PGHSs), which are significantly induced in inflammation, could lead to incorrect biomarker interpretation. To resolve the ambiguity with this biomarker, the ratio of 8-iso-PGF2α to prostaglandin F2α (PGF2α) is established as a quantitative measure to distinguish enzymatic from chemical lipid peroxidation in vitro, in animal models, and in humans. Using this method, we find that chemical lipid peroxidation contributes only 3% to the total 8-iso-PGF2α in the plasma of rats. In contrast, the 8-iso-PGF2α levels in plasma of human males are generated >99% by chemical lipid peroxidation. This establishes the potential for an alternate pathway of biomarker synthesis, and draws into question the source of increases in 8-iso-PGF2α seen in many human diseases. In conclusion, increases in 8-iso-PGF2α do not necessarily reflect increases in oxidative stress; therefore, past studies using 8-iso-PGF2α as a marker of oxidative stress may have been misinterpreted. The 8-iso-PGF2α/PGF2α ratio can be used to distinguish biomarker synthesis pathways and thus confirm the potential change in oxidative stress in the myriad of disease and chemical exposures known to induce 8-iso-PGF2α. Published by Elsevier Inc.

  11. Lipid peroxidation and antioxidant status in colorectal cancer

    PubMed Central

    Skrzydlewska, Elzbieta; Sulkowski, Stanislaw; Koda, Mariusz; Zalewski, Bogdan; Kanczuga-Koda, Luiza; Sulkowska, Mariola

    2005-01-01

    AIM: Reactive oxygen species (ROS) can induce carcinogenesis via DNA injury. Both enzymatic and non-enzymatic parameters participate in cell protection against harmful influence of oxidative stress. The aim of the present study was to assess the levels of final lipid peroxidation products like malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) in primary colorectal cancer. Moreover, we analysed the activity of main antioxidative enzymes, superoxide dismutase (Cu, Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GSSRG-R) and the level of non-enzymatic antioxidants (glutathione, vitamins C and E). METHODS: Investigations were conducted in 81 primary colorectal cancers. As a control, the same amount of sample was collected from macroscopically unchanged colon regions of the most distant location to the cancer. Homogenisation of specimens provided 10% homogenates for our evaluations. Activity of antioxidant enzymes and level of glutathione were determined by spectrophotometry. HPLC revealed levels of vitamins C and E and served as a method to detect terminal products of lipid peroxidation in colorectal cancer. RESULTS: Our studies demonstrated a statistically significant increase in the level of lipid peroxidation products (MDA-Adc.muc.-2.65±0.48 nmol/g, Adc.G3-2.15±0.44 nmol/g, clinical IV stage 4.04±0.47 nmol/g, P<0.001 and 4-HNE-Adc.muc. -0.44±0.07 nmol/g, Adc.G3-0.44±0.10 nmol/g, clinical IV stage 0.52±0.11 nmol/g, P<0.001) as well as increase of Cu,Zn-SOD (Adc.muc.-363±72 U/g, Adc.G3-318±48 U/g, clinical IV stage 421±58 U/g, P<0.001), GSH-Px (Adc.muc. -2143±623 U/g, Adc.G3-2005±591 U/g, clinical IV stage 2467±368 U/g, P<0.001) and GSSG-R (Adc.muc.-880±194 U/g, Adc.G3-795±228 U/g, clinical IV stage 951±243 U/g, P<0.001) in primary tumour comparison with normal colon (MDA-1.39±0.15 nmol/g, HNE-0.29±0.03 nmol/g, Cu, Zn-SOD-117±25 U/g, GSH-Px-1723±189 U/g, GSSG-R-625±112 U/g) especially in mucinous and G3-grade

  12. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice.

    PubMed

    Hiratsuka, Seiichi; Ishihara, Kenji; Kitagawa, Tomoko; Wada, Shun; Yokogoshi, Hidehiko

    2008-12-01

    The effect of dietary docosahexaenoic acid (DHA, C22:6n-3) with two lipid types on lipid peroxidation of the brain was investigated in streptozotocin (STZ)-induced diabetic mice. Each group of female Balb/c mice was fed a diet containing DHA-connecting phospholipids (DHA-PL) or DHA-connecting triacylglycerols (DHA-TG) for 5 wk. Safflower oil was fed as the control. The lipid peroxide level of the brain was significantly lower in the mice fed the DHA-PL diet when compared to those fed the DHA-TG and safflower oil diets, while the alpha-tocopherol level was significantly higher in the mice fed the DHA-PL diet than in those fed the DHA-TG and safflower oil diets. The DHA level of phosphatidylethanolamine in the brain was significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil diet. The dimethylacetal levels were significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil and DHA-TG diets. These results suggest that the dietary DHA-connecting phospholipids have an antioxidant activity on the brain lipids in mice, and the effect may be related to the brain plasmalogen.

  13. A natural xanthone increases catalase activity but decreases NF-kappa B and lipid peroxidation in U-937 and HepG2 cell lines.

    PubMed

    Sahoo, Binay K; Zaidi, Adeel H; Gupta, Pankaj; Mokhamatam, Raveendra B; Raviprakash, Nune; Mahali, Sidhartha K; Manna, Sunil K

    2015-10-05

    Mangiferin, a C-glycosyl xanthone, has shown anti-inflammatory, antioxidant, and anti-tumorigenic activities. In the present study, we investigated the molecular mechanism for the antioxidant property of mangiferin. Considering the role of nuclear transcription factor kappa B (NF-κB) in inflammation and tumorigenesis, we hypothesized that modulating its activity will be a viable therapeutic target in regulating the redox-sensitive ailments. Our results show that mangiferin blocks several inducers, such as tumor necrosis factor (TNF), lypopolysaccharide (LPS), phorbol-12-myristate-13-acetate (PMA) or hydrogen peroxide (H2O2) mediated NF-κB activation via inhibition of reactive oxygen species generation. In silico docking studies predicted strong binding energy of mangiferin to the active site of catalase (-9.13 kcal/mol), but not with other oxidases such as myeloperoxidase, glutathione peroxidase, or inducible nitric oxide synthase. Mangiferin increased activity of catalase by 44%, but had no effect on myeloperoxidase activity in vitro. Fluorescence spectroscopy further revealed the binding of mangiferin to catalase at the single site with binding constant and binding affinity of 3.1×10(-7) M(-1) and 1.046 respectively. Mangiferin also inhibits TNF-induced lipid peroxidation and thereby protects apoptosis. Hence, mangiferin with its ability to inhibit NF-κB and increase the catalase activity may prove to be a potent therapeutic. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. High-fat diets rich in ω-3 or ω-6 polyunsaturated fatty acids have distinct effects on lipid profiles and lipid peroxidation in mice selected for either high body weight or leanness.

    PubMed

    Dannenberger, Dirk; Nuernberg, Gerd; Renne, Ulla; Nuernberg, Karin; Langhammer, Martina; Huber, Korinna; Breier, Bernhard

    2013-05-01

    The aim of the study is to determine the response of muscle lipid peroxidation and the fatty-acid profile of three groups of mice-high body weight (DU6) obesity-prone mice, high treadmill performance (DUhTP) lean mice, and unselected control mice (DUK) fed high-fat diets (HFDs) rich in ω-3 or ω-6 polyunsaturated fatty acids (PUFA). The isocaloric HFDs were enriched with either ω-3 PUFA (27% fish oil, ω-3 HFD) or ω-6 PUFA (27% sunflower oil, ω-6 HFD), and the control group was fed standard chow (7.2% fat). Statistical calculations were done with procedure GLM of SAS. As expected, the ω-3 and ω-6 PUFA-rich HFDs showed significant effects on fatty-acid concentrations of skeletal muscle in all three lines of mice compared with the standard chow. The investigations of muscle lipid peroxidation revealed that the ω-3 PUFA-rich HFD caused the highest lipid peroxidation values in muscle of lean DUhTP mice and unselected control DUK mice. However, lower lipid peroxidation levels were observed in the obesity-prone DU6 mice. In contrast, the ω-6 PUFA-rich HFD did not influence lipid peroxidation in muscle of any of the different lines of mice. The present study suggests that a higher overall antioxidant capacity in the muscle tissue of obesity-prone DU6 mice may lead to lower levels of reactive oxygen species formation by ω-3 PUFA-rich HFDs in comparison with lean DUhTP mice. These studies raise the possibility that obesity per se may be protective against oxidative damage when high ω-3 PUFA diets are used. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Lipolysis, lipid peroxidation, and color characteristics of Serrano Hams from Duroc and large white pigs during dry-curing.

    PubMed

    del Olmo, Ana; Calzada, Javier; Nuñez, Manuel

    2013-11-01

    Lipolysis, lipid peroxidation, and colorimetric characteristics of Serrano hams from Duroc and Large White pigs along a 15-mo curing period were investigated. Physicochemical parameters of both types of hams evolved similarly during curing. Twelve of 13 free fatty acids (FFAs) increased during curing, eicosatrienoic acid being the only exception. Linoleic, stearic, and arachidonic acids and the minor heptadecanoic acid reached lower concentrations, and the rest of minor FFAs higher concentrations, in Duroc hams than in Large White hams. The index measuring the early stage of lipid peroxidation declined from month 5 onwards, indicating that the phenomenon had been completed by month 5, while the index of the secondary stage of lipid peroxidation increased with curing time. Higher values were found for the 1st index in Duroc hams. Curing affected color parameters. Lightness decreased and redness increased in both types of hams, while yellowness decreased only in Duroc hams. Lower redness values were found for Duroc hams. Major differences in color parameters were found between muscles. Principal components analysis of FFAs yielded 2 main principal components. The 1st factor, correlated with all FFAs excepting eicosatrienoic acid, allowed discrimination between curing times. The 2nd factor, correlated with eicosatrienoic acid, permitted discrimination between breeds. © 2013 Institute of Food Technologists®

  16. DNA strand breakage and lipid peroxidation after exposure to welding fumes in vivo.

    PubMed

    Chuang, Cheng-Hung; Huang, Chong-En; Chen, Hsiu-Ling

    2010-01-01

    A remarkable number of complex aerosols are generated from welding processes. The objective of this study was to compare DNA damage and lipid peroxidation in plasma and in lung and in liver tissue of rats exposed to welding fumes in an exposure chamber with those of control animals. Three air samples from the chamber were also collected to assess the exposure dose for each exposure (total samplings = 18). Eight male Sprague-Dawley rats were exposed to welding fumes at a concentration of 1540.76 mg/m(3) for 10 min/day six times on day 1, day 3, day 7, day 15, day 30 and day 40. Lung, liver and kidney injury was measured following exposure, as well as in unexposed control rats (n = 4 at the beginning of the study). DNA strand breakage [tail moment (TMOM)] in exposed animals showed significant differences at day 1, day 4, day 7 and day 15 relative to the levels in control animals. Malondialdehyde (MDA, a lipid peroxidation product) levels increased gradually post-welding to 0.4 microM at 7 days. MDA and TMOM both reached maximum levels 7 days after the first exposure. At the start, an increasing trend in DNA strand breakage was more obvious than increases in MDA levels; MDA seemed to reflect long-term effects of exposure to welding fumes since it increased after 7 days and was sustained to 40 days in vivo. Significant differences in both MDA levels and DNA strand breakage were seen in lung, liver and kidney 40 days after the first fume inhalation. We conclude that acute exposure of rats to welding fumes causes noticeable oxidative damage and lipid peroxidation effects and that DNA damage may recover after long and repeat exposure. More chronic inhalation and low-dose studies are needed in order to further assess the effects of inhalation of welding fumes on DNA and to elucidate the possible causal mechanisms associated with the biologically damaging effects of welding fumes.

  17. Effects of levetiracetam in lipid peroxidation level, nitrite-nitrate formation and antioxidant enzymatic activity in mice brain after pilocarpine-induced seizures.

    PubMed

    Oliveira, A A; Almeida, J P C; Freitas, R M; Nascimento, V S; Aguiar, L M V; Júnior, H V N; Fonseca, F N; Viana, G S B; Sousa, F C F; Fonteles, M M F

    2007-05-01

    : Oxidative stress has been implicated in a large number of human degenerative diseases, including epilepsy. Levetiracetam (LEV) is a new antiepileptic agent with broad-spectrum effects on seizures and animal models of epilepsy. Recently, it was demonstrated that the mechanism of LEV differs from that of conventional antiepileptic drugs. Objectifying to investigate if LEV mechanism of action involves antioxidant properties, lipid peroxidation levels, nitrite-nitrate formation, catalase activity, and glutathione (GSH) content were measured in adult mice brain. The neurochemical analyses were carried out in hippocampus of animals pretreated with LEV (200 mg/kg, i.p.) 60 min before pilocarpine-induced seizures (400 mg/kg, s.c.). The administration of alone pilocarpine, 400 mg/kg, s.c. (P400) produced a significant increase of lipid peroxidation level in hippocampus. LEV pretreatment was able to counteract this increase, preserving the lipid peroxidation level in normal value. P400 administration also produced increase in the nitrite-nitrate formation and catalase activity in hippocampus, beyond a decrease in GSH levels. LEV administration before P400 prevented the P400-induced alteration in nitrite-nitrate levels and preserved normal values of catalase activity in hippocampus. Moreover, LEV administration prevented the P400-induced loss of GSH in this cerebral area. The present data suggest that the protective effects of LEV against pilocarpine-induced seizures can be mediated, at least in part, by reduction of lipid peroxidation and hippocampal oxidative stress.

  18. The relationship between the enzyme activity, lipid peroxidation and red blood cells deformability in hemizygous and heterozygous glucose-6-phosphate dehydrogenase deficient individuals.

    PubMed

    Gurbuz, N; Yalcin, O; Aksu, T A; Baskurt, O K

    2004-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) activity, red blood cell (RBC) lipid peroxidation and deformability were investigated in hemizygous and heterozygous G6PD deficient subjects and compared with normal individuals. None of the subjects were in acute hemolytic crises. G6PD activity was assessed based on the spectrophotometric determination of generated NADPH. Lipid peroxidation was measured as thiobarbutiric acid reactive substances (TBARS). RBC deformability was analyzed by ektacytometry. RBC lipid peroxidation was found to be significantly higher in hemizygous subjects compared to control and heterozygous subjects, while RBC deformability was found to be significantly impaired. However, although lipid peroxidation was higher than control, RBC deformability was not significantly different from control in heterozygous individuals, characterized by significantly lower RBC G6PD activity. There were no significant correlations between these three parameters when the three groups were analyzed separately, but a significant negative correlation was found to exist between G6PD activity and TBARS when the pooled data from the three groups were used for the analysis. This was also true for the relationship between RBC deformability and G6PD activity. It has been concluded that G6PD activity is not a good predictor of oxidative damage resulting in mechanical impairment in heterozygous individuals.

  19. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves.

    PubMed

    Shabbir, Maria; Khan, Muhammad Rashid; Saeed, Naima

    2013-06-22

    Maytenus royleanus is traditionally used in gastro-intestinal disorders. The aim of this study was to evaluate the methanol extract of leaves and its derived fractions for various antioxidant assays and for its potential against lipid peroxidation and hemolytic activity. Various parameters including scavenging of free-radicals (DPPH, ABTS, hydroxyl and superoxide radical), hydrogen peroxide scavenging, Fe3+ to Fe2+ reducing capacity, total antioxidant capacity, anti-lipid peroxidation and anti-hemolytic activity were investigated. Methanol extract and its derived fractions were also subjected for chemical constituents. LC-MS was also performed on the methanol extract. Qualitative analysis of methanol extract exhibited the presence of alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, saponins, phlobatannins, tannins and terpenoids. LC-MS chromatogram indicated the composition of diverse compounds including flavonoids, phenolics and phytoestrogens. Methanol extract, its ethyl acetate and n-butanol fractions constituted the highest amount of total phenolic and flavonoid contents and showed a strong correlation coefficient with the IC50 values for the scavenging of DPPH, hydrogen peroxide radicals, superoxide radicals, anti-lipid peroxidation and anti-hemolytic efficacy. Moreover, n-butanol fraction showed the highest scavenging activity for ABTS radicals and for reduction of Fe3+ to Fe2+. Present results suggested the therapeutic potential of Maytenus royleanus leaves, in particular, methanol extract, ethyl acetate and n-butanol fraction as therapeutic agent against free-radical associated damages. The protective potential of the extract and or fraction may be attributed due to the high concentration of phenolic, flavonoid, tannins and terpenoids.

  20. [Lipid peroxidation and antioxidant protection system in cosmonauts following short-term missions to the International Space Station].

    PubMed

    Zhuravleva, O A

    2011-01-01

    Blood serum of Russian members (n = 21) of the 8 to 12-day visiting missions to the ISS was analyzed before and after mission for products of lipid peroxidation, i.e. diene conjugates, malone dialdehyde, Schiff bases and tocopherol, the primary lipid antioxidant. No reliable change was found in the parameters postflight as compared with preflight values. It may be concluded that 14 days in orbital flight and the factors of re-entry and early recovery do not affect significantly the mechanisms of free radical lipid oxidation and functioning of the antioxidant protection system.

  1. Vitamin E Protects against Lipid Peroxidation and Rescues Tumorigenic Phenotypes in Cowden/Cowden-like Patient-derived Lymphoblast Cells with Germline SDHx Variants

    PubMed Central

    Ni, Ying; Eng, Charis

    2012-01-01

    Purpose Cowden syndrome (CS), a Mendelian autosomal-dominant disorder, predisposes to breast, thyroid, and other cancers. Germline variations in succinate dehydrogenase genes (SDHx) occur in ~10% PTEN mutation-negative CS and CS-like (CSL) individuals (SDHvar+). We previously showed that SDHx variants result in elevated reactive oxygen species (ROS), disruption of nicotinamide adenine dinucleotide (NAD) equilibrium, and destabilization of p53 hence apoptosis resistance in CS/CSL patient-derived lymphoblastoid cells. In the present study, we sought to address the tumorigenic impacts of increased ROS and the potential of protecting SDHvar+ cells with antioxidants. Experimental Design We measured the lipid peroxidation levels in patient-derived SDHvar+ lymphoblastoid cells and sequenced 74 controls or SDHvar+ germline DNA samples for mitochondrial hypervariable region II (HVRII) polymorphisms. SDHvar+ lymphoblastoid cells were treated with various antioxidants to check p53 expression and SubG1 cell population with cell cycle analysis. Results We demonstrated that elevated ROS results in higher lipid peroxidation in SDHvar+ cells. Accumulation of polymorphisms in mitochondrial HVRII were observed in SDHvar+ samples. Interestingly, α-tocopherol (vitamin E) treatment, but not other antioxidants, rescued SDHvar+ cells from apoptosis resistance and protected SDHvar+ cells from oxidative damage such as decreased lipid peroxidation as well as partially recovered p53 expression and NAD/NADH levels. Conclusions We conclude that disruption of complex II due to SDHx variants leads to increased ROS generation, specifically accompanied by lipid peroxidation. The lipid soluble antioxidant α-tocopherol can selectively protect SDHxvar+ cells from oxidative damage, apoptosis resistance, and rebalance redox metabolites NAD/NADH. PMID:22829200

  2. Deuterated polyunsaturated fatty acids reduce brain lipid peroxidation and hippocampal amyloid β-peptide levels, without discernable behavioral effects in an APP/PS1 mutant transgenic mouse model of Alzheimer's disease.

    PubMed

    Raefsky, Sophia M; Furman, Ran; Milne, Ginger; Pollock, Erik; Axelsen, Paul; Mattson, Mark P; Shchepinov, Mikhail S

    2018-06-01

    Alzheimer's disease (AD) involves progressive deposition of amyloid β-peptide (Aβ), synapse loss, and neuronal death, which occur in brain regions critical for learning and memory. Considerable evidence suggests that lipid peroxidation contributes to synaptic dysfunction and neuronal degeneration, both upstream and downstream of Aβ pathology. Recent findings suggest that lipid peroxidation can be inhibited by replacement of polyunsaturated fatty acids (PUFA) with isotope-reinforced (deuterated) PUFA (D-PUFA), and that D-PUFA can protect neurons in experimental models of Parkinson's disease. Here, we determined whether dietary D-PUFA would ameliorate Aβ pathology and/or cognitive deficits in a mouse model of AD (amyloid precursor protein/presenilin 1 double mutant transgenic mice). The D-PUFA diet did not ameliorate spatial learning and memory deficits in the AD mice. Compared to mice fed an hydrogenated-PUFA control diet, those fed D-PUFA for 5 months exhibited high levels of incorporation of deuterium into arachidonic acid and docosahexaenoic acid, and reduced concentrations of lipid peroxidation products (F2 isoprostanes and neuroprostanes), in the brain tissues. Concentrations of Aβ40 and Aβ38 in the hippocampus were significantly lower, with a trend to reduced concentrations of Aβ42, in mice fed D-PUFA compared to those fed hydrogenated-PUFA. We conclude that a D-PUFA diet reduces the brain tissue concentrations of both arachidonic acid and docosahexaenoic acid oxidation products, as well as the concentration of Aβs. Published by Elsevier Inc.

  3. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation.

    PubMed

    Barger, Steven W; Goodwin, Mary E; Porter, Mandy M; Beggs, Marjorie L

    2007-06-01

    When activated by proinflammatory stimuli, microglia release substantial levels of glutamate, and mounting evidence suggests this contributes to neuronal damage during neuroinflammation. Prior studies indicated a role for the Xc exchange system, an amino acid transporter that antiports glutamate for cystine. Because cystine is used for synthesis of glutathione (GSH) synthesis, we hypothesized that glutamate release is an indirect consequence of GSH depletion by the respiratory burst, which produces superoxide from NADPH oxidase. Microglial glutamate release triggered by lipopolysaccharide was blocked by diphenylene iodonium chloride and apocynin, inhibitors of NADPH oxidase. This glutamate release was also blocked by vitamin E and elicited by lipid peroxidation products 4-hydroxynonenal and acrolein, suggesting that lipid peroxidation makes crucial demands on GSH. Although NADPH oxidase inhibitors also suppressed nitrite accumulation, vitamin E did not; moreover, glutamate release was largely unaffected by nitric oxide donors, inhibitors of nitric oxide synthase, or changes in gene expression. These findings indicate that a considerable degree of the neurodegenerative consequences of neuroinflammation may result from conversion of oxidative stress to excitotoxic stress. This phenomenon entails a biochemical chain of events initiated by a programmed oxidative stress and resultant mass-action amino acid transport. Indeed, some of the neuroprotective effects of antioxidants may be due to interference with these events rather than direct protection against neuronal oxidation.

  4. Resveratrol suppresses ethanol stress in winery and bottom brewery yeast by affecting superoxide dismutase, lipid peroxidation and fatty acid profile.

    PubMed

    Gharwalova, Lucia; Sigler, Karel; Dolezalova, Jana; Masak, Jan; Rezanka, Tomas; Kolouchova, Irena

    2017-11-03

    Mid-exponential cultures of two traditional biotechnological yeast species, winery Saccharomyces cerevisiae and the less ethanol tolerant bottom-fermenting brewery Saccharomyces pastorianus, were exposed to different concentrations of added ethanol (3, 5 and 8%) The degree of ethanol-induced cell stress was assessed by measuring the cellular activity of superoxide dismutase (SOD), level of lipid peroxidation products, changes in cell lipid content and fatty acid profile. The resveratrol as an antioxidant was found to decrease the ethanol-induced rise of SOD activity and suppress the ethanol-induced decrease in cell lipids. A lower resveratrol concentration (0.5 mg/l) even reduced the extent of lipid peroxidation in cells. Resveratrol also alleviated ethanol-induced changes in cell lipid composition in both species by strongly enhancing the proportion of saturated fatty acids and contributing thereby to membrane stabilization. Lower resveratrol concentrations could thus diminish the negative effects of ethanol stress on yeast cells and improve their physiological state. These effects may be utilized to enhance yeast vitality in high-ethanol-producing fermentations or to increase the number of yeast generations in brewery.

  5. Effect of repeated oral administration of levofloxacin, enrofloxacin, and meloxicam on antioxidant parameters and lipid peroxidation in rabbits.

    PubMed

    Khan, Adil Mehraj; Rampal, Satyavan; Sood, Naresh Kumar

    2016-03-09

    The effect of 21 days of repeated oral administration of levofloxacin and enrofloxacin both alone and in combination with meloxicam, on the oxidative balance in blood was evaluated in rabbits. Rabbits were randomly allocated to six groups of four animals each. Control group was gavaged 5% dextrose and 2% benzyl alcohol. Three groups were exclusively gavaged meloxicam (0.2 mg/kg body weight o.d.), levofloxacin hemihydrate (10 mg/kg body weight b.i.d 12 h), and enrofloxacin (20 mg/kg body weight o.d.), respectively. Two other groups were co-gavaged meloxicam with levofloxacin hemihydrate and enrofloxacin, respectively. A reduction (p < 0.05) of reduced glutathione levels was observed in groups treated with meloxicam both alone and in combination with levofloxacin, whereas an increase (p < 0.01) in the levels of this antioxidant was observed in the groups treated with enrofloxacin. The activities of enzymes, glutathione peroxidase and superoxide dismutase, were induced (p < 0.05) in levofloxacin-alone treated group. Superoxide dismutase was also induced (p < 0.05) in meloxicam-alone treated group and inhibited (p < 0.05) in enrofloxacin-meloxicam co-treated group. The activity of catalase was non-significantly different between various groups. Enrofloxacin-treated groups had higher (p < 0.01) lipid peroxidation than control and levofloxacin-alone treated groups. Elevated lipid peroxidation was also observed in the groups treated with meloxicam both alone and in combination with levofloxacin (p < 0.05). In conclusion, these drugs have potential to induce oxidative imbalance, however, compared to levofloxacin, more oxidative damage is produced by enrofloxacin and meloxicam. © The Author(s) 2016.

  6. Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation.

    PubMed

    Huang, Tai-Chun; Lu, Kwok-Tung; Wo, Yu-Yuan Peter; Wu, Yao-Ju; Yang, Yi-Ling

    2011-01-01

    Alzheimer disease (AD) is an age-dependent neurodegenerative disease characterized by the formation of β-amyloid (Aβ)-containing senile plaque. The disease could be induced by the administration of Aβ peptide, which was also known to upregulate inducible nitric oxide synthase (iNOS) and stimulate neuronal apoptosis. The present study is aimed to elucidate the cellular effect of resveratrol, a natural phytoestrogen with neuroprotective activities, on Aβ-induced hippocampal neuron loss and memory impairment. On adult Sprague-Dawley rats, we found the injection of Aβ could result in a significant impairment in spatial memory, a marked increase in the cellular level of iNOS and lipid peroxidation, and an apparent decrease in the expression of heme oxygenase-1 (HO-1). By combining the treatment with Aβ, resveratrol was able to confer a significant improvement in spatial memory, and protect animals from Aβ-induced neurotoxicity. These neurological protection effects of resveratrol were associated with a reduction in the cellular levels of iNOS and lipid peroxidation and an increase in the production of HO-1. Moreover, the similar neurological and cellular response were also observed when Aβ treatment was combined with the administration of a NOS inhibitor, N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME). These findings strongly implicate that iNOS is involved in the Aβ-induced lipid peroxidation and HO-1 downregulation, and resveratrol protects animals from Aβ-induced neurotoxicity by suppressing iNOS production.

  7. Resveratrol Protects Rats from Aβ-induced Neurotoxicity by the Reduction of iNOS Expression and Lipid Peroxidation

    PubMed Central

    Wo, Yu-Yuan Peter; Wu, Yao-Ju; Yang, Yi-Ling

    2011-01-01

    Alzheimer disease (AD) is an age-dependent neurodegenerative disease characterized by the formation of β–amyloid (Aβ)-containing senile plaque. The disease could be induced by the administration of Aβ peptide, which was also known to upregulate inducible nitric oxide synthase (iNOS) and stimulate neuronal apoptosis. The present study is aimed to elucidate the cellular effect of resveratrol, a natural phytoestrogen with neuroprotective activities, on Aβ-induced hippocampal neuron loss and memory impairment. On adult Sprague-Dawley rats, we found the injection of Aβ could result in a significant impairment in spatial memory, a marked increase in the cellular level of iNOS and lipid peroxidation, and an apparent decrease in the expression of heme oxygenase-1 (HO-1). By combining the treatment with Aβ, resveratrol was able to confer a significant improvement in spatial memory, and protect animals from Aβ-induced neurotoxicity. These neurological protection effects of resveratrol were associated with a reduction in the cellular levels of iNOS and lipid peroxidation and an increase in the production of HO-1. Moreover, the similar neurological and cellular response were also observed when Aβ treatment was combined with the administration of a NOS inhibitor, N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME). These findings strongly implicate that iNOS is involved in the Aβ-induced lipid peroxidation and HO-1 downregulation, and resveratrol protects animals from Aβ-induced neurotoxicity by suppressing iNOS production. PMID:22220203

  8. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats.

    PubMed

    Ince, Sinan; Kucukkurt, Ismail; Demirel, Hasan Huseyin; Acaroz, Damla Arslan; Akbel, Erten; Cigerci, Ibrahim Hakki

    2014-08-01

    The aim of the present study was to evaluate the possible protective effect of boron (B) on cyclophosphamide (CYC) induced oxidative stress in rats. Totally, thirty Wistar albino male rats were fed standard rodent diet and divided into 5 equal groups: physiological saline was given intraperitoneally (i.p.) to the control group (vehicle treated), to the second group only 75 mg kg(-1) CYC was given i.p. on the 14th d, and boron was administered (5, 10, and 20 mg kg(-1), i.p.) to the other groups for 14 d and CYC (75 mg kg(-1), i.p.) on the 14th d. CYC caused increase of malondialdehyde and decrease of glutathione levels, decrease of superoxide dismutase activities in erythrocyte and tissues, decrease of erythrocyte, heart, lung, and brain catalase, and plasma antioxidant activities. Also, CYC treatment caused to DNA damage in mononuclear leukocytes. Moreover, B exhibited protective action against the CYC-induced histopathological changes in tissues. However, treatment of B decreased severity of CYC-induced lipid peroxidation and genotoxicity on tissues. In conclusion, B has ameliorative effects against CYC-induced lipid peroxidation and genotoxicity by enhancing antioxidant defence mechanism in rat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers.

    PubMed

    García-Blanco, Ana; Peña-Bautista, Carmen; Oger, Camille; Vigor, Claire; Galano, Jean-Marie; Durand, Thierry; Martín-Ibáñez, Nuria; Baquero, Miguel; Vento, Máximo; Cháfer-Pericás, Consuelo

    2018-07-01

    Lipid peroxidation plays an important role in Alzheimer Disease, so corresponding metabolites found in urine samples could be potential biomarkers. The aim of this work is to develop a reliable ultra-performance liquid chromatography-tandem mass spectrometry analytical method to determine a new set of lipid peroxidation compounds in urine samples. Excellent sensitivity was achieved with limits of detection between 0.08 and 17 nmol L -1 , which renders this method suitable to monitor analytes concentrations in real samples. The method's precision was satisfactory with coefficients of variation around 5-17% (intra-day) and 8-19% (inter-day). The accuracy of the method was assessed by analysis of spiked urine samples obtaining recoveries between 70% and 120% for most of the analytes. The utility of the described method was tested by analyzing urine samples from patients early diagnosed with mild cognitive impairment or mild dementia Alzheimer Disease following the clinical standard criteria. As preliminary results, some analytes (17(RS)-10-epi-SC-Δ 15 -11-dihomo-IsoF, PGE 2 ) and total parameters (Neuroprostanes, Isoprostanes, Isofurans) show differences between the control and the clinical groups. So, these analytes could be potential early Alzheimer Disease biomarkers assessing the patients' pro-oxidant condition. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Lipid-Lowering Pharmaceutical Clofibrate Inhibits Human Sweet Taste

    PubMed Central

    Kochem, Matthew

    2017-01-01

    T1R2-T1R3 is a heteromeric receptor that binds sugars, high potency sweeteners, and sweet taste blockers. In rodents, T1R2-T1R3 is largely responsible for transducing sweet taste perception. T1R2-T1R3 is also expressed in non-taste tissues, and a growing body of evidence suggests that it helps regulate glucose and lipid metabolism. It was previously shown that clofibric acid, a blood lipid-lowering drug, binds T1R2-T1R3 and inhibits its activity in vitro. The purpose of this study was to determine whether clofibric acid inhibits sweetness perception in humans and is, therefore, a T1R2-T1R3 antagonist in vivo. Fourteen participants rated the sweetness intensity of 4 sweeteners (sucrose, sucralose, Na cyclamate, acesulfame K) across a broad range of concentrations. Each sweetener was prepared in solution neat and in mixture with either clofibric acid or lactisole. Clofibric acid inhibited sweetness of every sweetener. Consistent with competitive binding, inhibition by clofibric acid was diminished with increasing sweetener concentration. This study provides in vivo evidence that the lipid-lowering drug clofibric acid inhibits sweetness perception and is, therefore, a T1R carbohydrate receptor inhibitor. Our results are consistent with previous in vitro findings. Given that T1R2-T1R3 may in part regulate glucose and lipid metabolism, future studies should investigate the metabolic effects of T1R inhibition. PMID:27742692

  11. Effects of chilled storage and cryopreservation on sperm characteristics, antioxidant enzyme activities, and lipid peroxidation in Pacific cod Gadus microcephalus

    NASA Astrophysics Data System (ADS)

    Wang, Xueying; Shi, Xuehui; Liu, Yifan; Yu, Daode; Guan, Shuguang; Liu, Qinghua; Li, Jun

    2016-07-01

    The present study evaluated the effects of chilled storage and cryopreservation on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod Gadus macrocephalus. Sperm motility and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (Gr), and lipid peroxidation (measured via malondialdehyde (MDA) content) were determined after the milt was stored at 4°C for 12 h, cryopreserved without cryoprotectant in 12% propylene glycol (PG), cryopreserved in 12% PG+0.1 mol/L trehalose, or cryopreserved in 12% PG spermatozoa but centrifuged to decant the supernatant prior to cryopreservation (only sperm cells were cryopreserved). After chilled storage or cryopreservation, the SOD, CAT and GPx activities were reduced in sperm cells and increased in seminal plasma in almost all treatments; sperm motility parameters were also decreased. However, the addition of trehalose into the cryoprotectant could significantly improve the postthaw sperm quality as revealed by the sperm average path velocity. This improvement might be attributed to the function of trehalose in scavenging reactive oxygen species. Chilled storage and cryopreservation had significant effects on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod.

  12. Exercised-induced increase in lipid peroxidation parameters in amenorrheic female athletes.

    PubMed

    Ayres, S; Baer, J; Subbiah, M T

    1998-01-01

    To determine plasma lipid peroxidation parameters in eumenorrheic and amenorrheic athletes and to evaluate differences in their response to exercise-induced oxidative stress. In female athletes, intense physical exercise has been shown to be associated with an increased occurrence of menstrual dysfunction with lower levels of E2. Recently, a protective role has been demonstrated for estrogens as free radical scavengers. Comparison of eumenorrheic and amenorrheic athletes before and after an acute bout of exercise. Academic Research Environment. Seven eumenorrheic (normally menstruating) and seven amenorrheic (<3 menses/year) female athletes aged 18 to 35 years participating in regular training. Plasma and low-density lipoprotein oxidation parameters, plasma E2 and vitamin E levels, and creatine kinase activity. Both the amenorrheic and eumenorrheic athletes demonstrated a significant decrease in the lag time of conjugated diene formation after exercise (P < 0.01), with greater magnitude of change occurring in the amenorrheic athletes (P < 0.05). In addition, postexercise samples from amenorrheic (but not eumenorrhic) athletes showed a significant (P < 0.01) increase in oxysterol formation as compared to baseline values. Amenorrheic athletes also demonstrated a significantly higher baseline creatine kinase activity and a nonsignificant (P = 0.04) trend of an increase in creatine kinase activity after exercise. The results of this study shows that amenorrheic female athletes demonstrate an increased potential for lipid peroxidation after exercise. This could be related to lower plasma E2 levels in this group, considering the strong free radical scavenging ability of estrogens identified recently.

  13. Acute seizure activity promotes lipid peroxidation, increased nitrite levels and adaptive pathways against oxidative stress in the frontal cortex and striatum

    PubMed Central

    Júnior, Hélio Vitoriano Nobre; de França Fonteles, Marta Maria

    2009-01-01

    Previous experiments have shown that the generation of free radicals in rat brain homogenates is increased following pilocarpine-induced seizures and status epilepticus (SE). This study was aimed at investigating the changes in neurochemical mechanisms such as lipid peroxidation levels, nitrite content, glutathione reduced (GSH) concentration, superoxide dismutase and catalase activities in the frontal cortex and the striatum of Wistar adult rats after seizures and SE induced by pilocarpine. The control group was treated with 0.9% saline and another group of rats received pilocarpine (400 mg/kg, i.p.). Both groups were sacrificed 24 h after the treatments. Lipid peroxidation level, nitrite content, GSH concentration and enzymatic activities were measured by using spectrophotometric methods. Our findings showed that pilocarpine administration and its resulting seizures and SE produced a significant increase of lipid peroxidation level in the striatum (47%) and frontal cortex (59%). Nitrite contents increased 49% and 73% in striatum and frontal cortex in pilocarpine group, respectively. In GSH concentrations were decreases of 54% and 58% in the striatum and frontal cortex in pilocarpine group, respectively. The catalase activity increased 39% and 49% in the striatum and frontal cortex, respectively. The superoxide dismutase activity was not altered in the striatum, but it was present at a 24% increase in frontal cortex. These results suggest that there is a direct relationship between the lipid peroxidation and nitrite contents during epileptic activity that can be responsible for the superoxide dismutase and catalase enzymatic activity changes observed during the establishment of seizures and SE induced by pilocarpine. PMID:20592767

  14. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells

    NASA Astrophysics Data System (ADS)

    Clark, Andrea J.; Petty, Howard R.

    2016-02-01

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles’ catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer.

  15. [The effects of electromagnetic pulse on fluidity and lipid peroxidation of mitochondrial membrane].

    PubMed

    Wang, Changzhen; Cong, Jianbo; Xian, Hong; Cao, Xiaozhe; Sun, Cunpu; Wu, Ke

    2002-08-01

    To study the effects of intense electromagnetic pulse(EMP) on the biological effects of mitochondrial membrane. Rat liver mitochondrial suspension was exposed to EMP at 60 kV/m level. The changes of membrane lipid fluidity and membrane protein mobility were detected by ESR and spin label technique. Malondialdehyde(MDA) was detected by spectrophotometer. The mobility of membrane protein decreased significantly(P < 0.05). Correlation time (tau c) of control group was (0.501 +/- 0.077) x 10(-9)s, and tau c of EMP group was (0.594 +/- 0.049) x 10(-9)s, indicating that the mobility of protein was restricted. The fluidity of mitochondrial membrane increased significantly(P < 0.05) at the same time. Order parameter(S) of mitochondrial membrane lipid in control group was 0.63 +/- 0.01, while S of EMP group was 0.61 +/- 0.01(P < 0.05). MDA decreased significantly. The mobility and lipid peroxidation of mitochondrial membrane may be disturbed after EMP exposure.

  16. Trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line.

    PubMed

    Elkin, Elana R; Harris, Sean M; Loch-Caruso, Rita

    2018-01-01

    Trichloroethylene (TCE), a prevalent environmental contaminant, is a potent renal and hepatic toxicant through metabolites such as S-(1, 2-dichlorovinyl)-l-cysteine (DCVC). However, effects of TCE on other target organs such as the placenta have been minimally explored. Because elevated apoptosis and lipid peroxidation in placenta have been observed in pregnancy morbidities involving poor placentation, we evaluated the effects of DCVC exposure on apoptosis and lipid peroxidation in a human extravillous trophoblast cell line, HTR-8/SVneo. We exposed the cells in vitro to 10-100μM DCVC for various time points up to 24h. Following exposure, we measured apoptosis using flow cytometry, caspase activity using luminescence assays, gene expression using qRT-PCR, and lipid peroxidation using a malondialdehyde quantification assay. DCVC significantly increased apoptosis in time- and concentration-dependent manners (p<0.05). DCVC also significantly stimulated caspase 3, 7, 8 and 9 activities after 12h (p<0.05), suggesting that DCVC stimulates the activation of both the intrinsic and extrinsic apoptotic signaling pathways simultaneously. Pre-treatment with the tBID inhibitor Bl-6C9 partially reduced DCVC-stimulated caspase 3 and 7 activity, signifying crosstalk between the two pathways. Additionally, DCVC treatment increased lipid peroxidation in a concentration-dependent manner. Co-treatment with the antioxidant peroxyl radical scavenger (±)-α-tocopherol attenuated caspase 3 and 7 activity, suggesting that lipid peroxidation mediates DCVC-induced apoptosis in extravillous trophoblasts. Our findings suggest that DCVC-induced apoptosis and lipid peroxidation in extravillous trophoblasts could contribute to poor placentation if similar effects occur in vivo in response to TCE exposure, indicating that further studies into this mechanism are warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruijin; Heck, Diane E.; Mishin, Vladimir

    2014-03-01

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependentmore » increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  18. Cinnamic acid and fish flour affect wheat phenolic acids and flavonoid compounds, lipid peroxidation, proline levels under salt stress.

    PubMed

    Karadağ, Bergüzar; Yücel, Nilgün Candan

    2017-12-01

    To elucidate the physiological mechanism of salt stress mitigated by cinnamic acid (CA) and fish flour (FF) pretreatment, wheat was pretreated with 20, 50 and 100 ppm CA and 1 g/10 mL FF for 2 d and was then cultivated. We investigated whether exogenous CA + FF could protect wheat from salt stress and examined whether the protective effect was associated with the regulation of seed vigor, antioxidant defense systems, phenolic biosynthesis and lipid peroxidation. At 2 days exogenous CA did not influence seed vigor. Salt stress increased the phenolic biosynthesis, but the CA + FF-combined pretreatment enhanced the phenolic biosynthesis even more under salt stress and decreased lipid peroxidation to some extent, enhancing the tolerance of wheat to salt stress.

  19. Short-term effects of an intensive lifestyle modification program on lipid peroxidation and antioxidant systems in patients with coronary artery disease.

    PubMed

    Jatuporn, Srisakul; Sangwatanaroj, Somkiat; Saengsiri, Aem-Orn; Rattanapruks, Sopida; Srimahachota, Suphot; Uthayachalerm, Wasan; Kuanoon, Wanpen; Panpakdee, Orasa; Tangkijvanich, Pisit; Tosukhowong, Piyaratana

    2003-01-01

    The purpose of this study was to compare the short-term effects of an intensive lifestyle modification (ILM) program on lipid peroxidation and antioxidant systems in patients with coronary artery disease (CAD). Twenty-two patients in the control group continued to receive their conventional treatment with lipid-lowering drugs, whereas 22 patients in the experimental group were assigned to intensive lifestyle modification (ILM) without taking any lipid-lowering agent. The ILM program comprised dietary advice on low-fat diets, high antioxidants and high fiber intakes, yoga exercise, stress management and smoking cessation. After 4 months of intervention, patients in the experimental group revealed a statistically significant increase in plasma total antioxidants, plasma vitamin E and erythrocyte glutathione (GSH) compared to patients in the control group. There was no significant change in plasma malondialdehyde (MDA), a circulating product of lipid peroxidation, in either group. We concluded that the ILM program increased circulating antioxidants and reduced oxidative stress in patients with CAD.

  20. Thermal Oxidation Induces Lipid Peroxidation and Changes in the Physicochemical Properties and β-Carotene Content of Arachis Oil

    PubMed Central

    Falade, Ayodeji Osmund

    2015-01-01

    This study sought to investigate the effect of thermal oxidation on the physicochemical properties, malondialdehyde, and β-carotene content of arachis oil. Pure arachis oil was heated for 20 mins with a corresponding temperature of 220°C. Thereafter, changes in the physicochemical properties (acid, iodine, and peroxide values) of the oil samples were determined. Subsequently, the level of lipid peroxidation was determined using change in malondialdehyde content. Then, the total carotenoid and β-carotene contents were evaluated using spectrophotometric method and high performance liquid chromatography, respectively. The results of the study revealed a significant increase (P < 0.05) in the acid and peroxide values and malondialdehyde concentration of the heated oil when compared with the fresh arachis oil. In contrast, a significant decrease (P < 0.05) was observed in the iodine value, total carotenoid, 13-cis-, 15-cis-, trans-, and 9-cis-β-carotene, and total β-carotene content of the heated oil. Hence, thermal oxidation induced lipid peroxidation and caused changes in the physicochemical properties and carotenoid contents of arachis oil, thereby reducing its nutritive value and health benefit. Therefore, cooking and frying with arachis oil for a long period might not be appropriate as this might lead to a loss of significant amount of the insignificant β-carotene in arachis oil. PMID:26904665

  1. Essential Oil from Clove Bud (Eugenia aromatica Kuntze) Inhibit Key Enzymes Relevant to the Management of Type-2 Diabetes and Some Pro-oxidant Induced Lipid Peroxidation in Rats Pancreas in vitro.

    PubMed

    Oboh, Ganiyu; Akinbola, Ifeoluwa A; Ademosun, Ayokunle O; Sanni, David M; Odubanjo, Oluwatoyin V; Olasehinde, Tosin A; Oyeleye, Sunday I

    2015-01-01

    The inhibition of enzymes involved in the breakdown of carbohydrates is considered a therapeutic approach to the management of type-2 diabetes. This study sought to investigate the effects of essential oil from clove bud on α-amylase and α-glucosidase activities. Essential oil from clove bud was extracted by hydrodistillation, dried with anhydrous Na2SO4 and characterized using gas chromatography-mass spectrometry (GC-MS). The effects of the essential oil on α-amylase and α-glucosidase activities were investigated. The antioxidant properties of the oil and the inhibition of Fe(2+) and sodium nitroprusside-induced malondialdehyde (MDA) production in rats pancreas homogenate were also carried out. The essential oil inhibited α-amylase (EC50=88.9 μl/L) and α-glucosidase (EC50=71.94 μl/L) activities in a dose-dependent manner. Furthermore, the essential oil inhibited Fe(2+) and SNP-induced MDA production and exhibited antioxidant activities through their NO*, OH*, scavenging and Fe(2+)- chelating abilities. The total phenolic and flavonoid contents of the essential oil were 12.95 mg/g and 6.62 mg/g respectively. GC-MS analysis revealed the presence of α-pinene, β-pinene, neral, geranial, gamma terpinene, cis-ocimene, allo ocimene, 1,8-cineole, linalool, borneol, myrcene and pinene-2-ol in significant amounts. Furthermore, the essential oils exhibited antioxidant activities as typified by hydroxyl (OH) and nitric oxide (NO)] radicals scavenging and Fe(2+)-chelating abilities. The inhibition of α-amylase and α-glucosidase activities, inhibition of pro-oxidant induced lipid peroxidation in rat pancreas and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress induced type-2 diabetes.

  2. Radiation-induced lipid peroxidation in whole grain of rye, wheat and rice: Effects on linoleic and linolenic acid

    NASA Astrophysics Data System (ADS)

    Vaca, C. E.; Harms-Ringdahl, M.

    Changes in the fatty acid composition in lipids after γ-irradation of whole grain of wheat, rye and rice were examined. The radiosensitivity of linoleic acid (18:2) and linolenic acid (18:3) was studied up to a dose of 63 kGy in seeds with different water content and after a post-irradiation storage time of 2 months. At doses in the range recommended for grain desinfestation, i.e. 0.1-1.0 kGy, no detectable degradation of 18:2 and 18:3 was found, but at the highest dose applied, 63 kGy, a degradation in the range from a few percent up to 40% was observed. Under extreme conditions, i.e. pre- and post-irradation treatment with oxygen, or when the flour prepared from the seeds was mixed with water and heated before the extraction of the lipids, a more pronounced degradation of the unsaturated fatty acids was noticed. Lipid peroxidation induced by γ-irradation was estimated using the thiobarbituric acid (TBA) method. High yields of the TBA-reactive material were formed in the three types of grain investigated corresponding to G-values in the range of 12-18. The influence on peroxidation yields of the water content of the seeds was studied in wheat. The origin of the TBA-reactive material formed in the seeds is not yet known, but could only to a minor extent be due to fatty acid peroxidation.

  3. Effects of high-fat, low-cholesterol diets on hepatic lipid peroxidation and antioxidants in apolipoprotein E-deficient mice.

    PubMed

    Ferré, N; Camps, J; Paul, A; Cabré, M; Calleja, L; Osada, J; Joven, J

    2001-02-01

    The present study describes the effects of several high-fat low-cholesterol antiatherogenic diets on the hepatic lipid peroxidation and hepatic antioxidant systems in apolipoprotein E-deficient mice. Eighty mice were distributed into five groups and fed with regular mouse chow or chow supplemented with coconut, palm, olive and sunflower seed oils. After ten weeks, they were sacrificed and the livers were removed so that lipid peroxidation and alpha-tocopherol concentrations, and superoxide dismutase, glutathione peroxidase and glutathione reductase activities could be measured. The size of the atherosclerotic lesions in the aortas was also measured. Results showed that the diets supplemented with olive oil, palm oil or sunflower seed oil significantly decreased the size of the lesion. However, there was an association between those mice that were on diets supplemented with palm or coconut oils and a significant increase in hepatic lipid peroxidation. This association was not found in animals fed with olive or sunflower seed oils, the diets with the highest content of vitamin E. The dietary content of vitamin E was significantly correlated (r = 0.98; p < 0.05) with the hepatic concentration of this compound. Our study suggests that the high content of vitamin E in olive oil or sunflower seed oil may protect from the undesirable hepatotoxic effects of high-fat diets in apo E-deficient mice and that this should be taken into account when these diets are used to prevent atherosclerosis.

  4. Modifications of fatty acids profile, lipid peroxidation and antioxidant capacity in raw and cooked rabbit burgers added with ginger.

    PubMed

    Mancini, Simone; Preziuso, Giovanna; Dal Bosco, Alessandro; Roscini, Valentina; Parisi, Giuliana; Paci, Gisella

    2017-11-01

    Effects of ginger powder were evaluated on fatty acid (FA) profile, lipid peroxidation (TBARS) and antioxidant capacity (ABTS, DPPH and FRAP) of rabbit burgers. Burgers were manufactured as control samples (only meat) and two additions of ginger powder (1% and 2%) and stored raw at 4°C for 7days. At day 1, 4 and 7 of storage burgers were analysed both as raw and cooked. Ginger powder affected all the tested parameters; both PUFAω3 and PUFAω6 were incremented in raw and cooked samples leading to decreased atherogenicity and thrombogenicity indexes and increased hypo/hypercholesterolemic index and peroxidability index. Lipid peroxidation values of raw and cooked burgers added with ginger were lower than control burgers, at the same time, ABTS, DPPH and FRAP values were incremented by the addition of ginger powder. The results obtained demonstrate the antioxidant capacity of ginger powder as rabbit meat products additive and highlight the capacity of this spice to maintain its characteristics after burgers' cooking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Lipogenesis and lipid peroxidation in rat testes after long-term treatment with sucrose and tannic acid in drinking water.

    PubMed

    Mašek, T; Starčević, K

    2017-05-01

    We studied the influence of long-term treatment with sucrose and tannic acid in drinking water on the fatty acid profile and lipid peroxidation in rat testes. Male Wistar rats were supplemented with sucrose (30% w/v) or with sucrose and tannic acid (sucrose 30% w/v, tannic acid 0.1% w/v) in drinking water. The treatment with sucrose elevated blood glucose levels in the plasma (p < .05) and decreased the testis weight (p < .05) and testis index (p < .05) of the rats. Sucrose treatment increased monounsaturated fatty acids (MUFA) and C22:6n3, and decreased n6 fatty acids in testis tissue. Lipid peroxidation was significantly increased after sucrose administration in plasma (p < .05) and testis tissue (p < .01). The addition of tannic acid led to the decrease in lipid peroxidation in the plasma (p < .05) and testis (p < .05), a further increase in MUFA and decrease in n6 fatty acids. In conclusion, sucrose significantly altered the testis fatty acid profile with an increase in MUFA and C22:6n3, and a decrease in n6 fatty acids. Tannic acid attenuated oxidative stress and hyperglycaemia, but it did not improve pathological changes in the fatty acid composition of the testis. © 2016 Blackwell Verlag GmbH.

  6. Effect of tea polyphenols on lipid peroxidation and antioxidant activity of litchi (Litchi chinensis Sonn.) fruit during cold storage.

    PubMed

    Chen, Wenrong; Zhang, Zhenzhen; Shen, Yanwen; Duan, Xuewu; Jiang, Yuemin

    2014-10-20

    To understand the potential of application of tea polyphenols to the shelf life extension and quality maintenance of litchi (Litchi chinensis Sonn.) fruit, the fruits were dipped into a solution of 1% tea phenols for 5 min before cold storage at 4 °C. Changes in browning index, contents of anthocyanins and phenolic compounds, superoxide dismutase (SOD) and peroxidase (POD) activities, O2.- production rate and H2O2 content, levels of relative leakage rate and lipid peroxidation, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were measured after 0, 10, 20 and 30 days of cold storage. The results showed that application of tea polyphenols markedly delayed pericarp browning, alleviated the decreases in contents of total soluble solids (TSS) and ascorbic acid, and maintained relatively high levels of total phenolics and anthocyanins of litchi fruit after 30 days of cold storage. Meanwhile, the treatment reduced the increases in relative leakage rate and lipid peroxidation content, delayed the increases in both O2.- production rate and H2O2 contents, and increased SOD activity but reduced POD activity throughout this storage period. These data indicated that the delayed pericarp browning of litchi fruit by the treatment with tea polyphenols could be due to enhanced antioxidant capability, reduced accumulations of reactive oxygen species and lipid peroxidation, and improved membrane integrity.

  7. Impact of dietary oils and fats on lipid peroxidation in liver and blood of albino rats.

    PubMed

    Haggag, Mohammad El-Sayed Yassin El-Sayed; Elsanhoty, Rafaat Mohamed; Ramadan, Mohamed Fawzy

    2014-01-01

    To investigate the effects of different dietary fat and oils (differing in their degree of saturation and unsaturation) on lipid peroxidation in liver and blood of rats. The study was conducted on 50 albino rats that were randomly divided into 5 groups of 10 animals. The groups were fed on dietary butter (Group I), margarine (Group II), olive oil (Group III), sunflower oil (Group IV) and corn oil (Group V) for 7 weeks. After 12 h of diet removal, livers were excised and blood was collected to measure malondialdehyde (MDA) levels in the supernatant of liver homogenate and in blood. Blood superoxide dismutase activity (SOD), glutathione peroxidase activity (GPx), serum vitamin E and total antioxidant capacity (TAC) levels were also measured to determine the effects of fats and oils on lipid peroxidation. The results indicated that no significant differences were observed in SOD activity, vitamin E and TAC levels between the five groups. However, there was significant decrease of GPx activity in groups IV and V when compared with other groups. The results indicated that feeding corn oil caused significant increases in liver and blood MDA levels as compared with other oils and fats. There were positive correlations between SOD and GPx, vitamin E and TAC as well as between GPx and TAC (r: 0.743; P<0.001) and between blood MDA and liver MDA (r: 0.897; P<0.001). The results showed also negative correlations between blood MDA on one hand and SOD, GPx, vitamin E and TAC on the other hand. The results demonstrated that feeding oils rich in polyunsaturated fatty acids (PUFA) increases lipid peroxidation significantly and may raise the susceptibility of tissues to free radical oxidative damage. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  8. Effects of hyperthyroidism induced by L-thyroxin administration on lipid peroxidation in various rat tissues.

    PubMed

    Mogulkoc, R; Baltaci, A Kasim; Oztekin, Esma; Sivrikaya, A; Aydin, Leyla

    2006-06-01

    Thyroid dysfunctions are associated with many pathological signs in the body. One of these is lipid peroxidation that develops due to over- or under-secretion of thyroid hormones. The present study was conducted to determine lipid peroxidation that develops in different tissues including the brain, liver and heart of rats in experimental hyperthyroidism induced by L-thyroxin. The study was carried out on 30 male Sprague-Dawley rats. They were divided into three groups as control, sham hyperthyroidism and hyperthyroidism. Malondialdehyde (MDA) and glutathione (GSH) levels in rat tissues were determined at the end of a 3-weeks period of L-thyroxin administration. It was observed that MDA levels in the hyperthyroidism group were significantly higher in the cerebral cortex, liver and ventriculer tissue of heart (p < 0.001) than in the control and in sham hyperthyroidism groups. GSH levels were higher in the hyperthyroidism group than in control and sham hyperthyroidism groups in all tissues (p < 0.001). Results demonstrate that hyperthyroidism induced by L-thyroxin activates both oxidant and antioxidant systems in cerebral, hepatic and cardiac tissues. However, the increase in antioxidant activity cannot adequately prevent oxidative damage.

  9. Effect of Lipid Peroxidation Products on the Activity of Human Retinol Dehydrogenase 12 (RDH12) and Retinoid Metabolism

    PubMed Central

    Lee, Seung-Ah; Belyaeva, Olga V.; Kedishvili, Natalia Y.

    2008-01-01

    SUMMARY Mutations in human Retinol Dehydrogenase 12 (RDH12) are known to cause photoreceptor cell death but the physiological function of RDH12 in photoreceptors remains poorly understood. In vitro, RDH12 recognizes both retinoids and medium-chain aldehydes as substrates. Our previous study suggested that RDH12 protects cells against toxic levels of retinaldehyde and retinoic acid [Lee et al., J. Biol. Chem. 282 (2007) 35621–35628]. Here, we investigated whether RDH12 can also protect cells against highly reactive medium-chain aldehydes. Analysis of cell survival demonstrated that RDH12 was protective against nonanal but not against 4-hydroxynonenal. At high concentrations, nonanal inhibited the activity of RDH12 towards retinaldehyde, suggesting that nonanal was metabolized by RDH12. 4-Hydroxynonenal did not inhibit the RDH12 retinaldehyde reductase activity, but it strongly inhibited the activities of lecithin:retinol acyl transferase and aldehyde dehydrogenase, resulting in decreased levels of retinyl esters and retinoic acid and accumulation of unesterified retinol. Thus, the results of this study showed that RDH12 is more effective in protection against retinaldehyde than against medium-chain aldehydes, and that medium-chain aldehydes, especially 4-hydroxynonenal, severely disrupt cellular retinoid homeostasis. Together, these findings provide a new insight into the effects of lipid peroxidation products and the impact of oxidative stress on retinoid metabolism. PMID:18396173

  10. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  11. Effect of different doses of nandrolone decanoate on lipid peroxidation, DNA fragmentation, sperm abnormality and histopathology of testes of male Wister rats.

    PubMed

    Mohamed, Hanaa Mahmoud; Mohamed, Manal Abdul-Hamid

    2015-01-01

    The present study aims of to investigate the effects of low and high doses of nandrolone decanoate (ND) on histopathology and apoptosis of the spermatogenic cells as well as lipid peroxidation, antioxidant enzyme activities, sperm abnormality and DNA fragmentation. Eighteen animals were divided into three groups each group contain six animals. The rats were divided into three groups as following: Group 1 was administered saline (control). Group 2, received nandrolone decanoate (3 mg/kg/weekly) (low dose) with intramuscular injection. Group 3, received intramuscular injection dose of nandrolone decanoate (10 mg/kg/weekly) (high dose). After 8 weeks, caspase-3 assay was used to determine the apoptotic cells. The sperm parameters, lipid peroxidation, antioxidant enzyme activities and testosterone concentration were also investigated in the experimental groups of both low and high dose compared to the control groups. Treated group with high dose showed degenerated germinal epithelial cells sloughed in the lumina of seminiferous tubules, where almost seminiferous tubules were devoid of spermatids and spermatozoa compared to control and group treated with low dose. Also, a significant increase of lipid peroxidation levels and heat shock proteins was observed in two groups administrated with two different doses of ND while, antioxidant enzyme activities, and testosterone concentration was significantly decreased in two treated group when compared with control. Administration of ND at high and low doses leads to deteriorated sperm parameters, DNA fragmentation and testicular apoptosis. In conclusion, the administration ND at high doses more effective on lipid peroxidation, antioxidant enzyme activities, sperm abnormality, histopathology, apoptotic and DNA changes compared to low dose group and to control group. Published by Elsevier GmbH.

  12. Effects of mulberry ethanol extracts on hydrogen peroxide-induced oxidative stress in pancreatic β-cells.

    PubMed

    Kim, Young Rae; Lee, Jong Seok; Lee, Ki Rim; Kim, Young Eon; Baek, Nam In; Hong, Eock Kee

    2014-01-01

    Reactive oxygen species (ROS) are key mediators of mammalian cellular damage and are associated with diseases such as aging, arteriosclerosis, inflammation, rheumatoid arthritis and diabetes. Type 1 diabetes develops upon the destruction of pancreatic β-cells, which is partly due to ROS activity. In this study, we investigated the cytoprotective and anti-oxidative effects of fractionated mulberry extracts in mouse insulin-producing pancreatic β-cells (MIN6N cells). Treatment with hydrogen peroxide (H2O2) induced significant cell death and increased intracellular ROS levels, lipid peroxidation and DNA fragmentation in the MIN6N cells. Fractionated mulberry extracts significantly reduced the H2O2-dependent production of intracellular ROS, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and lipid peroxidation. In addition, mulberry extracts inhibited DNA fragmentation induced by H2O2. Thus, the antioxidant properties of mulberry extracts in pancreatic β-cells may be exploited for the prevention or treatment of type 1 diabetes.

  13. Generalized Anxiety Disorder (GAD) and Comorbid Major Depression with GAD Are Characterized by Enhanced Nitro-oxidative Stress, Increased Lipid Peroxidation, and Lowered Lipid-Associated Antioxidant Defenses.

    PubMed

    Maes, Michael; Bonifacio, Kamila Landucci; Morelli, Nayara Rampazzo; Vargas, Heber Odebrecht; Moreira, Estefânia Gastaldello; St Stoyanov, Drozdstoy; Barbosa, Décio Sabbatini; Carvalho, André F; Nunes, Sandra Odebrecht Vargas

    2018-05-07

    Accumulating evidence shows that nitro-oxidative pathways play an important role in the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD) and maybe anxiety disorders. The current study aims to examine superoxide dismutase (SOD1), catalase, lipid hydroperoxides (LOOH), nitric oxide metabolites (NOx), advanced oxidation protein products (AOPP), malondialdehyde (MDA), glutathione (GSH), paraoxonase 1 (PON1), high-density lipoprotein cholesterol (HDL), and uric acid (UA) in participants with and without generalized anxiety disorder (GAD) co-occurring or not with BD, MDD, or tobacco use disorder. Z unit-weighted composite scores were computed as indices of nitro-oxidative stress driving lipid and protein oxidation. SOD1, LOOH, NOx, and uric acid were significantly higher and HDL and PON1 significantly lower in participants with GAD than in those without GAD. GAD was more adequately predicted by increased SOD + LOOH + NOx and lowered HDL + PON1 composite scores. Composite scores of nitro-oxidative stress coupled with aldehyde and AOPP production were significantly increased in participants with comorbid GAD + MDD as compared with all other study groups, namely MDD, GAD + BD, BD, GAD, and healthy controls. In conclusion, GAD is characterized by increased nitro-oxidative stress and lipid peroxidation and lowered lipid-associated antioxidant defenses, while increased uric acid levels in GAD may protect against aldehyde production and protein oxidation. This study suggests that increased nitro-oxidative stress and especially increased SOD1 activity, NO production, and lipid peroxidation as well as lowered HDL-cholesterol and PON1 activity could be novel drug targets for GAD especially when comorbid with MDD.

  14. α-Tocopherol Is Ineffective in Preventing the Decomposition of Preformed Lipid Peroxides and May Promote the Accumulation of Toxic Aldehydes: A Potential Explanation for the Failure of Antioxidants to Affect Human Atherosclerosis

    PubMed Central

    Raghavamenon, Achuthan; Garelnabi, Mahdi; Babu, Sainath; Aldrich, Alex; Litvinov, Dmitry

    2009-01-01

    Abstract The decomposition of peroxidized lipids of low-density lipoprotein (LDL) has been suggested to be involved in atherosclerosis. In this study, an in vitro system with 13-hydroperoxylinoleic acid (13-HPODE) was used to determine the effects of antioxidants on its decomposition. Decomposition of 13-HPODE was not affected by α-tocopherol, several other antioxidants, or antioxidant enzymes. Moreover, the inclusion of α-tocopherol during the decomposition of 13-HPODE resulted in an accumulation of aldehydes. Further oxidation of aldehydes to carboxylic acids by a number of oxidases was prevented by α-tocopherol. Conversely, the formation of carboxylic acids may be conducive to plaque stabilization via immunomodulation, rapid degradation, and by calcium sequestration. Thus, the inhibition of formation of carboxylic acids could be a serious deleterious effect of antioxidant treatment. In contrast, α-keto acids, like pyruvic acid, promoted the conversion of 13-HPODE to 13-hydroxylinoleic acid (13-HODE) by readily undergoing decarboxylation into acetate. These observations suggest that agents that promote the reduction of lipid peroxides into lipid hydroxides could be far more effective in treating cardiovascular diseases as opposed α-tocopherol–like antioxidants that could affect additional steps in the oxidation cascade. Antioxid. Redox Signal. 11, 1237–1248. PMID:19186999

  15. Assessment of semen function and lipid peroxidation among lead exposed men

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasperczyk, Aleksandra; Kasperczyk, Slawomir; Horak, Stanislaw

    The study population included healthy, fertile men, employees of Zinc and Lead Metalworks (n = 63). Workers exposed to lead were divided into two groups: a group with moderate exposure to lead (ME) - blood lead level (PbB) 25-40 {mu}g/dl and a group with high exposure to lead (HE) PbB = 40-81 {mu}g/dl. The control group consisted of office workers with no history of occupational exposure to lead. Evaluation of lead, cadmium and zinc level in blood and seminal plasma, zinc protoporphyrin in blood (ZPP), 5-aminolevulinic acid in urine (ALA), malondialdehyde (MDA) in seminal plasma and sperm analysis were performed.more » No differences were noted in the concentration of cadmium and zinc in blood and seminal plasma in the study population. Lipid peroxidation in seminal plasma, represented as MDA concentration, significantly increased by about 56% in the HE group and the percentage of motile sperm cells after 1 h decreased by about 34% in comparison to the control group. No statistically significant correlation between other parameters of sperm analysis and lead exposure parameters nor between lead, cadmium and zinc concentration in blood and seminal plasma were found. A positive association between lead intoxication parameters (PbB, ZPP, lead seminal plasma) and MDA concentration in sperm plasma and inverse correlation with sperm cells motility (PbB, ZPP) was found. An increased concentration of MDA was accompanied by a drop in sperm cells motility. In conclusion, we report that high exposure to lead causes a decrease of sperm motility in men most likely as a result of increased lipid peroxidation, especially if the level in the blood surpasses the concentration of 40 {mu}g/dl.« less

  16. DHA reduces oxidative stress following hypoxia-ischemia in newborn piglets: a study of lipid peroxidation products in urine and plasma.

    PubMed

    Huun, Marianne Ullestad; Garberg, Håvard T; Escobar, Javier; Chafer, Consuelo; Vento, Maximo; Holme, Ingar M; Saugstad, Ola Didrik; Solberg, Rønnaug

    2018-02-23

    Lipid peroxidation mediated by reactive oxygen species is a major contributor to oxidative stress. Docosahexaenoic acid (DHA) has anti-oxidant and neuroprotective properties. Our objective was to assess how oxidative stress measured by lipid peroxidation was modified by DHA in a newborn piglet model of hypoxia-ischemia (HI). Fifty-five piglets were randomized to (i) hypoxia, (ii) DHA, (iii) hypothermia, (iv) hypothermia+DHA or (v) sham. All groups but sham were subjected to hypoxia by breathing 8% O2. DHA was administered 210 min after end of hypoxia and the piglets were euthanized 9.5 h after end of hypoxia. Urine and blood were harvested at these two time points and analyzed for F4-neuroprostanes, F2-isoprostanes, neurofuranes and isofuranes using UPLC-MS/MS. F4-neuroprostanes in urine were significantly reduced (P=0.006) in groups receiving DHA. Hypoxia (median, IQR 1652 nM, 610-4557) vs. DHA (440 nM, 367-738, P=0.016) and hypothermia (median, IQR 1338 nM, 744-3085) vs. hypothermia+DHA (356 nM, 264-1180, P=0.006). The isoprostane compound 8-iso-PGF2α was significantly lower (P=0.011) in the DHA group compared to the hypoxia group. No significant differences were found between the groups in blood. DHA significantly reduces oxidative stress by measures of lipid peroxidation following HI in both normothermic and hypothermic piglets.

  17. Dexpanthenol attenuates lipid peroxidation and testicular damage at experimental ischemia and reperfusion injury.

    PubMed

    Etensel, Barlas; Ozkisacik, Sezen; Ozkara, Esra; Karul, Aslihan; Oztan, Onur; Yazici, Mesut; Gürsoy, Harun

    2007-02-01

    Prevention of tissue damage after testicular torsion caused by I/R injury is still a clinical and experimental problem. There are many experimental studies made with several chemicals in the literature for decreasing the effect of reactive oxygen species after ischemia and reperfusion. Dexpanthenol (Dxp) is the biologically active alcohol of pantothenic acid. Pantothenic acid increases the content of reduced glutathione, Coenzyme A and ATP in cell. We studied the effect of Dxp on lipid peroxidation and testicular damage. Forty adult rats were separated randomly into five groups: group Sh, Sham-operation; group TD, torsion-detorsion; group NS, torsion-normal saline-detorsion; group D, torsion-Dxp 250 mg/kg detorsion; group D2, torsion-Dxp 500 mg/kg detorsion group. Serum MDA levels were taken before detorsion, after torsion at the first and fifth minute and at the first hour. Tissue sample was taken at the first hour. The alterations of I/R injury on testis were histological graded. Serum MDA levels were significantly lower in group D2 compared to all groups. The histopathology score of group D2 was significantly lower than groups TD, NS and D. Histopathological score and serum MDA levels are strikingly compatible. Dxp attenuated lipid peroxidation and tissue damage at I/R injury. This effect depends on its antioxidant effect with increasingly reduced glutathione, Coenzyme A and ATP. The effect of Dxp on I/R injury has been shown for the first time in the experimental testicular torsion.

  18. Formation of 7-(2-oxoethyl) guanine from lipid peroxidation and vinyl chloride exposure in male sprague dawley rats.

    EPA Science Inventory

    With a development of a new sensitive LC-MS/MS method to analyze 7-(2-oxoethylguanine) (7OEG), we confirmed and differentiated 7-0EG DNA adduct formation endogenously from lipid peroxidation and exogenously from Vinyl Chloride (VC) exposure. VC is an industrial chemical that is ...

  19. Lipid peroxide, alpha-tocopherol and retinoid levels in plasma and liver of rats fed diets containing beta-carotene and 13-cis-retinoic acid.

    PubMed

    Alam, S Q; Alam, B S

    1983-12-01

    The effect of feeding large amounts of beta-carotene and 13-cis-retinoic acid (RA) on plasma and liver levels of alpha-tocopherol, lipid peroxides and retinoids was studied. Groups of young male rats were fed semipurified diets supplemented with 0, 100 mg/kg beta-carotene, 20 and 100 mg/kg 13-cis-RA. After feeding the various diets for 11 weeks, rats were killed and the concentrations of lipid peroxides, alpha-tocopherol, and retinoids were measured in blood plasma and liver. Peroxide levels were increased and alpha-tocopherol levels were decreased in plasma as well as liver of rats fed diets containing 13-cis-RA; this effect seems to be dose dependent, beta-Carotene had no significant effect on either of the above parameters. There was a decrease in the liver and plasma concentrations of retinol in rats fed 13-cis-RA; the levels of RA were generally higher in these two groups. The results suggest that the mechanism whereby 13-cis-RA increases the tissue peroxide levels may be related to its ability to decrease alpha-tocopherol levels.

  20. Hydrogen Peroxide Inhibits Cytochrome P450 Epoxygenases

    PubMed Central

    Larsen, Brandon T.; Gutterman, David D.; Sato, Atsushi; Toyama, Kazuyoshi; Campbell, William B.; Zeldin, Darryl C.; Manthati, Vijay L.; Falck, John R.; Miura, Hiroto

    2008-01-01

    The cytochrome P450 epoxygenase (CYP)-derived metabolites of arachidonic acid the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2) both function as endothelium-derived hyperpolarizing factors (EDHFs) in the human coronary microcirculation. However, the relative importance of and potential interactions between these 2 vasodilators remain unexplored. We identified a novel inhibitory interaction between CYPs and H2O2 in human coronary arterioles, where EDHF-mediated vasodilatory mechanisms are prominent. Bradykinin induced vascular superoxide and H2O2 production in an endothelium-dependent manner and elicited a concentration-dependent dilation that was reduced by catalase but not by 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE), 6-(2-propargyloxyphenyl)hexanoic acid, sulfaphenazole, or iberiotoxin. However, in the presence of catalase, an inhibitory effect of these compounds was unmasked. In a tandem-bioassay preparation, application of bradykinin to endothelium-intact donor vessels elicited dilation of downstream endothelium-denuded detectors that was partially inhibited by donor-applied catalase but not by detector-applied EEZE; however, EEZE significantly inhibited dilation in the presence of catalase. EET production by human recombinant CYP 2C9 and 2J2, 2 major epoxygenase isozymes expressed in human coronary arterioles, was directly inhibited in a concentration-dependent fashion by H2O2 in vitro, as observed by high-performance liquid chromatography (HPLC); however, EETs were not directly sensitive to oxidative modification. H2O2 inhibited dilation to arachidonic acid but not to 11,12-EET. These findings suggest that an inhibitory interaction exists between 2 EDHFs in the human coronary microcirculation. CYP epoxygenases are directly inhibited by H2O2, and this interaction may modulate vascular EET bioavailability. PMID:17975109

  1. The Study of Hemodialysis Effectiveness on the Change Rate of Lipid Peroxidation and L-Carnitine Level in Hemodialysis Patients

    PubMed Central

    Isfahani, Maryam; Sheikh, Nasrin

    2010-01-01

    Carnitine is a small molecule widely present in all cells from prokaryotic to eukaryotic. It is an important element in β-oxidation of fatty acids. Carnitine is a scavenger of oxygen free radicals in mammalian tissues. Lack of carnitine in a hemodialysis patient can lead to carnitine deficiency. Oxidation of fatty acids and lipid metabolism are severly affected by carnitine deficiency. Oxidative stress is defined as imbalance between formation of free radicals and antioxidative defense mechanisms. It has been proposed to play a role in many disease states. In hemodialysis patients multiple factors can lead to a a high susceptibility to oxidative stress. The aim of this study was to determine hemodialysis effectiveness on the change rate of serum L-carnitine and lipid peroxidation. 27 patients with chronic renal failure (24-80 yrs) who undergo hemodialysis for 6-12 months were selected (M= 17, F= 10). Malondialdehyde (MDA), as an indicator of lipid peroxidation was measured colorimetrically with a standard thiobarbituric acid (TBA) method. L-carnitine was measured with enzymatic UV method (ROCHE, Spectronic Genesis 2, 340 nm). The weight mean of L-carnitine before and after hemodialysis was 7.67±3.6 mg/l and 2.07±1.6 mg/l, respectively (P<0.001). The weight mean of pre-hemodialysis MDA was 4.17±1.24 µmol/l, following hemodialysis -4.98±1.2 µmol/l (P<0.001). Results showed that 55.6% of patients suffered from carnitine defciency. Serum carnitine was found to be decreased markedly after hemodialysis (P<0.001). Our findings indicated that oxidative stress in these patients is further exacerbated by hemodialysis, as evidenced by increased lipid peroxidation. The relationship between serum L-carnitine and MDA before and after hemodialysis was observed (r=0.82; p<0.001; r=0.75; p<0.001). PMID:27683353

  2. Increased lipid peroxidation in pregnant women after iron and vitamin C supplementation.

    PubMed

    Lachili, B; Hininger, I; Faure, H; Arnaud, J; Richard, M J; Favier, A; Roussel, A M

    2001-11-01

    Iron overload could promote the generation of free radicals and result in deleterious cellular damages. A physiological increase of oxidative stress has been observed in pregnancy. A routine iron supplement, especially a combined iron and vitamin C supplementation, without biological justifications (low hemoglobin [Hb] and iron stores) could therefore aggravate this oxidative risk. We investigated the effect of a daily combined iron supplementation (100 mg/d as fumarate) and vitamin C (500 mg/d as ascorbate) for the third trimester of pregnancy on lipid peroxidation (plasma TBARS), antioxidant micronutriments (Zn, Se, retinol, vitamin E, (beta-carotene) and antioxidant metalloenzymes (RBC Cu-Zn SOD and Se-GPX). The iron-supplemented group (n = 27) was compared to a control group (n = 27), age and number of pregnancies matched. At delivery, all the women exhibited normal Hb and ferritin values. In the supplemented group, plasma iron level was higher than in the control group (26.90 +/- 5.52 mmol/L) and TBARs plasma levels were significantly enhanced (p < 0.05) (3.62 +/- 0.36 vs 3.01 +/- 0.37 mmol/L). No significant changes were observed in plasma trace elements and red blood cell antioxidant metalloenzymes. Furthermore, the alpha-tocopherol plasma level was lowered in the iron-supplemented groups, suggesting an increased utilization of vitamin E. These data show that pharmalogical doses of iron, associated with high vitamin C intakes, can result in uncontrolled lipid peroxidation. This is predictive of adverse effects for the mother and the fetus. This study illustrates the potential harmful effects of iron supplementation when prescribed only on the assumption of anemia and not on the bases of biological criteria.

  3. Endothelin-1 Expression Associated with Lipid Peroxidation and Nuclear Factor-κB Activation in Type 2 Diabetes Mellitus Patients with Angiopathy and Limb Amputation.

    PubMed

    Kuo, Yur-Ren; Chien, Ching-Ming; Kuo, Ming-Jen; Wang, Feng-Sheng; Huang, Eng-Yen; Wang, Ching-Jen

    2016-01-01

    It is unclear whether diabetic angiopathy is related to oxidative stress-associated endothelial dysfunction. The authors investigated whether alteration of endothelin-1 and lipid peroxide production and activation of nuclear factor-κB expression were involved in lower limb amputation in type 2 diabetes mellitus patients. A total of 135 subjects including 51 type 2 diabetes mellitus patients with major lower extremity amputations and 36 diabetes mellitus patients without limb and vascular complication and 48 normal controls were recruited for this study. The authors measured the plasma soluble endothelin-1 concentrations by a sandwich enzyme immunoassay, and measured oxidative stress as determined by the lipid peroxide byproduct malondialdehyde. Histologic staining and nuclear factor-κB activation determined by electrophoretic mobility shift assay of the amputated vessels were examined. Histologic staining revealed that severe arteriosclerosis with atheroma formation in the amputated diabetic arteries was significantly prominent compared with normal controls. Soluble endothelin-1 concentrations and malondialdehyde levels were increased significantly in diabetic amputation patients compared with other groups (p < 0.001). The nuclear factor-κB binding activity in amputated diabetic stump vessels was more prominent compared with healthy vessels without diabetes mellitus. There was a positive correlation between endothelin-1 and malondialdehyde in patients with diabetic amputation (r = 0.46, p = 0.001). These results suggest that elevation of endothelin-1 and lipid peroxide levels is involved in the pathogenesis of diabetic foot amputation. An increase of lipid peroxide and endothelin-1 associated with nuclear factor-κB activation plays an important role in the development of diabetic angiopathies.

  4. Control of lipid oxidation in extruded salmon jerky snacks.

    PubMed

    Kong, Jian; Perkins, L Brian; Dougherty, Michael P; Camire, Mary Ellen

    2011-01-01

    A shelf-life study was conducted to evaluate the effect of antioxidants on oxidative stability of extruded jerky-style salmon snacks. Deterioration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) due to lipid oxidation is a major concern for this healthy snack. A control jerky with no added antioxidants and 4 jerkies with antioxidants (rosemary, mixed tocopherols, tertiary butylhydroquinone, and ascorbyl palmitate) added as 0.02% of the lipid content were extruded in duplicate in a Coperion ZSK-25 twin screw extruder. Salmon jerkies from each formulation were placed in 3 mil barrier pouches, flushed with nitrogen, and stored at 35 °C and 75% relative humidity. Lipid oxidation was evaluated as by peroxide value and malonaldehyde content. Other chemical analyses included total fatty acid composition, lipid content, moisture, water activity, pH, and salt. Astaxanthin and CIE L*, a*, b* color were also analyzed at 4-wk intervals. Rosemary inhibited peroxide formation better than did other antioxidants at week 8; no treatment inhibited malonaldehyde levels. All jerkies had lower astaxanthin levels after 8 wk, but rosemary-treated jerky had higher pigment concentrations than did the control at weeks 4 and 8. Protection of omega-3 lipids in these extruded jerkies must be improved to offer consumers a convenient source of these healthful lipids. Practical Application: Salmon flesh can be extruded to produce a jerky that provides 410 mg of omega-3 lipids per serving. Natural antioxidants such as rosemary should be added at levels over 0.02% of the lipid content to help control lipid oxidation. Astaxanthin and CIE a* values correlated well with lipid stability and could be used to monitor quality during storage if initial values are known.

  5. The generation of 4-hydroxynonenal, an electrophilic lipid peroxidation end product, in rabbit cornea organ cultures treated with UVB light and nitrogen mustard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruijin; Po, Iris; Mishin, Vladimir

    The cornea is highly sensitive to oxidative stress, a process that can lead to lipid peroxidation. Ultraviolet light B (UVB) and nitrogen mustard (mechlorethamine) are corneal toxicants known to induce oxidative stress. Using a rabbit air-lifted corneal organ culture model, the oxidative stress responses to these toxicants in the corneal epithelium was characterized. Treatment of the cornea with UVB (0.5 J/cm{sup 2}) or nitrogen mustard (100 nmol) resulted in the generation of 4-hydroxynonenal (4-HNE), a reactive lipid peroxidation end product. This was associated with increased expression of the antioxidant, heme oxygenase-1 (HO-1). In human corneal epithelial cells in culture, additionmore » of 4-HNE or 9-nitrooleic acid, a reactive nitrolipid formed during nitrosative stress, caused a time-dependent induction of HO-1 mRNA and protein; maximal responses were evident after 10 h with 30 μM 4-HNE or 6 h with 10 μM 9-nitrooleic acid. 4-HNE and 9-nitrooleic acid were also found to activate Erk1/2, JNK and p38 MAP kinases, as well as phosphoinositide-3-kinase (PI3)/Akt. Inhibition of p38 blocked 4-HNE- and 9-nitrooleic acid-induced HO-1 expression. Inhibition of Erk1/2, and to a lesser extent, JNK and PI3K/Akt, suppressed only 4-HNE-induced HO-1, while inhibition of JNK and PI3K/Akt, but not Erk1/2, partly reduced 9-nitrooleic acid-induced HO-1. These data indicate that the actions of 4-HNE and 9-nitrooleic acid on corneal epithelial cells are distinct. The sensitivity of corneal epithelial cells to oxidative stress may be an important mechanism mediating tissue injury induced by UVB or nitrogen mustard. - Highlights: • UVB or nitrogen mustard causes rabbit corneal epithelial injury. • 4-Hydroxynonenal (4-HNE) was formed and heme oxygenase-1 (HO-1) was increased. • 4-HNE induced HO-1 mRNA and protein expression in human corneal epithelial cells. • The induction of HO-1 by 4-HNE was through MAP kinase activation.« less

  6. [Lipids peroxidation system in oral fluid of pregnant women with inflammatory periodontal disease at different gestation stages].

    PubMed

    Yuldasheva, N A

    Oxidative stress was assessed in 30 pregnant women with inflammatory periodontal disease and 20 healthy non-pregnant women. An increase of lipids peroxidation intensity and decrease of antioxidative enzymes was revealed. These changes progressed during the course of gestation reaching its peak in the III trimester and were associated with the clinical signs of periodontal disease.

  7. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak G.; Miller L.; Zorlu, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{submore » 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.« less

  8. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: an FTIR microspectroscopic imaging study.

    PubMed

    Cakmak, Gulgun; Miller, Lisa M; Zorlu, Faruk; Severcan, Feride

    2012-04-15

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH(2) groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH(3) groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Protective effects of Opuntia ficus-indica extract on ram sperm quality, lipid peroxidation and DNA fragmentation during liquid storage.

    PubMed

    Allai, Larbi; Druart, Xavier; Öztürk, Mehmet; BenMoula, Anass; Nasser, Boubker; El Amiri, Bouchra

    2016-12-01

    The present study aimed to assess the phenolic composition of the acetone extract from Opuntia ficus indica cladodes (ACTEX) and its effects on ram semen variables, lipid peroxidation and DNA fragmentation during liquid storage at 5°C for up to 72h in skim milk and Tris egg yolk extenders. Semen samples from five rams were pooled extended with Tris-egg yolk (TEY) or skim milk (SM) extenders containing ACTEX (0%, 1%, 2%, 4% and 8%) at a final concentration of 0.8×10 9 sperm/ml and stored for up to 72h at 5°C. The sperm variables were evaluated at different time periods (8, 24, 48 and 72h). Sperm total motility and viability were superior in TEY than in SM whereas the progressive motility, membrane integrity, abnormality and spontaneous lipid peroxidation were greater in SM compared to TEY (P<0.05). The results also indicated that the inclusion of 1% ACTEX in the SM or TEY extender increased the sperm motility, viability, membrane integrity, and decreased the abnormality, lipids peroxidation up to 72h in storage compared to control group. Similarly, even at 72h of storage, 1% ACTEX can efficiently decrease the negative effects of liquid storage on sperm DNA fragmentation (P<0.05). In conclusion, SM and TEY supplemented with 1% of ACTEX can improve the quality of ram semen. Further studies are required to identify the active components in ACTEX involved in its effect on ram sperm preservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A comparison of oxidative stress in smokers and non-smokers: an in vivo human quantitative study of n-3 lipid peroxidation

    PubMed Central

    Puri, Basant K; Treasaden, Ian H; Cocchi, Massimo; Tsaluchidu, Sofia; Tonello, Lucio; Ross, Brian M

    2008-01-01

    Background Cigarette smoking is believed to cause oxidative stress by several mechanisms, including direct damage by radical species and the inflammatory response induced by smoking, and would therefore be expected to cause increased lipid peroxidation. The aim was to carry out the first study of the relationship of smoking in humans to the level of n-3 lipid peroxidation indexed by the level of ethane in exhaled breath. Methods Samples of alveolar air were obtained from 11 smokers and 18 non-smokers. The air samples were analyzed for ethane using mass spectrometry. Results The two groups of subjects were matched with respect to age and gender. The mean cumulative smoking status of the smokers was 11.8 (standard error 2.5) pack-years. The mean level of ethane in the alveolar breath of the group of smokers (2.53 (0.55) ppb) was not significantly different from that of the group of non-smokers (2.59 (0.29) ppb; p = 0.92). With all 29 subjects included, the Spearman rank correlation coefficient between ethane levels and cumulative smoking status was -0.11 (p = 0.58), while an analysis including only the smokers yielded a corresponding correlation coefficient of 0.11 (p = 0.75). Conclusion Our results show no evidence that cigarette smoking is related to increased n-3 lipid peroxidation as measured by expired ethane. PMID:18433514

  11. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.

    PubMed

    Viswanathan, Vasanthi S; Ryan, Matthew J; Dhruv, Harshil D; Gill, Shubhroz; Eichhoff, Ossia M; Seashore-Ludlow, Brinton; Kaffenberger, Samuel D; Eaton, John K; Shimada, Kenichi; Aguirre, Andrew J; Viswanathan, Srinivas R; Chattopadhyay, Shrikanta; Tamayo, Pablo; Yang, Wan Seok; Rees, Matthew G; Chen, Sixun; Boskovic, Zarko V; Javaid, Sarah; Huang, Cherrie; Wu, Xiaoyun; Tseng, Yuen-Yi; Roider, Elisabeth M; Gao, Dong; Cleary, James M; Wolpin, Brian M; Mesirov, Jill P; Haber, Daniel A; Engelman, Jeffrey A; Boehm, Jesse S; Kotz, Joanne D; Hon, Cindy S; Chen, Yu; Hahn, William C; Levesque, Mitchell P; Doench, John G; Berens, Michael E; Shamji, Alykhan F; Clemons, Paul A; Stockwell, Brent R; Schreiber, Stuart L

    2017-07-27

    Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFβ-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.

  12. Plasma lipoproteins as mediators of the oxidative stress induced by UV light in human skin: a review of biochemical and biophysical studies on mechanisms of apolipoprotein alteration, lipid peroxidation, and associated skin cell responses.

    PubMed

    Filipe, Paulo; Morlière, Patrice; Silva, João N; Mazière, Jean-Claude; Patterson, Larry K; Freitas, João P; Santus, R

    2013-01-01

    There are numerous studies concerning the effect of UVB light on skin cells but fewer on other skin components such as the interstitial fluid. This review highlights high-density lipoprotein (HDL) and low-density lipoprotein (LDL) as important targets of UVB in interstitial fluid. Tryptophan residues are the sole apolipoprotein residues absorbing solar UVB. The UVB-induced one-electron oxidation of Trp produces (•)Trp and (•)O2 (-) radicals which trigger lipid peroxidation. Immunoblots from buffered solutions or suction blister fluid reveal that propagation of photooxidative damage to other residues such as Tyr or disulfide bonds produces intra- and intermolecular bonds in apolipoproteins A-I, A-II, and B100. Partial repair of phenoxyl tyrosyl radicals (TyrO(•)) by α -tocopherol is observed with LDL and HDL on millisecond or second time scales, whereas limited repair of α -tocopherol by carotenoids occurs in only HDL. More effective repair of Tyr and α -tocopherol is observed with the flavonoid, quercetin, bound to serum albumin, but quercetin is less potent than new synthetic polyphenols in inhibiting LDL lipid peroxidation or restoring α -tocopherol. The systemic consequences of HDL and LDL oxidation and the activation and/or inhibition of signalling pathways by oxidized LDL and their ability to enhance transcription factor DNA binding activity are also reviewed.

  13. [Antioxidant enzymes and lipid peroxidation products in patients with pulmonary tuberculosis].

    PubMed

    Golubović, Slavica; Stanković, Ivana; Ristić, Lidija; Cosić, Vladan; Dordević, Ivanka; Radović, Milan

    2010-01-01

    A lot of studies have dealt with the oxidative stress in pulmonary diseases, and some of them with tuberculosis as well. The aim of this study was to examine the antioxidant enzyme level (superoxide dismutase, glutathione peroxidase, catalase) and the lipid peroxidation products in patients with tuberculosis. Forty patients with tuberculosis were included in the study. The examined parameters were measured before and three weeks after the beginning of the antituberculosis treatment (group I). The control group included 40 healthy persons (group II). The superoxide dismutase level was significantly lower in group I in both measurements (p < 0.001 and p < 0.01) in relation to group II, but there were no significant changes in its level during the therapy. During the treatment, the glutation peroxidase level significantly increased (p < 0.05), and in relation to group II, its level was significantly lower in both measurements in group I (p < 0.001 and p < 0.001). The catalase level significantly increased during the treatment, but there was no significant difference in relation to group II level. There was no significant difference in relation to the lipid peroxidase products between the groups. Our study group had reduced antioxidant enzyme level and some of them showed significant improvement during the treatment. The lipid peroxidase product level was stable. In patients with tuberculosis the antioxidative status is lower and its level and possible development of the oxidative stress depend on the disease severity.

  14. Lasting downregulation of the lipid peroxidation enzymes in the prefrontal cortex of mice susceptible to stress-induced anhedonia.

    PubMed

    Cline, Brandon H; Anthony, Daniel C; Lysko, Alexander; Dolgov, Oleg; Anokhin, Konstantin; Schroeter, Careen; Malin, Dmitry; Kubatiev, Aslan; Steinbusch, Harry W; Lesch, Klaus-Peter; Strekalova, Tatyana

    2015-01-01

    Antioxidant enzymes and lipid peroxidation in the brain are involved in neuropsychiatric pathologies, including depression. 14- or 28-day chronic stress model induced a depressive syndrome defined by lowered reward sensitivity in C57BL/6J mice and changed gene expression of peroxidation enzymes as shown in microarray assays. We studied how susceptibility or resilience to anhedonia is related to lipid peroxidation in the prefrontal cortex (PFC). With 14-day stress, a comparison of the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX) and accumulation of malondialdehyde (MDA) revealed a decrease of the first two measures in susceptible, but not in resilient animals or in stressed mice chronically dosed with imipramine (7mg/kg/day). Acute stress elevated activity of CAT and SOD and dynamics of MDA accumulation in the PFC that was prevented by imipramine (30mg/kg). 28-day stress evoked anhedonia lasting two but not five weeks while behavioural invigoration was detected at the latter time point in anhedonic but not non-anhedonic mice; enhanced aggressive traits were observed in both groups. After two weeks of a stress-free period, CAT and SOD activity levels in the PFC were reduced in anhedonic animals; after five weeks, only CAT was diminished. Thus, in the present chronic stress depression paradigm, lasting alterations in brain peroxidation occur not only during anhedonia but also in the recovery period and are accompanied by behavioural abnormalities in mice. This mimics behavioural and neurochemical deficits observed in depressed patients during remission which could be used to develop remedies preventing their relapse. Copyright © 2014. Published by Elsevier B.V.

  15. The Effects of Subacute Exposure of Peracetic Acid on Lipid Peroxidation and Hepatic Enzymes in Wistar Rats

    PubMed Central

    Marjani, Abdoljalal; Golalipour, Mohammad J.; Gharravi, Anneh M.

    2010-01-01

    Objectives This study was undertaken to determine the effect of subacute exposure of peracetic acid on lipid peroxidation and hepatic enzymes in Wistar rats. Methods 48 male animals in Treatment Group I, II and III received 0.2%, 2% and 20% peracetic acid daily for 2 and 4 weeks. Results Serum malondialdehyde increased and Alanine Transaminase and Aspartate Transaminase decreased significantly in groups 2 and 3, compared to the control group. The malondialdehyde, Alanine Transaminase and Aspartate Transaminase with 0.2% and 2% doses of peracetic acid for 2 weeks do not lead to the alteration of malondialdehyde and enzyme activities. Conclusion This study demonstrated that the enhancement of malondialdehyde could provide an oxidative damage induced by disinfectant peroxidation at 20% and 2% doses at 2 and 4 weeks. The consumption of peroxidation with 20% for 2 weeks and 2% for 4 weeks can cause the increase of malondialdehyde and the decrease of enzyme activities, respectively. PMID:22043353

  16. Lipid peroxidative damage in the erythrocytes and elevation of serum LDL-cholesterol, apolipoprotein-B, ferritin and uric acid with age and in coronary heart disease patients.

    PubMed

    El-Gebali, H H; Tahir, S A; Haider, S S; El-Fakhri, M M

    2000-02-01

    To determine the normal serum levels of LDL-cholesterol, apolipoprotein-B, ferritin, uric acid, and the extent of erythrocytes lipid peroxidation in healthy control group subjects and to compare them with coronary heart disease patients. Secondly, to study the effects of age and sex on these parameters. The blood samples from 150 healthy Libyan control group subjects (110 men and 40 women) were classified into 3 groups according to their age. Group I consisted of 76 subjects with an age range from 20 to 35 years. Group II consisted of 45 subjects with an age range from 36 to 50 years. Group III consisted of 29 subjects with an age range from 51 to 74 years. The blood samples from these groups were analyzed for LDL-cholesterol, apolipoprotein-B, ferritin and uric acid levels. Lipid peroxidation was compared in the erythrocytes of 56 selected healthy control group subjects (31 men and 11 women) of the aforementioned age groups. These parameters have shown age-dependent elevation in their levels. Meanwhile, LDL-cholesterol and Apolipoprotein-B levels in female subjects were higher than those of males. However, lipid peroxidation in the erythrocytes has revealed a statistically significant increase with increasing age. The comparison between 93 selected, sex and age matched, healthy control group subjects with 87 selected coronary heart disease patients (55 men and 45 women) with an age range from 30 to 74 years (49.6+13.25) has demonstrated significantly higher concentration of LDL-cholesterol, Apolipoprotein-B, ferritin and uric acid in coronary heart disease patients than those of healthy control group subjects. Meanwhile, lipid peroxidation was also significantly enhanced in coronary heart disease patients compared with healthy control group subjects. Our study has revealed that an increase in the lipid peroxidation in erythrocytes with age and during coronary heart disease, makes red cell membranes more vulnerable to free radical damage via formation of reactive

  17. Protective activity of Hertia cheirifolia extracts against DNA damage, lipid peroxidation and protein oxidation.

    PubMed

    Kada, Seoussen; Bouriche, Hamama; Senator, Abderrahmane; Demirtaş, Ibrahim; Özen, Tevfik; Çeken Toptanci, Bircan; Kızıl, Göksel; Kızıl, Murat

    2017-12-01

    Hertia cheirifolia L. (Asteraceae), a perennial shrub widely distributed in Northern Africa, is traditionally used to treat inflammatory disorders. The protective effect of methanol (Met E) and aqueous (Aq E) extracts of Hertia cheirifolia against DNA, lipid and protein oxidation was investigated. Different concentrations (50-1000 μg/mL) of Hertia cheirifolia aerial part extracts were examined against DNA, lipid and protein oxidation induced by H 2 O 2  + UV, FeSO 4 , and Fe 3+ /H 2 O 2 -ascorbic acid, respectively. The DPPH • , metal ion chelating, reducing power and β-carotene bleaching tests were conducted. Both extracts were rich in polyphenols, flavonoids and tannins, and were able to scavenge DPPH • with IC 50 values of 138 and 197 μg/mL, respectively. At 300 μg/mL, Aq E exerted stronger chelating effect (99%) than Met E (69%). However, Met E reducing power (IC 50  =   61 μg/mL) was more than that of Aq E (IC 50  =   193 μg/mL). Both extracts protected from β-carotene bleaching by 74% and 94%, respectively, and inhibited linoleic acid peroxidation. The inhibitory activity of Aq E extract (64%) was twice more than that of Met E (32%). Interestingly, both extracts protected DNA against the cleavage by about 96-98%. At 1 mg/mL, Met E and Aq E restored protein band intensity by 94-99%. Hertia cheirifolia exhibits potent antioxidant activity and protects biomolecules against oxidative damage; hence, it may serve as potential source of natural antioxidant for pharmaceutical applications and food preservation. This is the first report on the protective activity of this plant against biomolecule oxidation.

  18. Lipid peroxidation and antioxidant enzymes activity in controlled and uncontrolled Type 2 diabetic patients.

    PubMed

    Zarei, Mahnaz; Farahnak, Zahra; Hosseinzadeh-Attar, Mohammad Javad; Javanbakht, Mohammad Hassan; Hosseinzadeh, Payam; Derakhshanian, Hoda; Farahbakhsh-Farsi, Payam; Djalali, Mahmoud

    2016-05-01

    This study was designed to compare lipid peroxidation and antioxidant enzymes activity in Type 2 diabetes patients with good or weak glycemic control. In this case-control study, 62 Type 2 diabetic patients with glycated hemoglobin (HbA1c) between 6 and 8 were enrolled as the controlled group and 55 patients with HbA1c > 8 were selected as an uncontrolled group. Patients were all referred to Iranian Diabetes Association in Tehran, Iran, from 2010 onward. Groups were chosen by convenience sampling and were matched based on age, sex and duration of disease. Demographic questionnaire, two 24-hour food recall, HbA1c, insulin, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase were measured in blood samples. Data were analyzed by Food Processor II and SPSS software. A mean daily consumption of energy, carbohydrate, protein, and fat was not significantly different between two groups. MDA in the uncontrolled group was significantly higher than controlled group (2.03 ± 0.88 vs. 1.65 ± 1.01 nmol/ml; P = 0.030). A mean SOD was slightly higher in the uncontrolled group comparing to the control group (843.3 ± 101.9 vs. 828.0 ± 127.3 U/g Hb; P = 0.400). These data suggest that MDA as a lipid peroxidation indicator is higher in uncontrolled diabetes probably due to chronic high blood sugar followed by higher oxidative stress.

  19. Hepatoprotective effects of Nigella sativa L and Urtica dioica L on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats

    PubMed Central

    Kanter, Mehmet; Coskun, Omer; Budancamanak, Mustafa

    2005-01-01

    AIM: To investigate the effects of Nigella sativa L (NS) and Urtica dioica L (UD) on lipid peroxidation, antioxidant enzyme systems and liver enzymes in CCl4-treated rats. METHODS: Fifty-six healthy male Wistar albino rats were used in this study. The rats were randomly allotted into one of the four experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated) and D (CCl4+UD+NS treated), each containing 14 animals. All groups received CCl4 (0.8 mL/kg of body weight, sc, twice a week for 60 d). In addition, B, C and D groups also received daily i.p. injections of 0.2 mL/kg NS or/and 2 mL/kg UD oils for 60 d. Group A, on the other hand, received only 2 mL/kg normal saline solution for 60 d. Blood samples for the biochemical analysis were taken by cardiac puncture from randomly chosen-seven rats in each treatment group at beginning and on the 60th d of the experiment. RESULTS: The CCl4 treatment for 60 d increased the lipid peroxidation and liver enzymes, and also decreased the antioxidant enzyme levels. NS or UD treatment (alone or combination) for 60 d decreased the elevated lipid peroxidation and liver enzyme levels and also increased the reduced antioxidant enzyme levels. The weight of rats decreased in group A, and increased in groups B, C and D. CONCLUSION: NS and UD decrease the lipid per-oxidation and liver enzymes, and increase the anti-oxidant defense system activity in the CCl4-treated rats. PMID:16425366

  20. Replacement of fish oil with soybean oil in diets for juvenile Chinese sucker (Myxocyprinus asiaticus): effects on liver lipid peroxidation and biochemical composition.

    PubMed

    Yu, Deng-Hang; Chang, Jia-Zhi; Dong, Gui-Fang; Liu, Jun

    2017-10-01

    This study was designed to evaluate the effect of the replacement of fish oil (FO) by soybean oil (SO) on growth performance, liver lipid peroxidation, and biochemical composition in juvenile Chinese sucker, Myxocyprinus asiaticus. Fish (13.7 ± 0.2 g) in triplicate were fed five experimental diets in which 0% (FO as control), 40% (SO40), 60% (SO60), 80% (SO40), and 100% (SO100) FO were replaced by SO. The body weight gain of fish fed SO40, SO60, or SO80 diet was similar to FO group, but diets that have 100% soybean oil as dietary lipid significantly reduced fish growth (P < 0.05). Although the level of SO resulted in increasing crude lipid content of the liver, the level of SO did not significantly alter the hepatosomatic index (HSI). Indicators of peroxidation, such as vitamin E (V E ) and thiobarbituric acid-reactive substance (TBARS) contents, were changed as increasing dietary SO. It was shown that the inclusion of SO in the diets increased V E concentrations, but reduced TBARS in the liver and total cholesterol (T-CHO) in the plasma. Linoleic acid (LA) and linolenic acid (LNA) significantly increased in fish liver fed diets that contained SO, but eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and the ratio n-3/n-6 were significantly reduced by the inclusion of dietary SO (P < 0.05). Our results indicated that the inclusion of SO increased the hepatic V E content and reduced lipid peroxidation in fish. However, diet containing 100% SO as dietary lipid could reduce growth performance. Thus, we recommended that 40-80% SO can be used as dietary lipid to replace FO for juvenile Chinese sucker.

  1. Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema.

    PubMed

    Amin, Mohammad Nurul; Liza, Kaniz Fatema; Sarwar, Md Shahid; Ahmed, Jamiuddin; Adnan, Md Tareek; Chowdhury, Manjurul Islam; Hossain, Mohammad Zahid; Islam, Mohammad Safiqul

    2015-09-01

    The exact etiology and pathogenesis of eczema are not yet fully understood, although different factors are considered as pathogenic mechanisms in the development of eczema. Our study was designed to determine extent of serum lipid peroxidation, antioxidants, macro minerals and trace elements in patients with eczema, and thereby, find any pathophysiological correlation. The study was conducted as a case-control study with 65 eczema patients as cases and 65 normal healthy individuals as controls. Lipid peroxidation was assessed by measuring the serum level of malondialdehyde (MDA). Antioxidants- vitamin A and E concentration was determined by RP-HPLC method whereas vitamin C was evaluated for serum ascorbic acid by UV spectrophotometric method. Serum macro minerals (Na, K, Ca) and trace elements (Zn, Fe) were determined by Atomic Absorption Spectroscopy (AAS). This study found significantly higher level of MDA (p < 0.001) and lower level of antioxidants (p < 0.05) in patients in comparison to the control subjects. Analysis of serum macro minerals (Na, K and Ca) and trace elements (Zn, Fe) found that the mean values of Na, K, Ca, Zn and Fe were 2771.60 ± 75.64, 66.33 ± 3.03, 48.41 ± 2.50, 0.30 ± 0.02 and 0.29 ± 0.009 mg/L for the patient group and 3284.81 ± 34.51, 162.18 ± 3.72, 87.66 ± 2.10, 0.75 ± 0.06 and 0.87 ± 0.06 mg/L for the control group, accordingly. There was a significant difference for all the minerals between the patients and controls (p < 0.001). This study suggests a strong association between the pathogenesis of eczema with the elevated level of MDA and depleted level of antioxidants, macro minerals, and trace elements.

  2. Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system.

    PubMed

    Naudí, Alba; Cabré, Rosanna; Dominguez-Gonzalez, Mayelin; Ayala, Victoria; Jové, Mariona; Mota-Martorell, Natalia; Piñol-Ripoll, Gerard; Gil-Villar, Maria Pilar; Rué, Montserrat; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2017-05-01

    Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach. To this end, we compared 12 different regions of CNS of healthy adult subjects, and the fatty acid profile and vulnerability to lipid peroxidation, were determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), respectively. In addition, different components involved in PUFA biosynthesis, as well as adaptive defense mechanisms against lipid peroxidation, were also measured by western blot and immunohistochemistry, respectively. We found that: i) four fatty acids (18.1n-9, 22:6n-3, 20:1n-9, and 18:0) are significant discriminators among CNS regions; ii) these differential fatty acid profiles generate a differential selective neural vulnerability (expressed by the peroxidizability index); iii) the cross-regional differences for the fatty acid profiles follow a caudal-cranial gradient which is directly related to changes in the biosynthesis pathways which can be ascribed to neuronal cells; and iv) the higher the peroxidizability index for a given human brain region, the lower concentration of the protein damage markers, likely supported by the presence of adaptive antioxidant mechanisms. In conclusion, our results suggest that there is a region-specific vulnerability to lipid peroxidation and offer evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the human central nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition.

    PubMed

    Zheng, Hailin; Gal, Shunit; Weiner, Lev M; Bar-Am, Orit; Warshawsky, Abraham; Fridkin, Mati; Youdim, Moussa B H

    2005-10-01

    Iron-dependent oxidative stress, elevated levels of iron and of monoamine oxidase (MAO)-B activity, and depletion of antioxidants in the brain may be major pathogenic factors in Parkinson's disease, Alzheimer's disease and related neurodegenerative diseases. Accordingly, iron chelators, antioxidants and MAO-B inhibitors have shown efficacy in a variety of cellular and animal models of CNS injury. In searching for novel antioxidant iron chelators with potential MAO-B inhibitory activity, a series of new iron chelators has been designed, synthesized and investigated. In this study, the novel chelators were further examined for their activity as antioxidants, MAO-B inhibitors and neuroprotective agents in vitro. Three of the selected chelators (M30, HLA20 and M32) were the most effective in inhibiting iron-dependent lipid peroxidation in rat brain homogenates with IC50 values (12-16 microM), which is comparable with that of desferal, a prototype iron chelator that is not has orally active. Their antioxidant activities were further confirmed using electron paramagnetic resonance spectroscopy. In PC12 cell culture, the three novel chelators at 0.1 microM were able to attenuate cell death induced by serum deprivation and by 6-hydroxydopamine. M30 possessing propargyl, the MAO inhibitory moiety of the anti-Parkinson drug rasagiline, displayed greater neuroprotective potency than that of rasagiline. In addition, in vitro, M30 was a highly potent non-selective MAO-A and MAO-B inhibitor (IC50 < 0.1 microM). However, HLA20 was more selective for MAO-B but had poor MAO inhibition, with an IC50 value of 64.2 microM. The data suggest that M30 and HLA20 might serve as leads in developing drugs with multifunctional activities for the treatment of various neurodegenerative disorders.

  4. Freeze-dried strawberry powder improves lipid profile and lipid peroxidation in women with metabolic syndrome: baseline and post intervention effects

    PubMed Central

    Basu, Arpita; Wilkinson, Marci; Penugonda, Kavitha; Simmons, Brandi; Betts, Nancy M; Lyons, Timothy J

    2009-01-01

    Background Strawberry flavonoids are potent antioxidants and anti-inflammatory agents that have been shown to reduce cardiovascular disease risk factors in prospective cohort studies. Effects of strawberry supplementation on metabolic risk factors have not been studied in obese populations. We tested the hypothesis that freeze-dried strawberry powder (FSP) will lower fasting lipids and biomarkers of oxidative stress and inflammation at four weeks compared to baseline. We also tested the tolerability and safety of FSP in subjects with metabolic syndrome. FSP is a concentrated source of polyphenolic flavonoids, fiber and phytosterols. Methods Females (n = 16) with 3 features of metabolic syndrome (waist circumference >35 inches, triglycerides > 150 mg/dL, fasting glucose > 100 mg/dL and < 126 mg/dL, HDL <50 mg/dL, or blood pressure >130/85 mm Hg) were enrolled in the study. Subjects consumed two cups of the strawberry drink daily for four weeks. Each cup had 25 g FSP blended in water. Fasting blood draws, anthropometrics, dietary analyses, and blood pressure measurements were done at baseline and 4 weeks. Biomarkers of oxidative stress and inflammation were measured using ELISA techniques. Plasma ellagic acid was measured using HPLC-UV techniques. Results Total cholesterol and LDL-cholesterol levels were significantly lower at 4 weeks versus baseline (-5% and -6%, respectively, p < 0.05), as was lipid peroxidation in the form of malondialdehyde and hydroxynonenal (-14%, p < 0.01). Oxidized-LDL showed a decreasing trend at 4 weeks (p = 0.123). No effects were noted on markers of inflammation including C-reactive protein and adiponectin. A significant number of subjects (13/16) showed an increase in plasma ellagic acid at four weeks versus baseline, while no significant differences were noted in dietary intakes at four weeks versus baseline. Thus, short-term supplementation of freeze-dried strawberries appeared to exert hypocholesterolemic effects and decrease lipid

  5. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    PubMed Central

    Catalá, Angel

    2013-01-01

    I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others. PMID:24490074

  6. Consumption of pomegranate juice decreases blood lipid peroxidation and levels of arachidonic acid in women with metabolic syndrome.

    PubMed

    Kojadinovic, Milica I; Arsic, Aleksandra C; Debeljak-Martacic, Jasmina D; Konic-Ristic, Aleksandra I; Kardum, Nevena Dj; Popovic, Tamara B; Glibetic, Marija D

    2017-04-01

    Pomegranate juice is a rich source of polyphenols and is thus a promising dietary antioxidant with numerous health-promoting effects. These include a beneficial impact on cardiovascular health that could be partly attributed to the effects of polyphenols on lipid metabolism. The aim of this study was to investigate whether consumption of pomegranate juice for 6 weeks could modify lipid peroxidation and phospholipid fatty acid composition of plasma and erythrocytes in subjects with metabolic syndrome. Twenty-three women, aged 40-60 years, were enrolled and randomly assigned into two groups: the intervention group, in which each participant consumed 300 mL of juice per day for 6 weeks; and a control group. A statistically significant decrease in the relative amount of arachidonic acid (P < 0.05) and an increase in the relative amount of saturated fatty acids (P < 0.05) were observed in the intervention group at the end of the consumption period. In addition, pomegranate juice significantly increased the relative amount of total mono-unsaturated fatty acids (P < 0.05), and significantly decreased the levels of thiobarbituric acid reactive substances in erythrocytes (P < 0.05). The status of blood lipids and the values for blood pressure were not changed during the study. The results obtained indicate a positive impact of the consumption of pomegranate juice on lipid peroxidation and fatty acid status in subjects with metabolic syndrome and suggest potential anti-inflammatory and cardio-protective effects. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. UVA Photoirradiation of Oxygenated Benz[a]anthracene and 3-Methylcholanthene - Generation of Singlet Oxygen and Induction of Lipid Peroxidation

    PubMed Central

    Yin, Jun-Jie; Xia, Qingsu; Cherng, Shu-Hui; Tang, I-Wah; Fu, Peter P.; Lin, Ge; Yu, Hongtao; Herreño Sáenz, Diógenes

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread genotoxic environmental pollutants and potentially pose a health risk to humans. Although the biological and toxicological activities, including metabolism, mutagenicity, and carcinogenicity, of PAHs have been thoroughly studied, their phototoxicity and photo-induced biological activity have not been well examined. We have long been interested in phototoxicity of PAHs and their derivatives induced by irradiation with UV light. In this paper we report the photoirradiation of a series of oxygenated benz[a]anthracene (BA) and 3-methylcholanthene (3-MC) by UVA light in the presence of a lipid, methyl linoleate. The studied PAHs include 2-hydroxy-BA (2-OH-BA), 3-hydroxy-BA (3-OH-BA), 5-hydroxymethyl-BA (5-CH2OH-BA), 7-hydroxymethyl-BA (7-CH2OH-BA), 12-hydroxymethyl-BA (12-CH2OH-BA), 7-hydroxymethyl-12-methyl-BA (7-CH2OH-12-MBA), 5-formyl-BA (5-CHO-BA), BA 5,6-cis-dihydrodiol (BA 5,6-cis-diol), 1-hydroxy-3-methylcholanthene (1-OH-3-MC), 1-keto-3-methylcholanthene (1-keto-3-MC), and 3-MC 1,2-diol. The results indicate that upon photoirradiation by UVA at 7 and 21 J/cm2, respectively all these compounds induced lipid peroxidation and exhibited a relationship between the dose of the light and the level of lipid peroxidation induced. To determine whether or not photoirradiation of these compounds by UVA light produces ROS, an ESR spin-trap technique was employed to provide direct evidence. Photoirradiation of 3-keto-3-MC by UVA (at 389 nm) in the presence of 2,2,6,6-tetramethylpiperidine (TEMP), a specific probe for singlet oxygen, resulted in the formation of TEMPO, indicating that singlet oxygen was generated. These overall results suggest that UVA photoirradiation of oxygenated BA and 3-methylcholanthrene generates singlet oxygen, one of the reactive oxygen species (ROS), which induce lipid peroxidation. PMID:18441402

  8. Effects of Scandinavian caviar paste enriched with a stable fish oil on plasma phospholipid fatty acids and lipid peroxidation.

    PubMed

    Engström, K; Wallin, R; Saldeen, T

    2003-09-01

    To study the possibility of increasing the very long-chain n-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in humans by means of consumption of a common food product, Scandinavian caviar paste, suitable for strategic enrichment with a high concentration of these fatty acids, and to measure the potential inducement of lipid peroxidation. A randomized double blind repeated measures experiment. In total, 16 healthy, nonsmoking subjects (eight men and eight women, age 42+/-12 y) were included in the study. Eight consumed 25 g ordinary caviar paste daily for 3 weeks, and eight the same amount of caviar paste enriched with a very stable fish oil (7%, wt/wt). Blood lipids, plasma phospholipid fatty acids and lipid peroxidation were measured. alpha-Linoleic acid was significantly decreased after intake of both ordinary (-8%, P<0.05) and fish oil caviar (-10%, P<0.05), as was the sum of all n-6 fatty acids (-6%, P<0.05 and -8%, P<0.001, respectively). The fatty acids EPA and DHA, as well as the sum of all n-3 fatty acids, increased significantly in both caviar groups but more in the group given fish oil caviar paste (EPA: +51%, P<0.05 and +100%, P<0.001, respectively; DHA: +24%, P<0.01 and +29%, P<0.001, respectively; sum of n-3:+27%, P<0.05 and +40%, P<0.001, respectively). Lipid peroxidation, measured as the thiobarbituric acid-malondialdehyde adduct, was increased by 26% (P<0.05) after intake of ordinary caviar paste, but was unchanged after intake of fish oil-enriched caviar paste. Scandinavian caviar paste is a spread naturally enriched with n-3 polyunsaturated fatty acids that can be included in the diet to achieve an increase in these fatty acids. However, changing to caviar paste enriched with stable fish oil will lead to a considerably greater increase in EPA and DHA. Swedish Medical Research Council; Cardinova AB, Uppsala, Sweden.

  9. Dose- and time-dependent effects of a novel (-)-hydroxycitric acid extract on body weight, hepatic and testicular lipid peroxidation, DNA fragmentation and histopathological data over a period of 90 days.

    PubMed

    Shara, Michael; Ohia, Sunny E; Yasmin, Taharat; Zardetto-Smith, Andrea; Kincaid, Anthony; Bagchi, Manashi; Chatterjee, Archana; Bagchi, Debasis; Stohs, Sidney J

    2003-12-01

    (-)-Hydroxycitric acid (HCA), a natural extract from the dried fruit rind of Garcinia cambogia (family Guttiferae), is a popular supplement for weight management. The dried fruit rind has been used for centuries as a condiment in Southeastern Asia to make food more filling and satisfying. A significant number of studies highlight the efficacy of Super CitriMax (HCA-SX, a novel 60% calcium-potassium salt of HCA derived from Garcinia cambogia) in weight management. These studies also demonstrate that HCA-SX promotes fat oxidation, inhibits ATP-citrate lyase (a building block for fat synthesis), and lowers the level of leptin in obese subjects. Acute oral, acute dermal, primary dermal irritation and primary eye irritation toxicity studies have demonstrated the safety of HCA-SX. However, no long-term safety of HCA-SX or any other (-)-hydroxycitric acid extract has been previously assessed. In this study, we have evaluated the dose- and time-dependent effects of HCA-SX in Sprague-Dawley rats on body weight, hepatic and testicular lipid peroxidation, DNA fragmentation, liver and testis weight, expressed as such and as a % of body weight and brain weight, and histopathological changes over a period of 90 days. The animals were treated with 0, 0.2, 2.0 and 5.0% HCA-SX as feed intake and the animals were sacrificed on 30, 60 or 90 days of treatment. The feed and water intake were assessed and correlated with the reduction in body weight. HCA-SX supplementation demonstrated a reduction in body weight in both male and female rats over a period of 90 days as compared to the corresponding control animals. An advancing age-induced marginal increase in hepatic lipid peroxidation was observed in both male and female rats as compared to the corresponding control animals. However, no such difference in hepatic DNA fragmentation and testicular lipid peroxidation and DNA fragmentation was observed. Furthermore, liver and testis weight, expressed as such and as a percentage of body

  10. Pycnogenol® inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses.

    PubMed

    Lee, Ok-Hwan; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-03-01

    Pycnogenol® is a group of flavonoids with antioxidant effects. Adipogenesis is the process of adipocyte differentiation. It causes the increase of lipids as well as ROS (reactive oxygen species). Lipid accumulation and ROS production were determined in 3 T3-L1 adipocyte, and the effect of Pycnogenol® was evaluated. Lipid accumulation was elevated in adipocyte treated with hydrogen peroxide, one of the ROS. Pycnogenol® showed an inhibitory effect on the lipid accumulation and ROS production during the adipogenesis. We also investigated the molecular events associated with ROS production and lipid accumulation. Our results showed that Pycnogenol® inhibited the mRNA expression of pro-oxidant enzymes, such as NOX4 (NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase 4), and the NADPH-producing G6PDH (glucose-6-phosphate dehydrogenase) enzyme. In addition, Pycnogenol® suppressed the mRNA abundance of adipogenic transcription factors, PPAR-γ (peroxisome proliferator-activated receptor γ) and C/EBP-α (CCAAT/enhancer binding protein α), and their target gene, aP2 (adipocyte protein 2) responsible for fatty acid transportation. On the other hand, Pycnogenol® increased the abundance of antioxidant proteins such as Cu/Zn-SOD (copper-zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and GR (glutathione reductase). Our results suggest that Pycnogenol® inhibits lipid accumulation and ROS production by regulating adipogenic gene expression and pro-/antioxidant enzyme responses in adipocytes. Copyright © 2011 John Wiley & Sons, Ltd.

  11. The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations.

    PubMed

    Salgueiro, Andréia C F; Leal, Carina Q; Bianchini, Matheus C; Prado, Ianeli O; Mendez, Andreas S L; Puntel, Robson L; Folmer, Vanderlei; Soares, Félix A; Avila, Daiana S; Puntel, Gustavo O

    2013-06-21

    Bauhinia forficata (BF) has been traditionally used as tea in folk medicine of Brazil for treatment of Diabetes mellitus (DM). To evaluate the effects of BF leaf tea on markers of oxidative damage and antioxidant levels in an experimental model of hyperglycemia in human erythrocytes in vitro. Human erythrocytes were incubated with high glucose concentrations or glucose and BF tea for 24h and 48h. After incubation lipid peroxidation and non-protein SH levels were analyzed. Moreover, quantification of polyphenols and flavonoids, iron chelating property, scavenging of DPPH, and prevention of lipid peroxidation in isolated lipids were also assessed. A significant amount of polyphenols and flavonoids was observed. The main components found by LC-MS analysis were quercetin-3-O-(2-rhamnosyl) rutinoside, kaempferol-3-O-(2-rhamnosyl) rutinoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside. BF tea presents important antioxidant and chelating properties. Moreover, BF tea was effective to increase non-protein SH levels and reduce lipid peroxidation induced by high glucose concentrations in human erythrocytes. The antioxidant effects of BF tea could be related to the presence of different phenolic and flavonoids components. We believe that these components can be responsible to protect human erythrocytes exposed to high glucose concentrations against oxidative damage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Determination of glutation peroxidase and superoxide dismutase activities in canine seminal plasma and its relation with sperm quality and lipid peroxidation post thaw.

    PubMed

    Neagu, V R; García, B Macías; Rodríguez, A Morillo; Ferrusola, C Ortega; Bolaños, J M Gallardo; Fernández, L González; Tapia, J A; Peña, F J

    2011-01-01

    Lipid peroxidation (LPO) of dog spermatozoa was assessed in fresh semen and in samples of the same ejaculates after freezing and thawing. Particular attention was paid to individual differences in the susceptibility to LPO and its possible relationship with freezeability. Innate levels of LPO were low in fresh spermatozoa but increased after thawing in one of the dogs included in our study. The level of lipid peroxidation in fresh spermatozoa was not correlated with that of thawed spermatozoa. Negative correlations were detected between the activity in seminal plasma of GPx and sperm velocities post thaw (P < 0.01), however SOD activity was positively correlated with the percentage of linear motile sperm post thaw (P < 0.05). Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Protective effect of ursolic acid from Cornus officinalis on the hydrogen peroxide-induced damage of HEI-OC1 auditory cells.

    PubMed

    Yu, Hyeon-Hee; Hur, Jong-Moon; Seo, Se-Jeong; Moon, Hae-Dalma; Kim, Hyun-Jin; Park, Rae-Kil; You, Yong-Ouk

    2009-01-01

    The fruits of Cornus officinalis have been used in traditional oriental medicine for treatment of inner ear diseases, such as tinnitus and hearing loss. In the present study, we investigated the protective effect of C. officinalis on hydrogen peroxide-induced cytotoxicity in HEI-OC1 auditory cells. The results from bioassay-guided fractionation of methanol extract of C. officinalis fruits showed that ursolic acid is a major active component. Ursolic acid (0.05-2 microg/ml) had protective effect against the HEI-OC1 cell damage and reduced lipid peroxidation in a dose-dependent manner. In addition, pre-treatment with ursolic acid significantly attenuated the decrease of activities of catalase (CAT) and glutathione peroxidase (GPX), but superoxide dismutase (SOD) activity was not significantly affected by ursolic acid. These results indicate that ursolic acid protects hydrogen peroxide-induced HEI-OC1 cell damage through inhibition of lipid peroxidation and induction of antioxidant enzymes, CAT and GPX, and may be one of the active components responsible for these effects of C. officinalis fruits.

  14. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds.

    PubMed

    Wang, Weicang; Yang, Haixia; Johnson, David; Gensler, Catherine; Decker, Eric; Zhang, Guodong

    2017-09-01

    The ω-3 polyunsaturated fatty acids (PUFAs) are among the most popular dietary supplements in the US, but they are chemically unstable and highly prone to lipid peroxidation. Many studies performed in different countries demonstrate that the majority of ω-3 PUFA products on the market are oxidized, suggesting that the resulting ω-3 PUFA peroxidation-derived compounds could be widely consumed by the general public. Therefore, it is of practical importance to understand the effects of these oxidized lipid compounds on human health. In this review, we summarize and discuss the chemical structures and biological activities of ω-3 PUFA peroxidation-derived compounds, and emphasize the importance to better understand the role of lipid peroxidation in biological activities of ω-3 PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome.

    PubMed

    Basu, Arpita; Sanchez, Karah; Leyva, Misti J; Wu, Mingyuan; Betts, Nancy M; Aston, Christopher E; Lyons, Timothy J

    2010-02-01

    To compare the effects of supplementation of green tea beverage or green tea extracts with controls on body weight, glucose and lipid profile, biomarkers of oxidative stress, and safety parameters in obese subjects with metabolic syndrome. Randomized, controlled prospective trial. General Clinical Research Center (GCRC) at University of Oklahoma Health Sciences Center (OUHSC). Thirty-five subjects with obesity and metabolic syndrome were recruited in age- and gender-matched trios and were randomly assigned to the control (4 cups water/d), green tea (4 cups/d), or green tea extract (2 capsules and 4 cups water/d) group for 8 weeks. The tea and extract groups had similar dosing of epiogallocatechin-3-gallate (EGCG), the active compound in green tea. Anthropometrics, blood pressure, fasting glucose and lipids, nuclear magnetic resonance (NMR)-based lipid particle size, safety parameters, biomarkers of oxidative stress (oxidized low-density lipoprotein [LDL], myeloperoxidase [MPO], malondialdehyde and hydroxynonenals [MDA and HNE]), and free catechins were analyzed at screen and at 4 and 8 weeks of the study. Pairwise comparisons showed green tea beverage and green tea extracts caused a significant decrease in body weight and body mass index (BMI) versus controls at 8 weeks (-2.5 +/- 0.7 kg, p < 0.01, and -1.9 +/- 0.6, p < 0.05, respectively). Green tea beverage showed a decreasing trend in LDL-cholesterol and LDL/high-density lipoprotein (HDL) versus controls (p < 0.1). Green tea beverage also significantly decreased MDA and HNE (-0.39 +/- 0.06 microM, p < 0.0001) versus controls. Plasma free catechins were detectable in both beverage and extract groups versus controls at screen and at 8 weeks, indicating compliance and bioavailability of green tea catechins. Green tea beverage consumption (4 cups/d) or extract supplementation (2 capsules/d) for 8 weeks significantly decreased body weight and BMI. Green tea beverage further lowered lipid peroxidation versus age- and

  16. Effect of dietary protein and hypervitaminosis A or C on tissue peroxidation and erythrocyte lysis of vitamin E deficiency.

    PubMed

    Jayanthi Bai, N; Sanjeev Kumar, P; George, T; Krishnamurthy, S

    1982-01-01

    Rats were maintained on a vitamin E free diet containing 20% safflower oil for a period of 12 weeks at two dietary protein levels, 20% and 10% casein. Enhanced in vitro tissue lipid peroxidation and lysis of erythrocytes were noticed at both the protein levels. A reduction in body mass and tissue weights were observed in both the protein groups but more so at 20% protein level. Feeding of retinyl palmitate (100 000 IU/100 g body weight) for 4 consecutive days to -E rats inhibited liver and kidney in vitro lipid peroxidation. Ascorbic acid (150 mg/100 g body weight) given orally for 5 days to -E rats inhibited liver brain and kidney in vitro peroxidation. Lysis of erythrocytes from -E rats was further increased by dosing with both the vitamins "A" and "C", the latter being more effective. The stromal enzymes acetyl choline esterase and ATPase were lowered, following the hemolysis profile of the erythrocytes from the different groups. Glutathione content of erythrocytes were unaffected except in -E +C group. In all groups the higher protein level (20%) produced greater lysis as compared to 10% level. It is concluded that 20% protein is more injurious in vitamin E deficiency simultaneously made hypervitaminosis A or C.

  17. Corosolic Acid Induces Non-Apoptotic Cell Death through Generation of Lipid Reactive Oxygen Species Production in Human Renal Carcinoma Caki Cells.

    PubMed

    Woo, Seon Min; Seo, Seung Un; Min, Kyoung-Jin; Im, Seung-Soon; Nam, Ju-Ock; Chang, Jong-Soo; Kim, Shin; Park, Jong-Wook; Kwon, Taeg Kyu

    2018-04-27

    Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor), necroptosis inhibitor (necrostatin-1), or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO)). Furthermore, corosolic acid significantly induces reactive oxygen species (ROS) levels, but antioxidants ( N -acetyl-l-cysteine (NAC) and trolox) do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498), breast cancer (MDA-MB231), and hepatocellular carcinoma (SK-Hep1 and Huh7) cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.

  18. Serum lipids, lipid peroxidation and glutathione peroxidase activity in rats on long-term feeding with coconut oil or butterfat (ghee).

    PubMed

    Soelaiman, I N; Merican, Z; Mohamed, J; Kadir, K B

    1996-12-01

    We determined the relative atherogenicity of two saturated fats by studying their effects on lipid peroxidation (LP), by way of malonaldehyde (MDA) and conjugated dienes (CD) and glutathione peroxidase (GSHPx) activity in serum, liver and heart; and on serum lipid profile after 4 months and 9 months of feeding. Male Rattus norwegicus rats were fed a basal diet (control) or basal diet fortified with 20% weight/weight butterfat (ghee) (BF) or coconut oil (CO). Serum high-density-lipoprotein-cholesterol (HDL-chol) and HDL-chol:LDL-chol ratio was lower in the BF group compared to CO after both feeding periods. Conjugated dienes (CDs) were higher in the serum and liver after 4 months, and heart after 9 months, of the rats fed BF compared to CO. Serum low-density-lipoprotein-cholesterol (LDL-chol) was higher, but CD were lower at 9 months than at 4 months feeding for all three groups. Liver and heart MDA and CD were higher in both groups after 9 months compared to 4 months. Liver GSHPx activity was higher after 9 months compared to 4 months in the BF group. Heart GSHPx activity was lower after 9 months compared to 4 months for both BF and CO groups. In conclusion, BF is potentially more atherogenic than CO in terms of serum lipids and LP. The unfavourable responses in serum lipids, with the exception of triglycerides, and LP were exaggerated with the longer duration of feeding with both oils.

  19. Effect of single-session aerobic exercise with varying intensities on lipid peroxidation and muscle-damage markers in sedentary males.

    PubMed

    Moflehi, Daruosh; Kok, Lian-Yee; Tengku-Kamalden, Tengku-Fadilah; Amri, Saidon

    2012-05-23

    This study was conducted to evaluate the effect of the different intensity levels of single-session aerobic exercise on serum levels of lipid peroxidation and muscle damage markers in sedentary males. Fifty one sedentary healthy males aged 21.76±1.89 years were randomly divided into four groups, with one control (n=10) and three treatment groups that attended single-session aerobic exercise with low (n=14), moderate (n=14), and high (n=13) intensities. The serum levels of malondialdehyde (MDA) and creatine kinase (CK) were measured. Data analysis revealed a significant effect by the intensity levels of aerobic exercise on MDA (P=0.001) and CK (P=0.003) post-test when the participants in the treatment groups were compared with the control. When the intensity of aerobic exercise was increased, the amount of MDA and CK was also found to be increased. Single-session aerobic exercise can increase the amount of MDA and CK, suggesting that low intensity level of aerobic exercise should be utilized for more adaptation, and to prevent lipid peroxidation and muscle damage in sedentary males.

  20. Effect of occupation on lipid peroxidation and antioxidant status in coal-fired thermal plant workers.

    PubMed

    Kaur, Sandeep; Gill, Manmeet Singh; Gupta, Kapil; Manchanda, Kc

    2013-07-01

    Air pollution from coal-fired power units is large and varied, and contributes to a significant number of negative environmental and health effects. Reactive oxygen species (ROS) have been implicated in the pathogenesis of coal dust-induced toxicity in coal-fired power plants. The aim of the study was to measure free radical damage and the antioxidant activity in workers exposed to varying levels of coal dust. The study population consisted of workers in coal handling unit, turbine unit, and boiler unit (n = 50 each), working in thermal power plant; and electricians (n = 50) from same department were taken as controls. Lipid peroxidation was measured by malondialdehyde (MDA) levels and antioxidant activity was determined by superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. Statistical analysis was carried out by Student's unpaired t-test. MDA levels showed significant increase (P > 0.001) in the thermal power plant workers than the electricians working in the city. The levels of SOD and GPx were significantly higher (P > 0.001) in electricians as compared to subjects working in thermal plant. Among the thermal plant workers, the coal handling unit workers showed significant increase (P > 0.001) in MDA and significant decrease in SOD and GPx than the workers of boiler and turbine unit workers. Oxidative stress due to increase in lipid peroxidation and decrease in antioxidant activity results from exposure to coal dust and coal combustion products during thermal plant activities.

  1. Hsp70 and lipid peroxide levels following heat stress in Xeropicta derbentina (Krynicki 1836) (Gastropoda, Pulmonata) with regard to different colour morphs.

    PubMed

    Dieterich, A; Troschinski, S; Schwarz, S; Di Lellis, M A; Henneberg, A; Fischbach, U; Ludwig, M; Gärtner, U; Triebskorn, R; Köhler, H-R

    2015-01-01

    Terrestrial snails which live under dry and hot conditions need efficient mechanisms of adaptation to counteract the problems of desiccation and over-heating. A profoundly heat tolerant snail species is the Mediterranean Xeropicta derbentina, exhibiting different shell colour morphs ranging from pale white to darkly banded. Considering that dark-pigmented snails are believed to have a disadvantage due to faster heating, we investigated possible differences in the stress markers Hsp70 and lipid peroxideation between four pre-defined colour morphs which were exposed to different temperatures for eight hours. The highest Hsp70 levels were observed in response to 38-40 °C. Levels decreased when this temperature was exceeded. Snails of a pre-defined colour category 3 (with a large black band at the umbilicus side of the shell) showed the most prominent Hsp70 response. Lipid peroxideation levels also showed a maximum at 38 °C but displayed a second peak at rather high temperatures at which the Hsp70 level already had decreased (45-48 °C). Particularly pure white snails (category 1) and the most pigmented ones (category 4) were found to have different levels of lipid peroxidation at 38 °C and 45 °C compared to the other morphs. A hypothesis involving a combined two-phase defence mechanism, to which both, the Hsp70 protection system and the antioxidant defence system, may contribute, is discussed.

  2. Increased levels of ethane, a non-invasive, quantitative, direct marker of n-3 lipid peroxidation, in the breath of patients with schizophrenia.

    PubMed

    Puri, Basant K; Ross, Brian M; Treasaden, Ian H

    2008-04-01

    This study directly assessed whether there was a change in the level of exhaled ethane, which provides a non-invasive, quantitative, direct measure of n-3 lipid peroxidation, in the breath of patients with schizophrenia. Samples of alveolar air were obtained from 20 subjects with schizophrenia and 23 age- and sex-matched healthy control subjects. The air samples were analyzed for ethane using mass spectrometry. The mean level of ethane in the schizophrenia sample [5.15 (S.E. 0.56) ppb] was significantly higher than that of the healthy controls [2.63 (S.E. 0.31) ppb; p<0.0005]. A further sub-analysis showed that nicotine dependence was unlikely to be the cause of this difference. These results suggest that the measurement of exhaled ethane levels may offer a non-invasive direct biomarker of increased n-3 lipid peroxidation in schizophrenia.

  3. Investigation of flavonoid influence on peroxidation processes intensity in the blood

    NASA Astrophysics Data System (ADS)

    Navolokin, N. A.; Mudrak, D. A.; Plastun, I. L.; Bucharskaya, A. B.; Agandeeva, K. E.; Ivlichev, A. V.; Tychina, S. A.; Afanasyeva, G. A.; Polukonova, N. V.; Maslyakova, G. N.

    2017-03-01

    Influence of flavonoids on the intensity of peroxidation processes in the blood is investigated by numerical modeling and by experiment in vivo. As an example we consider the effects of flavonoid-containing extract of Helichrysum arenarium L. with antitumor activity on serum of rats with transplanted liver cancer PC-1. It was found that the content of malondialdehyde, lipid hydroperoxides and average mass molecules were decreased in animals with transplanted liver cancer after intramuscular and oral administration of Helichrysum arenarium L extract in a dose of 1000 mg/mL. The extract reduces the intensity of lipid peroxidation processes in animals. The compound formation possibility of flavonoids and products of lipid peroxidation is investigated by numerical simulations. Using the density functional theory method of molecular modeling, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and products of lipid peroxidation processes on example of naringine and malondialdehyde. We have found that naringine can form a steady molecular complex with malondialdehyde by hydrogen bonds formation. Thus, the application of Helichrysum arenarium L. extract for suppression processes of lipid peroxidation and activation of enzymatic and non-enzymatic antioxidant systems is promising.

  4. Effects of carotenoids on damage of biological lipids induced by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Saito, Takeshi; Fujii, Noriko

    2014-05-01

    Carotenoids are considered to be involved in the radioresistant mechanisms of radioresistant bacteria. In these bacterial cells, carotenoids are present in biological lipids, and therefore may be related to the radiation-induced damage of lipids. However, only limited data are available for the role of carotenoids in such damage. In this study, we irradiated an α-linolenic acid-benzene solution with gamma rays and analyzed the resulting oxidative degradation and peroxidation damage in the presence or absence of two typical carotenoids: β-carotene and astaxanthin. The analyses revealed that oxidative degradation and peroxidation of α-linolenic acid, as evaluated by the amount of malondialdehyde and conjugated diene formed, respectively, increased in a dose-dependent manner. Moreover, 8.5×10-3 M β-carotene inhibited gamma radiation-induced oxidative degradation of α-linolenic acid, whereas 5.0×10-5 and 5.0×10-6 M β-carotene, and 5.0×10-7 and 5.0×10-8 M astaxanthin promoted degradation. In contrast, neither β-carotene nor astaxanthin affected peroxidation of α-linolenic acid. These results suggest that an optimum concentration of carotenoids in radioresistant bacteria protects biological lipid structures from radiation-induced damage.

  5. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    PubMed

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Using Heavy Metal Content and Lipid Peroxidation Indicators in the Tissues of the Mussel Crenomytilus grayanus for Pollution Assessment After Marine Environmental Remediation.

    PubMed

    Belcheva, Nina; Istomina, Alexandra; Dovzhenko, Nadezhda; Lishavskaya, Tatiana; Chelomin, Victor

    2015-10-01

    We examined the effects of environmental remediation on the heavy metal concentration and lipid peroxidation activity in the digestive gland and gills of the marine mussel Crenomytilus grayanus. Changes in heavy metal concentrations and lipid peroxidation biomarkers in the tissues of mussels collected at a contaminated site were compared with those obtained from a reference site. Prior to remediation the concentration of Pb, Cu, Cd, Fe and Zn and the levels of malondialdehyde, conjugated dienes and lipofuscin in mussels collected from the contaminated site were significantly increased compared with those obtained from the reference site. Three years after remediation, these parameters did not significantly exceed the reference site parameters, except Pb, whose concentration, though markedly decreased, yet was much higher than in tissues of mussels from the reference site.

  7. Assessing the genotoxic effects of two lipid peroxidation products (4-oxo-2-nonenal and 4-hydroxy-hexenal) in haemocytes and midgut cells of Drosophila melanogaster larvae.

    PubMed

    Demir, Eşref; Marcos, Ricard

    2017-07-01

    Lipid peroxidation products can induce tissue damage and are implicated in diverse pathological conditions, including aging, atherosclerosis, brain disorders, cancer, lung and various liver disorders. Since in vivo studies produce relevant information, we have selected Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to two lipid peroxidation products namely 4-oxo-2-nonenal (4-ONE) and 4-hydroxy-hexenal (4-HHE). Toxicity, intracellular reactive oxygen species production, and genotoxicity were the end-points evaluated. Haemocytes and midgut cells were the evaluated targets. Results showed that both compounds penetrate the intestine of the larvae, affecting midgut cells, and reaching haemocytes. Significant genotoxic effects, as determined by the comet assay, were observed in both selected cell targets in a concentration/time dependent manner. This study highlights the importance of D. melanogaster as a model organism in the study of the different biological effects caused by lipid peroxidation products entering via ingestion. This is the first study reporting genotoxicity data in haemocytes and midgut cells of D. melanogaster larvae for the two selected compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. In vitro cell injury by oxidized low density lipoprotein involves lipid hydroperoxide-induced formation of alkoxyl, lipid, and peroxyl radicals.

    PubMed Central

    Coffey, M D; Cole, R A; Colles, S M; Chisolm, G M

    1995-01-01

    Mounting evidence supports current theories linking lipoprotein oxidation to atherosclerosis. We sought the cellular biochemical mechanism by which oxidized LDL inflicts cell injury. Inhibitors of candidate pathways of cell death were used to treat human fibroblast target cells exposed to oxidized LDL.. Ebselen, which degrades lipid hydroperoxides, inhibited oxidized LDL toxicity, consistent with our recent report that 7 beta-hydroperoxycholesterol (7 beta-OOH chol) is the major cytotoxin of oxidized LDL. Intracellular chelation of metal ions inhibited, while preloading cells with iron enhanced, toxicity, Inhibition of oxidized LDL and 7 beta-OOH chol toxicity by 2-keto-4-thiolmethyl butyric acid, a putative alkoxyl radical scavenger and by vitamin E, probucol and diphenylphenylenediamine, putative scavengers of peroxyl radicals was consistent with the involvement of these radicals in the lethal sequence. Cell death was thus postulated to occur due to lipid peroxidation via a sequence involving lipid hydroperoxide-induced, iron-mediated formation of alkoxyl, lipid, and peroxyl radicals. Pathways involving other reactive oxygen species, new protein synthesis, or altered cholesterol metabolism were considered less likely, since putative inhibitors failed to lessen toxicity. Understanding the mechanism of cell injury by oxidized LDL and its toxic moiety, 7 beta-OOH chol, may indicate specific interventions in the cell injury believed to accompany vascular lesion development. PMID:7560078

  9. The Effects of Broccoli Sprout Extract Containing Sulforaphane on Lipid Peroxidation and Helicobacter pylori Infection in the Gastric Mucosa

    PubMed Central

    Chang, Young Woon; Jang, Jae Young; Kim, Yong Ho; Kim, Jung-Wook; Shim, Jae-Jun

    2015-01-01

    Background/Aims The aims of this study were to investigate whether a broccoli sprout extract containing sulforaphane (BSES) inhibited the Helicobacter pylori infection density and exerted an antioxidative effect on gastric mucosal damage. Methods The enrolled subjects were randomized in a double-blinded manner into three groups. Finally, 33 H. pylori (+) BSES treatment subjects (group A), 28 H. pylori (+) placebo subjects (group B), and 28 H. pylori (−) BSES treatment subjects (group C) were studied. H. pylori infection density was indirectly quantified by a 13C-urea breath test (UBT), and the ammonia concentration in gastric juice aspirates was measured through gastroscopic examination. Malondialdehyde (MDA), an oxidative damage biomarker, and reduced glutathione (GSH), an antioxidant biomarker, were measured in the gastric mucosa by an enzyme-linked immunosorbent assay. Results BSES treatment did not significantly affect the UBT values or ammonia concentration in group A (p=0.634 and p=0.505, respectively). BSES treatment did significantly reduce mucosal MDA concentrations in group A (p<0.05) and group C (p<0.001), whereas the gastric mucosal GSH concentrations did not differ before and after treatment in any of the groups. Conclusions BSES did not inhibit the H. pylori infection density. However, BSES prevented lipid peroxidation in the gastric mucosa and may play a cytoprotective role in H. pylori-induced gastritis. PMID:25287166

  10. Hepatic glutathione metabolism and lipid peroxidation in response to excess dietary selenomethionine and selenite in mallard ducklings

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.; Krynitsky, A.J.

    1989-01-01

    Selenium from selenomethionine accumulated in a dose-dependent manner in the liver, resulting in a decrease in hepatic-reduced glutathione with a corresponding decrease in total hepatic thiols. There was a dose-dependent increase in the oxidized to reduced glutathione ratio, and an increase in lipid peroxidation. These findings indicate that Se in the diet at 10 ppm and higher causes significant sublethal alterations in mallard ducklings, and 20-40 ppm causes significant hepatotoxicity.

  11. Chemopreventive efficacy and anti-lipid peroxidative potential of Jasminum grandiflorum Linn. on 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis.

    PubMed

    Kolanjiappan, K; Manoharan, S

    2005-12-01

    The aim of this study was to investigate the chemopreventive efficacy and anti-lipid peroxidative potential of Jasminum grandiflorum Linn. on 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary carcinogenesis. Mammary tumors were developed by a single subcutaneous injection of 25 mg DMBA in 1 mL emulsion of sunflower oil and physiological saline. The tumor incidence and tumor volume that formed in the breast were determined. Oral administration of ethanolic extract of J. grandiflorum flowers (JgEt) at a dose of 300 mg/kg body weight for 14 weeks to DMBA-injected animals completely prevented the formation of tumors in the pre-initiation period. JgEt also exerted significant anti-lipid peroxidative effect and improved the antioxidant defense system in DMBA-treated rats. The results of this study clearly indicate that JgEt has potent chemopreventive efficacy in experimental mammary carcinogenesis and further studies are warranted to isolate and characterize the bioactive principle from JgEt.

  12. Pueraria thunbergiana inhibits cisplatin-induced damage of HEI-OC1 auditory cells through scavenging free radicals.

    PubMed

    Yu, Hyeon-Hee; Jung, Su-Young; Shin, Mee-Kyung; Park, Raekil; So, Hong-Seob; You, Yong-Ouk

    2010-06-01

    The radix of Pueraria thunbergiana (P. thunbergiana) is traditionally prescribed to attenuate the clinical manifestation of inner ear dysfunction and various clinical situations including fevers, gastrointestinal disorders, skin problems, migraine headaches, lowering cholesterol, and treating chronic alcoholism in oriental medicine. In the present study, we examined the protective effect of ethanol extract of the radix of P. thunbergiana (RPT) on cisplatin-induced damage of HEI-OC1 auditory hair cells. When the cells were cultured in the medium containing 5-100 microg/mL of RPT, RPT showed protective effect against the cisplatin-induced HEI-OC1 cell damage. We also measured the effects of RPT on lipid peroxidation of cisplatin-treated cells as well as scavenging activities against superoxide radical, hydroxyl radical, hydrogen peroxide, and DPPH radical. RPT reduced cisplatin-induced lipid peroxidation in a dose-dependent manner. Furthermore, RPT showed strong scavenging activity against superoxide radical, hydroxyl radical, hydrogen peroxide, and DPPH radical. These results indicate that RPT protects cisplatin-induced HEI-OC1 cell damage through inhibition of lipid peroxidation and scavenging activities of free radials. (c) 2009 John Wiley & Sons, Ltd.

  13. Copper-induced peroxidation of phosphatidylserine-containing liposomes is inhibited by nanomolar concentrations of specific antioxidants.

    PubMed

    Gal, S; Lichtenberg, D; Bor, A; Pinchuk, I

    2007-12-01

    Copper-induced peroxidation of liposomal palmitoyllinoleoyl-phosphatidylcholine (PLPC) is inhibited by alpha-tocopherol at micromolar concentrations. In our previous study we found that when the liposomes contain phosphatidylserine (PS), nanomolar concentrations of Toc were sufficient to inhibit peroxidation. In an attempt to gain understanding of the origin of this extreme antioxidative potency, we tested the antioxidative potency of 36 additional antioxidants and the dependence of their potency on the presence of PS in the liposomes. The results of these studies reveal that only 11 of the tested antioxidants possess similar antioxidative potency to that of Toc. These include trolox, butylated hydroxytoluene (BHT), curcumin, nordihydroguaiaretic acid (NDGA), diethylstilbestrol (DES), 2 of the 13 tested flavonoids (luteolin and 7,3',4'-trihydroxyflavone; T-414), alpha-naphthol, 1,5-, 1,6- and 1,7-dihydroxynaphthalenes (DHNs). Propyl gallate (PG), methyl syringate, rosmarinic acid, resveratrol, other flavonoids, as well as beta-naphthol, 1,2-, 1,3-, 1,4-, 2,3-, 2,6-, and 2,7-DHNs were either moderately antioxidative or pro-oxidative. For liposomes made of PLPC (250 microM) and PS (25 microM) the "lag" preceding copper-induced peroxidation (5 microM copper) was doubled upon addition of 30-130nM of the "super-active" antioxidants. We propose that the mechanism responsible for the extreme antioxidative potency against copper-induced peroxidation in PS-containing liposomes involves replenishment of the antioxidant in a ternary PS-copper-antioxidant complex. Based on structure-activity relationship of the 37 tested antioxidants, the "super-antioxidative potency" is attributed to the recycling of relatively stable semiquinone or semiquinone-like radicals.

  14. Breathing 100% Oxygen After Global Brain Ischemia in Mongolian Gerbils Results in Increased Lipid Peroxidation and Increased Mortality

    DTIC Science & Technology

    1987-04-01

    fatty during ischemic injury,- possibly related to the pres- acids such as linolenic or eicosapentaenoic acids . ence of endogenous iron.’ In...is elevated. Instead, concern is carbon chain of polyunsaturated fatty acids . Among focused on whether hypoxia is occurring as a conse- these products... acids such as linoleic or arachidonic acids . ischemia. I Lipid peroxidation also occurs in the brain Ethane is produced in a similar manner from w-3

  15. [Lipid peroxidation and various parameters of mineral metabolism in patients with alimentary obesity during therapy with monosodium glutamate].

    PubMed

    Popova, Iu P; Kondrashov, S Iu; Malikova, N A; Aleshko-Ozhevskiĭ; Sheviakova, L V; Makhova, N N; Mazo, V K; Galkin, A A; Shirina, L I

    1997-01-01

    Lipid peroxidation and mineral metabolism were studied in patients with III degree of obesity and bad standing of sodium restricted diet before and after treatment with including in diet of monosodium glutamate (MSG). It was established well being of MSG and absence of negative effect on loss of body mass in course of dietary treatment. MSG caused normalization of level of diene conjugates and some minerals in serum of patients.

  16. Differential effect of silybin on the Fe2+-ADP and t-butyl hydroperoxide-induced microsomal lipid peroxidation.

    PubMed

    Valenzuela, A; Guerra, R

    1986-02-15

    We have observed a differential effect of silybin dihemisuccinate on rat liver microsomal oxygen consumption and on lipid peroxidation induced by NADPH-Fe2+-ADP and t-butyl hydroperoxide. These results are ascribed to the antioxidant properties of the flavonoid. The differences observed in the effect of the catalysts may be a consequence of the different capacity of silybin to act as a scavenger of free radicals formed by NADPH-Fe2+-ADP or t-butyl hydroperoxide.

  17. Circadian time structure of circulating plasma lipid peroxides, antioxidant enzymes and other small molecules in peptic ulcers.

    PubMed

    Singh, Ranjana; Singh, Rajesh Kumar; Masood, Tariq; Tripathi, Anil Kumar; Mahdi, Abbas Ali; Singh, Raj Kumar; Schwartzkopff, Othild; Cornelissen, Germaine

    2015-12-07

    The circadian rhythm, as part of a broad time structure (chronome) of lipid peroxides and antioxidant defense mechanisms may relate to prevention, efficacy and management of preventive and curative chronotherapy. Fifty newly diagnosed patients with peptic ulcers, 30-45 years of age, and 60 age-matched clinically healthy volunteers were synchronized for one week with diurnal activity from about 06:00 to about 22:00 and nocturnal rest. Breakfast was served around 08:30, lunch around 13:30 and dinner around 20:30. Drugs known to affect the free-radical systems were not taken. Blood samples were collected at 6-hour intervals for 24h under standardized, presumably 24-hour synchronized conditions. Plasma lipid peroxides, in the form of malondialdehyde (MDA), blood superoxide dismutase (SOD), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT) activities, and serum total protein, albumin, ascorbic acid, total serum cholesterol, and HDL-cholesterol concentrations were determined. By population-mean cosinor analysis, a marked circadian variation was demonstrated for all variables in healthy subjects and in ulcer patients (p<0.001). As compared to controls, patients had a lower MESOR of MDA, SOD, GPx, GR, ascorbic acid, and HDL-C. They also had smaller circadian amplitude of SOD, CAT, GPx, GR, ascorbic acid, T-C, and HDL-C, but larger circadian amplitude of MDA and albumin. As compared to healthy subjects, the circadian acrophase of ulcer patients occurred later for MDA and GR and earlier for GPx. Mapping circadian rhythms, important chronome components that include trends with age and extra-circadian components characterizing antioxidants and pro-oxidants, is needed for exploring their putative role as markers in the treatment and management of peptic ulcers. Copyright © 2015. Published by Elsevier B.V.

  18. The Occurrence of Flavonoids and Related Compounds in Cedrus brevifolia A. Henry ex Elwes & A. Henry Needles. Inhibitory Potencies on Lipoxygenase, Linoleic Acid Lipid Peroxidation and Antioxidant Activity

    PubMed Central

    Douros, Andreas; Nikolaou, Konstantinos; Skaltsa, Helen

    2017-01-01

    The phytochemical analysis of the polar extracts of Cedrus brevifolia needles yielded 20 compounds, namely from the methanol extract we isolated three flavonoids (1–3), one hydrolysable tannin (4), eleven phenolic derivatives (5–15) and one apocarotenoid (16), while from the methanol: water (5:1) extract we isolated four flavonoids (17–20). Chemical structures of all isolated compounds were determined by 1D, 2D-NMR (1 Dimension, 2 Dimensions Nuclear Magnetic Resonance) and UV-Vis (Ultraviolet-Visible) spectroscopy. Furthermore, the antioxidant potentials and the anti-inflammatory activities of both crude extracts and isolates were evaluated through DPPH radical scavenging capability, linoleic acid lipid peroxidation inhibition, and soybean LOX inhibition assays. This is the first report on the chemical profile of C. brevifolia needles. Catechin was the main compound derived from the methanol extract. According to our results, 4-O-β-d-glucopyranyl trans-p-coumaric acid and taxifolin were the most active ingredients. PMID:29280942

  19. Glucosamine prevents in vitro collagen degradation in chondrocytes by inhibiting advanced lipoxidation reactions and protein oxidation

    PubMed Central

    Tiku, Moti L; Narla, Haritha; Jain, Mohit; Yalamanchili, Praveen

    2007-01-01

    Osteoarthritis (OA) affects a large segment of the aging population and is a major cause of pain and disability. At present, there is no specific treatment available to prevent or retard the cartilage destruction that occurs in OA. Recently, glucosamine sulfate has received attention as a putative agent that may retard cartilage degradation in OA. The precise mechanism of action of glucosamine is not known. We investigated the effect of glucosamine in an in vitro model of cartilage collagen degradation in which collagen degradation induced by activated chondrocytes is mediated by lipid peroxidation reaction. Lipid peroxidation in chondrocytes was measured by conjugated diene formation. Protein oxidation and aldehydic adduct formation were studied by immunoblot assays. Antioxidant effect of glucosamine was also tested on malondialdehyde (thiobarbituric acid-reactive substances [TBARS]) formation on purified lipoprotein oxidation for comparison. Glucosamine sulfate and glucosamine hydrochloride in millimolar (0.1 to 50) concentrations specifically and significantly inhibited collagen degradation induced by calcium ionophore-activated chondrocytes. Glucosamine hydrochloride did not inhibit lipid peroxidation reaction in either activated chondrocytes or in copper-induced oxidation of purified lipoproteins as measured by conjugated diene formation. Glucosamine hydrochloride, in a dose-dependent manner, inhibited malondialdehyde (TBARS) formation by oxidized lipoproteins. Moreover, we show that glucosamine hydrochloride prevents lipoprotein protein oxidation and inhibits malondialdehyde adduct formation in chondrocyte cell matrix, suggesting that it inhibits advanced lipoxidation reactions. Together, the data suggest that the mechanism of decreasing collagen degradation in this in vitro model system by glucosamine may be mediated by the inhibition of advanced lipoxidation reaction, preventing the oxidation and loss of collagen matrix from labeled chondrocyte matrix

  20. Lipid peroxidation and antioxidant protection in girls with type 1 diabetes mellitus during reproductive system development.

    PubMed

    Kolesnikova, Lubov I; Darenskaya, Marina A; Semenova, Natalia V; Grebenkina, Lyudmila A; Suturina, Larisa V; Dolgikh, Marya I; Gnusina, Svetlana V

    2015-01-01

    Type 1 diabetes mellitus (T1D) is found worldwide and is regarded as one of the main risks to human health. The objective of this study was to determine the state of lipid peroxidation (LPO) and antioxidant protection in girls with T1D type considering the stages of reproductive system development. This study enrolled 56 young girls with T1D and 60 healthy girls (control) matched by age. The study population was divided into 3 age groups: prepubertal, adolescent, and juvenile. The state of LPO and antioxidant system was assessed using the coefficient of oxidative stress that represented the ratio of LPO products to general antioxidative blood activity. Spectrophotometric and fluorometric methods were applied. The results of our study showed increased conjugated diene (CD) and thiobarbituric acid reactant (TBAR) concentrations as well as a decreased reduced glutathione level in prepubertal girls with T1D. Adolescent girls with T1D had a significantly greater CD level and juvenile girls with T1D had a significantly greater TBAR level and lower α-tocopherol concentration than girls in the control group. The greatest coefficient of oxidative stress (1.16) was observed in the prepubertal period. The prepubertal period is characterized by the most severe state of lipid peroxidation process-antioxidant protection. Copyright © 2015 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.

    PubMed

    Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C

    2016-05-01

    Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nanostructured Lipid Carriers Loaded with Baicalin: An Efficient Carrier for Enhanced Antidiabetic Effects.

    PubMed

    Shi, Feng; Wei, Zheng; Zhao, Yingying; Xu, Ximing

    2016-01-01

    Recent studies have demonstrated that baicalin has antihyperglycemic effects by inhibiting lipid peroxidation. Baicalin is low hydrophilic and poorly absorbed after oral administration. Thus, a suitable formulation is highly desired to overcome the disadvantages of baicalin. The objective of this work was to prepare baicalin-loaded nanostructured lipid carriers (B-NLCs) for enhanced antidiabetic effects. B-NLCs were prepared by high-pressure homogenization method using Precirol as the solid lipid and Miglyol as the liquid lipid. The properties of the NLCs, such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE), were investigated. The morphology of NLCs was observed by transmission electron microscopy. In addition, drug release and antidiabetic activity were also studied. The results revealed that B-NLCs particles were uniformly in the nanosize range and of spherical morphology with a mean size of 92 ± 3.1 nm, a ZP of -31.35 ± 3.08 mV, and an EE of 85.29 ± 3.42%. Baicalin was released from NLCs in a sustained manner. In addition, B-NLCs showed a significantly higher antidiabetic efficacy compared with baicalin. B-NLCs described in this study are well-suited for the delivery of baicalin. Currently, herbal medicines have attracted increasing attention as a complementary approach for type 2 diabetesBaicalin has antihyperglycemic effects by inhibiting lipid peroxidationA suitable formulation is highly desired to overcome the disadvantages (poor solubility and low bioavailability) of baicalinNanostructured lipid carriers could enhance the antidiabetic effects of baicalin. Abbreviations used: B-NLCs: Baicalin-Loaded Nanostructured Lipid Carriers, B-SUS: Baicalin Water Suspension, EE: Encapsulation Efficiency, FBG: Fasting Blood Glucose, HbAlc: Glycosylated Hemoglobin, HPLC: High-performance Liquid Chromatography; NLCs: Nanostructured Lipid Carriers, PI: Polydispersity Index, SD: Sprague-Dawley, SLNs: Solid lipid nanoparticles, STZ

  3. Valeriana officinalis Extracts Ameliorate Neuronal Damage by Suppressing Lipid Peroxidation in the Gerbil Hippocampus Following Transient Cerebral Ischemia

    PubMed Central

    Yoo, Dae Young; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung

    2015-01-01

    Abstract As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation. PMID:25785762

  4. Valeriana officinalis Extracts Ameliorate Neuronal Damage by Suppressing Lipid Peroxidation in the Gerbil Hippocampus Following Transient Cerebral Ischemia.

    PubMed

    Yoo, Dae Young; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung; Hwang, In Koo

    2015-06-01

    As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation.

  5. Histone retention, protein carbonylation, and lipid peroxidation in spermatozoa: Possible role in recurrent pregnancy loss.

    PubMed

    Mohanty, Gayatri; Swain, Nirlipta; Goswami, Chandan; Kar, Sujata; Samanta, Luna

    2016-06-01

    Contribution from a defective paternal genome has been attributed to be an important cause for spontaneous recurrent pregnancy loss (RPL). Increased oxidative stress results in decreased detoxification and is a cause for damage to chromatin, proteins, and membrane lipids. The present study aimed to explore if there is a significant relationship between retained histones due to defective packaging of DNA in spermatozoa and oxidative stress. RPL patients (n=16) with a history of ≥2 embryo losses before the 20th week of gestation and no female factor abnormality, and fertile healthy volunteers (n=20) as controls were included in the study. A significant difference in the levels of protein carbonylation and lipid peroxidation together with an increased retention of histones in the experimental groups was noticed. Histone carrying sites for oxidative modification such as arginine and lysine might be responsible for disturbing the paternal epigenomic control during early stages of embryonic differentiation leading to abortion.

  6. [Cholesterol metabolism and lipid peroxidation processes in hypodynamia. Effect of using ascorbic acid and alpha-tocopherol].

    PubMed

    Elikov, A V; Tsapok, P I

    2010-01-01

    Study status of cholesterol metabolism, processes of lipid peroxidation and antioxidant protection in blood plasma, erythrocytes and homogenates of the, heart, liver, muscle femors of rats attached to movement active. Establishment effects application of ascorbic acid and alpha-tocopherol. Ascorbic acid and alpha-tocopherol were infused daily. The daily dosage was 2 and 1 mg respectively. Characteristic shift changes of cholesterol metabolism in conditions of limited muscular activity were revealed. It was shown that vitamin antioxidants play a role in correction of metabolic disorders in case of immobile distress syndrome.

  7. Erythrocyte antioxidant enzyme activities and lipid peroxidation in the erythrocyte membrane of stainless-steel welders exposed to welding fumes and gases.

    PubMed

    Imamoglu, Nalan; Yerer, Mükerrem-Betül; Donmez-Altuntas, Hamiyet; Saraymen, Recep

    2008-03-01

    The erythrocyte antioxidant system (superoxide dismutase, SOD; catalase, CAT) and lipid peroxidation (malondialdehyde, MDA) in the erythrocyte membrane were studied in workers continously exposed to welding fumes and gases, which are thought to be oxidant pollutants. Thirty-five welders using the manual metal arc method on stainless steel and 30 controls were studied. Plasma chromium (Cr), manganese (Mn), and cupper (Cu) levels were determined by atomic absorption spectrophotometer (AAS). The erythrocyte antioxidant system activity and lipid peroxidation in the erythrocyte membrane were evaluated. Not only the possible effects of welding fumes but also the effects of smoking were considered. The plasma concentrations of Cr, Mn, and Cu for the exposed welders were significantly higher compared to the control subjects (p<0.001, p<0.01, p<0.001, respectively,). The erythrocyte CAT (p<0.05) and SOD (p<0.05) enzyme activities were significantly higher in the welders but there were not any significant changes in the MDA levels which reflect the lipid peroxidation in the erythrocyte membrane (p>0.05). Smoking has increased the SOD activity in both controls (p<0.05) and welders (p<0.01) and increased the CAT activity in control subjects (p<0.05). Moreover, regardless of smoking, there were some significant correlations between the duration of the exposure to welding fumes and antioxidant defence system (SOD: p<0.05; CAT: p<0.05). The synergistic effects of smoking and other risk factors (welding fumes and gases), which had been shown previously by some clinical data should also be taken into account. As a consequence, the welders should be warned and informed of the synergistic effects of smoking on the adverse effect of welding fumes and gases.

  8. [Lipid peroxidation and the system of antioxidant protection in rats following a 13-day space flight on the Kosmos-1887 biosatellite].

    PubMed

    Markin, A A; Delenian, N V

    1992-01-01

    After a 13-day space mission, in the rats flown on Cosmos-1887 biosatellite the parameters of lipid peroxidation and antioxidant defense system--the contents of diene conjugates, malonic dialdehyde, Schiff bases, tocopherol, total antioxidant activity (in blood plasma only), antioxidant enzyme activity (in tissues only)--superoxide dismutase, catalase, glutathio peroxidase, glutathio reductase have been measured in the blood plasma, myocardium, skeletal muscles and liver. The liver level of diene conjugates, Schiff bases and tocopherol decreased, and an activity of superoxide dismutase and catalase increased. In the skeletal muscles there was an elevation of diene conjugate contents followed by the decreases in malonic dialdehyde and superoxide dismutase activity. In rat myocardium, superoxide dismutase activity and tocopherol levels increased significantly. In the blood plasma the levels of tocopherol, malonic dialdehyde and total antioxidant activity were elevated. It is concluded that the observed changes in lipid peroxidation developed probably in response to an effect of the last dynamic stage of space flight and during re-adapting to the Earth environments.

  9. Lipid peroxidation products do not activate hepatic stellate cells.

    PubMed

    Fang, Hsun-Lang; Lin, Wen-Chuan

    2008-11-20

    Lipid peroxidation (LPO) is known to be associated with liver fibrosis in chronic liver injury. However, direct effects of the products of LPO on liver fibrogenesis are still not clear. In this study, we examined the LPO products, such as malondiladehyde (MDA), 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)), and 15-keto-13,14-dihydro-PGF(2alpha) (15-keto-PGF(2alpha)), on the activation of hepatic stellate cells (HSCs) in vivo and in vitro. Carbon tetrachloride (CCl(4)) was given orally to rats twice a week for 8 weeks. Corn oil was given daily to rats for 8 weeks. CCl(4) induced both free-radical-medicated and cyclooxygenase-2-dependent LPO. Free radical-medicated LPO showed an increase with corn oil treatment, whereas no effect was reflected on COX-2-dependent LPO. CCl(4) induced liver fibrosis in rats, but no liver fibrosis was observed in rats treated with corn oil. In vitro studies demonstrated that MDA, 8-iso-PGF(2alpha) and 15-keto-PGF(2alpha), did not activate HSCs, which were preactivated or not preactivated by TGF-beta1. Our results clearly indicate that LPO products, such as MDA, 8-iso-PGF(2alpha) and 15-keto-PGF(2alpha), cannot directly activate HSCs.

  10. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes

    PubMed Central

    Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei

    2018-01-01

    Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows. PMID:29593725

  11. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes.

    PubMed

    Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei

    2018-01-01

    Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  12. Therapeutic effect of magnesium sulphate on carbon monoxide toxicity-mediated brain lipid peroxidation.

    PubMed

    Yavuz, Y; Mollaoglu, H; Yürümez, Y; Ucok, K; Duran, L; Tünay, K; Akgün, L

    2013-02-01

    Carbon monoxide (CO) toxicity primarily results from cellular hypoxia caused by impedance of oxygen delivery. Studies show that CO may cause brain lipid peroxidation and leukocyte-mediated inflammatory changes in the brain. The aim of this study was to investigate whether magnesium sulphate could prevent or diminish brain lipid peroxidation caused by carbon monoxide toxicity in rats. Fourty rats were divided into five groups of 8 rats each. Group l was not received any agent during the experiment. Group 2 was inhaled CO gas followed by intraperitoneally normal saline 30 minutes (min) later. Group 3 was inhaled CO gas followed by 100 mg/kg magnesium sulphate intraperitoneally 30 min later. Group 2 and Group 3 rats was undergone laparotomy and craniotomy while still under anesthesia at 6 hour, and tissue sample was obtained from the cerebrum. Group 4 was inhaled CO gas followed by intraperitoneally normal saline 30 min later. Group 5 was inhaled CO gas followed by 100 mg/kg magnesium sulphate intraperitoneally 30 min later. Group 4 and Group 5 rats was undergone laparotomy and craniotomy while still under anesthesia at 24 hour, and tissue sample was obtained from the cerebrum. Nitric oxide levels were no significantly different between all groups. Malonyldialdehyde levels increased in intoxication group (group 2) and decreased in treatment group (group 3). Activities of superoxide dismutase decreased in intoxication group (group 2) and increased in treatment group (group 3). Activities of catalase increased in intoxication group (group 2) and decreased in treatment group (group 3). Activities of glutathione peroxidase (GSH-Px) decreased in intoxication group (group 4) and increased in treatment group (group 5). CO poisoning caused significant damage, detected within the first 6 hours. Due to antioxidant enzymes, especially GSH-Px activity reaching the top level within 24th hours, significant oxidative damage was not observed. The protective effect against oxidative

  13. Taurine alleviates malathion induced lipid peroxidation, oxidative stress, and proinflammatory cytokine gene expressions in rats.

    PubMed

    Ince, Sinan; Arslan-Acaroz, Damla; Demirel, Hasan Huseyin; Varol, Nuray; Ozyurek, Hatice Arzu; Zemheri, Fahriye; Kucukkurt, Ismail

    2017-12-01

    The present study was considered to evaluate the protective effect of taurine on malathion-induced toxicity in rats. Totally, 48 male rats were divided into 6 equal groups: 0.5ml physiological salt solution was given orally to control rats. 0.5ml corn oil was given orally to rats in corn oil group. Malathion at dose of 27mg/kg (1/50 of LD 50 ) was dissolved in 0.5ml corn oil and given to orally rats in malathion group. The other groups; malathion (27mg/kg) and taurine (dissolved in 0.5ml physiological salt solution) at dose of 50, 100, and 200mg/kg were given orally to rats for 30days, respectively. Malathion treatment decreased acetylcholinesterase levels in serum (30%) and liver (25%) compared to the control group. Malathion resulted in a significant increase in malondialdehyde levels whereas decreased glutathione levels, superoxide dismutase, and catalase activities in rats. Also, IF-γ, IL1-β, TNF-α, and NFĸB mRNA expression levels were found to be increased 5, 1.7, 2.3, and 2.5 fold in malathion treated rats compared to control, respectively. However, treatment of taurine, in a dose-dependent manner, resulted in a reversal of malathion-induced lipid peroxidation, antioxidant enzyme activities, and mRNA expression levels of proinflammatory cytokines. Moreover, taurine demonstrated preventive action against malathion-induced histopathological changes in rat tissues. In conclusion, taurine exhibited a protective effect in rats against malathion-induced lipid peroxidation, besides it ameliorated antioxidant status, decreased mRNA expression levels of proinflammatory cytokine and repaired rat tissues. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Dermal quercetin lipid nanocapsules: Influence of the formulation on antioxidant activity and cellular protection against hydrogen peroxide.

    PubMed

    Hatahet, T; Morille, M; Shamseddin, A; Aubert-Pouëssel, A; Devoisselle, J M; Bégu, S

    2017-02-25

    Quercetin is a plant flavonoid with strong antioxidant and antiinflammatory properties interesting for skin protection. However, its poor water solubility limits its penetration and so its efficiency on skin. For this purpose, quercetin lipid nanocapsules were formulated implementing phase inversion technique wherein several modifications were introduced to enhance quercetin loading. Quercetin lipid nanocapsules were formulated with two particle size range, (50nm and 20nm) allowing a drug loading of 18.6 and 32mM respectively. The successful encapsulation of quercetin within lipid nanocapsules increased its apparent water solubility by more than 5000 fold (from 0.5μg/ml to about 5mg/ml). The physicochemical properties of these formulations such as surface charge, stability and morphology were characterized. Lipid nanocapsules had spherical shape and were stable for 28days at 25°C. Quercetin release from lipid nanocapsules was studied and revealed a prolonged release kinetics during 24h. Using DPPH assay, we demonstrated that the formulation process of lipid nanocapsules did not modify the antioxidant activity of quercetin in vitro (92.3%). With the goal of a future dermal application, quercetin lipid nanocapsules were applied to THP-1 monocytes and proved the cellular safety of the formulation up to 2μg/ml of quercetin. Finally, formulated quercetin was as efficient as the crude form in the protection of THP-1 cells from oxidative stress by exogenous hydrogen peroxide. With its lipophilic nature and occlusive effect on skin, lipid nanocapsules present a promising strategy to deliver quercetin to skin tissue and can be of value for other poorly water soluble drug candidates. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Bilayer Deformation, Pores, and Micellation Induced by Oxidized Lipids.

    PubMed

    Boonnoy, Phansiri; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak

    2015-12-17

    The influence of different oxidized lipids on lipid bilayers was investigated with 16 individual 1 μs atomistic molecular dynamics (MD) simulations. Binary mixtures of lipid bilayers of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) and its peroxide and aldehyde products were performed at different concentrations. In addition, an asymmetrical short chain lipid, 1-palmitoyl-2-decanoyl-sn-glycero-3-phosphatidylcholine (PDPC), was used to compare the effects of polar/apolar groups in the lipid tail on lipid bilayer. Although water defects occurred with both aldehyde and peroxide lipids, full pore formation was observed only for aldehyde lipids. At medium concentrations the pores were stable. At higher concentrations, however, the pores became unstable and micellation occurred. Data analysis shows that aldehyde lipids' propensity for pore formation is due to their shorter and highly mobile tail. The highly polar peroxide lipids are stabilized by strong hydrogen bonds with interfacial water.

  16. The Involvement of Lipid Peroxide-Derived Aldehydes in Aluminum Toxicity of Tobacco Roots1[W][OA

    PubMed Central

    Yin, Lina; Mano, Jun'ichi; Wang, Shiwen; Tsuji, Wataru; Tanaka, Kiyoshi

    2010-01-01

    Oxidative injury of the root elongation zone is a primary event in aluminum (Al) toxicity in plants, but the injuring species remain unidentified. We verified the hypothesis that lipid peroxide-derived aldehydes, especially highly electrophilic α,β-unsaturated aldehydes (2-alkenals), participate in Al toxicity. Transgenic tobacco (Nicotiana tabacum) overexpressing Arabidopsis (Arabidopsis thaliana) 2-alkenal reductase (AER-OE plants), wild-type SR1, and an empty vector-transformed control line (SR-Vec) were exposed to AlCl3 on their roots. Compared with the two controls, AER-OE plants suffered less retardation of root elongation under AlCl3 treatment and showed more rapid regrowth of roots upon Al removal. Under AlCl3 treatment, the roots of AER-OE plants accumulated Al and H2O2 to the same levels as did the sensitive controls, while they accumulated lower levels of aldehydes and suffered less cell death than SR1 and SR-Vec roots. In SR1 roots, AlCl3 treatment markedly increased the contents of the highly reactive 2-alkenals acrolein, 4-hydroxy-(E)-2-hexenal, and 4-hydroxy-(E)-2-nonenal and other aldehydes such as malondialdehyde and formaldehyde. In AER-OE roots, accumulation of these aldehydes was significantly less. Growth of the roots exposed to 4-hydroxy-(E)-2-nonenal and (E)-2-hexenal were retarded more in SR1 than in AER-OE plants. Thus, the lipid peroxide-derived aldehydes, formed downstream of reactive oxygen species, injured root cells directly. Their suppression by AER provides a new defense mechanism against Al toxicity. PMID:20023145

  17. Oral and intraperitoneal administration of quercetin decreased lymphocyte DNA damage and plasma lipid peroxidation induced by TSA in vivo.

    PubMed

    Chan, Shu-Ting; Lin, Yi-Chin; Chuang, Cheng-Hung; Shiau, Rong-Jen; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2014-01-01

    Our previous study showed that quercetin enhances the anticancer effect of trichostatin A (TSA) in xenograft mice given quercetin intraperitoneally (10 mg/kg, 3 times/week). Herein, we investigate whether quercetin administered orally exerts such an effect and prevents the cytotoxic side effects of TSA. We found that quercetin given orally (20 and 100 mg/kg, 3 times/week) failed to enhance the antitumor effect of TSA although it increased the total quercetin concentration more than quercetin administered intraperitoneally in the plasma. The compound quercetin-3-glucuronide (Q3G) increased the most. However, quercetin administered intraperitoneally increased the total quercetin level in tumor tissues more than oral quercetin. Oral and intraperitoneal administration of quercetin similarly decreased lymphocyte DNA damage and plasma lipid peroxidation level induced by TSA. Furthermore, we found that the enhancing effect of Q3G on the antitumor effect of TSA and the incorporation of Q3G was less than that of quercetin in A549 cells. However, we found that A549 cells possessed the ability to convert Q3G to quercetin. In conclusion, different from quercetin administered intraperitoneally, quercetin administered orally failed to enhance the antitumor effect of TSA because of its metabolic conversion. However, it prevented TSA-induced DNA damage and lipid peroxidation.

  18. Effects of intravesical dexpanthenol use on lipid peroxidation and bladder histology in a chemical cystitis animal model.

    PubMed

    Bayrak, Omer; Seckiner, Ilker; Solakhan, Mehmet; Karakok, Metin; Erturhan, Sakip M; Yagci, Faruk

    2012-05-01

    To demonstrate the effects of intravesical dexpanthenol use on bladder histology and lipid peroxidation in a chemical cystitis animal model. Thirty-five New Zealand rabbits were divided into 3 groups. Cystitis was conducted with transurethral intravesical hydrochloric acid instillation on the subjects in groups I and II. Then, Group I subjects were transurethrally administered intravesical dexpanthenol therapy twice a week, Group II subjects were given only intravesical isotonic NaCl instillation, and Group III subjects were administered intravesical isotonic NaCl instillation without conducting chemical cystitis to create the same stress. Treatment schemes of all groups were arranged in the same manner. After 6-week therapy, the rabbits were sacrificed and histopathologic investigations were carried out to demonstrate changes in the urinary bladder. Serum and tissue malondialdehyde (MDA) values were examined to investigate the effect of dexpanthenol on lipid peroxidation. We observed that the basal membrane and mucosal integrity were maintained, inflammatory cells were suppressed, and MDA levels decreased in group I, which received dexpanthenol therapy. However, it was also observed that mucosal integrity was spoiled, numerous inflammatory cells were accumulated, and MDA levels were significantly increased in group II, which was administered isotonic NaCl. In light of our findings, intravesical dexpanthenol therapy could be a new therapeutic approach in the treatment of interstitial cystitis because of its low cost and acceptable side effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of lead (Pb) poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for 3 weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with decreased triglycerides and increased cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  20. Resistance exercise training attenuates exercise-induced lipid peroxidation in the elderly.

    PubMed

    Vincent, Kevin R; Vincent, Heather K; Braith, Randy W; Lennon, Shannon L; Lowenthal, David T

    2002-08-01

    This study examined the effects of 6 months of resistance exercise (RX) on basal and post-aerobic exercise lipid peroxidation (LIPOX). Men and women [n = 62, mean (SD) age 68.4 (6) years] were divided randomly into either a control (n = 16, CON), low-intensity training [LEX n = 24; 50% one-repetition maximum (1RM), 13 repetitions/exercise], or high-intensity training (HEX n = 22, 80% 1RM, 8 repetitions/exercise) group. Pre- and post-training, subjects performed a graded aerobic exercise test (GXT). Blood samples were collected prior to and 10 min following each GXT. Subjects trained 3 times per week for 6 months using 12 RX machines. LIPOX was determined by measuring levels of thiobarbituric reactive acid substances (TBARS) and lipid hydroperoxides (PEROX). RX had no effect on resting LIPOX. Post-training, post-GXT TBARS were lower in the LEX and HEX groups by 14% and 18%, respectively, compared to CON (P < 0.05). Post-GXT PEROX levels were lower (P < 0.05) in LEX and HEX compared to CON [CON 3.51 (0.56) nmol/ml, LEX 2.89 (0.80) nmol/ml, HEX 2.99 (0.63) nmol/ml]. Serum total and non-protein (glutathione) thiols were higher in the LEX and HEX groups following training compared to CON (P < 0.05). These data suggest that RX can (1) reduce serum LIPOX, (2) provide protection against oxidizing agents in vitro, and (3) provide a "cross-protection" against the oxidative stress generated by aerobic exercise, perhaps mediated by improvements in the thiol portion of the antioxidant defense.

  1. Pistacia lentiscus fruit oil reduces oxidative stress in human skin explants caused by hydrogen peroxide.

    PubMed

    Ben Khedir, S; Moalla, D; Jardak, N; Mzid, M; Sahnoun, Z; Rebai, T

    2016-10-01

    We investigated the efficacy of Pistacia lentiscus fruit oil (PLFO) for protecting human skin from damage due to oxidative stress. PLFO contains natural antioxidants including polyphenols, sterols and tocopherols. We compared the antioxidant potential of PLFO with extra virgin olive oil (EVOO). Explants of healthy adult human skin were grown in culture with either PLFO or EVOO before adding hydrogen peroxide (H 2 O 2 ). We also used cultured skin explants to investigate the effects of PLFO on lipid oxidation and depletion of endogenous antioxidant defense enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) one day after 2 h exposure to H 2 O 2 . We found that PLFO scavenged radicals and protected skin against oxidative injury. PLFO exhibited greater antioxidant and free radical scavenging activity than EVOO. Skin explants treated with PLFO inhibited H 2 O 2 induced MDA formation by inhibition of lipid oxidation. In addition, the oil inhibited H 2 O 2 induced depletion of antioxidant defense enzymes including GPx, SOD and CAT. We found that treatment with PLFO repaired skin damage owing to its antioxidant properties.

  2. Dual-5α-Reductase Inhibition Promotes Hepatic Lipid Accumulation in Man.

    PubMed

    Hazlehurst, Jonathan M; Oprescu, Andrei I; Nikolaou, Nikolaos; Di Guida, Riccardo; Grinbergs, Annabel E K; Davies, Nigel P; Flintham, Robert B; Armstrong, Matthew J; Taylor, Angela E; Hughes, Beverly A; Yu, Jinglei; Hodson, Leanne; Dunn, Warwick B; Tomlinson, Jeremy W

    2016-01-01

    5α-Reductase 1 and 2 (SRD5A1, SRD5A2) inactivate cortisol to 5α-dihydrocortisol in addition to their role in the generation of DHT. Dutasteride (dual SRD5A1 and SRD5A2 inhibitor) and finasteride (selective SRD5A2 inhibitor) are commonly prescribed, but their potential metabolic effects have only recently been identified. Our objective was to provide a detailed assessment of the metabolic effects of SRD5A inhibition and in particular the impact on hepatic lipid metabolism. We conducted a randomized study in 12 healthy male volunteers with detailed metabolic phenotyping performed before and after a 3-week treatment with finasteride (5 mg od) or dutasteride (0.5 mg od). Hepatic magnetic resonance spectroscopy (MRS) and two-step hyperinsulinemic euglycemic clamps incorporating stable isotopes with concomitant adipose tissue microdialysis were used to evaluate carbohydrate and lipid flux. Analysis of the serum metabolome was performed using ultra-HPLC-mass spectrometry. The study was performed in the Wellcome Trust Clinical Research Facility, Queen Elizabeth Hospital, Birmingham, United Kingdom. Incorporation of hepatic lipid was measured with MRS. Dutasteride, not finasteride, increased hepatic insulin resistance. Intrahepatic lipid increased on MRS after dutasteride treatment and was associated with increased rates of de novo lipogenesis. Adipose tissue lipid mobilization was decreased by dutasteride. Analysis of the serum metabolome demonstrated that in the fasted state, dutasteride had a significant effect on lipid metabolism. Dual-SRD5A inhibition with dutasteride is associated with increased intrahepatic lipid accumulation.

  3. Inhibition of cell-cell binding by lipid assemblies

    DOEpatents

    Nagy, Jon O.; Bargatze, Robert F.

    2001-05-22

    This invention relates generally to the field of therapeutic compounds designed to interfere between the binding of ligands and their receptors on cell surface. More specifically, it provides products and methods for inhibiting cell migration and activation using lipid assemblies with surface recognition elements that are specific for the receptors involved in cell migration and activation.

  4. Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli

    PubMed Central

    Hong, Robert; Kang, Tae Y.; Michels, Corinne A.

    2012-01-01

    Copper alloy surfaces are passive antimicrobial sanitizing agents that kill bacteria, fungi, and some viruses. Studies of the mechanism of contact killing in Escherichia coli implicate the membrane as the target, yet the specific component and underlying biochemistry remain unknown. This study explores the hypothesis that nonenzymatic peroxidation of membrane phospholipids is responsible for copper alloy-mediated surface killing. Lipid peroxidation was monitored with the thiobarbituric acid-reactive substances (TBARS) assay. Survival, TBARS levels, and DNA degradation were followed in cells exposed to copper alloy surfaces containing 60 to 99.90% copper or in medium containing CuSO4. In all cases, TBARS levels increased with copper exposure levels. Cells exposed to the highest copper content alloys, C11000 and C24000, exhibited novel characteristics. TBARS increased immediately at a very rapid rate but peaked at about 30 min. This peak was associated with the period of most rapid killing, loss in membrane integrity, and DNA degradation. DNA degradation is not the primary cause of copper-mediated surface killing. Cells exposed to the 60% copper alloy for 60 min had fully intact genomic DNA but no viable cells. In a fabR mutant strain with increased levels of unsaturated fatty acids, sensitivity to copper alloy surface-mediated killing increased, TBARS levels peaked earlier, and genomic DNA degradation occurred sooner than in the isogenic parental strain. Taken together, these results suggest that copper alloy surface-mediated killing of E. coli is triggered by nonenzymatic oxidative damage of membrane phospholipids that ultimately results in the loss of membrane integrity and cell death. PMID:22247141

  5. Effects of dietary ascorbic acid supplementation on lipid peroxidation and the lipid content in the liver and serum of magnesium-deficient rats.

    PubMed

    Akiyama, Satoko; Uehara, Mariko; Katsumata, Shin-ichi; Ihara, Hiroshi; Hashizume, Naotaka; Suzuki, Kazuharu

    2008-12-01

    We investigated the effects of ascorbic acid (AsA) supplementation on lipid peroxidation and the lipid content in the liver and serum of magnesium (Mg)-deficient rats. Eighteen 3-week-old male Sprague-Dawley strain rats were divided into 3 groups and maintained on a control diet (C group), a low-Mg diet (D group), or a low-Mg diet supplemented with AsA (DA group) for 42 d. At the end of this period, the final body weight, weight gain, and serum Mg concentrations were significantly decreased in the Mg-deficient rats. Further, dietary AsA supplementation had no effect on the growth, serum Mg concentration, Mg absorption, and Mg retention. The serum concentration of AsA was significantly lower in the D group than in the C group but was unaltered in the DA group. The levels of phosphatidylcholine hydroperoxide (PCOOH) in the serum and of triglycerides (TGs) and total cholesterol (TC) in the serum and liver were significantly higher in the D group than in the C group. The serum PCOOH, liver TG, and liver TC levels were decreased in the DA group. These results indicate that Mg deficiency increases the AsA requirement of the body and that AsA supplementation normalizes the serum levels of PCOOH and the liver lipid content in Mg-deficient rats, without altering the Mg status.

  6. Lipid peroxidation and antioxidant enzymes activity in Plasmodium vivax malaria patients evolving with cholestatic jaundice

    PubMed Central

    2013-01-01

    Background Plasmodium vivax infection has been considered a benign and self-limiting disease, however, recent studies highlight the association between vivax malaria and life-threatening manifestations. Increase in reactive oxygen species has already been described in vivax malaria, as a result of the increased metabolic rate triggered by the multiplying parasite, and large quantities of toxic redox-active byproducts generated. The present study aimed to study the oxidative stress responses in patients infected with P. vivax, who developed jaundice (hyperbilirubinaemia) in the course of the disease, a common clinical complication related to this species. Methods An evaluation of the lipid peroxidation and antioxidant enzymes profile was performed in 28 healthy individuals and compared with P. vivax infected patients with jaundice, i.e., bilirubin < 51.3 μmol/L (8 patients) or without jaundice (34 patients), on day 1 (D1) and day 14 (D14) after anti-malarial therapy. Results Hyperbilirubinaemia was more frequent among women and patients experiencing their first malarial infection, and lower haemoglobin and higher lactate dehydrogenase levels were observed in this group. Malondialdehyde levels and activity of celuroplasmin and glutathione reductase were increased in the plasma from patients with P. vivax with jaundice compared to the control group on D1. However, the activity of thioredoxin reductase was decreased. The enzymes glutathione reductase, thioredoxin reductase, thiols and malondialdehyde also differed between jaundiced versus non-jaundiced patients. On D14 jaundice and parasitaemia had resolved and oxidative stress biomarkers were very similar to the control group. Conclusion Cholestatic hyperbilirubinaemia in vivax malaria cannot be totally disassociated from malaria-related haemolysis. However, significant increase of lipid peroxidation markers and changes in antioxidant enzymes in patients with P. vivax-related jaundice was observed. These results

  7. Lipid peroxidation in neonatal mouse brain subjected to two different types of hypoxia.

    PubMed

    Hasegawa, K; Yoshioka, H; Sawada, T; Nishikawa, H

    1991-01-01

    To elucidate the role of free radicals in the pathogenesis of neonatal hypoxic encephalopathy, we determined the content of thiobarbituric acid reactants (TBARs), as an index of lipid peroxidation related with a free radical reaction, in the brains of newborn mice during hypoxia and recovery from hypoxia. Hypoxic stress was induced by 100% nitrogen gas breathing (N2 group) or 100% carbon dioxide gas breathing (CO2 group). TBARs increased with 20 minutes of hypoxia and returned to the control level during the recovery period in both groups. The increase in TBARs in the CO2 group was greater than that in the N2 group. These results may suggest that free radical reaction occurs during the hypoxic period and that CO2 hypoxia is more effective on free radical production in the newborn brain than N2 hypoxia.

  8. [Fatty acids in erythrocyte membranes and the status of lipid peroxidation in painters].

    PubMed

    Loseva, M I; Shpagina, L A; Sharapov, V I; Sazonova, O V; Grek, O R

    1991-01-01

    Spectrographic studies of fat acids in erythrocytic membranes and lipid peroxidation (LPO) contributed to the identification of different phases in the formation of damage effects. Exposition to toxic complexes (mostly solvents) in the first year caused a predominant growth of the antioxidant systems' activity characteristic of the processes of adaptation. In case with the work duration from one to five years, the u saturated fat acid content growth was accompanied by both pro- and antioxidative processes, which was indicative of the compensatory nature of the revealed changes. The most vivid shifts in the LPO reactions and the fat acids' content in erythrocytic membranes were found in the occupational group of patients engaged in the profession for more than 5 years. Those included major changes in the spectrum of both saturated and unsaturated acids, LPO activation with concomitant depression of the antioxidative systems.

  9. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis.

    PubMed

    Halama, Anna; Kulinski, Michal; Dib, Shaima S; Zaghlool, Shaza B; Siveen, Kodappully S; Iskandarani, Ahmad; Zierer, Jonas; Prabhu, Kirti S; Satheesh, Noothan J; Bhagwat, Aditya M; Uddin, Shahab; Kastenmüller, Gabi; Elemento, Olivier; Gross, Steven S; Suhre, Karsten

    2018-08-28

    Suppressing glutaminolysis does not always induce cancer cell death in glutamine dependent tumors because cells may switch to alternative energy sources. To reveal compensatory metabolic pathways, we investigated the metabolome-wide cellular response to inhibited glutaminolysis in cancer cells. Glutaminolysis inhibition with C.968 suppressed cell proliferation but was insufficient to induce cancer cell death. We found that lipid catabolism was activated as a compensation for glutaminolysis inhibition. Accelerated lipid catabolism, together with oxidative stress induced by glutaminolysis inhibition, triggered autophagy. Simultaneously inhibiting glutaminolysis and either beta oxidation with trimetazidine or autophagy with chloroquine both induced cancer cell death. Here we identified metabolic escape mechanisms contributing to cancer cell survival under treatment and we suggest potentially translational strategy for combined cancer therapy, given that chloroquine is an FDA approved drug. Our findings are first to show efficiency of combined inhibition of glutaminolysis and beta oxidation as potential anti-cancer strategy as well as add to the evidence that combined inhibition of glutaminolysis and autophagy may be effective in glutamine-addicted cancers. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. A diet with 3% of energy from a mixture of Omega-3 fatty acids significantly increases in vivo lipid peroxidation in postmenopausal women

    USDA-ARS?s Scientific Manuscript database

    Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA) are recommended by public health organizations to reduce the risk of disease. However, n-3 PUFA are susceptible to an increase in lipid peroxidation in the human body. As part of a crossover dietary intervention study of a diet (20% of energy ...

  11. Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells

    PubMed Central

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Kil, Jeung-Ha

    2014-01-01

    BACKGROUND/OBJECTIVES This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide (H2O2)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (•OH), and H2O2 scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against H2O2-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS The ability of FSeS to scavenge DPPH, •OH and H2O2 was greater than that of FSS and AHSS. FSeS also significantly inhibited H2O2-induced (500 µM) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P < 0.05). Following treatment with 100 µg/mL of FSeS and FSS to prevent H2O2-induced oxidation, cell viability increased from 56.7% (control) to 83.7% and 75.6%, respectively. However, AHSS was not able to reduce H2O2-induced cell damage (viability of the AHSS-treated cells was 54.6%). FSeS more effectively suppressed H2O2-induced ROS generation and lipid peroxidation compared to FSS and AHSS (P < 0.05). Compared to the other sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS These results from the present study suggest that FSeS is an effective radical scavenger and protects against H2O2-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity. PMID:24741396

  12. Antioxidant effects of water- and lipid-soluble nitroxide radicals in liposomes.

    PubMed

    Cimato, Alejandra N; Piehl, Lidia L; Facorro, Graciela B; Torti, Horacio B; Hager, Alfredo A

    2004-12-15

    Liposomes are today useful tools in different fields of science and technology. A lack of stability due to lipid peroxidation is the main problem in the extension of the use of these formulations. Recent investigative works have reported the protective effects of stable nitroxide radicals against oxidative processes in different media and under different stress conditions. Our group has focused its attention on the natural aging of liposomes and the protection provided by the water- and lipid-soluble nitroxide radicals 2,2,6,6-tetramethylpiperdine-1-oxyl (TEMPO) and doxylstearic acids (5-DSA, 12-DSA, and 16-DSA), respectively. Unilamellar liposomes were incubated under air atmosphere at 37 degrees C, both in the absence and in the presence of these radicals. Conjugated dienes, lipid hydroperoxides, TBARS, membrane fluidity, and nitroxide ESR signal intensity were followed as a function of time. Our results demonstrated that doxylstearic acids were more efficient than TEMPO in retarding lipid peroxidation at all the concentrations tested. The inhibition percentages, depending on the total nitroxide concentration, were not proportional to the lipid-water partition coefficient. Furthermore, time-course ESR signals showed a slower decrease for doxylstearic acids than for TEMPO. No significant differences were found among 5-DSA, 12-DSA, and 16-DSA. We concluded that the nitroxide radical efficiency as antioxidant directly depends on both nitroxide concentration and lipophilicity.

  13. Use of visible and near infrared reflectance spectra to predict lipid peroxidation of light lamb meat and discriminate dam's feeding systems.

    PubMed

    Ripoll, G; Lobón, S; Joy, M

    2018-09-01

    Measurement of thiobarbituric acid reactive substances (TBARS) is a well-established method for determine lipid oxidation in meat. This assay, however, is time-consuming and generates undesired chemical waste. Dam's milk is the principal source of vitamins and provitamins that delay lipid oxidation of light lamb meat; these compounds are stored in the lamb's muscle tissue. Hence, lamb meat could be used to determine the origin of the dam's diet. The aim of this study is to evaluate Near-infrared reflectance spectroscopy (NIRS) as a tool for determining the lipid peroxidation of light lamb meat and differentiate the meat of light lambs according the diet of their dams during lactation (grazing alfalfa, lucerne, or fed a total mixed ration). NIRS using select wavelengths was able to detect the lipid oxidation of meat (TBARS method). NIRS can detect analytes at concentrations of parts per million. Moreover, the feed diets were discriminated successfully. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The effects of metal ions on the DNA damage induced by hydrogen peroxide.

    PubMed

    Kobayashi, S; Ueda, K; Komano, T

    1990-01-01

    The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.

  15. Oxygen radical system in chronic infarcted rat heart: the effect of combined beta blockade and ACE inhibition.

    PubMed

    Theres, H; Wagner, K D; Schulz, S; Strube, S; Leiterer, K P; Romberg, D; Günther, J; Scholz, H; Baumann, G; Schimke, I

    2000-05-01

    In vitro experiments suggest that beta blockade and angiotensin-converting enzyme (ACE) inhibition may protect the failing heart by reduction of myocardial oxidative stress. To test this hypothesis in an in vivo model, the beta blocker metoprolol (350 mg) and the ACE inhibitor ramipril (1 mg) were given either alone or in combination to rats (per kilogram body weight per day) for 6 weeks after myocardial infarction. Left ventricular end-diastolic pressure (LVEDP), contractile function of papillary muscles, enzymatic antioxidative defense (indicated by the activities of the superoxide dismutase isoenzymes and glutathione peroxidase), and the extent of lipid peroxidation were studied. Placebo-treated rats showed cardiac hypertrophy, increased LVEDP, lower rates of contraction and relaxation, as well as a deficit in the myocardial antioxidative defense associated with increased lipid peroxide levels, when compared with sham-operated animals. Combined beta blockade and ACE inhibition improved the antioxidative defense, reduced hypertrophy and LVEDP, and enhanced rates of contraction. Thus prolonged beta blockade and ACE inhibition after infarction may decrease myocardial oxidative stress and thereby could be beneficial in heart failure.

  16. Nanostructured Lipid Carriers Loaded with Baicalin: An Efficient Carrier for Enhanced Antidiabetic Effects

    PubMed Central

    Shi, Feng; Wei, Zheng; Zhao, Yingying; Xu, Ximing

    2016-01-01

    Context: Recent studies have demonstrated that baicalin has antihyperglycemic effects by inhibiting lipid peroxidation. Baicalin is low hydrophilic and poorly absorbed after oral administration. Thus, a suitable formulation is highly desired to overcome the disadvantages of baicalin. Objective: The objective of this work was to prepare baicalin-loaded nanostructured lipid carriers (B-NLCs) for enhanced antidiabetic effects. Materials and Methods: B-NLCs were prepared by high-pressure homogenization method using Precirol as the solid lipid and Miglyol as the liquid lipid. The properties of the NLCs, such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE), were investigated. The morphology of NLCs was observed by transmission electron microscopy. In addition, drug release and antidiabetic activity were also studied. Results: The results revealed that B-NLCs particles were uniformly in the nanosize range and of spherical morphology with a mean size of 92 ± 3.1 nm, a ZP of −31.35 ± 3.08 mV, and an EE of 85.29 ± 3.42%. Baicalin was released from NLCs in a sustained manner. In addition, B-NLCs showed a significantly higher antidiabetic efficacy compared with baicalin. Conclusion: B-NLCs described in this study are well-suited for the delivery of baicalin. SUMMARY Currently, herbal medicines have attracted increasing attention as a complementary approach for type 2 diabetesBaicalin has antihyperglycemic effects by inhibiting lipid peroxidationA suitable formulation is highly desired to overcome the disadvantages (poor solubility and low bioavailability) of baicalinNanostructured lipid carriers could enhance the antidiabetic effects of baicalin. Abbreviations used: B-NLCs: Baicalin-Loaded Nanostructured Lipid Carriers, B-SUS: Baicalin Water Suspension, EE: Encapsulation Efficiency, FBG: Fasting Blood Glucose, HbAlc: Glycosylated Hemoglobin, HPLC: High-performance Liquid Chromatography; NLCs: Nanostructured Lipid Carriers, PI: Polydispersity

  17. The influence of royal jelly and human interferon-alpha (HuIFN-αN3) on proliferation, glutathione level and lipid peroxidation in human colorectal adenocarcinoma cells in vitro.

    PubMed

    Filipič, Bratko; Gradišnik, Lidija; Rihar, Klemen; Šooš, Eugen; Pereyra, Adriana; Potokar, Jana

    2015-12-01

    Among royal jelly's (RJ) various biological activities, its possible antitumour activity deserves particular attention. The purpose of this study was to investigate the influence of RJ, its bioactive component 10-hydroxy-2-decenoic acid (10- HDA), and human interferon-alpha (HuIFN-αN3) on the proliferation of human colorectal adenocarcinoma cells (CaCo- 2), and ascertain their effect on intracellular glutathione (GSH) level and lipid peroxidation. We studied the antiproliferative (AP) activity of RJ [(0.1 g/10 mL phosphate buffer saline (PBS)], HuIFN-αN3 (1000 I.U. mL⁻¹), 10-HDA at 100.0 μmol L⁻¹, and their different combinations, in the ratio 1:1, 1:2, and 2:1 on CaCo-2 cells. The GSH level was measured by glutathione assay. The lipid peroxidation was measured by malondialdehyde (MDA) assay. Single RJ had a low AP activity: 2.0 (0.5 mg mL⁻¹). HuIFN-αN3 had an AP activity of 2.5 (208.33 I.U. mL⁻¹), while 10-HDA had an AP activity of 1.5 (37.5 μmol mL⁻¹). The highest AP activity of 3.8 was obtained when RJ and HuIFN-αN3 were applied at the ratio 2:1. In that combination the level of GSH was 24.9±2.4 nmol g⁻³ of proteins (vs. 70.2±3.2 nmol g⁻³ in the control) and the level of MDA was 72.3±3.1 nmol g⁻³ (vs. 23.6±9.1 nmol g⁻³ in the control). It is generally assumed that 10-HDA, an important constituent of RJ, together with HuIFN-αN3, is responsible for the inhibition of CaCo-2 cells proliferation in vitro. In our study, however, RJ and HuIFN-αN3 applied at 2:1 decreased the level of GSH the most and significantly increased lipid peroxidation via MDA in CaCo-2 cells. Future studies should show whether these GSH- and MDA-related activities of RJ, HuIFN-αN3, 10-HDA, and their combinations may decrease the tumorigenicity index and tumorigenic potential of various tumour cells in vitro.

  18. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    PubMed

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Oral and Intraperitoneal Administration of Quercetin Decreased Lymphocyte DNA Damage and Plasma Lipid Peroxidation Induced by TSA In Vivo

    PubMed Central

    Chan, Shu-Ting; Shiau, Rong-Jen; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2014-01-01

    Our previous study showed that quercetin enhances the anticancer effect of trichostatin A (TSA) in xenograft mice given quercetin intraperitoneally (10 mg/kg, 3 times/week). Herein, we investigate whether quercetin administered orally exerts such an effect and prevents the cytotoxic side effects of TSA. We found that quercetin given orally (20 and 100 mg/kg, 3 times/week) failed to enhance the antitumor effect of TSA although it increased the total quercetin concentration more than quercetin administered intraperitoneally in the plasma. The compound quercetin-3-glucuronide (Q3G) increased the most. However, quercetin administered intraperitoneally increased the total quercetin level in tumor tissues more than oral quercetin. Oral and intraperitoneal administration of quercetin similarly decreased lymphocyte DNA damage and plasma lipid peroxidation level induced by TSA. Furthermore, we found that the enhancing effect of Q3G on the antitumor effect of TSA and the incorporation of Q3G was less than that of quercetin in A549 cells. However, we found that A549 cells possessed the ability to convert Q3G to quercetin. In conclusion, different from quercetin administered intraperitoneally, quercetin administered orally failed to enhance the antitumor effect of TSA because of its metabolic conversion. However, it prevented TSA-induced DNA damage and lipid peroxidation. PMID:24868531

  20. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.

    PubMed

    Dutta, R K; Nenavathu, Bhavani P; Gangishetty, Mahesh K; Reddy, A V R

    2012-06-01

    Recent studies indicated the role of ROS toward antibacterial activity. In our study we report ROS mediated membrane lipid oxidation of Escherichia coli treated with ZnO nanoparticles (NPs) as supported by detection and spectrophotometric measurement of malondialdehyde (MDA) by TBARS (thiobarbituric acid-reactive species) assay. The antibacterial effects of ZnO NPs were studied by measuring the growth curve of E. coli, which showed concentration dependent bacteriostatic and bacteriocidal effects of ZnO NPs. The antibacterial effects were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further, antibacterial effect of ZnO NPs was found to decrease by introducing histidine to the culture medium treated with ZnO NPs. The ROS scavenging action of histidine was confirmed by treating histidine to the batch of Escherichia coli+ZnO NPs at the end of the lag phase of the growth curve (Set-I) and during inoculation (Set-II). A moderate bacteriostatic effect (lag in the E. coli growth) was observed in Set-II batch while Set-I showed no bacteriostatic effect. From these evidences we confirmed that the antibacterial effect of bare as well as TG capped ZnO NPs were due to membrane lipid peroxidation caused by the ROS generated during ZnO NPs interaction in culture medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Lipid peroxidation and antioxidant enzyme status in oral carcinoma patients.

    PubMed

    Khanna, R; Thapa, P B; Khanna, H D; Khanna, S; Khanna, A K; Shukla, H S

    2005-01-01

    To measure the lipid peroxidation and endogenous antioxidant enzyme status in oral carcinoma and the protective role of exogenous antioxidants. 20 new cases of histologically proven oral squamous cell carcinoma, 20 of leukoplakia and 20 age and sex matched healthy conrols were included. Intra oral pH of patients and controlled were measured by quantitative litmus paper test and serum was analysed for malonialdehyde (MDA), super oxide bismutase (SOD), catalase and glutathione peroxidase (GP). Patients with leukoplakia were treated with exogenous antioxidants for 3 months and the same were reassessed. Oral pH of oral cancer patients was neutral (PH-7) but that of leukoplakia and controls were mildly acidic (6.64 and 6.58 respectively). Serum malonialdehyde levels were highest in oral cancer group. With antioxidant enzymes super oxide bismutase, catalase and glutathione peroxidase different pattern was noticed. Antioxidant enzymes remained almost the same (P > 0.005 each) in patients with leukoplakia after 3 months of vitamin A,C and E. but there was marginal increase in catalase level (P<0.05). This study shows the positive benefit of vitamin (A,C,E) and nutrition supplementation on the antioxidant enzyme defense system hence prevention of oral carcinogenesis in patients with leukoplakia.

  2. Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe(2+) induced lipid peroxidation in rat brain in vitro.

    PubMed

    Oboh, Ganiyu; Akinyemi, Ayodele J; Ademiluyi, Adedayo O

    2012-01-01

    Neurodegerative diseases have been linked to oxidative stress arising from peroxidation of membrane biomolecules and high levels of Fe have been reported to play an important role in neurodegenerative diseases and other brain disorder. Malondialdehyde (MDA) is the end-product of lipid peroxidation and the production of this aldehyde is used as a biomarker to measure the level of oxidative stress in an organism. The present study compares the protective properties of two varieties of ginger [red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe)] on Fe(2+) induced lipid peroxidation in rat brain in vitro. Incubation of the brain tissue homogenate in the presence of Fe caused a significant increase in the malondialdehyde (MDA) contents of the brain. However, the aqueous extract from both varieties of ginger caused a significant decrease in the MDA contents of the brain in a dose-dependent manner. However, the aqueous extract of red ginger had a significantly higher inhibitory effect on both Fe(2+)-induced lipid peroxidation in the rat brain homogenates than that of white ginger. This higher inhibitory effect of red ginger could be attributed to its significantly higher phytochemical content, Fe(2+) chelating ability, OH scavenging ability and reducing power. However, part of the mechanisms through which the extractable phytochemicals in ginger (red and white) protect the brain may be through their antioxidant activity, Fe(2+) chelating and OH scavenging ability. Therefore, oxidative stress in the brain could be potentially managed/prevented by dietary intake of ginger varieties (red ginger and white ginger rhizomes). Copyright © 2010 Elsevier GmbH. All rights reserved.

  3. Hydrogen peroxide poisoning.

    PubMed

    Watt, Barbara E; Proudfoot, Alex T; Vale, J Allister

    2004-01-01

    Hydrogen peroxide is an oxidising agent that is used in a number of household products, including general-purpose disinfectants, chlorine-free bleaches, fabric stain removers, contact lens disinfectants and hair dyes, and it is a component of some tooth whitening products. In industry, the principal use of hydrogen peroxide is as a bleaching agent in the manufacture of paper and pulp. Hydrogen peroxide has been employed medicinally for wound irrigation and for the sterilisation of ophthalmic and endoscopic instruments. Hydrogen peroxide causes toxicity via three main mechanisms: corrosive damage, oxygen gas formation and lipid peroxidation. Concentrated hydrogen peroxide is caustic and exposure may result in local tissue damage. Ingestion of concentrated (>35%) hydrogen peroxide can also result in the generation of substantial volumes of oxygen. Where the amount of oxygen evolved exceeds its maximum solubility in blood, venous or arterial gas embolism may occur. The mechanism of CNS damage is thought to be arterial gas embolisation with subsequent brain infarction. Rapid generation of oxygen in closed body cavities can also cause mechanical distension and there is potential for the rupture of the hollow viscus secondary to oxygen liberation. In addition, intravascular foaming following absorption can seriously impede right ventricular output and produce complete loss of cardiac output. Hydrogen peroxide can also exert a direct cytotoxic effect via lipid peroxidation. Ingestion of hydrogen peroxide may cause irritation of the gastrointestinal tract with nausea, vomiting, haematemesis and foaming at the mouth; the foam may obstruct the respiratory tract or result in pulmonary aspiration. Painful gastric distension and belching may be caused by the liberation of large volumes of oxygen in the stomach. Blistering of the mucosae and oropharyngeal burns are common following ingestion of concentrated solutions, and laryngospasm and haemorrhagic gastritis have been

  4. Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera).

    PubMed

    Helmer, Stephanie Hedrei; Kerbaol, Anahi; Aras, Philippe; Jumarie, Catherine; Boily, Monique

    2015-06-01

    The decline in the population of pollinators is a worrying phenomenon worldwide. In North America, the extensive use of herbicides in maize and soya crops may affect the health of nontarget organisms like the honey bee. In this study, caged honey bees were exposed to realistic doses of atrazine, metolachlor, and glyphosate for 10 days via contaminated syrup. Peroxidation of lipids was evaluated using the thiobarbituric acid reactive substance (TBARS) test, and diet-derived antioxidants-carotenoids, all-trans-retinol (at-ROH) and α-tocopherol-were detected and quantified using reversed-phase HPLC techniques. Significant increases in syrup consumption were observed in honey bees exposed to metolachlor, and a lower TBARS value was recorded for the highest dose. No relationship was observed between the peroxidation of lipids and the levels of antioxidants. However, β-carotene, which was found to be the most abundant carotenoid, and at-ROH (derived from β-carotene) both decreased with increasing doses of atrazine and glyphosate. In contrast, metolachlor increased levels of at-ROH without any effects on β-carotene. These results show that the honey bee carotenoid-retinoid system may be altered by sublethal field-realistic doses of herbicides.

  5. Dextran loading protects macrophages from lipid peroxidation and induces a Keap1/Nrf2/ARE-dependent antioxidant response.

    PubMed

    Chechushkov, Anton; Zaitseva, Natalia; Vorontsova, Elena; Kozhin, Petr; Menshchikova, Elena; Shkurupiy, Vyacheslav

    2016-12-01

    Linear dextrans are often proposed as drug delivery systems with milder adverse effects and lower effective drug concentrations. Linear dextrans are polysaccharides that can potentially be used to load macrophages with drugs to transport them to a site of inflammation. Recently, it was reported that dextrans may exert a protective effect vis-à-vis drug cytotoxicity and during wound healing. The aim of the current work was to evaluate molecular mechanisms of action of dextrans that may be relevant to the cytoprotective effects. We determined the effect of treatment with 40- or 70-kDa dextran on production of reactive oxygen species, lipid peroxidation, and lysosomal pH in the J774 macrophage cell line. In addition, induction of Keap1/Nrf2/ARE and autophagic activity were evaluated. Dextrans of both molecular weights protected the cells from oxidative stress induced by cumene hydroperoxide and from lysosomal stress induced by ammonium chloride. The effect was associated with induction of the Keap1/Nrf2/ARE signaling pathway. Furthermore, dextran stimulated autophagy in a dose-dependent manner but inhibited the autophagosome-lysosome fusion in a time-dependent manner. This study shows possible cytoprotective effects of dextran under oxidative stress, and these findings may be used for the development of novel (dextran-based) drug delivery approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Use of antioxidants reduce lipid peroxidation and improve quality of crossbred ram sperm during its cryopreservation.

    PubMed

    Banday, Mohamad Naiem; Lone, Farooz Ahmad; Rasool, Fabiha; Rashid, Muzamil; Shikari, Arif

    2017-02-01

    Ram sperm are subjected to extreme oxidative stress during their preservation at -196 °C resulting in reduced quality at post thaw. Therefore, the main objective of this study was to evaluate the effect of antioxidants taurine, quercetin and reduced glutathione on the post thaw quality of crossbred ram sperm. A total of twenty four ejaculates from six crossbred rams were collected and extended with tris-based extender with no antioxidant (Control), with taurine (40 mM), quercetin (5 μg/ml) and reduced glutathione (5 mM). The post thaw sperm quality was determined by percent sperm motility, live sperm count, intact acrosome and hypo-osmotic swelling test (HOST) reacted spermatozoa and lipid peroxidation was measured in terms of malondialdehyde (MDA) level both in seminal plasma and sperm cell. At post thaw, percent sperm motility and live sperm count were significantly (p < 0.05) higher for taurine than control and reduced glutathione but did not differ significantly (p > 0.05) from quercetin. The percent HOST reacted spermatozoa were significantly higher for taurine than control, quercetin and reduced glutathione. Seminal plasma MDA level was significantly (p < 0.05) lower for taurine than control and non-significantly lower than quercetin and reduced glutathione. However, spermatic MDA level did not differ significantly (p > 0.05) among the control and antioxidants. In conclusion, taurine at 40 mM reduced lipid peroxidation and improved post thaw sperm quality of cryopreserved crossbred ram semen. Further, transportation time of semen samples in an ice chest at 4-5 °C may be included as a part of equilibration period, when collection shed and frozen semen unit are located at a distance. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [The dynamic indices of lipid peroxidation and of the antioxidant system under the influence of surgical treatment in ovarian cystoma].

    PubMed

    Temchenko, O I

    1998-01-01

    The state of the lipids peroxide oxidation (LPO) and antioxidant system (AOS) was studied up in 22 patients with ovarian cystoma [correction of cyst]. According to the level of retinoli acetas, acidum ascorbinicum, tocopheroli acetas, the reduced glutation superoxiddysmutase (SOD) activity. The LPO activation and vitamins level lowering in the patients blood plasma were established. The operative intervention conduction caused the LPO activation and the AOS factors level lowering, observed during 7-8 days after the operation.

  8. A diet rich in conjugated linoleic acid and butter increases lipid peroxidation but does not affect atherosclerotic, inflammatory, or diabetic risk markers in healthy young men.

    PubMed

    Raff, Marianne; Tholstrup, Tine; Basu, Samar; Nonboe, Pernille; Sørensen, Martin Tang; Straarup, Ellen Marie

    2008-03-01

    Intake of conjugated linoleic acid (CLA) has been demonstrated to beneficially affect risk markers of atherosclerosis and diabetes in rats. CLA is naturally found in milk fat, especially from cows fed a diet high in oleic acid, and increased CLA intake can occur concomitantly with increased milk fat intake. Our objective was to investigate the effect of CLA as part of a diet rich in butter as a source of milk fat on risk markers of atherosclerosis, inflammation, diabetes type II, and lipid peroxidation. A total of 38 healthy young men were given a diet with 115 g/d of CLA-rich fat (5.5 g/d CLA oil, a mixture of 39.4% cis9, trans11 and 38.5% trans10, cis12) or of control fat with a low content of CLA in a 5-wk double-blind, randomized, parallel intervention study. We collected blood and urine before and after the intervention. The fatty acid composition of plasma triacylglycerol, cholesterol esters, and phospholipids reflected that of the intervention diets. The CLA diet resulted in increased lipid peroxidation measured as an 83% higher 8-iso-prostaglandin F2alpha concentration compared with the control, P < 0.0001. We observed no other significant differences in the effect of the interventions diets. In conclusion, when given as part of a diet rich in butter, a mixture of CLA isomers increased lipid peroxidation but did not affect risk markers of cardiovascular disease, inflammation, or fasting insulin and glucose concentrations.

  9. [Effect of aminothiol anthihypoxants on hydration and peroxidation processes in traumatic brain injury].

    PubMed

    Novikov, V E; Ponamareva, N S

    2007-01-01

    The hydration (content of total, bound, and free water) and the activity of lipid peroxidation (LPO) processes in the brain have been studied in rats on the background of traumatic brain injury (TBI) dynamics. It is established that aminothiol-based anthihypoxants such as bemithyl and amthizol in a dose of 25 mg/kg alleviate changes induced by TBI. In particular, the drugs decrease the content of total and free water, increase the level of bound water, and inhibit the LPO intensity in the brain. The effect of drugs is more pronounced on the 4th and 7th day after TBI model induction.

  10. Mitochondrial-derived hydrogen peroxide inhibits relaxation of bovine coronary arterial smooth muscle to hypoxia through stimulation of ERK MAP kinase.

    PubMed

    Gao, Qun; Zhao, Xiangmin; Ahmad, Mansoor; Wolin, Michael S

    2009-12-01

    Mitochondrial reactive oxygen species (ROS) are potentially important in vascular oxygen-sensing mechanisms because hypoxia appears to be a stimulus for mitochondrial ROS generation; however, scavenging of endogenous ROS does not alter relaxation of endothelium-denuded bovine coronary arteries (BCA) to hypoxia. The purpose of this study was to investigate the influence of increasing mitochondrial ROS on the relaxation of BCA to hypoxia. Increasing mitochondrial superoxide with inhibitors of electron transport (10 microM rotenone and antimycin) and by opening mitochondrial ATP-dependent K+ channels with 100 microM diazoxide were observed in this study to attenuate relaxation of BCA precontracted with 30 mM KCl to hypoxia by 68-76% and 38%, respectively. This effect of rotenone is not prevented by inhibiting NADPH oxidase (Nox) activation or scavenging superoxide with Peg-SOD; however, it is reversed 85% and 26% by increasing the consumption of intracellular peroxide by 0.1 mM ebselen and 32.5 U/ml Peg-catalase. Because inhibition of extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase (10 microM PD-98059), but not src kinase or rho kinase, also reverses the effects of rotenone by 69%, the peroxide-elicited force-enhancing effects of ERK appear to be attenuating the response to hypoxia. Rotenone increased the phosphorylation of ERK (by 163%). Activation of ERK in BCA with 0.1 mM peroxide or endogenous peroxide generated by stimulating Nox2 with a stretch treatment or contraction with 100 nM U-46619 also attenuated relaxation to hypoxia. Thus coronary arterial relaxation to hypoxia may be attenuated by pathophysiological conditions associated with increased peroxide generation by mitochondria or other sources that stimulate ERK.

  11. Astaxanthin Restrains Nitrative-Oxidative Peroxidation in Mitochondrial-Mimetic Liposomes: A Pre-Apoptosis Model

    PubMed Central

    Mano, Camila M.; Cardozo, Karina H. M.; Colepicolo, Pio; Bechara, Etelvino J. H.

    2018-01-01

    Astaxanthin (ASTA) is a ketocarotenoid found in many marine organisms and that affords many benefits to human health. ASTA is particularly effective against radical-mediated lipid peroxidation, and recent findings hypothesize a “mitochondrial-targeted” action of ASTA in cells. Therefore, we examined the protective effects of ASTA against lipid peroxidation in zwitterionic phosphatidylcholine liposomes (PCLs) and anionic phosphatidylcholine: phosphatidylglycerol liposomes (PCPGLs), at different pHs (6.2 to 8.0), which were challenged by oxidizing/nitrating conditions that mimic the regular and preapoptotic redox environment of active mitochondria. Pre-apoptotic conditions were created by oxidized/nitr(osyl)ated cytochrome c and resulted in the highest levels of lipoperoxidation in both PCL and PCPGLs (pH 7.4). ASTA was less protective at acidic conditions, especially in anionic PCPGLs. Our data demonstrated the ability of ASTA to hamper oxidative and nitrative events that lead to cytochrome c-peroxidase apoptosis and lipid peroxidation, although its efficiency changes with pH and lipid composition of membranes. PMID:29649159

  12. Astaxanthin Restrains Nitrative-Oxidative Peroxidation in Mitochondrial-Mimetic Liposomes: A Pre-Apoptosis Model.

    PubMed

    Mano, Camila M; Guaratini, Thais; Cardozo, Karina H M; Colepicolo, Pio; Bechara, Etelvino J H; Barros, Marcelo P

    2018-04-12

    Astaxanthin (ASTA) is a ketocarotenoid found in many marine organisms and that affords many benefits to human health. ASTA is particularly effective against radical-mediated lipid peroxidation, and recent findings hypothesize a "mitochondrial-targeted" action of ASTA in cells. Therefore, we examined the protective effects of ASTA against lipid peroxidation in zwitterionic phosphatidylcholine liposomes (PCLs) and anionic phosphatidylcholine: phosphatidylglycerol liposomes (PCPGLs), at different pHs (6.2 to 8.0), which were challenged by oxidizing/nitrating conditions that mimic the regular and preapoptotic redox environment of active mitochondria. Pre-apoptotic conditions were created by oxidized/nitr(osyl)ated cytochrome c and resulted in the highest levels of lipoperoxidation in both PCL and PCPGLs (pH 7.4). ASTA was less protective at acidic conditions, especially in anionic PCPGLs. Our data demonstrated the ability of ASTA to hamper oxidative and nitrative events that lead to cytochrome c-peroxidase apoptosis and lipid peroxidation, although its efficiency changes with pH and lipid composition of membranes.

  13. Hippocampus lipid peroxidation induced by residual oil fly ash intranasal instillation versus habituation to the open field.

    PubMed

    Zanchi, Ana Claudia; Saiki, Mitiko; Saldiva, Paulo Hilário Nascimento; Barros, Helena Maria Tannhauser; Rhoden, Claudia Ramos

    2010-01-01

    Epidemiological studies have demonstrated the adverse effects of particulate matter (PM) inhalation on the respiratory and cardiovascular systems. It has been reported that air pollution may affect the central nervous system and decrease cognitive function. In rats, residual oil fly ash (ROFA) instillation causes decreased motor activity and increased lipid peroxidation in the striatum and the cerebellum. Our objective was to determine whether chronic instillation of particles induces changes in learning and memory in rats and whether oxidants in the hippocampus may contribute to these adverse effects. Forty-five-day-old male Wistar rats were exposed to ROFA by intranasal instillation and were treated with N-acetylcysteine (NAC) at 150 mg/kg i.p. for 30 days. Control groups were exposed to ROFA, NAC, or neither. On days 1, 8, and 30 of the protocol, rats were submitted to the open field test to evaluate habituation. After the last open field session, the rats were killed by decapitation. The hippocampus was used to determine lipid peroxidation (LP) by the thiobarbituric acid-reactive substances test. ROFA instillation induced an increase in LP in the hippocampus compared to all treatment groups (p = .012). NAC treatment blocked these changes. All of the treatment groups presented a decrease in the frequency of peripheral walking (p = .001), rearing (p = .001), and exploration (p = .001) over time. Our study demonstrates that exposure to particles for 30 days and/or NAC treatment do not modify habituation to an open field, a simple form of learning and memory in rats, and that oxidative damage induced by ROFA does not modulate these processes.

  14. Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats.

    PubMed

    Guevara-Guzmán, R; Arriaga, V; Kendrick, K M; Bernal, C; Vega, X; Mercado-Gómez, O F; Rivas-Arancibia, S

    2009-03-31

    There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of chronic (30 or 60 days) exposure to ozone on olfactory perception and memory and on levels of lipid peroxidation, alpha and beta estrogen receptors and dopamine beta-hydroxylase in the olfactory bulb in ovariectomized female rats. The ability of 17beta-estradiol to prevent these effects was then assessed. Results showed that ozone exposure for 30 or 60 days impaired formation/retention of a selective olfactory recognition memory 120 min after exposure to a juvenile stimulus animal with the effect at 60 days being significantly greater than at 30 days. They also showed impaired speed in locating a buried chocolate reward after 60 days of ozone exposure indicating some loss of olfactory perception. These functional impairments could all be prevented by coincident estradiol treatment. In the olfactory bulb, levels of lipid peroxidation were increased at both 30- and 60-day time-points and numbers of cells with immunohistochemical staining for alpha and beta estrogen receptors, and dopamine beta-hydroxylase were reduced as were alpha and beta estrogen receptor protein levels. These effects were prevented by estradiol treatment. Oxidative stress damage caused by chronic exposure to ozone does therefore impair olfactory perception and social recognition memory and may do so by reducing noradrenergic and estrogen receptor activity in the olfactory bulb. That these effects can be prevented by estradiol treatment suggests increased susceptibility to neurodegenerative disorders in aging women may be contributed to by reduced estrogen levels post-menopause.

  15. Effects of melatonin on lipid peroxidation and anti-oxidant enzyme activity in rats with experimentally induced hyperthyroidism.

    PubMed

    Baydas, Burhanettin; Meral, Ismail

    2005-07-01

    1. The present study was designed to investigate the effects of high-dose melatonin on lipid peroxidation and anti-oxidant enzyme activity in rats with experimentally induced hyperthyroidism. 2. Twenty-four albino male rats, weighing 240-260 g, were randomly allotted into one of three experimental groups (control, hyperthyroid and hyperthyroid + melatonin treatment), with each group containing eight animals. Hyperthyroidism was induced by a daily with i.p. injection of 200 microg l-thyroxine for 30 days. In addition to l-thyroxin treatment, rats in the hyperthyroid + melatonin treatment group were also given daily i.p. injections of 10 mg/kg melatonin on the last 10 days of l-thyroxine treatment. Control animals received injections of an equivalent volume of saline solution. Rats received the last injection 24 h before being killed. 3. At the end of the experiment, rats in all three groups were fasted for 12 h and killed by cardiac puncture under ether anaesthesia. Blood samples were taken for the determination of malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD) levels and concentrations of tri-iodothyronine (T(3)) and thyroxine (T(4)). 4. It was found that MDA and SOD levels and concentrations of T(3) and T(4) were higher and the GSH level was lower in rats with hyperthyroidism compared with controls. Melatonin treatment decreased the elevated MDA and SOD levels and increased the lowered GSH level to control levels in rats with hyperthyroidism, but did not ameliorate the concentrations of T(3) and T(4). 5. It was concluded that high-dose melatonin treatment may decrease the hyperthyroidism-induced disturbances of lipid peroxidation and anti-oxidant enzyme activity and oxidative damage.

  16. Expression of Lipid Peroxidation Markers in the Tear Film and Ocular Surface of Patients with Non-Sjogren Syndrome: Potential Biomarkers for Dry Eye Disease.

    PubMed

    Choi, Won; Lian, Cui; Ying, Li; Kim, Ga Eon; You, In Cheon; Park, Soo Hyun; Yoon, Kyung Chul

    2016-09-01

    To investigate the expression of lipid peroxidation markers in the tear film and ocular surface and their correlation with disease severity in patients with dry eye disease. The concentrations of hexanoyl-lysine (HEL), 4-hydroxy-2-nonenal (HNE), and malondialdehyde (MDA) were measured with enzyme-linked immunosorbent assays in tears obtained from 44 patients with non-Sjogren syndrome dry eye and 33 control subjects. The correlations between the marker levels and the tear film and ocular surface parameters, including tear film break-up time (BUT), Schirmer tear value, tear clearance rate, keratoepitheliopathy scores, corneal sensitivity, conjunctival goblet cell density, and symptom score, were analyzed. The expression of the lipid peroxidation markers HEL, 4-HNE, and MDA in the conjunctiva was evaluated using immunohistochemistry. The concentrations of HEL, 4-HNE, and MDA were 279.84 ± 69.98 nmol/L, 0.02 ± 0.01 μg/mL, and 3.80 ± 1.05 pmol/mg in control subjects and 283.21 ± 89.67 nmol/L (p = 0.97), 0.20 ± 0.03 μg/mL (p < 0.01), and 13.32 ± 4.03 pmol/mg (p < 0.01) in dry eye patients. 4-HNE and MDA levels significantly correlated with BUT, Schirmer tear value, tear clearance rate, keratoepitheliopathy scores, conjunctival goblet cell density, and symptom score (p < 0.05), whereas HEL levels did not correlate with these parameters. Staining intensities for 4-HNE and MDA increased in dry eye patients. The expression of late lipid peroxidation markers, 4-HNE and MDA, increases in the tear film and ocular surface of patients with dry eye. The levels correlate with various tear film and ocular surface parameters and may reflect the severity of dry eye disease.

  17. Comparative investigation on the effect of T-2 mycotoxin on lipid peroxidation and antioxidant status in different poultry species.

    PubMed

    Mézes, M; Barta, M; Nagy, G

    1999-02-01

    The effect of low dose T-2 toxin was investigated in chicken, duck and goose. The purpose of the present study was to investigate the effect of T-2 toxin on the lipid peroxidation and on the activity of glutathione redox system (amount of reduced and oxidised glutathione and the activity of glutathione peroxidase) in blood and liver. The treatment lasted days and two samples were taken, first at the time of lowest feed intake and second when the intake was the same as the control. It was found, that lipid per oxidation as detected by the amount of malondialdehyde increased in all of the species and tissues but the changes varied by species. The most sensitive species was goose followed by duck and chicken, and the most sensitive tissue was the liver followed by blood plasma and red blood cells.

  18. Tea Dietary Fiber Improves Serum and Hepatic Lipid Profiles in Mice Fed a High Cholesterol Diet.

    PubMed

    Guo, Wenxin; Shu, Yang; Yang, Xiaoping

    2016-06-01

    Tea dietary fiber (TDF) was prepared from tea residues and modified to get cellulose-modified TDF (CTDF) by cellulase or micronized TDF (MTDF) by ultrafine grinding. The in vitro lipid-binding capacities of the three fibers and their effects on serum and hepatic lipid profiles in mice fed a high cholesterol diet were evaluated. The results showed that the three fibers had excellent lipid-binding capacities, and the cholesterol- and sodium cholate-binding capacities of CTDF and MTDF were significantly higher than those of TDF. Animal studies showed that, compared to model control, the three fibers significantly decreased mice average daily gain, gain: feed, and liver index, reduced total cholesterol (TC), triglyceride, and low density lipoprotein-cholesterol of serum and liver, increased serum and hepatic high density lipoprotein-cholesterol to TC ratio, and promoted the excretion of fecal lipids, and they also significantly increased the activities of superoxide dismutase and glutathione peroxidase of serum and liver, and decreased lipid peroxidation; moreover, the effects of CTDF and MTDF were better than that of TDF. It was concluded that the three fibers could improve serum and hepatic lipid profiles in mice fed a high cholesterol diet and the mechanism of action might be due to the promotion of fecal excretion of lipids through their lipid-binding ability and the inhibition of lipid peroxidation. These findings suggest that tea dietary fiber has the potential to be used as a functional ingredient to control cardiovascular disease.

  19. Molecular target of decursins in the inhibition of lipid droplet accumulation in macrophages.

    PubMed

    Ohshiro, Taichi; Namatame, Ichiji; Lee, Eun Woo; Kawagishi, Hirokazu; Tomoda, Hiroshi

    2006-05-01

    During screening for inhibitors of lipid droplet accumulation in mouse peritoneal macrophages, two coumarins identified as decursin and decursinol angelate were isolated from the roots of Angelicae gigantis. The cellular molecular target of these inhibitors in macrophages was studied. Decursin and decursinol angelate inhibited cholesteryl ester (CE) synthesis with IC50 values of 9.7 and 10.1 microM, respectively, whereas they enhanced triacylglycerol (TG) synthesis. Lysosomal metabolism of cholesterol to CE was inhibited by the compounds, indicating that the site of inhibition is one of the steps between the exiting of cholesterol from the lysosomes and CE synthesis in the endoplasmic reticulum. Therefore, acyl-CoA:cholesterol acyltransferase (ACAT) activity in the microsomal fractions prepared from mouse macrophages was studied, and the results showed inhibition of this activity by decursin and decursinol angelate with IC50 values of 43 and 22 microM, respectively. Thus, it was concluded that the compounds inhibit macrophage ACAT activity to decrease CE synthesis, leading to a reduction of lipid droplets in macrophages.

  20. A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation.

    PubMed

    Voziyan, Paul A; Metz, Thomas O; Baynes, John W; Hudson, Billy G

    2002-02-01

    Reactive carbonyl compounds are formed during autoxidation of carbohydrates and peroxidation of lipids. These compounds are intermediates in the formation of advanced glycation end products (AGE) and advanced lipoxidation end products (ALE) in tissue proteins during aging and in chronic disease. We studied the reaction of carbonyl compounds glyoxal (GO) and glycolaldehyde (GLA) with pyridoxamine (PM), a potent post-Amadori inhibitor of AGE formation in vitro and of development of renal and retinal pathology in diabetic animals. PM reacted rapidly with GO and GLA in neutral, aqueous buffer, forming a Schiff base intermediate that cyclized to a hemiaminal adduct by intramolecular reaction with the phenolic hydroxyl group of PM. This bicyclic intermediate dimerized to form a five-ring compound with a central piperazine ring, which was characterized by electrospray ionization-liquid chromatography/mass spectrometry, NMR, and x-ray crystallography. PM also inhibited the modification of lysine residues and loss of enzymatic activity of RNase in the presence of GO and GLA and inhibited formation of the AGE/ALE N(epsilon)-(carboxymethyl)lysine during reaction of GO and GLA with bovine serum albumin. Our data suggest that the AGE/ALE inhibitory activity and the therapeutic effects of PM observed in diabetic animal models depend, at least in part, on its ability to trap reactive carbonyl intermediates in AGE/ALE formation, thereby inhibiting the chemical modification of tissue proteins.

  1. Kinetic activity, membrane mitochondrial potential, lipid peroxidation, intracellular pH and calcium of frozen/thawed bovine spermatozoa treated with metabolic enhancers.

    PubMed

    Boni, R; Gallo, A; Cecchini, S

    2017-01-01

    Owing to the progressive decline of sperm motility during storage there is a need to find substances capable of enhancing sperm energy metabolism and motility and/or preserving it from oxidative damage. The aim of this study was to evaluate in frozen/thawed bovine spermatozoa the effect of several compounds, such as myo-inositol, pentoxifylline, penicillamine + hypotaurine + epinephrine mixture (PHE), caffeine and coenzyme Q10+ zinc + d-aspartate mixture (CZA), on either kinetic or metabolic parameters. Sperm kinetics was evaluated by Sperm Class Analyser whereas specific fluorochromes were used to evaluated mitochondrial membrane potential (MMP), intracellular pH, intracellular calcium concentration and lipid peroxidation. Lipid peroxidation was also evaluated by TBARS analysis. Treatments significantly affected total and progressive motility with different dynamics in relation to the incubation time. After the first hour of incubation, CZA treatment produced the best performance in total and progressive sperm motility as well as in curvilinear velocity, average path velocity and amplitude of head displacement, whereas pentoxifylline stimulated the highest straight-line velocity. MMP showed higher values (p < 0.01) after treatment with pentoxifylline and PHE. Intracytoplasmic calcium concentration and lipid peroxidation were significantly (p < 0.05) affected by the incubation time rather than the treatments. Intracellular pH varied significantly (p < 0.01) in relation to either the incubation time or treatments. In particular, it showed a progressive increase throughout incubation with values in control group significantly higher than in myo-inositol, PHE, caffeine, pentoxifylline and CZA groups (7.37 ± 0.03 vs. 7.29 ± 0.03, 7.28 ± 0.03, 7.26 ± 0.03, 7.22 ± 0.03 and 7.00 ± 0.03, respectively; p < 0.01).; however, among treatments, CZA displayed the lowest values. Significant correlations were found between sperm kinetic and metabolic

  2. High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress.

    PubMed

    Yin, Lina; Mano, Jun'ichi; Tanaka, Kiyoshi; Wang, Shiwen; Zhang, Meijuan; Deng, Xiping; Zhang, Suiqi

    2017-10-01

    Lipid peroxide-derived reactive carbonyl species (RCS), generated downstream of reactive oxygen species (ROS), are critical damage-inducing species in plant aluminum (Al) toxicity. In mammals, RCS are scavenged primarily by glutathione (reduced form of glutathione, GSH), but in plant Al stress, contribution of GSH to RCS detoxification has not been evaluated. In this study, Arabidopsis plants overexpressing the gene AtGR1 (accession code At3g24170), encoding glutathione reductase (GR), were generated, and their performance under Al stress was examined. These transgenic plants (GR-OE plants) showed higher GSH levels and GSH/GSSG (oxidized form of GSH) ratio, and an improved Al tolerance as they suffered less inhibition of root growth than wild-type under Al stress. Exogenous application of 4-hydroxy-2-nonenal, an RCS responsible for Al toxicity in roots, markedly inhibited root growth in wild-type plants. GR-OE plants suffered significantly smaller inhibition, indicating that the enhanced GSH level increased the capacity of RCS detoxification. The generation of H 2 O 2 due to Al stress in GR-OE plants was lower by 26% than in wild-type. Levels of various RCS, such as malondialdehyde, butyraldehyde, phenylacetaldehyde, (E)-2-heptenal and n-octanal, were suppressed by more than 50%. These results indicate that high levels of GSH and GSH/GSSG ratio by GR overexpression contributed to the suppression of not only ROS, but also RCS. Thus, the maintenance of GSH level by overexpressing GR reinforces dual detoxification functions in plants and is an efficient approach to enhance Al tolerance. © 2017 Scandinavian Plant Physiology Society.

  3. Gas chromatography coupled with mass spectrometric characterization of Curcuma longa: Protection against pathogenic microbes and lipid peroxidation in rat's tissue homogenate.

    PubMed

    Hassan, Waseem; Gul, Shehnaz; Rehman, Shakilla; Kanwal, Farina; Afridi, Muhammad Siddique; Fazal, Hina; Shah, Ziarat; Rahman, Ataur; da Rocha, Joao B T

    2016-03-01

    The present study was designed to investigate the mineral content and antimicrobial activity of Curcuma Longa extracts and its essential oil. We also determined the lipid peroxidation inhibition activity of the ethanolic extract against sodium nitroprusside (SNP) induced thiobarbituric acid reactive species (TBARS) formation in rat's brain, kidney and liver homogenates. Major constituents of essential oil identified by gas chromatography and mass spectrometry (GCMS) were beta-sesquiphellandrene (38.69%), alpha-curcumene (18.44%) and p-mentha-1,4 (8)-diene (16.29%). Atomic absorption spectroscopy (AAS) was used for the quantitative estimation of Calcium (Ca), Magnesium (Mg), Iron (Fe), Copper (Cu), Zinc (Zn), Chromium (Cr), Nickel (Ni) and Manganese (Mn). The extract showed highest Mg (49.4 mg/l) concentration followed by Ca (35.42 mg/l) and Fe (1.27 mg/l). Our data revealed that the ethanolic extract of Curcuma Longa at 1-10 mg/kg significantly inhibited TBARS production in all tested homogenates. Crude extracts and essential oil were tested against three gram positive bacteria i.e. Bacillus subtilis, Bacillus atrophoeus, Staphylococcus aureus, six gram negative bacteria i.e. Escherichia coli, Klebsiella pneumonias, Salmonella typhi, Pseudomonas aeruginosa, Erwinia carotovora, Agrobacterium tumefaciens and one fungal strain namely Candida albicans by disc diffusion assay. Essential oil showed highest anti-microbial activity as compared to the crude extracts. The present study confirms the significant antimicrobial and antioxidant potential of the studied plant, which can be considered as a diet supplement for a variety of oxidative stress induced or infectious diseases.

  4. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb.

    PubMed

    Jiang, Hongqin; Wang, Zhenzhen; Ma, Yong; Qu, Yanghua; Lu, Xiaonan; Luo, Hailing

    2015-07-01

    Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p<0.05, linearly), total triglycerides (TG, p<0.05) and low-density lipoprotein cholesterol (LDL-C, p<0.05), as well as atherogenic index (p<0.001), whereas no change was observed in high-density lipoprotein cholesterol (p>0.05). The levels of TG (p<0.001) and LDL-C (p<0.001) were decreased with the feeding time extension, and both showed a linear trend (p<0.01). Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01). Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001), total antioxidant capacity (T-AOC, p<0.05), and activities of catalase (CAT, p<0.01), glutathione peroxidase (GSH-Px, p<0.05) and superoxide dismutase (SOD, p<0.05). The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment

  5. Silybin counteracts lipid excess and oxidative stress in cultured steatotic hepatic cells

    PubMed Central

    Vecchione, Giulia; Grasselli, Elena; Voci, Adriana; Baldini, Francesca; Grattagliano, Ignazio; Wang, David QH; Portincasa, Piero; Vergani, Laura

    2016-01-01

    AIM: To investigate in vitro the therapeutic effect and mechanisms of silybin in a cellular model of hepatic steatosis. METHODS: Rat hepatoma FaO cells were loaded with lipids by exposure to 0.75 mmol/L oleate/palmitate for 3 h to mimic liver steatosis. Then, the steatotic cells were incubated for 24 h with different concentrations (25 to 100 μmol/L) of silybin as phytosome complex with vitamin E. The effects of silybin on lipid accumulation and metabolism, and on indices of oxidative stress were evaluated by absorption and fluorescence microscopy, quantitative real-time PCR, Western blot, spectrophotometric and fluorimetric assays. RESULTS: Lipid-loading resulted in intracellular triglyceride (TG) accumulation inside lipid droplets, whose number and size increased. TG accumulation was mediated by increased levels of peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element-binding protein-1c (SREBP-1c). The lipid imbalance was associated with higher production of reactive oxygen species (ROS) resulting in increased lipid peroxidation, stimulation of catalase activity and activation of nuclear factor kappa-B (NF-κB). Incubation of steatotic cells with silybin 50 μmol/L significantly reduced TG accumulation likely by promoting lipid catabolism and by inhibiting lipogenic pathways, as suggested by the changes in carnitine palmitoyltransferase 1 (CPT-1), PPAR and SREBP-1c levels. The reduction in fat accumulation exerted by silybin in the steatotic cells was associated with the improvement of the oxidative imbalance caused by lipid excess as demonstrated by the reduction in ROS content, lipid peroxidation, catalase activity and NF-κB activation. CONCLUSION: We demonstrated the direct anti-steatotic and anti-oxidant effects of silybin in steatotic cells, thus elucidating at a cellular level the encouraging results demonstrated in clinical and animal studies. PMID:27468193

  6. Toxicity of the Herbicide Atrazine: Effects on Lipid Peroxidation and Activities of Antioxidant Enzymes in the Freshwater Fish Channa Punctatus (Bloch)

    PubMed Central

    Nwani, Christopher Ddidigwu; Lakra, Wazir Singh; Nagpure, Naresh Sahebrao; Kumar, Ravindra; Kushwaha, Basdeo; Srivastava, Satish Kumar

    2010-01-01

    The present study was undertaken to evaluate the toxicity and effects of a commercial formulation of the herbicide atrazine (Rasayanzine) on lipid peroxidation and antioxidant enzyme system in the freshwater air breathing fish Channa punctatus. The 12, 24, 48, 72 and 96 h LC50 of atrazine, calculated by probit analysis, were determined to be 77.091, 64.053, 49.100, 44.412 and 42.381 mg·L−1, respectively, in a semi static system with significant difference (p < 0.05) in LC10–90 values obtained for different times of exposure. In addition to concentration and time dependent decrease in mortality rate, stress signs in the form of behavioral changes were also observed in response to the test chemical. In fish exposed for 15 days to different sublethal concentrations of the herbicide (1/4 LC50 = ∼10.600 mg·L−1, 1/8 LC50 = ∼5.300 mg·L−1 and 1/10 LC50 = ∼4.238 mg·L−1) induction of oxidative stress in the liver was evidence by increased lipid peroxidation levels. The antioxidants superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) responded positively in a concentration dependent pattern, thus, suggesting the use of these antioxidants as potential biomarkers of toxicity associated with contaminations exposure in freshwater fishes. PMID:20948961

  7. Lens lipids.

    PubMed

    Zelenka, P S

    1984-11-01

    Lens cells can synthesize, degrade, and remodel lipids. Endogenous lipid synthesis, in conjunction with uptake of exogenous cholesterol and certain fatty acids, leads to the formation of a plasma membrane that is especially rich in sphingomyelin, cholesterol, and long-chain saturated fatty acids. As a result of this unusual lipid composition, lens membranes have very low fluidity, which is restricted even further by lipid-protein interactions. The composition and metabolism of membrane lipids may affect the formation of various types of cataracts. Diets rich in vegetable oils offer some protection against the formation of osmotic cataracts and the hereditary cataract of the RCS rat, although the mechanism of this effect is not clear. Vitamin E also protects against the formation of several types of cataract in vivo and in vitro, suggesting that lipid peroxidation may play a role in cataractogenesis. Certain drugs which inhibit lipid synthesis or degradation are cataractogenic, and a deficiency in cataractogenic, and a deficiency in phosphatidylserine is associated with a loss of Na+/K+ ATPase activity in several types of cataract. Human senile cataracts show a marked loss of protein-lipid interactions, although the overall lipid composition is normal. This loss of protein-lipid interactions may be related to oxidative damage to membrane-associated proteins. Interestingly, the decrease in the fluidity of lens membranes with age would counteract the formation of aqueous pores in the membrane, which can result from the oxidative cross-linking of membrane-associated proteins. Certain pathways of lipid metabolism seem to have regulatory functions. Among these are phosphatidylinositol turnover, phosphatidylethanolamine methylation, and arachidonic acid metabolism. All of these pathways function in the lens. Phosphatidylinositol turnover is correlated with the rate of lens epithelial cell division, while phosphatidylethanolamine methylation seems to be related to the

  8. Is sperm freezability related to the post-thaw lipid peroxidation and the formation of reactive oxygen species in boars?

    PubMed

    Gómez-Fernández, J; Gómez-Izquierdo, E; Tomás, C; Mocé, E; de Mercado, E

    2013-04-01

    The aim of the present study was to determine whether the levels of reactive oxygen species (ROS) substances production and the levels of lipid peroxidation of the sperm membrane were related to the quality that the ejaculates exhibited after cryopreservation in boars. Ejaculates from 42 healthy boars were used in this study and they were cryopreserved with the lactose-egg yolk extender (LEY). Several sperm quality parameters were assessed by flow cytometry in samples incubated for 30 and 150 min at 37 °C after thawing: the percentage of sperm with intact plasma membrane (SIPM), intracellular reactive oxygen substances production through mean of DCF fluorescence intensity of total sperm (mean-DCF) and the percentage of viable and non-viable sperm containing oxidized BODIPY (VSOB and NVSOB). In addition, the percentages of total motile (TMS) and progressively motile sperm (PMS) were assessed at the same incubation times with a computer-assisted sperm analysis system. The classification of the ejaculates into good or bad freezers was performed through hierarchical cluster analysis from SIPM and TMS at 150 min post-thawing. The ejaculates of those males classified as good freezers exhibited higher (p < 0.05) SPIM, TMS and PMS than the bad freezers, although both groups presented similar (p > 0.05) VSOB, NVSOB and mean-DCF. Therefore, these results show that lipid peroxidation and the amount of reactive oxygen substances in the sperm after cryopreservation are similar between boars classified as good or bad freezers. © 2012 Blackwell Verlag GmbH.

  9. Influence of ageing process on body composition of antioxidant and lipid peroxidation among healthy individuals in South West Nigeria.

    PubMed

    Ogunro, P S; Ogungbamigbe, T O

    2013-03-01

    To evaluate the effect of ageing on the level of antioxidants and lipid peroxidation in healthy individual of various age groups. A total number of 162 healthy males and females volunteer between the ages of 18-80 years were divided into three groups. These volunteers were divided into group i(18-30 yr), group ii (31-60 yrs) and group iii (60-80 yr). Plasma concentration of total bilirubin, uric acid, ascorbic acid, a-tocopherol, retinol, total antioxidant status (TAS), malondialdehyde (MDA), glutathione (GSH) and ceruloplasmin measured. Erythrocyte antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione and peroxidase (GSHPx) were measured using standard methods. Erythrocyte antioxidant enzymes (GSH-Px and SOD) activities and GSH level were significantly reduced among group iii (p<0.01) and group ii (p<0.05) age group subjects compared to the younger age group i. Conversely, MDA showed a significant increase in group iii (p<0.01) and group ii (p<0.01) compared to younger age group i. CAT activity and TAS level were reduced significantly (p<0.05) in both groups iii and ii compared to younger age group i. Ascorbic acid, a-tocopherol and retinol levels were significantly reduced among group iii (p<0.05) compared to group i. Ageing was associated with increased lipid peroxidation and lower antioxidant defenses. Changes that occur during ageing cannot be avoided but may be delayed and controlled to some extent. To counter these changes, dietary supplementation of a variety of antioxidants might be beneficial.

  10. Influence of calcium on glucose biosensor response and on hydrogen peroxide detection.

    PubMed

    Labat-Allietta, N; Thévenot, D R

    1998-01-01

    Of small species capable of reaching a platinum working electrode from biological samples, calcium cations have been found to inhibit significantly glucose biosensor responses. The sensitivities to glucose of sensors immersed in carbonate buffer saline solutions decreased when 0.5 mM calcium chloride was added. The degree of inhibition was proportional to the glucose response in the absence of calcium (0-17% of the normalized current). Likewise, sensor sensitivities to hydrogen peroxide decreased, in the 5-90% range, in the presence of 0.5 mM calcium. Bare Pt-lr wires show a reversible inhibition of hydrogen peroxide sensitivity. This reversible inhibition is directly related to the decrease of hydrogen peroxide oxidation rate at the platinum anode: this has been evidenced, using rotating disk electrodes, by plotting Koutecky-Levich plots. Such inhibition has been found both for free and chelated calcium cations at levels below 1 mM. Several hypotheses for possible reactions between platinum, hydrogen peroxide and calcium are discussed.

  11. The effect of melanin-free extract from Sepia esculenta ink on lipid peroxidation, protein oxidation and water-holding capacity of tilapia fillet during cold storage.

    PubMed

    Duan, Zhen-Hua; Liu, Hua-Zhong; Luo, Ping; Gu, Yi-Peng; Li, Yan-Qun

    2018-03-14

    Preservative effect of melanin-free extract of Sepia esculenta ink (MFESI) on Sparus latus fillet has been verified in our previous work. This study aims to further approach the mechanism of MFESI for extending the shelf-life of fish fillet during cold storage. Tilapia fillets were treated with different dosage of MFESI (0, 15, 25 and 35 mg/ml) and packed with preservative film for succedent cold-storage at 4 °C for scheduled time. Contents of total volatile basic nitrogen and sulfydryl and carbanyl groups were measured for evaluating protein oxidation. Malondialdehyde contents were measured for estimating lipid peroxidation and loss of water was used to determine water-holding capacity of fillet. The data indicated that MFESI not only possessed certain degree of antioxidant capacity in vitro, also lengthened shelf-life of tilapia fillet in cold-storage condition. Apart from 15 mg/ml, both 25 and 35 mg/ml of MFESI obviously prevented lipid and protein from oxidation and reduced loss of water from tilapia fillets, and the latter was more effective than the former. MFESI can repress lipid peroxidation and protein oxidation and reduce water loss, maintain the tilapia fillets quality and, thus, it could be an effective and natural preservative for extending the shelf-life of tilapia fillets during cold storage.

  12. Antioxidant lactobacilli could protect gingival fibroblasts against hydrogen peroxide: a preliminary in vitro study.

    PubMed

    Mendi, Ayşegül; Aslım, Belma

    2014-12-01

    Oxidative stress and tissue destruction are at the heart of periodontal diseases. The dental research area is geared toward the prevention of free radicals by nutrient antioxidants. Lactic acid bacteria (LAB) have recently attracted attention in alternative dental therapies. We aimed at highlighting the antioxidative property of Lactobacilli and Bifidobacterium strains and at determining their protective effect on gingival fibroblasts (GFs). Two Lactobacilli and 2 Bifidobacterium strains were screened for their exopolysaccharide (EPSs) production. Antioxidative assays were conducted by spectrophotometer analysis. Resistance to different concentrations of hydrogen peroxide (H2O2) was determined by the serial dilution technique. The protective effect of strains on GFs on hydrogen peroxide exposure was also examined by a new trypan blue exclusion assay method. Bifidobacterium breve A28 showed the highest EPS production (122 mg/l) and remarkable antioxidant activity, which were demonstrated by its ability to scavenge 72% α,α-diphenyl-1-picrylhydrazyl free radical and chelate 88% of iron ion, respectively. Inhibition of lipid peroxidation was determined as 71% for the A28 strain. We suggest that LAB with antioxidative activity could be a good natural therapy agent for periodontal disorders.

  13. Headspace gas chromatography of volatile lipid peroxidation products from human red blood cell membranes.

    PubMed

    Frankel, E N; Tappel, A L

    1991-06-01

    An improved headspace capillary gas chromatographic (GC) method was developed to measure the oxidative susceptibility of human red blood cell (RBC) membranes. This method analyzed volatile peroxidation products of both n-6 (hexanal and pentane) and n-3 (propanal) polyunsaturated fatty acids. Oxidative susceptibility tests were standardized by incubating in a sealed 10-mL headspace bottle 0.25 or 1 mL of human RBC membrane in 40 mM phosphate buffer for 1 hr at 37 degrees C with a mixture of Fe++, ascorbic acid and H2O2. Sodium dodecyl sulfate increased significantly the amount of hexanal measured by headspace GC. By this standard headspace method, in one series of red blood cell membranes (RBCM) samples a four-fold variation in oxidative susceptibility was observed in RBCM from blood freshly drawn from six healthy subjects. In another series of RBCM samples a sixteen-fold variation in oxidative susceptibility was noted in frozen RBCM from blood freshly drawn from five healthy subjects. Correlation between hexanal formation and polyunsaturated fatty acids (PUFA) depletion provided good evidence that under these standard conditions hexanal is exclusively derived from the oxidation of arachidonic acid. Hydroperoxides of arachidonic acid are more readily formed and decomposed than those of linoleic acid in the presence of Fe++, ascorbic acid and H2O2 to produce hexanal as the main product that can be readily analyzed by headspace GC. This method may provide a useful tool to study susceptibility toward lipid peroxidative damage in human RBC membranes.

  14. Antioxidant protective effect of flavonoids on linoleic acid peroxidation induced by copper(II)/ascorbic acid system.

    PubMed

    Beker, Bilge Yıldoğan; Bakır, Temelkan; Sönmezoğlu, Inci; Imer, Filiz; Apak, Reşat

    2011-11-01

    Antioxidants are compounds that can delay or inhibit lipid oxidation. The peroxidation of linoleic acid (LA) in the absence and presence of Cu(II) ion-ascorbate combinations was investigated in aerated and incubated emulsions at 37°C and pH 7. LA peroxidation induced by copper(II)-ascorbic acid system followed first order kinetics with respect to hydroperoxides concentration. The extent of copper-initiated peroxide production in a LA system assayed by ferric thiocyanate method was used to determine possible antioxidant and prooxidant activities of the added flavonoids. The effects of three different flavonoids of similar structure, i.e. quercetin (QR), morin (MR) and catechin (CT), as potential antioxidant protectors were studied in the selected peroxidation system. The inhibitive order of flavonoids in the protection of LA peroxidation was: morin>catechin≥quercetin, i.e. agreeing with that of formal reduction potentials versus NHE at pH 7, i.e. 0.60, 0.57 and 0.33V for MR, CT, and QR, respectively. Morin showed antioxidant effect at all concentrations whereas catechin and quercetin showed both antioxidant and prooxidant effects depending on their concentrations. The structural requirements for antioxidant activity in flavonoids interestingly coincide with those for Cu(II)-induced prooxidant activity, because as the reducing power of a flavonoid increases, Cu(II)-Cu(I) reduction is facilitated that may end up with the production of reactive species. The findings of this study were evaluated in the light of structure-activity relationships of flavonoids, and the results are believed to be useful to better understand the actual conditions where flavonoids may act as prooxidants in the preservation of heterogeneous food samples containing traces of transition metal ions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Positron emission tomography-computed tomography and 4-hydroxynonenal-histidine immunohistochemistry reveal differential onset of lipid peroxidation in primary lung cancer and in pulmonary metastasis of remote malignancies.

    PubMed

    Živković, Nevenka Piskač; Petrovečki, Mladen; Lončarić, Čedna Tomasović; Nikolić, Igor; Waeg, Georg; Jaganjac, Morana; Žarković, Kamelija; Žarković, Neven

    2017-04-01

    The Aim of the study was to reveal if PET-CT analysis of primary and of secondary lung cancer could be related to the onset of lipid peroxidation in cancer and in surrounding non-malignant lung tissue. Nineteen patients with primary lung cancer and seventeen patients with pulmonary metastasis were involved in the study. Their lungs were analyzed by PET-CT scanning before radical surgical removal of the cancer. Specific immunohistochemistry for the major bioactive marker of lipid peroxidation, 4-hydroxynonenal (HNE), was done for the malignant and surrounding non-malignant lung tissue using genuine monoclonal antibody specific for the HNE-histidine adducts. Both the intensity of the PET-CT analysis and the HNE-immunohistochemistry were in correlation with the size of the tumors analyzed, while primary lung carcinomas were larger than the metastatic tumors. The intensity of the HNE-immunohistochemistry in the surrounding lung tissue was more pronounced in the metastatic than in the primary tumors, but it was negatively correlated with the cancer volume determined by PET-CT. The appearance of HNE was more pronounced in non-malignant surrounding tissue than in cancer or stromal cells, both in case of primary and metastatic tumors. Both PET-CT and HNE-immunohistochemistry reflect the size of the malignant tissue. However, lipid peroxidation of non-malignant lung tissue in the vicinity of cancer is more pronounced in metastatic than in primary malignancies and might represent the mechanism of defense against cancer, as was recently revealed also in case of human liver cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. [Dipeptide nootropic agent GVS-111 prevents accumulation of the lipid peroxidation products during immobilization].

    PubMed

    Lysenko, A V; Uskova, N I; Ostrovskaia, R U; Gudasheva, T A; Voronina, T A

    1997-01-01

    Immobilization of rats in a narrow plastic chamber for 24 h caused a sharp increase in the level of diene conjugates and the content of schiff bases in the synaptosomes of the brain cortex as well as accumulation of extraerythrocytic hemoglobin in blood serum. The dipeptide nootropic agent GVS-111 (ethyl ether of phenylacetylprolylglycine), when administered 15 and particularly 60 min before immobilization reduced the accumulation of these products of lipid peroxidation in the brain and blood. GVS-111 demonstrated these signs of its antioxidant effect after a single i.p. injection in doses of 0.12 and 0.5 mg/kg. Pyracetam produced a similar effect on the listed parameters in injection in a dose of 300 mg/kg for three successive days. The protective effect of the new pyracetam dipeptide analog GVS-111 in relation to activation of free-radical processes induced by immobilization is additional proof of the antistress action of this dipeptide.

  17. Inhibition of residual n-hexane in anaerobic digestion of lipid-extracted microalgal wastes and microbial community shift.

    PubMed

    Yun, Yeo-Myeong; Shin, Hang-Sik; Lee, Chang-Kyu; Oh, You-Kwan; Kim, Hyun-Woo

    2016-04-01

    Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (∼10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.

  18. Human Umbilical Cord Wharton's Jelly Stem Cell Conditioned Medium Induces Tumoricidal Effects on Lymphoma Cells Through Hydrogen Peroxide Mediation.

    PubMed

    Lin, Hao Daniel; Fong, Chui-Yee; Biswas, Arijit; Choolani, Mahesh; Bongso, Ariff

    2016-09-01

    Several groups have reported that human umbilical cord Wharton's jelly stem cells (hWJSCs) possess unique tumoricidal properties against many cancers. However, the exact mechanisms as to how hWJSCs inhibit tumor growth are not known. Recent evidence suggests that exposure of cancer cells to high hydrogen peroxide (H2 O2 ) levels from H2 O2 -releasing drugs causes their death. We therefore explored whether the tumoricidal effect of hWJSCs on lymphoma cells was mediated via H2 O2 . We first exposed lymphoma cells to six different molecular weight cut-off (MWCO) concentrates of hWJSC-conditioned medium (hWJSC-CM) (3, 5, 10, 30, 50, 100 kDa) for 48 h. Since, the 3 kDa-MWCO concentrate showed the greatest cell inhibition we then investigated whether the tumoricidal effect of the specific 3 kDa-MWCO concentrate on two different lymphoma cell lines (Ramos and Toledo) was mediated via accumulation of H2 O2 . We used a battery of assays (MTT, propidium iodide, mitochondria membrane potential, apoptosis, cell cycle, oxidative stress enzymes, hydrogen peroxide, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation) to test this mechanism. The hWJSC-CM-3 kDa MWCO concentrate significantly decreased cell viability and mitochondrial membrane potential and increased cell death and apoptosis in both lymphoma cell lines. There were significant increases in superoxide dismutase with concomitant decreases in glutathione peroxidase, catalase, and thioredoxin peroxidase activities. H2 O2 levels, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation were also significantly increased in both lymphoma cell lines. The results suggested that the hWJSC-CM-3 kDa MWCO concentrate regulates cellular H2 O2 leading to a tumoricidal effect and may thus be a promising anti-lymphoma agent. J. Cell. Biochem. 117: 2045-2055, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model.

    PubMed

    Zemmouri, Hanene; Sekiou, Omar; Ammar, Sonda; El Feki, Abdelfattah; Bouaziz, Mohamed; Messarah, Mahfoud; Boumendjel, Amel

    2017-12-01

    To find bioactive medicinal herbs exerting anti-asthmatic activity, we investigated the effect of an aqueous extract of Urtica dioica L. (Urticaceae) leaves (UD), the closest extract to the Algerian traditional use. In this study, we investigated the in vivo anti-asthmatic and antioxidant activities of nettle extract. Adult male Wistar rats were divided into four groups: Group I: negative control; group II: Ovalbumin sensitized/challenged rats (positive control); group III: received UD extract (1.5 g/kg/day) orally along the experimental protocol; group IV: received UD extract (1.5 g/kg/day) orally along the experimental protocol and sensitized/challenged with ovalbumin. After 25 days, blood and tissue samples were collected for haematological and histopathological analysis, respectively. The oxidative stress parameters were evaluated in the lungs, liver and erythrocytes. Then, correlations between markers of airway inflammation and markers of oxidative stress were explored. UD extract significantly (p < 0.01) inhibited eosinophilia increases in BALF (-60%) and the levels of leucocytes (-32.75%) and lymphocytes (-29.22%) in serum, and effectively suppressed inflammatory cells recruitment in the asthmatic rat model. Besides, the lipid peroxidation generated by allergen administration was significantly (p < 0.05) diminished by UD treatment in lung tissue (-48.58%). The nettle extract was also investigated for the total phenolic content (30.79 ± 0.96 mg gallic acid/g dry extract) and shows DPPH radical scavenging activity with 152.34 ± 0.37 μg/mL IC 50 value. The results confirmed that UD administration might be responsible for the protective effects of this extract against airway inflammation.

  20. Pomegranate peel extract decreases small intestine lipid peroxidation by enhancing activities of major antioxidant enzymes.

    PubMed

    Al-Gubory, Kaïs H; Blachier, François; Faure, Patrice; Garrel, Catherine

    2016-08-01

    Pomegranate peel extract (PPE) contains several compounds with antioxidative properties. PPE added to foods may interact with endogenous antioxidants and promote health. However, little is known about the biochemical mechanisms by which PPE exerts their actions on tissues of biological systems in vivo. The purpose of this study was to determine the effects of PPE on activities of antioxidant enzymes. Mice were used to investigate the effects of PPE on plasma levels of malondialdehyde (MDA), tissue MDA content and activities of superoxide dismutase 1 (SOD1), SOD2 and glutathione peroxidase (GPX) in the small intestine, liver and skeletal muscle - different tissues involved in the digestion, absorption and metabolism of dietary nutrients. Control mice were fed a standard diet, whereas treated mice were fed for 40 days with the standard diet containing 5% or 10% PPE. Mice fed the 10% PPE diet exhibited lower plasma MDA concentrations, reduced content of MDA in the small intestine and liver and higher levels of SOD1 and GPX activities in the small intestine compared to mice fed the control diet. These findings demonstrate that intake of PPE in diet attenuates small intestine lipid peroxidation and strengthens the first line of small intestine antioxidant defense by enhancing enzymatic antioxidative pathways. PPE is worthy of further study as a therapeutic approach to prevent peroxidative stress-induced gut pathogenesis. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells.

    PubMed

    Montanari, Ricardo M; Barbosa, Luiz C A; Demuner, Antonio J; Silva, Cleber J; Andrade, Nelio J; Ismail, Fyaz M D; Barbosa, Maria C A

    2012-08-14

    The chemical composition of the volatile oils from five Anacardiaceae species and their activities against Gram positive and negative bacteria were assessed. The peroxidative damage within bacterial cell membranes was determined through the breakdown product malondialdehyde (MDA). The major constituents in Anacardium humile leaves oil were (E)-caryophyllene (31.0%) and α-pinene (22.0%), and in Anacardium occidentale oil they were (E)-caryophyllene (15.4%) and germacrene-D (11.5%). Volatile oil from Astronium fraxinifolium leaves were dominated by (E)-β-ocimene (44.1%) and α-terpinolene (15.2%), whilst the oil from Myracrodruon urundeuva contained an abundance of δ-3-carene (78.8%). However, Schinus terebinthifolius leaves oil collected in March and July presented different chemical compositions. The oils from all species, except the one from A. occidentale, exhibited varying levels of antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli. Oil extracted in July from S. terebinthifolius was more active against all bacterial strains than the corresponding oil extracted in March. The high antibacterial activity of the M. urundeuva oil could be ascribed to its high δ-3-carene content. The amounts of MDA generated within bacterial cells indicate that the volatile oils induce lipid peroxidation. The results suggest that one putative mechanism of antibacterial action of these volatile oils is pro-oxidant damage within bacterial cell membrane explaining in part their preservative properties.

  2. Overexpression of uncoupling protein-2 in cancer: metabolic and heat changes, inhibition and effects on drug resistance.

    PubMed

    Pitt, Michael A

    2015-12-01

    This paper deals with the role of uncoupling protein-2 (UCP2) in cancer. UCP2 is overexpressed in cancer. This overexpression results in uncoupling of mitochondrial oxidative phosphorylation and a shift in production of ATP from mitochondrial oxidative phosphorylation to cytosolic aerobic glycolysis. UCP2 overexpression results in the following changes. Mitochondrial membrane potential (Δψ(m)) is decreased and lactate accumulates. There is a diminished production of reactive oxygen species and apoptosis is inhibited post-exposure to chemotherapeutic agents. There is an increase in heat and entropy production and a departure from the stationary state of non-cancerous tissue. Uncoupling of oxidative phosphorylation may also be caused by protonophores and non-steroidal anti-inflammatory drugs. UCP2 requires activation by superoxide and lipid peroxidation derivatives. As vitamin E inhibits lipid peroxidation, it might be expected that vitamin E would act as a chemotherapeutic agent against cancer. A recent study has shown that vitamin E and another anti-oxidant accelerate cancer progression. UCP2 is inhibited by genipin, chromane compounds and short interfering RNAs (siRNA). Genipin, chromanes and siRNA are taken up by both cancer and non-cancerous cells. Targeting the uptake of these agents by cancer cells by the enhanced permeability and retention effect is considered. Inhibition of UCP2 enhances the action of several anti-cancer agents.

  3. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma.

    PubMed

    Miess, Heike; Dankworth, Beatrice; Gouw, Arvin M; Rosenfeldt, Mathias; Schmitz, Werner; Jiang, Ming; Saunders, Becky; Howell, Michael; Downward, Julian; Felsher, Dean W; Peck, Barrie; Schulze, Almut

    2018-06-05

    Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Here we investigated metabolic dependencies in a panel of ccRCC cell lines using nutrient depletion, functional RNAi screening and inhibitor treatment. We found that ccRCC cells are highly sensitive to the depletion of glutamine or cystine, two amino acids required for glutathione (GSH) synthesis. Moreover, silencing of enzymes of the GSH biosynthesis pathway or glutathione peroxidases, which depend on GSH for the removal of cellular hydroperoxides, selectively reduced viability of ccRCC cells but did not affect the growth of non-malignant renal epithelial cells. Inhibition of GSH synthesis triggered ferroptosis, an iron-dependent form of cell death associated with enhanced lipid peroxidation. VHL is a major tumour suppressor in ccRCC and loss of VHL leads to stabilisation of hypoxia inducible factors HIF-1α and HIF-2α. Restoration of functional VHL via exogenous expression of pVHL reverted ccRCC cells to an oxidative metabolism and rendered them insensitive to the induction of ferroptosis. VHL reconstituted cells also exhibited reduced lipid storage and higher expression of genes associated with oxidiative phosphorylation and fatty acid metabolism. Importantly, inhibition of β-oxidation or mitochondrial ATP-synthesis restored ferroptosis sensitivity in VHL reconstituted cells. We also found that inhibition of GSH synthesis blocked tumour growth in a MYC-dependent mouse model of renal cancer. Together, our data suggest that reduced fatty acid metabolism due to inhibition of β-oxidation renders renal cancer cells highly dependent on the GSH/GPX pathway to prevent lipid peroxidation and ferroptotic cell death.

  4. Action of UV-A and blue light on enzymes activity and accumulation of lipid peroxidation products in attached and detached frog retinas

    NASA Astrophysics Data System (ADS)

    Lapina, Victoria A.; Doutsov, Alexander E.

    1994-07-01

    The effect of the UV-A and blue light on the accumulation of lipid peroxidation products and activities of succinate dehydrogenase and superoxide dismutase in the retina was examined in eye cup model of dark and light adapted frogs R. temporaria. Retinas were exposed to UV-A radiation (8 mW/cm2) and blue light (10 to 150 mW/cm2) for periods from 5 min to 1 hr. We have measured TBA-active products both in the retina homogenates and in the reaction media. Enzyme activities was measured in the retina homogenates only. The measurements revealed a significant increase in the endogenous and exogenous forms of lipid peroxidation products in the retina of dark adapted frog (1.6+/- 0.4; 1.4+/- 0.3 nmole TBA-active products per mg protein, respectively) compared to light adapted (0.85+/- 0.16; 0.32+/- 0.06 nmole TBA-active products per mg protein, respectively). In the same conditions succinate dehydrogenase activity was decline more than 50% but superoxide dismutase activity didn't decrease. Disorganized inner and outer segments were observed after 40 min exposures. No light microscopic changes were detected after 5 min exposures. Light damage was significantly higher in the retina of dark adapted frog. The results indicate that the retina from eye cup of dark adapted frog is more susceptible to UV-A and blue light damages.

  5. Intercellular transfer of pathogenic α-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal.

    PubMed

    Zhang, Shi; Eitan, Erez; Wu, Tsung-Yu; Mattson, Mark P

    2018-01-01

    Parkinson's disease (PD) is characterized by accumulations of toxic α-synuclein aggregates in vulnerable neuronal populations in the brainstem, midbrain, and cerebral cortex. Recent findings suggest that α-synuclein pathology can be propagated transneuronally, but the underlying molecular mechanisms are unknown. Advances in the genetics of rare early-onset familial PD indicate that increased production and/or reduced autophagic clearance of α-synuclein can cause PD. The cause of the most common late-onset PD is unclear, but may involve metabolic compromise and oxidative stress upstream of α-synuclein accumulation. As evidence, the lipid peroxidation product 4-hydroxynonenal (HNE) is elevated in the brain during normal aging and moreso in brain regions afflicted with α-synuclein pathology. Here, we report that HNE increases aggregation of endogenous α-synuclein in primary neurons and triggers the secretion of extracellular vesicles (EVs) containing cytotoxic oligomeric α-synuclein species. EVs released from HNE-treated neurons are internalized by healthy neurons which as a consequence degenerate. Levels of endogenously generated HNE are elevated in cultured cells overexpressing human α-synuclein, and EVs released from those cells are toxic to neurons. The EV-associated α-synuclein is located both inside the vesicles and on their surface, where it plays a role in EV internalization by neurons. On internalization, EVs harboring pathogenic α-synuclein are transported both anterogradely and retrogradely within axons. Focal injection of EVs containing α-synuclein into the striatum of wild-type mice results in spread of synuclein pathology to anatomically connected brain regions. Our findings suggest a scenario for late-onset PD in which lipid peroxidation promotes intracellular accumulation and then extrusion of EVs containing toxic α-synuclein species; the EVs are then internalized by adjacent neurons, so propagating the neurodegenerative process. Published

  6. Inhibition of eicosanoid signaling leads to increased lipid peroxidation in a host/parasitoid system

    USDA-ARS?s Scientific Manuscript database

    We posed the hypothesis that eicosanoids act in reduction of oxidative stress in insects. Here we report that inhibiting eicosanoid biosynthesis throughout the larval, pupal and adult life led to major alterations on some oxidative and antioxidative parameters of the greater wax moth, Galleria mello...

  7. Effect of oil source and peroxidation status on broiler performance and oxidative stress

    USDA-ARS?s Scientific Manuscript database

    Oil source has been shown to affect broiler performance and oxidative status. Lipid peroxidation may also affect animal performance and oxidative status through the generation and degradation of peroxidation compounds which differ according to oil source and temperature and length of heating. The ob...

  8. Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress.

    PubMed

    Abdelkhalek, Nevien K M; Ghazy, Emad W; Abdel-Daim, Mohamed M

    2015-02-01

    Spirulina platensis (SP) is one of the most commonly used dietary supplements in human and many animal species, including fish. Recently, it has gained more attention in fish not only for its growth-promoting and immunomodulatory effects but also for its antioxidant potential. The present study was conducted to investigate the protective role of two different dietary levels of SP on freshwater Nile tilapia; Oreochromis niloticus exposed to subacute deltamethrin (DLM) intoxication. Spirulina was supplemented at levels of 0.5 and 1 % in the diet along with DLM at a concentration of 1.46 μg/l for 28 days. Serum biochemical parameters, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein, albumin, cholesterol, urea, uric acid and creatinine, were estimated. In addition, the level of malondialdehyde (MDA) was analysed as a lipid peroxidation marker. Reduced glutathione (GSH) content and glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities were analysed as antioxidant biomarkers in liver, kidney and gills. The results revealed that DLM intoxication increased serum AST, ALT, ALP, cholesterol, urea, uric acid, creatinine and tissue MDA, while decreased serum total protein and albumin as well as tissue GSH level and GSH-Px, SOD and CAT activities. SP supplementation at the two tested levels enhanced all altered serum biochemical parameters as well as tissue lipid peroxidation and antioxidant biomarkers. Therefore, it could be concluded that SP administration could minimize DLM-induced toxic effects by its free radical scavenging and potent antioxidant activity.

  9. The metabolism of carbohydrates and lipid peroxidation in lead-exposed workers.

    PubMed

    Kasperczyk, Aleksandra; Dobrakowski, Michal; Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa

    2015-12-01

    The present study was undertaken to estimate the effect of occupational exposure to lead on the blood concentration of glucose and several enzymes involved in glycolysis, the citric acid cycle, and the pentose phosphate pathway. To estimate the degree of lipid peroxidation, the concentrations of conjugated dienes were determined. The examined group included 145 healthy male employees of lead-zinc works. Taking into account the mean blood lead levels, the examined group was divided into two subgroups. The control group was composed of 36 healthy male administrative workers. The markers of lead exposure were significantly elevated in both subgroups when compared with the controls. There were no significant changes in fasting glucose concentration and fructose-1,6-bisphosphate aldolase activity in the study population. The concentration of conjugated dienes was significantly higher in both subgroups, whereas the activity of malate dehydrogenase was significantly higher only in the group with higher exposure. The activities of lactate dehydrogenase and sorbitol dehydrogenase were significantly decreased in the examined subgroups. The activity of glucose-6-phosphate dehydrogenase decreased significantly in the group with higher exposure and could be the cause of the elevated concentrations of conjugated dienes. It is possible to conclude that lead interferes with carbohydrate metabolism, but compensatory mechanisms seem to be efficient, as glucose homeostasis in lead-exposed workers was not disturbed. © The Author(s) 2013.

  10. Treadmill exercise prevents diabetes-induced increases in lipid peroxidation and decreases in Cu,Zn-superoxide dismutase levels in the hippocampus of Zucker diabetic fatty rats.

    PubMed

    Kim, Jong Whi; Chae, Junghyun; Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Choi, Jung Hoon; Jung, Hyo Young; Song, Wook; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung

    2015-01-01

    In the present study, we investigated the effects of treadmill exercise on lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) levels in the hippocampus of Zucker diabetic fatty (ZDF) rats and lean control rats (ZLC) during the onset of diabetes. At 7 weeks of age, ZLC and ZDF rats were either placed on a stationary treadmill or made to run for 1 h/day for 5 consecutive days at 16~22 m/min for 5 weeks. At 12 weeks of age, the ZDF rats had significantly higher blood glucose levels and body weight than the ZLC rats. In addition, malondialdehyde (MDA) levels in the hippocampus of the ZDF rats were significantly higher than those of the ZLC rats whereas SOD1 levels in the hippocampus of the ZDF rats were moderately decreased. Notably, treadmill exercise prevented the increase of blood glucose levels in ZDF rats. In addition, treadmill exercise significantly ameliorated changes in MDA and SOD1 levels in the hippocampus although SOD activity was not altered. These findings suggest that diabetes increases lipid peroxidation and decreases SOD1 levels, and treadmill exercise can mitigate diabetes-induced oxidative damage in the hippocampus.

  11. Electrophilic aldehyde products of lipid peroxidation selectively adduct to heat shock protein 90 and arylsulfatase A in stallion spermatozoa.

    PubMed

    Hall, Sally E; Aitken, R John; Nixon, Brett; Smith, Nathan D; Gibb, Zamira

    2017-01-01

    Oxidative stress is a major determinant of mammalian sperm function stimulating lipid peroxidation cascades that culminate in the generation of potentially cytotoxic aldehydes. The aim of this study was to assess the impact of such aldehydes on the functionality of stallion spermatozoa. The impact of exposure to exogenous acrolein (ACR) and 4-hydroxynonenal (4HNE) was manifested in a highly significant dose- and time-dependent increase in mitochondrial reactive oxygen species (ROS), total cellular ROS, a decrease in sperm motility, and a time-dependent increase in lipid peroxidation. Notably, low doses of ACR and 4HNE also caused a significant decrease in zona binding. In contrast, exogenous malondialdehyde, a commonly used marker of oxidative stress, had little impact on the various sperm parameters assessed. In accounting for the negative physiological impact of ACR and 4HNE, it was noted that both aldehydes readily adducted to sperm proteins located predominantly within the head, proximal centriole, and tail. The detoxifying activity of mitochondrial aldehyde dehydrogenase 2 appeared responsible for a lack of adduction in the midpiece; however, this activity was overwhelmed by 24 h of electrophilic aldehyde exposure. Sequencing of the dominant proteins targeted for ACR and 4HNE covalent modification identified heat shock protein 90 alpha (cytosolic) class A member 1 and arylsulfatase A, respectively. These collective findings may prove useful in the identification of diagnostic biomarkers of stallion fertility and resolving the mechanistic basis of sperm dysfunction in this species. © The Authors 2016. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please journals.permissions@oup.com.

  12. [Correcting influence of vitamin E short chain derivatives on lipid peroxidation, liver cell membrane, and chromatin structure when rats are exposed to embichin].

    PubMed

    Kovalenko, V M; Byshovets', T F; Hubs'kyĭ, Iu I; Levyts'kyĭ, Ie L; Shaiakhmetova, H M; Marchenko, O M; Voloshyna, O S; Saĭfetdinova, H A; Okhrimenko, V O; Donchenko, H V

    2000-01-01

    Embikhin causes activation of LPO processes in endoplasmic reticulum and in nuclear chromatine fractions of rat liver cells. The latter is accompanied by the impairment of repressive and active nuclear chromatine fractions structure. Derivate of vitamin E in these conditions renders correcting action on parameters of lipid peroxidation in the investigated subcellular structures, testifying its positive influence on the cell heredity apparatus state. The normalizing action of tocopherol derivative on cytochromes P450 and b5 levels is shown.

  13. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria.

    PubMed

    Spreafico, Adriano; Millucci, Lia; Ghezzi, Lorenzo; Geminiani, Michela; Braconi, Daniela; Amato, Loredana; Chellini, Federico; Frediani, Bruno; Moretti, Elena; Collodel, Giulia; Bernardini, Giulia; Santucci, Annalisa

    2013-09-01

    Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. We adopted a human chondrocytic cell AKU model to evaluate the anti-amyloid capacity of a set of antioxidants that had previously been shown to counteract ochronosis in a serum AKU model. Amyloid presence was evaluated by Congo red staining. Homogentisic acid-induced SAA production and pro-inflammatory cytokine release (overexpressed in AKU patients) were evaluated by ELISA and multiplex systems, respectively. Lipid peroxidation was evaluated by means of a fluorescence-based assay. Our AKU model allowed us to prove the efficacy of ascorbic acid combined with N-acetylcysteine, taurine, phytic acid and lipoic acid in significantly inhibiting SAA production, pro-inflammatory cytokine release and membrane lipid peroxidation. All the tested antioxidant compounds were able to reduce the production of amyloid and may be the basis for establishing new therapies for AKU amyloidosis.

  14. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria

    PubMed Central

    Spreafico, Adriano; Millucci, Lia; Ghezzi, Lorenzo; Geminiani, Michela; Braconi, Daniela; Amato, Loredana; Chellini, Federico; Frediani, Bruno; Moretti, Elena; Collodel, Giulia; Bernardini, Giulia

    2013-01-01

    Objective. Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. Methods. We adopted a human chondrocytic cell AKU model to evaluate the anti-amyloid capacity of a set of antioxidants that had previously been shown to counteract ochronosis in a serum AKU model. Amyloid presence was evaluated by Congo red staining. Homogentisic acid-induced SAA production and pro-inflammatory cytokine release (overexpressed in AKU patients) were evaluated by ELISA and multiplex systems, respectively. Lipid peroxidation was evaluated by means of a fluorescence-based assay. Results. Our AKU model allowed us to prove the efficacy of ascorbic acid combined with N-acetylcysteine, taurine, phytic acid and lipoic acid in significantly inhibiting SAA production, pro-inflammatory cytokine release and membrane lipid peroxidation. Conclusion. All the tested antioxidant compounds were able to reduce the production of amyloid and may be the basis for establishing new therapies for AKU amyloidosis. PMID:23704321

  15. Age-related effects of heat stress on protective enzymes for peroxides and microsomal monooxygenase in rat liver.

    PubMed Central

    Ando, M; Katagiri, K; Yamamoto, S; Wakamatsu, K; Kawahara, I; Asanuma, S; Usuda, M; Sasaki, K

    1997-01-01

    , their activities were simultaneously inhibited after long-lasting heat exposure. In isolated hepatic cells and polymorphonuclear leukocytes in animals, the 70-kDa heat shock-induced proteins were markedly increased by heat stress. In conclusion, the heat stress-inducible oxygen radical damage becomes more severe according to the age of rats. Because aging and hyperthermia have a synergistic effect on lipid peroxidation, protective enzyme activities for oxygen radicals may be essential for surviving and recovering from thermal injury in aged animals and also in humans. Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 3. Figure 4. Figure 5. Figure 6. A Figure 6. B Figure 7. A Figure 7. B PMID:9294719

  16. Protective role of arzanol against lipid peroxidation in biological systems.

    PubMed

    Rosa, Antonella; Pollastro, Federica; Atzeri, Angela; Appendino, Giovanni; Melis, M Paola; Deiana, Monica; Incani, Alessandra; Loru, Debora; Dessì, M Assunta

    2011-01-01

    This study examines the protective effect of arzanol, a pyrone-phloroglucinol etherodimer from Helichrysum italicum subsp. microphyllum, against the oxidative modification of lipid components induced by Cu(2+) ions in human low density lipoprotein (LDL) and by tert-butyl hydroperoxide (TBH) in cell membranes. LDL pre-treatment with arzanol significantly preserved lipoproteins from oxidative damage at 2h of oxidation, and showed a remarkable protective effect on the reduction of polyunsaturated fatty acids and cholesterol levels, inhibiting the increase of oxidative products (conjugated dienes fatty acids hydroperoxides, 7β-hydroxycholesterol, and 7-ketocholesterol). Arzanol, at non-cytotoxic concentrations, exerted a noteworthy protection on TBH-induced oxidative damage in a line of fibroblasts derived from monkey kidney (Vero cells) and in human intestinal epithelial cells (Caco-2), decreasing, in both cell lines, the formation of oxidative products (hydroperoxides and 7-ketocholesterol) from the degradation of unsaturated fatty acids and cholesterol. The cellular uptake and transepithelial transport of the compound were also investigated in Caco-2 cell monolayers. Arzanol appeared to accumulate in Caco-2 epithelial cells. This phenol was able to pass through the intestinal Caco-2 monolayers, the apparent permeability coefficients (P(app)) in the apical-to-basolateral and basolateral-to-apical direction at 2h were 1.93±0.36×10(-5) and 2.20±0.004×10(-5)cm/s, respectively, suggesting a passive diffusion pathway. The results of the work qualify arzanol as a potent natural antioxidant with a protective effect against lipid oxidation in biological systems. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Rapid assessment of singlet oxygen-induced plasma lipid oxidation and its inhibition by antioxidants with diphenyl-1-pyrenylphosphine (DPPP).

    PubMed

    Morita, Mayuko; Naito, Yuji; Yoshikawa, Toshikazu; Niki, Etsuo

    2016-01-01

    Recent studies suggesting the involvement of singlet oxygen in the pathogenesis of multiple diseases have attracted renewed attention to lipid oxidation mediated by singlet oxygen. Although the rate constants for singlet oxygen quenching by antioxidants have been measured extensively, the inhibition of lipid oxidation mediated by singlet oxygen has received relatively less attention, partly because a convenient method for measuring the rate of lipid oxidation is not available. The objective of this study was to develop a convenient method to measure plasma lipid oxidation mediated by singlet oxygen which may be applied to a rapid assessment of the antioxidant capacity to inhibit this oxidation using a conventional microplate reader. Singlet oxygen was produced from naphthalene endoperoxide, and lipid hydroperoxide production was followed by using diphenyl-1-pyrenylphosphine (DPPP). Non-fluorescent DPPP reacts stoichiometrically with lipid hydroperoxides to give highly fluorescent DPPP oxide. It was found that plasma oxidation by singlet oxygen increased the fluorescence intensity of DPPP oxide, which was suppressed by antioxidants. Fucoxanthin suppressed the oxidation more efficiently than β-carotene and α-tocopherol, while ascorbic acid and Trolox were not effective. The present method may be useful for monitoring lipid oxidation and also for rapid screening of the capacity of dietary antioxidants and natural products to inhibit lipid oxidation in a biologically relevant system.

  18. Valeriana officinalis extract and its main component, valerenic acid, ameliorate D-galactose-induced reductions in memory, cell proliferation, and neuroblast differentiation by reducing corticosterone levels and lipid peroxidation.

    PubMed

    Nam, Sung Min; Choi, Jung Hoon; Yoo, Dae Young; Kim, Woosuk; Jung, Hyo Young; Kim, Jong Whi; Kang, Soo-Yong; Park, Jaeil; Kim, Dong-Woo; Kim, Wan Jae; Yoon, Yeo Sung; Hwang, In Koo

    2013-11-01

    Valeriana officinalis is used in herbal medicine of many cultures as mild sedatives and tranquilizers. In this study, we investigated the effects of extract from valerian root extracts and its major component, valerenic acid on memory function, cell proliferation, neuroblast differentiation, serum corticosterone, and lipid peroxidation in adult and aged mice. For the aging model, D-galactose (100 mg/kg) was administered subcutaneously to 6-week-old male mice for 10 weeks. At 13 weeks of age, valerian root extracts (100 mg/kg) or valerenic acid (340 μg/kg) was administered orally to control and D-galactose-treated mice for 3 weeks. The dosage of valerenic acid (340 μg/kg), which is the active ingredient of valerian root extract, was determined by the content of valerenic acid in valerian root extract (3.401±0.066 mg/g) measured by HPLC. The administration of valerian root extract and valerenic acid significantly improved the preferential exploration of new objects in novel object recognition test and the escape latency, swimming speeds, platform crossings, and spatial preference for the target quadrant in Morris water maze test compared to the D-galactose-treated mice. Cell proliferation and neuroblast differentiation were significantly decreased, while serum corticosterone level and lipid peroxidation in hippocampus were significantly increased in the D-galactose-treated group compared to that in the control group. The administration of valerian root extract significantly ameliorated these changes in the dentate gyrus of both control and D-galactose-treated groups. In addition, valerenic acid also mitigated the D-galactose-induced reduction of these changes. These results indicate that valerian root extract and valerenic acid enhance cognitive function, promote cell proliferation and neuroblast differentiation, and reduce serum corticosterone and lipid peroxidation in aged mice. © 2013.

  19. Paraoxonase 1 Q192R (PON1-192) polymorphism is associated with reduced lipid peroxidation in healthy young men on a low-carotenoid diet supplemented with tomato juice.

    PubMed

    Bub, Achim; Barth, Stephan W; Watzl, Bernhard; Briviba, Karlis; Rechkemmer, Gerhard

    2005-03-01

    The HDL-bound enzyme paraoxonase (PON) protects LDL from oxidation and may therefore attenuate the development of atherosclerosis. We examined the effect of tomato and carrot juice consumption on PON1 activity and lipid peroxidation in healthy young volunteers with different PON1-192 genotypes (Q/R substitution at position 192). In this randomized cross-over study twenty-two healthy, non-smoking men on a low-carotenoid diet received 330 ml/d tomato juice (37.0 mg lycopene, 1.6 mg beta-carotene) or carrot juice (27.1 mg beta-carotene, 13.1 mg alpha-carotene) for 2 weeks. Intervention periods were preceded by 2-week low-carotenoid intake. We determined the PON1-192 genotype by restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) and measured ex vivo LDL oxidation (lag time), plasma malondialdehyde and PON1 activity at the beginning and end of each intervention period. At baseline, lag time was higher (P<0.05) in QQ (111 (sd 9) min) than in QR/RR subjects (101 (sd 8) min). Neither tomato nor carrot juice consumption had significant effects on PON1 activity. However, tomato juice consumption reduced (P<0.05) plasma malondialdehyde in QR/RR (Delta: -0.073 (sd 0.11) micromol/l) as compared to QQ subjects (Delta:+0.047 (sd 0.13) micromol/l). Carrot juice had no significant effect on malondialdehyde irrespective of the PON1-192 genotype. Male volunteers with the QR/RR genotype showed an increased lipid peroxidation at baseline. Although tomato and carrot juice fail to affect PON1 activity, tomato juice intake reduced lipid peroxidation in healthy volunteers carrying the R-allele of the PON1-192 genotype and could thus contribute to CVD risk reduction in these individuals.

  20. Altered lipid peroxidation markers are related to post-traumatic stress disorder (PTSD) and not trauma itself in earthquake survivors.

    PubMed

    Atli, Abdullah; Bulut, Mahmut; Bez, Yasin; Kaplan, İbrahim; Özdemir, Pınar Güzel; Uysal, Cem; Selçuk, Hilal; Sir, Aytekin

    2016-06-01

    The traumatic life events, including earthquakes, war, and interpersonal conflicts, cause a cascade of psychological and biological changes known as post-traumatic stress disorder (PTSD). Malondialdehyde (MDA) is a reliable marker of lipid peroxidation, and paraoxonase is a known antioxidant enzyme. The aims of this study were to investigate the relationship between earthquake trauma, PTSD effects on oxidative stress and the levels of serum paraoxonase 1 (PON1) enzyme activity, and levels of serum MDA. The study was carried out on three groups called: the PTSD group, the traumatized with earthquake exercise group, and healthy control group, which contained 32, 31, and 38 individuals, respectively. Serum MDA levels and PON1 enzyme activities from all participants were measured, and the results were compared across all groups. There were no significant differences between the PTSD patients and non-PTSD earthquake survivors in terms of the study variables. The mean PON1 enzyme activity from PTSD patients was significantly lower, while the mean MDA level was significantly higher than that of the healthy control group (p < 0.01 for both measurements). Similarly, earthquake survivors who did not develop PTSD showed higher MDA levels and lower PON1 activity when compared to healthy controls. However, the differences between these groups did not reach a statistically significant level. Increased MDA level and decreased PON1 activity measured in PTSD patients after earthquake and may suggest increased oxidative stress in these patients. The nonsignificant trends that are observed in lipid peroxidation markers of earthquake survivors may indicate higher impact of PTSD development on these markers than trauma itself. For example, PTSD diagnosis seems to add to the effect of trauma on serum MDA levels and PON1 enzyme activity. Thus, serum MDA levels and PON1 enzyme activity may serve as biochemical markers of PTSD diagnosis.

  1. Vitamin C Prevents Sleep Deprivation-induced Elevation in Cortisol and Lipid Peroxidation in the Rat Plasma.

    PubMed

    Olayaki, L A; Sulaiman, S O; Anoba, N B

    2015-12-20

    Sleep deprivation (SD) is biological stressor that alters metabolic parameters, induced oxidative stress and lipid peroxidation. Previous studies have shown that antioxidants substances such as melatonin, tryptophan, vitamin E and vitamin C improved stress tolerance in laboratory animals. In this study, we examined the potential protective effects of administration of vitamin C on acute and chronic sleep deprivation-induced metabolic derangement. In addition, possible processes involved in vitamin C effects on acute and chronic sleep deprivation-induced metabolic derangement were determined. Thirty-five rats (120-250g) were used. The rats were divided into 7 groups of 5 rats each as Control (CTRL), Acute sleep deprived untreated with vitamin C (AC), Acute sleep deprived treated with vitamin C (AWC), Chronic sleep deprived untreated with vitamin C (CC), Chronic sleep deprived treated with vitamin C (CWC), Chronic sleep deprived + Recovery untreated with vitamin C (RC), and Chronic sleep deprived + Recovery treated with vitamin C (RWC). The SD was carried out for 20h for 1 day on the acute groups, and for 20h/day for 5 days on the chronic group, using the Multiple Modified Platforms (MMP) after oral administration of 300mg/kg of vitamin C to all vitamin C-treated groups. The recovery groups were further observed for five days after SD. The control group were treated with vitamin C and without stress in their home cages. At the end of the experiment, the animals were sacrificed and blood was collected for estimation of plasma glucose, insulin, cortisol and malondialdehyde (MDA). The results showed that acute and chronic SDs significantly  increased MDA and cortisol levels, while significantly reduced the levels of insulin. Treatment with vitamin C reversed the changes in the MDA, cortisol and plasma insulin levels. Additionally, allowing the rats to recover for 5 days after sleep deprivation corrected the observed changes. Plasma glucose was significantly

  2. Levels of cytokines in broncho-alveolar lavage fluid, but not in plasma, are associated with levels of markers of lipid peroxidation in breath of ventilated ICU patients.

    PubMed

    Boshuizen, Margit; Leopold, Jan Hendrik; Zakharkina, Tetyana; Knobel, Hugo H; Weda, Hans; Nijsen, Tamara M E; Vink, Teunis J; Sterk, Peter J; Schultz, Marcus J; Bos, Lieuwe D J

    2015-09-03

    Alkanes and alkenes in the breath are produced through fatty acid peroxidation, which is initialized by reactive oxygen species. Inflammation is an important cause and effect of reactive oxygen species. We aimed to evaluate the association between fatty acid peroxidation products and inflammation of the alveolar and systemic compartment in ventilated intensive care unit (ICU) patients.Volatile organic compounds were measured by gas chromatography and mass spectrometry in the breath of newly ventilated ICU patients within 24 h after ICU admission. Cytokines were measured in non-directed bronchial lavage fluid (NBL) and plasma by cytometric bead array. Correlation coefficients were calculated and presented in heatmaps.93 patients were included. Peroxidation products in exhaled breath were not associated with markers of inflammation in plasma, but were correlated with those in NBL. IL-6, IL-8, IL-1β and TNF-α concentration in NBL showed inverse correlation coefficients with the peroxidation products of fatty acids. Furthermore, NBL IL-10, IL-13, GM-CSF and IFNγ demonstrated positive associations with breath alkanes and alkenes. Correlation coefficients for NBL cytokines were high regarding peroxidation products of n-6, n-7 and particularly in n-9 fatty acids.Levels of lipid peroxidation products in the breath of ventilated ICU patients are associated with levels of inflammatory markers in NBL, but not in plasma. Alkanes and alkenes in breath seems to be associated with an anti-inflammatory, rather than a pro-inflammatory state in the alveoli.

  3. Traditional Uighur Medicine Karapxa decoction, inhibits liver xanthine oxidase and reduces serum uric acid concentrations in hyperuricemic mice and scavenges free radicals in vitro.

    PubMed

    Amat, Nurmuhammat; Umar, Anwar; Hoxur, Parida; Anaydulla, Mihrigul; Imam, Guzalnur; Aziz, Ranagul; Upur, Halmurat; Kijjoa, Anake; Moore, Nicholas

    2015-04-25

    Karapxa decoction (KD) is a Traditional Uighur Medicine used for hepatitis, cholecystitis, gastralgia, oedema, gout and arthralgia. Because of its purported effect in gout, its effects were tested in hyperuricemic mice models induced by yeast extract paste or potassium oxonate, as well as its capacity to scavenge free radicals in vitro. Hyperuricemia was induced in mice by yeast extract paste or potassium oxonate. KD was given orally for 14 days at 200, 400 and 800 mg/kg/day, with Allopurinol 10 mg/kg/day as positive control. Serum uric acid (UA), and liver xanthine oxidase activity (XO) were measured. Scavenging activity of KD on 1, 1-diphenyl-2-picrylhydrazyl radicals (DPP•), nitric oxide (•NO), superoxide (O2•-), efficiency against lipid peroxidation, and XO inhibition were determined in vitro. KD inhibited liver XO activity and reduced serum uric acid in hyperuricemic mice. KD also showed noticeable antioxidant activity, scavenging free radicals (DPP•, •NO and O2•-). It was effective against lipid peroxidation and inhibited XO in vitro. This study supports the traditional use of Karapxa decoction to treat hyperuricemia and gout.

  4. An Experimental Model to Study the Impact of Lipid Oxidation on Contact Lens Deposition In Vitro.

    PubMed

    Schuett, Burkhardt S; Millar, Thomas J

    2017-09-01

    This study was to establish a controlled in vitro test system to study the effect of lipid oxidation on lipid deposition on contact lenses. Fatty acids with varying degree of unsaturation were oxidized using the Fenton reaction. The degree of lipid oxidation and the lipid moieties formed during the oxidation were identified and estimated by various lipid staining techniques following separation with thin-layer chromatography, and by measuring thiobarbituric acid reactive substances or peroxides in solution. Two different silicone hydrogel-based contact lenses (Balafilcon A and Senofilcon A) were incubated with fatty acids laced with radioactive tracer oxidized to varying degrees, and the amount of lipid deposition was measured using unoxidized lipid samples as controls. The Fenton reaction together with the analytical methods to analyze the lipid oxidation can be used to control oxidation of lipids to a desired amount. In general, saturated fatty acids are not oxidized, the monounsaturated oleic acid produced peroxides while poly-unsaturated lipids initially produced peroxides and then fragmented into reactive aldehydes. Incubation with mildly oxidized lipids (most likely lipid peroxides) resulted in increased lipid deposition on Balafilcon A lenses compared to unoxidized lipids, but this was not observed for Senofilcon A lenses. Further oxidation of the lipids (carbon chain breakup) on the other hand resulted in diminished lipid deposition for both contact lens types. This study provides a method for inducing and controlling lipid oxidation so that the effect of lipid oxidation on contact lens binding can be compared. It could be shown that the degree of lipid oxidation has different effects on the lipid deposition on different contact lens types.

  5. Effects of small interfering RNA-mediated hepatic glucagon receptor inhibition on lipid metabolism in db/db mice.

    PubMed

    Han, Seongah; Akiyama, Taro E; Previs, Stephen F; Herath, Kithsiri; Roddy, Thomas P; Jensen, Kristian K; Guan, Hong-Ping; Murphy, Beth A; McNamara, Lesley A; Shen, Xun; Strapps, Walter; Hubbard, Brian K; Pinto, Shirly; Li, Cai; Li, Jing

    2013-10-01

    Hepatic glucose overproduction is a major characteristic of type 2 diabetes. Because glucagon is a key regulator for glucose homeostasis, antagonizing the glucagon receptor (GCGR) is a possible therapeutic strategy for the treatment of diabetes mellitus. To study the effect of hepatic GCGR inhibition on the regulation of lipid metabolism, we generated siRNA-mediated GCGR knockdown (si-GCGR) in the db/db mouse. The hepatic knockdown of GCGR markedly reduced plasma glucose levels; however, total plasma cholesterol was increased. The detailed lipid analysis showed an increase in the LDL fraction, and no change in VLDL HDL fractions. Further studies showed that the increase in LDL was the result of over-expression of hepatic lipogenic genes and elevated de novo lipid synthesis. Inhibition of hepatic glucagon signaling via siRNA-mediated GCGR knockdown had an effect on both glucose and lipid metabolism in db/db mice.

  6. Effect of ethanolic fruit extract of Cucumis trigonus Roxb. on antioxidants and lipid peroxidation in urolithiasis induced wistar albino rats

    PubMed Central

    Balakrishnan, A.; Kokilavani, R; Gurusamy, K.; Teepa, K. S. Ananta; Sathya, M.

    2011-01-01

    Urolithiasis was induced using ethylene glycol in wistar albino rats, the formation of calcium stones in the kidney results with the damage of antioxidant system. Ethanolic extract of Cucumis trigonus Roxb fruit of family Curcurbitaceae was used to treat urolithiasis. On this course, the extract also repairs the changes that happened in the enzymatic, non enzymatic antioxidants and lipid peroxidation in liver and kidney of urolithiasis induced rats. The results obtained from the analysis were compared at 5% level of significance using one way ANOVA. The results show that the ethanolic fruit extract has repaired the levels of antioxidants and malondialdehyde to their normal levels. PMID:22736884

  7. Marigold flower-powder exhibits significant potential to inhibit lipid oxidation in rice bran tea.

    PubMed

    Wanyo, Pitchaporn; Kaewseejan, Niwat; Meeso, Naret; Siriamornpun, Sirithon

    2015-06-01

    We supplemented marigold flower-powder (MFP) in rice bran tea at different proportions as a source of natural antioxidant compounds. Changes of phenolic compounds, antioxidant activity, fatty acid composition and lipid oxidation in the rice bran tea with MFP after 30 days of storage were investigated, comparing results with the initial data. Adding MFP in rice bran tea resulted in an increased content and composition of phenolics and flavonoids along with enhanced antioxidant activities, which were increased in a dose-dependent manner. As a result, MFP supplementation of rice bran tea was able to retard the lipid oxidation as determined by the peroxide value (PV), due to the protection of essential fatty acids during 30 days of storage. The PVs were strongly negatively correlated (p < 0.01) with phenolic compounds, total phenolic content (TPC) and total flavonoid content (TFC), but were positively correlated with tocopherols and γ-oryzanol contents. We also found that the PV was positively correlated with the PUFA (poly unsaturated fatty acid) content but adverse results were found for SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) contents. These findings suggest that MFP could be used as a natural antioxidant in foods for preventing lipid oxidation as well as extending the shelf-life of food products.

  8. Cyclic voltammetry to evaluate the antioxidant potential in winemaking by-products.

    PubMed

    José Jara-Palacios, M; Luisa Escudero-Gilete, M; Miguel Hernández-Hierro, J; Heredia, Francisco J; Hernanz, Dolores

    2017-04-01

    Grape pomace is composed of seeds, skins and stems that are an important source of phenolic substances, which have antioxidant properties and potential benefits to human health. Cyclic voltammetry (CV) has been used to measure the total antioxidant potential of different winemaking by-products. The electrochemical behavior of pomace, seeds, skins and stems was measured by CV and lipid peroxidation inhibition by thiobarbituric acid reactive substances (TBARS) method. Differences for the electrochemical parameter were found between the by-products, pomace and seeds, which presented the greatest voltammetric peak area. Furthermore, the by-products induced inhibition of lipid peroxidation in rat liver homogenates. Pomace and seeds showed higher capacity to inhibit lipid peroxidation than stems and skins, which could be because these by-products are richer in flavanols. Simple regression analyses showed that voltammetric parameters are highly correlated to the values obtained for lipid peroxidation inhibition. CV is a promising technique to estimate the total antioxidant potential of phenolic extract from winemaking by-products. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Antioxidant and anti-inflammatory effects of Scoparia dulcis L.

    PubMed

    Coulibaly, Ahmed Y; Kiendrebeogo, Martin; Kehoe, Patrick G; Sombie, Pierre A E D; Lamien, Charles E; Millogo, Jeanne F; Nacoulma, Odile G

    2011-12-01

    Different extracts were obtained from Scoparia dulcis L. (Scrophulariaceae) by successive extraction with hexane, chloroform, and methanol. These extracts exhibited significant antioxidant capacity in various antioxidant models mediated (xantine oxidase and lipoxygenase) or not mediated (2,2-diphenyl-picrylhydrazyl, ferric-reducing antioxidant power, β-carotene bleaching, lipid peroxidation) by enzymes. The antioxidant activity of the extracts was related to their phytochemical composition in terms of polyphenol and carotenoid contents. The chloroform extract was richest in phytochemicals and had the highest antioxidant activity in the different antioxidant systems. All the extracts exhibited less than 50% inhibition on xanthine oxidase but more than 50% inhibition on lipid peroxidation and lipoxygenase. The extracts strongly inhibited lipid peroxidation mediated by lipoxygenase.

  10. Action of 6-amino-3-pyridinols as novel antioxidants against free radicals and oxidative stress in solution, plasma, and cultured cells.

    PubMed

    Omata, Yo; Saito, Yoshiro; Yoshida, Yasukazu; Jeong, Byeong-Seon; Serwa, Remigiusz; Nam, Tae-gyu; Porter, Ned A; Niki, Etsuo

    2010-05-15

    Free radical-mediated lipid peroxidation has been implicated in the pathogenesis of various diseases. Lipid peroxidation products are cytotoxic and they modify proteins and DNA bases, leading eventually to degenerative disorders. Various synthetic antioxidants have been developed and assessed for their capacity to inhibit lipid peroxidation and oxidative stress induced by free radicals. In this study, the capacity of novel 6-amino-2,4,5-trimethyl-3-pyridinols for scavenging peroxyl radicals, inhibiting plasma lipid peroxidation in vitro, and preventing cytotoxicity induced by glutamate, 6-hydroxydopamine, 1-methyl-4-phenylpyridium (MPP(+) ), and hydroperoxyoctadecadienoic acid was assessed. It was found that they exerted higher reactivity toward peroxyl radicals and more potent activity for inhibiting the above oxidative stress than alpha-tocopherol, the most potent natural antioxidant, except against the cytotoxicity induced by MPP(+). These results suggest that the novel 6-amino-3-pyridinols may be potent antioxidants against oxidative stress. Copyright 2010 Elsevier Inc. All rights reserved.

  11. The efficacy of an antioxidant cocktail on lipid peroxide level and superoxide dismutase activity in aged rat brain and DNA damage in iron-induced epileptogenic foci.

    PubMed

    Komatsu, M; Hiramatsu, M

    2000-08-07

    Mixed natural antioxidants can be combined in a prophylactic food against age related disease involving reactive oxygen species. beta-Catechin is an antioxidant drink, having free radical scavenging activities. It contains green tea extract as a main component as well as ascorbic acid, sunflower seed extract, dunaliella carotene and natural vitamin E. In the present study, we examined the effect of beta-catechin on lipid peroxide formation and superoxide dismutase (SOD) activity in aged rat brain and the effect on 8-hydroxy-2'-deoxyguanosine (8-OHdG) in ipsilateral cortex, 30 min after ferric chloride solution was injected into the left cortex of rats. beta-Catechin solution was orally administered to aged rats and normal rats for 1 month. One-month administration of beta-catechin solution increased SOD activity in the mitochondria fraction of striatum and midbrain and decreased thiobarbiturate reactive substance formation in the cortex and cerebellum of aged rats. It also inhibited 8-OHdG formation in the ipsilateral cortex 30 min after injection of ferric chloride solution. These results suggest that beta-catechin is a suitable prophylactic beverage against age-related neurological diseases associated with reactive oxygen species.

  12. Anti-Atherosclerotic Actions of Azelaic acid, an End Product of Linoleic Acid Peroxidation, in Mice

    PubMed Central

    Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi; Brophy, Larissa; Parthasarathy, Sampath

    2009-01-01

    Background Atherosclerosis is a chronic inflammatory disease associated with the accumulation of oxidized lipids in arterial lesions. Recently we studied the degradation of peroxidized linoleic acid and suggested that oxidation is an essential process that results in the generation of terminal products, namely mono- and dicarboxylic acids that may lack the pro-atherogenic effects of peroxidized lipids. In continuation of that study, we tested the effects of azelaic acid (AzA), one of the end products of linoleic acid peroxidation, on the development of atherosclerosis using low density lipoprotein receptor knockout (LDLr−/−) mice. Methods and results LDLr−/− mice were fed with a high fat and high cholesterol Western diet (WD group). Another group of animals were fed the same diet with AzA supplementation (WD+AzA group). After four months of feeding, mice were sacrificed and atherosclerotic lesions were measured. The results showed that the average lesion area in WD+AzA group was 38% (p<0.001) less as compared to WD group. The athero-protective effect of AzA was not related to changes in plasma lipid content. AzA supplementation decreased the level of CD68 macrophage marker by 34% (p<0.05). Conclusions The finding that AzA exhibits an anti-atherogenic effect suggests that oxidation of lipid peroxidation-derived aldehydes into carboxylic acids could be an important step in the body’s defense against oxidative damage. PMID:19880116

  13. Anti-atherosclerotic actions of azelaic acid, an end product of linoleic acid peroxidation, in mice.

    PubMed

    Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi; Brophy, Larissa; Parthasarathy, Sampath

    2010-04-01

    Atherosclerosis is a chronic inflammatory disease associated with the accumulation of oxidized lipids in arterial lesions. Recently we studied the degradation of peroxidized linoleic acid and suggested that oxidation is an essential process that results in the generation of terminal products, namely mono- and dicarboxylic acids that may lack the pro-atherogenic effects of peroxidized lipids. In continuation of that study, we tested the effects of azelaic acid (AzA), one of the end products of linoleic acid peroxidation, on the development of atherosclerosis using low density lipoprotein receptor knockout (LDLr(-/-)) mice. LDLr(-/-) mice were fed with a high fat and high cholesterol Western diet (WD group). Another group of animals were fed the same diet with AzA supplementation (WD+AzA group). After 4 months of feeding, mice were sacrificed and atherosclerotic lesions were measured. The results showed that the average lesion area in WD+AzA group was 38% (p<0.001) less as compared to WD group. The athero-protective effect of AzA was not related to changes in plasma lipid content. AzA supplementation decreased the level of CD68 macrophage marker by 34% (p<0.05). The finding that AzA exhibits an anti-atherogenic effect suggests that oxidation of lipid peroxidation-derived aldehydes into carboxylic acids could be an important step in the body's defense against oxidative damage. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  14. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins

    PubMed Central

    Chappell, Alfred E.; Bunz, Michael; Smoll, Eric; Dong, Hui; Lytle, Christian; Barrett, Kim E.; McCole, Declan F.

    2018-01-01

    Reactive oxygen species (ROS) are key mediators in a number of inflammatory conditions, including inflammatory bowel disease (IBD). ROS, including hydrogen peroxide (H2O2), modulate intestinal epithelial ion transport and are believed to contribute to IBD-associated diarrhea. Intestinal crypt fluid secretion, driven by electrogenic Cl− secretion, hydrates and sterilizes the crypt, thus reducing bacterial adherence. Here, we show that pathophysiological concentrations of H2O2 inhibit Ca2+-dependent Cl− secretion across T84 colonic epithelial cells by elevating cytosolic Ca2+, which contributes to activation of two distinct signaling pathways. One involves recruitment of the Ca2+-responsive kinases, Src and Pyk-2, as well as extracellular signal-regulated kinase (ERK). A separate pathway recruits p38 MAP kinase and phosphoinositide 3-kinase (PI3-K) signaling. The ion transport response to Ca2+-dependent stimuli is mediated in part by K+ efflux through basolateral K+ channels and Cl− uptake by the Na+-K+-2Cl− cotransporter, NKCC1. We demonstrate that H2O2 inhibits Ca2+-dependent basolateral K+ efflux and also inhibits NKCC1 activity independently of inhibitory effects on apical Cl− conductance. Thus, we have demonstrated that H2O2 inhibits Ca2+-dependent Cl− secretion through multiple negative regulatory signaling pathways and inhibition of specific ion transporters. These findings increase our understanding of mechanisms by which inflammation disturbs intestinal epithelial function and contributes to intestinal pathophysiology.—Chappell, A. E., Bunz, M., Smoll, E., Dong, H., Lytle, C., Barrett, K. E., McCole, D. F. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins. FASEB J. 22, 000–000 (2008) PMID:18211955

  15. Altered lipid metabolism in brain injury and disorders.

    PubMed

    Adibhatla, Rao Muralikrishna; Hatcher, J F

    2008-01-01

    Deregulated lipid metabolism may be of particular importance for CNS injuries and disorders, as this organ has the highest lipid concentration next to adipose tissue. Atherosclerosis (a risk factor for ischemic stroke) results from accumulation of LDL-derived lipids in the arterial wall. Pro-inflammatory cytokines (TNF-alpha and IL-1), secretory phospholipase A2 IIA and lipoprotein-PLA2 are implicated in vascular inflammation. These inflammatory responses promote atherosclerotic plaques, formation and release of the blood clot that can induce ischemic stroke. TNF-alpha and IL-1 alter lipid metabolism and stimulate production of eicosanoids, ceramide, and reactive oxygen species that potentiate CNS injuries and certain neurological disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Low levels of neurosteroids were related to poor outcome in many brain pathologies. Apolipoprotein E is the principal cholesterol carrier protein in the brain, and the gene encoding the variant Apolipoprotein E4 is a significant risk factor for Alzheimer's disease. Parkinson's disease is to some degree caused by lipid peroxidation due to phospholipases activation. Niemann-Pick diseases A and B are due to acidic sphingomyelinase deficiency, resulting in sphingomyelin accumulation, while Niemann-Pick disease C is due to mutations in either the NPC1 or NPC2 genes, resulting in defective cholesterol transport and cholesterol accumulation. Multiple sclerosis is an autoimmune inflammatory demyelinating condition of the CNS. Inhibiting phospholipase A2 attenuated the onset and progression of experimental autoimmune encephalomyelitis. The endocannabinoid system is hypoactive in Huntington's disease. Ethyl-eicosapetaenoate showed promise in clinical trials. Amyotrophic lateral sclerosis causes loss of motorneurons. Cyclooxygenase-2 inhibition reduced spinal neurodegeneration in amyotrophic lateral sclerosis transgenic mice

  16. Autism Spectrum Disorders May Be Due to Cerebral Toxoplasmosis Associated with Chronic Neuroinflammation Causing Persistent Hypercytokinemia that Resulted in an Increased Lipid Peroxidation, Oxidative Stress, and Depressed Metabolism of Endogenous and Exogenous Substances

    ERIC Educational Resources Information Center

    Prandota, Joseph

    2010-01-01

    Worldwide, approximately 2 billion people are chronically infected with "Toxoplasma gondii" with largely yet unknown consequences. Patients with autism spectrum disorders (ASD) similarly as mice with chronic toxoplasmosis have persistent neuroinflammation, hypercytokinemia with hypermetabolism associated with enhanced lipid peroxidation, and…

  17. [Lipid peroxidation in the lymphocyte membrane and protein oxidation in the serum of elderly people. Are they potential markers of frailty and dependence? Preliminary results].

    PubMed

    Pereira, Marie Christine; Miralles, Ramón; Serra, Ester; Morros, Antoni; Palacio, José Ramón; Martinez, Paz

    2016-01-01

    To study the relationships between lipid peroxidation of the lymphocyte membrane, protein oxidation and different markers of frailty and dependence. The sample consisted of 15 elderly patients in an intermediate and long-term care center, who had not suffered any acute process recently. The geriatric assessment included, functional capacity (Barthel and Lawton indexes), comorbidity (Charlson index), and cognitive function (Mini Mental State Examination of Folstein). The frailty was estimated by the Hospital Admission Risk Profile (high risk of frailty 4-5 points, intermediate/low 0-3 points) and Frailty Scale of Rockwood (mild frailty<6, intermediate frailty/severe≥6). Lipid peroxidation was studied by determination of conjugated dienes and trienes. Analysis of protein oxidation was performed by determining malondialdehyde bound to plasma proteins, corrected by total protein quantification. Elderly patients at high risk of frailty according to Hospital Admission Risk Profile presented mean values of conjugated dienes of 7.94±1.32%, trienes of 1.75±0.51%, and malondialdehyde bound to plasma proteins of 141.9±27.3nmol/g. In the group of intermediate/low risk, these values were 4.96±2.77% (P=.035), 1.37±0.78% (P=.337) and 96.4±31.5nmol/g (P=.022), respectively. In those with intermediate/severe frailty according to the Frailty Scale of Rockwood, these values were 7.06±2.18%; 1.73±0.50% and 119.6±37.9nmol/g, respectively, and in those with mild frailty 2.56±1.48% (P=014); 0.61±0.58% (P=020) and 173.2±51.9nmol/g (P=.144), respectively. There was good correlation between the Hospital Admission Risk Profile score and malondialdehyde bound to plasma proteins (r=0.70; P=01) and between the Frailty Scale of Rockwood score and conjugated dienes (r=0.65; P=01). Elderly patients with a higher degree of frailty appear to have greater levels of lipid peroxidation, which could be considered a marker of frailty. Copyright © 2015 SEGG. Published by Elsevier Espana

  18. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-01

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  19. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhi, Wenbing; Liu, Fang

    Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1more » (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I. - Highlights: • AO-I inhibited Ox-LDL-induced VSMCs proliferation and migration. • AO-I alleviated inflammatory response via inhibiting TNF-α, IL-6 and NO production. • AO-I restored HO-1 expression and down-regulated PCNA expression. • MCP-1 overexpression is potentially regulated by NF-κB and p38 MAPK pathway. • AO-I possesses strong anti-lipid peroxidation effect.« less

  20. [Effects of cadmium stress on fatty acid composition and lipid peroxidation of Malus hupehensis].

    PubMed

    You, Shu-Zhen; Yang, Hong-Qiang; Zhang, Long; Shao, Xiao-Jie

    2009-08-01

    This paper studied the fatty acid composition, reactive oxygen species (ROS), lipoxygenase (LOX) activity, and malondialdehyde (MDA) content in the leaves and roots of Malus hupehensis seedlings under effects of cadmium (Cd) stress. Noticeable changes were observed in the kinds and relative contents of fatty acids after treated with CdCl2 for 7-12 hours. The relative contents of unsaturated fatty acids in leaves and roots reached the maximum after treated for 7 hours, being 82. 82% and 72. 43% , respectively. The kinds of fatty acids in leaves increased from 11 to 14 after treated for 12 hours, while those in roots increased from 4 to 6 after treated for 17 hours. The O2* generation rate and the H2O2 content reached the maximum after treated for 3 and 7 hours, respectively, and the MDA content and LOX activity increased with treating time. Cd stress altered the fatty acid composition of Malus hupehensis via the inducement of reactive oxygen species and lipoxygenase, and induced lipid peroxidation, which was caused by both ROS and LOX within the first 12 hours of CdCl2 treatment and mainly by the increase of LOX activity since then.

  1. Effect of dietary supplementation of Lactobacillus-fermented Artemisia princeps on growth performance, meat lipid peroxidation, and intestinal microflora in Hy-line Brown male chickens.

    PubMed

    Kim, C H; Kim, G-B; Chang, M B; Bae, G S; Paik, I K; Kil, D Y

    2012-11-01

    The objective of this experiment was to investigate the effect of dietary supplementation of Lactobacillus-fermented Artemisia princeps (LFA) on growth performance, meat lipid peroxidation, and intestinal microflora in Hy-line Brown male chickens. A total of six hundred twenty-four 1-d-old Hy-Line Brown male chicks were randomly allotted to 3 dietary treatments with 4 replicated pens consisting of 52 chicks. The control diet was formulated to be adequate in energy and nutrients. Two additional diets were prepared by adding 2.5 or 5.0 g/kg of LFA to the control diet. The experimental diets were fed on an ad libitum basis to the birds during 7 wk. Body weight gain and feed intake were recorded at 2 and 7 wk. At the end of the experiment, 2 birds from each treatment were killed by cervical dislocation and the samples for ileal content, breast, and thigh meat were collected for the determination of meat lipid peroxidation and microbial population. Results indicated that increasing inclusion level of LFA in diets improved BW gain (linear and quadratic, P < 0.05) and tended to improve feed efficiency (linear and quadratic, P < 0.10) of birds during 0 to 7 wk. Feeding the diets containing increasing amounts of LFA to birds reduced (quadratic, P < 0.05) thiobarbituric acid-reactive substance (TBARS) values in breast and thigh meat during 15 d of storage. The concentrations of Lactobacillus spp. in the ileal content of birds increased (linear and quadratic, P < 0.05), but those of Salmonella spp. tended to be decreased (quadratic, P < 0.10) as inclusion level of LFA in diets increased. These results suggest that dietary LFA may be used as a functional ingredient to improve growth performance, meat lipid stability, and intestinal health of birds.

  2. 2-Hydroxy-succinaldehyde, a lipid peroxidation product proving that polyunsaturated fatty acids are able to react with three molecules of oxygen.

    PubMed

    Mlakar, A; Spiteller, G

    1997-01-01

    2-Hydroxy-succinaldehyde was detected by a GC/MS analysis of trapped aldehydic compounds obtained after Fe2+/ascorbate lipid peroxidation of arachidonic acid. Precursor molecules of aldehydes are hydroperoxy compounds. Thus the generation of the two aldehydic groups in 2-hydroxysuccinaldehyde requires a precursor molecule with two hydroperoxy groups. The hydroxy group in 2-position is generated by a third hydroperoxidation reaction. The detection of 2-hydroxysuccinaldehyde--although found only in traces--is the first example for triple dioxigenation of unsaturated fatty acid. Linolenic acid produces 2-hydroxysuccinaldehyde in much lower amounts than arachidonic acid. A similar oxidation of linoleic acid was not observed.

  3. Alleviative effects of litchi (Litchi chinensis Sonn.) flower on lipid peroxidation and protein degradation in emulsified pork meatballs.

    PubMed

    Ding, Yi; Wang, Sheng-Yao; Yang, Deng-Jye; Chang, Ming-Hsu; Chen, Yi-Chen

    2015-09-01

    To avoid or retard the lipid peroxidation of meat products, antioxidants are commonly added. Considering the safety and health of additives in meat products, consumers prefer natural antioxidants rather than synthetic ones. Gentisic acid and epicatechin were identified as the major phenolic acid and flavonoid, respectively, of litchi flowers (LFs). The physicochemical properties of pork meatballs with or without dried LF powders (0.5%, 1.0%, and 1.5%, w/w) and tert-butylhydroquinone (TBHQ; 0.01%, w/w) were analyzed during a 4-week frozen storage period. LF and TBHQ decreased (p < 0.05) thiobarbituric acid reactive substance (TBARS) values but increased (p < 0.05) thiol group contents in meatballs. LF added to meatballs improved (p < 0.05) texture and water-holding capacity (centrifugation/purge losses) more than in the control group upon the storage. Although LF powders made meatballs redder and darker (p < 0.05) than the control and TBHQ groups, they did not affect the preference of panelists. The addition of 0.5% LF powders exhibited the best (p < 0.05) overall sensory panel acceptance. LFs may be an effective natural antioxidant to reduce lipid and protein oxidation for frozen cooked meat products. Copyright © 2015. Published by Elsevier B.V.

  4. Medicinal values of fruit peels from Citrus sinensis, Punica granatum, and Musa paradisiaca with respect to alterations in tissue lipid peroxidation and serum concentration of glucose, insulin, and thyroid hormones.

    PubMed

    Parmar, Hamendra Singh; Kar, Anand

    2008-06-01

    Peel extracts from Citrus sinensis, Punica granatum, and Musa paradisiaca were investigated for their effects on tissue lipid peroxidation (LPO) and on the concentration of thyroid hormones, insulin, and glucose in male rats. In vitro inhibition of H(2)O(2)-induced LPO in red blood cells of rats by 0.25, 0.50, 1.0, and 2.0 microg/mL C. sinensis, P. granatum, and M. paradisiaca peel extracts was observed in a dose-specific manner. Maximum inhibition was observed at 0.50 microg/mL C. sinensis, 2.0 microg/mL P. granatum, and 1.0 microg/mL M. paradisiaca. In the in vivo investigation, out of four different concentrations of each peel extract, 25, 200, and 100 mg/kg C. sinensis, P. granatum, and M. paradisiaca, respectively, were found to maximally inhibit hepatic LPO. The most effective doses were further evaluated for effects on serum triiodothyronine (T(3)), thyroxine (T(4)), insulin, and glucose concentrations. C. sinensis exhibited antithyroidal, hypoglycemic, and insulin stimulatory activities, in addition to inhibition of LPO, as it significantly decreased the serum T(4) (P < .05) and glucose (P < .001) concentrations with a concomitant increase in insulin levels (P < .05). P. granatum decreased LPO in hepatic, cardiac, and renal tissues (P < .01, P < .001, and P < .05, respectively) and serum glucose concentration (P < .01). M. paradisiaca strongly inhibited the serum level of thyroid hormones (P < .01 for both T(3) and T(4)) but increased the level of glucose (P < .05). These findings reveal the hitherto unknown potential of the tested peel extracts in the regulation of thyroid function and glucose metabolism. Besides antiperoxidative activity, C. sinensis extract has antithyroidal, hypoglycemic, and insulin stimulatory properties, which suggest its potential to ameliorate both hyperthyroidism and diabetes mellitus.

  5. The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil.

    PubMed

    Qiu, Xujian; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke

    2018-10-15

    Lipid oxidation of fish oil enriched cow milk and soy milk supplemented with rosemary extract stored at 2 °C was studied. Both peroxide value and volatile secondary lipid oxidation products were determined to monitor the progress of lipid oxidation. Rosemary extract inhibited lipid oxidation in fish oil enriched cow milk. In contrast, soy milk samples having much higher unsaturated fatty acid content showed higher lipid oxidation stability compared to cow milk. Reduction in the content of chlorogenic acid during storage suggested that this compound may contribute to the lipid oxidation stability of fish oil enriched soy milk product. Total carnosic acid and carnosol concentration declined much faster in soy milk than in cow milk. It is suggested from the results that food components could have significant impact on the fate of bioactive antioxidant compounds in a specific food product during storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Sphingosine 1-phosphate stimulates hydrogen peroxide generation through activation of phospholipase C-Ca2+ system in FRTL-5 thyroid cells: possible involvement of guanosine triphosphate-binding proteins in the lipid signaling.

    PubMed

    Okajima, F; Tomura, H; Sho, K; Kimura, T; Sato, K; Im, D S; Akbar, M; Kondo, Y

    1997-01-01

    Exogenous sphingosine 1-phosphate (S1P) stimulated hydrogen peroxide (H2O2) generation in association with an increase in intracellular Ca2+ concentration in FRTL-5 thyroid cells. S1P also induced inositol phosphate production, reflecting activation of phospholipase C (PLC) in the cells. These three S1P-induced events were inhibited partially by pertussis toxin (PTX) and markedly by U73122, a PLC inhibitor, and were conversely potentiated by N6-(L-2-phenylisopropyl)adenosine, an A1-adenosine receptor agonist. In FRTL-5 cell membranes, S1P also activated PLC in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), but not in its absence. Guanosine 5'-O-(2-thiodiphosphate) inhibited the S1P-induced GTP gamma S-dependent activation of the enzyme. To characterize the signaling pathways, especially receptors and G proteins involved in the S1P-induced responses, cross-desensitization experiments were performed. Under the conditions where homologous desensitization occurred in S1P-, lysophosphatidic acid (LPA)-, and bradykinin-induced induction of Ca2+ mobilization, no detectable cross-desensitization of S1P and bradykinin was observed. This suggests that the primary action of S1P in its activation of the PLC-Ca2+ system was not the activation of G proteins common to S1P and bradykinin, but the activation of a putative S1P receptor. On the other hand, there was a significant cross-desensitization of S1P and LPA; however, a still significant response to S1P (50-80% of the response in the nontreated control cells) was observed depending on the lipid dose employed after a prior LPA challenge. S1P also inhibited cAMP accumulation in a PTX-sensitive manner. We conclude that S1P stimulates H2O2 generation through a PLC-Ca2+ system and also inhibits adenylyl cyclase in FRTL-5 thyroid cells. The S1P-induced responses may be mediated partly through a putative lipid receptor that is coupled to both PTX-sensitive and insensitive G proteins.

  7. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Čeřovský, M., E-mail: scholtz@aldebaran.cz; Khun, J.; Rusová, K.

    2013-09-15

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperaturemore » plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.« less

  8. Spermidine rescues proximal tubular cells from oxidative stress and necrosis after ischemic acute kidney injury.

    PubMed

    Kim, Jinu

    2017-10-01

    Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative stress and necrosis; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementation markedly attenuated increases in plasma creatinine concentration and tubular injury score after IRI. In addition, exogenous spermidine potently inhibited oxidative stress, especially lipid peroxidation after IRI in kidneys and exposure to hydrogen peroxide in kidney proximal tubular cells, suppressing plasma membrane disruption and necrosis. Consistent with spermidine supplementation, upregulation of ornithine decarboxylase (ODC) in human kidney proximal tubular cells significantly diminished lipid peroxidation and necrosis induced by hydrogen peroxide-induced injury. Conversely, ODC deficiency significantly enhanced lipid peroxidation and necrosis after exposure to hydrogen peroxide. Finally, small interfering RNA-mediated ODC inhibition induced functional and histological damage in kidneys as well as it increased lipid hydroperoxide levels after IRI. In conclusion, these data suggest that spermidine level determines kidney proximal tubular damage through oxidative stress and necrosis induced by IRI, and this finding provides a novel target for prevention of tubular damage induced by IRI.

  9. Modulatory effect of pineapple peel extract on lipid peroxidation, catalase activity and hepatic biomarker levels in blood plasma of alcohol-induced oxidative stressed rats

    PubMed Central

    Okafor, OY; Erukainure, OL; Ajiboye, JA; Adejobi, RO; Owolabi, FO; Kosoko, SB

    2011-01-01

    Objective To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation, changes in catalase activities and hepatic biochemical marker levels in blood plasma. Methods Oxidative stress was induced by oral administration of ethanol (20% w/v) at a dosage of 5 mL/kg bw in rats. After 28 days of treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Blood was collected with a 2 mL syringe by cardiac puncture and was centrifuged at 3 000 rpm for 10 min. The plasma was analyzed to evaluate malondialdehyde (MDA), catalase activity, aspartate aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT) concentrations. Results Administration of alcohol caused a drastic increase (87.74%) in MDA level compared with the control. Pineapple peel extract significantly reduced the MDA level by 60.16% at 2.5 mL/kg bw. Rats fed alcohol only had the highest catalase activity, treatment with pineapple peel extract at 2.5 mL/kg bw however, reduced the activity. Increased AST, ALP and ALT activities were observed in rats fed alcohol only respectively, treatment with pineapple peel extract drastically reduced their activities. Conclusions The positive modulation of lipid peroxidation, catalase activities as well as hepatic biomarker levels of blood plasma by the methanolic extract of pineapple peels under alcohol-induced oxidative stress is an indication of its protective ability in the management of alcohol-induced toxicity. PMID:23569717

  10. Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.).

    PubMed

    Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Schmeda-Hirschmann, Guillermo

    2005-04-06

    Methanol, MeOH/water extracts, infusion, and decoction of Cymbopogon citratus were assessed for free radical scavenging effects measured by the bleaching of the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical, scavenging of the superoxide anion, and inhibition of the enzyme xanthine oxidase (XO) and lipid peroxidation in human erythrocytes. The extracts presented effect in the DPPH and superoxide anion assay, with values ranging between 40 and 68% and 15-32% at 33 and 50 microg/mL, respectively, inhibited lipid peroxidation in erythrocytes by 19-71% at 500 microg/mL and were inactive toward the XO at 50 microg/mL. Isoorientin, isoscoparin, swertiajaponin, isoorientin 2' '-O-rhamnoside, orientin, chlorogenic acid, and caffeic acid were isolated and identified by spectroscopic methods. Isoorientin and orientin presented similar activities toward the DPPH (IC(50): 9-10 microM) and inhibited lipid peroxidation by 70% at 100 microg/mL. Caffeic and chlorogenic acid were active superoxide anion scavengers with IC(50) values of 68.8 and 54.2 microM, respectively, and a strong effect toward DPPH. Caffeic acid inhibited lipid peroxidation by 85% at 100 microg/mL.

  11. Tofacitinib restores the inhibition of reverse cholesterol transport induced by inflammation: understanding the lipid paradox associated with rheumatoid arthritis.

    PubMed

    Pérez-Baos, S; Barrasa, J I; Gratal, P; Larrañaga-Vera, A; Prieto-Potin, I; Herrero-Beaumont, G; Largo, R

    2017-09-01

    Patients with active rheumatoid arthritis (RA) have increased cardiovascular mortality, paradoxically associated with reduced circulating lipid levels. The JAK inhibitor tofacitinib ameliorates systemic and joint inflammation in RA with a concomitant increase in serum lipids. We analysed the effect of tofacitinib on the lipid profile of hyperlipidaemic rabbits with chronic arthritis (CA) and on the changes in reverse cholesterol transport (RCT) during chronic inflammation. CA was induced in previously immunized rabbits, fed a high-fat diet, by administering four intra-articular injections of ovalbumin. A group of rabbits received tofacitinib (10 mg·kg -1 ·day -1 ) for 2 weeks. Systemic and synovial inflammation and lipid content were evaluated. For in vitro studies, THP-1-derived macrophages were exposed to high lipid concentrations and then stimulated with IFNγ in the presence or absence of tofacitinib in order to study mediators of RCT. Tofacitinib decreased systemic and synovial inflammation and increased circulating lipid levels. Although it did not modify synovial macrophage density, it reduced the lipid content within synovial macrophages. In foam macrophages in culture, IFNγ further stimulated intracellular lipid accumulation, while the JAK/STAT inhibition provoked by tofacitinib induced lipid release by increasing the levels of cellular liver X receptor α and ATP-binding cassette transporter (ABCA1) synthesis. Active inflammation could be associated with lipid accumulation within macrophages of CA rabbits. JAK inhibition induced lipid release through RCT activation, providing a plausible explanation for the effect of tofacitinib on the lipid profile of RA patients. © 2017 The British Pharmacological Society.

  12. Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life.

    PubMed

    Citta, Anna; Folda, Alessandra; Scalcon, Valeria; Scutari, Guido; Bindoli, Alberto; Bellamio, Marco; Feller, Emiliano; Rigobello, Maria Pia

    2017-11-01

    Oxidation processes in milk and yogurt during the shelf life can result in an alteration of protein and lipid constituents. Therefore, the antioxidant properties of yogurt in standard conditions of preservation were evaluated. Total phenols, free radical scavenger activity, degree of lipid peroxidation, and protein oxidation were determined in plain and skim yogurts with or without fruit puree. After production, plain, skim, plain berries, and skim berries yogurts were compared during the shelf life up to 9 weeks. All types of yogurts revealed a basal antioxidant activity that was higher when a fruit puree was present but gradually decreased during the shelf life. However, after 5-8 weeks, antioxidant activity increased again. Both in plain and berries yogurts lipid peroxidation increased until the seventh week of shelf life and after decreased, whereas protein oxidation of all yogurts was similar either in the absence or presence of berries and increased during shelf life. During the shelf life, a different behavior between lipid and protein oxidation takes place and the presence of berries determines a protection only against lipid peroxidation.

  13. Simple Analysis of Lipid Inhibition Activity on an Adipocyte Micro-Cell Pattern Chip.

    PubMed

    Kim, Gi Yong; Yeom, Su-Jin; Jang, Sung-Chan; Lee, Chang-Soo; Roh, Changhyun; Jeong, Heon-Ho

    2018-06-04

    Polydimethyl-siloxane (PDMS) is often applied to fabricate cell chips. In this study, we fabricated an adipocyte microcell pattern chips using PDMS to analyze the inhibition activity of lipid droplets in mouse embryo fibroblast cells (3T3-L1) with anti-obesity agents. To form the PDMS based micropattern, we applied the micro-contact printing technique using PDMS micro-stamps that had been fabricated by conventional soft lithography. This PDMS micro-pattern enabled the selective growth of 3T3-L1 cells onto the specific region by preventing cell adhesion on the PDMS region. It then allowed growth of the 3T3-L1 cells in the chip for 10 days and confirmed that lipid droplets were formed in the 3T3-L1 cells. After treatment of orlistat and quercetin were treated in an adipocyte micro-cell pattern chip with 3T3-L1 cells for six days, we found that orlistat and quercetin exhibited fat inhibition capacities of 19.3% and 24.4% from 0.2 μM of lipid droplets in 3T3-L1 cells. In addition, we conducted a direct quantitative analysis of 3T3-L1 cell differentiation using Oil Red O staining. In conclusion, PDMS-based adipocyte micro-cell pattern chips may contribute to the development of novel bioactive compounds.

  14. Prompt inhibition of fMLP-induced Ca2+ mobilization by parenteral lipid emulsions in human neutrophils.

    PubMed

    Wanten, Geert; Rops, Angelique; van Emst-De Vries, Sjenet E; Naber, Ton; Willems, Peter H G M

    2002-04-01

    It remains unclear whether modulation of immune system functions by lipids contributes to the increased infection rate observed in patients treated with parenteral nutrition. We therefore evaluated the effects of lipid emulsions derived from fish oil [very long chain triglycerides (VLCT)], olive oil [long-chain triglycerides- mono-unsaturated fatty acid (LCT-MUFA)], soya oil [long-chain triglycerides (LCT)], or a physical mixture of coconut and soya oil [mixed long- and medium-chain triglycerides (LCT-MCT)] on neutrophil activation. N-formyl-methionyl-leucyl-phenylalanine (fMLP) evoked an immediate increase of the cytosolic Ca2+ concentration ([Ca2+](i,av)) in a suspension of neutrophils. When added 3 min before fMLP, however, all four lipid emulsions reduced the hormone-induced increase in [Ca2+](i,av) with the same efficacy but with different potency. Half-maximal inhibition was reached at emulsion concentrations of 0.24 mM VLCT, 0.32 mM LCT-MCT, 0.52 mM LCT, and 0.82 mM LCT-MUFA. Similarly to the lipids, the protein kinase C (PKC) activator PMA markedly reduced the fMLP-induced increase in [Ca2+](i,av). PMA inhibition was abolished by the PKC inhibitor staurosporine. In contrast, however, this drug did not interfere with the inhibitory lipid effect, indicating that the lipids act primarily in a PKC-independent manner. In summary, this study shows that nutritional lipids can evoke a prompt and significant attenuation of hormone-induced neutrophil stimulation and that the emulsions based on fish oil and a mixture of coconut oil and soya oil are among the most potent ones in this respect.

  15. Obesity and lipid stress inhibit carnitine acetyltransferase activity.

    PubMed

    Seiler, Sarah E; Martin, Ola J; Noland, Robert C; Slentz, Dorothy H; DeBalsi, Karen L; Ilkayeva, Olga R; An, Jie; Newgard, Christopher B; Koves, Timothy R; Muoio, Deborah M

    2014-04-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes.

  16. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect.

    PubMed

    Piao, Mei Jing; Kang, Kyoung Ah; Zhang, Rui; Ko, Dong Ok; Wang, Zhi Hong; You, Ho Jin; Kim, Hee Sun; Kim, Ju Sun; Kang, Sam Sik; Hyun, Jin Won

    2008-12-01

    We elucidated the cytoprotective effects of hyperoside (quercetin-3-O-galactoside) against hydrogen peroxide (H2O2)-induced cell damage. We found that hyperoside scavenged the intracellular reactive oxygen species (ROS) detected by fluorescence spectrometry, flow cytometry, and confocal microscopy. In addition, we found that hyperoside scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4)+H2O2) in a cell-free system, which was detected by electron spin resonance (ESR) spectrometry. Hyperoside was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population, and decreased DNA fragmentation. In addition, hyperoside pretreatment inhibited the H2O2-induced activation of caspase-3 measured in terms of levels of cleaved caspase-3. Hyperoside prevented H2O2-induced lipid peroxidation as well as protein carbonyl. In addition, hyperoside prevented the H2O2-induced cellular DNA damage, which was established by comet tail, and phospho histone H2A.X expression. Furthermore, hyperoside increased the catalase and glutathione peroxidase activities. Conversely, the catalase inhibitor abolished the cytoprotective effect of hyperoside from H2O2-induced cell damage. In conclusion, hyperoside was shown to possess cytoprotective properties against oxidative stress by scavenging intracellular ROS and enhancing antioxidant enzyme activity.

  17. Vitamin A and vitamin E isoforms stability and peroxidation potential of all-in-one admixtures for parenteral nutrition.

    PubMed

    Guidetti, Mariacristina; Sforzini, Annalisa; Bersani, Germana; Corsini, Catia; Grossi, Gabriele; Zolezzi, Carola; Fasano, Cinzia; Pironi, Loris

    2008-05-01

    In all-in-one admixtures (AIOs), vitamins can be degraded and lipid can be peroxidized by light exposure, oxygen action, and multiple chemical interactions. We investigated the impact of three commercial lipid emulsions and two multivitamin preparations on vitamin A and vitamin E chemical stability and lipid peroxidation potential of AIOs. A soybean oil (Soy), soybean/medium-chain triacylglycerol oil (MCT), and olive/soybean oil (Olive)-based emulsion (all 20%), and a lyophilized (Lyo) and emulsified (Emu) multivitamin compounds, were tested. Two AIOs for each lipid emulsion were prepared, the former with Lyo and the latter with Emu. The concentrations of retinol palmitate, alpha-gamma-delta-tocopherol, and malondialdehyde were analyzed in AIOs, immediately (T0) and 24 hours (T24) after compounding. Retinol palmitate, and alpha- and gamma-tocopherol were more stable in MCT-AIOs than in both Soy-AIOs and Olive-AIOs (p < 0.013; p < 0.001 respectively). Furthermore alpha-tocopherol was more stable in Lyo-AIOs than in Emu-AIOs (p < 0.004). Malondialdehyde (MDA) increased differently among the admixtures; however the concentrations were similar in all AIOs at T24. The differences in retinol palmitate stability were due both to lipid emulsions per se and to interaction between lipid emulsions and multivitamin preparations. The alpha-gamma-tocopherol stability depended on both lipid emulsions and multivitamin preparations. In tested AIOs there was a different degradation rate of fat-soluble vitamins to keep the same lipid peroxidation level, since MDA concentrations at T24 were similar among AIOs.

  18. Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella.

    PubMed

    Büyükgüzel, Ender; Büyükgüzel, Kemal; Snela, Milena; Erdem, Meltem; Radtke, Katarzyna; Ziemnicki, Kazimierz; Adamski, Zbigniew

    2013-04-01

    Boric acid is widely used as an insecticide, acaricide, herbicide, and fungicide and also during various industrial processings. Hence, numerous populations are subjects to this toxic compound. Its action on animals is still not fully known and understood. We examined the effect of boric acid on larvae of greater wax moth (Galleria mellonella). The chemical appeared to be toxic for larvae, usually in a concentration-dependent manner. Exposed groups revealed increased lipid peroxidation and altered activity of catalase, superoxide dismutase, glutathione S-transferase, and glutathione peroxidase. We also observed changes of ultrastructure, which were in tune with biochemical assays. We suggest that boric acid has a broad mode of action, which may affect exposed larvae, and even if sublethal, they may lead to disturbances within exposed populations.

  19. Evaluation of lipid peroxidation and antioxidant status on fenvalerate, nitrate and their co-exposure in Bubalus bubalis.

    PubMed

    Gill, Kamalpreet Kaur; Sandhu, Harpal Singh; Kaur, Rajdeep

    2015-09-01

    The toxic effects of pesticides and minerals have been explored in different species, but still there is paucity of information regarding their combined toxicological effects. The present investigation reports oxidative stress induced by oral subacute exposure to fenvalerate (1 mg/kg) and sodium nitrate (20 mg/kg) alone, as well as in combination daily for 21 days in buffalo calves. Fenvalerate exposure produced significant elevation in lipid peroxidation (LPO), glutathione peroxidase (GPx), while it produced significant decline in blood glutathione (GSH) levels, superoxide dismutase (SOD) and catalase (CAT). No significant alteration was evidenced in nitric oxide (NOx) levels. Oral exposure to sodium nitrate produced significant inclination in LPO and NOx, while on the other hand significant depreciation in SOD and CAT with no significant change in GPx activity. Combined exposure to fenvalerate and sodium nitrate produced severe effects with an appreciably more prominent elevation in extent of LPO and decline in blood GSH levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effect of antioxidant potential of tropical fruit juices on antioxidant enzyme profiles and lipid peroxidation in rats.

    PubMed

    Pereira, Ana Carolina da Silva; Dionísio, Ana Paula; Wurlitzer, Nedio Jair; Alves, Ricardo Elesbão; de Brito, Edy Souza; e Silva, Ana Mara de Oliveira; Brasil, Isabella Montenegro; Mancini Filho, Jorge

    2014-08-15

    Fruits are a rich source of a variety of biologically active compounds that can have complementary and overlapping mechanisms of action, including detoxification, enzyme modulation and antioxidant effects. Although the effects of tropical fruits have been examined individually, the interactive antioxidant capacity of the bioactive compounds in these formulations has not been sufficiently explored. For this reason, this study investigated the effect of two tropical fruit juices (FA and FB) on lipid peroxidation and antioxidant enzymes in rats. Seven groups, with eight rats each, were fed a normal diet for 4 weeks, and were force-fed daily either water (control), 100, 200, or 400 mg of FA or FB per kg. The results showed that the liver superoxide dismutase and catalase activities (FA200), erythrocytes glutathione peroxidase (FB400) and thiobarbituric acid-reactive substances (FB100, FA400, FB200, FB400) were efficiently reduced by fruit juices when compared with control; whereas HDL-c increased (FB400). Copyright © 2014. Published by Elsevier Ltd.

  1. Lipids Derived from Virulent Francisella tularensis Broadly Inhibit Pulmonary Inflammation via Toll-Like Receptor 2 and Peroxisome Proliferator-Activated Receptor α

    PubMed Central

    Crane, Deborah D.; Ireland, Robin; Alinger, Joshua B.; Small, Pamela

    2013-01-01

    Francisella tularensis is a Gram-negative facultative intracellular pathogen that causes an acute lethal respiratory disease in humans. The heightened virulence of the pathogen is linked to its unique ability to inhibit Toll-like receptor (TLR)-mediated inflammatory responses. The bacterial component and mechanism of this inhibition are unknown. Here we show that lipids isolated from virulent but not attenuated strains of F. tularensis are not detected by host cells, inhibit production of proinflammatory cytokines by primary macrophages in response to known TLR ligands, and suppress neutrophil recruitment in vivo. We further show that lipid-mediated inhibition of inflammation is dependent on TLR2, MyD88, and the nuclear hormone and fatty acid receptor peroxisome proliferator-activated receptor α (PPARα). Pathogen lipid-mediated interference with inflammatory responses through the engagement of TLR2 and PPARα represents a novel manipulation of host signaling pathways consistent with the ability of highly virulent F. tularensis to efficiently evade host immune responses. PMID:23925884

  2. Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro.

    PubMed

    Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti; Athayde, Margareth Linde; Shode, Francis O

    2016-01-01

    Elevated uric acid level, an index of gout resulting from the over-activity of xanthine oxidase (XO), increases the risk of developing hypertension. However, research has shown that plant-derived inhibitors of XO and angiotensin 1-converting enzyme (ACE), two enzymes implicated in gout and hypertension, respectively, can prevent or ameliorate both diseases, without noticeable side effects. Hence, this study characterized the polyphenolics composition of guava leaves extract and evaluated its inhibitory effect on XO and ACE in vitro. The polyphenolics (flavonoids and phenolic acids) were characterized using high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD). The XO, ACE, and Fe(2+)-induced lipid peroxidation inhibitory activities, and free radicals (2,2-diphenylpicrylhydrazyl [DPPH]* and 2,2´-azino-bis-3-ethylbenzthiazoline-6-sulphonic [ABTS]*(+)) scavenging activities of the extract were determined using spectrophotometric methods. Flavonoids were present in the extract in the order of quercetin > kaempferol > catechin > quercitrin > rutin > luteolin > epicatechin; while phenolic acids were in the order of caffeic acid > chlorogenic acid > gallic acids. The extract effectively inhibited XO, ACE and Fe(2+)-induced lipid peroxidation in a dose-dependent manner; having half-maximal inhibitory concentrations (IC50) of 38.24 ± 2.32 μg/mL, 21.06 ± 2.04 μg/mL and 27.52 ± 1.72 μg/mL against XO, ACE and Fe(2+)-induced lipid peroxidation, respectively. The extract also strongly scavenged DPPH* and ABTS*(+). Guava leaves extract could serve as functional food for managing gout and hypertension and attenuating the oxidative stress associated with both diseases.

  3. PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1.

    PubMed

    Fiory, Francesca; Parrillo, Luca; Raciti, Gregory Alexander; Zatterale, Federica; Nigro, Cecilia; Mirra, Paola; Falco, Roberta; Ulianich, Luca; Di Jeso, Bruno; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2014-01-01

    The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15) mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15)). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15) cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15). These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.

  4. Protective effects of Sonchus asper against KBrO3 induced lipid peroxidation in rats

    PubMed Central

    2012-01-01

    Background Sonchus asper is traditionally used in Pakistan for the treatment of reproductive dysfunction and oxidative stress. The present investigation was aimed to evaluate chloroform extract of Sonchus asper (SACE) against potassium bromate-induced reproductive stress in male rats. Methods 20 mg/kg body weight (b.w.) potassium bromate (KBrO3) was induced in 36 rats for four weeks and checked the protective efficacy of SACE at various hormonal imbalances, alteration of antioxidant enzymes, and DNA fragmentation levels. High performance chromatography (HPLC) was used for determination of bioactive constituents responsible. Results The level of hormonal secretion was significantly altered by potassium bromate. DNA fragmentation%, activity of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and phase II metabolizing enzymes viz; glutathione reductase (GSR), glutathione peroxidase (GSHpx), glutathione-S-tansase (GST) and reduced glutathione (GSH) was decreased while hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with KBrO3 treatment. Treatment with SACE effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels while HPLC characterization revealed the presence of catechin, kaempferol, rutin and quercetin. Conclusion Protective effects of Sonchus asper vs. KBrO3 induced lipid peroxidation might be due to bioactive compound present in SACE. PMID:23186106

  5. Protective effects of Sonchus asper against KBrO3 induced lipid peroxidation in rats.

    PubMed

    Khan, Rahmat Ali; Khan, Muhammad Rashid; Sahreen, Sumaira

    2012-11-27

    Sonchus asper is traditionally used in Pakistan for the treatment of reproductive dysfunction and oxidative stress. The present investigation was aimed to evaluate chloroform extract of Sonchus asper (SACE) against potassium bromate-induced reproductive stress in male rats. 20 mg/kg body weight (b.w.) potassium bromate (KBrO3) was induced in 36 rats for four weeks and checked the protective efficacy of SACE at various hormonal imbalances, alteration of antioxidant enzymes, and DNA fragmentation levels. High performance chromatography (HPLC) was used for determination of bioactive constituents responsible. The level of hormonal secretion was significantly altered by potassium bromate. DNA fragmentation%, activity of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and phase II metabolizing enzymes viz; glutathione reductase (GSR), glutathione peroxidase (GSHpx), glutathione-S-tansase (GST) and reduced glutathione (GSH) was decreased while hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with KBrO3 treatment. Treatment with SACE effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels while HPLC characterization revealed the presence of catechin, kaempferol, rutin and quercetin. Protective effects of Sonchus asper vs. KBrO3 induced lipid peroxidation might be due to bioactive compound present in SACE.

  6. Structural and antioxidant modification of wheat peptides modified by the heat and lipid peroxidation product malondialdehyde.

    PubMed

    Tang, Xue; Wu, Qiuping; Le, Guowei; Wang, Jiao; Yin, Kaijian; Shi, Yonghui

    2012-01-01

    Wheat peptides, the biological active peptides derived from foods, has an array of biological actions, including antiobesity, antimicrobial, and angiotensin I-converting enzyme inhibitory effects in mammalian species. Recent studies showed that some wheat peptides may show the noteworthy antioxidant potency against the peroxidation of lipids or fatty acids, but the effect of oxidation on its antioxidant activities is unclear. In the present study, we demonstrate that heat and malandialdehyde (MDA)-oxidized wheat peptides lose its surface hydrophobicity and reducing power, and show a relatively lower free radical-scavenging activitiy in vitro. Those modifications also lead to gradual formation of aggregates in wheat peptides and induce more reactive oxygen species (ROS) production in vivo. These findings indicate that oxidation may influence the functional properties and directly alter the structure of wheat peptides, and lead to the loss of its antioxidant potency both in vitro and in vivo, thereby providing a novel explanation for some of the potential health risks proposed for oxidized food in human. © 2011 Institute of Food Technologists®

  7. Lipid-free apolipoprotein A-I and discoidal reconstituted high-density lipoproteins differentially inhibit glucose-induced oxidative stress in human macrophages.

    PubMed

    Tabet, Fatiha; Lambert, Gilles; Cuesta Torres, Luisa F; Hou, Liming; Sotirchos, Irene; Touyz, Rhian M; Jenkins, Alicia J; Barter, Philip J; Rye, Kerry-Anne

    2011-05-01

    The goal of this study was to investigate the mechanisms by which apolipoprotein (apo) A-I, in the lipid-free form or as a constituent of discoidal reconstituted high-density lipoproteins ([A-I]rHDL), inhibits high-glucose-induced redox signaling in human monocyte-derived macrophages (HMDM). HMDM were incubated under normal (5.8 mmol/L) or high-glucose (25 mmol/L) conditions with native high-density lipoproteins (HDL) lipid-free apoA-I from normal subjects and from subjects with type 2 diabetes (T2D) or (A-I)rHDL. Superoxide (O2-) production was measured using dihydroethidium fluorescence. NADPH oxidase activity was assessed using lucigenin-derived chemiluminescence and a cyotochrome c assay. p47phox translocation to the plasma membrane, Nox2, superoxide dismutase 1 (SOD1), and SOD2 mRNA and protein levels were determined by real-time polymerase chain reaction and Western blotting. Native HDL induced a time-dependent inhibition of O2- generation in HMDM incubated with 25 mmol/L glucose. Lipid-free apoA-I and (A-I)rHDL increased SOD1 and SOD2 levels and attenuated 25 mmol/L glucose-mediated increases in cellular O2-, NADPH oxidase activity, p47 translocation, and Nox2 expression. Lipid-free apoA-I mediated its effects on Nox2, SOD1, and SOD2 via ABCA1. (A-I)rHDL-mediated effects were via ABCG1 and scavenger receptor BI. Lipid-free apoA-I from subjects with T2D inhibited reactive oxygen species generation less efficiently than normal apoA-I. Native HDL, lipid-free apoA-I and (A-I)rHDL inhibit high-glucose-induced redox signaling in HMDM. The antioxidant properties of apoA-I are attenuated in T2D.

  8. Hydrogen peroxide inhibits iodide influx and enhances iodide efflux in cultured FRTL-5 rat thyroid cells.

    PubMed

    Sugawara, M; Yamaguchi, D T; Lee, H Y; Yanagisawa, K; Murakami, S; Summer, C N; Johnson, D G; Levin, S R

    1990-05-01

    This study describes the effects of hydrogen peroxide on the two iodide transport systems, I influx and I efflux, in the cultured FRTL-5 rat thyroid cells. I influx was measured by the amount of I taken up by the cells during incubation with Na125I and NaI for 7 min, and I efflux was measured by calculating the rate of 125I release from the 125I-loaded cells in the presence and absence of 5 mmol/l H2O2. Exposure to greater than 100 mumol/l H2O2 for 40 min caused a significant inhibition of I influx; the inhibition was reversible and non-competitive with iodide. Thyroid Na+K+ ATPase activity, a major mechanism to drive I influx, decreased by 40% after the cells were exposed to 5 mmol/l H2O2 for 10 min. H2O2 enhanced I efflux only when Ca2+ was present in the medium. The mechanism of an enhanced I efflux by H2O2 appears to be mediated through the elevation of free cytosolic Ca2+ concentration. Our data indicate that H2O2 can affect I transport by inhibiting I influx and enhancing I efflux.

  9. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jun; Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4)more » which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.« less

  10. Cytotoxic effect of fenitrothion and lambda-cyhalothrin mixture on lipid peroxidation and antioxidant defense system in rat kidney.

    PubMed

    El-Demerdash, Fatma M

    2012-01-01

    A mixture of pyrethroids plus organophosphates was assessed for their potential effects on lipid peroxidation, the antioxidant defense system and lactate dehydrogenase (LDH) in rat kidney in vitro. Various insecticide concentrations were incubated with kidney homogenate at 37°C for different incubation times. Treatment with fenitothion (FNT) plus lambda-cyhalothrin (LC) caused a significant induction (P < 0.05) in thiobarbituric acid reactive substances (TBARS), which might be associated to decreased levels of reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) activities and protein content in rat kidney. However, a significant induction of lactate dehydrogenase (LDH) activity was observed. The effect was concentration and time dependent. It can be concluded that depletion of GSH might indicate that reactive oxygen species (ROS) could be involved in the toxic effects of FNT plus LC which lead to marked perturbations in antioxidant defense system.

  11. Changes on lipid peroxidation,enzymatic activities and gene expression in planarian (Dugesia japonica) following exposure to perfluorooctanoic acid.

    PubMed

    Yuan, Zuoqing; Miao, Zili; Gong, Xiaoning; Zhao, Baoying; Zhang, Yuanyuan; Ma, Hongdou; Zhang, Jianyong; Zhao, Bosheng

    2017-11-01

    We investigated perfluorooctanoic acid (PFOA)-induced stress response in planarians. We administered different concentrations of PFOA to planarians for up to 10 d. PFOA exposure resulted in significant concentration-dependent elevations in lipid peroxidation, glutathione S-transferase and caspase-3 protease activities, and a significant decline in glutathione peroxidase activities compared with control groups. Exposure to PFOA significantly up-regulated the heat shock proteins hsp70 and hsp90, and p53, and down-regulated hsp40 compared with controls. PFOA exposure also increased HSP70 protein levels, as demonstrated by western blot analysis. These alterations indicated that PFOA exposure induced a stress response and affected the regulation of oxidative stress, enzymatic activities and gene expression. These results suggest that these sensitive parameters, together with other biomarkers, could be used for evaluating toxicity, for ecological risk assessment of PFOA in freshwaters. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  13. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway.

    PubMed

    Gong, Juanjuan; Sun, Fumou; Li, Yihang; Zhou, Xiaoling; Duan, Zhenzhen; Duan, Fugang; Zhao, Lei; Chen, Hansen; Qi, Suhua; Shen, Jiangang

    2015-04-01

    Momordica charantia (MC) is a medicinal plant for stroke treatment in Traditional Chinese Medicine, but its active compounds and molecular targets are unknown yet. M. charantia polysaccharide (MCP) is one of the important bioactive components in MC. In the present study, we tested the hypothesis that MCP has neuroprotective effects against cerebral ischemia/reperfusion injury through scavenging superoxide (O2(-)), nitric oxide (NO) and peroxynitrite (ONOO(-)) and inhibiting c-Jun N-terminal protein kinase (JNK3) signaling cascades. We conducted experiments with in vivo global and focal cerebral ischemia/reperfusion rat models and in vitro oxygen glucose deprivation (OGD) neural cells. The effects of MCP on apoptotic cell death and infarction volume, the bioactivities of scavenging O2(-), NO and ONOO(-), inhibiting lipid peroxidation and modulating JNK3 signaling pathway were investigated. Major results are summarized as below: (1) MCP dose-dependently attenuated apoptotic cell death in neural cells under OGD condition in vitro and reduced infarction volume in ischemic brains in vivo; (2) MCP had directing scavenging effects on NO, O2(-) and ONOO(-) and inhibited lipid peroxidation; (3) MCP inhibited the activations of JNK3/c-Jun/Fas-L and JNK3/cytochrome C/caspases-3 signaling cascades in ischemic brains in vivo. Taken together, we conclude that MCP could be a promising neuroprotective ingredient of M. charantia and its mechanisms could be at least in part attributed to its antioxidant activities and inhibiting JNK3 signaling cascades during cerebral ischemia/reperfusion injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Dentate gyrus-cornu ammonis (CA) 4 volume is decreased and associated with depressive episodes and lipid peroxidation in bipolar II disorder: Longitudinal and cross-sectional analyses.

    PubMed

    Elvsåshagen, Torbjørn; Zuzarte, Pedro; Westlye, Lars T; Bøen, Erlend; Josefsen, Dag; Boye, Birgitte; Hol, Per K; Malt, Ulrik F; Young, L Trevor; Andreazza, Ana C

    2016-12-01

    Reduced dentate gyrus volume and increased oxidative stress have emerged as potential pathophysiological mechanisms in bipolar disorder. However, the relationship between dentate gyrus volume and peripheral oxidative stress markers remains unknown. Here, we examined dentate gyrus-cornu ammonis (CA) 4 volume longitudinally in patients with bipolar II disorder (BD-II) and healthy controls and investigated whether BD-II is associated with elevated peripheral levels of oxidative stress. We acquired high-resolution structural 3T-magnetic resonance imaging (MRI) images and quantified hippocampal subfield volumes using an automated segmentation algorithm in individuals with BD-II (n=29) and controls (n=33). The participants were scanned twice, at study inclusion and on average 2.4 years later. In addition, we measured peripheral levels of two lipid peroxidation markers (4-hydroxy-2-nonenal [4-HNE] and lipid hydroperoxides [LPH]). First, we demonstrated that the automated hippocampal subfield segmentation technique employed in this work reliably measured dentate gyrus-CA4 volume. Second, we found a decreased left dentate gyrus-CA4 volume in patients and that a larger number of depressive episodes between T1 and T2 predicted greater volume decline. Finally, we showed that 4-HNE was elevated in BD-II and that 4-HNE was negatively associated with left and right dentate gyrus-CA4 volumes in patients. These results are consistent with a role for the dentate gyrus in the pathophysiology of bipolar disorder and suggest that depressive episodes and elevated oxidative stress might contribute to hippocampal volume decreases. In addition, these findings provide further support for the hypothesis that peripheral lipid peroxidation markers may reflect brain alterations in bipolar disorders. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Stimulation, Inhibition, or Stabilization of Na,K-ATPase Caused by Specific Lipid Interactions at Distinct Sites

    PubMed Central

    Habeck, Michael; Haviv, Haim; Katz, Adriana; Kapri-Pardes, Einat; Ayciriex, Sophie; Shevchenko, Andrej; Ogawa, Haruo; Toyoshima, Chikashi; Karlish, Steven J. D.

    2015-01-01

    The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-l-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70–80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump. PMID:25533463

  16. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-04-01

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins.

  17. Minocycline increases the life span and motor activity and decreases lipid peroxidation in manganese treated Drosophila melanogaster.

    PubMed

    Bonilla, E; Contreras, R; Medina-Leendertz, S; Mora, M; Villalobos, V; Bravo, Y

    2012-03-29

    The objective of this study was to investigate the effect of Minocycline in the life span, motor activity, and lipid peroxidation of Drosophila melanogaster treated with manganese. Two days after emerging from the pupa male wild-type D. melanogaster were fed for 13 days with corn media containing 15 mM manganese. Then, they were divided in six groups of 300 flies each: group (a) remained treated with manganese (Mn group); group (b) began treatment with Minocycline (0.05 mM) (Mn-Minocycline group); group (c) received no additional treatment (Mn-no treatment group); group (d) simultaneously fed with manganese and Minocycline (Mn+Minocycline group). Additionally, a control (group e) with no treatment and another group (f) fed only with Minocycline after emerging from the pupa were added. All the manganese treated flies (group a) were dead on the 25th day. The life span in group f (101.66±1.33 days, mean S.E.M.) and of group b (97.00±3.46 days) were similar, but in both cases it was significantly higher than in group e (68.33±1.76 days), group c (67.05±2.30 days) and in those of group d (37.33±0.88). Manganese (groups a and d) decreased motor activity in D. melanogaster. In the Minocycline fed flies (groups b and f) a higher motor activity was detected. In Mn-Minocycline and Mn+Minocycline treated flies a significant decrease of MDA levels was detected when compared to the Minocycline group indicating that Minocycline and Mn appear to have a synergistic effect. In conclusion, Minocycline increased the life span and motor activity and decreased MDA formation of manganese treated D. melanogaster, probably by an inhibition of the production of reactive oxygen species. Manganese also exerted an antioxidant effect as shown by the significant decrease of MDA levels when compared to control flies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Feruloylserotonin inhibits hydrogen peroxide-induced melanogenesis and apoptosis in B16F10 and SK-Mel-2 melanoma cells.

    PubMed

    Cho, Hyejoung; Kim, Okjoon; Lee, Younghee; Kang, Li-Jung; Nguyen, Cam Ngoc; Ishihara, Atsushi; Kim, Hye-Eun

    2017-09-30

    Feruloylserotonin (FS) is a major bioactive component of safflower seeds, with documented strong antibacterial, anti-inflammatory, and free radical scavenging activities. Reactive oxygen species (ROS) can strongly induce melanogenesis and cell apoptosis. The present study aimed to investigate the ability of FS in preventing hydrogen peroxide (H 2 O 2 )-induced melanogenesis and cell apoptosis. Melanogenesis and apoptotic cell death were induced by transient exposure to H 2 O 2 in B16F10 and SK-Mel-2 melanoma cells. FS significantly inhibited melanogenesis and cell death in both cell lines. FS inhibited H 2 O 2 -induced melanin production by down-regulating CREB/MITF/TYR signaling via inhibited intracellular cAMP accumulation. Additionally, FS induced extracellular regulated kinase activation, which led to the degradation of MITF and consequently decreased TYR expression and melanin production in H 2 O 2 -stimulated cells. Furthermore, FS inhibited H 2 O 2 -induced apoptotic cell death by maintaining mitochondrial membrane potential. Therefore, FS might have potential use for cosmetic whitening and as a therapeutic agent for hyperpigmentation disorder. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. [The dependence of lipid peroxidation state and the antioxidant system of the myocardium from the thyroid status during short action of stressors].

    PubMed

    Gorodetskaia, I V; Evdokimova, O V

    2013-11-01

    In experiments at 78 adult white outbred male rats were demonstrated that experimental hypothyroidism (injection of 25 mg/kg merkazolil within 20 days) stimulates, while small doses of L-thyroxine (1.5-3.0 μg/kg within 28 days) limit the intensification of lipid peroxidation in the myocardium under short exposure to stressors of a different nature: physical (t 4-5 °C within 30 minutes), chemical (injection of 25% ethanol at a dose of 3.5 g/kg body weight), and emotional (free swimming of rats in the cage within 30 minutes) by influence on the activity of enzymatic (superoxide dismutase and catalase) and non-enzymatic (reduced glutathione) components of the antioxidant system.

  20. Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence.

    PubMed

    Choy, Christopher H; Saffi, Golam; Gray, Matthew A; Wallace, Callen; Dayam, Roya M; Ou, Zhen-Yi A; Lenk, Guy; Puertollano, Rosa; Watkins, Simon C; Botelho, Roberto J

    2018-05-21

    Lysosomes receive and degrade cargo from endocytosis, phagocytosis and autophagy. They also play an important role in sensing and instructing cells on their metabolic state. The lipid kinase PIKfyve generates phosphatidylinositol-3,5-bisphosphate to modulate lysosome function. PIKfyve inhibition leads to impaired degradative capacity, ion dysregulation, abated autophagic flux and a massive enlargement of lysosomes. Collectively, this leads to various physiological defects, including embryonic lethality, neurodegeneration and overt inflammation. The reasons for such drastic lysosome enlargement remain unclear. Here, we examined whether biosynthesis and/or fusion-fission dynamics contribute to swelling. First, we show that PIKfyve inhibition activates TFEB, TFE3 and MITF, enhancing lysosome gene expression. However, this did not augment lysosomal protein levels during acute PIKfyve inhibition, and deletion of TFEB and/or related proteins did not impair lysosome swelling. Instead, PIKfyve inhibition led to fewer but enlarged lysosomes, suggesting that an imbalance favouring lysosome fusion over fission causes lysosome enlargement. Indeed, conditions that abated fusion curtailed lysosome swelling in PIKfyve-inhibited cells. © 2018. Published by The Company of Biologists Ltd.

  1. Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation.

    PubMed

    Uchendu, Esther E; Leonard, Scott W; Traber, Maret G; Reed, Barbara M

    2010-01-01

    Oxidative processes involved in cryopreservation protocols may be responsible for the reduced viability of tissues after liquid nitrogen exposure. Antioxidants that counteract these reactions should improve recovery. This study focused on oxidative lipid injury and the effects of exogenous vitamin E (tocopherol, Vit E) and vitamin C (ascorbic acid, Vit C) treatments on regrowth at four critical steps of the plant vitrification solution number 2 (PVS2) vitrification cryopreservation technique; pretreatment, loading, rinsing, and regrowth. Initial experiments showed that Vit E at 11-15 mM significantly increased regrowth (P < 0.001) when added at any of the four steps. There was significantly more malondialdehyde (MDA), a lipid peroxidation product, at each of the steps than in fresh untreated shoot tips. Vit E uptake was assayed at each step and showed significantly more alpha- and gamma-tocopherols in treated shoots than those without Vit E. Vit E added at each step significantly reduced MDA formation and improved shoot regrowth. Vit C (0.14-0.58 mM) also significantly improved regrowth of shoot tips at each step compared to the controls. Regrowth medium with high iron concentrations and Vit C decreased recovery. However, in iron-free medium, Vit C significantly improved recovery. Treatments with Vit E (11 mM) and Vit C (0.14 mM) combined were not significantly better than Vit C alone. We recommend adding Vit C (0.28 mM) to the pretreatment medium, the loading solution or the rinse solution in the PVS2 vitrification protocol. This is the first report of the application of vitamins for improving cryopreservation of plant tissues by minimizing oxidative damage.

  2. Nature of Interactions between PEO-PPO-PEO Triblock Copolymers and Lipid Membranes: (I) The Effect of Polymer Hydrophobicity on Its Ability to Protect Liposomes from Peroxidation

    PubMed Central

    Wang, Jia-Yu; Marks, Jeremy; Lee, Ka Yee C.

    2013-01-01

    PEO-PPO-PEO triblock copolymers have opposing effects on lipid membrane integrity- they can behave either as membrane sealants or as membrane permeabilizers. To gain insights into their biomembrane activities, the fundamental interactions between a series of PEO-based polymers and phospholipid vesicles were investigated. Specifically, the effect of copolymer hydrophobicity on its ability to prevent liposomes from peroxidation was evaluated, and partitioning free energy and coefficient involved in the interactions were derived. Our results show that the high degree of hydrophilicity is a key feature of the copolymers that can effectively protect liposomes from peroxidation and the protective effect of the copolymers stems from their adsorption at the membrane surface without penetrating into the bilayer core. The origin of this protective effect induced by polymer absorption is attributed to the retardation of membrane hydration dynamics, which is further illustrated in the accompany study on dynamic nuclear polarization (DNP)-derived hydration dynamics1. PMID:22808900

  3. Drinking carrot juice increases total antioxidant status and decreases lipid peroxidation in adults.

    PubMed

    Potter, Andrew S; Foroudi, Shahrzad; Stamatikos, Alexis; Patil, Bhimanagouda S; Deyhim, Farzad

    2011-09-24

    High prevalence of obesity and cardiovascular disease is attributable to sedentary lifestyle and eating diets high in fat and refined carbohydrate while eating diets low in fruit and vegetables. Epidemiological studies have confirmed a strong association between eating diets rich in fruits and vegetables and cardiovascular health. The aim of this pilot study was to determine whether drinking fresh carrot juice influences antioxidant status and cardiovascular risk markers in subjects not modifying their eating habits. An experiment was conducted to evaluate the effects of consuming 16 fl oz of daily freshly squeezed carrot juice for three months on cardiovascular risk markers, C-reactive protein, insulin, leptin, interleukin-1α, body fat percentage, body mass index (BMI), blood pressure, antioxidant status, and malondialdehyde production. Fasting blood samples were collected pre-test and 90 days afterward to conclude the study. Drinking carrot juice did not affect (P > 0.1) the plasma cholesterol, triglycerides, Apo A, Apo B, LDL, HDL, body fat percentage, insulin, leptin, interleukin-1α, or C-reactive protein. Drinking carrot juice decreased (P = 0.06) systolic pressure, but did not influence diastolic pressure. Drinking carrot juice significantly (P < 0.05) increased the plasma total antioxidant capacity and decreased (P < 0.05) the plasma malondialdehyde production. Drinking carrot juice may protect the cardiovascular system by increasing total antioxidant status and by decreasing lipid peroxidation independent of any of the cardiovascular risk markers measured in the study.

  4. Docosahexaenoic Acid Inhibits Cerulein-Induced Acute Pancreatitis in Rats

    PubMed Central

    Jeong, Yoo Kyung; Lee, Sle; Lim, Joo Weon

    2017-01-01

    Oxidative stress is an important regulator in the pathogenesis of acute pancreatitis (AP). Reactive oxygen species induce activation of inflammatory cascades, inflammatory cell recruitment, and tissue damage. NF-κB regulates inflammatory cytokine gene expression, which induces an acute, edematous form of pancreatitis. Protein kinase C δ (PKCδ) activates NF-κB as shown in a mouse model of cerulein-induced AP. Docosahexaenoic acid (DHA), an ω-3 fatty acid, exerts anti-inflammatory and antioxidant effects in various cells and tissues. This study investigated whether DHA inhibits cerulein-induced AP in rats by assessing pancreatic edema, myeloperoxidase activity, levels of lipid peroxide and IL-6, activation of NF-κB and PKCδ, and by histologic observation. AP was induced by intraperitoneal injection (i.p.) of cerulein (50 μg/kg) every hour for 7 h. DHA (13 mg/kg) was administered i.p. for three days before AP induction. Pretreatment with DHA reduced cerulein-induced activation of NF-κB, PKCδ, and IL-6 in pancreatic tissues of rats. DHA suppressed pancreatic edema and decreased the abundance of lipid peroxide, myeloperoxidase activity, and inflammatory cell infiltration into the pancreatic tissues of cerulein-stimulated rats. Therefore, DHA may help prevent the development of pancreatitis by suppressing the activation of NF-κB and PKCδ, expression of IL-6, and oxidative damage to the pancreas. PMID:28704954

  5. Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress

    PubMed Central

    Colville, Louise

    2012-01-01

    The volatile compounds released by orthodox (desiccation-tolerant) seeds during ageing can be analysed using gas chromatography–mass spectrometry (GC-MS). Comparison of three legume species (Pisum sativum, Lathyrus pratensis, and Cytisus scoparius) during artificial ageing at 60% relative humidity and 50 °C revealed variation in the seed volatile fingerprint between species, although in all species the overall volatile concentration increased with storage period, and changes could be detected prior to the onset of viability loss. The volatile compounds are proposed to derive from three main sources: alcoholic fermentation, lipid peroxidation, and Maillard reactions. Lipid peroxidation was confirmed in P. sativum seeds through analysis of malondialdehyde and 4-hydroxynonenal. Volatile production by ageing orthodox seeds was compared with that of recalcitrant (desiccation-sensitive) seeds of Quercus robur during desiccation. Many of the volatiles were common to both ageing orthodox seeds and desiccating recalcitrant seeds, with alcoholic fermentation forming the major source of volatiles. Finally, comparison was made between two methods of analysis; the first used a Tenax adsorbent to trap volatiles, whilst the second used solid phase microextraction to extract volatiles from the headspace of vials containing powdered seeds. Solid phase microextraction was found to be more sensitive, detecting a far greater number of compounds. Seed volatile analysis provides a non-invasive means of characterizing the processes involved in seed deterioration, and potentially identifying volatile marker compounds for the diagnosis of seed viability loss. PMID:23175670

  6. Inhibition of lipid oxidation in frozen farmed ovate pompano (Trachinotus ovatus L.) fillets stored at -18 °C by chitosan coating incorporated with citric acid or licorice extract.

    PubMed

    Qiu, Xujian; Chen, Shengjun; Liu, Guangming; Lin, Hong

    2016-08-01

    Lipid oxidation can occur in fish fillets during long-term frozen storage and cause quality and nutrition loss, which is a major concern in the seafood industry. Our previous study showed that chitosan combined with citric acid or licorice extract can have a preserving effect on fresh fish fillets stored at 4 °C. It is of interest to further study their antioxidant effects on fish fillets during frozen storage. Chitosan, chitosan and citric acid, chitosan and licorice extract can inhibit primary and secondary lipid oxidation, as indicated by lower peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) values compared to the control samples. In addition, drip loss was decreased in the treatment samples. Both citric acid and licorice extract enhanced the antioxidant effects of chitosan. Among all the three treatments, chitosan and licorice extract showed the best antioxidant effects, reducing both PV and TBARS significantly at the end of storage. The combination of chitosan and citric acid or licorice extract showed significant antioxidant effects on ovate pompano fillets at -18 °C during 6 months of storage. They could be applied as natural antioxidant preservatives for use in seafood products or other meat products. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Obesity and lipid stress inhibit carnitine acetyltransferase activity[S

    PubMed Central

    Seiler, Sarah E.; Martin, Ola J.; Noland, Robert C.; Slentz, Dorothy H.; DeBalsi, Karen L.; Ilkayeva, Olga R.; An, Jie; Newgard, Christopher B.; Koves, Timothy R.; Muoio, Deborah M.

    2014-01-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes. PMID:24395925

  8. Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro

    PubMed Central

    Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti; Athayde, Margareth Linde; Shode, Francis O.

    2016-01-01

    Background/Aim: Elevated uric acid level, an index of gout resulting from the over-activity of xanthine oxidase (XO), increases the risk of developing hypertension. However, research has shown that plant-derived inhibitors of XO and angiotensin 1-converting enzyme (ACE), two enzymes implicated in gout and hypertension, respectively, can prevent or ameliorate both diseases, without noticeable side effects. Hence, this study characterized the polyphenolics composition of guava leaves extract and evaluated its inhibitory effect on XO and ACE in vitro. Materials and Methods: The polyphenolics (flavonoids and phenolic acids) were characterized using high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD). The XO, ACE, and Fe2+-induced lipid peroxidation inhibitory activities, and free radicals (2,2-diphenylpicrylhydrazyl [DPPH]* and 2,2´-azino-bis-3-ethylbenzthiazoline-6-sulphonic [ABTS]*+) scavenging activities of the extract were determined using spectrophotometric methods. Results: Flavonoids were present in the extract in the order of quercetin > kaempferol > catechin > quercitrin > rutin > luteolin > epicatechin; while phenolic acids were in the order of caffeic acid > chlorogenic acid > gallic acids. The extract effectively inhibited XO, ACE and Fe2+-induced lipid peroxidation in a dose-dependent manner; having half-maximal inhibitory concentrations (IC50) of 38.24 ± 2.32 μg/mL, 21.06 ± 2.04 μg/mL and 27.52 ± 1.72 μg/mL against XO, ACE and Fe2+-induced lipid peroxidation, respectively. The extract also strongly scavenged DPPH* and ABTS*+. Conclusion: Guava leaves extract could serve as functional food for managing gout and hypertension and attenuating the oxidative stress associated with both diseases. PMID:27104032

  9. Influence of dietary fiber from coconut kernel (Cocos nucifera) on the 1,2-dimethylhydrazine-induced lipid peroxidation in rats.

    PubMed

    Pillai, M G; Thampi, B S; Menon, V P; Leelamma, S

    1999-09-01

    The influence of dietary fiber from coconut kernel isolated by the neutral detergent fiber method on the antioxidant status in rats treated with the colon specific carcinogen 1,2-dimethylhydrazine (DMH) was studied in rats fed a high-fat diet for 15 weeks. The DMH-treated fiber group showed higher levels of lipid peroxides than the control group treated with DMH at the preneoplastic and neoplastic stages. Free fatty acid levels were found to decrease significantly in the DMH-treated control group, whereas it was near normal in the fiber groups. Superoxide dismutase and catalase activity also were found to be increased in the liver, intestine, proximal colon, and distal colon. Glutathione levels in all the tissues studied showed significant decreases in the fiber group. The results suggest that coconut kernel fiber can protect cells from loss of oxidative capacity with the administration of the procarcinogen DMH.

  10. Pomegranate (Punicagranatum) juice decreases lipid peroxidation, but has no effect on plasma advanced glycated end-products in adults with type 2 diabetes: a randomized double-blind clinical trial.

    PubMed

    Sohrab, Golbon; Angoorani, Pooneh; Tohidi, Maryam; Tabibi, Hadi; Kimiagar, Masoud; Nasrollahzadeh, Javad

    2015-01-01

    Diabetes mellitus characterized by hyperglycemia could increase oxidative stress and formation of advanced glycated end-products (AGEs), which contribute to diabetic complications. The purpose of this study was to assess the effect of pomegranate juice (PJ) containing natural antioxidant on lipid peroxidation and plasma AGEs in patients with type 2 diabetes (T2D). In a randomized, double-blind, placebo-controlled trial, 44 patients (age range 56±6.8 years), T2D were randomly assigned to one of two groups: group A (PJ, n=22) and group B (Placebo, n=22). At the baseline and the end of 12-week intervention, biochemical markers including fasting plasma glucose, insulin, oxidative stress, and AGE markers including carboxy methyl lysine (CML) and pentosidine were assayed. At baseline, there were no significant differences in plasma total antioxidant capacity (TAC) levels between the two groups, but malondialdehyde (MDA) decreased levels were significantly different (P<0.001). After 12 weeks of intervention, TAC increased (P<0.05) and MDA decreased (P<0.01) in the PJ group when compared with the placebo group. However, no significant differences were observed in plasma concentration of CML and pentosidine between the two groups. The study showed that PJ decreases lipid peroxidation. Therefore, PJ consumption may delay onset of T2D complications related to oxidative stress.

  11. Pomegranate (Punicagranatum) juice decreases lipid peroxidation, but has no effect on plasma advanced glycated end-products in adults with type 2 diabetes: a randomized double-blind clinical trial

    PubMed Central

    Sohrab, Golbon; Angoorani, Pooneh; Tohidi, Maryam; Tabibi, Hadi; Kimiagar, Masoud; Nasrollahzadeh, Javad

    2015-01-01

    Introduction Diabetes mellitus characterized by hyperglycemia could increase oxidative stress and formation of advanced glycated end-products (AGEs), which contribute to diabetic complications. The purpose of this study was to assess the effect of pomegranate juice (PJ) containing natural antioxidant on lipid peroxidation and plasma AGEs in patients with type 2 diabetes (T2D). Materials and methods In a randomized, double-blind, placebo-controlled trial, 44 patients (age range 56±6.8 years), T2D were randomly assigned to one of two groups: group A (PJ, n=22) and group B (Placebo, n=22). At the baseline and the end of 12-week intervention, biochemical markers including fasting plasma glucose, insulin, oxidative stress, and AGE markers including carboxy methyl lysine (CML) and pentosidine were assayed. Results At baseline, there were no significant differences in plasma total antioxidant capacity (TAC) levels between the two groups, but malondialdehyde (MDA) decreased levels were significantly different (P<0.001). After 12 weeks of intervention, TAC increased (P<0.05) and MDA decreased (P<0.01) in the PJ group when compared with the placebo group. However, no significant differences were observed in plasma concentration of CML and pentosidine between the two groups. Conclusions The study showed that PJ decreases lipid peroxidation. Therefore, PJ consumption may delay onset of T2D complications related to oxidative stress. PMID:26355954

  12. Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein.

    PubMed

    Wei, Huachen; Zhang, Xueshu; Wang, Yan; Lebwohl, Mark

    2002-11-08

    We have previously demonstrated that soybean isoflavone genistein inhibits ultraviolet-B (UVB)-induced skin tumorigenesis in hairless mice. In the present study, we further investigated the possible mechanism(s) of action whereby genistein inhibits photocarcinogenesis with focuses on UVB-induced oxidative events, including hydrogen peroxide (H(2)O(2)) production, lipid peroxidation (as represented by malondialdehyde, MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in vivo. We demonstrated that subacute exposure to UVB substantially increased the level of H(2)O(2), lipid peroxides, and 8-OHdG in skin of hairless mice. In addition, chronic exposure to low-dose UVB (0.9-1.2 kJ/m(2) for 20 weeks) substantially increased the levels of 8-OHdG not only in the epidermis, but also in the internal organs such as liver, brain, and spleen of mice with exception of kidney. However, genistein did not affect the level of UVB-induced pyrimidine dimmers in the same UVB exposed mouse skin, indicating selective inhibition of oxidative DNA damage by genistein. Induction of H(2)O(2) was independent of UVB fluences whereas the levels of MDA and 8-OHdG were induced in an UVB fluence-dependent manner. The results suggest that H(2)O(2) be generated as an acute cutaneous response to UVB irradiation, while MDA and 8-OHdG are accumulated with increasing UVB exposure and more closely related to chronic effects of UVB radiation. Pre-treatment of animals with 10 micromol of genistein 1 h prior to UVB exposure significantly inhibited UVB-induced H(2)O(2) and MDA in skin and 8-OHdG in epidermis as well as internal organs. Suppression of 8-OHdG formation by genistein has been corroborated in purified DNA irradiated with UVA and B. In summary, our results suggest that UVB irradiation elicit a series of oxidative events, which can be substantially inhibited by isoflavonoid genistein through either direct quenching of reactive oxygen species or indirect antiinflammatory effects. Thus, the

  13. Thermophile-fermented compost as a fish feed additive modulates lipid peroxidation and free amino acid contents in the muscle of the carp, Cyprinus carpio.

    PubMed

    Tanaka, Ryusuke; Miyamoto, Hirokuni; Inoue, Shin-Ichi; Shigeta, Kazuhiro; Kondo, Masakazu; Ito, Toshiyuki; Kodama, Hiroaki; Miyamoto, Hisashi; Matsushita, Teruo

    2016-05-01

    Recently, a compost fermented with marine animals with thermophilic Bacillaceae in a clean and exclusive process at high temperature was reported as a possible feed additive to improve the healthy balance in sea fish and mammals (i.e., pigs and rodents). Here, the effects of the oral administration of the compost on the muscle and internal organs of carp (Cyprinus carpio) as a freshwater fish model were investigated. The fatty acid composition was different in the muscle of the carp fed with or without the compost extract, but there was little difference in the hepatopancreas. The accumulation of triacylglycerols, cholesterol, lipid peroxide and hydroxyl lipids decreased in the muscle after the oral administration of the compost extract in the carps over 12 weeks, but the accumulation did not always decrease in the hepatopancreas. In contrast, free-radical-scavenging activities and the concentrations of free amino acids in the muscle did not always increase and was dependent on the dose of the compost at 12 weeks. The scavenging activities and part of free amino acid levels in the muscle of the carp were improved at 24 weeks after a high dose of compost exposure, and then the survival rates of the carp were maintained. Thus, the oral administration of thermophile-fermented compost can prevent peroxidation and increase the content of free amino acids in the muscle of the freshwater fish, depending on the dose and term of the administration, and may be associated with the viability of the fish. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Inhibition of platelet aggregation and in vitro free radical scavenging activity of dried fruiting bodies of Pleurotus eous.

    PubMed

    Suseem, S R; Saral, Mary

    2015-07-01

    To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.

  15. Effect of dietary aloe vera on growth and lipid peroxidation indices in rainbow trout (Oncorhynchus mykiss)

    PubMed Central

    Golestan, Ghazale; Salati, Amir Parviz; Keyvanshokooh, Saeed; Zakeri, Mohammad; Moradian, Hossein

    2015-01-01

    Aloe vera has been used worldwide in pharmaceutical, food and cosmetic industries due to the plethora of biological activities of its constituents. This study was done to evaluate the effects of dietary aloe vera on growth and lipid peroxidation in rainbow trout (Oncorhynchus mykiss). A total number of 480 O. mykiss (mean weight 9.50 ± 0.85 g) were randomized into four experimental groups including one control and three experimental groups that aloe vera was incorporated in their diet at 0.5, 1.0 and 2.0 g kg-1. Trial was done for eight weeks. Then biometry and blood sampling were done. Plasma malondialdehyde, ferric reducing ability of plasma and growth index were estimated at the end of study. The results showed that aloe vera extract did not affect growth indices. Malondialdehyde was increased in the experimental group compared to the control group but ferric reducing ability of plasma showed a decrease in experimental groups (p < 0.05) compared to the control group. Our findings showed that dietary aloe vera have adverse effects on antioxidant defense system in O. mykiss. PMID:25992253

  16. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats.

    PubMed

    Bueno-Nava, Antonio; Gonzalez-Pina, Rigoberto; Alfaro-Rodriguez, Alfonso; Nekrassov-Protasova, Vladimir; Durand-Rivera, Alfredo; Montes, Sergio; Ayala-Guerrero, Fructuoso

    2010-10-01

    The sensorimotor cortex and the cerebellum are interconnected by the corticopontocerebellar (CPC) pathway and by neuronal groups such as the serotonergic system. Our aims were to determine the levels of cerebellar serotonin (5-HT) and lipid peroxidation (LP) after cortical iron injection and to analyze the motor function produced by the injury. Rats were divided into the following three groups: control, injured and recovering. Motor function was evaluated using the beam-walking test as an assessment of overall locomotor function and the footprint test as an assessment of gait. We also determined the levels of 5-HT and LP two and twenty days post-lesion. We found an increase in cerebellar 5-HT and a concomitant increase in LP in the pons and cerebellum of injured rats, which correlated with their motor deficits. Recovering rats showed normal 5-HT and LP levels. The increase of 5-HT in injured rats could be a result of serotonergic axonal injury after cortical iron injection. The LP and motor deficits could be due to impairments in neuronal connectivity affecting the corticospinal and CPC tracts and dysmetric stride could be indicative of an ataxic gait that involves the cerebellum.

  17. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1

    PubMed Central

    Nambiar, Dhanya K.; Deep, Gagan; Singh, Rana P.; Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis. PMID:25294820

  18. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1.

    PubMed

    Nambiar, Dhanya K; Deep, Gagan; Singh, Rana P; Agarwal, Chapla; Agarwal, Rajesh

    2014-10-30

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis.

  19. Protective properties of butanolic extract of the Calendula officinalis L. (marigold) against lipid peroxidation of rat liver microsomes and action as free radical scavenger.

    PubMed

    Cordova, Clarissa A S; Siqueira, Ionara R; Netto, Carlos A; Yunes, Rosendo A; Volpato, Ana M; Cechinel Filho, Valdir; Curi-Pedrosa, Rozangela; Creczynski-Pasa, Tânia B

    2002-01-01

    Calendula officinalis (marigold) has many pharmacological properties. It is used for the treatment of skin disorders, pain and also as a bactericide, antiseptic and anti-inflammatory. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are known to participate in the pathogenesis of various human diseases and may be involved in the conditions which C. officinalis is used to treat. The aim of this study was to investigate the relationship between the beneficial properties of this plant and its antioxidant action. The butanolic fraction (BF) was studied because it is non-cytotoxic and is rich in a variety of bioactive metabolites including flavonoids and terpenoids. Superoxide radicals (O(2)(*-)) and hydroxyl radicals (HO(*)) are observed in decreasing concentrations in the presence of increasing concentrations of BF with IC(50) values of 1.0 +/- 0.09 mg/ml and 0.5 +/- 0.02 mg/ml, respectively, suggesting a possible free radical scavenging effect. Lipid peroxidation in liver microsomes induced by Fe(2+)/ascorbate was 100% inhibited by 0.5 mg/ml of BF (IC(50) = 0.15 mg/ml). Its total reactive antioxidant potential (TRAP) (in microM Trolox equivalents) was 368.14 +/- 23.03 and its total antioxidant reactivity (TAR) was calculated to be 249.19 +/- 14.5 microM. The results obtained suggest that the butanolic fraction of C. officinalis possesses a significant free radical scavenging and antioxidant activity and that the proposed therapeutic efficacy of this plant could be due, in part, to these properties.

  20. Acceleration of lipid peroxidation in alpha-tocopherol transfer protein-knockout mice following the consumption of drinking water containing a radical initiator.

    PubMed

    Yoshida, Yasukazu; Hayakawa, Mieko; Cynshi, Osamu; Jishage, Kou-ichi; Niki, Etsuo

    2008-01-01

    To assess the antioxidative role of vitamin E (VE) in a mouse model of severe VE deficiency by using biomarkers, alpha-tocopherol transfer protein (alpha-TTP(-/-))-knockout mice were maintained on a VE-deficient diet for 28 weeks [KO group, n = 6]. Wild-type C57BL/6 mice were maintained on a diet containing 0.002% alpha-tocopherol [WT group, n = 6]. The animals were housed individually in a metabolic cage from the age of 9 weeks (Week 0) to 27 weeks. Urine was collected every week, and the levels of total hydroxyoctadecadienoic acid (tHODE), 7-hydroxycholesterol (t7-OHCh), and 8-iso-prostaglandin F(2alpha)(t8-isoPGF(2alpha)), which are biomarkers for lipid peroxidation, were measured by gas chromatography (GC)-mass spectrometry. From the age of 21 weeks (Week 12), three mice in each group were provided drinking water containing the water-soluble radical initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) until the end of the study (Week 19). Blood and tissue samples were collected, and the levels of the abovementioned biomarkers therein were assessed. AIPH consumption clearly elevated the plasma and erythrocyte levels of tHODE and t8-isoPGF(2alpha) in both the WT and KO groups except for the erythrocyte level of tHODE in the WT group. Furthermore, this elevation was more prominent in the KO group than in the WT group. Interestingly, AIPH consumption reduced the stereoisomer ratio of HODE (ZE/EE), which is reflective of the efficacy of a compound as an antioxidant in vivo; this suggests that free radical-mediated oxidation reduces the antioxidant capacity in vivo. The urine levels of tHODE, t7-OHCh, and t8-isoPGF(2alpha) tended to increase with AIPH consumption, but these individual levels fluctuated. It was clearly demonstrated by the proposed biomarkers that maintaining alpha-TTP(-/-) mice on a VE-deficient diet results in a severe VE deficiency and promotes lipid peroxidation.

  1. Cerebroside C Increases Tolerance to Chilling Injury and Alters Lipid Composition in Wheat Roots

    PubMed Central

    Li, Hong-Xia; Xiao, Yu; Cao, Ling-Ling; Yan, Xu; Li, Cong; Shi, Hai-Yan; Wang, Jian-Wen; Ye, Yong-Hao

    2013-01-01

    Chilling tolerance was increased in seed germination and root growth of wheat seedlings grown in media containing 20 µg/mL cerebroside C (CC), isolated from the endophytic Phyllosticta sp. TG78. Seeds treated with 20 µg/mL CC at 4°C expressed the higher germination rate (77.78%), potential (23.46%), index (3.44) and the shorter germination time (6.19 d); root growth was also significantly improved by 13.76% in length, 13.44% in fresh weight and 6.88% in dry mass compared to controls. During the cultivation process at 4°C for three days and the followed 24 h at 25°C, lipid peroxidation, expressed by malondialdehyde (MDA) content and relative membrane permeability (RMP) was significantly reduced in CC-treated roots; activities of lipoxygenase (LOX), phospholipid C (PLC) and phospholipid D (PLD) were inhibited by 13.62–62.26%, 13.54–63.93% and 13.90–61.17%, respectively; unsaturation degree of fatty acids was enhanced through detecting the contents of CC-induced linoleic acid, linolenic acid, palmitic acid and stearic acid using GC-MS; capacities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were individually increased by 7.69–46.06%, 3.37–37.96%, and −7.00–178.07%. These results suggest that increased chilling tolerance may be due, in part, to the reduction of lipid peroxidation and alternation of lipid composition of roots in the presence of CC. PMID:24058471

  2. Hydrogen peroxide as a fungicide for fish culture

    USGS Publications Warehouse

    Dawson, V.K.; Rach, J.J.; Schreier, Theresa M.

    1994-01-01

    Antifungal agents are needed to maintain healthy stocks of fish in the intensive culture systems currently employed in fish hatcheries. Malachite green has been the most widely used antifungal agent; however, its potential for producing teratology in animals and fish precludes further use in fish culture. Preliminary studies at the National Fisheries Research Center, La Crosse, WI, USA (La Crosse Center) indicate that hydrogen peroxide is effective for control of Saprolegnia sp. fungus on incubating eggs of rainbow trout. It is also effective against a wide variety of other organisms such as bacteria, yeasts, viruses, and spores, and has been proposed as a treatment for sea lice on salmon. Hydrogen peroxide and its primary decomposition products, oxygen and water, are not systemic poisons and are considered environmentally compatible. In response to a petition from the La Crosse Center, the U.S. Food and Drug Administration (FDA) recently classified hydrogen peroxide as a 'low regulatory priority' when used for control of fungus on fish and fish eggs. Preliminary tests conducted at the La Crosse Center suggest that prophylactic treatments of 250 to 500 ppm (based on 100% active ingredient) for 15 minutes every other day will inhibit fungal infections on healthy rainbow trout (Oncorhynchus mykiss) eggs. This treatment regime also seems to inhibit fungal development and increase hatching success among infected eggs. Efficacy and safety of hydrogen peroxide as a fungicide for fish are currently being evaluated.

  3. Effect of N-benzoyl-D-phenylalanine on streptozotocin-induced changes in the lipid and lipoprotein profile in rats.

    PubMed

    Ashokkumar, N; Pari, L; Manimekalai, A; Selvaraju, K

    2005-03-01

    The effect of N-benzoyl-D-phenylalanine (NBDP) and metformin combination treatment on circulatory lipids, lipoproteins and lipid peroxidation markers were studied in neonatal streptozotocin (nSTZ) non-insulin dependent diabetic rats. Non-insulin dependent diabetes mellitus (NIDDM) was induced by a single dose injection of streptozotocin (100 mg kg(-1), i. p.) to two-day-old rats. After 10-12 weeks, rats weighing above 150 g were selected for screening for the NIDDM model. The rats were checked for fasting blood glucose levels to confirm the status of NIDDM. NBDP (50,100 or 200 mg kg(-1) ) was administered orally for six weeks to the confirmed diabetic rats (to evaluate the effective dose). The levels of serum lipids and lipid peroxidation markers were significantly increased, whilst the activity of glucose-6-phosphate dehydrogenase was significantly decreased in nSTZ diabetic rats. NBDP and metformin were able to restore the altered serum lipids, lipoproteins, lipid peroxidation marker levels and glucose-6-phosphate dehydrogenase activity to almost control levels. The results showed the antihyperlipidaemic properties of NBDP and metformin in addition to its antidiabetic action. Combination treatment was more effective then either drug alone. The results indicated that the coadministration of NBDP with metformin to nSTZ diabetic rats normalized blood glucose and caused marked improvement in altered serum lipids, lipoproteins and lipid peroxidation markers during diabetes. The data indicated that NBDP represented an effective antihyperglycaemic and antihyperlipidaemic adjunct for the treatment of diabetes, and may be a potential source of new orally active agents for future therapy.

  4. Lipids, oxidized lipids, oxidation-specific epitopes, and Age-related Macular Degeneration.

    PubMed

    Handa, James T; Cano, Marisol; Wang, Lei; Datta, Sayantan; Liu, Tongyun

    2017-04-01

    Age-related Macular Degeneration (AMD) is the leading cause of blindness among the elderly in western societies. While antioxidant micronutrient treatment is available for intermediate non-neovascular disease, and effective anti-vascular endothelial growth factor treatment is available for neovascular disease, treatment for early AMD is lacking due to an incomplete understanding of the early molecular events. The role of lipids, which accumulate in the macula, and their oxidation, has emerged as an important factor in disease development. These oxidized lipids can either directly contribute to tissue injury or react with amine on proteins to form oxidation-specific epitopes, which can induce an innate immune response. If inadequately neutralized, the inflammatory response from these epitopes can incite tissue injury during disease development. This review explores how the accumulation of lipids, their oxidation, and the ensuing inflammatory response might contribute to the pathogenesis of AMD. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder . Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Influence of feeding thermally peroxidized soybean oil on growth performance, digestibility, and gut integrity in finishing pigs.

    PubMed

    Overholt, Martin F; Dilger, Anna C; Boler, Dustin D; Kerr, Brian J

    2018-05-26

    Consumption of peroxidized lipids has been shown to reduce pig performance and energy and lipid digestibility. Objectives of the current study were to evaluate the effect of feeding soybean oil (SO) with different levels of peroxidation on growth performance, lipid, N, and GE digestibility, plasma Trp, and gut integrity in finishing pigs. Fifty-six barrows (46.7 ± 5.1 kg initial BW) were randomly assigned to one of four diets in each of two dietary phases, containing either 10% fresh SO (22.5 °C) or thermally processed SO (45 °C for 288 h, 90 °C for 72 h, or 180 °C for 6 h), each infused with of 15 L/min of air. Peroxide values were 2.0, 17.4, 123.6, and 19.4 mEq/kg; 2,4-decadienal values were 2.07, 1.90, 912.15, and 915.49 mg/kg; and 4-hydroxynonenal concentrations were 0.66, 1.49, 170.48, and 82.80 mg/kg, for the 22.5, 45, 90, and 180 °C processed SO, respectively. Pigs were individually housed and fed ad libitum for 81 d to measure growth performance, including a metabolism period to collect urine and feces for determination of GE, lipid, N digestibility, and N retention. Following the last day of fecal and urine collection when pigs were in the metabolism crates, lactulose and mannitol were fed and subsequently measured in the urine to evaluate gut permeability, while markers of oxidative stress were evaluated in plasma, urine, and liver. There were no differences observed in ADFI (P = 0.91), but average daily gain (ADG) and gain:feed G:F were decreased in pigs fed 90 °C SO diet (P ≤ 0.07) compared to pigs fed the other SO diets. Pigs fed the 90 and 180 °C SO had the lowest (P = 0.05) DE as a % of GE compared to pigs fed the 22.5 °C SO, with pigs fed the 45 °C SO being intermediate. Lipid digestibility was similarly affected (P = 0.01) as energy digestibility, but ME as a % of DE was not affected by dietary treatment (P = 0.16). There were no effects of lipid peroxidation on N digested, N retained, or the urinary lactulose:mannitol ratio (P ≥ 0

  6. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry.

    PubMed

    Milic, Ivana; Hoffmann, Ralf; Fedorova, Maria

    2013-01-02

    Reactive oxygen species (ROS) and other oxidative agents such as free radicals can oxidize polyunsaturated fatty acids (PUFA) as well as PUFA in lipids. The oxidation products can undergo consecutive reactions including oxidative cleavages to yield a chemically diverse group of products, such as lipid peroxidation products (LPP). Among them are aldehydes and ketones ("reactive carbonyls") that are strong electrophiles and thus can readily react with nucleophilic side chains of proteins, which can alter the protein structure, function, cellular distribution, and antigenicity. Here, we report a novel technique to specifically derivatize both low molecular and high molecular weight carbonylated LPP with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) and analyze all compounds by electrospray ionization-mass spectrometry (ESI-MS) in positive ion mode. CHH-derivatized compounds were identified by specific neutral losses or fragment ions. The fragment ion spectra displayed additional signals that allowed unambiguous identification of the lipid, fatty acids, cleavage sites, and oxidative modifications. Oxidation of docosahexaenoic (DHA, 22:6), arachidonic (AA, 20:4), linoleic (LA, 18:2), and oleic acids (OA, 18:1) yielded 69 aliphatic carbonyls, whose structures were all deduced from the tandem mass spectra. When four phosphatidylcholine (PC) vesicles containing the aforementioned unsaturated fatty acids were oxidized, we were able to deduce the structures of 122 carbonylated compounds from the tandem mass spectra of a single shotgun analysis acquired within 15 min. The high sensitivity (LOD ∼ 1 nmol/L for 4-hydroxy-2-nonenal, HNE) and a linear range of more than 3 orders of magnitude (10 nmol/L to 10 μmol/L for HNE) will allow further studies on complex biological samples including plasma.

  7. Catalytic and inhibiting effects of lithium peroxide and hydroxide on sodium chlorate decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, J.C.; Zhang, Y.

    1995-09-01

    Chemical oxygen generators based on sodium chlorate and lithium perchlorate are used in airplanes, submarines, diving, and mine rescue. Catalytic decomposition of sodium chlorate in the presence of cobalt oxide, lithium peroxide, and lithium hydroxide is studied using thermal gravimetric analysis. Lithium peroxide and hydroxide are both moderately active catalysts for the decomposition of sodium chlorate when used alone, and inhibitors when used with the more active catalyst cobalt oxide.

  8. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation.

    PubMed

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A; Jayaram, Hiremagalur N; Crabb, David W

    2008-12-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H(2)O(2), 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H(2)O(2) markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-zeta, LKB1, and AMPK caused by exposure to H(2)O(2). This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H(2)O(2)-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-zeta and LKB1 phosphorylation and the activation of PP2A.

  9. Inhibition of lipid A-mediated type I interferon induction by bactericidal/permeability-increasing protein (BPI).

    PubMed

    Azuma, Masahiro; Matsuo, Aya; Fujimoto, Yukari; Fukase, Koichi; Hazeki, Kaoru; Hazeki, Osamu; Matsumoto, Misako; Seya, Tsukasa

    2007-03-09

    Lipopolysaccharide (LPS), a major constituent of the outer membrane of gram-negative bacteria, consists of polysaccharides and a lipid structure named lipid A. Lipid A is a typical microbial pattern molecule that serves as a ligand for Toll-like receptor 4 (TLR4). TLR4 signals the presence of lipid A to recruit adaptor molecules and induces cytokines and type I interferon (IFN) by activating transcription factor, NF-kappaB or IRF-3. Here we showed that chemically synthesized TLR4-agonistic lipid A analogues but not antagonistic lipid A activate IFN-beta promoter in TLR4-expressing HEK293 cells. The amplitude of IFN-beta promoter activation was in parallel with that of NF-kappaB. LPS-binding protein (LBP) was required for efficient IFN-beta induction in this system, and this LBP activity was antagonized by bactericidal/permeability-increasing protein (BPI). Thus, we first show that BPI blocks the TLR4 responses by exogenous administration of BPI to lipid A-sensitive cells. Although the functional mechanism whereby extra-cellular BPI modulates the intra-cellular signal pathways selected by the TLR adaptors, MyD88 and TICAM-1 (TRIF), remains unknown, we infer that the lipid A portion of LPS participates in LBP-amplified IFN-beta induction and that BPI binding to LPS leads to inhibition of the activation of NF-kappaB and IFN-beta by LPS or agonistic lipid A via TLR4 in an extrinsic mode. BPI may serve as a therapeutic potential against endotoxin shock by acting as a regulator for the MyD88- and TICAM-1 pathways in the LPS-TLR4 signaling.

  10. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation.

    PubMed

    Wang, Lei; Zhang, Yu-Ge; Wang, Xiu-Mei; Ma, Long-Fei; Zhang, Yuan-Min

    2015-12-05

    Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    PubMed

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.

  13. The Amoebicidal Effect of Ergosterol Peroxide Isolated from Pleurotus ostreatus.

    PubMed

    Meza-Menchaca, Thuluz; Suárez-Medellín, Jorge; Del Ángel-Piña, Christian; Trigos, Ángel

    2015-12-01

    Dysentery is an inflammation of the intestine caused by the protozoan parasite Entamoeba histolytica and is a recurrent health problem affecting millions of people worldwide. Because of the magnitude of this disease, finding novel strategies for treatment that does not affect human cells is necessary. Ergosterol peroxide is a sterol particularly known as a major cytotoxic agent with a wide spectrum of biological activities produced by edible and medicinal mushrooms. The aim of this report is to evaluate the amoebicidal activity of ergosterol peroxide (5α, 8α-epidioxy-22E-ergosta-6,22-dien-3β-ol isolated from 5α, 8α-epidioxy-22E-ergosta-6,22-dien-3β-ol) (Jacq.) P. Kumm. f. sp. Florida. Our results show that ergosterol peroxide produced a strong cytotoxic effect against amoebic growth. The inhibitory concentration IC50 of ergosterol peroxide was evaluated. The interaction between E. histolytica and ergosterol peroxide in vitro resulted in strong amoebicidal activity (IC50  = 4.23 nM) that may be due to the oxidatory effect on the parasitic membrane. We also tested selective toxicity of ergosterol peroxide using a cell line CCL-241, a human epithelial cell line isolated from normal human fetal intestinal tissue. To the best of our knowledge, this is the first report on the cytotoxicity of ergosterol peroxide against E. histolytica, which uncovers a new biological property of the lipidic compound isolated from Pleurotus ostreatus (Jacq.) P. Kumm. f. sp. Florida. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Wet and dry extraction of coconut oil: impact on lipid metabolic and antioxidant status in cholesterol coadministered rats.

    PubMed

    Nevin, K Govindan; Rajamohan, Thankappan

    2009-08-01

    Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague-Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.

  15. Phenolic-rich extracts of Eurycoma longifolia and Cylicodiscus gabunensis inhibit enzymes responsible for the development of erectile dysfunction and are antioxidants.

    PubMed

    Oboh, Ganiyu; Adebayo, Adeniyi A; Ademosun, Ayokunle O

    2018-05-19

    Herbs have been used from ages to manage male sexual dysfunction. Hence, this study sought to investigate the effects of Eurycoma longifolia (EL) and Cylicodiscus gabunensis (CG) stem bark extracts on some enzymes implicated in erectile dysfunction in vitro. The extracts were prepared, and their effects on phosphodiesterase-5 (PDE-5), arginase, and angiotensin-1-converting enzyme (ACE) as well as pro-oxidant-induced lipid peroxidation were assessed. Furthermore, phenolic contents were determined, and their components were characterized and quantified using high-performance liquid chromatography with diode array detector (HPLC-DAD). The results revealed that the extracts inhibited PDE-5, arginase, and ACE in a concentration-dependent manner. However, IC50 values revealed that CG had higher inhibitory potential on PDE-5 (IC50=204.4 μg/mL), arginase (IC50=39.01 μg/mL), and ACE (IC50=48.81 μg/mL) than EL. In addition, the extracts inhibited pro-oxidant-induced lipid peroxidation in penile tissue homogenate. HPLC-DAD analysis showed that CG is richer in phenolic compounds than EL, and this could be responsible for higher biological activities observed in CG than EL. Hence, the observed antioxidant property and inhibitory action of CG and EL on enzymes relevant to erectile dysfunction in vitro could be part of possible mechanisms underlying their involvement in traditional medicine for the management of male sexual dysfunction.

  16. Gas stunning with CO2 affected meat color, lipid peroxidation, oxidative stress, and gene expression of mitogen-activated protein kinases, glutathione S-transferases, and Cu/Zn-superoxide dismutase in the skeletal muscles of broilers.

    PubMed

    Xu, Lei; Zhang, Haijun; Yue, Hongyuan; Wu, Shugeng; Yang, Haiming; Wang, Zhiyue; Qi, Guanghai

    2018-01-01

    Meat color and lipid peroxidation are important traits related to meat quality. CO 2 concentration is a critical factor that can affect meat quality in the commercial use of gas stunning (GS). However, the effect and mechanism of CO 2 stunning on meat color and lipid peroxidation during long-term storage remain poorly studied. We aimed to study the effects of GS methods, especially CO 2 concentration, on meat color and meat lipid peroxidation in broilers during long-term storage at 4 °C and to explore the potential mechanism of meat color change via lipid peroxidation and the inner lipid peroxide scavenging system. Eighteen broilers were sacrificed after exposure to one of the following gas mixtures for 90 s: 40% CO 2  + 21% O 2  + 39% N 2 (G40%), 79% CO 2  + 21% O 2 (G79%), or no stunning (0% CO 2 , control). Meat color, serum variables, enzyme activities, and the gene expression of mitogen-activated protein kinase ( MAPK ), nuclear factor-erythroid 2-related factor 2 ( Nrf2 ), glutathione S-transferase ( GST ) and superoxide dismutase ( SOD ) were determined. The concentrations of serum triiodothyronine (T3, P  = 0.03) and the ratio of serum free triiodothyronine/free thyroxine (FT3/FT4, P  <  0.01) were decreased, whereas levels of serum cortisol ( P  <  0.01) were increased in the 40% CO 2 group compared with the control group. Additionally, the thiobarbituric acid-reactive substances (TBARS) 3 d ( P  <  0.01) and TBARS 6 d ( P  = 0.01) in breast meat and the TBARS 3 d in thigh meat ( P  <  0.01) were increased in the 40% CO 2 group compared with the control group. Serum T3 was negatively correlated with TBARS 6 d both in the breast and thigh meat ( r  = - 0.63, P  <  0.01 and r  = - 0.47, P  = 0.05 respectively). T3/T4 was negatively correlated with TBARS 6 d in the breast meat and in the thigh meat ( r  = - 0.57, P  = 0.01; and r  = - 0.53, P  = 0.03 respectively). Compared

  17. Effects of Different End-Point Cooking Temperatures on the Efficiency of Encapsulated Phosphates on Lipid Oxidation Inhibition in Ground Meat.

    PubMed

    Kılıç, B; Şimşek, A; Claus, J R; Atılgan, E; Aktaş, N

    2015-10-01

    Effects of 0.5% encapsulated (e) phosphates (sodium tripolyphosphate, STP; sodium hexametaphosphate, HMP; sodium pyrophosphate, SPP) on lipid oxidation during storage (0, 1, and 7 d) of ground meat (chicken, beef) after being cooked to 3 end-point cooking temperatures (EPCT; 71, 74, and 77 °C) were evaluated. The use of STP or eSTP resulted in lower (P < 0.05) cooking loss (CL) compared to encapsulated or unencapsulated forms of HMP and SPP. Increasing EPCT led to a significant increase in CL (P < 0.05). Both STP and eSTP increased pH, whereas SPP and eSPP decreased pH (P < 0.05). The higher orthophosphate (OP) was obtained with STP or SPP compared to their encapsulated counterparts (P < 0.05). The lowest OP was determined in samples with HMP or eHMP (P < 0.05). A 77 °C EPCT resulted in lower OP in chicken compared to 74 and 71 °C (P < 0.05), dissimilar to beef, where EPCT did not affect OP. In encapsulated or unencapsulated form, using STP and SPP enhanced reduction in TBARS and lipid hydroperoxides (LPO) compared with HMP (P < 0.05). Regardless of the phosphate type, more effective lipid oxidation inhibition was achieved by the use of encapsulated forms (P < 0.05). Increasing EPCT resulted in lower TBARS in beef and higher LPO values in both beef and chicken samples (P < 0.05). Findings suggest that encapsulated phosphates can be a strategy to inhibit lipid oxidation for meat industry and the efficiency of encapsulated phosphates on lipid oxidation inhibition can be enhanced by lowering EPCT. © 2015 Institute of Food Technologists®

  18. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts.

    PubMed

    Kim, J-A; Ahn, B-N; Kong, C-S; Kim, S-K

    2013-05-01

    Skin ageing is influenced by environmental factors such as ultraviolet (UV) radiation. The effects of UV radiation on skin functions should be investigated using human in vitro models to understand the mechanisms of skin ageing. Additionally, marine algae provide a valuable source for identifying and extracting biologically active substances. In this study, sargachromanol E was isolated from a marine brown alga, Sargassum horneri, and its inhibitory effect on skin ageing was investigated using UVA-irradiated dermal fibroblasts. Formation of intracellular reactive oxygen species (ROS), lipid peroxidation and protein oxidation induced by UVA irradiation were investigated in UVA-irradiated human dermal fibroblasts. The levels of matrix metalloproteinases (MMPs) were determined by reverse-transcriptase polymerase chain reaction and Western blot analysis. Sargachromanol E did not exhibit any significant cytotoxicity or phototoxicity in UVA-exposed dermal fibroblasts. Additionally, sargachromanol E suppressed intracellular formation of ROS, membrane protein oxidation, lipid peroxidation and expression of collagenases such as MMP-1, MMP-2 and MMP-9, all of which are caused by UVA exposure. It was further found that these inhibitions were related to an increase in the expression of the tissue inhibitor of metalloproteinase (TIMP) genes, TIMP1 and TIMP2. Moreover, we have shown that the transcriptional activation of activator protein 1 (AP-1) signalling caused by UVA irradiation was inhibited by treatment with sargachromanol E. This study suggests that UVA irradiation modulates MMP expression via the transcriptional activation of AP-1 signalling, whereas treatment with sargachromanol E protected cell damage caused by UVA irradiation. © 2013 The Authors. BJD © 2013 British Association of Dermatologists.

  19. p46Shc Inhibits Thiolase and Lipid Oxidation in Mitochondria*

    PubMed Central

    Tomilov, Alexey; Tomilova, Natalia; Shan, Yuxi; Hagopian, Kevork; Bettaieb, Ahmed; Kim, Kyoungmi; Pelicci, Pier Giuseppe; Haj, Fawaz; Ramsey, Jon; Cortopassi, Gino

    2016-01-01

    Although the p46Shc isoform has been known to be mitochondrially localized for 11 years, its function in mitochondria has been a mystery. We confirmed p46Shc to be mitochondrially localized and showed that the major mitochondrial partner of p46Shc is the lipid oxidation enzyme 3-ketoacylCoA thiolase ACAA2, to which p46Shc binds directly and with a strong affinity. Increasing p46Shc expression inhibits, and decreasing p46Shc stimulates enzymatic activity of thiolase in vitro. Thus, we suggest p46Shc to be a negative mitochondrial thiolase activity regulator, and reduction of p46Shc expression activates thiolase. This is the first demonstration of a protein that directly binds and controls thiolase activity. Thiolase was thought previously only to be regulated by metabolite balance and steady-state flux control. Thiolase is the last enzyme of the mitochondrial fatty acid beta-oxidation spiral, and thus is important for energy metabolism. Mice with reduction of p46Shc are lean, resist obesity, have higher lipid oxidation capacity, and increased thiolase activity. The thiolase-p46Shc connection shown here in vitro and in organello may be an important underlying mechanism explaining the metabolic phenotype of Shc-depleted mice in vivo. PMID:27059956

  20. Inhibition of hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells.

    PubMed

    Shearn, Colin T; Reigan, Philip; Petersen, Dennis R

    2012-07-01

    Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation. Published by Elsevier Inc.

  1. Protein oxidation and peroxidation

    PubMed Central

    Davies, Michael J.

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  2. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle

    PubMed Central

    Verma, Savita; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation

  3. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle: an in vitro and in vivo assessment.

    PubMed

    Verma, Savita; Gupta, Manju Lata; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar; Flora, Swaran J S

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 microg/ml) and superoxide radicals (up to 95% at 80 microg/ml), chelated metal ions (up to 83% at 50 microg/ml) and inhibited lipid peroxidation (up to 55.65% at 500 microg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of

  4. The effects of tomato powder supplementation on performance and lipid peroxidation in quail.

    PubMed

    Sahin, N; Orhan, C; Tuzcu, M; Sahin, K; Kucuk, O

    2008-02-01

    Recent studies have suggested a protective role for lycopene, an antioxidant carotenoid, in the prevention of stress including environmental stress. Tomatoes and tomato products are the major dietary source of lycopene. The objective of the present study was to investigate the effect of dietary tomato powder supplementation on the performance and lipid peroxidation of meat in Japanese quail (Coturnix coturnix japonica) exposed to a high ambient temperature of 34 degrees C. A total of 180 ten-day-old male quails were randomly allocated into 6 groups consisting of 10 replicates of 3 birds. Birds were kept in wire cages in a temperature-controlled room at either 22 degrees C (thermoneutral) or 34 degrees C (heat stress) for 8 h/ d (0900 to 1700 h during the study). Birds were fed either a basal diet or the basal diet supplemented with 2.5 or 5.0% of tomato powder. Tomato powder supplementation linearly increased feed intake, live weight gain, and feed conversion (P = 0.01) under heat stress conditions but did not show the same effect at thermoneutral conditions (P > 0.05). Heat stress significantly increased malondialdehyde concentration and decreased vitamin concentrations in the serum, liver, and muscles of quail. Serum lycopene and vitamin C, E, and A (P = 0.01) concentrations increased linearly in birds at all groups. Malondialdehyde levels in serum, liver (P = 0.001), and muscles linearly decreased in all birds of both thermoneutral and heat stress groups as dietary tomato powder supplementation increased. The results of the study indicate that tomato powder modulates the oxidation-antioxidation system of the muscles in Japanese quail exposed to high ambient temperature.

  5. Scavenger and antioxidant properties of prenylflavones isolated from Artocarpus heterophyllus.

    PubMed

    Ko, F N; Cheng, Z J; Lin, C N; Teng, C M

    1998-07-15

    The antioxidant properties of prenylflavones, isolated from Artocarpus heterophyllus Lam., was evaluated in this study. Among them, artocarpine, artocarpetin, artocarpetin A, and cycloheterophyllin diacetate and peracetate had no effect on iron-induced lipid peroxidation in rat brain homogenate. They also did not scavenge the stable free radical 1,1-diphenyl-2-picrylhydrazyl. In contrast, cycloheterophyllin and artonins A and B inhibited iron-induced lipid peroxidation in rat brain homogenate and scavenged 1,1-diphenyl-2-picrylhydrazyl. They also scavenged peroxyl radicals and hydroxyl radicals that were generated by 2,2'-azobis(2-amidinopropane) dihydrochloride and the Fe3+-ascorbate-EDTA-H2O2 system, respectively. However, they did not inhibit xanthine oxidase activity or scavenge superoxide anion, hydrogen peroxide, carbon radical, or peroxyl radicals derived from 2,2'-azobis(2,4-dimethylvaleronitrile) in hexane. Moreover, cycloheterophyllin and artonins A and B inhibited copper-catalyzed oxidation of human low-density lipoprotein, as measured by fluorescence intensity, thiobarbituric acid-reactive substance and conjugated-diene formations and electrophoretic mobility. It is concluded that cycloheterophyllin and artonins A and B serve as powerful antioxidants against lipid peroxidation when biomembranes are exposed to oxygen radicals.

  6. Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L.

    PubMed

    Zhang, Shanshan; Zhang, Huimin; Qin, Rong; Jiang, Wusheng; Liu, Donghua

    2009-10-01

    The effects of different concentrations (1-50 microM) of Cd on root growth, cell division and nucleoli in root tip cells, protective enzyme activities and lipid peroxidation in Vicia faba were investigated in order to better understand the processes of Cd-induced senescence. The results indicated that lower concentration of Cd (1 microM) had no obviously influence on the root growth during 24-48 h treatment, but higher concentrations (5-50 microM) inhibited significantly after 48 and 72 h. The mitotic index decreased with increasing of Cd concentration and duration of treatment except for the group exposed to 1 microM Cd. Cd induced c-mitosis, chromosome bridges, chromosome stickiness and lagging chromosomes. The rate of aberrant dividing cells increased with prolonging duration of treatment and increasing of Cd concentration. On nucleolus, some particulates containing the argyrophilic proteins were extruded from the nucleus into the cytoplasm in the cells stressed by Cd and some were scattered in the nucleus. After the treatment with Cd (10 microM Cd, 48 h), the nucleolus did not disaggregate normally and still remain its characteristic structure during metaphase and the particles of similar silver-stained materials were localized on chromosomes. In leaves, Catalase (CAT) activity declined but Peroxidase (POD) activity increased with increasing of the duration of treatment. In roots, CAT activity increased with increasing of the duration of treatment, POD activity increased during early days and then declined. Superoxide dismutase (SOD) activity showed an upward trend with increasing of the duration of treatment after 3 and 6 days, then declined both in leaves and roots (9 days). SOD and POD had highest activities at 50 microM Cd in leaves. CAT activity was lowest at 50 microM Cd. Malondialdehyde (MDA) content increased with the increasing of Cd concentrations and duration of treatment in leaves. In roots, MDA content showed an upward trend with increasing of the

  7. Effect of mitochondrial uncoupling and glycolysis inhibition on ram sperm functionality.

    PubMed

    Losano, Jda; Angrimani, Dsr; Dalmazzo, A; Rui, B R; Brito, M M; Mendes, C M; Kawai, Gkv; Vannucchi, C I; Assumpção, Meoa; Barnabe, V H; Nichi, M

    2017-04-01

    Studies have demonstrated the importance of mitochondria to sperm functionality, as the main source of ATP for cellular homoeostasis and motility. However, the role of mitochondria on sperm metabolism is still controversial. Studies indicate that, for some species, glycolysis may be the main mechanism for sperm energy production. For ram sperm, such pathway is not clear. Thus, we evaluated ram sperm in response to mitochondrial uncoupling and glycolysis inhibition aiming to assess the importance of each pathway for sperm functionality. Statistical analysis was performed by the SAS System for Windows, using the General Linear Model Procedure. Data were tested for residue normality and variance homogeneity. A p < .05 was considered significant. Groups treated with the mitochondrial uncoupler Carbonyl cyanide 3 chlorophenylhydrazone (CCCP) showed a decrease in the percentage of cells with low mitochondrial activity and high mitochondrial membrane potential. We also observed that the highest CCCP concentration promotes a decrease in sperm susceptibility to lipid peroxidation. Regardless the lack of effect of CCCP on total motility, this substance induced significant alterations on sperm kinetics. Besides the interference of CCCP on spermatic movement patterns, it was also possible to observe such an effect in samples treated with the inhibitor of glycolysis (2-deoxy-d-glucose, DOG). Furthermore, treatment with DOG also led to a dose-dependent increase in sperm susceptibility to lipid peroxidation. Based on our results, we suggest that the glycolysis appears to be as important as oxidative phosphorylation for ovine sperm kinetics as this mechanism is capable of maintaining full motility when most of the cells have a low mitochondrial membrane potential. Furthermore, we found that changes in the glycolytic pathway trough glycolysis inhibition are likely involved in mitochondrial dysfunction and sperm oxidative unbalance. © 2017 Blackwell Verlag GmbH.

  8. Free radical scavenging abilities of polypeptide from Chlamys farreri

    NASA Astrophysics Data System (ADS)

    Han, Zhiwu; Chu, Xiao; Liu, Chengjuan; Wang, Yuejun; Mi, Sun; Wang, Chunbo

    2006-09-01

    We investigated the radical scavenging effect and antioxidation property of polypeptide extracted from Chlamys farreri (PCF) in vitro using chemiluminescence and electron spin resonance (ESR) methods. We examined the scavenging effects of PCF on superoxide anions (O{2/-}), hydroxyl radicals (OH·), peroxynitrite (ONOO-) and the inhibiting capacity of PCF on peroxidation of linoleic acid. Our experiment suggested that PCF could scavenge oxygen free radicals including superoxide anions (O{2/-}) (IC50=0.3 mg/ml), hydroxyl radicals (OH·) (IC50=0.2 μg/ml) generated from the reaction systems and effectively inhibit the oxidative activity of ONOO- (IC50=0.2 mg/ml). At 1.25 mg/ml of PCF, the inhibition ratio on lipid peroxidation of linoleic acid was 43%. The scavenging effect of PCF on O{2/-}, OH· and ONOO- free radicals were stronger than those of vitamin C but less on lipid peroxidation of linoleic acid. Thus PCF could scavenge free radicals and inhibit the peroxidation of linoleic acid in vitro. It is an antioxidant from marine products and potential for industrial production in future.

  9. Effect of Flaxseed Meals and Extracts on Lipid Stability in a Stored Meat Product.

    PubMed

    Waszkowiak, Katarzyna; Rudzińska, Magdalena

    2014-01-01

    Flaxseeds have been recently in focus due to the antioxidant capacity of some of their compounds. However, there is a lack of easily accessible information concerning their activity against lipid oxidation in food systems. Therefore, the aim of the study was to determine the effect of defatted meals (DFM) and the aqueous extracts (AFE) obtained from brown and golden flaxseeds on lipid oxidation in pork meatballs. Fatty acid composition, peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and cholesterol content were monitored during 6 months of freezer storage. Cholesterol oxidation products were identified and quantified. Both DFM and AFE limited fatty acid and cholesterol oxidation during meatball storage. Their antioxidant effect depended on flax variety (brown or golden) and preparation type (DFM or AFE). Lower level of PV and TBARS, compared with the ones with AFE, were noted in meatballs with DFM. Both DFM and AFE, from the brown seed variety, protect the lipids against oxidation to a higher extent. During the storage, a cholesterol degradation was observed. AFE (particularly from the brown variety) limited changes in cholesterol content. Moreover, they stabilized fatty acid composition of stored meatballs. However, DFM efficiently inhibited cholesterol oxidation.

  10. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation.

    PubMed

    Zhao, Lijuan; Peng, Bo; Hernandez-Viezcas, Jose A; Rico, Cyren; Sun, Youping; Peralta-Videa, Jose R; Tang, Xiaolei; Niu, Genhua; Jin, Lixin; Varela-Ramirez, Armando; Zhang, Jian-ying; Gardea-Torresdey, Jorge L

    2012-11-27

    The rapid development of nanotechnology will inevitably release nanoparticles (NPs) into the environment with unidentified consequences. In addition, the potential toxicity of CeO(2) NPs to plants and the possible transfer into the food chain are still unknown. Corn plants (Zea mays) were germinated and grown in soil treated with CeO(2) NPs at 400 or 800 mg/kg. Stress-related parameters, such as H(2)O(2), catalase (CAT), and ascorbate peroxidase (APX) activity, heat shock protein 70 (HSP70), lipid peroxidation, cell death, and leaf gas exchange were analyzed at 10, 15, and 20 days post-germination. Confocal laser scanning microscopy was used to image H(2)O(2) distribution in corn leaves. Results showed that the CeO(2) NP treatments increased accumulation of H(2)O(2), up to day 15, in phloem, xylem, bundle sheath cells and epidermal cells of shoots. The CAT and APX activities were also increased in the corn shoot, concomitant with the H(2)O(2) levels. Both 400 and 800 mg/kg CeO(2) NPs triggered the up-regulation of the HSP70 in roots, indicating a systemic stress response. None of the CeO(2) NPs increased the level of thiobarbituric acid reacting substances, indicating that no lipid peroxidation occurred. CeO(2) NPs, at both concentrations, did not induce ion leakage in either roots or shoots, suggesting that membrane integrity was not compromised. Leaf net photosynthetic rate, transpiration, and stomatal conductance were not affected by CeO(2) NPs. Our results suggest that the CAT, APX, and HSP70 might help the plants defend against CeO(2) NP-induced oxidative injury and survive NP exposure.

  11. Stress Response and Tolerance of Zea mays to CeO2 Nanoparticles: Cross Talk among H2O2, Heat Shock Protein and Lipid Peroxidation

    PubMed Central

    Zhao, Lijuan; Peng, Bo; Hernandez-Viezcas, Jose A.; Rico, Cyren; Sun, Youping; Peralta-Videa, Jose R.; Tang, Xiaolei; Niu, Genhua; Jin, Lixin; Varela-Ramirez, Armando; Zhang, Jian-ying; Gardea-Torresdey, Jorge L.

    2014-01-01

    The rapid development of nanotechnology will inevitably release nanoparticles (NPs) into the environment with unidentified consequences. In addition, the potential toxicity of CeO2 NPs to plants, and the possible transfer into the food chain, are still unknown. Corn plants (Zea mays) were germinated and grown in soil treated with CeO2 NPs at 400 or 800 mg/kg. Stress related parameters, such as: H2O2, catalase (CAT) and ascorbate peroxidase (APX) activity, heat shock protein 70 (HSP 70), lipid peroxidation, cell death and leaf gas exchange were analyzed at 10, 15, and 20 days post germination. Confocal laser scanning microscopy was used to image H2O2 distribution in corn leaves. Results showed that the CeO2 NP treatments increased accumulation of H2O2, up to day 15, in phloem, xylem, bundle sheath cells, and epidermal cells of shoots. The CAT and APX activities were also increased in the corn shoot, concomitant with the H2O2 levels. Both 400 and 800 mg/kg CeO2 NPs triggered the up regulation of the HSP 70 in roots, indicating a systemic stress response. None of the CeO2 NPs increased the level of thiobarbituric acid reacting substances, indicating that no lipid peroxidation occurred. CeO2 NPs, at both concentrations, did not induce ion leakage in either roots or shoots, suggesting membrane integrity was not compromised. Leaf net photosynthetic rate, transpiration, and stomatal conductance were not affected by CeO2 NPs. Our results suggest that the CAT, APX and HSP 70 might help the plants defend against CeO2 NPs induced oxidative injury and survive NP exposure. PMID:23050848

  12. The level of serum lipids, vitamin E and low density lipoprotein oxidation in Wilson's disease patients.

    PubMed

    Rodo, M; Czonkowska, A; Pulawska, M; Swiderska, M; Tarnacka, B; Wehr, H

    2000-09-01

    The aim of this study was to estimate the level of lipids and of the main serum antioxidant, alpha-tocopherol (vitamin E), and to evaluate the susceptibility of low density lipoprotein (LDL) to oxidation in Wilson's disease patients. It was assumed that enhanced LDL peroxidation caused by high copper levels could contribute to the injury of liver and other tissues. The group investigated comprised 45 individuals with Wilson's disease treated with penicillamine or zinc salts and a control group of 36 healthy individuals. Lipids were determined by enzymatic methods, alpha-tocopherol by high performance liquid chromatography, the susceptibility of LDL to oxidation in vitro by absorption changes at 234 nm during 5 h and end-products of LDL lipid oxidation as thiobarbituric acid reacting substances. In Wilson's disease patients total cholesterol, LDL cholesterol and alpha-tocopherol levels were significantly lower compared with the control group. No difference in LDL oxidation in vitro between the patients and the controls was stated. enhanced susceptibility of isolated LDL for lipid peroxidation in vitro was not observed in Wilson's disease patients. One cannot exclude, however, that because of low alpha-tocopherol level lipid peroxidation in the tissues can play a role in the pathogenesis of tissue injury in this disease.

  13. Treatment of oily port wastewater effluents using the ultraviolet/hydrogen peroxide photodecomposition system.

    PubMed

    Siedlecka, Ewa Maria; Stepnowski, Piotr

    2006-08-01

    This paper presents the nonselective degradation of mechanically pretreated oily wastewater by hydrogen peroxide (H2O2) in the presence and absence of UV irradiation. The effect of chemical oxidation on wastewater biodegradability was also examined. The exclusive use of H2O2 photolyzed by daylight results in quite efficient degradation rates for the low peroxide concentrations used. Higher hydrogen peroxide concentrations inhibit degradation of organic contaminants in the wastewater. The degradation rates of all contaminants are relatively high with an advanced oxidation system (UV/H2O2), but degradation efficiencies are not distinguishably different when 20 or 45 minutes of UV irradiation is used. The excess of H2O2 used in the process can inhibit phenolic degradation and may lead to the formation of a new phenolic fraction. The biodegradability of port wastewater did not increase significantly following the application of the advanced oxidation process.

  14. Assessment of lipid peroxidation and p53 as a biomarker of carcinogenesis among workers exposed to formaldehyde in the cosmetic industry.

    PubMed

    Attia, Dalia; Mansour, Neveen; Taha, Fatma; Seif El Dein, Aisha

    2016-06-01

    Despite the wide use of cosmetic products, they exert a number of health effects on tissues ranging from irritation to cancer. Our study aimed at assessing the effect of formaldehyde on lipid peroxidation and verifying the susceptibility to carcinogenesis using p53 as a biomarker among workers exposed to formaldehyde in cosmetic industry. Our entire exposed group (n = 40) and the controls (n = 20) were subjected to estimation of formate in urine, serum malondialdehyde (MDA), and p53. Also, complete blood picture, liver, and kidney function tests were carried out. The study revealed significant increase in the levels of formate, MDA, and p53 in the exposed group compared with their control group. Our results showed that workers in cosmetic industry had significant exposure to formaldehyde. Furthermore, the study pointed to the negative impact of formaldehyde as a cause of oxidative stress and suspicious carcinogen. © The Author(s) 2014.

  15. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    PubMed

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Lipid peroxidation and antioxidant status in rat: effect of food restriction and wheel running.

    PubMed

    Filaire, Edith; Rouveix, Matthieu; Massart, Alain; Gladine, Cécile; Davicco, Marie Jeanne; Durand, Denys

    2009-09-01

    Using the activity-based anorexia model, the aim of this investigation was to explore antioxidant enzyme activity (catalase, superoxide dismutase), total antioxidant status (TAS), and alpha-tocopherol in blood, liver, and gastrocnemius muscle associated with the food restriction and voluntary wheel running during 8 days. In addition, lipid peroxidation was measured by measurements of malondialdehyde (MDA). Wistars rats (n = 56) were randomly assigned to one of four groups: an ad lib sedentary group, a control wheel activity group, a food restriction-induced hyperactivity group (1 h/day ad lib food, 23 h/day ad lib wheel access), and a food-restricted sedentary group. The animals were killed when the rats in the food-restricted group had lost 25% of their free feeding weight. Antioxidant enzyme activities and TAS in blood, liver, and gastrocnemius muscle were unaffected by voluntary wheel running. A wheel activity effect (P < 0.05) was obtained for the MDA concentrations in plasma, with lower concentrations in trained animals. Food restriction effects were obtained for antioxidant capacity in liver, as well as for CAT activity in the gastrocnemius muscle and plasma MDA concentrations with lower values in the restricted animals. On the other hand, the food-restricted rats showed higher plasma TAS concentrations (P < 0.05) and higher alpha-tocopherol concentrations in the liver (P < 0.05) when compared to animals fed ad libitum. Our results also showed that food restriction coupled to wheel running decreased antioxidant parameters in liver, and plasmatic MDA concentrations and increased TAS plasma concentrations when compared to the ad libitum sedentary situation.

  17. Effect of CoQ homologues on reactive oxygen generation by mitochondria.

    PubMed

    Imada, Isuke; Sato, Eisuke F; Kira, Yukimi; Inoue, Masayasu

    2008-01-01

    Effect of CoQ compounds (Qs) on reactive oxygen (ROS) generation by mitochondrial complex I was studied using rat liver mitochondria and chemiluminescence probe L012. Kinetic analysis revealed that short chain Qs, such as Q2 and idebenone enhanced ROS generation by mitochondrial NADH oxidase system by a succinate-inhibitable mechanism. Lipid peroxidation in mitochondrial membranes induced by NADH and iron was inhibited by short chain Qs. The inhibitory activity was enhanced by co-oxidation of succinate as determined by chemiluminescence method and by electron spin resonance spectroscopy. These results suggested that the reduced form of short chain Qs inhibited mitochondrial ROS generation and lipid peroxidation.

  18. Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer.

    PubMed

    Kang, Ju-Hee; Jang, Jeong-Eun; Mishra, Siddhartha Kumar; Lee, Hee-Ju; Nho, Chu Won; Shin, Dongyun; Jin, Mirim; Kim, Mi Kyung; Choi, Changsun; Oh, Seung Hyun

    2015-09-15

    In this study, we examined the effect of different fractions and components of Chaga mushroom (Inonotus Obliquus) on viability and apoptosis of colon cancer cells. Among them, one component showed the most effective growth inhibition and was identified as ergosterol peroxide by NMR analysis. We investigated the anti-proliferative and apoptosis mechanisms of ergosterol peroxide associated with its anti-cancer activities in human colorectal cancer (CRC) cell lines and tested its anti-tumor effect on colitis-induced CRC developed by Azoxymethane (AOM)/Dextran sulfate sodium (DSS) in a mouse model. We used MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, flow cytometry assays, Western blot analysis, colony formation assays, reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and AOM/DSS mouse models to study the molecular mechanism of metastatic activities in CRC cells. Ergosterol peroxide inhibited cell proliferation and also suppressed clonogenic colony formation in HCT116, HT-29, SW620 and DLD-1 CRC cell lines. The growth inhibition observed in these CRC cell lines was the result of apoptosis, which was confirmed by FACS analysis and Western blotting. Ergosterol peroxide inhibited the nuclear levels of β-catenin, which ultimately resulted in reduced transcription of c-Myc, cyclin D1, and CDK-8. Ergosterol peroxide administration showed a tendency to suppress tumor growth in the colon of AOM/DSS-treated mice, and quantification of the IHC staining showed a dramatic decrease in the Ki67-positive staining and an increase in the TUNEL staining of colonic epithelial cells in AOM/DSS-treated mice by ergosterol peroxide for both prevention and therapy. Our data suggest that ergosterol peroxide suppresses the proliferation of CRC cell lines and effectively inhibits colitis-associated colon cancer in AOM/DSS-treated mice. Ergosterol peroxide down-regulated β-catenin signaling, which exerted anti-proliferative and

  19. A novel squarylium dye for monitoring oxidative processes in lipid membranes.

    PubMed

    Trusova, Valeriya M; Gorbenko, Galyna P; Deligeorgiev, Todor; Gadjev, Nikolai; Vasilev, Aleksey

    2009-11-01

    A novel squaraine probe SQ-1 has been found to be appropriate for monitoring the peroxidation processes in membrane systems. Formation of free radicals was triggered by methemoglobin (metHb) or cytochrome c (cyt c) binding to the model lipid membranes composed of zwitterionic lipid phosphatidylcholine (PC) and anionic lipid cardiolipin (CL). Protein association with the lipid vesicles was followed by drastic quenching of SQ-1 fluorescence. The observed spectral changes were suppressed in the presence of free radical scavengers, butylated hydroxytoluene (BHT) and thiourea (TM) suggesting that SQ-1 decolorization can be attributed to its reactions with lipid radicals.

  20. Long chain fatty acids (LCFA) evolution for inhibition forecasting during anaerobic treatment of lipid-rich wastes: Case of milk-fed veal slaughterhouse waste.

    PubMed

    Rodríguez-Méndez, R; Le Bihan, Y; Béline, F; Lessard, P

    2017-09-01

    A detailed study of a solid slaughterhouse waste (SHW) anaerobic treatment is presented. The waste used in this study is rich in lipids and proteins residue. Long chain fatty acids (LCFA), coming from the hydrolysis of lipids were inhibitory to anaerobic processes at different degrees. Acetogenesis and methanogenesis processes were mainly affected by inhibition whereas disintegration and hydrolysis processes did not seem to be affected by high LCFA concentrations. Nevertheless, because of the high energy content, this kind of waste is very suitable for anaerobic digestion but strict control of operating conditions is required to prevent inhibition. For that, two inhibition indicators were identified in this study. Those two indicators, LCFA dynamics and LCFA/VS biomass ratio proved to be useful to predict and to estimate the process inhibition degree. Copyright © 2017 Elsevier Ltd. All rights reserved.