Science.gov

Sample records for inhibitor p27kip1 expression

  1. Cyclin dependent kinase inhibitor p27Kip1 expression in normal and neoplastic cervical epithelium.

    PubMed Central

    Troncone, G; Vetrani, A; de Rosa, G; Gerbasio, D; Palombini, L

    1999-01-01

    AIM: To investigate whether there is loss of the p27Kip1 protein in developing cervical cancer and whether p27Kip1 immunoreactivity has any relation to the proliferative indicator Ki-67. METHODS: The expression of p27Kip1 and Ki-67 was assessed by immunohistochemistry in serial sections from normal epithelium (13), low grade (27) and high grade (19) squamous intraepithelial lesions (LSIL, HSIL), and invasive cervical cancer (23). In the SIL cases the presence of human papillomavirus (HPV) genomic sequences was assessed by in situ hybridisation. The results were evaluated by image analysis, and reported as mean score of the percentage of p27Kip1 and of Ki-67 positive cells in each histological group. RESULTS: In general, p27Kip1 immunostaining was related to squamous differentation, and was intense in normal epithelium (47%), while it was reduced in SIL lesions as an effect of the decreased number of differentiating cells. However, decrease in the p27Kip1 expression was more evident in LSIL (36%) than in HSIL (39%); in the latter, p27Kip1 had a different intraepithelial distribution in that the staining extended to the basal cells. The average levels of p27Kip1 were similar in SIL lesions associated to low, intermediate, and high risk HPV types. Compared with normal epithelium and dysplasia, invasive cancer showed significantly lower p27Kip1 levels (23%). There was no relation between p27Kip1 and Ki-67 labelling indices in any of the histological groups examined. CONCLUSIONS: A reduction in p27Kip1 protein occurs in cervical cancer independently of the proliferative status. The changes in p27Kip1 expression may be related to the unregulated kinetics of developing cervical cancer. Images PMID:10711250

  2. Prognostic implications of expression of the cell cycle inhibitor protein p27Kip1.

    PubMed

    Cariou, S; Catzavelos, C; Slingerland, J M

    1998-01-01

    Mitogenic and growth inhibitory signals influence the activity of a family of cyclin dependent kinases (cdks). p27 is an important cdk inhibitor, acting in G1 to inhibit cyclin-cdks. As negative growth regulators, the cdk inhibitors may function as tumor suppressors. While the p16 gene plays a tumor suppressor role in cancers, p27 gene mutations have been identified only rarely. While high levels of p27 protein are expressed in normal human mammary epithelium, loss of p27 is frequent and is of independent prognostic significance in breast cancers. Low p27 is also a poor prognostic factor in colon, gastric, esophageal, lung, and prostate carcinomas, and enhanced proteasomal degradation may underlie loss of p27 in tumor cells. Loss of p27 has not been significantly correlated with tumor proliferation in a number of studies and may reflect alterations in differentiation and adhesion-dependent growth regulation germane to oncogenesis and tumor progression. Efforts to confirm the prognostic value of p27 are under way in a number of large breast cancer studies. These studies may also indicate whether loss of p27 in association with other traditional or novel markers has greater prognostic potential than each factor alone. p27 immunostaining is inexpensive and reliable and may become part of the routine histopathologic processing of tumors in the near future. Widespread application of p27 in prognostic testing will require greater uniformity in scoring techniques and determination of the cut off levels which distinguish individuals at high and low risk of cancer recurrence and death. Finally, the greatest utility of p27 may lie in the information it sheds on the biology of aberrant growth regulation in breast cancer and the potential to use this in the generation of novel therapeutic strategies. PMID:10066070

  3. Embryonic Lethal Abnormal Vision-like HuR-dependent mRNA Stability Regulates Post-transcriptional Expression of Cyclin-dependent Kinase Inhibitor p27Kip1

    PubMed Central

    Ziegeler, Gudrun; Ming, Jie; Koseki, Jana C.; Sevinc, Sema; Chen, Ting; Ergun, Suleyman; Qin, Xuebin; Aktas, Bertal H.

    2010-01-01

    The cyclin-dependent kinase inhibitor p27Kip1 plays a critical role in regulating entry into and exit from the cell cycle. Post-transcriptional regulation of p27Kip1 expression is of significant interest. The embryonic lethal abnormal vision (ELAV)-like RNA-binding protein HuR is thought be important for the translation of p27Kip1, however, different reports attributed diametrically opposite roles to HuR. We report here an alternative mechanism wherein HuR regulates stability of the p27Kip1 mRNA. Specifically, human and mouse p27Kip1 mRNAs interact with HuR protein through multiple U-rich elements in both 5′ and 3′ untranslated regions (UTR). These interactions, which occur in vitro and in vivo, stabilize p27Kip1 mRNA and play a critical role in its accumulation. Deleting HuR binding sites or knocking down HuR expression destabilizes p27Kip1 mRNA and reduces its accumulation. We also identified a CT repeat in the 5′ UTR of full-length p27Kip1 mRNA isoforms that interact with a ∼41-kDa protein and represses p27Kip1 expression. This CT-rich element and diffuse elements in the 3′ UTR regulate post-transcriptional expression of p27Kip1 at the level of translation. This is the first demonstration that HuR-dependent mRNA stability and HuR-independent mRNA translation plays a critical role in the regulation of post-transcriptional p27Kip1 expression. PMID:20332085

  4. The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression

    PubMed Central

    Xia, Zhen-Biao; Popovic, Relja; Chen, Jing; Theisler, Catherine; Stuart, Tara; Santillan, Donna A.; Erfurth, Frank; Diaz, Manuel O.; Zeleznik-Le, Nancy J.

    2005-01-01

    MLL, involved in many chromosomal translocations associated with acute myeloid and lymphoid leukemia, has >50 known partner genes with which it is able to form in-frame fusions. Characterizing important downstream target genes of MLL and of MLL fusion proteins may provide rational therapeutic strategies for the treatment of MLL-associated leukemia. We explored downstream target genes of the most prevalent MLL fusion protein, MLL-AF4. To this end, we developed inducible MLL-AF4 fusion cell lines in different backgrounds. Overexpression of MLL-AF4 does not lead to increased proliferation in either cell line, but rather, cell growth was slowed compared with similar cell lines inducibly expressing truncated MLL. We found that in the MLL-AF4-induced cell lines, the expression of the cyclin-dependent kinase inhibitor gene CDKN1B was dramatically changed at both the RNA and protein (p27kip1) levels. In contrast, the expression levels of CDKN1A (p21) and CDKN2A (p16) were unchanged. To explore whether CDKN1B might be a direct target of MLL and of MLL-AF4, we used chromatin immunoprecipitation (ChIP) assays and luciferase reporter gene assays. MLL-AF4 binds to the CDKN1B promoter in vivo and regulates CDKN1B promoter activity. Further, we confirmed CDKN1B promoter binding by ChIP in MLL-AF4 as well as in MLL-AF9 leukemia cell lines. Our results suggest that CDKN1B is a downstream target of MLL and of MLL-AF4, and that, depending on the background cell type, MLL-AF4 inhibits or activates CDKN1B expression. This finding may have implications in terms of leukemia stem cell resistance to chemotherapy in MLL-AF4 leukemias. PMID:16169901

  5. p27Kip1 expression as a prognostic marker for squamous cell carcinoma of the head and neck

    PubMed Central

    DE ALMEIDA, MIGUEL REIS; PÉREZ-SAYÁNS, MARIO; SUÁREZ-PEÑARANDA, JOSÉ MANUEL; SOMOZA-MARTÍN, JOSÉ MANUEL; GARCÍA-GARCÍA, ABEL

    2015-01-01

    Regulation of the cell cycle is essential for carcinogenesis. The cell cycle is controlled by cyclin-dependent kinases (CDKs), which are upregulated by cyclins and downregulated by CDK inhibitors (CDKIs). Decreased p27Kip1 expression has been associated with survival rate, tumor size, histological differentiation and the presence of lymph node metastasis in patients with various types of cancer. The aim of the current study is to provide a literature review on the association between p27Kip1 expression and the clinical and pathological aspects of head and neck squamous cell carcinoma (HNSCC), and the expression of other CDKIs of the Cip/Kip family and cyclins. Throughout the literature, different methodologies were used to determine the immunohistochemical expression of p27Kip1; thus, results concerning p27Kip1 expression in HNSCC vary widely. However, it has now been confirmed that p27Kip1 is underexpressed in SCC cells. p27 may be a promising marker for determining the prognosis of HNSCC, despite the marked variability of the results obtained. An association between p27 expression and survival rate, time to recurrence and tumor stage has been observed. Based on the information currently available, it is premature to recommend the analysis of p27Kip1 expression in guiding HNSCC treatment planning. However, although relatively unstudied, the correlation between p27Kip1 expression and other tumor suppressor genes may turn out to be important in determining the prognosis of HNSCC. Further prospective studies utilizing standardized laboratory methodologies and statistics that facilitate meta-analyses are required to confirm this proposal. PMID:26722226

  6. Histone Deacetylase Inhibitors Increase p27Kip1 by Affecting Its Ubiquitin-Dependent Degradation through Skp2 Downregulation

    PubMed Central

    Borriello, Adriana; Naviglio, Silvio; Bencivenga, Debora; Caldarelli, Ilaria; Tramontano, Annunziata; Speranza, Maria Carmela; Stampone, Emanuela; Sapio, Luigi; Negri, Aide; Oliva, Adriana; Sinisi, Antonio Agostino; Spina, Annamaria; Della Ragione, Fulvio

    2016-01-01

    Histone deacetylase inhibitors (HDACIs) represent an intriguing class of pharmacologically active compounds. Currently, some HDACIs are FDA approved for cancer therapy and many others are in clinical trials, showing important clinical activities at well tolerated doses. HDACIs also interfere with the aging process and are involved in the control of inflammation and oxidative stress. In vitro, HDACIs induce different cellular responses including growth arrest, differentiation, and apoptosis. Here, we evaluated the effects of HDACIs on p27Kip1, a key cyclin-dependent kinase inhibitor (CKI). We observed that HDACI-dependent antiproliferative activity is associated with p27Kip1 accumulation due to a reduced protein degradation. p27Kip1 removal requires a preliminary ubiquitination step due to the Skp2-SCF E3 ligase complex. We demonstrated that HDACIs increase p27Kip1 stability through downregulation of Skp2 protein levels. Skp2 decline is only partially due to a reduced Skp2 gene expression. Conversely, the protein decrease is more profound and enduring compared to the changes of Skp2 transcript. This argues for HDACIs effects on Skp2 protein posttranslational modifications and/or on its removal. In summary, we demonstrate that HDACIs increase p27Kip1 by hampering its nuclear ubiquitination/degradation. The findings might be of relevance in the phenotypic effects of these compounds, including their anticancer and aging-modulating activities. PMID:26682002

  7. [Prognostic value of the inmunohïstochemical expression of protein p27KIP1 in laryngeal cancer].

    PubMed

    García Lozano, M C; Orradre Romero, J L; Caro García, M; Martínez Alvarez, A; Lasso Luis, O; Piris Pinilla, M A

    2006-01-01

    In this paper we carried out an immunohistochemical study of protein p27KIP1 expression in a series of 195 patients with laryngeal carcinoma that were diagnosticated, treated and followed at the Department of Otolaryngology at "Virgen de la Salud" Hospital (Toledo, Spain). In the cases with lymph node metastasis we also studied p27KIP1 expression at this level. Furthermore we have analysed the value of protein p27KIP1 expression as a prognostic factor (tumor recurrence, deads due to cancer and survival) and we evaluate the relationship between p27KIP1 expression and other clinic and pathologic parameters. PMID:16566195

  8. Reduced levels of the cell-cycle inhibitor p27Kip1 in epithelial dysplasia and carcinoma of the oral cavity.

    PubMed Central

    Jordan, R. C.; Bradley, G.; Slingerland, J.

    1998-01-01

    Recent studies have shown that the cyclin-dependent kinase (cdk) inhibitors play important roles in cell cycle progression in normal cells. Alterations in the cdk inhibitors also appear to be important in cancer development in a number of human tumors. p27Kip1 is a member of the CIP/KIP family of cdk inhibitors that negatively regulates cyclin-cdk complexes. Reduced levels of p27Kip1 protein have been identified in a number of human cancers, and in some cases reduced p27Kip1 is associated with an increase in proliferative fraction. In the present study, we examined p27Kip1 protein by immunohistochemistry in 10 normal and 36 dysplastic epithelia and in 8 squamous cell carcinomas from one anatomical site within the oral cavity, the floor of the mouth. Proliferative activity was assessed in serial sections by determining the expression of the cell cycle proteins Ki-67 and cyclin A. p27kip1 protein was significantly reduced in oral dysplasias and carcinomas compared with that in normal epithelial controls. In addition, there was a significant reduction in p27Kip1 protein between low- and high-grade dysplasias, suggesting that changes in p27Kip1 expression may be an early event in oral carcinogenesis. There was increasing expression of Ki-67 and cyclin A proteins with increasingly severe grades of dysplasia compared with normal controls. Although there was a strong correlation between Ki-67 and cyclin A scores (r2= 0.61) for all categories of disease, there was a weak negative correlation between Ki-67 and p27Kip1 levels (r2 = 0.29) and between cyclin A and p27Kip1 levels (r2 = 0.25). In conclusion, this study has found that a reduction in the proportion of cells expressing p27Kip1 protein is frequently associated with oral dysplasia and carcinoma from the floor of the mouth. Furthermore, reductions in p27Kip1 levels are associated with increased cell proliferation, although other changes likely contribute to altered cell kinetics during carcinogenesis at this site

  9. Nanog induces suppression of senescence through downregulation of p27KIP1 expression

    PubMed Central

    Münst, Bernhard; Thier, Marc Christian; Winnemöller, Dirk; Helfen, Martina; Thummer, Rajkumar P.; Edenhofer, Frank

    2016-01-01

    ABSTRACT A comprehensive analysis of the molecular network of cellular factors establishing and maintaining pluripotency as well as self renewal of pluripotent stem cells is key for further progress in understanding basic stem cell biology. Nanog is necessary for the natural induction of pluripotency in early mammalian development but dispensable for both its maintenance and its artificial induction. To gain further insight into the molecular activity of Nanog, we analyzed the outcomes of Nanog gain-of-function in various cell models employing a recently developed biologically active recombinant cell-permeant protein, Nanog-TAT. We found that Nanog enhances the proliferation of both NIH 3T3 and primary fibroblast cells. Nanog transduction into primary fibroblasts results in suppression of senescence-associated β-galactosidase activity. Investigation of cell cycle factors revealed that transient activation of Nanog correlates with consistent downregulation of the cell cycle inhibitor p27KIP1 (also known as CDKN1B). By performing chromatin immunoprecipitation analysis, we confirmed bona fide Nanog-binding sites upstream of the p27KIP1 gene, establishing a direct link between physical occupancy and functional regulation. Our data demonstrates that Nanog enhances proliferation of fibroblasts through transcriptional regulation of cell cycle inhibitor p27 gene. PMID:26795560

  10. miR-222 confers the resistance of breast cancer cells to Adriamycin through suppression of p27(kip1) expression.

    PubMed

    Wang, Dan-Dan; Li, Jian; Sha, Huan-Huan; Chen, Xiu; Yang, Su-Jin; Shen, Hong-Yu; Zhong, Shan-Liang; Zhao, Jian-Hua; Tang, Jin-Hai

    2016-09-15

    Adriamycin (Adr) is a potent chemotherapeutic agent for chemotherapy of breast cancer patients. Despite impressive initial clinical responses, some developed drug resistance to Adr-based therapy and the mechanisms underlying breast cancer cells resistance to Adr are not well known. In our previous study, in vitro, we verified that miR-222 was upregulated in Adr-resistant breast cancer cells (MCF-7/Adr) compared with the sensitive parental cells (MCF-7/S). Here, miR-222 inhibitors or mimics were transfected into MCF-7 cell lines. RT-qPCR and western blot were used to detect the expression of p27(kip1). Immunofluorescence showed that miR-222 altered the subcellular location of p27(kip1) in nucleus. MTT was employed to verify the sensitivity of breast cancer cell lines to Adr. Flow cytometry showed the apoptosis and cell cycles of the cells after adding Adr. The results showed that downregulation of miR-222 in MCF-7/Adr increased sensitivity to Adr and Adr-induced apoptosis, and arrested the cells in G1 phase, accompanied by more expressions of p27(kip1), especially in nucleus. Furthermore, overexpressed miR-222 in MCF-7/S had the inverse results. Taken together, the results found that miR-222 induced Adr-resistance at least in part via suppressing p27(kip1) expression and altering its subcellular localization, and miR-222 inhibitors could reverse Adr-resistance of breast cancer cells. These results disclosed that the future holds much promise for the targeted therapeutic in the treatment of Adr-resistant breast cancer. PMID:27282281

  11. PRMT5 Is Upregulated in Malignant and Metastatic Melanoma and Regulates Expression of MITF and p27Kip1

    PubMed Central

    Nicholas, Courtney; Yang, Jennifer; Peters, Sara B.; Bill, Matthew A.; Baiocchi, Robert A.; Yan, Fengting; Sïf, Saïd; Tae, Sookil; Gaudio, Eugenio; Wu, Xin; Grever, Michael R.; Young, Gregory S.; Lesinski, Gregory B.

    2013-01-01

    Protein arginine methyltransferase-5 (PRMT5) is a Type II arginine methyltransferase that regulates various cellular functions. We hypothesized that PRMT5 plays a role in regulating the growth of human melanoma cells. Immunohistochemical analysis indicated significant upregulation of PRMT5 in human melanocytic nevi, malignant melanomas and metastatic melanomas as compared to normal epidermis. Furthermore, nuclear PRMT5 was significantly decreased in metastatic melanomas as compared to primary cutaneous melanomas. In human metastatic melanoma cell lines, PRMT5 was predominantly cytoplasmic, and associated with its enzymatic cofactor Mep50, but not STAT3 or cyclin D1. However, histologic examination of tumor xenografts from athymic mice revealed heterogeneous nuclear and cytoplasmic PRMT5 expression. Depletion of PRMT5 via siRNA inhibited proliferation in a subset of melanoma cell lines, while it accelerated growth of others. Loss of PRMT5 also led to reduced expression of MITF (microphthalmia-associated transcription factor), a melanocyte-lineage specific oncogene, and increased expression of the cell cycle regulator p27Kip1. These results are the first to report elevated PRMT5 expression in human melanoma specimens and indicate this protein may regulate MITF and p27Kip1 expression in human melanoma cells. PMID:24098663

  12. A new tumour suppression mechanism by p27Kip1: EGFR down-regulation mediated by JNK/c-Jun pathway inhibition

    PubMed Central

    Fang, Yong; Wang, Yihong; Wang, Yulei; Meng, Yan; Zhu, Junlan; Jin, Honglei; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wu, Xue-Ru; Huang, Chuanshu

    2014-01-01

    p27Kip1 is a potent inhibitor of cyclin-dependent kinases that drive G1-to-S cell-cycle transition. Reduced p27Kip1 expression is prevalent in a wide range of human tumours; however, the exact mechanism(s) of p27Kip1-mediated tumour suppression remains obscure. In the present study, we identified a close inverse relationship between p27Kip1 and EGFR (epidermal growth factor receptor) expression: the parental T24 human bladder cancer cells had high p27Kip1 expression but low EGFR expression and, in striking contrast, the metastatic derivative of T24 (T24T) had low p27Kip1 expression but high EGFR expression. This relationship was also found in various human cancer tissues, and was not only just correlative but also causal; depletion of p27Kip1 in MEF (mouse embryonic fibroblast) cells resulted in markedly elevated EGFR expression, a result reproducible with an Egfr promoter-luciferase reporter in both T24 and MEF cells, suggesting transcriptional repression of EGFR by p27Kip1. Indeed, p27Kip1 was found to regulate EGFR expression via the JNK (c-Jun N-terminal kinase)/c-Jun transcription factor: p27Kip1 deficiency activated JNK/c-Jun, whereas inhibition of JNK/c-Jun by dominant-negative mutants dramatically repressed Egfr transcription. Furthermore, the proximal promoter of the Egfr gene was crucial for its transcription, where the recruiting activity of c-Jun was much greater in p27Kip1−/− cells than in p27Kip1+/+ cells. Introduction of GFP–p27Kip1 into T24T cells suppressed JNK/c-Jun activation, EGFR expression and anchorage-independent growth. The results of the present study demonstrate that p27Kip1 suppresses JNK/c-Jun activation and EGFR expression in MEFs and human bladder cancer cells, and the results obtained are consistent with those from human cancer specimens. The present study provides new insights into p27Kip1 suppression of cancer cell growth, migration and metastasis. PMID:25121353

  13. Differential modulation of paclitaxel-mediated apoptosis by p21Waf1 and p27Kip1.

    PubMed

    Schmidt, M; Lu, Y; Liu, B; Fang, M; Mendelsohn, J; Fan, Z

    2000-05-11

    The impact of the cyclin dependent kinase (CDK) inhibitors p21Waf1 and p27Kip1 on paclitaxel-mediated cytotoxicity was investigated in RKO human colon adenocarcinoma cells with the ecdysone-inducible expression of p21Waf1 or p27Kip1. Ectopic expression of p27Kip1 arrested cells at G1 phase, whereas p21Waf1 expression arrested cells at G1 and G2. Expression of p21Waf1 after paclitaxel treatment produced much greater resistance to paclitaxel than did expression of p27Kip1. We attributed this difference to the additional block at G2 induced by p21Waf1, which prevented cells from entering M phase and becoming paclitaxel susceptible. Expression of p21Waf1 inhibited p34cdc2 activity and markedly reduced paclitaxel-mediated mitotic arrest, from 87.5 to 23%. In contrast, p27Kip1 expression also inhibited p34cdc2 but reduced mitotic arrest only slightly, from 87. 4 to 74.5%. We concluded that the G2 block produced by p21Waf1, but not by p27Kip1, contributed to their unequal modulation of sensitivity to paclitaxel-mediated apoptosis in RKO cells, and there is no causal relationship between paclitaxel-mediated cytotoxicity and elevation of p34cdc2 activity. PMID:10828884

  14. FGFR1 signaling stimulates proliferation of human mesenchymal stem cells by inhibiting the cyclin-dependent kinase inhibitors p21(Waf1) and p27(Kip1).

    PubMed

    Dombrowski, Christian; Helledie, Torben; Ling, Ling; Grünert, Martin; Canning, Claire A; Jones, C Michael; Hui, James H; Nurcombe, Victor; van Wijnen, Andre J; Cool, Simon M

    2013-12-01

    Signaling through fibroblast growth factor receptor one (FGFR1) is a known inducer of proliferation in both embryonic and human adult mesenchymal stem cells (hMSCs) and positively regulates maintenance of stem cell viability. Leveraging the mitogenic potential of FGF2/FGFR1 signaling in stem cells for therapeutic applications necessitates a mechanistic understanding of how this receptor stimulates cell cycle progression. Using small interfering RNA (siRNA) depletion, antibody-inhibition, and small molecule inhibition, we establish that FGFR1 activity is rate limiting for self-renewal of hMSCs. We show that FGFR1 promotes stem cell proliferation through multiple mechanisms that unite to antagonize cyclin-dependent kinase (CDK) inhibitors. FGFR1 not only stimulates c-Myc to suppress transcription of the CDK inhibitors p21(Waf1) and p27(Kip1), thus promoting cell cycle progression but also increases the activity of protein kinase B (AKT) and the level of S-phase kinase-associated protein 2 (Skp2), resulting in the nuclear exclusion and reduction of p21(Waf1). The in vivo importance of FGFR1 signaling for the control of proliferation in mesenchymal progenitor populations is underscored by defects in ventral mesoderm formation during development upon inhibition of its signaling. Collectively, these studies demonstrate that FGFR1 signaling mediates the continuation of MSC growth and establishes a receptor target for enhancing the expansion of mesenchymal progenitors while maintaining their multilineage potential. PMID:23939995

  15. Notch Signaling Activates Stem Cell Properties of Müller Glia through Transcriptional Regulation and Skp2-mediated Degradation of p27Kip1

    PubMed Central

    Parameswaran, Sowmya; Mathews, Saumi; Xia, Xiaohuan; Zheng, Li; Neville, Andrew J.; Ahmad, Iqbal

    2016-01-01

    Müller glia (MG), the sole glial cells generated by retinal progenitors, have emerged as a viable cellular target for therapeutic regeneration in degenerative blinding diseases, as they possess dormant stem cell properties. However, the mammalian MG does not display the neurogenic potential of their lower vertebrate counterparts, precluding their practical clinical use. The answer to this barrier may be found in two interlinked processes underlying the neurogenic potential, i.e., the activation of the dormant stem cell properties of MG and their differentiation along the neuronal lineage. Here, we have focused on the former and examined Notch signaling-mediated activation of MG. We demonstrate that one of the targets of Notch signaling is the cyclin-dependent kinase inhibitor (CKI), p27Kip1, which is highly expressed in quiescent MG. Notch signaling facilitates the activation of MG by inhibiting p27Kip1 expression. This is likely achieved through the Notch- p27Kip1 and Notch-Skp2-p27Kip1 axes, the former inhibiting the expression of p27Kip1 transcripts and the latter levels of p27Kip1 proteins by Skp2-mediated proteasomal degradation. Thus, Notch signaling may facilitate re-entry of MG into the cell cycle by inhibiting p27Kip1 expression both transcriptionally and post-translationally. PMID:27011052

  16. Notch Signaling Activates Stem Cell Properties of Müller Glia through Transcriptional Regulation and Skp2-mediated Degradation of p27Kip1.

    PubMed

    Del Debbio, Carolina Beltrame; Mir, Qulsum; Parameswaran, Sowmya; Mathews, Saumi; Xia, Xiaohuan; Zheng, Li; Neville, Andrew J; Ahmad, Iqbal

    2016-01-01

    Müller glia (MG), the sole glial cells generated by retinal progenitors, have emerged as a viable cellular target for therapeutic regeneration in degenerative blinding diseases, as they possess dormant stem cell properties. However, the mammalian MG does not display the neurogenic potential of their lower vertebrate counterparts, precluding their practical clinical use. The answer to this barrier may be found in two interlinked processes underlying the neurogenic potential, i.e., the activation of the dormant stem cell properties of MG and their differentiation along the neuronal lineage. Here, we have focused on the former and examined Notch signaling-mediated activation of MG. We demonstrate that one of the targets of Notch signaling is the cyclin-dependent kinase inhibitor (CKI), p27Kip1, which is highly expressed in quiescent MG. Notch signaling facilitates the activation of MG by inhibiting p27Kip1 expression. This is likely achieved through the Notch- p27Kip1 and Notch-Skp2-p27Kip1 axes, the former inhibiting the expression of p27Kip1 transcripts and the latter levels of p27Kip1 proteins by Skp2-mediated proteasomal degradation. Thus, Notch signaling may facilitate re-entry of MG into the cell cycle by inhibiting p27Kip1 expression both transcriptionally and post-translationally. PMID:27011052

  17. CRM-1 knockdown inhibits extrahepatic cholangiocarcinoma tumor growth by blocking the nuclear export of p27Kip1.

    PubMed

    Luo, Jian; Chen, Yongjun; Li, Qiang; Wang, Bing; Zhou, Yanqiong; Lan, Hongzhen

    2016-08-01

    Cholangiocarcinoma is a deadly disease which responds poorly to surgery and conventional chemotherapy or radiotherapy. Early diagnosis is difficult due to the anatomical and biological characteristics of cholangiocarcinoma. Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cyclin‑dependent kinase inhibitor and in the present study, we found that p27Kip1 expression was suppressed in the nucleus and increased in the cytoplasm in 53 samples of cholangiocarcinoma from patients with highly malignant tumors (poorly-differentiated and tumor-node-metastsis (TNM) stage III-IV) compared with that in samples from 10 patients with chronic cholangitis. The expression of phosphorylated (p-)p27Kip1 (Ser10), one of the phosphorylated forms of p27Kip1, was increased in the patient samples with increasing malignancy and clinical stage. Coincidentally, chromosome region maintenance 1 (CRM-1; also referred to as exportin 1 or Xpo1), a critical protein responsible for protein translocation from the nucleus to the cytoplasm, was also overexpressed in the tumor samples which were poorly differentiated and of a higher clinical stage. Through specific short hairpin RNA (shRNA)-mediated knockdown of CRM-1 in the cholangiocarcinoma cell line QBC939, we identified an elevation of cytoplasmic p27Kip1 and a decrease of nuclear p27Kip1. Furthermore, the viability and colony formation ability of QBC939 cells was largely reduced with G1 arrest. Consistent with the findings of the in vitro experiments, in a xenograft mouse model, the tumors formed in the CRM-1 knockdown group were markedly smaller and weighed less than those in the control group in vivo. Taken together, these findings demonstrated that the interplay between CRM-1 and p27Kip1 may provide potentially potent biomarkers and functional targets for the development of future cholangiocarcinoma treatments. PMID:27279267

  18. CRM-1 knockdown inhibits extrahepatic cholangiocarcinoma tumor growth by blocking the nuclear export of p27Kip1

    PubMed Central

    Luo, Jian; Chen, Yongjun; Li, Qiang; Wang, Bing; Zhou, Yanqiong; Lan, Hongzhen

    2016-01-01

    Cholangiocarcinoma is a deadly disease which responds poorly to surgery and conventional chemotherapy or radiotherapy. Early diagnosis is difficult due to the anatomical and biological characteristics of cholangiocarcinoma. Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cyclin-dependent kinase inhibitor and in the present study, we found that p27Kip1 expression was suppressed in the nucleus and increased in the cytoplasm in 53 samples of cholangiocarcinoma from patients with highly malignant tumors (poorly-differentiated and tumor-node-metastsis (TNM) stage III–IV) compared with that in samples from 10 patients with chronic cholangitis. The expression of phosphorylated (p-)p27Kip1 (Ser10), one of the phosphorylated forms of p27Kip1, was increased in the patient samples with increasing malignancy and clinical stage. Coincidentally, chromosome region maintenance 1 (CRM-1; also referred to as exportin 1 or Xpo1), a critical protein responsible for protein translocation from the nucleus to the cytoplasm, was also overexpressed in the tumor samples which were poorly differentiated and of a higher clinical stage. Through specific short hairpin RNA (shRNA)-mediated knockdown of CRM-1 in the cholangiocarcinoma cell line QBC939, we identified an elevation of cytoplasmic p27Kip1 and a decrease of nuclear p27Kip1. Furthermore, the viability and colony formation ability of QBC939 cells was largely reduced with G1 arrest. Consistent with the findings of the in vitro experiments, in a xenograft mouse model, the tumors formed in the CRM-1 knockdown group were markedly smaller and weighed less than those in the control group in vivo. Taken together, these findings demonstrated that the interplay between CRM-1 and p27Kip1 may provide potentially potent biomarkers and functional targets for the development of future cholangiocarcinoma treatments. PMID:27279267

  19. Differential roles of p21(Waf1) and p27(Kip1) in modulating chemosensitivity and their possible application in drug discovery studies.

    PubMed

    Schmidt, M; Lu, Y; Parant, J M; Lozano, G; Bacher, G; Beckers, T; Fan, Z

    2001-11-01

    In this study, the differential role of the cyclin-dependent kinase (CDK) inhibitors p21(Waf1) and p27(Kip1) in cell cycle regulation was proposed for use in screening natural or synthetic compounds for cell cycle-dependent (particularly M phase-dependent) antineoplastic activity. p21(Waf1) or p27(Kip1) was ectopically expressed with an ecdysone-inducible mammalian expression system in a human colon adenocarcinoma cell line. Induction of p21(Waf1) or p27(Kip1) expression inhibited the activities of CDK2 and completely arrested cells at G(1) phase of the cell cycle by p27(Kip1) and at G(1) and G(2) phases by p21(Waf1). We examined the sensitivity of these cells to several antineoplastic agents known to be cell cycle-dependent or -independent. Substantially increased resistance to cell cycle-dependent antineoplastic agents was found in the cells when the expression of p21(Waf1) or p27(Kip1) was induced. In contrast, only a desensitization to cell cycle-independent antineoplastic agents was found in the cells arrested by p21(Waf1) or p27(Kip1). Because p21(Waf1) induces an additional block at G(2) phase that inhibits cell entry into M phase, we further examined the difference between p21(Waf1)- and p27(Kip1)-induced cells in their sensitivity to D-24851, a novel M phase-dependent compound. We found that induction of p21(Waf1) after exposure of the cells to D-24851 conferred stronger resistance than did induction of p27(Kip1). Taken together, our results suggest that the differential effect of p21(Waf1) and p27(Kip1) on cell cycle regulation may be advantageous for screening chemical libraries for novel antineoplastic candidates that are cell cycle-dependent, and M phase-dependent in particular. PMID:11641417

  20. CacyBP/SIP nuclear translocation regulates p27Kip1 stability in gastric cancer cells

    PubMed Central

    Niu, Ying-Lin; Li, Ya-Jun; Wang, Jing-Bo; Lu, Yuan-Yuan; Liu, Zhen-Xiong; Feng, Shan-Shan; Hu, Jian-Guo; Zhai, Hui-Hong

    2016-01-01

    AIM: To investigate the mechanism of calcyclin binding protein/Siah-1 interacting protein (CacyBP/SIP) nuclear translocation in promoting the proliferation of gastric cancer (GC) cells. METHODS: The effect of CacyBP/SIP nuclear translocation on cell cycle was investigated by cell cycle analysis. Western blot analysis was used to assess the change in expression of cell cycle regulatory proteins and proteasome-mediated degradation of p27Kip1. Co-immunoprecipitation (co-IP) analysis was performed to examine the binding of CacyBP/SIP with Skp1. A CacyBP/SIP truncation mutant which lacked the Skp1 binding site was constructed and fused to a fluorescent protein. Subsequently, the effect on Skp1 binding with the fusion protein was examined by co-IP, while localization of fluorescent fusion protein observed by confocal laser microscopy, and change in p27Kip1 protein expression assessed by Western blot analysis. RESULTS: CacyBP/SIP nuclear translocation induced by gastrin promoted progression of GC cells from G1 phase. However, while CacyBP/SIP nuclear translocation was inhibited using siRNA to suppress CacyBP/SIP expression, cell cycle was clearly inhibited. CacyBP/SIP nuclear translocation significantly decreased the level of cell cycle inhibitor p27Kip1, increased Cyclin E protein expression whereas the levels of Skp1, Skp2, and CDK2 were not affected. Upon inhibition of CacyBP/SIP nuclear translocation, there were no changes in protein levels of p27Kip1 and Cyclin E, while p27Kip1 decrease could be prevented by the proteasome inhibitor MG132. Moreover, CacyBP/SIP was found to bind to Skp1 by immunoprecipitation, an event that was abolished by mutant CacyBP/SIP, which also failed to stimulate p27Kip1 degradation, even though the mutant could still translocate into the nucleus. CONCLUSION: CacyBP/SIP nuclear translocation contributes to the proliferation of GC cells, and CacyBP/SIP exerts this effect, at least in part, by stimulating ubiquitin-mediated degradation of p27

  1. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism

    PubMed Central

    Yu, Dan; Makkar, George; Dong, Tuo; Strickland, Dudley K.; Sarkar, Rajabrata; Monahan, Thomas Stacey

    2015-01-01

    Background Overexpression of the myristolated alanine-rich C kinase substrate (MARCKS) occurs in vascular proliferative diseases such as restenosis after bypass surgery. MARCKS knockdown results in arrest of vascular smooth muscle cell (VSMC) proliferation with little effect on endothelial cell (EC) proliferation. We sought to identify the mechanism of differential regulation by MARCKS of VSMC and EC proliferation in vitro and in vivo. Methods and Results siRNA-mediated MARCKS knockdown in VSMCs inhibited proliferation and prevented progression from phase G0/G1 to S. Protein expression of the cyclin-dependent kinase inhibitor p27kip1, but not p21cip1 was increased by MARCKS knockdown. MARCKS knockdown did not affect proliferation in VSMCs derived from p27kip1-/- mice indicating that the effect of MARCKS is p27kip1-dependent. MARCKS knockdown resulted in decreased phosphorylation of p27kip1 at threonine 187 and serine 10 as well as, kinase interacting with stathmin (KIS), cyclin D1, and Skp2 expression. Phosphorylation of p27kip1 at serine 10 by KIS is required for nuclear export and degradation of p27kip1. MARCKS knockdown caused nuclear trapping of p27kip1. Both p27kip1 nuclear trapping and cell cycle arrest were released by overexpression of KIS, but not catalytically inactive KIS. In ECs, MARCKS knockdown paradoxically increased KIS expression and cell proliferation. MARCKS knockdown in a murine aortic injury model resulted in decreased VSMC proliferation determined by bromodeoxyuridine (BrdU) integration assay, and inhibition of vascular wall thickening. MARCKS knockdown increased the rate of re-endothelialization. Conclusions MARCKS knockdown arrested VSMC cell cycle by decreasing KIS expression. Decreased KIS expression resulted in nuclear trapping of p27kip1 in VSMCs. MARCKS knockdown paradoxically increased KIS expression in ECs resulting in increased EC proliferation. MARCKS knockdown significantly attenuated the VSMC proliferative response to vascular

  2. Huntingtin with an expanded polyglutamine repeat affects the Jab1-p27(Kip1) pathway.

    PubMed

    Cong, S Y; Pepers, B A; Zhou, T T; Kerkdijk, H; Roos, R A; van Ommen, G J; Dorsman, J C

    2012-06-01

    Expansion of polyglutamine repeats is the cause of at least nine inherited human neurodegenerative disorders, including Huntington's disease (HD). It is widely accepted that deregulation of the transcriptional coactivator CBP by expanded huntingtin (htt) plays an important role in HD molecular pathogenesis. In this study, we report on a novel target of expanded polyglutamine stretches, the transcriptional coactivator Jun activation domain-binding protein 1 (Jab1), which shares DNA-sequence-specific transcription factor targets with CBP. Jab1 also plays a major role in the degradation of the cyclin-dependent-kinase inhibitor and putative transcription cofactor p27(Kip1). We found that Jab1 accumulates in aggregates when co-expressed with either expanded polyglutamine stretches or N-terminal fragments of mutant htt. In addition, the coactivator function of Jab1 was suppressed both by aggregated expanded polyglutamine solely and by mutant htt. Inhibition by mutant htt even preceded the appearance of microscopic aggregation. In an exon 1 HD cell model, we found that endogenous Jab1 could be recruited into aggregates and that this was accompanied by the accumulation of p27(Kip1). Accumulation of p27(Kip1) was also found in brains derived from HD patients. The repression of Jab1 by various mechanisms coupled with an increase of p27(Kip1) at late stages may have important transcriptional effects. In addition, the interference with the Jab1-p27(Kip1) pathway may contribute to the observed lower incidence of cancer in HD patients and may also be relevant for the understanding of the molecular pathogenesis of polyglutamine disorders in general. PMID:22426400

  3. Homeodomain-interacting protein kinase-2 stabilizes p27(kip1) by its phosphorylation at serine 10 and contributes to cell motility.

    PubMed

    Pierantoni, Giovanna Maria; Esposito, Francesco; Tornincasa, Mara; Rinaldo, Cinzia; Viglietto, Giuseppe; Soddu, Silvia; Fusco, Alfredo

    2011-08-19

    HIPK2 is a serine/threonine kinase that acts as a coregulator of an increasing number of factors involved in cell survival and proliferation during development and in response to different types of stress. Here we report on a novel target of HIPK2, the cyclin-dependent kinase inhibitor p27(kip1). HIPK2 phosphorylates p27(kip1) in vitro and in vivo at serine 10, an event that accounts for 80% of the total p27(kip1) phosphorylation and plays a crucial role in the stability of the protein. Indeed, HIPK2 depletion by transient or stable RNA interference in tumor cells of different origin was consistently associated with strong reduction of p27(kip1) phosphorylation at serine 10 and of p27(kip1) stability. An initial evaluation of the functional relevance of this HIPK2-mediated regulation of p27(kip1) revealed a contribution to cell motility, rather than to cell proliferation, but only in cells that do not express wild-type p53. PMID:21715331

  4. CPEB1 restrains proliferation of Glioblastoma cells through the regulation of p27Kip1 mRNA translation

    PubMed Central

    Galardi, Silvia; Petretich, Massimo; Pinna, Guillaume; D’Amico, Silvia; Loreni, Fabrizio; Michienzi, Alessandro; Groisman, Irina; Ciafrè, Silvia Anna

    2016-01-01

    The cytoplasmic element binding protein 1 (CPEB1) regulates many important biological processes ranging from cell cycle control to learning and memory formation, by controlling mRNA translation efficiency via 3′ untranslated regions (3′UTR). In the present study, we show that CPEB1 is significantly downregulated in human Glioblastoma Multiforme (GBM) tissues and that the restoration of its expression impairs glioma cell lines growth. We demonstrate that CPEB1 promotes the expression of the cell cycle inhibitor p27Kip1 by specifically targeting its 3′UTR, and competes with miR-221/222 binding at an overlapping site in the 3′UTR, thus impairing miR-221/222 inhibitory activity. Upon binding to p27Kip1 3′UTR, CPEB1 promotes elongation of poly-A tail and the subsequent translation of p27Kip1 mRNA. This leads to higher levels of p27Kip1 in the cell, in turn significantly inhibiting cell proliferation, and confers to CPEB1 a potential value as a tumor suppressor in Glioblastoma. PMID:27142352

  5. CPEB1 restrains proliferation of Glioblastoma cells through the regulation of p27(Kip1) mRNA translation.

    PubMed

    Galardi, Silvia; Petretich, Massimo; Pinna, Guillaume; D'Amico, Silvia; Loreni, Fabrizio; Michienzi, Alessandro; Groisman, Irina; Ciafrè, Silvia Anna

    2016-01-01

    The cytoplasmic element binding protein 1 (CPEB1) regulates many important biological processes ranging from cell cycle control to learning and memory formation, by controlling mRNA translation efficiency via 3' untranslated regions (3'UTR). In the present study, we show that CPEB1 is significantly downregulated in human Glioblastoma Multiforme (GBM) tissues and that the restoration of its expression impairs glioma cell lines growth. We demonstrate that CPEB1 promotes the expression of the cell cycle inhibitor p27(Kip1) by specifically targeting its 3'UTR, and competes with miR-221/222 binding at an overlapping site in the 3'UTR, thus impairing miR-221/222 inhibitory activity. Upon binding to p27(Kip1) 3'UTR, CPEB1 promotes elongation of poly-A tail and the subsequent translation of p27(Kip1) mRNA. This leads to higher levels of p27(Kip1) in the cell, in turn significantly inhibiting cell proliferation, and confers to CPEB1 a potential value as a tumor suppressor in Glioblastoma. PMID:27142352

  6. Fad24, a Positive Regulator of Adipogenesis, Is Required for S Phase Re-entry of C2C12 Myoblasts Arrested in G0 Phase and Involved in p27(Kip1) Expression at the Protein Level.

    PubMed

    Ochiai, Natsuki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2016-05-01

    Factor for adipocyte differentiation 24 (fad24) is a positive regulator of adipogenesis. We previously found that human fad24 is abundantly expressed in skeletal muscle. However, the function of fad24 in skeletal muscle remains largely unknown. Because skeletal muscle is a highly regenerative tissue, we focused on the function of fad24 in skeletal muscle regeneration. In this paper, we investigated the role of fad24 in the cell cycle re-entry of quiescent C2C12 myoblasts-mimicked satellite cells. The expression levels of fad24 and histone acetyltransferase binding to ORC1 (hbo1), a FAD24-interacting factor, were elevated at the early phase of the regeneration process in response to cardiotoxin-induced muscle injury. The knockdown of fad24 inhibited the proliferation of quiescent myoblasts, whereas fad24 knockdown did not affect differentiation. S phase entry following serum activation is abrogated by fad24 knockdown in quiescent cells. Furthermore, fad24 knockdown cells show a marked accumulation of p27(Kip1) protein. These results suggest that fad24 may have an important role in the S phase re-entry of quiescent C2C12 cells through the regulation of p27(Kip1) at the protein level. PMID:26902224

  7. Rat Protein Tyrosine Phosphatase η Suppresses the Neoplastic Phenotype of Retrovirally Transformed Thyroid Cells through the Stabilization of p27Kip1

    PubMed Central

    Trapasso, Francesco; Iuliano, Rodolfo; Boccia, Angelo; Stella, Antonella; Visconti, Roberta; Bruni, Paola; Baldassarre, Gustavo; Santoro, Massimo; Viglietto, Giuseppe; Fusco, Alfredo

    2000-01-01

    The r-PTPη gene encodes a rat receptor-type protein tyrosine phosphatase whose expression is negatively regulated by neoplastic cell transformation. Here we first demonstrate a dramatic reduction in DEP-1/HPTPη (the human homolog of r-PTPη) expression in a panel of human thyroid carcinomas. Subsequently, we show that the reexpression of the r-PTPη gene in highly malignant rat thyroid cells transformed by retroviruses carrying the v-mos and v-ras-Ki oncogenes suppresses their malignant phenotype. Cell cycle analysis demonstrated that r-PTPη caused G1 growth arrest and increased the cyclin-dependent kinase inhibitor p27Kip1 protein level by reducing the proteasome-dependent degradation rate. We propose that the r-PTPη tumor suppressor activity is mediated by p27Kip1 protein stabilization, because suppression of p27Kip1 protein synthesis using p27-specific antisense oligonucleotides blocked the growth-inhibitory effect induced by r-PTPη. Furthermore, we provide evidence that in v-mos- or v-ras-Ki-transformed thyroid cells, the p27Kip1 protein level was regulated by the mitogen-activated protein (MAP) kinase pathway and that r-PTPη regulated p27Kip1 stability by preventing v-mos- or v-ras-Ki-induced MAP kinase activation. PMID:11094075

  8. O-GlcNAc glycosylation of p27(kip1) promotes astrocyte migration and functional recovery after spinal cord contusion.

    PubMed

    Mao, Xingxing; Zhang, Dongmei; Tao, Tao; Liu, Xiaojuan; Sun, Xiaolei; Wang, Youhua; Shen, Aiguo

    2015-12-10

    Glial scar formation derived from astrocyte proliferation and migration influences the functional recovery after spinal cord injury. Cyclin-dependent kinase inhibitor p27(kip1), whose activity is closely related to its phosphorylation state, reportedly regulates astrocyte proliferation and migration. In this study, we reported that p27(Kip1) undergoes O-GlcNAc modification at Ser 2, Ser 110 and Thr 197. Inhibiting O-GlcNAcylation on Ser 2 by gene mutation (S2A) attenuated the phosphorylation of Ser 10, and vice versa. Interestingly, compared with wild type p27(Kip1), S2A p27(Kip1) displayed a decreased interaction with CRM1 and reduced nuclear export following serum starvation and release. In addition, the interaction between stathmin and S2A p27(Kip1) was also decreased. Cytoskeletal proteins microtubules appeared high density in astrocytes transfected with S2A p27(Kip1) especially at the leading edge of the scratch wound. Accordingly, scratch-wound assay revealed that the motility of astrocytes transfected with S2A p27(Kip1) was faster than that of control. Finally, we injected lentiviral vectors immediately after spinal cord contusion, and found the lesion volume of the rat injected with S2A p27(Kip1) was smaller than that of rat injected with wild type p27(Kip1). Besides, the BBB and CBS behavioral tests showed greater functional recovery in S2A p27(Kip1) treated rats. Taken together, our findings revealed a novel function of O-GlcNAc modification of p27(Kip1) in mediating astrocytes migration and functional recovery after spinal cord contusion. PMID:26562163

  9. Structural Basis of the Cks1-Dependent Recognition of P27Kip1 by the SCF skp2 Ubiquitin Ligase

    SciTech Connect

    Hao,B.; Zheng, N.; Schulman, B.; Wu, G.; Miller, J.; Pagano, M.; Pavletich, N.

    2005-01-01

    The ubiquitin-mediated proteolysis of the Cdk2 inhibitor p27(Kip1) plays a central role in cell cycle progression, and enhanced degradation of p27(Kip1) is associated with many common cancers. Proteolysis of p27(Kip1) is triggered by Thr187 phosphorylation, which leads to the binding of the SCF(Skp2) (Skp1-Cul1-Rbx1-Skp2) ubiquitin ligase complex. Unlike other known SCF substrates, p27(Kip1) ubiquitination also requires the accessory protein Cks1. The crystal structure of the Skp1-Skp2-Cks1 complex bound to a p27(Kip1) phosphopeptide shows that Cks1 binds to the leucine-rich repeat (LRR) domain and C-terminal tail of Skp2, whereas p27(Kip1) binds to both Cks1 and Skp2. The phosphorylated Thr187 side chain of p27(Kip1) is recognized by a Cks1 phosphate binding site, whereas the side chain of an invariant Glu185 inserts into the interface between Skp2 and Cks1, interacting with both. The structure and biochemical data support the proposed model that Cdk2-cyclin A contributes to the recruitment of p27(Kip1) to the SCF(Skp2)-Cks1 complex.

  10. Phosphorylation and subcellular localization of p27Kip1 regulated by hydrogen peroxide modulation in cancer cells.

    PubMed

    Ibañez, Irene L; Bracalente, Candelaria; Notcovich, Cintia; Tropper, Ivanna; Molinari, Beatriz L; Policastro, Lucía L; Durán, Hebe

    2012-01-01

    The Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H(2)O(2)) in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p) at serine 10 (S10) and at threonine 198 (T198) because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H(2)O(2) removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H(2)O(2) (0.1 µM) to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H(2)O(2) scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization of p27

  11. Phosphorylation and Subcellular Localization of p27Kip1 Regulated by Hydrogen Peroxide Modulation in Cancer Cells

    PubMed Central

    Ibañez, Irene L.; Bracalente, Candelaria; Notcovich, Cintia; Tropper, Ivanna; Molinari, Beatriz L.; Policastro, Lucía L.; Durán, Hebe

    2012-01-01

    The Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H2O2) in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p) at serine 10 (S10) and at threonine 198 (T198) because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H2O2 removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H2O2 (0.1 µM) to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H2O2 scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization of p27Kip1. PMID

  12. A prostatic intraepithelial neoplasia-dependent p27kip1 checkpoint induces senescence, inhibits cell proliferation and cancer progression

    PubMed Central

    Majumder, Pradip K.; Grisanzio, Chiara; O’Connell, Fionnuala; Barry, Marc; Brito, Joseph M.; Xu, Qing; Guney, Isil; Berger, Raanan; Herman, Paula; Bikoff, Rachel; Fedele, Giuseppe; Baek, Won-Ki; Wang, Shunyou; Ellwood-Yen, Katharine; Wu, Hong; Sawyers, Charles L.; Signoretti, Sabina; Hahn, William C.; Loda, Massimo; Sellers, William R.

    2008-01-01

    SUMMARY Transgenic expression of activated AKT1 in the murine prostate induces Prostatic Intraepithelial Neoplasia (PIN) that does not progress to invasive prostate cancer (CaP). In luminal epithelial cells of Akt-driven PIN we show the concomitant induction of p27kip1 and senescence. Genetic ablation of p27Kip1 led to down regulation of senescence markers and progression to cancer. In humans, p27Kip1 and senescence markers were elevated in PIN not associated with CaP, but were decreased and absent, respectively in cancer-associated PIN and in CaP. Importantly, p27Kip1 up-regulation in mouse and human in situ lesions did not depend upon mTOR or Akt activation but was instead specifically associated with alterations in cellular polarity, architecture and adhesion molecules. These data suggest that a p27Kip1-driven checkpoint limits progression of PIN to CaP. PMID:18691549

  13. Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation

    PubMed Central

    le Sage, Carlos; Nagel, Remco; Egan, David A; Schrier, Mariette; Mesman, Elly; Mangiola, Annunziato; Anile, Corrado; Maira, Giulio; Mercatelli, Neri; Ciafrè, Silvia Anna; Farace, Maria Giulia; Agami, Reuven

    2007-01-01

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of protein coding genes. Patterns of misexpression of miRNAs in cancer suggest key functions of miRNAs in tumorigenesis. However, current bioinformatics tools do not entirely support the identification and characterization of the mode of action of such miRNAs. Here, we used a novel functional genetic approach and identified miR-221 and miR-222 (miR-221&222) as potent regulators of p27Kip1, a cell cycle inhibitor and tumor suppressor. Using miRNA inhibitors, we demonstrate that certain cancer cell lines require high activity of miR-221&222 to maintain low p27Kip1 levels and continuous proliferation. Interestingly, high levels of miR-221&222 appear in glioblastomas and correlate with low levels of p27Kip1 protein. Thus, deregulated expression of miR-221&222 promotes cancerous growth by inhibiting the expression of p27Kip1. PMID:17627278

  14. Targeting the cyclin-binding groove site to inhibit the catalytic activity of CDK2/cyclin A complex using p27(KIP1)-derived peptidomimetic inhibitors.

    PubMed

    Karthiga, Arumugasamy; Tripathi, Sunil Kumar; Shanmugam, Ramasamy; Suryanarayanan, Venkatesan; Singh, Sanjeev Kumar

    2015-01-01

    Functionally activated cyclin-dependent kinase 2 (CDK2)/cyclin A complex has been validated as an interesting therapeutic target to develop the efficient antineoplastic drug based on the cell cycle arrest. Cyclin A binds to CDK2 and activates the kinases as well as recruits the substrate and inhibitors using a hydrophobic cyclin-binding groove (CBG). Blocking the cyclin substrate recruitment on CBG is an alternative approach to override the specificity hurdle of the currently available ATP site targeting CDK2 inhibitors. Greater understanding of the interaction of CDK2/cyclin A complex with p27 (negative regulator) reveals that the Leu-Phe-Gly (LFG) motif region of p27 binds with the CBG site of cyclin A to arrest the malignant cell proliferation that induces apoptosis. In the present study, Replacement with Partial Ligand Alternatives through Computational Enrichment (REPLACE) drug design strategies have been applied to acquire LFG peptide-derived peptidomimetics library. The peptidomimetics function is equivalent with respect to substrate p27 protein fashion but does not act as an ATP antagonist. The combined approach of molecular docking, molecular dynamics (MD), and molecular electrostatic potential and ADME/T prediction were carried out to evaluate the peptidomimetics. Resultant interaction and electrostatic potential maps suggested that smaller substituent is desirable at the position of phenyl ring to interact with Trp217, Arg250, and Gln254 residues in the active site. The best docked poses were refined by the MD simulations which resulted in conformational changes. After equilibration, the structure of the peptidomimetic and receptor complex was stable. The results revealed that the various substrate protein-derived peptidomimetics could serve as perfect leads against CDK2 protein. PMID:25584078

  15. MicroRNAs 221 and 222 target p27Kip1 in Marek's disease virus-transformed tumour cell line MSB-1.

    PubMed

    Lambeth, Luke S; Yao, Yongxiu; Smith, Lorraine P; Zhao, Yuguang; Nair, Venugopal

    2009-05-01

    MicroRNAs (miRNAs) are a class of short RNAs that function as post-transcriptional suppressors of protein expression and are involved in a variety of biological processes, including oncogenesis. Several recent studies have implicated the involvement of miR-221 and miR-222 in tumorigenesis as these miRNAs are upregulated in a number of cancers and affect the expression of cell cycle regulatory proteins such as the cyclin-dependent kinase (cdk) inhibitor p27(Kip1). Marek's disease virus (MDV) is a highly oncogenic herpesvirus that affects poultry, causing acute neoplastic disease with lymphomatous lesions in several organs. MDV-encoded oncogenes such as Meq are directly implicated in the neoplastic transformation of T cells and have been well studied. More recently, however, the involvement of both host and virus-encoded miRNAs in the induction of MD lymphomas is being increasingly recognized. We analysed the miRNA expression profiles in the MDV-transformed lymphoblastoid cell line MSB-1 and found that endogenous miRNAs miR-221 and miR-222 were significantly upregulated. Demonstration of the conserved binding sites for these miRNAs in the chicken p27(Kip1) 3'-untranslated region sequence and the repression of luciferase activity of reporter constructs indicated that miR-221 and miR-222 target p27(Kip1) in these cells. We also found that overexpression of miR-221 and miR-222 decreased p27(Kip1) levels and that treatment with retrovirally expressed antagomiRs partially alleviated this suppression. These data show that an oncogenic herpesvirus, as in the case of many cancers, can exploit the miRNA machinery for suppressing cell cycle regulatory molecules such as p27(Kip1) in the induction and progression of T-cell lymphomas. PMID:19264608

  16. Expression of p27Kip1, a cell cycle repressor protein, is inversely associated with potential carcinogenic risk in the genetic rodent models of obesity and long-lived Ames dwarf mice

    PubMed Central

    Eto, Isao

    2014-01-01

    Introduction The association of genetic rodent models of obesity and cancer still remains a controversial issue. Although this controversy has largely been resolved in recent years for homozygous leptin receptor-deficient obese Zucker rats and homozygous long-lived Ames dwarf mice, it is still unresolved for homozygous leptin-deficient obese ob/ob mice. Objective The objective of the present study described below was to investigate whether the expression of the cell cycle repressor protein p27(Kip1) is (a) down-regulated in the tumor-free homozygous leptin receptor-deficient obese Zucker rats as well as tumor-free homozygous leptin-deficient obese ob/ob mice and (b) up-regulated in the tumor-free homozygous long-lived Ames dwarf mice. Methods To achieve this objective, we first performed western immunoblot analysis of the hepatic expression of p27. We then performed western immunoblot analysis and proteomic analysis of the hepatic expression of the proteins involved in the upstream molecular signaling pathways for the expression of p27. Lastly, we analyzed the serum levels of glucose, insulin, and branched-chain amino acids, all of which have been shown to regulate, causally and inversely, the expression of p27. Results/Conclusions The results indicated that the hepatic expression of p27 was down-regulated in the homozygous leptin receptor-deficient obese Zucker rats and up-regulated in the homozygous long-lived Ames dwarf mice as expected. We also found that the hepatic expression of p27 was down-regulated in the homozygous leptin-deficient obese ob/ob mice. This last observation was not completely consistent with all of the results of the published studies where homozygous leptin-deficient obese ob/ob mice were used. PMID:23357529

  17. p27(Kip1) participates in the regulation of endoreplication in differentiating chick retinal ganglion cells.

    PubMed

    Ovejero-Benito, María C; Frade, José M

    2015-01-01

    Nuclear DNA duplication in the absence of cell division (i.e. endoreplication) leads to somatic polyploidy in eukaryotic cells. In contrast to some invertebrate neurons, whose nuclei may contain up to 200,000-fold the normal haploid DNA amount (C), polyploid neurons in higher vertebrates show only 4C DNA content. To explore the mechanism that prevents extra rounds of DNA synthesis in these latter cells we focused on the chick retina, where a population of tetraploid retinal ganglion cells (RGCs) has been described. We show that differentiating chick RGCs that express the neurotrophic receptors p75 and TrkB while lacking retinoblastoma protein, a feature of tetraploid RGCs, also express p27(Kip1). Two different short hairpin RNAs (shRNA) that significantly downregulate p27(Kip1) expression facilitated DNA synthesis and increased ploidy in isolated chick RGCs. Moreover, this forced DNA synthesis could not be prevented by Cdk4/6 inhibition, thus suggesting that it is triggered by a mechanism similar to endoreplication. In contrast, p27(Kip1) deficiency in mouse RGCs does not lead to increased ploidy despite previous observations have shown ectopic DNA synthesis in RGCs from p27(Kip1-/-) mice. This suggests that a differential mechanism is used for the regulation of neuronal endoreplication in mammalian versus avian RGCs. PMID:25946375

  18. p27Kip1 Is Required to Mediate a G1 Cell Cycle Arrest Downstream of ATM following Genotoxic Stress.

    PubMed

    Cassimere, Erica K; Mauvais, Claire; Denicourt, Catherine

    2016-01-01

    The DNA damage response (DDR) is a coordinated signaling network that ensures the maintenance of genome stability under DNA damaging stress. In response to DNA lesions, activation of the DDR leads to the establishment of cell cycle checkpoints that delay cell-cycle progression and allow repair of the defects. The tumor suppressor p27Kip1 is a cyclin-CDK inhibitor that plays an important role in regulating quiescence in a variety of tissues. Several studies have suggested that p27Kip1 also plays a role in the maintenance of genomic integrity. Here we demonstrate that p27Kip1 is essential for the establishment of a G1 checkpoint arrest after DNA damage. We also uncovered that ATM phosphorylates p27Kip1 on a previously uncharacterized residue (Ser-140), which leads to its stabilization after induction of DNA double-strand breaks. Inhibition of this stabilization by replacing endogenous p27Kip1 with a Ser-140 phospho-mutant (S140A) significantly sensitized cells to IR treatments. Our findings reveal a novel role for p27Kip1 in the DNA damage response pathway and suggest that part of its tumor suppressing functions relies in its ability to mediate a G1 arrest after the induction of DNA double strand breaks. PMID:27611996

  19. The Relevance of Women's Diseases, Jun Activation-domain Binding Protein 1 (JAB1) and p27kip1

    PubMed Central

    Kim, Mijin; Lee, Hae-Hyeog

    2016-01-01

    The Jun activation-domain binding protein 1 (Jab1) recognize a potential coactivator of activator protein 1 (AP-1) such as c-fos, c-jun transcription factor and the fifth subunit of the COP9 signalosome complex. Also, Jab1 activate the c-jun gene resulted cell proliferation. Not only a powerful tumor suppressor but also regulator of apoptosis negative cdk inhibitor p27kip1 are involved in the cell cycle. This is Jab1 and p27kip1 interact with each other, Jab1 accelerate p27kip1 from nuclear to cytoplasm through ubiquitin/proteasome pathway. However, information about the relationship between Jab1 and p27kip1 is not known much. Taken together, the results of this study identify function and structure of Jab1 and p27kip1 were described in a recent article on the basis of relevant. Besides Jab1 and p27kip1 will organize the relationship between the disease and women. PMID:27152307

  20. Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2.

    PubMed

    Tapia, Julio C; Bolanos-Garcia, Victor M; Sayed, Muhammed; Allende, Catherine C; Allende, Jorge E

    2004-04-01

    The protein kinase CK2 is constituted by two catalytic (alpha and/or alpha') and two regulatory (beta) subunits. CK2 phosphorylates more than 300 proteins with important functions in the cell cycle. This study has looked at the relation between CK2 and p27(KIP1), which is a regulator of the cell cycle and a known inhibitor of cyclin-dependent kinases (Cdk). We demonstrated that in vitro recombinant Xenopus laevis CK2 can phosphorylate recombinant human p27(KIP1), but this phosphorylation occurs only in the presence of the regulatory beta subunit. The principal site of phosphorylation is serine-83. Analysis using pull down and surface plasmon resonance (SPR) techniques showed that p27(KIP1) interacts with the beta subunit through two domains present in the amino and carboxyl ends, while CD spectra showed that p27(KIP1) phosphorylation by CK2 affects its secondary structure. Altogether, these results suggest that p27(KIP1) phosphorylation by CK2 probably involves a docking event mediated by the CK2beta subunit. The phosphorylation of p27(KIP1) by CK2 may affect its biological activity. PMID:15034923

  1. Cooperation of p27Kip1 and p18INK4c in Progestin-Mediated Cell Cycle Arrest in T-47D Breast Cancer Cells

    PubMed Central

    Swarbrick, Alexander; Lee, Christine S. L.; Sutherland, Robert L.; Musgrove, Elizabeth A.

    2000-01-01

    The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. The long-term effect of progestins on T-47D breast cancer cells is inhibition of cellular proliferation. This is accompanied by decreased G1 cyclin-dependent kinase (CDK) activities, redistribution of the CDK inhibitor p27Kip1 among these CDK complexes, and alterations in the elution profile of cyclin E-Cdk2 upon gel filtration chromatography, such that high-molecular-weight complexes predominate. This study aimed to determine the relative contribution of CDK inhibitors to these events. Following progestin treatment, the majority of cyclin E- and D-CDK complexes were bound to p27Kip1 and few were bound to p21Cip1. In vitro, recombinant His6-p27 could quantitatively reproduce the effects on cyclin E-Cdk2 kinase activity and the shift in molecular weight observed following progestin treatment. In contrast, cyclin D-Cdk4 was not inhibited by His6-p27 in vitro or p27Kip1 in vivo. However, an increase in the expression of the Cdk4/6 inhibitor p18INK4c and its extensive association with Cdk4 and Cdk6 were apparent following progestin treatment. Recombinant p18INK4c led to the reassortment of cyclin-CDK-CDK inhibitor complexes in vitro, with consequent decrease in cyclin E-Cdk2 activity. These results suggest a concerted model of progestin action whereby p27Kip1 and p18INK4c cooperate to inhibit cyclin E-Cdk2 and Cdk4. Since similar models have been developed for growth inhibition by transforming growth factor β and during adipogenesis, interaction between the Cip/Kip and INK4 families of inhibitors may be a common theme in physiological growth arrest and differentiation. PMID:10713180

  2. Epidermal growth factor upregulates Skp2/Cks1 and p27kip1 in human extrahepatic cholangiocarcinoma cells

    PubMed Central

    Kim, Ja-yeon; Kim, Hong Joo; Park, Jung Ho; Park, Dong Il; Cho, Yong Kyun; Sohn, Chong Il; Jeon, Woo Kyu; Kim, Byung Ik; Kim, Dong Hoon; Chae, Seoung Wan; Sohn, Jin Hee

    2014-01-01

    AIM: To evaluate the expression status of S-phase kinase-associated protein 2 (Skp2)/cyclin-dependent kinases regulatory subunit 1 (Cks1) and p27kip1, and assess the prognostic significance of Skp2/Cks1 expression with p27kip1 in patients with extrahepatic cholangiocarcinoma. METHODS: Seventy-six patients who underwent curative resection for histologically confirmed extrahepatic cholangiocarcinoma at our institution from December 1994 to March 2008 were enrolled. Immunohistochemical staining for Skp2, Cks1, p27kip1, and Ki67, along with other relevant molecular biologic experiments, were performed. RESULTS: By Cox regression analyses, advanced age (> 65 years), advanced AJCC tumor stage, poorly differentiated histology, and higher immunostaining intensity of Skp2 were identified as independent prognostic factors in patients with extrahepatic cholangiocarcinoma. Exogenous epidermal growth factor (EGF, especially 0.1-10 ng/mL) significantly increased the proliferation indices by MTT assay and the mRNA levels of Skp2/Cks1 and p27kip1 in SNU-1196, SNU-1079, and SNU-245 cells. The protein levels of Skp2/Cks1 (from nuclear lysates) and p27kip1 (from cytosolic lysate) were also significantly increased in these cells. There were significant reductions in the protein levels of Skp2/Cks1 and p27kip1 (from nuclear lysate) after the treatment of LY294002. By chromatin immunoprecipitation assay, we found that E2F1 transcription factor directly binds to the promoter site of Skp2. CONCLUSION: Higher immunostaining intensity of Skp2/Cks1 was an independent prognostic factor for patients with extrahepatic cholangiocarcinoma. EGF upregulates the mRNA and protein levels of Skp2/Cks1 and p27kip1 via the PI3K/Akt pathway and direct binding of E2F1 transcription factor with the Skp2 promoter. PMID:24574749

  3. Augmentation of antitumor activity of 5-fluorouracil by interferon alpha is associated with up-regulation of p27Kip1 in human hepatocellular carcinoma cells.

    PubMed

    Eguchi, H; Nagano, H; Yamamoto, H; Miyamoto, A; Kondo, M; Dono, K; Nakamori, S; Umeshita, K; Sakon, M; Monden, M

    2000-07-01

    Several clinical trials have demonstrated the effectiveness of combination therapy with 5-fluorouracil (5-FU) and IFN-alpha in colon cancer, hepatocellular carcinoma (HCC), and other malignancies. In our preliminary clinical studies, we have observed outstanding effects with this combination therapy in patients with advanced HCC. However, the underlying mechanism by which IFN-alpha modulates the effects of 5-FU is unknown. We, therefore, conducted a mechanistic study using two HCC cell lines, PLC/PRF/5 and HuH7. IFN-alpha significantly enhanced the growth inhibitory effect of 5-FU in PLC/PRF/5 cells but not in HuH7 cells, and the isobolographic analysis indicated that this effect was synergistic. Flow cytometric analysis showed a delay in the progression of G0-G1 to S phase in PLC/PRF/5, and a sustained, induction of the cyclin-dependent kinase inhibitor p27-Kip1 and down-regulation of cyclin D1 was observed. Moreover, increased expression of p27Kip1 was associated with reduced CDK-2-associated kinase activity. Another difference in the two cell types was that PLC/PRF/5 expressed abundant IFN receptors, but HuH7 did not. Apoptosis assays were not helpful in explaining the mechanism. Our results suggest that the synergistic effects of 5-FU and IFN-alpha may in part be attributable to alterations in cell cycle progression via up-regulation of p27Kip1. PMID:10914738

  4. Depletion of p18/LAMTOR1 promotes cell survival via activation of p27(kip1) -dependent autophagy under starvation.

    PubMed

    Zada, Sahib; Noh, Hae Sook; Baek, Seon Mi; Ha, Ji Hye; Hahm, Jong Ryeal; Kim, Deok Ryong

    2015-11-01

    The MAPK and mTOR signal pathways in endosomes or lysosomes play a crucial role in cell survival and death. They are also closely associated with autophagy, a catabolic process highly regulated under various cellular stress or nutrient deprivation. Recently we have isolated a protein, named p18/LAMTOR1, that specifically regulates the ERK or mTOR pathway in lysosomes. p18/LAMTOR1 also interacts with p27(kip1) . Here we examined how p18/LAMTOR1 plays a role in autophagy under nutrient deprivation. The p18(+/+) MEF cells were more susceptible to cell death under starvation or in the presence of AICAR in comparison with p18(-/-) MEF cells. Cleavage of caspase-3 was increased in p18(+/+) MEF cells under starvation, and phosphorylation at the threonine 198 of p27(kip1) was highly elevated in starved p18(-/-) MEF cells. Furthermore, LC3-II formation and other autophagy-associated proteins were largely increased in p18-deficient cells, and suppression of p27(kip1) expression in p18(-/-) MEF cells mitigated starvation-induced cell death. These data suggest that ablation of p18/LAMTOR1 suppresses starvation-induced cell death by stimulating autophagy through modulation of p27(kip1) activity. PMID:26032166

  5. eIF3a improve cisplatin sensitivity in ovarian cancer by regulating XPC and p27Kip1 translation

    PubMed Central

    Zhang, Yu; Yu, Jing-Jing; Tian, Yan; Li, Zheng-Zheng; Zhang, Cai-Yi; Zhang, Shu-Fen; Cao, Lan-Qin; Zhang, Yi; Qian, Chen-Yue; Zhang, Wei; Zhou, Hong-Hao; Yin, Ji-Ye; Liu, Zhao-Qian

    2015-01-01

    The eukaryotic translation initiation factor 3a (eIF3a) is one of the core subunits of the translation initiation complex eIF3, responsible for ribosomal subunit joining and mRNA recruitment to the ribosome. Our previous study identified that it was correlated with platinum response in lung cancer. The current study aims to test the hypothesis that eIF3a may affect the drug response and prognosis of ovarian cancer patients receiving platinum-based chemotherapy by regulating xeroderma pigmentosum complementation group C (XPC) and p27Kip1. Immunohistochemistry and western blot was used to determine the expression of eIF3a in 126 human ovarian cancer tissues followed by association analysis of eIF3a expression with patient's response and survival. Ectopic over-expression and RNA interference knockdown of eIF3a were carried out in A2780/cisplatin (DDP) and its parental A2780 cells, respectively, to determine the effect of altered eIF3a expression on cellular response to cisplatin by employing MTT assay. Western Blot analyses were also carried out to determine the regulation of eIF3a on XPC and p27Kip1. eIF3a expression was associated with response of ovarian cancer patients to DDP-based chemotherapy and their survival. Overexpression and knockdown of eIF3a increased and decreased the cellular response to cisplatin in A2780/DDP and A2780 cells, respectively. In addition, XPC and p27Kip1 were down regulated by eIF3a. eIF3a improves ovarian cancer patients' response to DDP-based chemotherapy via down regulating XPC and p27Kip1. PMID:26213845

  6. Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts.

    PubMed Central

    Takuwa, N; Takuwa, Y

    1997-01-01

    It is well documented that Ras functions as a molecular switch for reentry into the cell cycle at the border between G0 and G1 by transducing extracellular growth stimuli into early G1 mitogenic signals. In the present study, we investigated the role of Ras during the late stage of the G1 phase by using NIH 3T3 (M17) fibroblasts in which the expression of a dominant negative Ras mutant, p21(Ha-Ras[Asn17]), is induced in response to dexamethasone treatment. We found that delaying the expression of Ras(Asn17) until late in the G1 phase by introducing dexamethasone 3 h after the addition of epidermal growth factor (EGF) abolished the downregulation of the p27kip1 cyclin-dependent kinase (CDK) inhibitor which normally occurred during this period, with resultant suppression of cyclin Ds/CDK4 and cyclin E/CDK2 and G1 arrest. The immunodepletion of p27kip1 completely eliminated the CDK inhibitor activity from EGF-stimulated, dexamethasone-treated cell lysate. The failure of p27kip1 downregulation and G1 arrest was also observed in cells in which Ras(Asn17) was induced after growth stimulation with a phorbol ester or alpha-thrombin and was mimicked by the addition late in the G1 phase of inhibitors for phosphatidylinositol-3-kinase. Ras-mediated downregulation of p27kip1 involved both the suppression of synthesis and the stimulation of the degradation of the protein. Unlike the earlier expression of Ras(Asn17) at the border between G0 and G1, its delayed expression did not compromise the EGF-stimulated transient activation of extracellular signal-regulated kinases or inhibit the stimulated expression of a principal D-type cyclin, cyclin D1, until close to the border between G1 and S. We conclude that Ras plays temporally distinct, phase-specific roles throughout the G1 phase and that Ras function late in G1 is required for p27kip1 downregulation and passage through the restriction point, a prerequisite for entry into the S phase. PMID:9271412

  7. NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation

    PubMed Central

    Xing, Junyue; Liu, Zhenyun; Jiang, Bin; Dou, Yali; Gorospe, Myriam; Wang, Wengong

    2015-01-01

    A rise in the levels of the cyclin-dependent kinase (CDK) inhibitor p27KIP1 is important for the growth arrest of senescent cells, but the mechanisms responsible for this increase are poorly understood. Here, we show that the tRNA methyltransferase NSun2 represses the expression of p27 in replicative senescence. NSun2 methylated the 5′-untranslated region (UTR) of p27 mRNA at cytosine C64 in vitro and in cells, thereby repressing the translation of p27. During replicative senescence, increased p27 protein levels were accompanied by decreased NSun2 protein levels. Knockdown of NSun2 in human diploid fibroblasts (HDFs) elevated p27 levels and reduced the expression of CDK1 (encoded by CDK1 mRNA, a previously reported target of NSun2), which in turn further repressed cell proliferation and accelerated replicative senescence, while overexpression of NSun2 exerted the opposite effect. Ectopic overexpression of the p27 5′UTR fragment rescued the effect of NSun2 overexpression in lowering p27, increasing CDK1, promoting cell proliferation, and delaying replicative senescence. Our findings indicate that NSun2-mediated mRNA methylation regulates p27 and CDK1 levels during replicative senescence. PMID:26687548

  8. Involvement of p27KIP1 in G1 arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody.

    PubMed

    Wu, X; Rubin, M; Fan, Z; DeBlasio, T; Soos, T; Koff, A; Mendelsohn, J

    1996-04-01

    Activation of the cyclin dependent kinases (CDK4/CDK6 and CDK2) is required for G1 phase progression and entry into S-phase. The activation of these kinases is regulated by checkpoints that monitor environmental and intracellular conditions. Progression into S-phase is controlled, in part, by the availability of growth factors, and we have investigated the relationship between growth factor availability and the activation of the CDK kinases. Blocking activation of epidermal growth factor (EGF) receptor tyrosine kinase with anti-EGF receptor monoclonal antibody (mAb) 225 induces G1 phase cell cycle arrest in DiFi human colon adenocarcinoma cells. When DiFi cells are treated with mAb 225 for 24 h, we observe marked decreases in the activities of CDK2 kinase and cyclin E-associated CDK kinase which are not accompanied by reduced levels of cyclin E and CDK2 proteins. However, the amount of cyclin/CDK kinase inhibitor p27KIP1 increases in the mAb-treated cells and p27KIP1 is bound to CDK2 in increasing amounts. Immunodepletion of p27KIP1 removes an inhibitory activity from lysates of mAb-treated cells: the immunodepleted and heated lysates lose the capacity to inhibit cyclin E/CDK2 activity in an in vitro assay. The results suggest that G1 arrest in the cell cycle induced by EGF receptor blockade involves p27KIP1. PMID:8622855

  9. Butein inhibits cell proliferation and induces cell cycle arrest in acute lymphoblastic leukemia via FOXO3a/p27kip1 pathway

    PubMed Central

    Wang, Li-Na; Tian, Yun; Shi, Dingbo; Wang, Jingshu; Qin, Ge; Li, Anchuan; Liang, Yan-Ni; Zhou, Huan-Juan; Ke, Zhi-Yong; Huang, Wenlin; Deng, Wuguo; Luo, Xue-Qun

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a common hematological malignancy characterized by the uncontrolled proliferation of leukemia cells in children. Discovering and developing effective chemotherapeutic drugs are needed for ALL. In this study, we investigated the anti-leukemic activity of butein and its action mechanisms in ALL. Butein was found to significantly suppress the cellular proliferation of ALL cell lines and primary ALL blasts in a dose-dependent manner. It also induced cell cycle arrest by decreasing the expression of cyclin E and CDK2. We also found that butein promoted nuclear Forkhead Class box O3a (FOXO3a) localization, enhanced the binding of FOXO3a on the p27kip1 gene promoter and then increased the expression of p27kip1. Moreover, we showed that FOXO3a knockdown significantly decreased the proliferation inhibition by butein, whereas overexpression of FOXO3a enhanced the butein-mediated proliferation inhibition. However, overexpression of FOXO3a mutation (C-terminally truncated FOXO3a DNA-binding domain) decreased the proliferation inhibition by butein through decreasing the expression of p27kip1. Our results therefore demonstrate the therapeutic potential of butein for ALL via FOXO3a/p27kip1 pathway. PMID:26919107

  10. Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1

    PubMed Central

    Zhuang, Yongxian; Miskimins, W Keith

    2008-01-01

    Background The antihyperglycemic drug metformin may have beneficial effects on the prevention and treatment of cancer. Metformin is known to activate AMP-activated protein kinase (AMPK). It has also been shown to inhibit cyclin D1 expression and proliferation of some cultured cancer cells. However, the mechanisms of action by which metformin mediates cell cycle arrest are not completely understood. Results In this study, metformin was found to inhibit proliferation of most cultured breast cancer cell lines. This was independent of estrogen receptor, HER2, or p53 status. Inhibition of cell proliferation was associated with arrest within G0/G1 phase of the cell cycle. As in previous studies, metformin treatment led to activation of (AMPK) and downregulation of cyclin D1. However, these events were not sufficient for cell cycle arrest because they were also observed in the MDA-MB-231 cell line, which is not sensitive to growth arrest by metformin. In sensitive breast cancer lines, the reduction in cyclin D1 led to release of sequestered CDK inhibitors, p27Kip1 and p21Cip1, and association of these inhibitors with cyclin E/CDK2 complexes. The metformin-resistant cell line MDA-MB-231 expresses significantly lower levels of p27Kip1 and p21Cip1 than the metformin-sensitive cell line, MCF7. When p27Kip1 or p21Cip1 were overexpressed in MDA-MB-231, the cells became sensitive to cell cycle arrest in response to metformin. Conclusion Cell cycle arrest in response to metformin requires CDK inhibitors in addition to AMPK activation and cyclin D1 downregulation. This is of interest because many cancers are associated with loss or downregulation of CDK inhibitors and the results may be relevant to the development of anti-tumor reagents that target the AMPK pathway. PMID:19046439

  11. HBx-upregulated lncRNA UCA1 promotes cell growth and tumorigenesis by recruiting EZH2 and repressing p27Kip1/CDK2 signaling

    PubMed Central

    Hu, Jiao-Jiao; Song, Wei; Zhang, Shao-Dan; Shen, Xiao-Hui; Qiu, Xue-Mei; Wu, Hua-Zhang; Gong, Pi-Hai; Lu, Sen; Zhao, Zhu-Jiang; He, Ming-Liang; Fan, Hong

    2016-01-01

    It is well accepted that HBx plays the major role in hepatocarcinogenesis associated with hepatitis B virus (HBV) infections. However, little was known about its role in regulating long noncoding RNAs (lncRNAs), a large group of transcripts regulating a variety of biological processes including carcinogenesis in mammalian cells. Here we report that HBx upregulates UCA1 genes and downregulates p27 genes in hepatic LO2 cells. Further studies show that the upregulated UCA1 promotes cell growth by facilitating G1/S transition through CDK2 in both hepatic and hepatoma cells. Knock down of UCA1 in HBx-expressing hepatic and hepatoma cells resulted in markedly increased apoptotic cells by elevating the cleaved caspase-3 and caspase-8. More importantly, UCA1 is found to be physically associated with enhancer of zeste homolog 2 (EZH2), which suppresses p27Kip1 through histone methylation (H3K27me3) on p27Kip1 promoter. We also show that knockdown of UCA1 in hepatoma cells inhibits tumorigenesis in nude mice. In a clinic study, UCA1 is found to be frequently up-regulated in HBx positive group tissues in comparison with the HBx negative group, and exhibits an inverse correlation between UCA1 and p27Kip1 levels. Our findings demonstrate an important mechanism of hepatocarcinogenesis through the signaling of HBx-UCA1/EZH2-p27Kip1 axis, and a potential target of HCC. PMID:27009634

  12. HBx-upregulated lncRNA UCA1 promotes cell growth and tumorigenesis by recruiting EZH2 and repressing p27Kip1/CDK2 signaling.

    PubMed

    Hu, Jiao-Jiao; Song, Wei; Zhang, Shao-Dan; Shen, Xiao-Hui; Qiu, Xue-Mei; Wu, Hua-Zhang; Gong, Pi-Hai; Lu, Sen; Zhao, Zhu-Jiang; He, Ming-Liang; Fan, Hong

    2016-01-01

    It is well accepted that HBx plays the major role in hepatocarcinogenesis associated with hepatitis B virus (HBV) infections. However, little was known about its role in regulating long noncoding RNAs (lncRNAs), a large group of transcripts regulating a variety of biological processes including carcinogenesis in mammalian cells. Here we report that HBx upregulates UCA1 genes and downregulates p27 genes in hepatic LO2 cells. Further studies show that the upregulated UCA1 promotes cell growth by facilitating G1/S transition through CDK2 in both hepatic and hepatoma cells. Knock down of UCA1 in HBx-expressing hepatic and hepatoma cells resulted in markedly increased apoptotic cells by elevating the cleaved caspase-3 and caspase-8. More importantly, UCA1 is found to be physically associated with enhancer of zeste homolog 2 (EZH2), which suppresses p27Kip1 through histone methylation (H3K27me3) on p27Kip1 promoter. We also show that knockdown of UCA1 in hepatoma cells inhibits tumorigenesis in nude mice. In a clinic study, UCA1 is found to be frequently up-regulated in HBx positive group tissues in comparison with the HBx negative group, and exhibits an inverse correlation between UCA1 and p27Kip1 levels. Our findings demonstrate an important mechanism of hepatocarcinogenesis through the signaling of HBx-UCA1/EZH2-p27Kip1 axis, and a potential target of HCC. PMID:27009634

  13. MYC antagonizes the differentiation induced by imatinib in chronic myeloid leukemia cells through downregulation of p27(KIP1.).

    PubMed

    Gómez-Casares, M T; García-Alegria, E; López-Jorge, C E; Ferrándiz, N; Blanco, R; Alvarez, S; Vaqué, J P; Bretones, G; Caraballo, J M; Sánchez-Bailón, P; Delgado, M D; Martín-Perez, J; Cigudosa, J C; León, J

    2013-04-25

    Chronic myeloid leukemia (CML) progresses from a chronic to a blastic phase where the leukemic cells are proliferative and undifferentiated. The CML is nowadays successfully treated with BCR-ABL kinase inhibitors as imatinib and dasatinib. In the CML-derived K562 cell line, low concentrations of imatinib induce proliferative arrest and erythroid differentiation. We found that imatinib upregulated the cell cycle inhibitor p27(KIP1) (p27) in a time- and -concentration dependent manner, and that the extent of imatinib-mediated differentiation was severely decreased in cells with depleted p27. MYC (c-Myc) is a transcription factor frequently deregulated in human cancer. MYC is overexpressed in untreated CML and is associated to poor response to imatinib. Using K562 sublines with conditional MYC expression (induced by Zn(2+) or activated by 4-hydroxy-tamoxifen) we show that MYC prevented the erythroid differentiation induced by imatinib and dasatinib. The differentiation inhibition is not due to increased proliferation of MYC-expressing clones or enhanced apoptosis of differentiated cells. As p27 overexpression is reported to induce erythroid differentiation in K562, we explored the effect of MYC on imatinib-dependent induction of p27. We show that MYC abrogated the imatinib-induced upregulation of p27 concomitantly with the differentiation inhibition, suggesting that MYC inhibits differentiation by antagonizing the imatinib-mediated upregulation of p27. This effect occurs mainly by p27 protein destabilization. This was in part due to MYC-dependent induction of SKP2, a component of the ubiquitin ligase complex that targets p27 for degradation. The results suggest that, although MYC deregulation does not directly confer resistance to imatinib, it might be a factor that contributes to progression of CML through the inhibition of differentiation. PMID:22710719

  14. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1

    PubMed Central

    Su, Liang-Cheng; Jiang, Shih Sheng; Chan, Tzu-Min; Chang, Chung-Ho; Chen, Li-Tzong; Kung, Hsing-Jien; Wang, Horng-Dar; Chuu, Chih-Pin

    2015-01-01

    Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1–3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4–2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1. PMID:25788262

  15. Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy.

    PubMed

    Campos, Tania; Ziehe, Javiera; Palma, Mario; Escobar, David; Tapia, Julio C; Pincheira, Roxana; Castro, Ariel F

    2016-02-01

    We previously found that the small GTPase Rheb regulates the cell-cycle inhibitor p27KIP1 (p27) in colon cancer cells by a mTORC1-independent mechanism. However, the biological function of the Rheb/p27 axis in cancer cells remains unknown. Here, we show that siRNA-mediated depletion of Rheb decreases survival of human colon cancer cells under serum deprivation. As autophagy can support cell survival, we analyzed the effect of Rheb on this process by detecting the modification of the autophagy marker protein LC3 by western blot and imunofluorescence. We found that Rheb promotes autophagy in several human cancer cell lines under serum deprivation. Accordingly, blocking autophagy inhibited the pro-survival effect of Rheb in colon cancer cells. We then analyzed whether p27 was involved in the biological effect of Rheb. Depletion of p27 inhibited colon cancer cell survival, and Rheb induction of autophagy. These results suggest that p27 has an essential role in the effect of Rheb in response to serum deprivation. In addition, we demonstrated that the role of p27 in autophagy stands on the N-terminal portion of the protein, where the CDK-inhibitory domain is located. Our results indicate that a Rheb/p27 axis accounts for the activation of autophagy that supports cancer cell survival. Our work therefore highlights a biological function of Rheb and prompts the need for future studies to address whether the mTORC1-independent Rheb/p27 axis could contribute to tumorigenesis and/or resistance to mTOR inhibitors. PMID:25594310

  16. A novel miRNA-mediated STOP sign in lung cancer: miR-340 inhibits the proliferation of lung cancer cells through p27KIP1

    PubMed Central

    Fernandez, Serena; Risolino, Maurizio; Verde, Pasquale

    2015-01-01

    Oncosuppressor miRNAs inhibit cancer cell proliferation by targeting key components of the cell cycle machinery. In our recent report we showed that miR-340 is a novel tumor suppressor in non-small cell lung cancer. miR-340 inhibits neoplastic cell proliferation and induces p27KIP1 by targeting multiple translational and post-translational regulators of this cyclin-dependent kinase inhibitor. PMID:27308439

  17. Thrombin Induces Tumor Cell Cycle Activation and Spontaneous Growth by Down-regulation of p27Kip1, in Association with the Up-regulation of Skp2 and MiR-222

    PubMed Central

    Hu, Liang; Ibrahim, Sherif; Liu, Cynthia; Skaar, Jeffrey; Pagano, Michele; Karpatkin, Simon

    2009-01-01

    The effect of thrombin on tumor cell cycle activation and spontaneous growth was examined in synchronized serum-starved tumor cell lines and a model of spontaneous prostate cancer development in TRAMP mice. BrdUrd incorporation and propidium iodide staining of prostate LNCaP cells arrested in G0 and treated with thrombin or serum revealed a 48- and 29-fold increase in S phase cells, respectively, at 8 hours. Similar results were obtained with TRAMP cells and a glioblastoma cell line, T98G. Cell cycle kinases and inhibitors in synchronized tumor cells revealed high levels of p27Kip1 and low levels of Skp2 and cyclins D1 and A. Addition of thrombin, TFLLRN, or serum down-regulated p27Kip1 with concomitant induction of Skp2, Cyclin D1, and Cyclin A with similar kinetics. LNCaP p27Kip1-transfected cells or Skp2 knockdown cells were refractory to thrombin-induced cell cycle activation. MicroRNA 222, an inhibitor of p27Kip1, was robustly up-regulated by thrombin. The in vitro observations were tested in vivo with transgenic TRAMP mice. Repetitive thrombin injection enhanced prostate tumor volume 6- to 8-fold (P < 0.04). Repetitive hirudin, a specific potent antithrombin, decreased tumor volume 13- to 24-fold (P < 0.04). Thus, thrombin stimulates tumor cell growth in vivo by down-regulation of p27Kip1. PMID:19351827

  18. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    SciTech Connect

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan; Seok, Heon; Lee, Dong Gun; Hwang, Jae Sam; Kim, Ho

    2013-07-19

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects.

  19. A vitamin D3 analog induces a G1-phase arrest in CaCo-2 cells by inhibiting cdk2 and cdk6: roles of cyclin E, p21Waf1, and p27Kip1.

    PubMed

    Scaglione-Sewell, B A; Bissonnette, M; Skarosi, S; Abraham, C; Brasitus, T A

    2000-11-01

    Previous studies by our laboratory have shown that a noncalcemic fluorinated analog of 1alpha,25-dihydroxyvitamin D3, 1alpha,25-dihydroxy-16-ene-23-yne-26,27-hexafluorocholcal ciferol (F6-D3), significantly reduced the frequency of colonic adenomas and completely abolished the development of colonic adenocarcinomas in rats treated with azoxymethane. The mechanisms involved in this analog's chemopreventive actions, however, remain unclear. In the present study, we now show that although both 1alpha,25-dihydroxyvitamin D3 and F6-D3 inhibited the proliferation of CaCo-2 cells, a human colonic adenocarcinoma cell line, by increasing their doubling times, only F6-D3 caused an arrest of these cells in the G1 phase of their cell cycle. This arrest was accompanied by an increase in the expression of the cyclin-dependent kinase (cdk) inhibitor proteins, p2Waf1 and p27Kip1, which served to decrease the activity of cyclin-dependent kinase 2 and cyclin-dependent kinase 6, whereas the expression and phosphorylation of pRB were unchanged. In contrast to the increased expression of these cdk inhibitors, the expression of cyclin E was decreased, which further inhibited the activity of cyclin-dependent kinase 2. Collectively, the inhibition of these cyclin-dependent kinases served to arrest the CaCo-2 cells, independent of changes in pRB. Furthermore, antibody neutralization studies suggest that transforming growth factor-beta may mediate the coassociations between cdk2 and p27Kip1 and cyclin E induced by F6-D3. These data indicate that cell cycle arrest may, at least in part, underlie the chemopreventive actions of F6-D3 observed in the azoxymethane model of colon cancer. Furthermore, if the antiproliferative action observed in CaCo-2 cells also occurs in human colonic epithelium, F6-D3 may have chemopreventive potential against human colon cancer, as well. PMID:11089522

  20. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    PubMed

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation. PMID:25498792

  1. Upregulation of p27Kip1 by demethylation sensitizes cisplatin-resistant human ovarian cancer SKOV3 cells.

    PubMed

    Zhao, Yan; Li, Qiaoyan; Wu, Xiaoying; Chen, Puxiang

    2016-08-01

    Ovarian cancer has a poor prognosis due to its chemoresistance, and p27Kip1 (p27) has been implicated in tumor prognosis and drug-resistance. However, the regulatory mechanisms of p27 in drug‑resistance in ovarian cancer remain unknown. The current study successfully established chemoresistant cell lines using paclitaxel (TAX), cisplatin (DDP) and carboplatin (CBP) in SKOV3 ovarian cancer cells. The results indicated that the expression levels of p27 were dramatically downregulated in chemoresistant cells. However, 5-aza-2'-deoxycytidine (5-aza) treatment restored p27 expression in DDP-resistant cells, and increased their sensitivity to DDP. In addition, it was observed that the methylation of DDP‑resistant cells, which was downregulated by 5‑aza treatment, was significantly higher compared with SKOV3 cells. Additionally, the overexpression of p27 arrested the cell cycle in S phase and promoted an apoptotic response to DDP. In conclusion, p27 was involved in chemoresistance of SKOV3 cells. Upregulated p27 expression induced by demethylation may enhance sensitivity to DDP through the regulation of the cell cycle. PMID:27314502

  2. Down-regulation of both p21/Cip1 and p27/Kip1 produces a more aggressive prostate cancer phenotype

    PubMed Central

    Roy, Srirupa; Singh, Rana P.; Agarwal, Chapla; Siriwardana, Sunitha; Sclafani, Robert; Agarwal, Rajesh

    2009-01-01

    Roles of cyclin dependent kinase inhibitors, p21/Cip1 (p21) and p27/Kip1 (p27) in prostate cancer (PCa) progression is still not clear. Lower p27 protein expression in PCa tissues is often associated with poor prognosis, but prognostic significance of p21 is still controversial. Herein, we investigated the role of these molecules in determining PCa growth characteristics. We generated human PCa DU145 cell variants with knocked down levels of p21 (DU-p21) or p27 (DU-p27), or both (DU-p21+p27) via retroviral transduction of respective shRNAs and compared their various characteristics with empty vector-transduced DU145 (DU-EV) cells in vitro as well as in vivo. Knocking down either p21 or p27 did not show any significant change in doubling time, clonogenicity and cell cycle progression in DU145 cells, but simultaneous knock-down of both p21 and p27 significantly enhanced these parameters. In athymic mice, DU-p21+p27 tumors showed higher growth rate than the comparable growth of DU-EV, DU-p21 and DU-p27 tumors. Concurrently, DU-p21+p27 tumors had significantly higher proliferation rate, showing 54% and 48% increase in proliferating cell nuclear antigen (PCNA) and Ki-67-positive cells, respectively, compared to DU-EV tumors. DU-p21+p27 tumors also showed higher microvessel density and increased expression of vascular endothelial growth factor (VEGF). Proliferation and angiogenic status of DU-p21 and DU-p27 tumors was comparable to DU-EV tumors. Both in vitro and in vivo results implicate that p21 and p27 have compensatory roles in advanced prostate cancer cells, and ablation or down-modulation of both these molecules essentially enhances the aggressive prostate carcinoma phenotype. PMID:18583941

  3. Discovery of Small Molecules that Inhibit the Disordered Protein, p27Kip1

    DOE PAGESBeta

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; Ramanathan, Arvind; Zhang, Weixing; Shelat, Anang A.; Zuo, Jian; Kriwacki, Richard W.

    2015-10-28

    In disordered proteins we see that they are highly prevalent in biological systems. They control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27Kip1 (p27). Moreover, two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups ofmore » small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule: disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of- principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A).« less

  4. Discovery of Small Molecules that Inhibit the Disordered Protein, p27Kip1

    PubMed Central

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; Ramanathan, Arvind; Zhang, Weixing; Shelat, Anang A.; Zuo, Jian; Kriwacki, Richard W.

    2015-01-01

    Disordered proteins are highly prevalent in biological systems, they control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27Kip1 (p27). Two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule:disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of-principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A). PMID:26507530

  5. Cryptic sequence features within the disordered protein p27Kip1 regulate cell cycle signaling

    PubMed Central

    Das, Rahul K.; Huang, Yongqi; Phillips, Aaron H.; Kriwacki, Richard W.; Pappu, Rohit V.

    2016-01-01

    Peptide motifs embedded within intrinsically disordered regions (IDRs) of proteins are often the sites of posttranslational modifications that control cell-signaling pathways. How do IDR sequences modulate the functionalities of motifs? We answer this question using the polyampholytic C-terminal IDR of the cell cycle inhibitory protein p27Kip1 (p27). Phosphorylation of Thr-187 (T187) within the p27 IDR controls entry into S phase of the cell division cycle. Additionally, the conformational properties of polyampholytic sequences are predicted to be influenced by the linear patterning of oppositely charged residues. Therefore, we designed sequence variants of the p27 IDR to alter charge patterning outside the primary substrate motif containing T187. Computer simulations and biophysical measurements confirm predictions regarding the impact of charge patterning on the global dimensions of IDRs. Through functional studies, we uncover cryptic sequence features within the p27 IDR that influence the efficiency of T187 phosphorylation. Specifically, we find a positive correlation between T187 phosphorylation efficiency and the weighted net charge per residue of an auxiliary motif. We also find that accumulation of positive charges within the auxiliary motif can diminish the efficiency of T187 phosphorylation because this increases the likelihood of long-range intra-IDR interactions that involve both the primary and auxiliary motifs and inhibit their contributions to function. Importantly, our findings suggest that the cryptic sequence features of the WT p27 IDR negatively regulate T187 phosphorylation signaling. Our approaches provide a generalizable strategy for uncovering the influence of sequence contexts on the functionalities of primary motifs in other IDRs. PMID:27140628

  6. Cryptic sequence features within the disordered protein p27Kip1 regulate cell cycle signaling.

    PubMed

    Das, Rahul K; Huang, Yongqi; Phillips, Aaron H; Kriwacki, Richard W; Pappu, Rohit V

    2016-05-17

    Peptide motifs embedded within intrinsically disordered regions (IDRs) of proteins are often the sites of posttranslational modifications that control cell-signaling pathways. How do IDR sequences modulate the functionalities of motifs? We answer this question using the polyampholytic C-terminal IDR of the cell cycle inhibitory protein p27(Kip1) (p27). Phosphorylation of Thr-187 (T187) within the p27 IDR controls entry into S phase of the cell division cycle. Additionally, the conformational properties of polyampholytic sequences are predicted to be influenced by the linear patterning of oppositely charged residues. Therefore, we designed sequence variants of the p27 IDR to alter charge patterning outside the primary substrate motif containing T187. Computer simulations and biophysical measurements confirm predictions regarding the impact of charge patterning on the global dimensions of IDRs. Through functional studies, we uncover cryptic sequence features within the p27 IDR that influence the efficiency of T187 phosphorylation. Specifically, we find a positive correlation between T187 phosphorylation efficiency and the weighted net charge per residue of an auxiliary motif. We also find that accumulation of positive charges within the auxiliary motif can diminish the efficiency of T187 phosphorylation because this increases the likelihood of long-range intra-IDR interactions that involve both the primary and auxiliary motifs and inhibit their contributions to function. Importantly, our findings suggest that the cryptic sequence features of the WT p27 IDR negatively regulate T187 phosphorylation signaling. Our approaches provide a generalizable strategy for uncovering the influence of sequence contexts on the functionalities of primary motifs in other IDRs. PMID:27140628

  7. Knockdown of CRM1 inhibits the nuclear export of p27(Kip1) phosphorylated at serine 10 and plays a role in the pathogenesis of epithelial ovarian cancer.

    PubMed

    Wang, You; Wang, Yingying; Xiang, Jingying; Ji, Fang; Deng, Yan; Tang, Chunhui; Yang, Shuyun; Xi, Qinghua; Liu, Rong; Di, Wen

    2014-02-01

    In a previous study, the nuclear export protein chromosomal region maintenance (CRM1) was correlated with p27(Kip1) in glioma. The aims of the present study were to investigate the expression of CRM1 and pSer10p27 and their functional roles in epithelial ovarian cancer (EOC) tissues. Using immunohistochemical analysis, CRM1 and pSer10p27 expression levels were shown to be associated with histologic stage and grade (P<0.05). High CRM1 and pSer10p27 expression levels were prognostic indicators of overall survival (P<0.05). Knockdown of CRM1 and pSer10p27 expression arrested cell cycle progression and inhibited the proliferation of SKOV3 cells both in vitro and in vivo. These data support the idea that pSer10p27 and CRM1 play cooperative roles in EOC. PMID:24018641

  8. A single-nucleotide polymorphism in the human p27kip1 gene (-838C>A) affects basal promoter activity and the risk of myocardial infarction

    PubMed Central

    González, Pelayo; Díez-Juan, Antonio; Coto, Eliecer; Álvarez, Victoria; Reguero, Julian R; Batalla, Alberto; Andrés, Vicente

    2004-01-01

    Background Excessive proliferation of vascular smooth muscle cells and leukocytes within the artery wall is a major event in the development of atherosclerosis. The growth suppressor p27kip1 associates with several cyclin-dependent kinase/cyclin complexes, thereby abrogating their capacity to induce progression through the cell cycle. Recent studies have implicated p27kip1 in the control of neointimal hyperplasia. For instance, p27kip1 ablation in apolipoprotein-E-null mice enhanced arterial cell proliferation and accelerated atherogenesis induced by dietary cholesterol. Therefore, p27kip1 is a candidate gene to modify the risk of developing atherosclerosis and associated ischaemic events (i.e., myocardial infarction and stroke). Results In this study we found three common single-nucleotide polymorphisms in the human p27kip1 gene (+326T>G [V109G], -79C>T, and -838C>A). The frequency of -838A carriers was significantly increased in myocardial infarction patients compared to healthy controls (odds ratio [OR] = 1.73, 95% confidence interval [95%CI] = 1.12–2.70). In addition, luciferase reporter constructs driven by the human p27kip1 gene promoter containing A at position -838 had decreased basal transcriptional activity when transiently transfected in Jurkat cells, compared with constructs bearing C in -838 (P = 0.04). Conclusions These data suggest that -838A is associated with reduced p27kip1 promoter activity and increased risk of myocardial infarction. PMID:15061869

  9. p27kip1 Maintains a Subset of Leukemia Stem Cells in the Quiescent State in Murine MLL-Leukemia

    PubMed Central

    Zhang, Jun; Seet, Christopher; Sun, Clare; Li, Jing; You, Dewen; Volk, Andrew; Breslin, Peter; Li, Xingyu; Wei, Wei; Qian, Zhijian; Zeleznik-Le, Nancy J.; Zhang, Zhou; Zhang, Jiwang

    2013-01-01

    MLL (mixed-lineage leukemia)-fusion genes induce the development of leukemia through deregulation of normal MLL target genes, such as HOXA9 and MEIS1. Both HOXA9 and MEIS1 are required for MLL-fusion gene-induced leukemogenesis. Co-expression of HOXA9 and MEIS1 induces acute myeloid leukemia (AML) similar to that seen in mice in which MLL-fusion genes are over-expressed. p27kip1 (p27 hereafter), a negative regulator of the cell cycle, has also been defined as an MLL target, the expression of which is up-regulated in MLL leukemic cells (LCs). To investigate whether p27 plays a role in the pathogenesis of MLL-leukemia, we examined the effects of p27 deletion (p27-/-) on MLL-AF9 (MA9)-induced murine AML development. HOXA9/MEIS1 (H/M)-induced, p27 wild-type (p27+/+) and p27-/- AML were studied in parallel as controls. We found that LCs from both MA9-AML and H/M-AML can be separated into three fractions, a CD117-CD11bhi differentiated fraction as well as CD117+CD11bhi and CD117+CD11blo, two less differentiated fractions. The CD117+CD11blo fraction, comprising only 1-3% of total LCs, expresses higher levels of early hematopoietic progenitor markers but lower levels of mature myeloid cell markers compared to other populations of LCs. p27 is expressed and is required for maintaining the quiescent and drug-resistant states of the CD117+CD11blo fraction of MA9-LCs but not of H/M-LCs. p27 deletion significantly compromises the leukemogenic capacity of CD117+CD11blo MA9-LCs by reducing the frequency of leukemic stem cells (LSCs) but does not do so in H/M-LCs. In addition, we found that p27 is highly expressed and required for cell cycle arrest in the CD117-CD11bhi fraction in both types of LCs. Furthermore, we found that c-Myc expression is required for maintaining LCs in an undifferentiated state independently of proliferation. We concluded that p27 represses the proliferation of LCs, which is specifically required for maintaining the quiescent and drug-resistant states of a

  10. Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression--transcriptional induction of p21(WAF1) and p27(kip1) by inhibition of PI-3K/AKT pathway.

    PubMed

    Choi, Hee-Jung; Chung, Tae-Wook; Kang, Sung-Koo; Lee, Young-Choon; Ko, Jeong-Heon; Kim, Jong-Guk; Kim, Cheorl-Ho

    2006-07-01

    The simple ganglioside GM3 has been shown to have anti-proliferative effects in several in vitro and in vivo cancer models. Although the exogenous ganglioside GM3 has an inhibitory effect on cancer cell proliferation, the exact mechanism by which it prevents cell proliferation remains unclear. Previous studies showed that MDM2 is an oncoprotein that controls tumorigenesis through both p53-dependent and p53-independent mechanisms, and tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a dual-specificity phosphatase that antagonizes phosphatidylinositol 3-kinase (PI-3K)/AKT signaling, is capable of blocking MDM2 nuclear translocation and destabilizing the MDM2 protein. Results from our current study show that GM3 treatment dramatically increases cyclin-dependent kinase (CDK) inhibitor (CKI) p21(WAF1) expression through the accumulation of p53 protein by the PTEN-mediated inhibition of the PI-3K/AKT/MDM2 survival signaling in HCT116 colon cancer cells. Moreover, the data herein clearly show that ganglioside GM3 induces p53-dependent transcriptional activity of p21(WAF1), as evidenced by the p21(WAF1) promoter-driven luciferase reporter plasmid (full-length p21(WAF1) promoter and a construct lacking the p53-binding sites). Additionally, ganglioside GM3 enhances expression of CKI p27(kip1) through the PTEN-mediated inhibition of the PI-3K/AKT signaling. Furthermore, the down-regulation of the cyclin E and CDK2 was clearly observed in GM3-treated HCT116 cells, but the down-regulation of cyclin D1 and CDK4 was not. On the contrary, suppression of PTEN levels by RNA interference restores the enhanced expression of p53-dependent p21(WAF1) and p53-independent p27(kip1) through inactivating the effect of PTEN on PI-3K/AKT signaling modulated by ganglioside GM3. These results suggest that ganglioside GM3-stimulated PTEN expression modulates cell cycle regulatory proteins, thus inhibiting cell growth. We conclude that ganglioside GM3 represents a

  11. Brk/Protein tyrosine kinase 6 phosphorylates p27KIP1, regulating the activity of cyclin D-cyclin-dependent kinase 4.

    PubMed

    Patel, Priyank; Asbach, Benedikt; Shteyn, Elina; Gomez, Cindy; Coltoff, Alexander; Bhuyan, Sadia; Tyner, Angela L; Wagner, Ralf; Blain, Stacy W

    2015-05-01

    Cyclin D and cyclin-dependent kinase 4 (cdk4) are overexpressed in a variety of tumors, but their levels are not accurate indicators of oncogenic activity because an accessory factor such as p27(Kip1) is required to assemble this unstable dimer. Additionally, tyrosine (Y) phosphorylation of p27 (pY88) is required to activate cdk4, acting as an "on/off switch." We identified two SH3 recruitment domains within p27 that modulate pY88, thereby modulating cdk4 activity. Via an SH3-PXXP interaction screen, we identified Brk (breast tumor-related kinase) as a high-affinity p27 kinase. Modulation of Brk in breast cancer cells modulates pY88 and increases resistance to the cdk4 inhibitor PD 0332991. An alternatively spliced form of Brk (Alt Brk) which contains its SH3 domain blocks pY88 and acts as an endogenous cdk4 inhibitor, identifying a potentially targetable regulatory region within p27. Brk is overexpressed in 60% of breast carcinomas, suggesting that this facilitates cell cycle progression by modulating cdk4 through p27 Y phosphorylation. p27 has been considered a tumor suppressor, but our data strengthen the idea that it should also be considered an oncoprotein, responsible for cyclin D-cdk4 activity. PMID:25733683

  12. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1

    PubMed Central

    Kwan, Suet-Ying; Chen, Limo; Chen, Jin-Hong; Ying, Zuo-Lin; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Cheng, Wei-Wei; Zeng, Jianfang; Wan, Xiao-Ping; Mok, Samuel C.; Wong, Kwong-Kwok; Bao, Wei

    2015-01-01

    Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity. PMID:26397136

  13. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1.

    PubMed

    Qiu, Mei-Ting; Fan, Qiong; Zhu, Zhu; Kwan, Suet-Ying; Chen, Limo; Chen, Jin-Hong; Ying, Zuo-Lin; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Cheng, Wei-Wei; Zeng, Jianfang; Wan, Xiao-Ping; Mok, Samuel C; Wong, Kwong-Kwok; Bao, Wei

    2015-10-13

    Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity. PMID:26397136

  14. KLRG1 impairs CD4+ T cell responses via p16ink4a and p27kip1 pathways - Role in hepatitis B vaccine failure in individuals with hepatitis C virus infection

    PubMed Central

    Shi, Lei; Wang, Jia M.; Ren, Jun P.; Cheng, Yong Q.; Ying, Ruo S.; Wu, Xiao Y.; Lin, Shu M.; Griffin, Jeddidiah WD; Li, Guang Y.; Moorman, Jonathan P.; Yao, Zhi Q.

    2014-01-01

    Co-infection of hepatitis B virus (HBV) with hepatitis C virus (HCV) is quite common, leading to an increase in morbidity and mortality. As such, HBV vaccination is recommended in HCV-infected individuals. HBV vaccine responses in HCV-infected individuals, however, are often blunted when compared to uninfected populations. The mechanism for this failure of vaccine response in HCV-infected subjects remains unclear. In this study, we investigated the expression and function of an inhibitory receptor, killer cell lectin-like receptor subfamily G member 1 (KLRG1), in regulation of CD4+ T cells and HBV vaccine responses during HCV infection. We demonstrated that KLRG1 was over-expressed on CD4+ T cells from HCV-infected, HBV vaccine non-responders (HBV-NR) compared to those responders (HBV-R). The capacity of CD4+ T cell to proliferate and secrete IL-2 cytokine was inversely associated with the level of KLRG1 expression. Importantly, blocking KLRG1 signaling resulted in a significant improvement of CD4+ T cell proliferation and IL-2 production in HCV-infected, HBV-NR in response to T cell receptor (TCR) stimulation. Moreover, blockade of KLRG1 increased the phosphorylation of Akt (Ser473) and decreased the expression of cell cycle inhibitors p16ink4a and p27kip1, which subsequently enhanced CDK 2 and cyclin E expressions. These results suggest that the KLRG1 pathway impairs CD4+ T cell responses to neo-antigen and induces a state of immune senescence in individuals with HCV infection, raising the possibility that blocking this negative signaling pathway might improve HBV vaccine responses in the setting of chronic viral infection. PMID:24337749

  15. KLRG1 impairs CD4+ T cell responses via p16ink4a and p27kip1 pathways: role in hepatitis B vaccine failure in individuals with hepatitis C virus infection.

    PubMed

    Shi, Lei; Wang, Jia M; Ren, Jun P; Cheng, Yong Q; Ying, Ruo S; Wu, Xiao Y; Lin, Shu M; Griffin, Jeddidiah W D; Li, Guang Y; Moorman, Jonathan P; Yao, Zhi Q

    2014-01-15

    Coinfection of hepatitis B virus (HBV) with hepatitis C virus (HCV) is quite common, leading to an increase in morbidity and mortality. As such, HBV vaccination is recommended in HCV-infected individuals. However, HBV vaccine responses in HCV-infected individuals are often blunted compared with uninfected populations. The mechanism for this failure of vaccine response in HCV-infected subjects remains unclear. In this study, we investigated the expression and function of an inhibitory receptor, killer cell lectin-like receptor subfamily G member 1 (KLRG1), in the regulation of CD4(+) T cells and HBV vaccine responses during HCV infection. We demonstrated that KLRG1 was overexpressed on CD4(+) T cells from HCV-infected, HBV vaccine nonresponders compared with HBV vaccine responders. The capacity of CD4(+) T cells to proliferate and secrete IL-2 cytokine was inversely associated with the level of KLRG1 expression. Importantly, blocking KLRG1 signaling resulted in a significant improvement in CD4(+) T cell proliferation and IL-2 production in HCV-infected, HBV vaccine nonresponders in response to TCR stimulation. Moreover, blockade of KLRG1 increased the phosphorylation of Akt (Ser(473)) and decreased the expression of cell cycle inhibitors p16(ink4a) and p27(kip1), which subsequently enhanced the expression of cyclin-dependent kinase 2 and cyclin E. These results suggest that the KLRG1 pathway impairs CD4(+) T cell responses to neoantigen and induces a state of immune senescence in individuals with HCV infection, raising the possibility that blocking this negative-signaling pathway might improve HBV vaccine responses in the setting of chronic viral infection. PMID:24337749

  16. Knockdown of AMPKα2 Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation via mTOR/Skp2/p27Kip1 Signaling Pathway

    PubMed Central

    Ke, Rui; Liu, Lu; Zhu, Yanting; Li, Shaojun; Xie, Xinming; Li, Fangwei; Song, Yang; Yang, Lan; Gao, Li; Li, Manxiang

    2016-01-01

    It has been shown that activation of adenosine monophosphate-activated protein kinase (AMPK) suppresses proliferation of a variety of tumor cells as well as nonmalignant cells. In this study, we used post-transcriptional gene silencing with small interfering RNA (siRNA) to specifically examine the effect of AMPK on pulmonary arterial smooth muscle cells (PASMCs) proliferation and to further elucidate its underlying molecular mechanisms. Our results showed that knockdown of AMPKα2 promoted primary cultured PASMCs proliferation; this was accompanied with the elevation of phosphorylation of mammalian target of rapamycin (mTOR) and S-phase kinase-associated protein 2 (Skp2) protein level and reduction of p27Kip1. Importantly, prior silencing of mTOR with siRNA abolished AMPKα2 knockdown-induced Skp2 upregulation, p27Kip1 reduction as well as PASMCs proliferation. Furthermore, pre-depletion of Skp2 by siRNA also eliminated p27Kip1 downregulation and PASMCs proliferation caused by AMPKα2 knockdown. Taken together, our study indicates that AMPKα2 isoform plays an important role in regulation of PASMCs proliferation by modulating mTOR/Skp2/p27Kip1 axis, and suggests that activation of AMPKα2 might have potential value in the prevention and treatment of pulmonary arterial hypertension. PMID:27258250

  17. SKP2 Oncogene Is a Direct MYC Target Gene and MYC Down-regulates p27KIP1 through SKP2 in Human Leukemia Cells*

    PubMed Central

    Bretones, Gabriel; Acosta, Juan C.; Caraballo, Juan M.; Ferrándiz, Nuria; Gómez-Casares, M. Teresa; Albajar, Marta; Blanco, Rosa; Ruiz, Paula; Hung, Wen-Chun; Albero, M. Pilar; Perez-Roger, Ignacio; León, Javier

    2011-01-01

    SKP2 is the ubiquitin ligase subunit that targets p27KIP1 (p27) for degradation. SKP2 is induced in the G1-S transit of the cell cycle, is frequently overexpressed in human cancer, and displays transformation activity in experimental models. Here we show that MYC induces SKP2 expression at the mRNA and protein levels in human myeloid leukemia K562 cells with conditional MYC expression. Importantly, in these systems, induction of MYC did not activate cell proliferation, ruling out SKP2 up-regulation as a consequence of cell cycle entry. MYC-dependent SKP2 expression was also detected in other cell types such as lymphoid, fibroblastic, and epithelial cell lines. MYC induced SKP2 mRNA expression in the absence of protein synthesis and activated the SKP2 promoter in luciferase reporter assays. With chromatin immunoprecipitation assays, MYC was detected bound to a region of human SKP2 gene promoter that includes E-boxes. The K562 cell line derives from human chronic myeloid leukemia. In a cohort of chronic myeloid leukemia bone marrow samples, we found a correlation between MYC and SKP2 mRNA levels. Analysis of cancer expression databases also indicated a correlation between MYC and SKP2 expression in lymphoma. Finally, MYC-induced SKP2 expression resulted in a decrease in p27 protein in K562 cells. Moreover, silencing of SKP2 abrogated the MYC-mediated down-regulation of p27. Our data show that SKP2 is a direct MYC target gene and that MYC-mediated SKP2 induction leads to reduced p27 levels. The results suggest the induction of SKP2 oncogene as a new mechanism for MYC-dependent transformation. PMID:21245140

  18. SKP2 oncogene is a direct MYC target gene and MYC down-regulates p27(KIP1) through SKP2 in human leukemia cells.

    PubMed

    Bretones, Gabriel; Acosta, Juan C; Caraballo, Juan M; Ferrándiz, Nuria; Gómez-Casares, M Teresa; Albajar, Marta; Blanco, Rosa; Ruiz, Paula; Hung, Wen-Chun; Albero, M Pilar; Perez-Roger, Ignacio; León, Javier

    2011-03-18

    SKP2 is the ubiquitin ligase subunit that targets p27(KIP1) (p27) for degradation. SKP2 is induced in the G(1)-S transit of the cell cycle, is frequently overexpressed in human cancer, and displays transformation activity in experimental models. Here we show that MYC induces SKP2 expression at the mRNA and protein levels in human myeloid leukemia K562 cells with conditional MYC expression. Importantly, in these systems, induction of MYC did not activate cell proliferation, ruling out SKP2 up-regulation as a consequence of cell cycle entry. MYC-dependent SKP2 expression was also detected in other cell types such as lymphoid, fibroblastic, and epithelial cell lines. MYC induced SKP2 mRNA expression in the absence of protein synthesis and activated the SKP2 promoter in luciferase reporter assays. With chromatin immunoprecipitation assays, MYC was detected bound to a region of human SKP2 gene promoter that includes E-boxes. The K562 cell line derives from human chronic myeloid leukemia. In a cohort of chronic myeloid leukemia bone marrow samples, we found a correlation between MYC and SKP2 mRNA levels. Analysis of cancer expression databases also indicated a correlation between MYC and SKP2 expression in lymphoma. Finally, MYC-induced SKP2 expression resulted in a decrease in p27 protein in K562 cells. Moreover, silencing of SKP2 abrogated the MYC-mediated down-regulation of p27. Our data show that SKP2 is a direct MYC target gene and that MYC-mediated SKP2 induction leads to reduced p27 levels. The results suggest the induction of SKP2 oncogene as a new mechanism for MYC-dependent transformation. PMID:21245140

  19. Cell-permeable Carboxyl-terminal p27Kip1 Peptide Exhibits Anti-tumor Activity by Inhibiting Pim-1 Kinase*

    PubMed Central

    Morishita, Daisuke; Takami, Miho; Yoshikawa, Seiko; Katayama, Ryohei; Sato, Shigeo; Kukimoto-Niino, Mutsuko; Umehara, Takashi; Shirouzu, Mikako; Sekimizu, Kazuhisa; Yokoyama, Shigeyuki; Fujita, Naoya

    2011-01-01

    The incidence and death rate of prostate cancer is increasing rapidly. In addition, the low sensitivity of prostate cancer to chemotherapy makes it difficult to treat this condition. The serine/threonine kinase Pim-1 plays an important role in cell cycle progression and apoptosis inhibition, resulting in prostate tumorigenesis. Therefore, Pim-1 inhibition has been expected to be an attractive target for developing new anti-cancer drugs. However, no small compounds targeting Pim-1 have progressed to clinical use because of their lack of specificity. Here, we have reported a new cell-permeable Pim-1 inhibitory p27Kip1 peptide that could interfere with the binding of Pim-1 to its substrates and act as an anti-cancer drug. The peptide could bind to Pim-1 and inhibit phosphorylation of endogenous p27Kip1 and Bad by Pim-1. Treatment of prostate cancer with the peptide induces G1 arrest and subsequently apoptosis in vitro. However, the peptide showed almost no growth inhibitory or apoptosis-inducing effects in normal cells. The peptide could inhibit tumor growth in in vivo prostate cancer xenograft models. Moreover, the peptide treatment could overcome resistance to taxol, one of the first line chemotherapeutic agents for prostate cancer, and a combination of the peptide with taxol synergistically inhibited prostate cancer growth in vivo. These results indicate that a Pim-1 inhibitory p27Kip1 peptide could be developed as an anti-cancer drug against prostate cancer. PMID:21062737

  20. The Down syndrome-related protein kinase DYRK1A phosphorylates p27Kip1 and Cyclin D1 and induces cell cycle exit and neuronal differentiation

    PubMed Central

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome. PMID:24806449

  1. Molecular cloning and functional characterization of a cell-permeable superoxide dismutase targeted to lung adenocarcinoma cells. Inhibition cell proliferation through the Akt/p27kip1 pathway.

    PubMed

    Lu, Min; Gong, Xingguo; Lu, Yuwen; Guo, Jianjun; Wang, Chenhui; Pan, Yuanjiang

    2006-05-12

    In clinical oncology, many trials with superoxide dismutase (SOD) have failed to demonstrate antitumor ability and in many cases even caused deleterious effects because of low tumor-targeting ability. In the current research, the Nostoc commune Fe-SOD coding sequence was amplified from genomic DNA. In addition, the single chain variable fragment (ScFv) was constructed from the cDNA of an LC-1 hybridoma cell line secreting anti-lung adenocarcinoma monoclonal antibody. After modification, the SOD and ScFv were fused and co-expressed, and the resulting fusion protein produced SOD and LC-1 antibody activity. Tracing SOD-ScFv by fluorescein isothiocyanate and superoxide anions (O2*-) in SPC-A-1 cells showed that the fusion protein could recognize and enter SPC-A-1 cells to eliminate O2*-. The lower oxidative stress resulting from the decrease in cellular O2*- delayed the cell cycle at G1 and significantly slowed SPC-A-1 cell growth in association with the dephosphorylation of the serine-threonine protein kinase Akt and expression of p27kip1. The tumor-targeting fusion protein resulting from this research overcomes two disadvantages of SODs previously used in the clinical setting, the inability to target tumor cells or permeate the cell membrane. These findings lay the groundwork for development of an efficient antitumor drug targeted by the ScFv. PMID:16551617

  2. Cdc6 Protein Activates p27KIP1-bound Cdk2 Protein Only after the Bound p27 Protein Undergoes C-terminal Phosphorylation*

    PubMed Central

    Uranbileg, Baasanjav; Yamamoto, Hanako; Park, Jung-ha; Mohanty, Atish R.; Arakawa-Takeuchi, Shiho; Jinno, Shigeki; Okayama, Hiroto

    2012-01-01

    In mammalian cells Cdk2 activity during the G1-S transition is mainly controlled by p27KIP1. Although the amount and subcellular localization of p27 influence Cdk2 activity, how Cdk2 activity is regulated during this phase transition still remains virtually unknown. Here we report an entirely new mechanism for this regulation. Cdc6 the AAA+ ATPase, known to assemble prereplicative complexes on chromosomal replication origins and activate p21CIP1-bound Cdk2, also activated p27-bound Cdk2 in its ATPase and cyclin binding motif-dependent manner but only after the p27 bound to the Cdk2 was phosphorylated at the C terminus. ROCK, which mediates a signal for cell anchorage to the extracellular matrix and activates the mTORC1 cascade as well as controls cytoskeleton assembly, was partly responsible for C-terminal phosphorylation of the p27. In vitro reconstitution demonstrated ROCK (Rho-associated kinase)-mediated phosphorylation of Cdk2-bound p27 at the C terminus and subsequent activation of the Cdk2 by Cdc6. PMID:22223646

  3. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth.

    PubMed

    Pavlides, Savvas C; Lecanda, Jon; Daubriac, Julien; Pandya, Unnati M; Gama, Patricia; Blank, Stephanie; Mittal, Khushbakhat; Shukla, Pratibha; Gold, Leslie I

    2016-04-01

    We previously reported that aberrant TGF-β/Smad2/3 signaling in endometrial cancer (ECA) leads to continuous ubiquitylation of p27(kip1)(p27) by the E3 ligase SCF-Skp2/Cks1 causing its degradation, as a putative mechanism involved in the pathogenesis of this cancer. In contrast, normal intact TGF-β signaling prevents degradation of nuclear p27 by SCF-Skp2/Cks1 thereby accumulating p27 to block Cdk2 for growth arrest. Here we show that in ECA cell lines and normal primary endometrial epithelial cells, TGF-β increases Cdh1 and its binding to APC/C to form the E3 ligase complex that ubiquitylates Cks1 and Skp2 prompting their proteasomal degradation and thus, leaving p27 intact. Knocking-down Cdh1 in ECA cell lines increased Skp2/Cks1 E3 ligase activity, completely diminished nuclear and cytoplasmic p27, and obviated TGF-β-mediated inhibition of proliferation. Protein synthesis was not required for TGF-β-induced increase in nuclear p27 and decrease in Cks1 and Skp2. Moreover, half-lives of Cks1 and Skp2 were extended in the Cdh1-depleted cells. These results suggest that the levels of p27, Skp2 and Cks1 are strongly or solely regulated by proteasomal degradation. Finally, an inverse relationship of low p27 and high Cks1 in the nucleus was shown in patients in normal proliferative endometrium and grade I-III ECAs whereas differentiated secretory endometrium showed the reverse. These studies implicate Cdh1 as the master regulator of TGF-β-induced preservation of p27 tumor suppressor activity. Thus, Cdh1 is a potential therapeutic target for ECA and other human cancers showing an inverse relationship between Cks1/Skp2 and p27 and/or dysregulated TGF-β signaling. PMID:26963853

  4. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    PubMed

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth. PMID:11709714

  5. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27Kip1

    PubMed Central

    Zhou, Zhongmei; Zhang, Hailin; Liu, Rong; Wu, Jing; Qin, Junying; Ma, Yun; Chen, Liang; Li, Shumo; Chen, Wenlin; Li, Fubing; Shi, Peiguo; Wu, Yingying; Shen, Jian; Chen, Ceshi

    2015-01-01

    Growing evidence suggests that YAP/TAZ are mediators of the Hippo pathway and promote breast cancer. However, the roles of YAP/TAZ transcription factor partners TEADs in breast cancer remain unclear. Here we found that TEAD4 was expressed in breast cancer cell lines, especially in triple negative breast cancers (TNBC) cell lines. TEAD4 binds to KLF5. Knockdown of either TEAD4 or KLF5 in HCC1937 and HCC1806 cells induced the expression of CDK inhibitor p27. Depletion of either TEAD4 or KLF5 activated the p27 gene promoter and increased the p27 mRNA levels. Depletion of p27 partially prevents growth inhibition caused by TEAD4 and KLF5 knockdown. TEAD4 overexpression stimulated proliferation in vitro and tumor growth in mice, while stable knockdown of TEAD4 inhibited proliferation in vitro and tumor growth in mice. Thus TEAD4 and KLF5, in collaboration, promoted TNBC cell proliferation and tumor growth in part by inhibiting p27 gene transcription. TEAD4 is a potential target and biomarker for the development of novel therapeutics for breast cancer. PMID:25970772

  6. Decreased Skp2 Expression Is Necessary but Not Sufficient for Therapy-Induced Senescence in Prostate Cancer

    PubMed Central

    Ewald, Jonathan A; Jarrard, David F

    2012-01-01

    Therapy-induced senescence (TIS), a cytostatic stress response in cancer cells, is induced inefficiently by current anticancer agents and radiation. The mechanisms that mediate TIS in cancer cells are not well defined. Herein, we characterize a robust senescence response both in vitro and in vivo to the quinone diaziquone (AZQ), previously identified in a high-throughput senescence-induction small-molecule screen. Using AZQ and several other agents that induce senescence, we screened a series of cyclin-dependent kinase inhibitors and found that p27Kip1 was induced in all investigated prostate cancer cell lines. The ubiquitin-ligase Skp2 negatively regulates p27Kip1 and, during TIS, is translocated to the cytoplasm before its expression is decreased in senescent cells. Overexpression of Skp2 blocks the effects of AZQ on senescence and p27Kip1 induction. We also find that stable long-term short hairpin RNA knockdown of Skp2 decreases proliferation but does not generate the complete senescence phenotype. We conclude that Skp2 participates in regulating TIS but, alone, is insufficient to induce senescence in cancer cells. PMID:22937180

  7. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase

    SciTech Connect

    Hao, B.; Zheng, N.; Schulman, B.A.; Wu, G.; Miller, J.J.; Pagano, M.; Pavletich, N.P.

    2010-07-19

    The ubiquitin-mediated proteolysis of the Cdk2 inhibitor p27{sup Kip1} plays a central role in cell cycle progression, and enhanced degradation of p27{sup Kip1} is associated with many common cancers. Proteolysis of p27{sup Kip1} is triggered by Thr187 phosphorylation, which leads to the binding of the SCF{sup Skp2} (Skp1-Cul1-Rbx1-Skp2) ubiquitin ligase complex. Unlike other known SCF substrates, p27{sup Kip1} ubiquitination also requires the accessory protein Cks1. The crystal structure of the Skp1-Skp2-Cks1 complex bound to a p27{sup Kip1} phosphopeptide shows that Cks1 binds to the leucine-rich repeat (LRR) domain and C-terminal tail of Skp2, whereas p27{sup Kip1} binds to both Cks1 and Skp2. The phosphorylated Thr187 side chain of p27{sup Kip1} is recognized by a Cks1 phosphate binding site, whereas the side chain of an invariant Glu185 inserts into the interface between Skp2 and Cks1, interacting with both. The structure and biochemical data support the proposed model that Cdk2-cyclin A contributes to the recruitment of p27{sup Kip1} to the SCF{sup Skp2}-Cks1 complex.

  8. Modulation of VEGF-induced endothelial cell cycle protein expression through cyclic AMP hydrolysis by PDE2 and PDE4.

    PubMed

    Favot, Laure; Keravis, Thérèse; Lugnier, Claire

    2004-09-01

    Endothelial cell proliferation in response to VEGF plays an important role in physiological and pathological angiogenesis. The role of PDE2 and PDE4 in VEGF-induced proliferation in HUVEC was investigated: 1) VEGF increased cAMP-hydrolytic activity by up-regulating the expression of PDE2 and PDE4 isozymes; 2) VEGF increased progression in cell cycle with an increase in p42/p44 MAP kinase, cyclin A and cyclin D1 expressions and with a decrease in p21 waf1/cip1 and p27 kip1 expressions; 3) EHNA (20 micro M), a selective PDE2 inhibitor, RP73401 (10 micro M), a selective PDE4 inhibitor blocked the VEGF-induced increase in p42/p44 MAP kinase expression; 4) RP73401, but not EHNA, blocked the VEGF-induced increase in cyclin A and decrease in p27 kip1 expressions; 5) EHNA, contrary to RP73401, enhanced the VEGF-induced increase of cyclin A and decrease of p27 kip1. 6) EHNA and RP73401 together blocked the VEGF-induced increase in cyclin D1 and decrease in p21 waf1/cip1 expressions; 7) Inhibition of VEGF-upregulated PDE2 and PDE4 reversed the VEGF-induced alterations in cell cycle protein expression, bringing back endothelial cells to a non-proliferating status. Consequently, PDE2 and PDE4 inhibitions were able to inhibit VEGF-induced endothelial cell proliferation by restoring cell cycle key protein expression, and might thus be useful in excessive angiogenesis. Furthermore, the differences between PDE2 and PDE4 effects may suggest compartmentalized effects. PMID:15351862

  9. Combination treatment with proteasome inhibitors and antiestrogens has a synergistic effect mediated by p21WAF1 in estrogen receptor-positive breast cancer.

    PubMed

    Maynadier, Marie; Basile, Ilaria; Gallud, Audrey; Gary-Bobo, Magali; Garcia, Marcel

    2016-08-01

    Although antiestrogens significantly improve the survival of patients with ER-positive breast cancer, therapeutic resistance remains a major limitation. The combinatorial use of antiestrogen with other therapies was proposed to increase their efficiency and more importantly, to prevent or delay the resistance phenomenon. In the present study, we addressed their combined effects with proteasome inhibitors (PIs). The effects of antiestrogens (hydroxyl-tamoxifen, raloxifen and fulvestrant) currently used in endocrine therapy were tested in combination with PIs, bortezomib or MG132, on the growth of three ER-positive breast cancer cell lines and in two cellular models of acquired antiestrogen resistance. When compared to single treatments, these combined treatments were significantly more effective in preventing the growth of the cell lines. The regulation of key cell cycle proteins, the cyclin-dependent kinase inhibitors, p21WAF1 and p27KIP1, were also studied. Bortezomib and MG132 drastically increased p21WAF1 expression through elevation of its mRNA concentration. Notably, p27KIP1 regulation was quite different from that of p21WAF1. Furthermore, the effect of bortezomib in combination with antiestrogen was evaluated on antiestrogen-resistant cell lines. The growth of two antiestrogen-resistant cell lines appeared responsive to proteasome inhibition and was strongly decreased by a combined therapy with an antiestrogen. Collectively, these findings provide new perspectives for the use of PIs in combination with endocrine therapies for breast cancer and possibly to overcome acquired hormonal resistance. PMID:27373750

  10. Over-expression of CKS1B activates both MEK/ERK and JAK/STAT3 signaling pathways and promotes myeloma cell drug-resistance

    PubMed Central

    Zangari, Maurizio; Xu, Hongwei; Cao, Thai M.; Xu, Chunjiao; Wu, Yong; Xiao, Fang; Liu, Yinghong; Yang, Ye; Salama, Mohamed; Li, Guiyuan; Tricot, Guido; Zhan, Fenghuang

    2010-01-01

    Here we demonstrate the crucial role of CKS1B in multiple myeloma (MM) progression and define CKS1B-mediated SKP2/p27Kip1-independent down-stream signaling pathways. Forced-expression of CKS1B in MM cells increased cell multidrug-resistance. CKS1B activates STAT3 and MEK/ERK pathways. In contrast, SKP2 knockdown or p27Kip1 over-expression resulted in activation of the STAT3 and MEK/ERK pathways. Further investigations showed that BCL2 is a downstream target of MEK/ERK signaling. Stimulation of STAT3 and MEK/ERK signaling pathways partially abrogated CKS1B knockdown induced MM cell death and growth inhibition. Targeting STAT3 and MEK/ ERK signaling pathways by specific inhibitors induced significant MM cell death and growth inhibition in CKS1B-overexpressing MM cells and their combinations resulted in synergy. Thus, our findings provide a rationale for targeting STAT3 and MEK/ERK/ BCL2 signaling in aggressive CKS1B-overexpressing MM. PMID:20930946

  11. In Vitro and in Vivo Anti-tumor Activity of miR-221/222 Inhibitors in Multiple Myeloma

    PubMed Central

    Di Martino, Maria Teresa; Gullà, Annamaria; Cantafio, Maria Eugenia Gallo; Lionetti, Marta; Leone, Emanuela; Amodio, Nicola; Guzzi, Pietro Hiram; Foresta, Umberto; Conforti, Francesco; Cannataro, Mario; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-01-01

    A rising body of evidence suggests that silencing microRNAs (miRNAs) with oncogenic potential may represent a successful therapeutic strategy for human cancer. We investigated the therapeutic activity of miR-221/222 inhibitors against human multiple myeloma (MM) cells. Enforced expression of miR-221/222 inhibitors triggered in vitro anti-proliferative effects and up-regulation of canonic miR-221/222 targets, including p27Kip1, PUMA, PTEN and p57Kip2, in MM cells highly expressing miR-221/222. Conversely, transfection of miR-221/222 mimics increased S-phase and down-regulated p27Kip1 protein expression in MM with low basal miR-221/222 levels. The effects of miR-221/222 inhibitors was also evaluated in MM xenografts in SCID/NOD mice. Significant anti-tumor activity was achieved in xenografted mice by the treatment with miR-221/222 inhibitors, together with up-regulation of canonic protein targets in tumors retrieved from animals. These findings provide proof of principle that silencing the miR-221/222 cluster exerts significant therapeutic activity in MM cells with high miR-221/222 level of expression, which mostly occurs in TC2 and TC4 MM groups. These findings suggest that MM genotyping may predict the therapeutic response. All together our results support a framework for clinical development of miR-221/222 inhibitors-based therapeutic strategy in this still incurable disease. PMID:23479461

  12. In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma.

    PubMed

    Di Martino, Maria Teresa; Gullà, Annamaria; Cantafio, Maria Eugenia Gallo; Lionetti, Marta; Leone, Emanuela; Amodio, Nicola; Guzzi, Pietro Hiram; Foresta, Umberto; Conforti, Francesco; Cannataro, Mario; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-02-01

    A rising body of evidence suggests that silencing microRNAs (miRNAs) with oncogenic potential may represent a successful therapeutic strategy for human cancer. We investigated the therapeutic activity of miR-221/222 inhibitors against human multiple myeloma (MM) cells. Enforced expression of miR-221/222 inhibitors triggered in vitro anti-proliferative effects and up-regulation of canonic miR-221/222 targets, including p27Kip1, PUMA, PTEN and p57Kip2, in MM cells highly expressing miR-221/222. Conversely, transfection of miR-221/222 mimics increased S-phase and down-regulated p27Kip1 protein expression in MM with low basal miR-221/222 levels. The effects of miR-221/222 inhibitors was also evaluated in MM xenografts in SCID/ NOD mice. Significant anti-tumor activity was achieved in xenografted mice by the treatment with miR-221/222 inhibitors, together with up-regulation of canonic protein targets in tumors retrieved from animals. These findings provide proof of principle that silencing the miR-221/222 cluster exerts significant therapeutic activity in MM cells with high miR-221/222 level of expression, which mostly occurs in TC2 and TC4 MM groups. These findings suggest that MM genotyping may predict the therapeutic response. All together our results support a framework for clinical development of miR-221/222 inhibitors-based therapeutic strategy in this still incurable disease. PMID:23479461

  13. The expression of the ubiquitin ligase subunit Cks1 in human breast cancer

    PubMed Central

    Slotky, Merav; Shapira, Ma'anit; Ben-Izhak, Ofer; Linn, Shai; Futerman, Boris; Tsalic, Medy; Hershko, Dan D

    2005-01-01

    Introduction Loss of the cell-cycle inhibitory protein p27Kip1 is associated with a poor prognosis in breast cancer. The decrease in the levels of this protein is the result of increased proteasome-dependent degradation, mediated and rate-limited by its specific ubiquitin ligase subunits S-phase kinase protein 2 (Skp2) and cyclin-dependent kinase subunit 1 (Cks1). Skp2 was recently found to be overexpressed in breast cancers, but the role of Cks1 in these cancers is unknown. The present study was undertaken to examine the role of Cks1 expression in breast cancer and its relation to p27Kip1 and Skp2 expression and to tumor aggressiveness. Methods The expressions of Cks1, Skp2, and p27Kip1 were examined immunohistochemically on formalin-fixed, paraffin-wax-embedded tissue sections from 50 patients with breast cancer and by immunoblot analysis on breast cancer cell lines. The relation between Cks1 levels and patients' clinical and histological parameters were examined by Cox regression and the Kaplan–Meier method. Results The expression of Cks1 was strongly associated with Skp2 expression (r = 0.477; P = 0.001) and inversely with p27Kip1 (r = -0.726; P < 0.0001). Overexpression of Cks1 was associated with loss of tumor differentiation, young age, lack of expression of estrogen receptors and of progesterone receptors, and decreased disease-free (P = 0.0007) and overall (P = 0.041) survival. In addition, Cks1 and Skp2 expression were increased by estradiol in estrogen-dependent cell lines but were down-regulated by tamoxifen. Conclusion These results suggest that Cks1 is involved in p27Kip1 down-regulation and may have an important role in the development of aggressive tumor behavior in breast cancer. PMID:16168119

  14. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces expression of p27(kip¹) and FoxO3a in female rat cerebral cortex and PC12 cells.

    PubMed

    Xu, Guangfei; Liu, Jiao; Yoshimoto, Katsuhiko; Chen, Gang; Iwata, Takeo; Mizusawa, Noriko; Duan, Zhiqing; Wan, Chunhua; Jiang, Junkang

    2014-05-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxin that alters normal brain development, producing cognitive disability and motor dysfunction. Previous studies in rats have proved that female rats are more sensitive to TCDD lethality than male ones. Recent studies have shown that TCDD induces cell cycle arrest and apoptosis, but the regulatory proteins involved in these processes have yet to be elucidated. In this study, we constructed an acute TCDD injury female rat model, and investigated the effects of TCDD on apoptosis and expression of cell cycle regulators, forkhead box class O 3a (FoxO3a) and p27(kip1), in the central nervous system (CNS). Increased levels of active caspase-3 were observed in the cerebral cortex of female rats treated with TCDD, suggesting that TCDD-induced apoptosis occurs in the CNS. The terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling assay showed that apoptosis primarily occurred in neurons. Furthermore, Western blot analysis, reverse transcription-polymerase chain reaction, and immunohistochemistry showed a significant up-regulation of FoxO3a and p27(kip1) in the cerebral cortex. Immunofluorescent labeling indicated that FoxO3a and p27(kip1) were predominantly localized in apoptotic neurons, but not in astrocytes. In vitro experiments using PC12, a rat neuron-like pheochromocytoma cell line, also revealed that TCDD induced apoptosis and an increase in FoxO3a and p27(kip1) expression. Furthermore, knockdown of FoxO3a expression inhibited p27(kip1) transcription and TCDD-induced apoptosis. Based on our data, induction of FoxO3a may play an important role in TCDD-induced neurotoxicity. PMID:24594276

  15. Bortezomib induces apoptosis and growth suppression in human medulloblastoma cells, associated with inhibition of AKT and NF-ĸB signaling, and synergizes with an ERK inhibitor

    PubMed Central

    Yang, Fan; Jove, Veronica; Chang, Shirley; Hedvat, Michael; Liu, Lucy; Buettner, Ralf; Tian, Yan; Scuto, Anna; Wen, Wei; Yip, M.L. Richard; Van Meter, Timothy; Yen, Yun; Jove, Richard

    2012-01-01

    Medulloblastoma is the most common brain tumor in children. Here, we report that bortezomib, a proteasome inhibitor, induced apoptosis and inhibited cell proliferation in two established cell lines and a primary culture of human medulloblastomas. Bortezomib increased the release of cytochrome c to cytosol and activated caspase-9 and caspase-3, resulting in cleavage of PARP. Caspase inhibitor (Z-VAD-FMK) could rescue medulloblastoma cells from the cytotoxicity of bortezomib. Phosphorylation of AKT and its upstream regulator mTOR were reduced by bortezomib treatment in medulloblastoma cells. Bortezomib increased the expression of Bad and Bak, pro-apoptotic proteins, and p21Cip1 and p27Kip1, negative regulators of cell cycle progression, which are associated with the growth suppression and induction of apoptosis in these tumor cells. Bortezomib also increased the accumulation of phosphorylated IĸBα, and decreased nuclear translocation of NF-ĸB. Thus, NF-ĸB signaling and activation of its downstream targets are suppressed. Moreover, ERK inhibitors or downregulating ERK with ERK siRNA synergized with bortezomib on anticancer effects in medulloblastoma cells. Bortezomib also inhibited the growth of human medulloblastoma cells in a mouse xenograft model. These findings suggest that proteasome inhibitors are potentially promising drugs for treatment of pediatric medulloblastomas. PMID:22313636

  16. Identification of JTP-70902, a p15(INK4b)-inductive compound, as a novel MEK1/2 inhibitor.

    PubMed

    Yamaguchi, Takayuki; Yoshida, Takayuki; Kurachi, Reina; Kakegawa, Junya; Hori, Yoshikazu; Nanayama, Toyomichi; Hayakawa, Kazuhide; Abe, Hiroyuki; Takagi, Koichi; Matsuzaki, Youichirou; Koyama, Makoto; Yogosawa, Shingo; Sowa, Yoshihiro; Yamori, Takao; Tajima, Nobuyuki; Sakai, Toshiyuki

    2007-11-01

    The INK4 family members p16(INK4a) and p15(INK4b) negatively regulate cell cycle progression by inhibition of cyclin-dependent kinase (CDK) 4/6. Loss of p16(INK4a) functional activity is frequently observed in tumor cells, and is thought to be one of the primary causes of carcinogenesis. In contrast, despite the biochemical similarity to p16(INK4a), the frequency of defects in p15(INK4b) was found to be lower than in p16(INK4a), suggesting that p15(INK4b)-inductive agents may be useful for tumor suppression. Here we report the discovery of a novel pyrido-pyrimidine derivative, JTP-70902, which exhibits p15(INK4b)-inducing activity in p16(INK4a)-inactivated human colon cancer HT-29 cells. JTP-70902 also induced another CDK-inhibitor, p27(KIP1), and downregulated the expression of c-Myc and cyclin D1, resulting in G(1) cell cycle arrest. MEK1/2 was identified by compound-immobilized affinity chromatography as the molecular target of JTP-70902, and this was further confirmed by the inhibitory activity of JTP-70902 against MEK1/2 in kinase assays. JTP-70902 suppressed the growth of most colorectal and some other cancer cell lines in vitro, and showed antitumor activity in an HT-29 xenograft model. However, JTP-70902 did not inhibit the growth of COLO320 DM cells; in these, constitutive extracellular signal-regulated kinase phosphorylation was not detected, and neither p15(INK4b) nor p27(KIP1) induction was observed. Moreover, p15(INK4b)-deficient mouse embryonic fibroblasts were found to be more resistant to the growth-inhibitory effect of JTP-70902 than wild-type mouse embryonic fibroblasts. These findings suggest that JTP-70902 restores CDK inhibitor-mediated cell cycle control by inhibiting MEK1/2 and exerts a potent antitumor effect. PMID:17784872

  17. In Vitro and In Vivo Activity of a Novel Locked Nucleic Acid (LNA)-Inhibitor-miR-221 against Multiple Myeloma Cells

    PubMed Central

    Altomare, Emanuela; Amodio, Nicola; Leone, Emanuela; Morelli, Eugenio; Lio, Santo Giovanni; Caracciolo, Daniele; Rossi, Marco; Frandsen, Niels M.; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2014-01-01

    Background & Aim The miR-221/222 cluster is upregulated in malignant plasma cells from multiple myeloma (MM) patients harboring the t(4;14) translocation. We previously reported that silencing of miR-221/222 by an antisense oligonucleotide induces anti-MM activity and upregulates canonical miR-221/222 targets. The in vivo anti-tumor activity occurred when miR-221/222 inhibitors were delivered directly into MM xenografts. The aim of the present study was to evaluate the anti-MM activity of a novel phosphorothioate modified backbone 13-mer locked nucleic acid (LNA)-Inhibitor-miR-221 (LNA-i-miR-221) specifically designed for systemic delivery. Methods In vitro anti-MM activity of LNA-i-miR-221 was evaluated by cell proliferation and BrdU uptake assays. In vivo studies were performed with non-obese diabetic/severe combined immunodeficient (NOD.SCID) mice bearing t(4;14) MM xenografts, which were intraperitoneally or intravenously treated with naked LNA-i-miR-221. RNA extracts from retrieved tumors were analyzed for miR-221 levels and modulation of canonical targets expression. H&E staining and immunohistochemistry were performed on retrieved tumors and mouse vital organs. Results In vitro, LNA-i-miR-221 exerted strong antagonistic activity against miR-221 and induced upregulation of the endogenous target p27Kip1. It had a marked anti-proliferative effect on t(4;14)-translocated MM cells but not on MM cells not carrying the translocation and not overexpressing miR-221. In vivo, systemic treatment with LNA-i-miR-221 triggered significant anti-tumor activity against t(4;14) MM xenografts; it also induced miR-221 downregulation, upregulated p27Kip1 and reduced Ki-67. No behavioral changes or organ-related toxicity were observed in mice as a consequence of treatments. Conclusions LNA-i-miR-221 is a highly stable, effective agent against t(4;14) MM cells, and is suitable for systemic use. These data provide the rationale for the clinical development of LNA-i-miR-221 for the

  18. Integrin signaling at the M/G1 transition induces expression of cyclin E.

    PubMed

    Hulleman, E; Bijvelt, J J; Verkleij, A J; Verrips, C T; Boonstra, J

    1999-12-15

    The activities of the mammalian G1 cyclins, cyclin D and cyclin E, during cell cycle progression (G1/S) are believed to be regulated by cell attachment and the presence of growth factors. In order to study the importance of cell attachment and concomitant integrin signaling on the expression of G1 cyclins during the natural adhesion process from mitosis to interphase, protein expression was monitored in cells that were synchronized by mitotic shake off. Here we show that in Chinese hamster ovary (CHO) and neuroblastoma (N2A) cells, expression of cyclin E at the M/G1 transition is regulated by both growth factors and cell attachment, while expression of cyclin D seems to be entirely dependent on the presence of serum. Expression of cyclin E appears to be correlated with the phosphorylation of the retinoblastoma protein, suggesting a link with the activity of the cyclin D/cdk4 complex. Expression of the cdk inhibitors p21(cip1/Waf1) and p27(Kip1) is not changed upon serum depletion or detachment of cells during early G1, suggesting no direct role for these CKIs in the regulation of cyclin activity. Although inhibition of cyclin E/cdk2 kinase activity has been reported previously, this is the first time that cyclin E expression is shown to be dependent on cell attachment. PMID:10585265

  19. REGULATION OF PTEN EXPRESSION IN INTESTINAL EPITHELIAL CELLS BY JNK ACTIVATION AND NF-κB INHIBITION

    PubMed Central

    Wang, QingDing; Zhou, Yuning; Wang, Xiaofu; Chung, Dai H.; Evers, B. Mark

    2008-01-01

    The tumor suppressor protein PTEN plays an important role in intestinal cell proliferation and differentiation and tumor suppression by antagonizing phosphatidylinositol 3-kinase (PI3K). Despite its importance, the molecular mechanisms regulating PTEN expression are largely undefined. Here, we show that treatment of the colon cancer cell line, HT29, with the differentiating agent sodium butyrate (NaBT) increased PTEN protein and mRNA expression and induced JNK activation. Inhibition of c-Jun-NH2-terminal kinase (JNK) by chemical or genetic methods attenuated NaBT-induced PTEN expression. In addition, our findings demonstrated a cross-talk between NF-κB and JNK with respect to PTEN regulation. Overexpression of the NF-κB superrepressor increased PTEN expression and JNK activity, whereas overexpression of the p65 NF-κB subunit reduced both basal and NaBT-mediated JNK activation and PTEN expression. Moreover, we showed that overexpression of PTEN or treatment with NaBT increased expression of the cyclin dependent kinase inhibitor p27kip1 in HT29 cells; this induction was attenuated by inhibition of PTEN or JNK expression or overexpression of p65. Finally, we demonstrate a role for PTEN in NaBT-mediated cell death and differentiation. Our findings suggest that the NF-κB/JNK/PTEN pathway plays a critical role in normal intestinal homeostasis and colon carcinogenesis. PMID:17699782

  20. Inhibition of liver trans-sulphuration pathway by propargylglycine mimics gene expression changes found in the mammary gland of weaned lactating rats: role of glutathione.

    PubMed Central

    Zaragozá, Rosa; García, Concha; Rus, A Diana; Pallardó, Federico V; Barber, Teresa; Torres, Luis; Miralles, Vicente J; Viña, Juan R

    2003-01-01

    In the lactating mammary gland, weaning produces mitochondrial cytochrome c release and nuclear DNA fragmentation, as determined by gel electrophoresis. This is followed by a significant decrease in lactation. Weaning for 2 h produces an early induction of the tumour suppressor/transcription factor p53, whereas the oncoprotein c-Jun and c-Jun N-terminal kinase are elevated after 24 h of weaning when compared with controls. The expression of p21(cip1) and p27(kip1), cyclin-dependent kinase inhibitors, was significantly higher in weaned rats when compared with control lactating rats. All the changes mentioned above also happen in the lactating mammary gland when propargylglycine, an inhibitor of the liver trans-sulphuration pathway, is administered. This effect is partially reversed by N -acetylcysteine administration. The administration of buthionine sulphoximine, an irreversible inhibitor of gamma-glutamylcysteine synthetase, to lactating rats produces a decrease in GSH levels and changes in protein concentrations and gene transcripts similar to those in rats with impaired trans-sulphuration pathway. These data suggest that the inter-tissue flux of GSH is an important mechanism of L-cysteine delivery to the lactating mammary gland and emphasize the importance of this physiological event in maintaining the gene expression required to sustain lactation. PMID:12723969

  1. Growth-Inhibitory and Antiangiogenic Activity of the MEK Inhibitor PD0325901 in Malignant Melanoma with or without BRAF Mutations12

    PubMed Central

    Ciuffreda, Ludovica; Del Bufalo, Donatella; Desideri, Marianna; Di Sanza, Cristina; Stoppacciaro, Antonella; Ricciardi, Maria Rosaria; Chiaretti, Sabina; Tavolaro, Simona; Benassi, Barbara; Bellacosa, Alfonso; Foà, Robin; Tafuri, Agostino; Cognetti, Francesco; Anichini, Andrea; Zupi, Gabriella; Milella, Michele

    2009-01-01

    The Raf/MEK/ERK pathway is an important mediator of tumor cell proliferation and angiogenesis. Here, we investigated the growth-inhibitory and antiangiogenic properties of PD0325901, a novel MEK inhibitor, in human melanoma cells. PD0325901 effects were determined in a panel of melanoma cell lines with different genetic aberrations. PD0325901 markedly inhibited ERK phosphorylation and growth of both BRAF mutant and wild-type melanoma cell lines, with IC50 in the nanomolar range even in the least responsive models. Growth inhibition was observed both in vitro and in vivo in xenograft models, regardless of BRAF mutation status, and was due to G1-phase cell cycle arrest and subsequent induction of apoptosis. Cell cycle (cyclin D1, c-Myc, and p27KIP1) and apoptosis (Bcl-2 and survivin) regulators were modulated by PD0325901 at the protein level. Gene expression profiling revealed profound modulation of several genes involved in the negative control of MAPK signaling and melanoma cell differentiation, suggesting alternative, potentially relevant mechanisms of action. Finally, PD0325901 inhibited the production of the proangiogenic factors vascular endothelial growth factor and interleukin 8 at a transcriptional level. In conclusion, PD0325901 exerts potent growth-inhibitory, proapoptotic, and antiangiogenic activity in melanoma lines, regardless of their BRAF mutation status. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective treatment strategies for patients experiencing malignant melanoma. PMID:19649202

  2. Minibrain drives the Dacapo-dependent cell cycle exit of neurons in the Drosophila brain by promoting asense and prospero expression.

    PubMed

    Shaikh, Mirja N; Gutierrez-Aviño, Francisco; Colonques, Jordi; Ceron, Julian; Hämmerle, Barbara; Tejedor, Francisco J

    2016-09-01

    A key aim of neurodevelopmental research is to understand how precursor cells decide to stop dividing and commence their terminal differentiation at the correct time and place. Here, we show that minibrain (mnb), the Drosophila ortholog of the Down syndrome candidate gene DYRK1A, is transiently expressed in newborn neuronal precursors known as ganglion cells (GCs). Mnb promotes the cell cycle exit of GCs through a dual mechanism that regulates the expression of the cyclin-dependent kinase inhibitor Dacapo, the homolog of vertebrate p27(Kip1) (Cdkn1b). Mnb upregulates the expression of the proneural transcription factor (TF) Asense, which promotes Dacapo expression. Mnb also induces the expression of Prospero, a homeodomain TF that in turn inhibits the expression of Deadpan, a pan-neural TF that represses dacapo In addition to its effects on Asense and Prospero, Mnb also promotes the expression of the neuronal-specific RNA regulator Elav, strongly suggesting that Mnb facilitates neuronal differentiation. These actions of Mnb ensure the precise timing of neuronal birth, coupling the mechanisms that regulate neurogenesis, cell cycle control and terminal differentiation of neurons. PMID:27510975

  3. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells.

    PubMed

    Li, Zhen; Jiang, Ke; Zhu, Xiaofang; Lin, Guibin; Song, Fei; Zhao, Yongfu; Piao, Yongjun; Liu, Jiwei; Cheng, Wei; Bi, Xiaolin; Gong, Peng; Song, Zhiqi; Meng, Songshu

    2016-01-28

    Encorafenib (LGX818) is a new-generation BRAF inhibitor that is under evaluation in clinical trials. However, the underlying mechanism remains to be elucidated. Here we show that LGX818 potently decreased ERK phosphorylation and inhibited proliferation in BRAFV600E melanoma cell lines. Moreover, LGX818 downregulated CyclinD1 in a glycogen synthase kinase 3β-independent manner and induced cell cycle arrest in the G1 phase, Surprisingly, LGX818 triggered cellular senescence in BRAFV600E melanoma cells, as evidenced by increased β-galactosidase staining, while no appreciable induction of apoptosis was detected, as determined by Annexin V and propidium iodide staining and immunoblot analysis of caspase-3 processing and poly (ADP-ribose) polymerase cleavage. Increased p27KIP1 expression and retinoblastoma protein activation were detected during LGX818-induced senescence. Additionally, inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 1B by AZ191 reversed LGX818-induced CyclinD1 turnover and senescence. Interestingly, autophagy is triggered through inhibition of the mTOR/70S6K pathway during LGX818-induced senescence. Moreover, autophagy inhibition by pharmacological and genetic regulation attenuates LGX818-induced senescence. Notably, combining LGX818 with autophagy modulators has anti-proliferative effect in LGX818-resistant BRAF mutant melanoma cells. Altogether, we uncovered a mechanism by which LGX818 exerts its anti-tumor activity in BRAFV600E melanoma cells. PMID:26586345

  4. Role of dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B) in S-phase entry of HPV E7 expressing cells from quiescence

    PubMed Central

    Zhou, Na; Yuan, Shoudao; Wang, Rongchun; Zhang, Weifang; Chen, Jason J.

    2015-01-01

    The high-risk human papillomavirus (HPV) is the causative agent for cervical cancer. The HPV E7 oncogene promotes S-phase entry from quiescent state in the presence of elevated cell cycle inhibitor p27Kip1, a function that may contribute to carcinogenesis. However, the mechanism by which HPV E7 induces quiescent cells to entry into S-phase is not fully understood. Interestingly, we found that Dyrk1B, a dual-specificity kinase and negative regulator of cell proliferation in quiescent cells, was upregulated in E7 expressing cells. Surprisingly and in contrast to what was previously reported, Dyrk1B played a positive role in S-phase entry of quiescent HPV E7 expressing cells. Mechanistically, Dyrk1B contributed to p27 phosphorylation (at serine 10 and threonine 198), which was important for the proliferation of HPV E7 expressing cells. Moreover, Dyrk1B up-regulated HPV E7. Taken together, our studies uncovered a novel function of Dyrk1B in high-risk HPV E7-mediated cell proliferation. Dyrk1B may serve as a target for therapy in HPV-associated cancers. PMID:26307683

  5. Down-regulation of dihydrofolate reductase inhibits the growth of endothelial EA.hy926 cell through induction of G1 cell cycle arrest via up-regulating p53 and p21waf1/cip1 expression

    PubMed Central

    Fei, Zhewei; Gao, Yong; Qiu, Mingke; Qi, Xianqin; Dai, Yuxin; Wang, Shuqing; Quan, Zhiwei; Liu, Yingbin; Ou, Jingmin

    2016-01-01

    Folic acid supplementation may meliorate cardiovascular disease risk by improving vascular endothelial structure and function. However, the underlying mechanisms are still lack of a global understanding. To be used, folic acid must be converted to 7,8-dihydrofolate by dihydrofolate reductase to generate one-carbon derivatives serving as important cellular cofactors in the synthesis of nucleotides and amino acids required for cell growth. Therefore, this study explored the effect of dihydrofolate reductase knockdown on endothelial EA.hy926 cell growth and the mechanism involved. We found that down-regulation of dihydrofolate reductase inhibited EA.hy926 cell proliferation, and induced G1 phase arrest. Meanwhile, the expression of regulators necessary for G1/S phase transition, such as cyclin-dependent kinases CDK2, CDK4 and CDK6, were remarkably down-regulated; by contrast, the cell cycle inhibitors p21waf/cip1, p27Kip1 and p53 were significantly up-regulated after dihydrofolate reductase knockdown. Furthermore, supplementation of 5-methyltetrahydrofolate to the dihydrofolate reductase knockdown cells could weaken the inhibitory effect of dihydrofolate reductase knockdown on cell proliferation, simultaneously, inducing the expression of p53 and p21waf/cip1 falling back moderately. Our findings suggest that attenuating dihydrofolate reductase may cause imbalanced expression of cell cycle regulators, especially up-regulation of p53-p21waf/cip1 pathway, leading to G1 cell cycle arrest, thereby inhibiting the growth of endothelial EA.hy926 cells. PMID:27013776

  6. Increased Proliferation but Decreased Steroidogenic Capacity in Leydig Cells from Mice Lacking Cyclin-Dependent Kinase Inhibitor 1B1

    PubMed Central

    Lin, Han; Hu, Guo-Xin; Dong, Lei; Dong, Qiang; Mukai, Motoko; Chen, Bing-Bing; Holsberger, Denise R.; Sottas, Chantal M.; Cooke, Paul S.; Lian, Qing-Quan; Li, Xiao-Kun; Ge, Ren-Shan

    2009-01-01

    Proliferating cells express cyclins, cell cycle regulatory proteins that regulate the activity of cyclin-dependent kinases (CDKs). The actions of CDKs are regulated by specific inhibitors, the CDK inhibitors (CDKIs), which are comprised of the Cip/Kip and INK4 families. Expression of the Cip/Kip CDKI 1B (Cdkn1b, encoding protein CDKN1B, also called p27kip1) in developing Leydig cells (LCs) has been reported, but the function of CDKN1B in LCs is unclear. The goal of the present study was to determine the effects of CDKN1B on LC proliferation and steroidogenesis by examining these parameters in Cdkn1b knockout (Cdkn1b−/−) mice. LC proliferation was measured by bromodeoxyuridine incorporation. Testicular testosterone levels, mRNA levels, and enzyme activities of steroidogenic enzymes were compared in Cdkn1b−/− and Cdkn1b+/+ mice. The labeling index of LCs in Cdkn1b−/− mice was 1.5% ± 0.2%, almost 7-fold higher than 0.2% ± 0.08% (P < 0.001) in the Cdkn1b+/+ control mice. LC number per testis in Cdkn1b−/− mice was 2-fold that seen in the Cdkn1b+/+ control mice. However, testicular testosterone levels, mRNA levels of steroidogenic acute regulatory protein (Star), cholesterol side-chain cleavage enzyme (Cyp11a1), and 3beta-hydroxtsteroid dehydrogenase 6 (Hsd3b6), and their respective proteins, were significantly lower in Cdkn1b−/− mice. We conclude that deficiency of CDKN1B increased LC proliferation, but decreased steroidogenesis. Thus, CDKN1B is an important regulator of LC development and function. PMID:19211806

  7. A Novel Mutation in the Upstream Open Reading Frame of the CDKN1B Gene Causes a MEN4 Phenotype

    PubMed Central

    Occhi, Gianluca; Regazzo, Daniela; Trivellin, Giampaolo; Boaretto, Francesca; Ciato, Denis; Bobisse, Sara; Ferasin, Sergio; Cetani, Filomena; Pardi, Elena; Korbonits, Márta; Pellegata, Natalia S.; Sidarovich, Viktoryia; Quattrone, Alessandro; Opocher, Giuseppe; Mantero, Franco; Scaroni, Carla

    2013-01-01

    The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27KIP1, an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27KIP1 expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF) in the 5′UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF–encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient's pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27KIP1 expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27KIP1 activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27KIP1 activity can also be modulated by an uORF and mutations affecting uORF could change p27KIP1 expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases. PMID:23555276

  8. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    PubMed Central

    He, Yingzi; Cai, Chengfu; Tang, Dongmei; Sun, Shan; Li, Huawei

    2014-01-01

    In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line. PMID:25431550

  9. Proliferation and Cdk4 expression in microsatellite unstable colon cancers with TGFBR2 mutations.

    PubMed

    Grady, William M; Willis, Joseph E; Trobridge, Patty; Romero-Gallo, Judith; Munoz, Nina; Olechnowicz, Joseph; Ferguson, Kelly; Gautam, Shiva; Markowitz, Sanford D

    2006-02-01

    Approximately 15% of human colon cancers have microsatellite instability (MSI) and carry frameshift mutations in a polyadenine tract (BAT-RII) in the type II transforming growth factor beta (TGF-beta) receptor (TGFBR2), a required component of the TGF-beta receptor. The BAT-RII mutations in MSI colon cancers make the tumors resistant to the effects of TGF-beta. In cultured epithelial cells, TGF-beta can inhibit cell proliferation and induce apoptosis, and in vitro it can regulate the expression of a variety of cyclins, cyclin-dependent kinases (cdks) and cdk inhibitors. These effects are context- and tissue type-dependent, raising questions about which of these in vitro effects of TGF-beta signaling inactivation contribute to the formation of primary colon cancer. Thus, this study sought to determine the pathogenetically relevant effects of TGFBR2 inactivation in primary MSI colon cancers with mutant BAT-RII. Colon cancers with mutant BAT-RII were found to have increased proliferation compared to cancers with wild-type BAT-RII. Assessment of cdk4, cyclin D1 and p27(kip1) expression revealed that only cdk4 expression was increased in the cancers with mutant BAT-RII. In order to determine if TGFBR2 inactivation was the cause of these changes, TGFBR2 was reconstituted in an MSI colon cancer cell line, resulting in decreased proliferation and decreased cdk4 expression and kinase activity. These results suggest that TGFBR2 mutations in primary colon cancers may be responsible for the increased proliferation and cdk4 expression in these tumors and provide evidence that deregulation of cdk4 is a pathogenic in vivo consequence of TGFBR2 inactivation in primary colon cancer. PMID:16108056

  10. Organ differences in the impact of p27(kip1) deficiency on carcinogenesis induced by N-methyl-N-nitrosourea.

    PubMed

    Ogawa, Kumiko; Murasaki, Toshiya; Sugiura, Satoshi; Nakanishi, Makoto; Shirai, Tomoyuki

    2013-06-01

    To evaluate the impact of p27 on carcinogenesis in various organs, N-methyl-N-nitrosourea (MNU), a direct-acting alkylating agent, was given to p27 knock-out mice. Groups of 20-40 male and female mice with null, hetero- or wild-type p27 alleles were given drinking water containing 240 ppm MNU or distilled water every other week for five cycles. The incidence and multiplicity of the induced proliferative lesions were then histologically evaluated at weeks 14 and 20. MNU treatment induced various lesions including squamous hyperplasia and squamous cell carcinoma in the forestomach, atypical hyperplasia and adenocarcinomas in the fundic and pyloric glands, adenomas and adenocarcinomas in the duodenum, malignant lymphomas in the thymus, liver, kidney and spleen and alveolar hyperplasia, adenomas, adenocarcinomas and malignant lymphomas in the lung. Although the incidences of the lesions in the forestomach, fundic and pyloric glands did not differ among the p27 genotypes, those of alveolar hyperplasia of the lung and malignant lymphoma of the thymus were significantly increased in p27-null males as compared with both wild- and hetero-type animals. Moreover, in both p27(+/+) and p27(+/-) cases, the rates for p27-positive cells were obviously increased in proliferative lesions of the pyloric gland and the lung. However, an increased rate of p27-positive cells was not observed in malignant lymphoma of the thymus. These findings suggest that p27 does not control the cell cycle equally in all organs affected by MNU-induced carcinogenesis. PMID:22183835

  11. A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization, and tumor suppression

    PubMed Central

    Besson, Arnaud; Gurian-West, Mark; Chen, Xueyan; Kelly-Spratt, Karen S.; Kemp, Christopher J.; Roberts, James M.

    2006-01-01

    We have created two knock-in mouse models to study the mechanisms that regulate p27 in normal cells and cause misregulation of p27 in tumors: p27S10A, in which Ser10 is mutated to Ala; and p27CK–, in which point mutations abrogate the ability of p27 to bind cyclins and CDKs. These two mutant alleles identify steps in a pathway that controls the proteasomal degradation of p27 uniquely in quiescent cells: Dephosphorylation of p27 on Ser10 inhibits p27 nuclear export and promotes its assembly into cyclin–CDK complexes, which is, in turn, necessary for p27 turnover. We further show that Ras-dependent lung tumorigenesis is associated with increased phosphorylation on Ser10 and cytoplasmic mislocalization of p27. Indeed, we find that p27S10A is refractory to Ras-induced cytoplasmic translocation and that p27S10A mice are tumor resistant. Thus, phosphorylation of p27 on Ser10 is an important event in the regulation of the tumor suppressor function of p27. PMID:16391232

  12. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    PubMed

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  13. Placental Estrogen Suppresses Cyclin D1 Expression in the Nonhuman Primate Fetal Adrenal Cortex*

    PubMed Central

    Dumitrescu, Adina; Aberdeen, Graham W.; Pepe, Gerald J.

    2014-01-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27Kip1 and p57Kip2 were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy. PMID:25247468

  14. NFV, an HIV-1 protease inhibitor, induces growth arrest, reduced Akt signalling, apoptosis and docetaxel sensitisation in NSCLC cell lines.

    PubMed

    Yang, Y; Ikezoe, T; Nishioka, C; Bandobashi, K; Takeuchi, T; Adachi, Y; Kobayashi, M; Takeuchi, S; Koeffler, H P; Taguchi, H

    2006-12-18

    HIV-1 protease inhibitor (PI), nelfinavir (NFV) induced growth arrest and apoptosis of NCI-H460 and -H520, A549, EBC-1 and ABC-1 non-small-cell lung cancer (NSCLC) cells in association with upregulation of p21waf1, p27kip1 and p53, and downregulation of Bcl-2 and matrix metalloproteinase (MMP)-2 proteins. We found that NFV blocked Akt signalling in these cells as measured by Akt kinase assay with glycogen synthase kinase-3alpha/beta (GSK-3alpha/beta) as a substrate. To explore the role of Akt signalling in NFV-mediated growth inhibition of NSCLC cells, we blocked this signal pathway by transfection of Akt small interfering RNA (siRNA) in these cells; transient transfection of Akt siRNA in NCI-H460 cells decreased the level of Bcl-2 protein and slowed their proliferation compared to the nonspecific siRNA-transfected cells. Conversely, forced-expression of Akt partially reversed NFV-mediated growth inhibition of these cells, suggesting that Akt may be a molecular target of NFV in NSCLC cells. Also, we found that inhibition of Akt signalling by NFV enhanced the ability of docetaxel to inhibit the growth of NCI-H460 and -H520 cells, as measured by MTT assay. Importantly, NFV slowed the proliferation and induced apoptosis of NCI-H460 cells present as tumour xenografts in nude mice without adverse systemic effects. Taken together, this family of compounds might be useful for the treatment of individuals with NSCLC. PMID:17133272

  15. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells.

    PubMed

    Wu, Chun-Chi; Huang, Keh-Feng; Yang, Tsung-Ying; Li, Ya-Ling; Wen, Chi-Luan; Hsu, Shih-Lan; Chen, Tzu-Hsiu

    2015-01-01

    Koelreuteria henryi Dummer, an endemic plant of Taiwan, has been used as a folk medicine for the treatment of hepatitis, enteritis, cough, pharyngitis, allergy, hypertension, hyperlipidemia, and cancer. Austrobailignan-1, a natural lignan derivative isolated from Koelreuteria henryi Dummer, has anti-oxidative and anti-cancer properties. However, the effects of austrobailignan-1 on human cancer cells have not been studied yet. Here, we showed that austrobailignan-1 inhibited cell growth of human non-small cell lung cancer A549 and H1299 cell lines in both dose- and time-dependent manners, the IC50 value (48 h) of austrobailignan-1 were 41 and 22 nM, respectively. Data from flow cytometric analysis indicated that treatment with austrobailignan-1 for 24 h retarded the cell cycle at the G2/M phase. The molecular event of austrobailignan-1-mediated G2/M phase arrest was associated with the increase of p21Waf1/Cip1 and p27Kip1 expression, and decrease of Cdc25C expression. Moreover, treatment with 100 nM austrobailignan-1 for 48 h resulted in a pronounced release of cytochrome c followed by the activation of caspase-2, -3, and -9, and consequently induced apoptosis. These events were accompanied by the increase of PUMA and Bax, and the decrease of Mcl-1 and Bcl-2. Furthermore, our study also showed that austrobailignan-1 was a topoisomerase 1 inhibitor, as evidenced by a relaxation assay and induction of a DNA damage response signaling pathway, including ATM, and Chk1, Chk2, γH2AX phosphorylated activation. Overall, our results suggest that austrobailignan-1 is a novel DNA damaging agent and displays a topoisomerase I inhibitory activity, causes DNA strand breaks, and consequently induces DNA damage response signaling for cell cycle G2/M arrest and apoptosis in a p53 independent manner. PMID:26147394

  16. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Yang, Tsung-Ying; Li, Ya-Ling; Wen, Chi-Luan; Hsu, Shih-Lan; Chen, Tzu-Hsiu

    2015-01-01

    Koelreuteria henryi Dummer, an endemic plant of Taiwan, has been used as a folk medicine for the treatment of hepatitis, enteritis, cough, pharyngitis, allergy, hypertension, hyperlipidemia, and cancer. Austrobailignan-1, a natural lignan derivative isolated from Koelreuteria henryi Dummer, has anti-oxidative and anti-cancer properties. However, the effects of austrobailignan-1 on human cancer cells have not been studied yet. Here, we showed that austrobailignan-1 inhibited cell growth of human non-small cell lung cancer A549 and H1299 cell lines in both dose- and time-dependent manners, the IC50 value (48 h) of austrobailignan-1 were 41 and 22 nM, respectively. Data from flow cytometric analysis indicated that treatment with austrobailignan-1 for 24 h retarded the cell cycle at the G2/M phase. The molecular event of austrobailignan-1-mediated G2/M phase arrest was associated with the increase of p21Waf1/Cip1 and p27Kip1 expression, and decrease of Cdc25C expression. Moreover, treatment with 100 nM austrobailignan-1 for 48 h resulted in a pronounced release of cytochrome c followed by the activation of caspase-2, -3, and -9, and consequently induced apoptosis. These events were accompanied by the increase of PUMA and Bax, and the decrease of Mcl-1 and Bcl-2. Furthermore, our study also showed that austrobailignan-1 was a topoisomerase 1 inhibitor, as evidenced by a relaxation assay and induction of a DNA damage response signaling pathway, including ATM, and Chk1, Chk2, γH2AX phosphorylated activation. Overall, our results suggest that austrobailignan-1 is a novel DNA damaging agent and displays a topoisomerase I inhibitory activity, causes DNA strand breaks, and consequently induces DNA damage response signaling for cell cycle G2/M arrest and apoptosis in a p53 independent manner. PMID:26147394

  17. Loss of G(1)/S checkpoint in human immunodeficiency virus type 1-infected cells is associated with a lack of cyclin-dependent kinase inhibitor p21/Waf1.

    PubMed

    Clark, E; Santiago, F; Deng, L; Chong, S; de La Fuente, C; Wang, L; Fu, P; Stein, D; Denny, T; Lanka, V; Mozafari, F; Okamoto, T; Kashanchi, F

    2000-06-01

    Productive high-titer infection by human immunodeficiency virus type 1 (HIV-1) requires the activation of target cells. Infection of quiescent peripheral CD4 lymphocytes by HIV-1 results in incomplete, labile reverse transcripts and lack of viral progeny formation. An interplay between Tat and p53 has previously been reported, where Tat inhibited the transcription of the p53 gene, which may aid in the development of AIDS-related malignancies, and p53 expression inhibited HIV-1 long terminal repeat transcription. Here, by using a well-defined and -characterized stress signal, gamma irradiation, we find that upon gamma irradiation, HIV-1-infected cells lose their G(1)/S checkpoints, enter the S phase inappropriately, and eventually apoptose. The loss of the G(1)/S checkpoint is associated with a loss of p21/Waf1 protein and increased activity of a major G(1)/S kinase, namely, cyclin E/cdk2. The p21/Waf1 protein, a known cyclin-dependent kinase inhibitor, interacts with the cdk2/cyclin E complex and inhibits progression of cells into S phase. We find that loss of the G(1)/S checkpoint in HIV-1-infected cells may in part be due to Tat's ability to bind p53 (a known activator of the p21/Waf1 promoter) and sequester its transactivation activity, as seen in both in vivo and in vitro transcription assays. The loss of p21/Waf1 in HIV-1-infected cells was specific to p21/Waf1 and did not occur with other KIP family members, such as p27 (KIP1) and p57 (KIP2). Finally, the advantage of a loss of the G(1)/S checkpoint for HIV-1 per se may be that it pushes the host cell into the S phase, which may then allow subsequent virus-associated processes, such as RNA splicing, transport, translation, and packaging of virion-specific genes, to occur. PMID:10799578

  18. Loss of G1/S Checkpoint in Human Immunodeficiency Virus Type 1-Infected Cells Is Associated with a Lack of Cyclin-Dependent Kinase Inhibitor p21/Waf1

    PubMed Central

    Clark, Elizabeth; Santiago, Francisco; Deng, Longwen; Chong, Siew yen; de la Fuente, Cynthia; Wang, Lai; Fu, Peng; Stein, Dana; Denny, Thomas; Lanka, Venkata; Mozafari, Fariba; Okamoto, Takashi; Kashanchi, Fatah

    2000-01-01

    Productive high-titer infection by human immunodeficiency virus type 1 (HIV-1) requires the activation of target cells. Infection of quiescent peripheral CD4 lymphocytes by HIV-1 results in incomplete, labile reverse transcripts and lack of viral progeny formation. An interplay between Tat and p53 has previously been reported, where Tat inhibited the transcription of the p53 gene, which may aid in the development of AIDS-related malignancies, and p53 expression inhibited HIV-1 long terminal repeat transcription. Here, by using a well-defined and -characterized stress signal, gamma irradiation, we find that upon gamma irradiation, HIV-1-infected cells lose their G1/S checkpoints, enter the S phase inappropriately, and eventually apoptose. The loss of the G1/S checkpoint is associated with a loss of p21/Waf1 protein and increased activity of a major G1/S kinase, namely, cyclin E/cdk2. The p21/Waf1 protein, a known cyclin-dependent kinase inhibitor, interacts with the cdk2/cyclin E complex and inhibits progression of cells into S phase. We find that loss of the G1/S checkpoint in HIV-1-infected cells may in part be due to Tat's ability to bind p53 (a known activator of the p21/Waf1 promoter) and sequester its transactivation activity, as seen in both in vivo and in vitro transcription assays. The loss of p21/Waf1 in HIV-1-infected cells was specific to p21/Waf1 and did not occur with other KIP family members, such as p27 (KIP1) and p57 (KIP2). Finally, the advantage of a loss of the G1/S checkpoint for HIV-1 per se may be that it pushes the host cell into the S phase, which may then allow subsequent virus-associated processes, such as RNA splicing, transport, translation, and packaging of virion-specific genes, to occur. PMID:10799578

  19. ARTD1 regulates cyclin E expression and consequently cell-cycle re-entry and G1/S progression in T24 bladder carcinoma cells.

    PubMed

    Léger, Karolin; Hopp, Ann-Katrin; Fey, Monika; Hottiger, Michael O

    2016-08-01

    ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27(Kip 1) protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27(Kip 1) stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism. PMID:27295004

  20. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells

    PubMed Central

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Gastric cancer is the second leading cause of cancer-related death worldwide, with a poor response to current chemotherapy. Danusertib is a pan-inhibitor of the Aurora kinases and a third-generation Bcr-Abl tyrosine kinase inhibitor with potent anticancer effects, but its antitumor effect and underlying mechanisms in the treatment of human gastric cancer are unknown. This study aimed to investigate the effects of danusertib on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition and the molecular mechanisms involved in human gastric cancer AGS and NCI-N78 cells. The results showed that danusertib had potent growth-inhibitory, apoptosis-inducing, and autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways as well as activation of 5′ AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression

  1. CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis.

    PubMed

    Connor, Michael K; Kotchetkov, Rouslan; Cariou, Sandrine; Resch, Ansgar; Lupetti, Rafaella; Beniston, Richard G; Melchior, Frauke; Hengst, Ludger; Slingerland, Joyce M

    2003-01-01

    We show that p27 localization is cell cycle regulated and we suggest that active CRM1/RanGTP-mediated nuclear export of p27 may be linked to cytoplasmic p27 proteolysis in early G1. p27 is nuclear in G0 and early G1 and appears transiently in the cytoplasm at the G1/S transition. Association of p27 with the exportin CRM1 was minimal in G0 and increased markedly during G1-to-S phase progression. Proteasome inhibition in mid-G1 did not impair nuclear import of p27, but led to accumulation of p27 in the cytoplasm, suggesting that export precedes degradation for at least part of the cellular p27 pool. p27-CRM1 binding and nuclear export were inhibited by S10A mutation but not by T187A mutation. A putative nuclear export sequence in p27 is identified whose mutation reduced p27-CRM1 interaction, nuclear export, and p27 degradation. Leptomycin B (LMB) did not inhibit p27-CRM1 binding, nor did it prevent p27 export in vitro or in heterokaryon assays. Prebinding of CRM1 to the HIV-1 Rev nuclear export sequence did not inhibit p27-CRM1 interaction, suggesting that p27 binds CRM1 at a non-LMB-sensitive motif. LMB increased total cellular p27 and may do so indirectly, through effects on other p27 regulatory proteins. These data suggest a model in which p27 undergoes active, CRM1-dependent nuclear export and cytoplasmic degradation in early G1. This would permit the incremental activation of cyclin E-Cdk2 leading to cyclin E-Cdk2-mediated T187 phosphorylation and p27 proteolysis in late G1 and S phase. PMID:12529437

  2. CK2 regulates in vitro the activity of the yeast cyclin-dependent kinase inhibitor Sic1.

    PubMed

    Barberis, Matteo; Pagano, Mario A; Gioia, Luca De; Marin, Oriano; Vanoni, Marco; Pinna, Lorenzo A; Alberghina, Lilia

    2005-11-01

    We have previously demonstrated that the cyclin-dependent kinase inhibitor (Cki) Sic1 of Saccharomyces cerevisiae is phosphorylated in vitro by the CK2 kinase on Ser(201) residue. Moreover, we have collected evidence showing that Sic1 is functionally and structurally related to mammalian Cki p27(Kip1) and binds to the mammalian Cdk2/cyclin A complex with a similar mode of inhibition. In this paper, we use SPR analysis to investigate the binding of Sic1 to the catatytic and regulatory subunits of CK2. Evidence is presented showing that phosphorylation of Sic1 at the CK2 consensus site QES(201)EDEED increases the binding of a Sic1-derived peptide to the Cdk2/cyclin A complex, a functional homologue of the yeast Cdk1/Clb5,6. Moreover, Sic1 fully phosphorylated in vitro on Ser(201) by CK2 is shown to be a stronger inhibitor of the Cdk/cyclin complexes than the unphosphorylated protein. Taken together, these data disclose the possibility that CK2 plays a role in the regulation of Sic1 activity. PMID:16168390

  3. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells

    PubMed Central

    Li, Jin-Ping; Yang, Yin-Xue; Liu, Qi-Lun; Zhou, Zhi-Wei; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Pan, Si-Yuan; Duan, Wei; He, Shu-Ming; Chen, Xiao-Wu; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition

  4. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis

    PubMed Central

    Creanza, Teresa Maria; Liguori, Maria; Liuni, Sabino; Nuzziello, Nicoletta; Ancona, Nicola

    2016-01-01

    Differential gene expression analyses to investigate multiple sclerosis (MS) molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN)-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1) that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS) development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment. PMID:27314336

  5. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis.

    PubMed

    Creanza, Teresa Maria; Liguori, Maria; Liuni, Sabino; Nuzziello, Nicoletta; Ancona, Nicola

    2016-01-01

    Differential gene expression analyses to investigate multiple sclerosis (MS) molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN)-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1) that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS) development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment. PMID:27314336

  6. NF-κB hyper-activation by HTLV-1 tax induces cellular senescence, but can be alleviated by the viral anti-sense protein HBZ.

    PubMed

    Zhi, Huijun; Yang, Liangpeng; Kuo, Yu-Liang; Ho, Yik-Khuan; Shih, Hsiu-Ming; Giam, Chou-Zen

    2011-04-01

    Activation of I-κB kinases (IKKs) and NF-κB by the human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, is thought to promote cell proliferation and transformation. Paradoxically, expression of Tax in most cells leads to drastic up-regulation of cyclin-dependent kinase inhibitors, p21(CIP1/WAF1) and p27(KIP1), which cause p53-/pRb-independent cellular senescence. Here we demonstrate that p21(CIP1/WAF1)-/p27(KIP1)-mediated senescence constitutes a checkpoint against IKK/NF-κB hyper-activation. Senescence induced by Tax in HeLa cells is attenuated by mutations in Tax that reduce IKK/NF-κB activation and prevented by blocking NF-κB using a degradation-resistant mutant of I-κBα despite constitutive IKK activation. Small hairpin RNA-mediated knockdown indicates that RelA induces this senescence program by acting upstream of the anaphase promoting complex and RelB to stabilize p27(KIP1) protein and p21(CIP1/WAF1) mRNA respectively. Finally, we show that down-regulation of NF-κB by the HTLV-1 anti-sense protein, HBZ, delay or prevent the onset of Tax-induced senescence. We propose that the balance between Tax and HBZ expression determines the outcome of HTLV-1 infection. Robust HTLV-1 replication and elevated Tax expression drive IKK/NF-κB hyper-activation and trigger senescence. HBZ, however, modulates Tax-mediated viral replication and NF-κB activation, thus allowing HTLV-1-infected cells to proliferate, persist, and evolve. Finally, inactivation of the senescence checkpoint can facilitate persistent NF-κB activation and leukemogenesis. PMID:21552325

  7. Transgenic Expression of Cyclin-Dependent Kinase 4 Results in Epidermal Hyperplasia, Hypertrophy, and Severe Dermal Fibrosis

    PubMed Central

    Miliani de Marval, Paula L.; Gimenez-Conti, Irma B.; LaCava, Margaret; Martinez, Luis A.; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2001-01-01

    In a previous report we have described the effects of expression of D-type cyclins in epithelial tissues of transgenic mice. To study the involvement of the D-type cyclin partner cyclin-dependent kinase 4 (CDK4) in epithelial growth and differentiation, transgenic mice were generated carrying the CDK4 gene under the control of a keratin 5 promoter. As expected, transgenic mice showed expression of CDK4 in the epidermal basal-cell layer. Epidermal proliferation increased dramatically and basal cell hyperplasia and hypertrophy were observed. The hyperproliferative phenotype of these transgenic mice was independent of D-type cyclin expression because no overexpression of these proteins was detected. CDK4 and CDK2 kinase activities increased in transgenic animals and were associated with elevated binding of p27Kip1 to CDK4. Expression of CDK4 in the epidermis results in an increased spinous layer compared with normal epidermis, and a mild hyperkeratosis in the cornified layer. In addition to epidermal changes, severe dermal fibrosis was observed and part of the subcutaneous adipose tissue was replaced by connective tissue. Also, abnormal expression of keratin 6 associated with the hyperproliferative phenotype was observed in transgenic epidermis. This model provides in vivo evidence for the role of CDK4 as a mediator of proliferation in epithelial cells independent of D-type cyclin expression. PMID:11438484

  8. Two inhibitory systems and CKIs regulate cell cycle exit of mammalian cardiomyocytes after birth.

    PubMed

    Tane, Shoji; Okayama, Hitomi; Ikenishi, Aiko; Amemiya, Yuki; Nakayama, Keiichi I; Takeuchi, Takashi

    2015-10-16

    Mammalian cardiomyocytes actively proliferate during embryonic stages, following which they exit their cell cycle after birth, and the exit is maintained. Previously, we showed that two inhibitory systems (the G1-phase inhibitory system: repression of cyclin D1 expression; the M-phase inhibitory system: inhibition of CDK1 activation) maintain the cell cycle exit of mouse adult cardiomyocytes. We also showed that two CDK inhibitors (CKIs), p21(Cip1) and p27(Kip1), regulate the cell cycle exit in a portion of postnatal cardiomyocytes. It remains unknown whether the two inhibitory systems are involved in the cell cycle exit of postnatal cardiomyocytes and whether p21(Cip1) and p27(Kip1) also inhibit entry to M-phase. Here, we showed that more than 40% of cardiomyocytes entered an additional cell cycle by induction of cyclin D1 expression at postnatal stages, but M-phase entry was inhibited in the majority of cardiomyocytes. Marked cell cycle progression and endoreplication were observed in cardiomyocytes of p21(Cip1) knockout mice at 4 weeks of age. In addition, tri- and tetranucleated cardiomyocytes increased significantly in p21(Cip1) knockout mice. These data showed that the G1-phase inhibitory system and two CKIs (p21(Cip1) and p27(Kip1)) inhibit entry to an additional cell cycle in postnatal cardiomyocytes, and that the M-phase inhibitory system and p21(Cip1) inhibit M-phase entry of cardiomyocytes which have entered the additional cell cycle. PMID:26363457

  9. Nitro-linoleic acid inhibits vascular smooth muscle cell proliferation via the Keap1/Nrf2 signaling pathway

    PubMed Central

    Villacorta, Luis; Zhang, Jifeng; Garcia-Barrio, Minerva T.; Chen, Xi-lin; Freeman, Bruce A.; Chen, Yuqing E.; Cui, Taixing

    2007-01-01

    Nitroalkenes, the nitration products of unsaturated fatty acids formed via NO-dependent oxidative reactions, have been demonstrated to exert strong biological actions in endothelial cells and monocytes/macrophages; however, little is known about their effects on vascular smooth muscle cells (VSMCs). The present study examined the role of nitro-linoleic acid (LNO2) in the regulation of VSMC proliferation. We observed that LNO2 inhibited VSMC proliferation in a dose-dependent manner. In addition, LNO2 induced growth arrest of VSMCs in the G1/S phase of the cell cycle with an upregulation of the cyclin-dependent kinase inhibitor p27kip1. Furthermore, LNO2 triggered nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation and activation of the antioxidant-responsive element-driven transcriptional activity via impairing Kelch-like ECH-associating protein 1 (Keap1)-mediated negative control of Nrf2 activity in VSMCs. LNO2 upregulated the expression of Nrf2 protein levels, but not mRNA levels, in VSMCs. A forced activation of Nrf2 led to an upregulation of p27kip1 and growth inhibition of VSMCs. In contrast, knock down of Nrf2 using an Nrf2 siRNA approach reversed the LNO2-induced upregulation of p27kip1 and inhibition of cellular proliferation in VSMCs. These studies provide the first evidence that nitroalkene LNO2 inhibits VSMC proliferation through activation of the Keap1/Nrf2 signaling pathway, suggesting an important role of nitroalkenes in vascular biology. PMID:17468336

  10. The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Booth, F. W.; Spangenburg, E. E.

    2001-01-01

    Approximately 50% of humans older than 85 years have physical frailty due to weak skeletal muscles. This indicates a need for determining mechanisms to combat this problem. A critical cellular factor for postnatal muscle growth is a population of myogenic precursor cells called satellite cells. Given the complex process of sarcopenia, it has been postulated that, at some point in this process, a limited satellite cell proliferation potential could become rate-limiting to the regrowth of old muscles. It is conceivable that if satellite cell proliferative capacity can be maintained or enhanced with advanced age, sarcopenia could potentially be delayed or prevented. Therefore, the purposes of this paper are to describe whether IGF-I can prevent muscular atrophy induced by repeated cycles of hindlimb immobilization, increase the in vitro proliferation in satellite cells from these muscles and, if so, the molecular mechanisms by which IGF-I mediates this increased proliferation. Our results provide evidence that IGF-I can enhance aged muscle regrowth possibly through increased satellite cell proliferation. The results also suggest that IGF-I enhances satellite cell proliferation by decreasing the cell cycle inhibitor, p27Kip1, through the PI3'-K/Akt pathway. These data provide molecular evidence for IGF-I's rescue effect upon aging-associated skeletal muscle atrophy.

  11. Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes.

    PubMed

    Issaenko, Olga A; Amerik, Alexander Yu

    2012-05-01

    The ubiquitin-proteasome system (UPS) is usurped by many if not all cancers to regulate their survival, proliferation, invasion, angiogenesis and metastasis. Bioflavonoids curcumin and chalcones exhibit anti-neoplastic selectivity through inhibition of the 26S proteasome-activity within the UPS. Here, we provide evidence for a novel mechanism of action of chalcone-based derivatives AM146, RA-9 and RA-14, which exert anticancer activity by targeting deubiquitinating enzymes (DUB) without affecting 20S proteasome catalytic-core activity. The presence of the α,β-unsaturated carbonyl group susceptible to nucleophilic attack from the sulfhydryl of cysteines in the active sites of DUB determines the capacity of novel small-molecules to act as cell-permeable, partly selective DUB inhibitors and induce rapid accumulation of polyubiquitinated proteins and deplete the pool of free ubiquitin. These chalcone-derivatives directly suppress activity of DUB UCH-L1, UCH-L3, USP2, USP5 and USP8, which are known to regulate the turnover and stability of key regulators of cell survival and proliferation. Inhibition of DUB-activity mediated by these compounds downregulates cell-cycle promoters, e.g., cyclin D1 and upregulates tumor suppressors p53, p27(Kip1) and p16(Ink4A). These changes are associated with arrest in S-G 2/M, abrogated anchorage-dependent growth and onset of apoptosis in breast, ovarian and cervical cancer cells without noticeable alterations in primary human cells. Altogether, this work provides evidence of antitumor activity of novel chalcone-based derivatives mediated by their DUB-targeting capacity; supports the development of pharmaceuticals to directly target DUB as a most efficient strategy compared with proteasome inhibition and also provides a clear rationale for the clinical evaluation of these novel small-molecule DUB inhibitors. PMID:22510564

  12. Suppression of caspase-11 expression by histone deacetylase inhibitors

    SciTech Connect

    Heo, Hyejung; Yoo, Lang; Shin, Ki Soon; Kang, Shin Jung

    2009-01-02

    It has been well documented that histone deacetylase inhibitors suppress inflammatory gene expression. Therefore, we investigated whether histone deacetylase inhibitors modulate the expression of caspase-11 that is known as an inducible caspase regulating both inflammation and apoptosis. In the present study, we show that sodium butyrate and trichostatin A, two structurally unrelated inhibitors of histone deacetylase (HDAC), effectively suppressed the induction of caspase-11 in mouse embryonic fibroblasts stimulated with lipopolysaccharides. Sodium butyrate inhibited the activation of upstream signaling events for the caspase-11 induction such as activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, degradation of inhibitor of {kappa}B, and activation of nuclear factor-{kappa}B. These results suggest that the HDAC inhibitor suppressed cytosolic signaling events for the induction of caspase-11 by inhibiting the deacetylation of non-histone proteins.

  13. Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Fiorotto, M. L.; Schwartz, R. J.; Booth, F. W.

    2001-01-01

    Insulin-like growth factor-I (IGF-I) overexpression for 1-month in mouse skeletal muscle increases satellite cell proliferation potential. However, it is unknown whether this beneficial enhancement by IGF-I expression would persist over a longer-term duration in aged mice. This is an important issue to address if a prolonged course of IGF-I is to be used clinically in muscle-wasting conditions where satellite cells may become limiting. Using the IGF-I transgenic (IGF-I Tg) mouse that selectively expresses the IGF-I transgene in striated muscles, we found that 18-months of continuous IGF-I overexpression led to a loss in the enhanced in vitro proliferative capacity of satellite cells from Tg skeletal muscles. Also 18-month-old IGF-I Tg satellite cells lost the enhanced BrdU incorporation, greater pRb and Akt phosphorylations, and decreased p27(Kip1) levels initially observed in cells from 1-month-old IGF-I Tg mice. The levels of those biochemical markers reverted to similar values seen in the 18-months WT littermates. These findings, therefore, suggest that there is no further beneficial effect on enhancing satellite cell proliferation ability with persistent long-term expression of IGF-I in skeletal muscles of these transgenic mice.

  14. Superior efficacy of co-treatment with dual PI3K/mTOR inhibitor NVP-BEZ235 and pan-histone deacetylase inhibitor against human pancreatic cancer.

    PubMed

    Venkannagari, Sreedhar; Fiskus, Warren; Peth, Karissa; Atadja, Peter; Hidalgo, Manuel; Maitra, Anirban; Bhalla, Kapil N

    2012-11-01

    Genetic alterations activating K-RAS and PI3K/AKT signaling are also known to induce the activity of mTOR kinase through TORC1 and TORC2 complexes in human pancreatic ductal adenocarcinoma (PDAC). Here, we determined the effects of the dual PI3K and mTOR inhibitor, NVP-BEZ235 (BEZ235), and the pan-histone deacetylase inhibitor panobinostat (PS) against human PDAC cells. Treatment with BEZ235 or PS inhibited cell cycle progression with induction of the cell cycle inhibitory proteins, p21waf1 and p27kip1. BEZ235 and PS also dose dependently induced loss of cell viability of the cultured PDAC cells, associated with depletion of phosphorylated (p) AKT, as well as of the TORC1 substrates 4EBP1 and p70S6 kinase. While inhibiting p-AKT, treatment with PS induced the levels of the pro-apoptotic proteins BIM and BAK. Co-treatment with BEZ235 and PS synergistically induced apoptosis of the cultured PDAC cells. This was accompanied by marked attenuation of the levels of p-AKT and Bcl-xL but induction of BIM. Although in vivo treatment with BEZ235 or PS reduced tumor growth, co-treatment with BEZ235 and PS was significantly more effective in controlling the xenograft growth of Panc1 PDAC cells in the nude mice. Furthermore, co-treatment with BEZ235 and PS more effectively blocked tumor growth of primary PDAC heterotransplants (possessing K-RAS mutation and AKT2 amplification) subcutaneously implanted in the nude mice than each agent alone. These findings demonstrate superior activity and support further in vivo evaluation of combined treatment with BEZ235 and PS against PDAC that possess heightened activity of RAS-RAF-ERK1/2 and PI3K-AKT-mTOR pathways. PMID:23232026

  15. CDK2 and mTOR are direct molecular targets of isoangustone A in the suppression of human prostate cancer cell growth.

    PubMed

    Lee, Eunjung; Son, Joe Eun; Byun, Sanguine; Lee, Seung Joon; Kim, Yeong A; Liu, Kangdong; Kim, Jiyoung; Lim, Soon Sung; Park, Jung Han Yoon; Dong, Zigang; Lee, Ki Won; Lee, Hyong Joo

    2013-10-01

    Licorice extract which is used as a natural sweetener has been shown to possess inhibitory effects against prostate cancer, but the mechanisms responsible are poorly understood. Here, we report a compound, isoangustone A (IAA) in licorice that potently suppresses the growth of aggressive prostate cancer and sought to clarify its mechanism of action. We analyzed its inhibitory effects on the growth of PTEN-deleted human prostate cancer cells, in vitro and in vivo. Administration of IAA significantly attenuated the growth of prostate cancer cell cultures and xenograft tumors. These effects were found to be attributable to inhibition of the G1/S phase cell cycle transition and the accumulation of p27(kip1). The elevated p27(kip1) expression levels were concurrent with the decrease of its phosphorylation at threonine 187 through suppression of CDK2 kinase activity and the reduced phosphorylation of Akt at Serine 473 by diminishing the kinase activity of the mammalian target of rapamycin (mTOR). Further analysis using recombinant proteins and immunoprecipitated cell lysates determined that IAA exerts suppressive effects against CDK2 and mTOR kinase activity by direct binding with both proteins. These findings suggested that the licorice compound IAA is a potent molecular inhibitor of CDK2 and mTOR, with strong implications for the treatment of prostate cancer. Thus, licorice-derived extracts with high IAA content warrant further clinical investigation for nutritional sources for prostate cancer patients. PMID:23707764

  16. Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/β-Catenin-Dependent Transcription of p21(cip1).

    PubMed

    McClelland Descalzo, Darcie L; Satoorian, Tiffany S; Walker, Lauren M; Sparks, Nicole R L; Pulyanina, Polina Y; Zur Nieden, Nicole I

    2016-07-12

    Embryonic stem cells (ESCs), which are derived from a peri-implantation embryo, are routinely cultured in medium containing diabetic glucose (Glc) concentrations. While pregnancy in women with pre-existing diabetes may result in small embryos, whether such high Glc levels affect ESC growth remains uncovered. We show here that long-term exposure of ESCs to diabetic Glc inhibits their proliferation, thereby mimicking in vivo findings. Molecularly, Glc exposure increased oxidative stress and activated Forkhead box O3a (FOXO3a), promoting increased expression and activity of the ROS-removal enzymes superoxide dismutase and catalase and the cell-cycle inhibitors p21(cip1) and p27(kip1). Diabetic Glc also promoted β-catenin nuclear localization and the formation of a complex with FOXO3a that localized to the promoters of Sod2, p21(cip1), and potentially p27(kip1). Our results demonstrate an adaptive response to increases in oxidative stress induced by diabetic Glc conditions that promote ROS removal, but also result in a decrease in proliferation. PMID:27411103

  17. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity

    PubMed Central

    Xu, Yuanming; Zhao, Fang; Qiu, Quan; Chen, Kun; Wei, Juncheng; Kong, Qingfei; Gao, Beixue; Melo-Cardenas, Johanna; Zhang, Bin; Zhang, Jinping; Song, Jianxun; Zhang, Donna D.; Zhang, Jianing; Fan, Yunping; Li, Huabin; Fang, Deyu

    2016-01-01

    Identification of positive regulators of T-cell immunity induced during autoimmune diseases is critical for developing novel therapies. The endoplasmic reticulum resident ubiquitin ligase Hrd1 has recently emerged as a critical regulator of dendritic cell antigen presentation, but its role in T-cell immunity is unknown. Here we show that genetic deletion of Hrd1 in mice inhibits T-cell proliferation, production of IL-2, and differentiation of Th1 and Th17 cells, and consequently protects mice from experimental autoimmune encephalomyelitis. Hrd1 facilitates T-cell proliferation by the destruction of cyclin-dependent kinase inhibitor p27kip1, and deletion of p27kip1 in Hrd1-null T-cells rescues proliferative capacity but not the production of cytokines, including IL-2, IFN-γ and IL-17. T-cell expression of Hrd1 is higher in patients with multiple sclerosis than in healthy individuals, and knockdown of Hrd1 in human CD4+ T cells inhibits activation and differentiation to Th1 and Th17 cells. Our study identifies Hrd1 as a previously unappreciated positive regulator of T cells and implies that Hrd1 is a potential therapeutic target for autoimmune diseases. PMID:27417417

  18. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity.

    PubMed

    Xu, Yuanming; Zhao, Fang; Qiu, Quan; Chen, Kun; Wei, Juncheng; Kong, Qingfei; Gao, Beixue; Melo-Cardenas, Johanna; Zhang, Bin; Zhang, Jinping; Song, Jianxun; Zhang, Donna D; Zhang, Jianing; Fan, Yunping; Li, Huabin; Fang, Deyu

    2016-01-01

    Identification of positive regulators of T-cell immunity induced during autoimmune diseases is critical for developing novel therapies. The endoplasmic reticulum resident ubiquitin ligase Hrd1 has recently emerged as a critical regulator of dendritic cell antigen presentation, but its role in T-cell immunity is unknown. Here we show that genetic deletion of Hrd1 in mice inhibits T-cell proliferation, production of IL-2, and differentiation of Th1 and Th17 cells, and consequently protects mice from experimental autoimmune encephalomyelitis. Hrd1 facilitates T-cell proliferation by the destruction of cyclin-dependent kinase inhibitor p27(kip1), and deletion of p27(kip1) in Hrd1-null T-cells rescues proliferative capacity but not the production of cytokines, including IL-2, IFN-γ and IL-17. T-cell expression of Hrd1 is higher in patients with multiple sclerosis than in healthy individuals, and knockdown of Hrd1 in human CD4(+) T cells inhibits activation and differentiation to Th1 and Th17 cells. Our study identifies Hrd1 as a previously unappreciated positive regulator of T cells and implies that Hrd1 is a potential therapeutic target for autoimmune diseases. PMID:27417417

  19. Apoptosis, cell proliferation and modulation of cyclin-dependent kinase inhibitor p21(cip1) in vascular remodelling during vein arterialization in the rat.

    PubMed

    Borin, Thaiz Ferraz; Miyakawa, Ayumi Aurea; Cardoso, Leandro; de Figueiredo Borges, Luciano; Gonçalves, Giovana Aparecida; Krieger, Jose Eduardo

    2009-06-01

    Neo-intima development and atherosclerosis limit long-term vein graft use for revascularization of ischaemic tissues. Using a rat model, which is technically less challenging than smaller rodents, we provide evidence that the temporal morphological, cellular, and key molecular events during vein arterialization resemble the human vein graft adaptation. Right jugular vein was surgically connected to carotid artery and observed up to 90 days. Morphometry demonstrated gradual thickening of the medial layer and important formation of neo-intima with deposition of smooth muscle cells (SMC) in the subendothelial layer from day 7 onwards. Transmission electron microscopy showed that SMCs switch from the contractile to synthetic phenotype on day 3 and new elastic lamellae formation occurs from day 7 onwards. Apoptosis markedly increased on day 1, while alpha-actin immunostaining for SMC almost disappeared by day 3. On day 7, cell proliferation reached the highest level and cellular density gradually increased until day 90. The relative magnitude of cellular changes was higher in the intima vs. the media layer (100 vs. 2 times respectively). Cyclin-dependent kinase inhibitors (CDKIs) p27(Kip1) and p16(INKA) remained unchanged, whereas p21(Cip1) was gradually downregulated, reaching the lowest levels by day 7 until day 90. Taken together, these data indicate for the first time that p21(Cip1) is the main CDKI protein modulated during the arterialization process the rat model of vein arterialization that may be useful to identify and validate new targets and interventions to improve the long-term patency of vein grafts. PMID:19563615

  20. Translation initiation factor eIF3b expression in human cancer and its role in tumor growth and lung colonization

    PubMed Central

    Wang, Hong; Ru, Yuanbin; Sanchez-Carbayo, Marta; Wang, Xuejiao; Kieft, Jeffrey S.; Theodorescu, Dan

    2013-01-01

    Purpose Discovery transcriptomic analyses suggest eukaryotic initiation factor 3b (eIF3b) is elevated in human bladder and prostate cancer, yet its role as a prognostic factor or its requirement in the maintenance or progression of human cancer is not established. Here we determine the therapeutic potential of eIF3b by examining the clinical relevance of its expression in human cancer tissues and its role in experimental tumor models. Experimental Design We examined mRNA expression of eIF3b in bladder (N=317) and prostate (N=566) tissue samples and protein expression by immunohistochemistry in 143 bladder tumor samples as a function of clinicopathologic features. The impact of eIF3b depletion by siRNA in human cancer lines was evaluated in regards to in vitro cell growth, cell cycle, migration, in vivo subcutaneous tumor growth and lung colonization. Results eIF3b mRNA expression correlated to tumor grade, stage and survival in human bladder and prostate cancer. eIF3b protein expression stratified survival in human bladder cancer. eIF3b depletion reduced in vitro cancer cell growth; inhibited G1/S cell cycle transition by changing protein but not RNA expression of Cyclin A, E, Rb and p27Kip1; inhibited migration and disrupted actin cytoskeleton and focal adhesions. These changes were associated with decreased protein expression of integrin α5. Integrin α5 depletion phenocopied effects observed with eIF3b. eIF3b depleted bladder cancer cells formed fewer subcutaneous tumors that grew more slowly and had reduced lung colonization. Conclusion eIF3b expression relates to human bladder and prostate cancer prognosis, is required for tumor growth and thus a candidate therapeutic target. PMID:23575475

  1. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  2. 1,25-Dihydroxyvitamin D3 induces monocytic differentiation of human myeloid leukemia cells by regulating C/EBPβ expression through MEF2C.

    PubMed

    Zheng, Ruifang; Wang, Xuening; Studzinski, George P

    2015-04-01

    Myogenic enhancer factor2 (Mef2) consists of a family of transcription factors involved in morphogenesis of skeletal, cardiac and smooth muscle cells. Among the four isoforms (Mef2A, 2B, 2C, and 2D), Mef2C was also found to play important roles in hematopoiesis. At myeloid progenitor level, Mef2C expression favors monocytic differentiation. Previous studies from our laboratory demonstrated that ERK5 was activated in 1,25-dihydroxyvitamin D3 (1,25D)-induced monocytic differentiation in AML cells and ERK5 activation was accompanied by increased Mef2C phosphorylation. We therefore examined the role of Mef2C in 1,25D-induced monocytic differentiation in AML cell lines (HL60, U937 and THP1) and found that knockdown of Mef2C with small interfering RNA (siRNA) significantly decreases the expression of the monocytic marker, CD14, without affecting the expression of the general myeloid marker, CD11b. CCAAT/enhancer-binding protein (C/EBP) β, which can bind to CD14 promoter and increase its transcription, has been shown to be the downstream effector of 1,25D-induced monocytic differentiation in AML cells. When Mef2C was knocked down, expression of C/EBPβ was reduced at both mRNA and protein levels. The protein expression levels of cell cycle regulators, p27(Kip1) and cyclin D1, were not affected by Mef2C knockdown, nor the monopoiesis related transcription factor, ATF2 (activating transcription factor 2). Thus, we conclude that 1,25D-induced monocytic differentiation, and CD14 expression in particular, are mediated through activation of ERK5-Mef2C-C/EBPβ signaling pathway, and that Mef2C does not seem to modulate cell cycle progression. PMID:25448741

  3. Constitutive expression of ectopic c-Myc delays glucocorticoid-evoked apoptosis of human leukemic CEM-C7 cells

    PubMed Central

    Medh, Rheem D; Wang, Aixia; Zhou, Feng; Thompson, E Brad

    2009-01-01

    Sensitivity to glucocorticoid (GC)-evoked apoptosis in lymphoid cell lines correlates closely with GC-mediated suppression of c-Myc expression. To establish a functional role for c-Myc in GC-mediated apoptosis, we have stably expressed MycER™, the human c-Myc protein fused to the modified ligand-binding domain of the murine estrogen receptor α, in GC-sensitive CEM-C7-14 cells. In CEM-C7-14 cells, MycER™ constitutively imparts c-Myc functions. Cells expressing MycER™ (C7-MycER™) exhibited a marked reduction in cell death after 72 h in 100 nM dexamethasone (Dex), with 10 – 20-fold more viable cells when compared to the parental CEM-C7-14 clone. General GC responsiveness was not compromised, as evidenced by Dex-mediated suppression of endogenous c-Myc and cyclin D3, and induction of c-Jun and the glucocorticoid receptor. MycER™ also blunted Dex-mediated upregulation of p27kip1 and suppression of the Myc target p53. In comparison to parental CEM-C7-14 cells, Dex-evoked DNA strand breaks were negligible and caspase activation was delayed, but the extent of G1 cell cycle arrest was similar in C7-MycER™ cells. Myc-ER™ did not result in permanent, complete resistance to GC however, and the GC-treated cells eventually died, indicative of redundant or interactive mechanisms in the GC-evoked lytic response of lymphoid cells. Our results emphasize the importance of c-Myc suppression in GC-evoked apoptosis of CEM-C7-14 cells. PMID:11498786

  4. Expression of human α1-proteinase inhibitor in Aspergillus niger

    PubMed Central

    Karnaukhova, Elena; Ophir, Yakir; Trinh, Loc; Dalal, Nimish; Punt, Peter J; Golding, Basil; Shiloach, Joseph

    2007-01-01

    Background Human α1-proteinase inhibitor (α1-PI), also known as antitrypsin, is the most abundant serine protease inhibitor (serpin) in plasma. Its deficiency is associated with development of progressive, ultimately fatal emphysema. Currently in the United States, α1-PI is available for replacement therapy as an FDA licensed plasma-derived (pd) product. However, the plasma source itself is limited; moreover, even with efficient viral inactivation steps used in manufacture of plasma products, the risk of contamination from emerging viruses may still exist. Therefore, recombinant α1-PI (r-α1-PI) could provide an attractive alternative. Although r-α1-PI has been produced in several hosts, protein stability in vitro and rapid clearance from the circulation have been major issues, primarily due to absent or altered glycosylation. Results We have explored the possibility of expressing the gene for human α1-PI in the filamentous fungus Aspergillus niger (A. niger), a system reported to be capable of providing more "mammalian-like" glycosylation patterns to secretable proteins than commonly used yeast hosts. Our expression strategy was based on fusion of α1-PI with a strongly expressed, secreted leader protein (glucoamylase G2), separated by dibasic processing site (N-V-I-S-K-R) that provides in vivo cleavage. SDS-PAGE, Western blot, ELISA, and α1-PI activity assays enabled us to select the transformant(s) secreting a biologically active glycosylated r-α1-PI with yields of up to 12 mg/L. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis further confirmed that molecular mass of the r-α1-PI was similar to that of the pd-α1-PI. In vitro stability of the r-α1-PI from A. niger was tested in comparison with pd-α1-PI reference and non-glycosylated human r-α1-PI from E. coli. Conclusion We examined the suitability of the filamentous fungus A. niger for the expression of the human gene for α1-PI, a medium size glycoprotein of high

  5. Expression of Secreted Cytokine and Chemokine Inhibitors by Ectromelia Virus

    PubMed Central

    Smith, Vincent P.; Alcami, Antonio

    2000-01-01

    The production of secreted proteins that bind cytokines and block their activity has been well characterized as an immune evasion strategy of the orthopoxviruses vaccinia virus (VV) and cowpox virus (CPV). However, very limited information is available on the expression of similar cytokine inhibitors by ectromelia virus (EV), a virulent natural mouse pathogen that causes mousepox. We have characterized the expression and binding properties of three major secreted immunomodulatory activities in 12 EV strains and isolates. Eleven of the 12 EVs expressed a soluble, secreted 35-kDa viral chemokine binding protein with properties similar to those of homologous proteins from VV and CPV. All of the EVs expressed soluble, secreted receptors that bound to mouse, human, and rat tumor necrosis factor alpha. We also detected the expression of a soluble, secreted interleukin-1β (IL-1β) receptor (vIL-1βR) by all of the EVs. EV differed from VV and CPV in that binding of human 125I-IL-1β to the EV vIL-1βR could not be detected. Nevertheless, the EV vIL-1βR prevented the interaction of human and mouse IL-1β with cellular receptors. There are significant differences in amino acid sequence between the EV vIL-1βR and its VV and CPV homologs which may account for the results of the binding studies. The conservation of these activities in EV suggests evolutionary pressure to maintain them in a natural poxvirus infection. Mousepox represents a useful model for the study of poxvirus pathogenesis and immune evasion. These findings will facilitate future study of the role of EV immunomodulatory factors in the pathogenesis of mousepox. PMID:10954546

  6. Nitrogen-bisphosphonates block retinoblastoma phosphorylation and cell growth by inhibiting the cholesterol biosynthetic pathway in a keratinocyte model for esophageal irritation.

    PubMed

    Reszka, A A; Halasy-Nagy, J; Rodan, G A

    2001-02-01

    The surprising discovery that nitrogen-containing bisphosphonates (N-BPs) act via inhibition of the mevalonate-to-cholesterol pathway raised the possibility that esophageal irritation by N-BPs is mechanism-based. We used normal human epidermal keratinocytes (NHEKs) to model N-BP effects on stratified squamous epithelium of the esophagus. The N-BPs alendronate and risedronate inhibited NHEK growth in a dose-dependent manner without inducing apoptosis. N-BPs (30 microM) caused accumulation of cells in S phase and increased binucleation (inhibited cytokinesis). Consistent with N-BP inhibition of isoprenylation, geranylgeraniol or farnesol prevented accumulation in S phase. Binucleation was also induced by the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor lovastatin and by the squalene synthase inhibitor zaragozic acid A and was prevented by adding low-density lipoprotein. At 300 microM, N-BPs reduced expression of cyclin-dependent kinase (cdk) 2 and cdk4 and enhanced expression of p21(waf1) and p27(kip1) and their binding to cdks with corollary hypophosphorylation of retinoblastoma. Lovastatin and zaragozic acid A produced similar effects, except that p21(waf1) expression and binding to cdks was not induced. Growth inhibition, but not binucleation, was also caused by the geranylgeranyl transferase I inhibitor, GGTI-298, which also enhanced cdk2 and cdk4 association with p27(kip1). These findings are consistent with suppression of epithelial cell growth by N-BPs via inhibition of the mevalonate pathway and the consequent reduction in cholesterol synthesis, which blocks cytokinesis, and in geranylgeranylation, which interferes with progression through the cell cycle. PMID:11160853

  7. Src kinases catalytic activity regulates proliferation, migration and invasiveness of MDA-MB-231 breast cancer cells.

    PubMed

    Sánchez-Bailón, María Pilar; Calcabrini, Annarica; Gómez-Domínguez, Daniel; Morte, Beatriz; Martín-Forero, Esther; Gómez-López, Gonzalo; Molinari, Agnese; Wagner, Kay-Uwe; Martín-Pérez, Jorge

    2012-06-01

    SFKs are frequently deregulated in cancer where they control cellular proliferation, migration, survival and metastasis. Here we study the role of SFKs catalytic activity in triple-negative/basal-like and metastatic human breast cancer MDA-MB-231 cells employing three well-established inhibitors: Dasatinib, PP2 and SU6656. These compounds inhibited migration and invasion. Concomitantly, they reduced Fak, paxillin, p130CAS, caveolin-1 phosphorylation and altered cytoskeletal structures. They also inhibited cell proliferation, but in different manners. Dasatinib and PP2 increased p27(Kip1) expression and reduced c-Myc levels, restraining G1–S transition. In contrast, SU6656 did not modify p27(Kip1) expression, slightly altered c-Myc levels and generated polyploid multinucleated cells, indicating inhibition of cytokinesis. These later effects were also observed in SYF fibroblasts, suggesting a SFKs-independent action. ZM447439, an Aurora B kinase inhibitor, produced similar cell cycle and morphological alterations in MDA-MB-231 cells, indicating that SU6656 blocked Aurora B kinase. This was confirmed by inhibition of histone H3 phosphorylation, the canonical Aurora B kinase substrate. Furthermore, hierarchical clustering analysis of gene expression profiles showed that SU6656 defined a set of genes that differed from Dasatinib and PP2. Additionally, Gene Set Enrichment Analyses revealed that SU6656 significantly reduces the Src pathway. Together, these results show the importance of SFKs catalytic activity for MDA-MB-231 proliferation, migration and invasiveness. They also illustrate that SU6656 acts as dual SFKs and Aurora B kinase inhibitor, suggesting its possible use as a therapeutic agent in breast cancer. PMID:22570868

  8. Defined pattern of Sertoli cell differentiation in pubertal porcine testes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Number of Sertoli cells is a primary determinant of mature testicular size and sperm production. In boars, formation of the blood/testis barrier, which occurs by 4 mo of age in commercial breeds, signals the end of Sertoli cell proliferation. Previous studies established that expression of p27Kip1, ...

  9. Erythropoietin ameliorates podocyte injury in advanced diabetic nephropathy in the db/db mouse.

    PubMed

    Loeffler, Ivonne; Rüster, Christiane; Franke, Sybille; Liebisch, Marita; Wolf, Gunter

    2013-09-15

    Podocyte damage and accumulation of advanced glycation end products (AGEs) are characteristics of diabetic nephropathy (DN). The pathophysiology of AGE-challenged podocytes, such as hypertrophy, apoptosis, and reduced cell migration, is closely related to the induction of the cell cycle inhibitor p27(Kip1) and to the inhibition of neuropilin 1 (NRP1). We have previously demonstrated that treatment with erythropoietin is associated with protective effects for podocytes in vitro. db/db mice with overt DN aged 15-16 wk were treated with either placebo, epoetin-β, or continuous erythropoietin receptor activator (CERA) for 2 wk. db/db mice compared with nondiabetic db/m control mice revealed the expected increases in body weight, blood glucose, albumin-to-creatinine ratio, and AGE accumulation. Whereas there were no differences in body weight, hyperglycemia and AGEs were observed among diabetic mice that received epoetin-β compared with CERA and placebo treatment, indicating that epoetin-β/CERA treatment does not interfere with the development of diabetes in this model. However, the albumin-to-creatinine ratio was significantly lower in db/db mice treated with epoetin-β or CERA. Furthermore, kidney weights in db/db mice were increased compared with db/m control mice, indicating renal hypertrophy, whereas the increase in renal weight in epoetin-β- or CERA-treated db/db mice was significantly lower than in placebo-treated control mice. Induction of p27(Kip1) and suppression of NRP1 were significantly reduced in the epoetin-β treatment group versus the CERA treatment group. Furthermore, erythropoietin treatment diminished the diabetes-induced podocyte loss. Together, independently from hematopoetic effects, epoetin-β or CERA treatment was associated with protective changes in DN, especially that NRP1 and p27(Kip1) expressions as well as numbers of podocytes returned to normal levels. Our data show, for the first time, that medication of overt DN with erythropoietin

  10. Cks1 is required for tumor cell proliferation but not sufficient to induce hematopoietic malignancies.

    PubMed

    Kratzat, Susanne; Nikolova, Viktoriya; Miething, Cornelius; Hoellein, Alexander; Schoeffmann, Stephanie; Gorka, Oliver; Pietschmann, Elke; Illert, Anna-Lena; Ruland, Jürgen; Peschel, Christian; Nilsson, Jonas; Duyster, Justus; Keller, Ulrich

    2012-01-01

    The Cks1 component of the SCF(Skp2) complex is necessary for p27(Kip1) ubiquitylation and degradation. Cks1 expression is elevated in various B cell malignancies including Burkitt lymphoma and multiple myeloma. We have previously shown that loss of Cks1 results in elevated p27(Kip1) levels and delayed tumor development in a mouse model of Myc-induced B cell lymphoma. Surprisingly, loss of Skp2 in the same mouse model also resulted in elevated p27(Kip1) levels but exhibited no impact on tumor onset. This raises the possibility that Cks1 could have other oncogenic activities than suppressing p27(Kip1). To challenge this notion we have targeted overexpression of Cks1 to B cells using a conditional retroviral bone marrow transduction-transplantation system. Despite potent ectopic overexpression, Cks1 was unable to promote B cell hyperproliferation or B cell malignancies, indicating that Cks1 is not oncogenic when overexpressed in B cells. Since Skp2 overexpression can drive T-cell tumorigenesis or other cancers we also widened the quest for oncogenic activity of Cks1 by ubiquitously expressing Cks1 in hematopoetic progenitors. At variance with c-Myc overexpression, which caused acute myeloid leukemia, Cks1 overexpression did not induce myeloproliferation or leukemia. Therefore, despite being associated with a poor prognosis in various malignancies, sole Cks1 expression is insufficient to induce lymphoma or a myeloproliferative disease in vivo. PMID:22624029

  11. Retinoic acid inhibits the proliferative response induced by CD40 activation and interleukin-4 in mantle cell lymphoma.

    PubMed

    Guidoboni, Massimo; Zancai, Paola; Cariati, Roberta; Rizzo, Silvana; Dal Col, Jessica; Pavan, Alessandro; Gloghini, Annunziata; Spina, Michele; Cuneo, Antonio; Pomponi, Fabrizio; Bononi, Antonio; Doglioni, Claudio; Maestro, Roberta; Carbone, Antonino; Boiocchi, Mauro; Dolcetti, Riccardo

    2005-01-15

    Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin's lymphoma with poor response to therapy and unfavorable prognosis. Here, we show that retinoic acid (RA) isomers significantly inhibit the proliferation of both primary MCL cultures (n = 7) and established cell lines (Granta 519 and SP-53) as shown by [(3)H]thymidine uptake and carboxyfluorescein diacetate succinimidyl ester labeling coupled with cyclin D1 staining. RA induces cell accumulation in G(0)-G(1) together with a marked up-regulation of p27(Kip1) by inhibiting ubiquitination and proteasome-dependent degradation of the protein. The p21(Cip1) inhibitor was also up-regulated by RA in Granta 519 cells, whereas the expression of cyclin D1 is unaffected. Most of RA-induced p27(Kip1) was bound to cyclin D1/cyclin-dependent kinase 4 complexes, probably contributing to the decreased cyclin-dependent kinase 4 kinase activity and pRb hypophosphorylation observed in RA-treated cells. Experiments with receptor-selective ligands indicate that RA receptor alpha cooperates with retinoid X receptors in mediating RA-dependent MCL cell growth inhibition. Notably, RA isomers, and particularly 9-cis-RA, also inhibited the growth-promoting effect induced in primary MCL cells by CD40 activation alone or in combination with interleukin-4. Immunohistochemical analysis showed that significant numbers of CD40L-expressing lymphoid cells are present in lymph node biopsies of MCL patients. These results therefore further strengthen the possibility that triggering of CD40 by infiltrating CD40L+ cells may continuously promote the growth of MCL cells in vivo. On these grounds, our findings that RA inhibits basal MCL proliferation as well as MCL growth-promoting effects exerted by microenvironmental factors make these compounds highly attractive in terms of potential clinical efficacy in this setting. PMID:15695403

  12. Protease inhibitor expression in soybean roots exhibiting susceptible and resistance reactions to soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protease inhibitors play a role in regulating proteases during cellular development and in plant defense against insects and nematodes. We identified, cloned and sequenced cDNAs encoding six protease inhibitors expressed in soybean roots infected with soybean cyst nematode. Four of these protease in...

  13. The cyclin-dependent kinase inhibitor butyrolactone is a potent inhibitor of p21 (WAF1/CIP1 expression).

    PubMed

    Sax, Joanna K; Dash, Bipin C; Hong, Rui; Dicker, David T; El-Deiry, Wafik S

    2002-01-01

    Butyrolactone I (BL) is a competitive inhibitor of ATP for binding and activation of cyclin-dependent kinases and is a potent inhibitor of cell cycle progression. Treatment of H460 human lung and SW480 human colon cancer cells with doses of BL that exceed the Ki for CDK inhibition but which are much lower than doses required to inhibit MAPK, PKA, PKC, or EGFR lead to a rapid significant reduction of endogenous p21 protein expression. BL-dependent inhibition of p21 expression appears to be p53-independent. BL-dependent p21 degradation was blocked by lactacystin, consistent with the hypothesis that there is accelerated p21 proteasomal degradation in the presence of BL. BL also inhibited the p53-dependent increase of p21 protein expression in cells exposed to the DNA damag-ing agent etoposide, and favored a greater G2/M arrest as compared to the non-BL exposed cells. BL accelerated the degradation of exogenously expressed p21 that was not observed with a C-terminal truncated form of p21. Degradation of exogenous p21 led to a shift to G2 accumulation in the cells exposed to BL. We conclude that BL has effects on the cell cycle beyond its role as a CDK inhibitor and can be used as a novel tool to study the mechanism of p21 degradation and the consequences towards p21- dependent checkpoints. PMID:12429914

  14. Impact of oilseed rape expressing the insecticidal serine protease inhibitor, mustard trypsin inhibitor-2 on the beneficial predator Pterostichus madidus.

    PubMed

    Ferry, N; Jouanin, L; Ceci, L R; Mulligan, E A; Emami, K; Gatehouse, J A; Gatehouse, A M R

    2005-01-01

    Abstract Insect-resistant transgenic plants have been suggested to have deleterious effects on beneficial predators feeding on crop pests, through transmission of the transgene product by the pest to the predator. To test this hypothesis, effects of oilseed rape expressing the serine protease inhibitor, mustard trypsin inhibitor -2 (MTI-2), on the predatory ground beetle Pterostichus madidus were investigated, using diamondback moth, Plutella xylostella as the intermediary pest species. As expected, oilseed rape expressing MTI-2 had a deleterious effect on the development and survival of the pest. However, incomplete pest mortality resulted in survivors being available to predators at the next trophic level, and inhibition studies confirmed the presence of biologically active transgene product in pest larvae. Characterization of proteolytic digestive enzymes of P. madidus demonstrated that adults utilize serine proteases with trypsin-like and chymotrypsin-like specificities; the former activity was completely inhibited by MTI-2 in vitro. When P. madidus consumed prey reared on MTI-2 expressing plants over the reproductive period in their life cycle, no significant effects upon survival were observed as a result of exposure to the inhibitor. However, there was a short-term significant inhibition of weight gain in female beetles fed unlimited prey containing MTI-2, with a concomitant reduction of prey consumption. Biochemical analyses showed that the inhibitory effects of MTI-2 delivered via prey on gut proteolysis in the carabid decreased with time of exposure, possibly resulting from up-regulation of inhibitor-insensitive proteases. Of ecological significance, consumption of MTI-2 dosed prey had no detrimental effects on reproductive fitness of adult P. madidus. PMID:15643975

  15. MEK1/2 inhibitors induce interleukin-5 expression in mouse macrophages and lymphocytes.

    PubMed

    Li, Xiaoju; Cao, Xingyue; Zhang, Xiaomeng; Kang, Yanhua; Zhang, Wenwen; Yu, Miao; Ma, Chuanrui; Han, Jihong; Duan, Yajun; Chen, Yuanli

    2016-05-13

    Uptake of oxidized low-density lipoprotein (oxLDL) by macrophages facilitates the formation of foam cells, the prominent part of atherosclerotic lesions. Interleukin-5 (IL-5) is a cytokine regulating interactions between immune cells. It also activates the production of T15/EO6 IgM antibodies in B-1 cells, which can bind oxLDL thereby demonstrating anti-atherogenic properties. We previously reported that inhibition of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by mitogen-activated protein kinase kinases 1/2 (MEK1/2) inhibitors can reduce atherosclerosis. In this study, we determined the effects of MEK1/2 inhibitors on IL-5 production both in vitro and in vivo. In vitro, MEK1/2 inhibitors (PD98059 and U0126) substantially inhibited phosphorylation of MEK1/2 and ERK1/2. Associated with inhibition of ERK1/2 phosphorylation both in vitro and in vivo, MEK1/2 inhibitors induced IL-5 protein expression in macrophages (RAW macrophages and peritoneal macrophages) and lymphocytes (EL-4 cells). In vivo, administration of mice with MEK1/2 inhibitors increased serum IL-5 levels, and IL-5 protein expression in mouse spleen and liver. At the mechanistic level, we determined that MEK1/2 inhibitors activated IL-5 mRNA expression and IL-5 promoter activity in the liver X receptor (LXR) dependent manner indicating the induction of IL-5 transcription. In addition, we determined that MEK1/2 inhibitors enhanced IL-5 protein stability. Taken together, our study demonstrates that MEK1/2 inhibitors induce IL-5 production which suggests another anti-atherogenic mechanism of MEK1/2 inhibitors. PMID:27045084

  16. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  17. Ectopic Expression of a Neospora caninum Kazal Type Inhibitor Triggers Developmental Defects in Toxoplasma and Plasmodium

    PubMed Central

    Goulielmaki, Evi; Kaforou, Sofia; Kim, Kami; Waters, Andrew P.; Carruthers, Vern B.; Siden-Kiamos, Inga; Koussis, Konstantinos

    2015-01-01

    Regulated proteolysis is known to control a variety of vital processes in apicomplexan parasites including invasion and egress of host cells. Serine proteases have been proposed as targets for drug development based upon inhibitor studies that show parasite attenuation and transmission blockage. Genetic studies suggest that serine proteases, such as subtilisin and rhomboid proteases, are essential but functional studies have proved challenging as active proteases are difficult to express. Proteinaceous Protease Inhibitors (PPIs) provide an alternative way to address the role of serine proteases in apicomplexan biology. To validate such an approach, a Neospora caninum Kazal inhibitor (NcPI-S) was expressed ectopically in two apicomplexan species, Toxoplasma gondii tachyzoites and Plasmodium berghei ookinetes, with the aim to disrupt proteolytic processes taking place within the secretory pathway. NcPI-S negatively affected proliferation of Toxoplasma tachyzoites, while it had no effect on invasion and egress. Expression of the inhibitor in P. berghei zygotes blocked their development into mature and invasive ookinetes. Moreover, ultra-structural studies indicated that expression of NcPI-S interfered with normal formation of micronemes, which was also confirmed by the lack of expression of the micronemal protein SOAP in these parasites. Our results suggest that NcPI-S could be a useful tool to investigate the function of proteases in processes fundamental for parasite survival, contributing to the effort to identify targets for parasite attenuation and transmission blockage. PMID:25803874

  18. Expression of human β-N-acetylhexosaminidase B in yeast eases the search for selective inhibitors.

    PubMed

    Krejzová, Jana; Kulik, Natallia; Slámová, Kristýna; Křen, Vladimír

    2016-07-01

    Human lysosomal β-N-acetylhexosaminidases from the family 20 of glycoside hydrolases are dimeric enzymes catalysing the cleavage of terminal β-N-acetylglucosamine and β-N-acetylgalactosamine residues from a broad spectrum of glycoconjugates. Here, we present a facile, robust, and cost-effective extracellular expression of human β-N-acetylhexosaminidase B in Pichia pastoris KM71H strain. The prepared Hex B was purified in a single step with 33% yield obtaining 10mg of the pure enzyme per 1L of the culture media. The enzyme was used in the inhibition assays with the known mechanism-based inhibitor NAG-thiazoline and a wide variety of its derivatives in the search for specific inhibitors of the human GH20 β-N-acetylhexosaminidases over the human GH84 β-N-acetylglucosaminidase, which was expressed, purified and used in the inhibition experiments as well. Moreover, enzyme-inhibitor complexes were analysed employing computational tools in order to reveal the structural basis of the results of the inhibition assays, showing the importance of water-mediated interactions between the enzyme and respective ligands. The presented method for the heterologous expression of human Hex B is robust, it significantly reduces the costs and equipment demands in comparison to the expression in mammalian cell lines. This will enhance accessibility of this human enzyme to the broad scientific community and may speed up the research of specific inhibitors of this physiologically important glycosidase family. PMID:27233122

  19. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  20. Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylase inhibitors.

    PubMed

    Zhao, Yanmei; Sun, Hui; Lu, Jun; Li, Xiaoxue; Chen, Xia; Tao, Dan; Huang, Weifeng; Huang, Baiqu

    2005-02-01

    The heat shock proteins (Hsps) play a positive role in lifespan determination, and histone acetylation has been shown to be involved in transcription of hsp genes in Drosophila. To further determine if hsp22 and hsp70 expression is correlated with lifespan, and if histone acetylation participates in this process, RNA levels for hsp22 and hsp70 were analyzed throughout the lifespan in the long-lived and short-lived iso-female lines. The results showed that hsp22 and hsp70 RNA levels were higher in long-lived line than in short-lived line and that the long-lived flies responded more rapidly to heat but were more tolerant to high temperature. Moreover, we investigated the influences of histone acetylation modification on longevity and on hsp gene expression by using histone deacetylase (HDAC) inhibitors TSA and BuA. The results demonstrated that both inhibitors were able to extend the lifespan and promote hsp22 and hsp70 expression. However, the optimal concentrations of these inhibitors, and probably the mechanisms of their actions, vary with the genetic background. In addition, we showed that HDAC inhibitors caused the hyperacetylation of core histone H3, implicating the involvement of chromatin modulation in hsp gene transcription. These data suggested a close correlation among histone acetylation, hsp gene expression and longevity in D. melanogaster. PMID:15695762

  1. Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic cancer cells

    SciTech Connect

    Reddy, M.K.; Baskaran, K.; Molteni, A.

    1995-12-01

    The angiotensin-converting enzyme (ACE) inhibitor captopril inhibits mitosis in several cell types that contain ACE and renin activity. In the present study, we evaluated the effect of the ACE inhibitors captopril and CGS 13945 (10{sup {minus}8} to 10{sup {minus}2}M) on proliferation and gene expression in hamster pancreatic duct carcinoma cells in culture. These cells lack renin and ACE activity. Both ACE inhibitors produced a dose-dependent reduction in tumor cell proliferation within 24 hr. Captopril at a concentration of 0.36 mM and CGS 13945 at 150 {mu}M decreased cellular growth rate to approximately half that of the control. Neither drug influenced the viability or the cell cycle distribution of the tumor cells. Slot blot analysis of mRNA for four genes, proliferation associated cell nuclear antigen (PCNA), K-ras, protein kinase C-{Beta} (PKC-{Beta}) and carbonic anhydrase II (CA II) was performed. Both ACE inhibitors increased K-ras expression by a factor of 2, and had no effect on CA II mRNA levels. Captopril also lowered PCNA by 40% and CGS 13945 lowered PKC-{Beta} gene expression to 30% of the control level. The data demonstrate that ACE inhibitors exhibit antimitotic activity and differential gene modulation in hamster pancreatic duct carcinoma cells. The absence of renin and ACE activity in these cells suggests that the antimitotic action of captopril and CGS 13945 is independent of renin-angiotensin regulation. The growth inhibition may occur through downregulation of growth-related gene expression. 27 refs., 5 figs.

  2. Nucleoside transporter subtype expression: effects on potency of adenosine kinase inhibitors

    PubMed Central

    Sinclair, C J D; Powell, A E; Xiong, W; LaRivière, C G; Baldwin, S A; Cass, C E; Young, J D; Parkinson, F E

    2001-01-01

    Adenosine kinase (AK) inhibitors can enhance adenosine levels and potentiate adenosine receptor activation. As the AK inhibitors 5′ iodotubercidin (ITU) and 5-amino-5′-deoxyadenosine (NH2dAdo) are nucleoside analogues, we hypothesized that nucleoside transporter subtype expression can affect the potency of these inhibitors in intact cells.Three nucleoside transporter subtypes that mediate adenosine permeation of rat cells have been characterized and cloned: equilibrative transporters rENT1 and rENT2 and concentrative transporter rCNT2. We stably transfected rat C6 glioma cells, which express rENT2 nucleoside transporters, with rENT1 (rENT1-C6 cells) or rCNT2 (rCNT2-C6 cells) nucleoside transporters.We tested the effects of ITU and NH2dAdo on [3H]-adenosine uptake and conversion to [3H]-adenine nucleotides in the three cell types. NH2dAdo did not show any cell type selectivity. In contrast, ITU showed significant inhibition of [3H]-adenosine uptake and [3H]-adenine nucleotide formation at concentrations ⩽100 nM in rENT1-C6 cells, while concentrations ⩾3 μM were required for C6 or rCNT2-C6 cells.Nitrobenzylthioinosine (NBMPR; 100 nM), a selective inhibitor of rENT1, abolished the effects of nanomolar concentrations of ITU in rENT1-C6 cells.This study demonstrates that the effects of ITU, but not NH2dAdo, in whole cell assays are dependent upon nucleoside transporter subtype expression. Thus, cellular and tissue differences in expression of nucleoside transporter subtypes may affect the pharmacological actions of some AK inhibitors. PMID:11682452

  3. Changes of epidermal cell morphology and keratin expression induced by inhibitors of protein kinase C.

    PubMed

    Hegemann, L; Wevers, A; Bonnekoh, B; Mahrle, G

    1992-03-01

    Several lines of evidence show protein kinase C as being involved in various regulatory processes in keratinocyte biology, e.g. proliferation and differentiation. In the present study, we investigated the effects of three different inhibitors of protein kinase C, staurosporine, CP 46'665-1, and tiflucarbine, on cell morphology and keratin expression in a non-tumorigenic human keratinocyte cell line (HaCaT cells). Staurosporine, being the most potent inhibitor of protein kinase C activity in vitro, and CP 46'665-1 induced morphological transformation to a fibroblast-like cell shape. In contrast, no changes in cell morphology were observed after exposure to tiflucarbine. The investigation of keratin expression in HaCaT cells grown in the presence of the different compounds revealed the following changes: After 72 h of cultivation, keratins 8 and 18 were still expressed in treated cells, whereas expression of keratin 13 was decreased as compared to control cells. Immunoblotting to detect vimentin demonstrated its absence in treated and control cells. Since tiflucarbine is known as a dual protein kinase C/calmodulin inhibitor whereas staurosporine and CP 46'665-1 do not antagonize calmodulin function, it might be possible that not only protein kinase C but also calmodulin is involved in the process leading to the morphological changes. PMID:1376142

  4. Molecular Cloning and Gene Expression of Canine Apoptosis Inhibitor of Macrophage

    PubMed Central

    TOMURA, Shintaro; UCHIDA, Mona; YONEZAWA, Tomohiro; KOBAYASHI, Masato; BONKOBARA, Makoto; ARAI, Satoko; MIYAZAKI, Toru; TAMAHARA, Satoshi; MATSUKI, Naoaki

    2014-01-01

    Apoptosis inhibitor of macrophage (AIM) plays roles in survival of macrophages. In this study, we cloned canine AIM cDNA and observed its transcriptional expression levels in various tissues. The coding sequence of canine AIM was 1,023 bp encoding 340 amino acid residues, which had around 65% homology with those of the human, mouse and rat. Transcriptional expression of AIM was observed in the spleen, lung, liver and lymph node, which confirmed the expression of canine AIM in tissue macrophages. Moreover, AIM was highly expressed in one of the canine histiocytic sarcoma cell lines. CD36, the receptor of AIM, was also expressed in various tissues and these cell lines. These findings are useful to reveal the actual functions of canine AIM. PMID:25649949

  5. Gene expression profiling in response to the histone deacetylase inhibitor BL1521 in neuroblastoma

    SciTech Connect

    Ruijter, Annemieke J.M. de; Kemp, Stephan . E-mail: a.b.vankuilenburg@amc.uva.nl

    2005-10-01

    Neuroblastoma is a childhood tumor with a poor survival in advanced stage disease despite intensive chemotherapeutic regimes. The new histone deacetylase (HDAC) inhibitor BL1521 has shown promising results in neuroblastoma. Inhibition of HDAC resulted in a decrease in proliferation and metabolic activity, induction of apoptosis and differentiation of neuroblastoma cells. In order to elucidate the mechanism mediating the effects of BL1521 on neuroblastoma cells, we investigated the gene expression profile of an MYCN single copy (SKNAS) and an MYCN amplified (IMR32) neuroblastoma cell line after treatment with BL1521 using the Affymetrix oligonucleotide array U133A. An altered expression of 255 genes was observed in both neuroblastoma cell lines. The majority of these genes were involved in gene expression, cellular metabolism, and cell signaling. We observed changes in the expression of vital genes belonging to the cell cycle (cyclin D1 and CDK4) and apoptosis (BNIP3, BID, and BCL2) pathway in response to BL1521. The expression of 37 genes was altered by both BL1521 and Trichostatin A, which could indicate a common gene set regulated by different HDAC inhibitors. BL1521 treatment changed the expression of a number of MYCN-associated genes. Several genes in the Wnt and the Delta/Notch pathways were changed in response to BL1521 treatment, suggesting that BL1521 is able to induce the differentiation of neuroblastoma cells into a more mature phenotype.

  6. Mapping of Wnt, Frizzled and Wnt inhibitor gene expression domains in the avian otic primordium

    PubMed Central

    Sienknecht, Ulrike J.; Fekete, Donna M.

    2010-01-01

    Wnt signaling activates at least three different pathways involved in development and disease. Interactions of secreted ligands and inhibitors with cell-surface receptors result in the activation or regulation of particular downstream intracellular cascades. During the developmental stages of otic vesicle closure and beginning morphogenesis, the forming inner ear transcribes a plethora of Wnt-related genes. We report expression of 23 genes out of 25 tested in situ hybridization probes on tissue serial sections. Sensory primordia and Frizzled gene expression share domains, with Fzd1 being a continuous marker. Prospective nonsensory domains express Wnts, whose transcripts mainly flank prosensory regions. Finally, Wnt inhibitor domains are superimposed over both prosensory and nonsensory otic regions. Three Wnt antagonists, Dkk1, SFRP2, and Frzb are prominent. Their gene expression patterns partly overlap and change over time, which adds to the diversity of molecular micro-environments. Strikingly, prosensory domains express Wnts transiently. This includes (1) the prosensory otic region of high proliferation, neuroblast delamination, and programmed cell death at stage 20/21 (Wnt3, -5b, -7b, -8b, -9a, -11), and (2) sensory primordia at stage 25 (Wnt7a, Wnt9a). In summary, robust Wnt-related gene expression shows both spatial and temporal tuning during inner ear development as the otic vesicle initiates morphogenesis and prosensory cell fate determination. PMID:19842206

  7. Hypoxia inducible factor 1α expression and effects of its inhibitors in canine lymphoma

    PubMed Central

    KAMBAYASHI, Satoshi; IGASE, Masaya; KOBAYASHI, Kosuke; KIMURA, Ayana; SHIMOKAWA MIYAMA, Takako; BABA, Kenji; NOGUCHI, Shunsuke; MIZUNO, Takuya; OKUDA, Masaru

    2015-01-01

    Hypoxic conditions in various cancers are believed to relate with their malignancy, and hypoxia inducible factor-1α (HIF-1α) has been shown to be a major regulator of the response to low oxygen. In this study, we examined HIF-1α expression in canine lymphoma using cell lines and clinical samples and found that these cells expressed HIF-1α. Moreover, the HIF-1α inhibitors, echinomycin, YC-1 and 2-methoxyestradiol, suppressed the proliferation of canine lymphoma cell lines. In a xenograft model using NOD/scid mice, echinomycin treatment resulted in a dose-dependent regression of the tumor. Our results suggest that HIF-1α contributes to the proliferation and/or survival of canine lymphoma cells. Therefore, HIF-1α inhibitors may be potential agents to treat canine lymphoma. PMID:26050843

  8. Expression, purification and crystallization of human 5-lipoxygenase-activating protein with leukotriene-biosynthesis inhibitors

    SciTech Connect

    Xu, Shihua; McKeever, Brian M.; Wisniewski, Douglas; Miller, Douglas K.; Spencer, Robert H.; Chu, Lin; Ujjainwalla, Feroze; Yamin, Ting-Ting; Evans, Jilly F.; Becker, Joseph W.; Ferguson, Andrew D.

    2007-12-01

    The expression, purification and crystallization of human 5-lipoxygenase-activating protein in complex with two leukotriene-biosynthesis inhibitors is decribed. The processes that were used to generate diffraction quality crystals are presented in detail. The nuclear membrane protein 5-lipoxygenase-activating protein (FLAP) plays an essential role in leukotriene synthesis. Recombinant full-length human FLAP with a C-terminal hexahistidine tag has been expressed and purified from the cytoplasmic membrane of Escherichia coli. Diffraction-quality crystals of FLAP in complex with leukotriene-synthesis inhibitor MK-591 and with an iodinated analogue of MK-591 have been grown using the sitting-drop vapor-diffusion method. The crystals exhibit tetragonal symmetry (P42{sub 1}2) and diffracted to a resolution limit of 4 Å.

  9. Amplification of transgene expression in vitro and in vivo using a novel inhibitor of histone deacetylase.

    PubMed

    Yamano, T; Ura, K; Morishita, R; Nakajima, H; Monden, M; Kaneda, Y

    2000-06-01

    Enhancement of transgene expression is an important issue in human gene therapy. Here we describe a novel system for enhancing transgene expression by cointroduction of plasmid DNA with FR901228, a water-soluble histone deacetylase inhibitor. When a luciferase expression vector was cointroduced into cells with FR901228, luciferase gene expression was enhanced 50-fold in the mouse melanoma cell line B16-F1 and 5200-fold in NIH3T3 cells in comparison to cells without the drug. Luciferase gene expression enhancement was dependent on both drug dose and treatment time. Acetylated histones increased in accordance with drug dose, and the activation of gene expression occurred at the transcriptional level. The stimulation of luciferase gene expression by FR901228 was also observed in a B16-F1 clone stably expressing luciferase. Cointroduction of the luciferase plasmid with FR901228 into a B16-F1 tumor mass activated luciferase gene expression 3- to 4-fold. Thus, activation of transgene expression by FR901228 may serve as a new tool for gene therapy. PMID:10933982

  10. Lipopolysaccharide-Related Stimuli Induce Expression of the Secretory Leukocyte Protease Inhibitor, a Macrophage-Derived Lipopolysaccharide Inhibitor

    PubMed Central

    Jin, Fenyu; Nathan, Carl F.; Radzioch, Danuta; Ding, Aihao

    1998-01-01

    Mouse secretory leukocyte protease inhibitor (SLPI) was recently characterized as a lipopolysaccharide (LPS)-induced product of macrophages that antagonizes their LPS-induced activation of NF-κB and production of NO and tumor necrosis factor (TNF) (F. Y. Jin, C. Nathan, D. Radzioch, and A. Ding, Cell 88:417–426, 1997). To better understand the role of SLPI in innate immune and inflammatory responses, we examined the kinetics of SLPI expression in response to LPS, LPS-induced cytokines, and LPS-mimetic compounds. SLPI mRNA was detectable in macrophages by Northern blot analysis within 30 min of exposure to LPS but levels peaked only at 24 to 36 h and remained elevated at 72 h. Despite the slowly mounting and prolonged response, early expression of SLPI mRNA was cycloheximide resistant. Two LPS-induced proteins—interleukin-10 (IL-10) and IL-6—also induced SLPI, while TNF and IL-1β did not. The slow attainment of maximal induction of SLPI by LPS in vitro was mimicked by infection with Pseudomonas aeruginosa in vivo, where SLPI expression in the lung peaked at 3 days. Two LPS-mimetic molecules—taxol from yew bark and lipoteichoic acid (LTA) from gram-positive bacterial cell walls—also induced SLPI. Transfection of macrophages with SLPI inhibited their LTA-induced NO production. An anti-inflammatory role for macrophage-derived SLPI seems likely based on SLPI’s slowly mounting production in response to constituents of gram-negative and gram-positive bacteria, its induction both as a direct response to LPS and as a response to anti-inflammatory cytokines induced by LPS, and its ability to suppress the production of proinflammatory products by macrophages stimulated with constituents of both gram-positive and gram-negative bacteria. PMID:9596701

  11. Identification and expression analysis of BMP signaling inhibitors genes of the DAN family in amphioxus.

    PubMed

    Le Petillon, Yann; Oulion, Silvan; Escande, Marie-Line; Escriva, Hector; Bertrand, Stephanie

    2013-12-01

    Bone morphogenetic proteins (BMPs) are members of the Transforming Growth Factor-β (TGF-β) family implicated in many developmental processes in metazoans such as embryo axes specification. Their wide variety of actions is in part controlled by inhibitors that impede the interaction of BMPs with their specific receptors. Here, we focused our attention on the Differential screening-selected gene Aberrative in Neuroblastoma (DAN) family of inhibitors. Although they are well-characterized in vertebrates, few data are available for this family in other metazoan species. In order to understand the evolution of potential developmental roles of these inhibitors in chordates, we identified the members of this family in the cephalochordate amphioxus, and characterized their expression patterns during embryonic development. Our data suggest that the function of Cerberus/Dand5 subfamily genes is conserved among chordates, whereas Gremlin1/2 and NBL1 subfamily genes seem to have acquired divergent expression patterns in each chordate lineage. On the other hand, the expression of Gremlin in the amphioxus neural plate border during early neurulation strengthens the hypothesis of a conserved neural plate border gene network in chordates. PMID:23872339

  12. Cyclooxygenase inhibitor induces the upregulation of connexin-43 expression in C6 glioma cells

    PubMed Central

    QIN, LI-JUAN; JIA, YONG-SEN; ZHANG, YI-BING; WANG, YIN-HUAN

    2016-01-01

    The present study was performed to determine whether aspirin, a cyclooxygenase (COX) inhibitor, has an effect on the expression of connexin 43 (Cx43) in C6 glioma cells. Using an in vitro glioma invasion model, the expression of Cx43 protein in C6 cells was significantly increased following aspirin treatment at a dose of 8 mmol/l for 30, 60 and 120 min via western blot analysis. The peak value of the Cx43 expression was observed in C6 cells after 120 min of aspirin treatment, which was significantly reduced by prostaglandin E2 (PGE2). In addition, aspirin also significantly increased the gap junction intercellular communication (GJIC) activity and reduced glioma invasion, which was induced by PGE2. This led to the conclusion that the aspirin-induced glioma invasion decrease may be associated with the increased expression of Cx43 protein and formation of GJIC. PMID:27073629

  13. A colostrum trypsin inhibitor gene expressed in the Cape fur seal mammary gland during lactation.

    PubMed

    Pharo, Elizabeth A; Cane, Kylie N; McCoey, Julia; Buckle, Ashley M; Oosthuizen, W H; Guinet, Christophe; Arnould, John P Y

    2016-03-01

    The colostrum trypsin inhibitor (CTI) gene and transcript were cloned from the Cape fur seal mammary gland and CTI identified by in silico analysis of the Pacific walrus and polar bear genomes (Order Carnivora), and in marine and terrestrial mammals of the Orders Cetartiodactyla (yak, whales, camel) and Perissodactyla (white rhinoceros). Unexpectedly, Weddell seal CTI was predicted to be a pseudogene. Cape fur seal CTI was expressed in the mammary gland of a pregnant multiparous seal, but not in a seal in its first pregnancy. While bovine CTI is expressed for 24-48 h postpartum (pp) and secreted in colostrum only, Cape fur seal CTI was detected for at least 2-3 months pp while the mother was suckling its young on-shore. Furthermore, CTI was expressed in the mammary gland of only one of the lactating seals that was foraging at-sea. The expression of β-casein (CSN2) and β-lactoglobulin II (LGB2), but not CTI in the second lactating seal foraging at-sea suggested that CTI may be intermittently expressed during lactation. Cape fur seal and walrus CTI encode putative small, secreted, N-glycosylated proteins with a single Kunitz/bovine pancreatic trypsin inhibitor (BPTI) domain indicative of serine protease inhibition. Mature Cape fur seal CTI shares 92% sequence identity with Pacific walrus CTI, but only 35% identity with BPTI. Structural homology modelling of Cape fur seal CTI and Pacific walrus trypsin based on the model of the second Kunitz domain of human tissue factor pathway inhibitor (TFPI) and porcine trypsin (Protein Data Bank: 1TFX) confirmed that CTI inhibits trypsin in a canonical fashion. Therefore, pinniped CTI may be critical for preventing the proteolytic degradation of immunoglobulins that are passively transferred from mother to young via colostrum and milk. PMID:26639991

  14. Protease inhibitors clitocypin and macrocypin are differentially expressed within basidiomycete fruiting bodies.

    PubMed

    Sabotič, Jerica; Kilaru, Sreedhar; Budič, Maruška; Gašparič, Meti Buh; Gruden, Kristina; Bailey, Andy M; Foster, Gary D; Kos, Janko

    2011-10-01

    Clitocypin and macrocypin are cysteine protease inhibitors of the mycocypin family which is unique to basidiomycetes. We have established that Clitocybe nebularis and Macrolepiota procera each contain genes for both macrocypin and clitocypin. Both are expressed in M. procera but only clitocypin in C. nebularis. Further analysis of mycocypin expression at the mRNA and protein levels in mature fruiting bodies of M. procera revealed that clitocypin is expressed evenly throughout the fruiting body, while the level of expression of macrocypins varies, and, at the protein level, is much higher in the veil fragments and the ring. The expression patterns of various mycocypins were determined in Coprinopsis cinerea, using promoters linked to a reporter gene. The expression profile of the clitocypin promoter was similar to that of the constitutive promoter gpdII from Agaricus bisporus, while that of the macrocypin 4 promoter was limited to the outer edges of the fruiting body throughout development. In addition, the activity of the macrocypin 3 promoter was different, indicating different regulation of expression for different macrocypin genes. The complex, tissue specific expression patterns for mycocypin genes suggest different biological roles for the products, either in regulation of endogenous proteases or in defense against pathogens or predators. PMID:21672601

  15. Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage

    PubMed Central

    Yokoyama, Satoru; Feige, Erez; Poling, Laura L.; Levy, Carmit; Widlund, Hans R.; Khaled, Mehdi; Kung, Andrew L.; Fisher, David E.

    2013-01-01

    Summary Melanoma incidence continues to rise at an alarming rate while effective systemic therapies remain very limited. Microphthalmia-associated transcription factor (MITF) is required for development of melanocytes and is an amplified oncogene in a fraction of human melanomas. MITF also plays an oncogenic role in human clear cell sarcomas, which typically exhibit melanoma-like features. Although pharmacologic suppression of MITF is of potential interest in a variety of clinical settings, it is not known to contain intrinsic catalytic activity capable of direct small molecule inhibition. An alternative drug-targeting strategy is to identify and interfere with lineage-restricted mechanisms required for its expression. Here, we report that multiple HDAC-inhibitor drugs potently suppress MITF expression in melanocytes, melanoma and clear cell sarcoma cells. Although HDAC inhibitors may affect numerous cellular targets, we observed suppression of skin pigmentation by topical drug application as well as evidence of anti-melanoma efficacy in vitro and in mouse xenografts. Consequently, HDAC inhibitor drugs are candidates to play therapeutic roles in targeting conditions affecting the melanocyte lineage. PMID:18627530

  16. Cloning and expression of an inhibitor of microbial metalloproteinases from insects contributing to innate immunity

    PubMed Central

    2004-01-01

    The first IMPI (inhibitor of metalloproteinases from insects) was identified in the greater wax moth, Galleria mellonella [Wedde, Weise, Kopacek, Franke and Vilcinskas (1998) Eur. J. Biochem. 255, 535–543]. Here we report cloning and expression of a cDNA coding for this IMPI. The IMPI mRNA was identified among the induced transcripts from a subtractive and suppressive PCR analysis after bacterial challenge of G. mellonella larvae. Induced expression of the IMPI during a humoral immune response was confirmed by real-time PCR, which documented up to 500 times higher amounts of IMPI mRNA in immunized larvae in comparison with untreated ones. The IMPI sequence shares no similarity with those of tissue inhibitors of metalloproteinases or other natural inhibitors of metalloproteinases, and the recombinant IMPI specifically inhibits thermolysin-like metalloproteinases, but not matrix metalloproteinases. These results support the hypothesis that the IMPI represents a novel type of immune-related protein which is induced and processed during the G. mellonella humoral immune response to inactivate pathogen-associated thermolysin-like metalloproteinases. PMID:15115439

  17. High-level expression and characterization of two serine protease inhibitors from Trichinella spiralis.

    PubMed

    Zhang, Zhaoxia; Mao, Yixian; Li, Da; Zhang, Yvhan; Li, Wei; Jia, Honglin; Zheng, Jun; Li, Li; Lu, Yixin

    2016-03-30

    Serine protease inhibitors (SPIs) play important roles in tissue homeostasis, cell survival, development, and host defense. So far, SPIs have been identified from various organisms, such as animals, plants, bacteria, poxviruses, and parasites. In this study, two SPIs (Tsp03044 and TspAd5) were identified from the genome of Trichinella spiralis and expressed in Escherichia coli. Sequence analysis revealed that these two SPIs contained essential structural motifs, which were well conserved within the tumor-infiltrating lymphocytes (TIL) and serpin superfamily. Based on protease inhibition assays, the recombinant Tsp03044 showed inhibitory effects on trypsin, α-chymotrypsin, and pepsin, while the recombinant TspAd5 could effectively inhibit the activities of α-chymotrypsin and pepsin. Both these inhibitors showed activity between 28 and 48 °C. The expression levels of the two SPIs were also determined at different developmental stages of the parasite with real-time PCR. Our results indicate that Tsp03044 and TspAd5 are functional serine protease inhibitors. PMID:26921036

  18. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and {beta}1 integrin expression in vitro

    SciTech Connect

    Lluri, Gentian; Langlois, Garret D.; Soloway, Paul D.; Jaworski, Diane M.

    2008-01-01

    Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2{sup -/-} myotube formation. When differentiated in horse serum-containing medium, TIMP-2{sup -/-} myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2{sup -/-} myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with {beta}1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2{sup -/-} myotube size and induces increased MMP-9 activation and decreased {beta}1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on {beta}1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and {beta}1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.

  19. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration

    PubMed Central

    Vo, Nam V.; Hartman, Robert A.; Yurube, Takashi; Jacobs, Lloydine J.; Sowa, Gwendolyn A.; Kang, James D.

    2013-01-01

    BACKGROUND CONTEXT Destruction of extracellular matrix (ECM) leads to intervertebral disc degeneration (IDD), which underlies many spine-related disorders. Matrix metalloproteinases (MMPs), and disintegrins and metalloproteinases with thrombospondin motifs (ADAMTSs) are believed to be the major proteolytic enzymes responsible for ECM degradation in the intervertebral disc (IVD). PURPOSE To summarize the current literature on gene expression and regulation of MMPs, ADAMTSs, and tissue inhibitors of metalloproteinases (TIMPs) in IVD aging and IDD. METHODS A comprehensive literature review of gene expression of MMP, ADAMTS, and TIMP in human IDD and reported studies on regulatory factors controlling their expressions and activities in both human and animal model systems. RESULTS Upregulation of specific MMPs (MMP-1, -2, -3, -7, -8, -10, and -13) and ADAMTS (ADAMTS-1, -4, and -15) were reported in human degenerated IVDs. However, it is still unclear from conflicting published studies whether the expression of ADAMTS-5, the predominant aggrecanase, is increased with IDD. Tissue inhibitors of metalloproteinase-3 is downregulated, whereas TIMP-1 is upregulated in human degenerated IVDs relative to nondegenerated IVDs. Numerous studies indicate that the expression levels of MMP and ADAMTS are modulated by a combination of many factors, including mechanical, inflammatory, and oxidative stress, some of which are mediated in part through the p38 mitogen-activated protein kinase pathway. Genetic predisposition also plays an important role in determining gene expression of MMP-1, -2, -3, and -9. CONCLUSIONS Upregulation of MMP and ADAMTS expression and enzymatic activity is implicated in disc ECM destruction, leading to the development of IDD. Future IDD therapeutics depends on identifying specific MMPs and ADAMTSs whose dysregulation result in pathological proteolysis of disc ECM. PMID:23369495

  20. Definition of a Skp2-c-Myc Pathway to Expand Human Beta-cells

    PubMed Central

    Tiwari, Shiwani; Roel, Chris; Tanwir, Mansoor; Wills, Rachel; Perianayagam, Nidhi; Wang, Peng; Fiaschi-Taesch, Nathalie M.

    2016-01-01

    Type 2 diabetes (T2D) is characterized by insulin resistance and reduced functional β-cell mass. Developmental differences, failure of adaptive expansion and loss of β-cells via β-cell death or de-differentiation have emerged as the possible causes of this reduced β-cell mass. We hypothesized that the proliferative response to mitogens of human β-cells from T2D donors is reduced, and that this might contribute to the development and progression of T2D. Here, we demonstrate that the proliferative response of human β-cells from T2D donors in response to cdk6 and cyclin D3 is indeed dramatically impaired. We show that this is accompanied by increased nuclear abundance of the cell cycle inhibitor, p27kip1. Increasing nuclear abundance of p27kip1 by adenoviral delivery decreases the proliferative response of β-cells from non-diabetic donors, mimicking T2D β-cells. However, while both p27kip1 gene silencing and downregulation by Skp2 overexpression increased similarly the proliferative response of human β-cells, only Skp2 was capable of inducing a significant human β-cell expansion. Skp2 was also able to double the proliferative response of T2D β-cells. These studies define c-Myc as a central Skp2 target for the induction of cell cycle entry, expansion and regeneration of human T2D β-cells. PMID:27380896

  1. [Heterologous expression, purification, and properties of a chymotrypsin inhibitor isolated from potatoes].

    PubMed

    2013-01-01

    The PKPIJ-B gene encoding a chymotrypsin inhibitor from a subfamily of potato Kunitz-type proteinase inhibitors (PKPI) in potatoes (Solanum tuberosum L. cv. Yubilei Zhukova) was cloned into a pET23a vector and then expressed in Escherichia coli. The recombinant PKPIJ-B protein obtained in the inclusion bodies was denatured, purified by high-performance liquid chromatography (HPLC) on Mono Q under denaturing conditions, and renaturated. The renaturated protein was additionally purified using HPLC on DEAE-ToyoPearl. The PKPIJ-B protein efficiently suppressed chymotrypsin activity, had a weaker effect on trypsin, and inhibited the growth and development of phytopathogenic microorganisms affecting potato plants. PMID:23662448

  2. Reduced expression and prognostic implication of inhibitor of growth 4 in human osteosarcoma

    PubMed Central

    ZHAO, DAHANG; LIU, XIANGJIE; ZHANG, YUNGE; DING, ZHAOMING; DONG, FENG; XU, HONGWEI; WANG, BAOXIN; WANG, WENBO

    2016-01-01

    Osteosarcoma is the most prevalent type of primary malignant bone tumor. Inhibitor of growth 4 (ING4) has been demonstrated to function as a tumor suppressor through multiple pathways, and is its expression is understood to be suppressed or reduced in various malignancies. The present study aimed to investigate the expression of ING4 and to determine its prognostic value in osteosarcoma tissue. Formalin-fixed, paraffin-embedded tissue microarrays were analyzed, and contained 41 osteosarcoma specimens and 11 normal bone tissue specimens with duplicate cores. ING4 expression was evaluated by immunohistochemical staining. The association between ING4 expression in the osteosarcoma and normal bone tissues was analyzed, in addition to the association between ING4 expression and Enneking classification of the osteosarcoma tissues. A significant statistical difference was observed in the ING4 immunohistochemical staining score between the osteosarcoma and normal bone tissues (P<0.001). Furthermore, a significant negative correlation was detected between the ING4 immunohistochemical staining scores and the Enneking classification results of the 41 osteosarcoma tissues (P=0.002). Low expression of ING4 was observed in the osteosarcoma specimens, and this reduced expression of ING4 was negatively correlated with Enneking classification. Thus, the results of the present study indicate that ING4 may serve as a promising prognostic marker in osteosarcoma. PMID:27073567

  3. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-01

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. PMID:26721445

  4. The Novel ATP-Competitive MEK/Aurora Kinase Inhibitor BI-847325 Overcomes Acquired BRAF Inhibitor Resistance through Suppression of Mcl-1 and MEK Expression.

    PubMed

    Phadke, Manali S; Sini, Patrizia; Smalley, Keiran S M

    2015-06-01

    Resistance to BRAF inhibitors is a major clinical problem. Here, we evaluate BI-847325, an ATP-competitive inhibitor of MEK and Aurora kinases, in treatment-naïve and drug-resistant BRAF-mutant melanoma models. BI-847325 potently inhibited growth and survival of melanoma cell lines that were both BRAF inhibitor naïve and resistant in 2D culture, 3D cell culture conditions, and in colony formation assays. Western blot studies showed BI-847325 to reduce expression of phospho-ERK and phospho-histone 3 in multiple models of vemurafenib resistance. Mechanistically, BI-847325 decreased the expression of MEK and Mcl-1 while increasing the expression of the proapoptotic protein BIM. Strong suppression of MEK expression was observed after 48 hours of treatment, with no recovery following >72 hours of washout. siRNA-mediated knockdown of Mcl-1 enhanced the effects of BI-847325, whereas Mcl-1 overexpression reversed this in both 2D cell culture and 3D spheroid melanoma models. In vivo, once weekly BI-847325 (70 mg/kg) led to durable regression of BRAF-inhibitor naïve xenografts with no regrowth seen (>65 days of treatment). In contrast, treatment with the vemurafenib analog PLX4720 was associated with tumor relapse at >30 days. BI-847325 also suppressed the long-term growth of xenografts with acquired PLX4720 resistance. Analysis of tumor samples revealed BI-847325 to induce apoptosis associated with suppression of phospho-ERK, total MEK, phospho-Histone3, and Mcl-1 expression. Our studies indicate that BI-847325 is effective in overcoming BRAF inhibitor resistance and has long-term inhibitory effects upon BRAF-mutant melanoma in vivo, through a mechanism associated with the decreased expression of both MEK and Mcl-1. PMID:25873592

  5. The novel ATP-competitive MEK/Aurora kinase inhibitor BI-847325 overcomes acquired BRAF inhibitor resistance through suppression of Mcl-1 and MEK expression

    PubMed Central

    Phadke, Manali S.; Sini, Patrizia; Smalley, Keiran S. M.

    2015-01-01

    Resistance to BRAF inhibitors is a major clinical problem. Here we evaluate BI-847325, an ATP-competitive inhibitor of MEK and Aurora kinases, in treatment-naïve and drug-resistant BRAF-mutant melanoma models. BI-847325 potently inhibited growth and survival of melanoma cell lines that were both BRAF inhibitor naïve and resistant in 2D culture, 3D cell culture conditions and in colony formation assays. Western blot studies showed BI-847325 to reduce expression of phospho-ERK and phospho-histone 3 in multiple models of vemurafenib resistance. Mechanistically, BI-847325 decreased the expression of MEK and Mcl-1 while increasing the expression of the pro-apoptotic protein BIM. Strong suppression of MEK expression was observed after 48 h of treatment, with no recovery following >72 h of washout. siRNA mediated knockdown of Mcl-1 enhanced the effects of BI-847325, whereas Mcl-1 overexpression reversed this in both 2D cell culture and 3D spheroid melanoma models. In vivo, once weekly BI-847325 (70 mg/kg) led to durable regression of BRAF-inhibitor naive xenografts with no regrowth seen (>65 days of treatment). In contrast, treatment with the vemurafenib analog PLX4720 was associated with tumor relapse at >30 days. BI-847325 also suppressed the long-term growth of xenografts with acquired PLX4720 resistance. Analysis of tumor samples revealed BI-847325 to induce apoptosis associated with suppression of phospho-ERK, total MEK, phospho-Histone3 and Mcl-1 expression. Our studies indicate that BI-847325 is effective in overcoming BRAF inhibitor resistance and has long-term inhibitory effects upon BRAF-mutant melanoma in vivo, through a mechanism associated with the decreased expression of both MEK and Mcl-1. PMID:25873592

  6. Time-dependent matrix metalloproteinases and tissue inhibitor of metalloproteinases expression change in fusarium solani keratitis

    PubMed Central

    Li, Qian; Gao, Xin-Rui; Cui, Hong-Ping; Lang, Li-Li; Xie, Xiu-Wen; Chen, Qun

    2016-01-01

    AIM To investigate matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) expression during the progress of fusarium solani (F.solani) keratitis in a rat model. METHODS A rat model of F.solani keratitis was produced using corneal scarification and a hand-made contact lens. MMPs and TIMPs expressiond were explored in this rat model of F.solani keratitis using real-time polymerase chain reaction (PCR) and DIF. GM6001 (400 µmol/mL) was used to treat infected corneas. The keratitis duration, amount and area of corneal neovascularization (CNV) were evaluated. RESULTS MMP-3 expression was 66.3 times higher in infected corneas compared to normal corneas. MMP-8, -9, and -13 expressions were significantly upregulated in the mid-period of the infection, with infected-to-normal ratios of 4.03, 39.86, and 5.94, respectively. MMP-2 and -7 expressions increased in the late period, with the infected-to-normal ratios of 5.94 and 16.22, respectively. TIMP-1 expression was upregulated in the early period, and it was 43.17 times higher in infected compared to normal corneas, but TIMP-2, -3, and -4 expressions were mildly downregulated or unchanged. The results of DIF were consistent with the result of real-time PCR. GM6001, a MMPs inhibitor, decreased the duration of F.solani infection and the amount and area of CNV. CONCLUSION MMPs and TIMPs contributed into the progress of F.solani keratitis. PMID:27162721

  7. Protein Kinase C alpha (PKCα) dependent signaling mediates endometrial cancer cell growth and tumorigenesis

    PubMed Central

    Haughian, James M.; Reno, Elaine M.; Thorne, Alicia M.; Bradford, Andrew P.

    2009-01-01

    Endometrial cancer is the most common invasive gynecologic malignancy, yet molecular mechanisms and signaling pathways underlying its etiology and pathophysiology remain poorly characterized. We sought to define a functional role for the protein kinase C (PKC) isoform, PKCα, in an established cell model of endometrial adenocarcinoma. Ishikawa cells depleted of PKCα protein grew slower, formed fewer colonies in anchorage-independent growth assays and exhibited impaired xenograft tumor formation in nude mice. Consistent with impaired growth, PKCα knockdown increased levels of the cyclin dependent kinase (CDK) inhibitors p21Cip1/WAF1 (p21) and p27Kip1 (p27). Despite the absence of functional phosphatase and tensin homologue (PTEN) protein in Ishikawa cells, PKCα knockdown reduced Akt phosphorylation at serine 473 and concomitantly inhibited phosphorylation of the Akt target, glycogen synthase kinase-3β (GSK-3β). PKCα knockdown also resulted in decreased basal ERK phosphorylation and attenuated ERK activation following EGF stimulation. p21 and p27 expression was not increased by treatment of Ishikawa cells with ERK and Akt inhibitors, suggesting PKCα regulates CDK expression independently of Akt and ERK. Immunohistochemical analysis of grade 1 endometrioid adenocarcinoma revealed aberrant PKCα expression, with foci of elevated PKCα staining, not observed in normal endometrium. These studies demonstrate a critical role for PKCα signaling in endometrial tumorigenesis by regulating expression of CDK inhibitors p21 and p27 and activation of Akt and ERK dependent proliferative pathways. Thus, targeting PKCα may provide novel therapeutic options in endometrial tumors. PMID:19672862

  8. Tissue inhibitor of metalloproteinase-1 and -2 RNA expression in rat and human liver fibrosis.

    PubMed Central

    Herbst, H.; Wege, T.; Milani, S.; Pellegrini, G.; Orzechowski, H. D.; Bechstein, W. O.; Neuhaus, P.; Gressner, A. M.; Schuppan, D.

    1997-01-01

    The remodeling of extracellular matrix during chronic liver disease may partially be attributed to altered activity of matrix metalloproteinases and their tissue inhibitors (TIMPs). Expression of TIMP-1 and -2 was studied by in situ hybridization combined with immunohistochemistry in rat (acute and chronic carbon tetrachloride intoxication and secondary biliary fibrosis) and human livers and on isolated rat hepatic stellate cells. TIMP-1 and -2 transcripts appeared in rat livers within 1 to 3 hours after intoxication, pointing to a role in the protection against accidental activation of matrix metalloproteinases, and were present at high levels in all fibrotic rat and human livers predominantly in stellate cells. TIMP-2 RNA distribution largely matched with previously reported patterns of matrix metalloproteinase-2 (72-kd gelatinase) expression, suggesting generation of a TIMP-2/matrix metalloproteinase-2 complex (large inhibitor of metalloproteinases). Isolated stellate cells expressed TIMP-1 and -2 RNA. Addition of transforming growth factor-beta 1 enhanced TIMP-1 and matrix metalloproteinase-2 RNA levels in vitro, whereas TIMP-2-specific signals were reduced, likely to result in a stoichiometric excess of matrix-metalloproteinase-2 over TIMP-2. In the context of previous demonstrations of transforming growth factor-beta 1 and matrix metalloproteinase-2 in vivo, these patterns suggest an intrahepatic environment permitting only limited matrix degradation, ultimately resulting in redistribution of extracellular matrix with relative accumulation of collagen type 1. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9137090

  9. Expression of matrix metalloproteinases and their inhibitors in the woodchuck model of hepatocellular carcinoma.

    PubMed

    Ochoa-Callejero, Laura; Toshkov, Ilia; Menne, Stephan; Martínez, Alfredo

    2013-07-01

    Matrix metalloproteinases (MMPs) play a central role in tumor invasion and metastasis. Increased expression of MMPs occurs during development of hepatocellular carcinoma (HCC) in humans following infection with hepatitis B virus (HBV). Woodchucks are used as an animal model for hepadnavirus-induced HCC. All woodchucks infected chronically with woodchuck hepatitis virus (WHV), a virus that is closely related to HBV, develop HCC. In the present study MMPs and related molecules were investigated in woodchucks to better understand the mechanisms of extracellular matrix remodeling in HCC. Three groups of samples were studied: liver and HCC tissues from animals infected with WHV and age- and gender-matched normal liver from animals not infected with WHV. New partial gene sequences for woodchuck MMP-2, MMP-7, and MMP-9 as well as their inhibitors NGAL, TIMP-1, and TIMP-2 were identified and used for determination of expression levels in liver and HCC by qRT-PCR. Compared to liver of WHV-naïve woodchucks, high levels of MMP-1, MMP-2, MMP-7, NGAL, and TIMP-1 were detected in liver of animals infected with WHV. However, no differences were found for TIMP-2. MMP-9 expression was higher in HCC than in liver of animals not infected with WHV. Immunohistochemical staining demonstrated that MMP-9 immunoreactivity was most intense in HCC, correlating with the progression of liver disease. Upregulation of MMP-9 in HCC was confirmed by Western blotting and zymography analysis. Furthermore, the activity of woodchuck MMPs was suppressed by BiPS, a common inhibitor of mammalian MMPs. These results suggest the use of MMP inhibitors as a potential HCC treatment strategy that could be explored in woodchucks. PMID:23595580

  10. Plasminogen activator and serine protease inhibitor-E2 (protease nexin-1) expression by bovine granulosa cells in vitro.

    PubMed

    Cao, Mingju; Sahmi, Malha; Lussier, Jacques G; Price, Christopher A

    2004-09-01

    Remodeling of the extracellular matrix (ECM) occurs during antral follicle growth, and the plasminogen activators (PA) have been implicated in this process in rodents. In the present study, we measured the expression and secretion of PA and the PA inhibitor protease nexin-1 (SerpinE2) in antral and basal bovine granulosa cells from small (<6 mm), medium (6-8 mm), and large follicles (>8 mm) during 6 days of culture in serum-free medium. Casein zymography revealed that the cells secreted predominantly tissue-type PA (tPA) with urokinase (uPA) being associated mainly with cell lysates, and Western blot demonstrated that the cells secreted SerpinE2. Overall, secreted tPA activity was higher in cultures of cells from small follicles compared with large follicles, and secreted SerpinE2 levels were higher in cultures of cells from large follicles. In cultures of cells from small follicles, secreted tPA levels increased with time of culture for antral but not basal cells, and SerpinE2 levels increased with time for basal but not antral cells. In cultures of granulosa cells from large follicles, tPA activity increased significantly with time of culture, whereas SerpinE2 levels decreased. Cell-associated uPA activity decreased with time in cells from medium and large follicles. Reverse-transcription polymerase chain reaction and Northern blot analysis showed that SerpinE2 secretion was regulated largely at the transcriptional level, whereas tPA secretion was not. The data suggest stage-dependent regulation of granulosa cell PA and SerpinE2 production, consistent with a role in ECM remodeling during follicle growth. PMID:15128599

  11. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  12. Matrix metalloproteinase-2 regulates the expression of tissue inhibitor of matrix metalloproteinase-2.

    PubMed

    Kimura, Kaoru; Cheng, Xian Wu; Nakamura, Kae; Inoue, Aiko; Hu, Lina; Song, Haizhen; Okumura, Kenji; Iguchi, Akihisa; Murohara, Toyoaki; Kuzuya, Masafumi

    2010-11-01

    1. Matrix metalloproteinases (MMP) are associated with the vascular remodelling seen in atherosclerosis and aneurysm. The activation and activity of MMP-2 are regulated by the intrinsic tissue inhibitor of MMP-2 (TIMP-2). The aim of the present study was to examine whether, conversely, MMP-2 can affect the gene and protein expression of TIMP-2. 2. In the present study, we examined the mRNA and protein expression of MMP-2 and TIMP-2 in cultured smooth muscle cells (SMC) from the aortas of MMP-2(+/+) and MMP-2(-/-) mice. We also examined the roles of MMP-2 in SMC cellular events. 3. Western blotting showed that less TIMP-2 protein was present in the conditioned medium of MMP-2(-/-) SMC than in that of MMP-2(+/+) SMC. Real-time reverse transcription polymerase chain reaction analysis showed that MMP-2 deficiency reduced TIMP-2 mRNA expression in SMC. Recombinant MMP-2 enhanced the expression of TIMP-2 protein in cultured SMC from MMP-2(-/-) mice. Furthermore, a siRNA targeting MMP-2 impaired the gene and protein expression of MMP-2 in cultured SMC from MMP-2(+/+) mice. MMP-2 deficiency impaired SMC invasion, but not their proliferation, adhesion or migration. 4. Our findings suggest that MMP-2 is likely to be responsible, at least in part, for regulating TIMP-2 expression and is thus a potential target, in addition to TIMP-2, for therapeutics aimed at preventing cardiovascular remodelling in response to injury. PMID:20738326

  13. Lhx4 Deficiency: Increased Cyclin-Dependent Kinase Inhibitor Expression and Pituitary Hypoplasia

    PubMed Central

    Gergics, Peter; Brinkmeier, Michelle L.

    2015-01-01

    Defects in the Lhx4, Lhx3, and Pitx2 genes can cause combined pituitary hormone deficiency and pituitary hypoplasia in both humans and mice. Not much is known about the mechanism underlying hypoplasia in these mutants beyond generally increased cell death and poorly maintained proliferation. We identified both common and unique abnormalities in developmental regulation of key cell cycle regulator gene expression in each of these three mutants. All three mutants exhibit reduced expression of the proliferative marker Ki67 and the transitional marker p57. We discovered that expression of the cyclin-dependent kinase inhibitor 1a (Cdkn1a or p21) is expanded dorsally in the pituitary primordium of both Lhx3 and Lhx4 mutants. Uniquely, Lhx4 mutants exhibit reduced cyclin D1 expression and have auxiliary pouch-like structures. We show evidence for indirect and direct effects of LHX4 on p21 expression in αT3-1 pituitary cells. In summary, Lhx4 is necessary for efficient pituitary progenitor cell proliferation and restriction of p21 expression. PMID:25668206

  14. Vitrification affects the expression of matrix metalloproteinases and their tissue inhibitors of mouse ovarian tissue

    PubMed Central

    Asadzadeh, Reza; Khosravi, Shima; Zavareh, Saeed; Ghorbanian, Mohammad Taghi; Paylakhi, Seyed Hassan; Mohebbi, Seyed Reza

    2016-01-01

    Background: One of the most major obstacles of ovarian tissue vitrification is suboptimal developmental competence of follicles. Matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) and their tissue inhibitors TIMP-1 and TIMP-2 are involved in the remodeling of the extracellular matrix in the ovaries. Objective: This study aimed to evaluate the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 genes in the preantral follicles derived from vitrified mouse ovaries. Materials and Methods: In this experimental study, the gene expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 in the isolated preantral follicles derived from fresh and vitrified ovaries of 14-16 days old female mice through real time qRT-PCR was evaluated. Developmental parameters, including survival rate, growth, antrum formation and metaphase II oocytes were also analyzed. Results: The developmental parameters of fresh preantral follicles were significantly higher than vitrified preantral follicles. The TIMP-1 and MMP-9 expression levels showed no differences between fresh and vitrified preantral follicles (p=0.22, p=0.11 respectively). By contrast, TIMP-2 expression significantly decreased (p=0.00) and MMP-2 expression increased significantly (p=0.00) in vitrified preantral follicles compared with to fresh ones. Conclusion: Changes in expression of MMP-2 and TIMP-2 after ovarian tissues vitrification is partially correlated with decrease in follicle development. PMID:27294215

  15. Increased Expression of miR-23a Mediates a Loss of Expression in the RAF Kinase Inhibitor Protein RKIP

    PubMed Central

    Hatzl, Stefan; Geiger, Olivia; Kuepper, Maja Kim; Caraffini, Veronica; Seime, Till; Furlan, Tobias; Nussbaumer, Erika; Wieser, Rotraud; Pichler, Martin; Scheideler, Marcel; Nowek, Katarzyna; Jongen-Lavrencic, Mojca; Quehenberger, Franz; Wölfler, Albert; Troppmair, Jakob; Sill, Heinz; Zebisch, Armin

    2016-01-01

    RAF kinase inhibitor protein (RKIP) is a seminal regulator of intracellular signaling and exhibits both antimetastatic and antitumorigenic properties. Decreased expression of RKIP has been described in several human malignancies, including acute myelogenous leukemia (AML). As the mechanisms leading to RKIP loss in AML are still unclear, we aimed to analyze the potential involvement of miRNAs within this study. miRNA microarray and qPCR data of more than 400 AML patient specimens revealed correlation between decreased expression of RKIP and increased expression of miR-23a, a member of the miR-23a/27a/24-2 cluster. In functional experiments, overexpression of miR-23a decreased RKIP mRNA and protein expression, whereas miR-23a inhibition caused the opposite effect. By using an RKIP 3′-untranslated region luciferase reporter construct with and without mutation or deletion of the putative miR-23a–binding site, we could show that RKIP modulation by miR-23a is mediated via direct binding to this region. Importantly, miR-23a overexpression induced a significant increase of proliferation in hematopoietic cells. Simultaneous transfection of an RKIP expression construct lacking the miR-23a–binding sites reversed this phenotype, indicating that this effect is truly mediated via downregulation of RKIP. Finally, by analyzing more than 4,300 primary patient specimens via database retrieval from The Cancer Genome Atlas, we could highlight the importance of the miR-23a/RKIP axis in a broad range of human cancer entities. In conclusion, we have identified miR-23a as a negative regulator of RKIP expression in AML and have provided data that suggest the importance of our observation beyond this tumor entity. PMID:27197200

  16. Increased Expression of miR-23a Mediates a Loss of Expression in the RAF Kinase Inhibitor Protein RKIP.

    PubMed

    Hatzl, Stefan; Geiger, Olivia; Kuepper, Maja Kim; Caraffini, Veronica; Seime, Till; Furlan, Tobias; Nussbaumer, Erika; Wieser, Rotraud; Pichler, Martin; Scheideler, Marcel; Nowek, Katarzyna; Jongen-Lavrencic, Mojca; Quehenberger, Franz; Wölfler, Albert; Troppmair, Jakob; Sill, Heinz; Zebisch, Armin

    2016-06-15

    RAF kinase inhibitor protein (RKIP) is a seminal regulator of intracellular signaling and exhibits both antimetastatic and antitumorigenic properties. Decreased expression of RKIP has been described in several human malignancies, including acute myelogenous leukemia (AML). As the mechanisms leading to RKIP loss in AML are still unclear, we aimed to analyze the potential involvement of miRNAs within this study. miRNA microarray and qPCR data of more than 400 AML patient specimens revealed correlation between decreased expression of RKIP and increased expression of miR-23a, a member of the miR-23a/27a/24-2 cluster. In functional experiments, overexpression of miR-23a decreased RKIP mRNA and protein expression, whereas miR-23a inhibition caused the opposite effect. By using an RKIP 3'-untranslated region luciferase reporter construct with and without mutation or deletion of the putative miR-23a-binding site, we could show that RKIP modulation by miR-23a is mediated via direct binding to this region. Importantly, miR-23a overexpression induced a significant increase of proliferation in hematopoietic cells. Simultaneous transfection of an RKIP expression construct lacking the miR-23a-binding sites reversed this phenotype, indicating that this effect is truly mediated via downregulation of RKIP. Finally, by analyzing more than 4,300 primary patient specimens via database retrieval from The Cancer Genome Atlas, we could highlight the importance of the miR-23a/RKIP axis in a broad range of human cancer entities. In conclusion, we have identified miR-23a as a negative regulator of RKIP expression in AML and have provided data that suggest the importance of our observation beyond this tumor entity. Cancer Res; 76(12); 3644-54. ©2016 AACR. PMID:27197200

  17. Histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide attenuates plasminogen activator inhibitor-1 expression in human pleural mesothelial cells.

    PubMed

    Chung, Chi-Li; Sheu, Joen-Rong; Chen, Wei-Lin; Chou, Yung-Chen; Hsiao, Che-Jen; Hsiao, Shih-Hsin; Hsu, Ming-Jen; Cheng, Yu-Wen; Hsiao, George

    2012-04-01

    Plasminogen activator inhibitor-1 (PAI-1), primarily up-regulated by transforming growth factor (TGF)-β, is essential in the development of fibrosis. Histone deacetylase (HDAC) was shown to modulate gene expression and fibrogenesis in various tissues. However, the implications of HDAC in terms of PAI-1 expression and pleural fibrosis remain unclear. In this study, we examined the effects of m-carboxycinnamic acid bis-hydroxamide (CBHA), a hybrid-polar HDAC inhibitor, on the TGF-β1-induced expression of PAI-1 in a human pleural mesothelial cell line (MeT-5A). MeT-5A cells were treated with TGF-β1 in the presence or absence of CBHA. We assayed the expression and stability of PAI-1 mRNA and protein, PAI-1 promoter activity, the activation of Smad signaling, the protein-protein interactions of Smads with transcriptional cofactors Sp1 and coactivator p300, and the expression of the mRNA-stabilizing protein nucleolin. The results indicate that CBHA significantly inhibited TGF-β1-induced PAI-1 mRNA and protein expression, and attenuated PAI-1 promoter activity in MeT-5A cells. CBHA abrogated TGF-β1-induced Smad4 nuclear translocation, but not Smad2/3 activation. Furthermore, the association of Smad4 with p300, but not with Sp1, was disrupted by CBHA. Alternatively, CBHA suppressed TGF-β1-induced nucleolin expression, and thereby destabilized PAI-1 mRNA and decreased PAI-1 protein concentrations. These findings suggest that the inhibition of HDAC activity by CBHA may attenuate PAI-1 expression through the modulation of cellular signaling at multiple levels. Given the down-regulating effect of CBHA on PAI-1 expression, HDAC inhibitors should be tested further in animal models as potential therapeutic agents for pleural fibrosis. PMID:22033265

  18. Histone deacetylase inhibitors and transforming growth factor-beta induce 15-hydroxyprostaglandin dehydrogenase expression in human lung adenocarcinoma cells.

    PubMed

    Tong, Min; Ding, Yunfei; Tai, Hsin-Hsiung

    2006-09-14

    Histone deacetylase (HDAC) inhibitors have been actively exploited as potential anticancer agents. To identify gene targets of HDAC inhibitors, we found that HDAC inhibitors such as sodium butyrate, scriptaid, apicidin and oxamflatin induced the expression of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a potential cyclooxygenase-2 (COX-2) antagonist and tumor suppressor, in a time and concentration dependent manner in A549 and H1435 lung adenocarcinoma cells. Detailed analyses indicated that HDAC inhibitors activated the 15-PGDH promoter-luciferase reporter construct in transfected A549 cells. A representative HDAC inhibitor, scriptaid, and its negative structural analog control, nullscript, were further evaluated at the chromatin level. Scriptaid but not nullscript induced a significant accumulation of acetylated histones H3 and H4 which were associated with the 15-PGDH promoter as determined by chromatin immunoprecipitation assay. Transforming growth factor-beta1 (TGF-beta1) also induced the expression of 15-PGDH in a time and concentration dependent manner in A549 and H1435 cells. Induction of 15-PGDH expression by TGF-beta1 was synergistically stimulated by the addition of Wnt3A which was inactive by itself. However, combination of TGF-beta and an HDAC inhibitor, scriptaid, only resulted in an additive effect. Together, our results indicate that 15-PGDH is one of the target genes that HDAC inhibitors and TGF-beta may induce to exhibit tumor suppressive effects. PMID:16844092

  19. The Calpain Inhibitor MDL28170 Induces the Expression of Apoptotic Markers in Leishmania amazonensis Promastigotes

    PubMed Central

    Marinho, Fernanda A.; Gonçalves, Keyla C. S.; Oliveira, Simone S. C.; Gonçalves, Diego S.; Matteoli, Filipe P.; Seabra, Sergio H.; Oliveira, Ana Carolina S.; Bellio, Maria; Oliveira, Selma S.; Souto-Padrón, Thaïs; d'Avila-Levy, Claudia M.; Santos, André L. S.; Branquinha, Marta H.

    2014-01-01

    Background Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals. Methodology/Principal Findings In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM) and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis. Conclusions/Significance The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the investigation of the

  20. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin.

    PubMed

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng; Hwang, Jae Sam; Seok, Heon; Choi, Hyemin; Lee, Dong Gun; Kim, Jae Il; Kim, Ho

    2014-06-01

    We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH2-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson's disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27(Kip1) protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27(Kip1) significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27(Kip1) degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin. PMID:24796676

  1. Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf.

    PubMed

    Samadani, Ramin; Zhang, Jun; Brophy, Amanda; Oashi, Taiji; Priyakumar, U Deva; Raman, E Prabhu; St John, Franz J; Jung, Kwan-Young; Fletcher, Steven; Pozharski, Edwin; MacKerell, Alexander D; Shapiro, Paul

    2015-05-01

    Constitutive activation of the extracellular-signal-regulated kinases 1 and 2 (ERK1/2) are central to regulating the proliferation and survival of many cancer cells. The current inhibitors of ERK1/2 target ATP binding or the catalytic site and are therefore limited in their utility for elucidating the complex biological roles of ERK1/2 through its phosphorylation and regulation of over 100 substrate proteins. To overcome this limitation, a combination of computational and experimental methods was used to identify low-molecular-mass inhibitors that are intended to target ERK1/2 substrate-docking domains and selectively interfere with ERK1/2 regulation of substrate proteins. In the present study, we report the identification and characterization of compounds with a thienyl benzenesulfonate scaffold that were designed to inhibit ERK1/2 substrates containing an F-site or DEF (docking site for ERK, FXF) motif. Experimental evidence shows the compounds inhibit the expression of F-site containing immediate early genes (IEGs) of the Fos family, including c-Fos and Fra1, and transcriptional regulation of the activator protein-1 (AP-1) complex. Moreover, this class of compounds selectively induces apoptosis in melanoma cells containing mutated BRaf and constitutively active ERK1/2 signalling, including melanoma cells that are inherently resistant to clinically relevant kinase inhibitors. These findings represent the identification and initial characterization of a novel class of compounds that inhibit ERK1/2 signalling functions and their potential utility for elucidating ERK1/2 and other signalling events that control the growth and survival of cancer cells containing elevated ERK1/2 activity. PMID:25695333

  2. Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf

    PubMed Central

    Samadani, Ramin; Zhang, Jun; Brophy, Amanda; Oashi, Taiji; Priyakumar, U. Deva; Raman, E. Prabhu; St John, Franz J.; Jung, Kwan-Young; Fletcher, Steven; Pozharski, Edwin; MacKerell, Alexander D.; Shapiro, Paul

    2015-01-01

    Constitutive activation of the extracellular-signal-regulated kinases 1 and 2 (ERK1/2) are central to regulating the proliferation and survival of many cancer cells. The current inhibitors of ERK1/2 target ATP binding or the catalytic site and are therefore limited in their utility for elucidating the complex biological roles of ERK1/2 through its phosphorylation and regulation of over 100 substrate proteins. To overcome this limitation, a combination of computational and experimental methods was used to identify low-molecular-mass inhibitors that are intended to target ERK1/2 substrate-docking domains and selectively interfere with ERK1/2 regulation of substrate proteins. In the present study, we report the identification and characterization of compounds with a thienyl benzenesulfonate scaffold that were designed to inhibit ERK1/2 substrates containing an F-site or DEF (docking site for ERK, FXF) motif. Experimental evidence shows the compounds inhibit the expression of F-site containing immediate early genes (IEGs) of the Fos family, including c-Fos and Fra1, and transcriptional regulation of the activator protein-1 (AP-1) complex. Moreover, this class of compounds selectively induces apoptosis in melanoma cells containing mutated BRaf and constitutively active ERK1/2 signalling, including melanoma cells that are inherently resistant to clinically relevant kinase inhibitors. These findings represent the identification and initial characterization of a novel class of compounds that inhibit ERK1/2 signalling functions and their potential utility for elucidating ERK1/2 and other signalling events that control the growth and survival of cancer cells containing elevated ERK1/2 activity. PMID:25695333

  3. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair.

    PubMed

    Madlener, M; Parks, W C; Werner, S

    1998-07-10

    During cutaneous wound healing a number of migratory and remodeling events occur that require the action of matrix metalloproteinases (MMPs) and their natural inhibitors (TIMPs). In this study, we analyzed the temporal and spatial expression patterns of these molecules during the healing of murine excisional skin wounds. Our data imply that defined phases of repair rely on distinct repertoires of MMP activity and TIMP counterregulation. Reepithelialization was found to be associated with active production of collagenase, 92-kDa gelatinase, and stromelysins-1 and -2 by distinct subpopulations of keratinocytes at the migrating border. Notably, no TIMP transcripts were expressed in the epidermis, but TIMP-1 expression in the wound colocalized with expression of collagenase, 92-kDa gelatinase, and stromelysin-1, albeit in distinct cells. Concomitant with the formation of an extensive hyperproliferative epithelium, TIMP-1 transcripts accumulated at the mesenchymal/epidermal border of the granulation tissue. During later phases of wound repair, we observed an increase in 72-kDa gelatinase and MT1-MMP expression, whereby the transcripts of these colocalizing MMPs were detected exclusively and at high levels in the granulation tissue. At completion of reepithelialization, the expression levels of the MMPs and TIMP-1 seen in epidermal and dermal compartments declined to near-basal levels, whereas the macrophage-specific metalloelastase (MME) reached maximum expression. In reepithelialized wound tissue, MME transcripts were detected in deep layers of reconstituted dermis and seemed to cluster around vascular structures. Systemic glucocorticoid treatment, which is known to result in impaired wound healing, led to a nearly complete shut-off of MME expression. These observations imply an additional role of macrophage-related proteolysis, independent of its classical roles during earlier, inflammatory phases of cutaneous wound repair. PMID:9665817

  4. The histone deacetylase inhibitor Entinostat enhances polymer-mediated transgene expression in cancer cell lines.

    PubMed

    Elmer, Jacob J; Christensen, Matthew D; Barua, Sutapa; Lehrman, Jennifer; Haynes, Karmella A; Rege, Kaushal

    2016-06-01

    Eukaryotic cells maintain an immense amount of genetic information by tightly wrapping their DNA around positively charged histones. While this strategy allows human cells to maintain more than 25,000 genes, histone binding can also block gene expression. Consequently, cells express histone acetyl transferases (HATs) to acetylate histone lysines and release DNA for transcription. Conversely, histone deacetylases (HDACs) are employed for restoring the positive charge on the histones, thereby silencing gene expression by increasing histone-DNA binding. It has previously been shown that histones bind and silence viral DNA, while hyperacetylation of histones via HDAC inhibition restores viral gene expression. In this study, we demonstrate that treatment with Entinostat, an HDAC inhibitor, enhances transgene (luciferase) expression by up to 25-fold in human prostate and murine bladder cancer cell lines when used with cationic polymers for plasmid DNA delivery. Entinostat treatment altered cell cycle progression, resulting in a significant increase in the fraction of cells present in the G0/G1 phase at low micromolar concentrations. While this moderate G0/G1 arrest disappeared at higher concentrations, a modest increase in the fraction of apoptotic cells and a decrease in cell proliferation were observed, consistent with the known anticancer effects of the drug. DNase accessibility studies revealed no significant change in plasmid transcriptional availability with Entinostat treatment. However, quantitative PCR studies indicated that Entinostat treatment, at the optimal dose for enhancing transgene expression, led to an increase in the amount of plasmid present in the nucleus in two cancer cell lines. Taken together, our results show that Entinostat enhances polymer- mediated transgene expression and can be useful in applications related to transient protein expression in mammalian cells. Biotechnol. Bioeng. 2016;113: 1345-1356. © 2015 Wiley Periodicals, Inc. PMID

  5. Different Resistance-Training Regimens Evoked a Similar Increase in Myostatin Inhibitors Expression.

    PubMed

    Santos, A R; Lamas, L; Ugrinowitsch, C; Tricoli, V; Miyabara, E H; Soares, A G; Aoki, M S

    2015-08-01

    The aim of the present study was to investigate the effect of different resistance-training regimens (S or P) on the expression of genes related to the MSTN signaling pathway in physically-active men. 29 male subjects with at least 2 years of experience in strength training were assigned to either a strength-training group (S; n=11) or a power-training group (P; n=11). The control group (C; n=7) was composed of healthy physically-active males. The S and the P groups performed high- and low-intensity squats, respectively, 3 times per week, for 8 weeks. Muscle biopsies from the vastus lateralis muscle were collected before and after the training period. No change was observed in MSTN, ACTIIB, GASP-1 and FOXO-3 A gene expression after the training period. A similar increase in the gene expression of the inhibitory proteins of the MSTN signaling pathway, FLST (S: 4.2 fold induction and P: 3.7 fold induction, p<0.01) and FL-3 (S: 5.6 fold induction and P: 5.6 fold induction, p<0.01), was detected after the training period. SMAD-7 gene expression was similarly augmented after both training protocols (S: 2.5 fold induction; P: 2.8 fold induction; p<0.05). In conclusion, the resistance-training regimens (S and P) activated the expression of inhibitors of the MSTN signaling pathway in a similar manner. PMID:25822941

  6. Increased expression of the secretory leukocyte proteinase inhibitor in Wegener's granulomatosis

    PubMed Central

    OHLSSON, S; FALK, R; YANG, J J; OHLSSON, K; SEGELMARK, M; WIESLANDER, J

    2003-01-01

    The secretory leucocyte proteinase inhibitor (SLPI) is a low molecular weight, tissue-specific inhibitor of proteases, such as elastase and cathepsin G. It is the major local protease inhibitor in the upper airways. Proteinase 3, the main autoantigen in Wegener's granulomatosis (WG), can degrade SLPI proteolytically. In addition, SLPI is sensitive to oxidative inactivation by myeloperoxidase-generated free oxygen radicals. SLPI also has an antimicrobial capacity that can be of interest, as infection is considered to play a role in the pathogenesis of WG. This study focuses on SLPI expression in patients suffering from WG, something that to our knowledge has not been explored hitherto. Serum samples and nasal biopsies were obtained from 12 Swedish WG patients, while buffy coats were obtained from 33 American WG patients. SLPI levels in serum were measured by means of ELISA and the protein was detected by means of immunohistochemistry in nasal biopsies. mRNA expression was studied by means of in situ hybridization on nasal biopsies and RT-PCR on leucocytes. IL-6 or ESR were measured as markers of inflammatory activity. Cystatin C or creatinine was measured as a marker of renal filtration. White blood cell counts were registered. In serum, we found close to normal SLPI levels, without any correlation to IL-6. Two patients had greatly elevated values, both of them suffering from severe renal engagement. Strong SLPI mRNA expression was found in nasal biopsies. RT-PCR on leucocyte mRNA showed normal or greatly elevated expression of SLPI mRNA, correlating with disease activity. Leukocyte SLPI expression seems to be up-regulated in active WG. Serum levels were measured in a small number of patients and were found to be close to normal. Lack of correlation to the acute phase response indicates a specific regulation. This might be linked to an altered protease/antiprotease balance. These findings could indicate that SLPI locally participates in the anti-inflammatory and

  7. CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR-inhibitor resistance.

    PubMed

    Park, Kang-Seo; Raffeld, Mark; Moon, Yong Wha; Xi, Liqiang; Bianco, Caterina; Pham, Trung; Lee, Liam C; Mitsudomi, Tetsuya; Yatabe, Yasushi; Okamoto, Isamu; Subramaniam, Deepa; Mok, Tony; Rosell, Rafael; Luo, Ji; Salomon, David S; Wang, Yisong; Giaccone, Giuseppe

    2014-07-01

    The majority of non-small cell lung cancer (NSCLC) patients harbor EGFR-activating mutations that can be therapeutically targeted by EGFR tyrosine kinase inhibitors (EGFR-TKI), such as erlotinib and gefitinib. Unfortunately, a subset of patients with EGFR mutations are refractory to EGFR-TKIs. Resistance to EGFR inhibitors reportedly involves SRC activation and induction of epithelial-to-mesenchymal transition (EMT). Here, we have demonstrated that overexpression of CRIPTO1, an EGF-CFC protein family member, renders EGFR-TKI-sensitive and EGFR-mutated NSCLC cells resistant to erlotinib in culture and in murine xenograft models. Furthermore, tumors from NSCLC patients with EGFR-activating mutations that were intrinsically resistant to EGFR-TKIs expressed higher levels of CRIPTO1 compared with tumors from patients that were sensitive to EGFR-TKIs. Primary NSCLC cells derived from a patient with EGFR-mutated NSCLC that was intrinsically erlotinib resistant were CRIPTO1 positive, but gained erlotinib sensitivity upon loss of CRIPTO1 expression during culture. CRIPTO1 activated SRC and ZEB1 to promote EMT via microRNA-205 (miR-205) downregulation. While miR-205 depletion induced erlotinib resistance, miR-205 overexpression inhibited CRIPTO1-dependent ZEB1 and SRC activation, restoring erlotinib sensitivity. CRIPTO1-induced erlotinib resistance was directly mediated through SRC but not ZEB1; therefore, cotargeting EGFR and SRC synergistically attenuated growth of erlotinib-resistant, CRIPTO1-positive, EGFR-mutated NSCLC cells in vitro and in vivo, suggesting that this combination may overcome intrinsic EGFR-inhibitor resistance in patients with CRIPTO1-positive, EGFR-mutated NSCLC. PMID:24911146

  8. CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR-inhibitor resistance

    PubMed Central

    Park, Kang-Seo; Raffeld, Mark; Moon, Yong Wha; Xi, Liqiang; Bianco, Caterina; Pham, Trung; Lee, Liam C.; Mitsudomi, Tetsuya; Yatabe, Yasushi; Okamoto, Isamu; Subramaniam, Deepa; Mok, Tony; Rosell, Rafael; Luo, Ji; Salomon, David S.; Wang, Yisong; Giaccone, Giuseppe

    2014-01-01

    The majority of non–small cell lung cancer (NSCLC) patients harbor EGFR-activating mutations that can be therapeutically targeted by EGFR tyrosine kinase inhibitors (EGFR-TKI), such as erlotinib and gefitinib. Unfortunately, a subset of patients with EGFR mutations are refractory to EGFR-TKIs. Resistance to EGFR inhibitors reportedly involves SRC activation and induction of epithelial-to-mesenchymal transition (EMT). Here, we have demonstrated that overexpression of CRIPTO1, an EGF-CFC protein family member, renders EGFR-TKI–sensitive and EGFR-mutated NSCLC cells resistant to erlotinib in culture and in murine xenograft models. Furthermore, tumors from NSCLC patients with EGFR-activating mutations that were intrinsically resistant to EGFR-TKIs expressed higher levels of CRIPTO1 compared with tumors from patients that were sensitive to EGFR-TKIs. Primary NSCLC cells derived from a patient with EGFR-mutated NSCLC that was intrinsically erlotinib resistant were CRIPTO1 positive, but gained erlotinib sensitivity upon loss of CRIPTO1 expression during culture. CRIPTO1 activated SRC and ZEB1 to promote EMT via microRNA-205 (miR-205) downregulation. While miR-205 depletion induced erlotinib resistance, miR-205 overexpression inhibited CRIPTO1-dependent ZEB1 and SRC activation, restoring erlotinib sensitivity. CRIPTO1-induced erlotinib resistance was directly mediated through SRC but not ZEB1; therefore, cotargeting EGFR and SRC synergistically attenuated growth of erlotinib-resistant, CRIPTO1-positive, EGFR-mutated NSCLC cells in vitro and in vivo, suggesting that this combination may overcome intrinsic EGFR-inhibitor resistance in patients with CRIPTO1-positive, EGFR-mutated NSCLC. PMID:24911146

  9. Effect of various protein kinase inhibitors on the induction of milk protein gene expression by prolactin.

    PubMed

    Bayat-Sarmadi, M; Houdebine, L M

    1993-03-01

    Prolactin has many known functions and one of them is to induce the expression of milk protein gene expression in the mammary gland. Specific membrane receptors have been recently characterized but the transduction mechanism involved in the transfer of the prolactin signal to milk protein genes remains unknown. In the present work, it is shown that several protein kinase inhibitors block prolactin action on milk protein genes. Primary rabbit mammary cells were cultured for several days on floating collagen gel in a serum-free medium. Prolactin and the inhibitors of protein kinase were then added to the culture medium. After 1 day, the concentration of alpha s1-casein in the culture medium was measured using a specific radioimmunoassay. The concentration of several mRNAs in cell extracts was also evaluated using Northern blot analysis. alpha s1-Casein secretion and alpha s1-casein mRNA accumulation were induced by prolactin. This induction was blocked by staurosporine, sphingosine, quercetin, genistein and to some extent by o-hydroxyphenyl acetate, but not by H7, polymyxin B, benzylsuccinate and lavendustin A. The concentration of the mRNA coding for transferrin, which is abundantly secreted in rabbit milk independently of prolactin action, was only moderately altered by the inhibitors. The concentration of two house-keeping mRNAs, beta-actin and glyceraldehyde 3-phosphate dehydrogenase, was lowered only by genistein after 1 day but not after 4 h of culture. These data show for the first time that a Ser/Thre kinase, which is not kinase C, and possibly a tyrosine kinase is involved in the transduction of the prolactin message from the receptor to the milk protein genes. PMID:8472863

  10. Tigutcystatin, a cysteine protease inhibitor from Triatoma infestans midgut expressed in response to Trypanosoma cruzi

    SciTech Connect

    Buarque, Diego S.; Spindola, Leticia M.N.; Martins, Rafael M.; Braz, Gloria R.C.; Tanaka, Aparecida S.

    2011-09-23

    Highlights: {yields} Tigutcystatin inhibits Trypanosoma cruzi cysteine proteases with high specificity. {yields} Tigutcystatin expression is up-regulated in response to T. cruzi infection. {yields} It is the first cysteine proteases inhibitor characterized from a triatomine insect. -- Abstract: The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced. Among the EST sequences, an open reading frame (ORF) with homology to a cystatin type 2 precursor was identified. Then, a 288-bp cDNA fragment encoding mature cystatin (lacking signal peptide) named Tigutcystatin was cloned fused to a N-terminal His tag in pET-14b vector, and the protein expressed in Escherichia coli strain Rosetta gami. Tigutcystatin purified and cleaved by thrombin to remove His tag presented molecular mass of 11 kDa and 10,137 Da by SDS-PAGE and MALDI-TOF mass spectrometry, respectively. Purified Tigutcystatin was shown to be a tight inhibitor towards cruzain, a T. cruzi cathepsin L-like enzyme (K{sub i} = 3.29 nM) and human cathepsin L (K{sub i} = 3.78 nM). Tissue specific expression analysis showed that Tigutcystatin was mostly expressed in anterior midgut, although amplification in small intestine was also detected by semi quantitative RT-PCR. qReal time PCR confirmed that Tigutcystatin mRNA is significantly up-regulated in anterior midgut when T. infestans is infected with T. cruzi. Together, these results indicate that Tigutcystatin may be involved in modulation of T. cruzi in intestinal tract by inhibiting parasite cysteine proteases, which represent the virulence factors of this protozoan.

  11. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in the hair cycle

    PubMed Central

    HOU, CHUN; MIAO, YONG; WANG, XUE; CHEN, CHAOYUE; LIN, BOJIE; HU, ZHIQI

    2016-01-01

    According to the growth state of hair follicles, the hair cycle is divided into the anagen, catagen and telogen phases. A number of biological factors have been shown to synchronize with the hair cycle. As an important component of the hair follicle, the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitor of matrix metalloproteinases; TIMPs). It has been reported that MMP-2, MMP-9 and TIMP-1 are associated with the hair cycle; however, their expression levels during the hair cycle have not been fully elucidated. Reverse transcription-polymerase chain reaction and ELISA analysis in the present study demonstrated that, during the hair cycle in mice, mRNA and protein expression levels of MMP-2 and MMP-9 were elevated in the anagen phase, and decreased during the catagen and telogen phases. Furthermore, SDS-PAGE gelatin zymography demonstrated that their activities fluctuated in the hair cycle. Additionally, it was observed that the mRNA and protein expression levels of TIMP-1 and TIMP-2 were negatively correlated with MMP-9 and MMP-2, respectively. Immunohistochemical examination demonstrated that MMP-2 and TIMP-2 were present in all structures of the hair follicle. However, MMP-9 and TIMP-1 were locally expressed in certain areas of the hair follicle, such as in the sebaceous gland at the anagen, catagen and telogen phases, and in the inner root sheath at the catagen phase. These results suggested that MMP-2 and MMP-9 may serve an important role in the hair growth cycle. PMID:27429651

  12. Expression and localization of Inter-alpha Inhibitors in rodent brain.

    PubMed

    Chen, X; Rivard, L; Naqvi, S; Nakada, S; Padbury, J F; Sanchez-Esteban, J; Stopa, E G; Lim, Y-P; Stonestreet, B S

    2016-06-01

    Inter-alpha Inhibitor Proteins (IAIPs) are a family of related serine protease inhibitors. IAIPs are important components of the systemic innate immune system. We have identified endogenous IAIPs in the central nervous system (CNS) of sheep during development and shown that treatment with IAIPs reduces neuronal cell death and improves behavioral outcomes in neonatal rats after hypoxic-ischemic brain injury. The presence of IAIPs in CNS along with their exogenous neuroprotective properties suggests that endogenous IAIPs could be part of the innate immune system in CNS. The purpose of this study was to characterize expression and localization of IAIPs in CNS. We examined cellular expressions of IAIPs in vitro in cultured cortical mouse neurons, in cultured rat neurons, microglia, and astrocytes, and in vivo on brain sections by immunohistochemistry from embryonic (E) day 18 mice and postnatal (P) day 10 rats. Cultured cortical mouse neurons expressed the light chain gene Ambp and heavy chain genes Itih-1, 2, 3, 4, and 5 mRNA transcripts and IAIP proteins. IAIP proteins were detected by immunohistochemistry in cultured cells as well as brain sections from E18 mice and P10 rats. Immunoreactivity was found in neurons, microglia, astrocytes and oligodendroglia in multiple brain regions including cortex and hippocampus, as well as within both the ependyma and choroid plexus. Our findings suggest that IAIPs are endogenous proteins expressed in a wide variety of cell types and regions both in vitro and in vivo in rodent CNS. We speculate that endogenous IAIPs may represent endogenous neuroprotective immunomodulatory proteins within the CNS. PMID:26964679

  13. The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat Butte 86

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complement of genes encoding alpha-amylase/protease inhibitors expressed in Triticum aestivum cv. Butte 86 was characterized by transcript and proteomic analysis. Coding sequences for 18 distinct proteins were identified among a collection of expressed sequence tags (ESTs) from Butte 86 developi...

  14. Expression Profiling Identifies Epoxy Anthraquinone Derivative as a DNA Topoisomerase Inhibitor

    PubMed Central

    Gheeya, Jinesh; Johansson, Peter; Chen, Qing-Rong; Dexheimer, Thomas; Metaferia, Belhu; Song, Young K.; Wei, Jun S.; He, Jianbin; Pommier, Yves

    2014-01-01

    To discover novel drugs for neuroblastoma treatment, we have previously screened a panel of drugs and identified 30 active agents against neuroblastoma cells. Here we performed microarray gene expression analysis to monitor the impact of these agents on a neuroblastoma cell line and used the connectivity map (cMAP) to explore putative mechanism of action of unknown drugs. We first compared the expression profiles of ten compounds shared in both our dataset and cMAP database and observed the high connectivity scores for 7 of 10 matched drugs regardless of the differences of cell lines utilized. The screen of cMAP for uncharacterized drugs indicated the signature of Epoxy anthraquinone derivative (EAD) matched the profiles of multiple known DNA targeted agents (topoisomerase I/II inhibitors, DNA intercalators, and DNA alkylation agents) as predicted by its structure. Similar result was obtained by querying against our internal NB-cMAP (http://pob.abcc.ncifcrf.gov/cgi-bin/cMAP), a database containing the profiles of 30 active drugs. These results suggest that Epoxy anthraquinone derivative may inhibit neuroblastoma cells by targeting DNA replication inhibition. Experimental data also demonstrate that Epoxy anthraquinone derivative indeed induces DNA double-strand breaks through DNA alkylation and inhibition of topoisomerase activity. Our study indicates that Epoxy anthraquinone derivative may be a novel DNA topoisomerase inhibitor that can be potentially used for treatment of neuroblastoma or other cancer patients. PMID:20133050

  15. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells

    PubMed Central

    Sobolewski, Cyril; Sanduja, Sandhya; Blanco, Fernando F.; Hu, Liangyan; Dixon, Dan A.

    2015-01-01

    The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC) inhibitors (Trichostatin A, SAHA and sodium butyrate) promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells) and cervix carcinoma cells (HeLa). We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1). Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer. PMID:26343742

  16. PD-1 inhibits T cell proliferation by upregulating p27 and p15 and suppressing Cdc25A

    PubMed Central

    Patsoukis, Nikolaos; Sari, Duygu; Boussiotis, Vassiliki A.

    2012-01-01

    The programmed cell death-1 (PD)-1 receptor (CD279) is a potent T cell inhibitor with a critical role in peripheral tolerance, but it can also compromise anti-viral and antitumor T cell responses. The effects of PD-1 on the cell cycle leading to inhibition of T cell expansion are poorly understood. Recently, we examined the effects of PD-1 on the molecular control of the cell cycle machinery and on TCR-activated signaling pathways that regulate these downstream outcomes. Our studies showed that PD-1 blocks cell cycle progression in the G1 phase. PD-1 did not alter the expression of G1 phase cyclins or cyclin-dependent kinases (Cdks) but, instead, suppressed the transcription of SKP2, the substrate recognition component of the SCFSkp2 ubiquitin ligase that leads p27kip1 to degradation and resulted in accumulation of p27kip1. Subsequently, T cells receiving PD-1 signals displayed impaired Cdk2 activation and failed to phosphorylate two critical Cdk2 substrates, the retinoblastoma gene product (Rb) and the TGFβ-specific transcription factor Smad3, leading to suppression of E2F target genes but enhanced Smad3 transactivation. These events resulted in upregulation of the Cdk4/6 inhibitor p15INK4B and repression of the Cdk-activating phosphatase Cdc25A. The suppressive effect of PD-1 on Skp2 expression was mediated by inhibition of both PI3K/Akt and Ras/MEK/Erk pathways and was only partially reversed by IL-2, which restored activation of MEK/Erk but not Akt. Thus, PD-1 targets Ras and PI3K/Akt signaling to inhibit transcription of Skp2 and to activate Smad3 as an integral component of a pathway that regulates blockade of cell cycle progression in T lymphocytes. Here, we discuss the detailed sequence of these signaling events and their implications in mediating cell-intrinsic and -extrinsic mechanisms that inhibit proliferation of T effector cells in response to PD-1-mediated signaling. PMID:23032366

  17. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression

    PubMed Central

    2015-01-01

    The transcription factor MYC plays a pivotal role in cancer initiation, progression, and maintenance. However, it has proven difficult to develop small molecule inhibitors of MYC. One attractive route to pharmacological inhibition of MYC has been the prevention of its expression through small molecule-mediated stabilization of the G-quadruplex (G4) present in its promoter. Although molecules that bind globally to quadruplex DNA and influence gene expression are well-known, the identification of new chemical scaffolds that selectively modulate G4-driven genes remains a challenge. Here, we report an approach for the identification of G4-binding small molecules using small molecule microarrays (SMMs). We use the SMM screening platform to identify a novel G4-binding small molecule that inhibits MYC expression in cell models, with minimal impact on the expression of other G4-associated genes. Surface plasmon resonance (SPR) and thermal melt assays demonstrated that this molecule binds reversibly to the MYC G4 with single digit micromolar affinity, and with weaker or no measurable binding to other G4s. Biochemical and cell-based assays demonstrated that the compound effectively silenced MYC transcription and translation via a G4-dependent mechanism of action. The compound induced G1 arrest and was selectively toxic to MYC-driven cancer cell lines containing the G4 in the promoter but had minimal effects in peripheral blood mononucleocytes or a cell line lacking the G4 in its MYC promoter. As a measure of selectivity, gene expression analysis and qPCR experiments demonstrated that MYC and several MYC target genes were downregulated upon treatment with this compound, while the expression of several other G4-driven genes was not affected. In addition to providing a novel chemical scaffold that modulates MYC expression through G4 binding, this work suggests that the SMM screening approach may be broadly useful as an approach for the identification of new G4-binding small

  18. Fusarochromanone Induces G1 Cell Cycle Arrest and Apoptosis in COS7 and HEK293 Cells

    PubMed Central

    Gu, Ying; Chen, Xin; Shang, Chaowei; Singh, Karnika; Barzegar, Mansoureh; Mahdavian, Elahe; Salvatore, Brian A.; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Fusarochromanone (FC101), a mycotoxin produced by the fungus Fusarium equiseti, is frequently observed in the contaminated grains and feedstuffs, which is toxic to animals and humans. However, the underlying molecular mechanism remains to be defined. In this study, we found that FC101 inhibited cell proliferation and induced cell death in COS7 and HEK293 cells in a concentration-dependent manner. Flow cytometric analysis showed that FC101 induced G1 cell cycle arrest and apoptosis in the cells. Concurrently, FC101 downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and Cdc25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in hypophosphorylation of Rb. FC101 also inhibited protein expression of Bcl-2, Bcl-xL, Mcl-1 and survivin, and induced expression of BAD, leading to activation of caspase 3 and cleavage of PARP, indicating caspase-dependent apoptosis. However, Z-VAD-FMK, a pan-caspase inhibitor, only partially prevented FC101-induced cell death, implying that FC101 may induce cell death through both caspase-dependent and -independent mechanisms. Our results support the notion that FC101 executes its toxicity at least by inhibiting cell proliferation and inducing cell death. PMID:25384025

  19. Cyclin kinase inhibitor p21WAF1/CIP1 in malignant melanoma: reduced expression in metastatic lesions.

    PubMed Central

    Maelandsmo, G. M.; Holm, R.; Fodstad, O.; Kerbel, R. S.; Flørenes, V. A.

    1996-01-01

    Immunohistochemical analysis of the expression of the cyclin kinase inhibitor p21WAF1/CIP1 in a panel of primary and metastatic human melanocytic tumors was performed. It was found that, independent of the p53 status, approximately 30% of the primary melanomas and 40% of the metastases completely lacked expression of this cell cycle inhibitor. Some tumors were also analyzed by Northern blotting, and in most of the cases a consistant correlation between mRNA and protein expression was observed. In four benign nevi studied, WAF1/CIP1 mRNA was expressed whereas the protein was not detected, suggesting a post-transcriptional regulation of the inhibitor in these cases. In superficial spreading melanomas, a significant correlation between protein expression and tumor thickness was found, with thin lesions showing low protein levels. Interestingly, by comparing primary and metastatic specimens obtained from the same patient, a reduction in p21WAF1/CIP1 antibody staining was observed in the latter, probably reflecting a more aggressive phenotype of the metastases. In conclusion, our results demonstrate the complexity in the relationship between p21WAF1/CIP1 expression and tumor phenotype and furthermore suggest that aberrant expression of the cyclin-dependent kinase inhibitor may be of importance in the development and progression of sporadic malignant melanoma. Images Figure 1 Figure 2 PMID:8952518

  20. An EGF receptor inhibitor induces RAR-{beta} expression in breast and ovarian cancer cells

    SciTech Connect

    Grunt, Thomas W. . E-mail: thomas.grunt@meduniwien.ac.at; Puckmair, Klaudia; Tomek, Katharina; Kainz, Birgit; Gaiger, Alexander

    2005-04-22

    Inhibition of the epidermal growth factor (EGF)-receptor (EGFR) has become a promising anticancer treatment strategy. In addition, application of retinoids yields encouraging results for cancer prevention and therapy. Many tumors express no or low amounts of retinoic acid receptor-{beta}2 (RAR-{beta}2) due to epigenetic silencing via DNA hypermethylation. RAR-{beta}2 is the main mediator of the antiproliferative effect of retinoids. RAR-{beta}2 re-expression causes reversal of transformation, cell cycle arrest, and restoration of retinoid sensitivity. RAR-{beta}2 is thus a tumor suppressor. Western blotting, colorimetric in vitro cell proliferation assays, and reverse transcription-polymerase chain reaction demonstrated that the EGFR inhibitor PD153035 not only blocked activation of EGFR and inhibited cell growth, but also stimulated RAR-{beta} expression in MDA-MB-468 breast and OVCAR-3 ovarian carcinoma cells. Upregulation of RAR-{beta} by PD153035 was confirmed by real-time reverse transcription-polymerase chain reaction. In contrast, expression of other retinoid receptors and of estrogen receptor-{alpha} was not affected. PD153035-mediated re-induction of RAR-{beta} was associated with demethylation of the RAR-{beta}2 gene promoter P2 as demonstrated by methylation-specific polymerase chain reaction. These novel results on the ErbB/retinoid receptor cross-talk may be useful for designing future anticancer combination regimens.

  1. Expression of ODC Antizyme Inhibitor 2 (AZIN2) in Human Secretory Cells and Tissues.

    PubMed

    Rasila, Tiina; Lehtonen, Alexandra; Kanerva, Kristiina; Mäkitie, Laura T; Haglund, Caj; Andersson, Leif C

    2016-01-01

    Ornithine decarboxylase (ODC) antizyme inhibitor 2 (AZIN2), originally called ODCp, is a regulator of polyamine synthesis that we originally identified and cloned. High expression of ODCp mRNA was found in brain and testis. We reported that AZIN2 is involved in regulation of cellular vesicle transport and / or secretion, but the ultimate physiological role(s) of AZIN2 is still poorly understood. In this study we used a peptide antibody (K3) to human AZIN2 and by immunohistochemistry mapped its expression in various normal tissues. We found high expression in the nervous system, in type 2 pneumocytes in the lung, in megakaryocytes, in gastric parietal cells co-localized with H,K-ATPase beta subunit, in selected enteroendocrine cells, in acinar cells of sweat glands, in podocytes, in macula densa cells and epithelium of collecting ducts in the kidney. The high expression of AZIN2 in various cells with secretory or vesicle transport activity indicates that the polyamine metabolism regulated by AZIN2 is more significantly involved in these events than previously appreciated. PMID:26963840

  2. Expression of ODC Antizyme Inhibitor 2 (AZIN2) in Human Secretory Cells and Tissues

    PubMed Central

    Rasila, Tiina; Lehtonen, Alexandra; Kanerva, Kristiina; Mäkitie, Laura T.; Haglund, Caj; Andersson, Leif C.

    2016-01-01

    Ornithine decarboxylase (ODC) antizyme inhibitor 2 (AZIN2), originally called ODCp, is a regulator of polyamine synthesis that we originally identified and cloned. High expression of ODCp mRNA was found in brain and testis. We reported that AZIN2 is involved in regulation of cellular vesicle transport and / or secretion, but the ultimate physiological role(s) of AZIN2 is still poorly understood. In this study we used a peptide antibody (K3) to human AZIN2 and by immunohistochemistry mapped its expression in various normal tissues. We found high expression in the nervous system, in type 2 pneumocytes in the lung, in megakaryocytes, in gastric parietal cells co-localized with H,K-ATPase beta subunit, in selected enteroendocrine cells, in acinar cells of sweat glands, in podocytes, in macula densa cells and epithelium of collecting ducts in the kidney. The high expression of AZIN2 in various cells with secretory or vesicle transport activity indicates that the polyamine metabolism regulated by AZIN2 is more significantly involved in these events than previously appreciated. PMID:26963840

  3. Broad 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicide tolerance in soybean with an optimized enzyme and expression cassette.

    PubMed

    Siehl, Daniel L; Tao, Yumin; Albert, Henrik; Dong, Yuxia; Heckert, Matthew; Madrigal, Alfredo; Lincoln-Cabatu, Brishette; Lu, Jian; Fenwick, Tamara; Bermudez, Ericka; Sandoval, Marian; Horn, Caroline; Green, Jerry M; Hale, Theresa; Pagano, Peggy; Clark, Jenna; Udranszky, Ingrid A; Rizzo, Nancy; Bourett, Timothy; Howard, Richard J; Johnson, David H; Vogt, Mark; Akinsola, Goke; Castle, Linda A

    2014-11-01

    With an optimized expression cassette consisting of the soybean (Glycine max) native promoter modified for enhanced expression driving a chimeric gene coding for the soybean native amino-terminal 86 amino acids fused to an insensitive shuffled variant of maize (Zea mays) 4-hydroxyphenylpyruvate dioxygenase (HPPD), we achieved field tolerance in transgenic soybean plants to the HPPD-inhibiting herbicides mesotrione, isoxaflutole, and tembotrione. Directed evolution of maize HPPD was accomplished by progressively incorporating amino acids from naturally occurring diversity and novel substitutions identified by saturation mutagenesis, combined at random through shuffling. Localization of heterologously expressed HPPD mimicked that of the native enzyme, which was shown to be dually targeted to chloroplasts and the cytosol. Analysis of the native soybean HPPD gene revealed two transcription start sites, leading to transcripts encoding two HPPD polypeptides. The N-terminal region of the longer encoded peptide directs proteins to the chloroplast, while the short form remains in the cytosol. In contrast, maize HPPD was found almost exclusively in chloroplasts. Evolved HPPD enzymes showed insensitivity to five inhibitor herbicides. In 2013 field trials, transgenic soybean events made with optimized promoter and HPPD variant expression cassettes were tested with three herbicides and showed tolerance to four times the labeled rates of mesotrione and isoxaflutole and two times the labeled rates of tembotrione. PMID:25192697

  4. Mammary serine protease inhibitor and CD138 immunohistochemical expression in ovarian serous and clear cell carcinomas.

    PubMed

    Hasby, Eiman Adel

    2016-04-01

    This study aims to investigate the immunohistochemical expression of mammary serine protease inhibitor (maspin) and CD138 in primary ovarian high-grade serous carcinomas (HGSC) as compared to low-grade serous carcinomas (LGSC) and clear cell carcinomas and investigate if the studied markers have a correlation to International Federation of Gynaecology and Obstetrics (FIGO) stage, Ki67 proliferation index, and to each other. Maspin cellular location varied significantly between studied groups with only nuclear expression seen in 46.7 % of LGSC group, mixed nuclear and cytoplasmic in 13.3, 28.6, and 20 % of LGSC, HGSC, and clear cell carcinoma, respectively, and was only cytoplasmic in 26.7, 71.4, and 80 % of LGSC, HGSC, and clear cell carcinoma, respectively. Mean maspin and CD138 counts were significantly higher in HGSC and clear cell carcinoma compared to LGSC. Both maspin and CD138 scores varied significantly between studied groups and were positively correlated with adverse prognostic factors in studied carcinomas including FIGO stage and Ki67 proliferation index. Besides, both maspin and CD138 had significant correlation to each other. These findings suggest that epithelial cytoplasmic expression of maspin and CD138 may have a significant role in tumorigenesis in ovarian high-grade serous carcinomas and clear cell carcinomas; these markers may regulate tumor cell proliferation, and their significant correlation to each other may suggest that CD138 probably induces maspin expression to protect tumor growth factors from being lysed by proteolytic enzymes. PMID:26526579

  5. Inhibitory effect of mimosine on proliferation of human lung cancer cells is mediated by multiple mechanisms.

    PubMed

    Chang, H C; Lee, T H; Chuang, L Y; Yen, M H; Hung, W C

    1999-10-18

    The plant amino acid mimosine has been reported to block cell cycle progression in the late G1 phase. A recent study showed that mimosine might induce growth arrest by activating the expression of p21CIP1, a cyclin-dependent kinase inhibitor (CDKI), and by inhibiting the activity of cyclin E-associated kinases in human breast cancer cells. However, mimosine at higher concentrations also blocked proliferation of p21-/- cells by unknown mechanisms. In this study, we investigated the effect of mimosine on the expression of cyclins and CDKIs in human lung cancer cells. We found that mimosine specifically inhibited cyclin D1 expression in H226 cells. The expression of another G1 cyclin, cyclin E, was not regulated by mimosine in all lung cancer cell lines examined. Moreover, mimosine induced p21CIP1 expression in H226 and H358 cells, while it activated p27KIP1 expression in H322 cells. However, mimosine does not affect transcription of these genes directly because significant changes in cyclin D1 or CDKI expression were observed at 12-24 h after drug addition. Our results indicate that mimosine may block cell proliferation by multiple mechanisms and this amino acid is a useful agent for the study of cell cycle control. PMID:10530763

  6. New CETP inhibitor K-312 reduces PCSK9 expression: a potential effect on LDL cholesterol metabolism.

    PubMed

    Miyosawa, Katsutoshi; Watanabe, Yuichiro; Murakami, Kentaro; Murakami, Takeshi; Shibata, Haruki; Iwashita, Masaya; Yamazaki, Hiroyuki; Yamazaki, Koichi; Ohgiya, Tadaaki; Shibuya, Kimiyuki; Mizuno, Ken; Tanabe, Sohei; Singh, Sasha A; Aikawa, Masanori

    2015-07-15

    Despite significant reduction of cardiovascular events by statin treatment, substantial residual risk persists, driving emerging needs for the development of new therapies. We identified a novel cholesteryl ester transfer protein (CETP) inhibitor, K-312, that raises HDL and lowers LDL cholesterol levels in animals. K-312 also suppresses hepatocyte expression of proprotein convertase subtilisin/kexin 9 (PCSK9), a molecule that increases LDL cholesterol. We explored the underlying mechanism for the reduction of PCSK9 expression by K-312. K-312 inhibited in vitro human plasma CETP activity (IC50; 0.06 μM). Administration of K-312 to cholesterol-fed New Zealand White rabbits for 18 wk raised HDL cholesterol, decreased LDL cholesterol, and attenuated aortic atherosclerosis. Our search for additional beneficial characteristics of this compound revealed that K-312 decreases PCSK9 expression in human primary hepatocytes and in the human hepatoma cell line HepG2. siRNA silencing of CETP in HepG2 did not compromise the suppression of PCSK9 by K-312, suggesting a mechanism independent of CETP. In HepG2 cells, K-312 treatment decreased the active forms of sterol regulatory element-binding proteins (SREBP-1 and -2) that regulate promoter activity of PCSK9. Chromatin immunoprecipitation assays demonstrated that K-312 decreased the occupancy of SREBP-1 and SREBP-2 on the sterol regulatory element of the PCSK9 promoter. PCSK9 protein levels decreased by K-312 treatment in the circulating blood of cholesterol-fed rabbits, as determined by two independent mass spectrometry approaches, including the recently developed, highly sensitive parallel reaction monitoring method. New CETP inhibitor K-312 decreases LDL cholesterol and PCSK9 levels, serving as a new therapy for dyslipidemia and cardiovascular disease. PMID:26015437

  7. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury.

    PubMed

    Xie, Jieshi; Yang, Le; Tian, Lei; Li, Weiyang; Yang, Lin; Li, Liying

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation. PMID:27273604

  8. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury

    PubMed Central

    Xie, Jieshi; Yang, Le; Tian, Lei; Li, Weiyang; Yang, Lin; Li, Liying

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation. PMID:27273604

  9. Testing the importance of p27 degradation by the SCFskp2 pathway in murine models of lung and colon cancer.

    PubMed

    Timmerbeul, Inke; Garrett-Engele, Carrie M; Kossatz, Uta; Chen, Xueyan; Firpo, Eduardo; Grünwald, Viktor; Kamino, Kenji; Wilkens, Ludwig; Lehmann, Ulrich; Buer, Jan; Geffers, Robert; Kubicka, Stefan; Manns, Michael P; Porter, Peggy L; Roberts, James M; Malek, Nisar P

    2006-09-19

    Decreased expression of the CDK inhibitor p27kip1 in human tumors directly correlates with increased resistance to chemotherapies, increased rates of metastasis, and an overall increased rate of patient mortality. It is thought that decreased p27 expression in tumors is caused by increased proteasomal turnover, in particular activation of the pathway governed by the SCFskp2 E3 ubiquitin protein ligase. We have directly tested the importance of the SCFskp-mediated degradation of p27 in tumorigenesis by analyzing the tumor susceptibility of mice that express a form of p27 that cannot be ubiquitinated and degraded by this pathway (p27T187A). In mouse models of both lung and colon cancer down-regulation of p27 promotes tumorigenesis. However, we found that preventing p27 degradation by the SCFskp2 pathway had no impact on tumor incidence or overall survival in either tumor model. Our study unveiled a previously unrecognized role for the control of p27 mRNA abundance in the development of non-small cell lung cancers. In the colon cancer model, the frequency of intestinal adenomas was similarly unaffected by the p27T187A mutation, but, unexpectedly, we found that it inhibited progression of intestinal adenomas to carcinomas. These studies may guide the choice of clinical settings in which pharmacologic inhibitors of the Skp2 pathway might be of therapeutic value. PMID:16966613

  10. Molecular cloning, sequencing and expression of a serine proteinase inhibitor gene from Toxoplasma gondii.

    PubMed

    Pszenny, V; Angel, S O; Duschak, V G; Paulino, M; Ledesma, B; Yabo, M I; Guarnera, E; Ruiz, A M; Bontempi, E J

    2000-04-15

    A cDNA clone from a Toxoplasma gondii tachyzoite cDNA library encoding a serine proteinase inhibitor (serpin) was isolated. The 1376 bp cDNA sequence encodes a 294 amino acid protein with a putative signal peptide of 23 amino acids resulting in a mature protein with a predicted mass of 30,190 Da and a pI of 4.86. This protein has internal sequence similarity of residues 30-66, 114-150, 181-217 and 247-283 indicating a four-domain structure. The four domains exhibit high identity to serine proteinase inhibitors belonging to the non-classical Kazal-type family. The gene is single copy in the tachyzoite haploid genome of RH strain and was amplified by polymerase chain reaction (PCR). Several introns were identified. The sequence encoding the mature protein was amplified by PCR, cloned into the pQE30 vector and expressed in Escherichia coli. Specific antiserum generated against the recombinant protein was used in immunoblot assay and two bands of 38 and 42 kDa were detected in a whole parasite homogenate. The recombinant protein showed trypsin-inhibitory activity, one of the two potential specificities. We discuss the possible roles that T. gondii serpin(s) may play in the survival of the tachyzoites in the host. PMID:10779600

  11. The PI3K inhibitor taselisib overcomes letrozole resistance in a breast cancer model expressing aromatase

    PubMed Central

    Edgar, Kyle A.; O'Brien, Carol; Savage, Heidi; Wilson, Timothy R.; Neve, Richard M.; Friedman, Lori S.; Wallin, Jeffrey J.

    2016-01-01

    Letrozole is a commonly used treatment option for metastatic hormone receptor-positive (HR+) breast cancer, but many patients ultimately relapse. Due to the importance of phosphoinositide-3 kinase (PI3K) in breast cancer, PI3K inhibitors such as taselisib are attractive for combination with endocrine therapies such as letrozole. Taselisib was evaluated as a single agent and in combination with letrozole in a breast cancer cell line engineered to express aromatase. The combination of taselisib and letrozole decreased cellular viability and increased apoptosis relative to either single agent. Signaling cross-talk between the PI3K and ER pathways was associated with efficacy for the combination. In a secreted factor screen, multiple soluble factors, including members of the epidermal and fibroblast growth factor families, rendered breast cancer cells non-responsive to letrozole. It was discovered that many of these factors signal through the PI3K pathway and cells remained sensitive to taselisib in the presence of the soluble factors. We also found that letrozole resistant lines have elevated PI3K pathway signaling due to an increased level of p110α, but are still sensitive to taselisib. These data provide rationale for clinical evaluation of PI3K inhibitors to overcome resistance to endocrine therapies in ER+ breast cancer.

  12. Expression of Arabidopsis Bax Inhibitor-1 in transgenic sugarcane confers drought tolerance.

    PubMed

    Ramiro, Daniel Alves; Melotto-Passarin, Danila Montewka; Barbosa, Mariana de Almeida; Santos, Flavio Dos; Gomez, Sergio Gregorio Perez; Massola Júnior, Nelson Sidnei; Lam, Eric; Carrer, Helaine

    2016-09-01

    The sustainability of global crop production is critically dependent on improving tolerance of crop plants to various types of environmental stress. Thus, identification of genes that confer stress tolerance in crops has become a top priority especially in view of expected changes in global climatic patterns. Drought stress is one of the abiotic stresses that can result in dramatic loss of crop productivity. In this work, we show that transgenic expression of a highly conserved cell death suppressor, Bax Inhibitor-1 from Arabidopsis thaliana (AtBI-1), can confer increased tolerance of sugarcane plants to long-term (>20 days) water stress conditions. This robust trait is correlated with an increased tolerance of the transgenic sugarcane plants, especially in the roots, to induction of endoplasmic reticulum (ER) stress by the protein glycosylation inhibitor tunicamycin. Our findings suggest that suppression of ER stress in C4 grasses, which include important crops such as sorghum and maize, can be an effective means of conferring improved tolerance to long-term water deficit. This result could potentially lead to improved resilience and yield of major crops in the world. PMID:26872943

  13. Expression of Estrogen-Related Gene Markers in Breast Cancer Tissue Predicts Aromatase Inhibitor Responsiveness

    PubMed Central

    Moy, Irene; Lin, Zhihong; Rademaker, Alfred W.; Reierstad, Scott; Khan, Seema A.; Bulun, Serdar E.

    2013-01-01

    Aromatase inhibitors (AIs) are the most effective class of drugs in the endocrine treatment of breast cancer, with an approximate 50% treatment response rate. Our objective was to determine whether intratumoral expression levels of estrogen-related genes are predictive of AI responsiveness in postmenopausal women with breast cancer. Primary breast carcinomas were obtained from 112 women who received AI therapy after failing adjuvant tamoxifen therapy and developing recurrent breast cancer. Tumor ERα and PR protein expression were analyzed by immunohistochemistry (IHC). Messenger RNA (mRNA) levels of 5 estrogen-related genes–AKR1C3, aromatase, ERα, and 2 estradiol/ERα target genes, BRCA1 and PR–were measured by real-time PCR. Tumor protein and mRNA levels were compared with breast cancer progression rates to determine predictive accuracy. Responsiveness to AI therapy–defined as the combined complete response, partial response, and stable disease rates for at least 6 months–was 51%; rates were 56% in ERα-IHC-positive and 14% in ERα-IHC-negative tumors. Levels of ERα, PR, or BRCA1 mRNA were independently predictive for responsiveness to AI. In cross-validated analyses, a combined measurement of tumor ERα and PR mRNA levels yielded a more superior specificity (36%) and identical sensitivity (96%) to the current clinical practice (ERα/PR-IHC). In patients with ERα/PR-IHC-negative tumors, analysis of mRNA expression revealed either non-significant trends or statistically significant positive predictive values for AI responsiveness. In conclusion, expression levels of estrogen-related mRNAs are predictive for AI responsiveness in postmenopausal women with breast cancer, and mRNA expression analysis may improve patient selection. PMID:24223121

  14. Heat Shock Protein B1-Deficient Mice Display Impaired Wound Healing

    PubMed Central

    McNamee, Kay; Przybycien, Paulina M.; Lu, Xin; Williams, Richard O.; Bou-Gharios, George; Saklatvala, Jeremy; Dean, Jonathan L. E.

    2013-01-01

    There is large literature describing in vitro experiments on heat shock protein (hsp)B1 but understanding of its function in vivo is limited to studies in mice overexpressing human hspB1 protein. Experiments in cells have shown that hspB1 has chaperone activity, a cytoprotective role, regulates inflammatory gene expression, and drives cell proliferation. To investigate the function of the protein in vivo we generated hspB1-deficient mice. HspB1-deficient fibroblasts display increased expression of the pro-inflammatory cytokine, interleukin-6, compared to wild-type cells, but reduced proliferation. HspB1-deficient fibroblasts exhibit reduced entry into S phase and increased expression of cyclin-dependent kinase inhibitors p27kip1 and p21waf1. The expression of hspB1 protein and mRNA is also controlled by the cell cycle. To investigate the physiological function of hspB1 in regulating inflammation and cell proliferation we used an excisional cutaneous wound healing model. There was a significant impairment in the rate of healing of wounds in hspB1-deficient mice, characterised by reduced re-epithelialisation and collagen deposition but also increased inflammation. HspB1 deficiency augments neutrophil infiltration in wounds, driven by increased chemokine (C-X-C motif) ligand 1 expression. This appears to be a general mechanism as similar results were obtained in the air-pouch and peritonitis models of acute inflammation. PMID:24143227

  15. Tissue inhibitor of metalloproteinases-2 is expressed in the interstitial matrix in adult mouse organs and during embryonic development.

    PubMed Central

    Blavier, L; DeClerck, Y A

    1997-01-01

    Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a member of a family of inhibitors of matrix-degrading metalloproteinases. A better insight into the role of this inhibitor during development and in organ function was obtained by examining the temporospatial expression of TIMP-2 in mice. Northern blot analysis indicated high levels of TIMP-2 mRNA in the lung, skin, reproductive organs, and brain. Lower levels of expression were found in all other organs with the exception of the liver and gastrointestinal tissue, which were negative of these tissues with complete absence of TIMP-2 mRNA in the epithelium. In the testis, TIMP-2 was present in the Leydig cells, and in the brain, it was expressed in pia matter and in neuronal tissues. TIMP-2 expression in the placenta increased during late gestation and was particularly abundant in spongiotrophoblasts In mouse embryo (day 10.5-18.5), TIMP-2 mRNA was abundant in mesenchymal tissues that surrounded developing epithelia and maturing skeleton. The pattern of expression significantly differs from that observed with TIMP-1 and TIMP-3, therefore, suggesting specific roles for each inhibitor during tissue remodeling and development. Images PMID:9285822

  16. Reduced expression of β-catenin inhibitor Chibby in colon carcinoma cell lines

    PubMed Central

    Schuierer, Marion M; Graf, Elisabeth; Takemaru, Ken-Ichi; Dietmaier, Wolfgang; Bosserhoff, Anja-Katrin

    2006-01-01

    AIM: To analyse the Chibby expression and its function in colon carcinoma cell lines and colorectal carcinoma (CRC). METHODS: Chibby expression levels were investigated by quantitative RT-PCR in a panel of seven different colon carcinoma cell lines. By sequencing, we analysed mutational status of Chibby. To test whether Chibby exhibited effects on β-catenin signalling in colon carcinoma cells, we transfected SW480 cells with Chibby expression plasmid and, subsequently, analysed activity of β-catenin and tested for alterations in cellular phenotype. In addition, we examined Chibby mRNA levels in samples of colorectal carcinomas and adjacent normal tissues by using quantitative RT-PCR and hybridised gene chips with samples from CRC and normal tissues. RESULTS: Chibby mRNA expression was strongly down-regulated in colon carcinoma cell lines in comparison to normal colon epithelial cells and no mutation in any of the examined colon carcinoma cell lines was found. Further, we could show that Chibby inhibited β-catenin activity in TOPflash assays when over-expressed in SW480 cells. Proliferation and invasion assays with Chibby transfected SW480 cells did not reveal profound differences compared to control cells. In contrast to these in vitro data, quantitative RT-PCR analyses of Chibby mRNA levels in CRC tumor samples did not show significant differences to specimens in adjacent non-cancerous tissue. Consistent with these findings, gene chips analysing tissue samples of tumors and corresponding normal tissue did not show altered Chibby expression CONCLUSION: Altered Chibby expression might be observed in vitro in different colon carcinoma cell lines. However, this finding could not be confirmed in vitro in CRC tumors, indicating that Chibby is not likely to promote CRC tumor development or progression. As Chibby is an important inhibitor of ß-catenin signalling, our data implicate that the usability of colon carcinoma cell lines for in vitro studies analysing the Wnt

  17. Activating Transcription Factor 3 Expression as a Marker of Response to the Histone Deacetylase Inhibitor Pracinostat.

    PubMed

    Sooraj, Dhanya; Xu, Dakang; Cain, Jason E; Gold, Daniel P; Williams, Bryan R G

    2016-07-01

    Improved treatment strategies are required for bladder cancer due to frequent recurrence of low-grade tumors and poor survival rate from high-grade tumors with current therapies. Histone deacetylase inhibitors (HDACi), approved as single agents for specific lymphomas, have shown promising preclinical results in solid tumors but could benefit from identification of biomarkers for response. Loss of activating transcription factor 3 (ATF3) expression is a feature of bladder tumor progression and correlates with poor survival. We investigated the utility of measuring ATF3 expression as a marker of response to the HDACi pracinostat in bladder cancer models. Pracinostat treatment of bladder cancer cell lines reactivated the expression of ATF3, correlating with significant alteration in proliferative, migratory, and anchorage-dependent growth capacities. Pracinostat also induced growth arrest at the G0-G1 cell-cycle phase, coincident with the activation of tumor suppressor genes. In mouse xenograft bladder cancer models, pracinostat treatment significantly reduced tumor volumes compared with controls, accompanied by reexpression of ATF3 in nonproliferating cells from early to late stage of therapy and in parallel induced antiangiogenesis and apoptosis. Importantly, cells in which ATF3 expression was depleted were less sensitive to pracinostat treatment in vitro, exhibiting significantly higher proliferative and migratory properties. In vivo, control xenograft tumors were significantly more responsive to treatment than ATF3 knockdown xenografts. Thus, reactivation of ATF3 is an important factor in determining sensitivity to pracinostat treatment, both in vitro and in vivo, and could serve as a potential biomarker of response and provide a rationale for therapeutic utility in HDACi-mediated treatments for bladder cancer. Mol Cancer Ther; 15(7); 1726-39. ©2016 AACR. PMID:27196751

  18. Local expression of matrix metalloproteinases, cathepsins, and their inhibitors during the development of murine antigen-induced arthritis

    PubMed Central

    Schurigt, Uta; Stopfel, Nadine; Hückel, Marion; Pfirschke, Christina; Wiederanders, Bernd; Bräuer, Rolf

    2005-01-01

    Cartilage and bone degradation, observed in human rheumatoid arthritis (RA), are caused by aberrant expression of proteinases, resulting in an imbalance of these degrading enzymes and their inhibitors. However, the role of the individual proteinases in the pathogenesis of degradation is not yet completely understood. Murine antigen-induced arthritis (AIA) is a well-established animal model of RA. We investigated the time profiles of expression of matrix metalloproteinase (MMP), cathepsins, tissue inhibitors of matrix metalloproteinases (TIMP) and cystatins in AIA. For primary screening, we revealed the expression profile with Affymetrix oligonucleotide chips. Real-time polymerase chain reaction (PCR) analyses were performed for the validation of array results, for tests of more RNA samples and for the completion of the time profile. For the analyses at the protein level, we used an MMP fluorescence activity assay and zymography. By a combination of oligonucleotide chips, real-time PCR and zymography, we showed differential expressions of several MMPs, cathepsins and proteinase inhibitors in the course of AIA. The strongest dysregulation was observed on days 1 and 3 in the acute phase. Proteoglycan loss analysed by safranin O staining was also strongest on days 1 and 3. Expression of most of the proteinases followed the expression of pro-inflammatory cytokines. TIMP-3 showed an expression profile similar to that of anti-inflammatory interleukin-4. The present study indicates that MMPs and cathepsins are important in AIA and contribute to the degradation of cartilage and bone. PMID:15642138

  19. Upregulation of sex-determining region Y-box 9 (SOX9) promotes cell proliferation and tumorigenicity in esophageal squamous cell carcinoma

    PubMed Central

    Hong, Yingcai; Chen, Wen; Du, Xiaojun; Ning, Huiwen; Chen, Huaisheng; Shi, Ruiqing; Lin, Shaolin; Xu, Rongyu; Zhu, Jinrong; Wu, Shu; Zhou, Haiyu

    2015-01-01

    Sex-determining region Y-box 9 (SOX9), a vital transcription factor, play important roles in numerous biological and pathological processes. However, the clinical significance and biological role of SOX9 expression has not been characterized in human esophageal squamous cell cancer (ESCC). Herein, we found that SOX9 was markedly upregulated, at both mRNA and protein level, in ESCC cell lines and ESCC tissues and that SOX9 expression was significantly correlated with tumor clinical stage, T classification, N classification, M classification, pathological differentiation, and shorter overall survival. The proliferation and tumorigenicity of ESCC cells were dramatically induced by SOX9 overexpression but were inhibited by SOX9 knockdown both in vitro and in vivo. Moreover, we demonstrated that upregulation of SOX9 increased the expression of phosphorylated Akt, the cyclin-dependent kinase (CDK) regulator cyclin D1, phosphorylated forkhead box O (FOXO)1, and phosphorylated FOXO3, but SOX9 downregulation decreased their expression, whereas the levels of the CDK inhibitors p21Cip1 and p27Kip1 were attenuated in SOX9-transduced cells. Taken together, our results suggest that SOX9 plays an important role in promoting the proliferation and tumorigenesis of ESCC and may represent a novel prognostic marker for the disease. PMID:26384302

  20. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene.

    PubMed

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-06-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  1. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene

    PubMed Central

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-01-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  2. A Dynamical Framework for the All-or-None G1/S Transition

    PubMed Central

    Barr, Alexis R.; Heldt, Frank S.; Zhang, Tongli; Bakal, Chris; Novák, Béla

    2016-01-01

    Summary The transition from G1 into DNA replication (S phase) is an emergent behavior resulting from dynamic and complex interactions between cyclin-dependent kinases (Cdks), Cdk inhibitors (CKIs), and the anaphase-promoting complex/cyclosome (APC/C). Understanding the cellular decision to commit to S phase requires a quantitative description of these interactions. We apply quantitative imaging of single human cells to track the expression of G1/S regulators and use these data to parametrize a stochastic mathematical model of the G1/S transition. We show that a rapid, proteolytic, double-negative feedback loop between Cdk2:Cyclin and the Cdk inhibitor p27Kip1 drives a switch-like entry into S phase. Furthermore, our model predicts that increasing Emi1 levels throughout S phase are critical in maintaining irreversibility of the G1/S transition, which we validate using Emi1 knockdown and live imaging of G1/S reporters. This work provides insight into the general design principles of the signaling networks governing the temporally abrupt transitions between cell-cycle phases. PMID:27136687

  3. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation

    PubMed Central

    Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P.; Thiels, Cornelius A.; Bechtle, Chad A.; Garcia, Claudia M.; Zhang, Huiming; Yu, Kai; Ornitz, David M.; Beebe, David C.; Robinson, Michael L.

    2008-01-01

    The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27kip1 and p57kip2, increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and α-, β- and γ-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly. PMID:18455718

  4. Calpain Genetic Disruption and HSP90 Inhibition Combine To Attenuate Mammary Tumorigenesis.

    PubMed

    Grieve, Stacy; Gao, Yan; Hall, Christine; Hu, Jing; Greer, Peter A

    2016-08-01

    Calpain is an intracellular Ca(2+)-regulated protease system whose substrates include proteins involved in proliferation, survival, migration, invasion, and sensitivity to therapeutic drugs. Genetic disruption of calpain attenuated the tumorigenic potential of breast cancer cells and hypersensitized cells to 17AAG, an inhibitor of the molecular chaperone HSP90. Calpain-1 or -2 overexpression rendered cells resistant to 17AAG, whereas downregulation or inhibition of calpain-1/2 led to increased cell death in multiple breast cancer cell lines, including models of HER2(+) (SKBR3) and triple-negative basal-cell-like (MDA-MB-231) breast cancer. In an MDA-MB-231 orthotopic xenograft model, calpain knockdown or 17AAG treatment independently attenuated tumor growth and metastasis, while the combination was most effective. Calpain knockdown was associated with increased 17AAG-induced degradation of the HSP90 clients cyclin D1 and AKT and multidrug resistance protein 2, which correlated with increased expression of antimitogenic p27(KIP1) and proapoptotic BIM proteins. Like other therapeutics, 17AAG can be effluxed by specific ABC transporters. Calpain expression positively correlated with the expression of P glycoprotein in mouse embryonic fibroblasts. Importantly, we show that calpain affects ABC transporter function and efflux of clinically relevant doxorubicin. These observations provide a compelling rationale for exploring the combination of calpain inhibition with new or existing cancer therapeutics. PMID:27215381

  5. Maduramicin Inhibits Proliferation and Induces Apoptosis in Myoblast Cells

    PubMed Central

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  6. Novel dichlorophenyl urea compounds inhibit proliferation of human leukemia HL-60 cells by inducing cell cycle arrest, differentiation and apoptosis.

    PubMed

    Figarola, James L; Weng, Yehua; Lincoln, Christopher; Horne, David; Rahbar, Samuel

    2012-08-01

    Two novel dichlorophenyl urea compounds, SR4 and SR9, were synthesized in our laboratory and evaluated for anti-cancer activities. Specifically, we investigated the antiproliferative properties of these new compounds on promyelocytic HL-60 leukemia cells by analyzing their effects on cell differentiation, cell cycle progression and apoptosis. SR4 and SR9 were both cytotoxic to HL-60 cells in a dose-and time-dependent manner, with IC(50) of 1.2 μM and 2.2 μM, respectively, after 72 h treatment. Both compounds strongly suppressed growth of HL-60 cells by promoting cell cycle arrest at the G0/G1 transition, with concomitant decrease in protein levels of cyclins D1 and E2 and cyclin-dependent kinases (CDK 2 and CDK 4), and increased protein expression of CDK inhibitors p21(WAF1/Cip1) and p27(Kip1). In addition, either compounds induce cell differentiation as detected by increased NBT staining and expression of CD11b and CD14. Treatment with SR compounds also promoted mitochondrial-dependent apoptosis as confirmed by Annexin V-FITC double staining, DNA fragmentation, increased expression of caspase 3, 7 and 9, cytochrome c release, PARP degradation, and collapse in mitochondrial membrane potential (ΔΨ(MT)). Collectively, these results provide evidence that SR4 and SR9 have the potential for the treatment of human leukemia and merit further investigation as therapeutic agents against other types of cancer. PMID:21728022

  7. Identification of novel E2F1 target genes regulated in cell cycle-dependent and independent manners.

    PubMed

    Iwanaga, R; Komori, H; Ishida, S; Okamura, N; Nakayama, K; Nakayama, K I; Ohtani, K

    2006-03-16

    The transcription factor E2F mediates cell cycle-dependent expression of genes important for cell proliferation in response to growth stimulation. To further understand the role of E2F, we utilized a sensitive subtraction method to explore new E2F1 targets, which are expressed at low levels and might have been unrecognized in previous studies. We identified 33 new E2F1-inducible genes, including checkpoint genes Claspin and Rad51ap1, and four genes with unknown function required for cell cycle progression. Moreover, we found three groups of E2F1-inducible genes that were not induced by growth stimulation. At least, two groups of genes were directly induced by E2F1, indicating that E2F1 can regulate expression of genes not induced during the cell cycle. One included Neogenin, WASF1 and SGEF genes, which may have a role in differentiation or development. The other was the cyclin-dependent kinase inhibitor p27(Kip1), which was involved in suppression of inappropriate cell cycle progression induced by deregulated E2F. E2F1-responsive regions of these genes were located more upstream than those of typical E2F targets and did not have typical E2F sites. These results indicate that there are groups of E2F1 targets, which are regulated in a distinct manner from that of typical E2F targets. PMID:16288221

  8. Fangchinoline induces G1 arrest in breast cancer cells through cell-cycle regulation.

    PubMed

    Xing, Zhibo; Zhang, Youxue; Zhang, Xianyu; Yang, Yanmei; Ma, Yuyan; Pang, Da

    2013-12-01

    Fangchinoline, an alkaloid derived from the dry roots of Stephaniae tetrandrine S. Moore (Menispermaceae), has been shown to possess cytotoxic, anti-inflammatory, and antioxidant properties. In this study, we used Fangchinoline to inhibit breast cancer cell proliferation and to investigate its underlying molecular mechanisms. Human breast cancer cell lines, MCF-7 and MDA-MB-231, were both used in this study. We found that Fangchinoline significantly decreased cell proliferation in a dose-dependent manner and induced G1-phase arrest in both cell lines. In addition, upon analysis of expression of cell cycle-related proteins, we found that Fangchinoline reduced expression of cyclin D1, cyclin D3, and cyclin E, and increased expression of the cyclin-dependent kinase (CDK) inhibitors, p21/WAF1, and p27/KIP1. Moreover, Fangchinoline also inhibited the kinase activities of CDK2, CDK4, and CDK6. These results suggest that Fangchinoline can inhibit human breast cancer cell proliferation and thus may have potential applications in cancer therapy. PMID:23401195

  9. Maduramicin inhibits proliferation and induces apoptosis in myoblast cells.

    PubMed

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  10. Proton Pump Inhibitors Decrease Eotaxin-3 Expression in the Proximal Esophagus of Children with Esophageal Eosinophilia

    PubMed Central

    Park, Jason Y.; Zhang, Xi; Nguyen, Nathalie; Souza, Rhonda F.; Spechler, Stuart J.; Cheng, Edaire

    2014-01-01

    Objective Besides reducing gastric acid secretion, proton pump inhibitors (PPIs) suppress Th2-cytokine-stimulated expression of an eosinophil chemoattractant (eotaxin-3) by esophageal epithelial cells through acid-independent, anti-inflammatory mechanisms. To explore acid-inhibitory and acid-independent, anti-inflammatory PPI effects in reducing esophageal eosinophilia, we studied eotaxin-3 expression by the proximal and distal esophagus of children with esophageal eosinophilia before and after PPI therapy. In vitro, we studied acid and bile salt effects on IL-13-stimulated eotaxin-3 expression by esophageal epithelial cells. Design Among 264 children with esophageal eosinophilia seen at a tertiary pediatric hospital from 2008 through 2012, we identified 10 with esophageal biopsies before and after PPI treatment alone. We correlated epithelial cell eotaxin-3 immunostaining with eosinophil numbers in those biopsies. In vitro, we measured eotaxin-3 protein secretion by esophageal squamous cells stimulated with IL-13 and exposed to acid and/or bile salt media, with or without omeprazole. Results There was strong correlation between peak eosinophil numbers and peak eotaxin-3-positive epithelial cell numbers in esophageal biopsies. Eotaxin-3 expression decreased significantly with PPIs only in the proximal esophagus. In esophageal cells, exposure to acid-bile salt medium significantly suppressed IL-13-induced eotaxin-3 secretion; omeprazole added to the acid-bile salt medium further suppressed that eotaxin-3 secretion, but not as profoundly as at pH-neutral conditions. Conclusion In children with esophageal eosinophilia, PPIs significantly decrease eotaxin-3 expression in the proximal but not the distal esophagus. In esophageal squamous cells, acid and bile salts decrease Th2 cytokine-stimulated eotaxin-3 secretion profoundly, possibly explaining the disparate PPI effects on the proximal and distal esophagus. In the distal esophagus, where acid reflux is greatest, a PPI